
Title
Studies on Performance Evaluation and Design
Productivity Improvement for Digital Signal
Processing Systems

Author(s) Kumura, Takahiro

Citation 大阪大学, 2012, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/26850

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

n ,,, Studies on Performance Evaluation and

' Design Productlvity lmprovement for Digital

Signal Processing Systems

January 2012

:ウ
Iア /ダクノ

,Ⅲヽo イ1:Ⅲ
.1

゛
｀

1,1ヽ
、、ゃ.ムt凛ぃ_`

Takahiro KUMURA

Studies on Performance Evaluation and

Design Productivity lmprovement for Digital

Signal Processing Systems

Submitted to
Graduate School of Information Science and

Technology
Osaka University

January 2012

Takahiro KUMURA

Publications

Journal Article (Refereed)

Ull Takahiro Kumura, Norio Kayama, Shinichiro Shionoya, Kazuo Kumagiri, Takao Kusano,
Makoto Yoshida, Masao Ikekawa, Ichiro Kuroda, and Takao Nishitani, "Performance eval-
uation of the AV CODEC on a low-power SPXKSSC DSP corel'IEICE Transactions on Infor-
mation and Systems, Vol. E88-D, No.6, pp.1224-1230, June 2005.

U2l Takahiro Kumura, Soichiro Taga, Nagisa Ishiura, Yoshinori Takeuchi, and Masaharu Imai,
"Sofii,vare development tool generation method suitable for instruction set extension of embed-
ded processors," IPSJ Transactions on System LSI Design Methodology, Vol. 3, pp.2O7-221,
August 2010.

Invited Magazine Article (Refereed)

[M1] Takahiro Kumura, Masao Ikekawa, Makoto Yoshida, and Ichiro Kuroda, "VLIW DSP for
mobile applications," IEEE Signal Processing Magazine, Vol. 19, No. 4, pp. lG-21, July
2002.

Conference Papers (Refereed)

tcll Takahiro Kumura, Daiji Ishii, Masao Ikekawa, Ichiro Kuroda, and Makoto Yoshida, "A low-
power programmnble DSP core architecture for 3G mobile terminalsl' Proceedings of Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 2, No. ITT-
4-3, pp. IOIT -1020, May 2001.

[C2] Masao Ikekawa, Masaki Hori, Kohei Nadehara, Takahiro Kumura, Makoto Yoshida, Ichiro
Kuroda, and Tiakao Nishitani, ^Multimedia signal processor for mobile applications," Pro-
ceedings of IEEE International Conference on Multimedia and Expo (ICME), pp. 55-59,
August 2001.

[C3] Takahiro Kumura, Norio Kayama, Shinichiro Shionoya, Kazuo Kumagiri, Takao Kusano,
Makoto Yoshida, and Masao Ikekawa, *AV CODEC prototype systeln using the low-power
SPXKiSC DSP corel' Proceedings of Workshop on Signal Processing Systems (SiPS),
pp. 69-:7 4, August 2003.

tC4] Takahiro Kumura, "Customizing CDT's registers/memory/disassembly views for assembly
prograrnming on an in-house DSP: EclipseCon, March 2008.

lc5l Takahiro Kumura, Yuichi Nakamura, Nagisa Ishiura, Yoshinori Takeuchi, and Masaharu Imai,
*Model based parallelization from the Simulink models and their sequential C codesl' Pro-
ceedings of Workshop on Synthesis And System Integration of Mixed Information technolo-
gies (SASIMI), March 2012, to appear.

[C6] Takahiro Kumura, Soichiro Taga, Nagisa Ishiura, Yoshinori Takeuchi, and Masaharu Imai,
"Automntic generation of GNU Binutils and GDB for ASIP cores based on plug-in methodl'
Proceedings of Workshop on Synthesis And System Integration of Mixed Information tech-
nologies (SASIMI), March 2012, to appear.

Domestic Conference Papers

[D1] Tbkahiro Kumura, Masao Ikekawa, and Ichiro Kuroda, "Instructions of multiply-accumulate
with rounding for exploitarton of data bus extension on l6-bit fixed point DSPI' Proceedings
of IEICE General Conference, Vol. A-3-3, March 1999 (in Japanese).

[D2] Takahiro Kumura, Masao Ikekawa, and Ichiro Kuroda, "Using rounding multiply-accumulate
instructionwith separated accumulators in FFT:'Proceedings of IEICE Society Conference,
Vol. A-4-7, September 1999 (in Japanese).

[D3] Takahiro Kumura, Masao Ikekawa, Ichiro Kuroda, and Toshihiro Hayata, "Pedormance of
path search rnethod with AFC for W-CDMA," Proceedings of IEICE General Conference,
Vol. B-5-54, March 2000 (in Japanese).

[D4] Takahiro Kumura, Toshihiro Hayata, Masao Ikekawa, and Ichiro Kuroda, "Frequency offiet
estimation using binary search invery-low CNR environmentsl' Proceedings of IEICE Society
Conference, Vol. B-5-26, October 2000 (in Japanese).

[D5] Takahiro Kumura, Masao Ikekawa, and Ichiro Kuroda, "Fast viterbi decoding on a general
purpose DSP withviterbi instructions," Proceedings of IEICE General Conference, Vol. A-4-
40, March 2001 (in Japanese).

[D6] Masao lkekawa, Takahiro Kumura, Daiji Ishii, Makoto Yoshida, and Ichiro Kuroda, "A
low-power 4-way VLIW DSP core architecturel' Proceedings of IEICE Society Conference,

Vol. 44-43, August 2001 (in Japanese).

[D7] Takahiro Kumura, Masao Ikekawa, Makoto Yoshida, and Ichiro Kuroda, "Performance anal-
ysis of a low-power 4-way VLIW DSP corel' Proceedings of IEICE Society Conference,

Yol. A-4-44, August 2001 (in Japanese).

[D8] Takahiro Kumura, Masao Ikekawa, and Ichiro Kuroda, "Source code translationfrom a con-

ventional DSP to a VLIW DSP," Proceedings of IEICE Society Conference, Vol. A-4-7, Au-
gust 2002 (in Japanese).

[D9] Takahiro Kumura, Masao Ikekawa, and Ichiro Kuroda, *AV CODEC evaluation system on
the low-power SPXKS DSP core]' Proceedings of IEICE General Conference, Vol. A-4-14,
March 2003 (in Japanese).

[D10] Takahiro Kumura and Masao Ikekawa, "DSP architecture for variable length decodingl'
Proceedings of IEICE Symposium on Signal Processing, Vol. C6-2, November 2005 (in
Japanese).

[D11] Takanori Morimoto, Takahiro Kumura, Nagisa Ishiura, Masao lkekawa, and Masaharu
Imar,*VLIW ertension of software developrnent environment construction tool ArchCl'IEICE
Technical Report VLD2W7-134,Yo1.107, No. 415,pp.95-100, January 2008 (in Japanese).

[D12] Syohei Yoshida, Takahiro Kumura, Nagisa Ishiura, Masao Ikekawa, and Masaharu Imai,
"Automntic generationfor GCC for instruction set extension on configurable processor," IPSJ
Technical Report ARC, Vol. 2008-ARC-176, No. l,pp.29-34, January 2008 (in Japanese).

[D13] Tetsuya Yamamoto, Takahiro Kumura, Masao Ikekawa, Nagisa Ishiura, and Masaharu Imai,
"Optimum code scheduling for VLIW DSP SPXKi considering conditional executionl' IEICE
Technical Report VLD2007-134, Vol. 108, No. 478,pp.95-100, January 2008 (in Japanese).

[Dla] Yuji Kunitake, Takahiro Kumura, and Hiroto Yasuura, "A case study on instruction set ex-
tension for variable length decoding on a custom processorl' IPSJ Technical Report ARC,
Vol. 2010-ARC-187, No. 21, pp. 1-6, January 2010 (in Japanese).

[D15] Takahiro Kumura, Soichiro Taga, Nagisa Ishiura, Yoshinori Thkeuchi, and Masaharu Imai,
"Software development tool generation method suitable for instruction set extension of em-
bedded processorsl'IEICE Technical Report WD2009-120, Vol. 109, No. 462,pp.127-132,
March 2010 (in Japanese).

[Dl6] Soichiro Taga, Takahiro Kumura, Nagisa Ishiura, Yoshinori Takeuchi, and Masaharu Imai,
"Automatic retargeting of binutils and GDB based on plugin method:'IEICE Technical Re-
port WD2010-95, Vol. 110, No. 360, pp.69-:74, January 2011 (in Japanese).

[D17] Thkahiro Kumura, Masato Edahiro, Yuichi Nakamura, Nagisa Ishiura, Yoshinori Takeuchi,
and Masaharu Imai, "Parallel C code generation from Sirnulink modelsl' Proceedings of
IPSJ Workshop on Embedded Technologies and Network (ETNET), CPSY2010-80, Vol. 110,
No. 473, pp. 303-308, March 2011 (in Japanese).

Summary

This thesis studies performance evaluation and design productivity improvement for digital signal
processing systems. To realize digital signal processing systems using programmable processors,

one of most important things is to explore an optimized combination among digital signal process-

ing algorithms, processor architectures, and software development tools. From the processor's point
of view, evaluating processor performance against target applications and providing software devel-

opment tools at early design stages for the evaluation play important roles in this exploration of the

optimized combination. As LSI designs have grown larger, overall performance evaluation on real

workloads becomes difficult on system LSIs integrated with a large number of hardware compo-

nents and processor cores before fabrication. Software simulators are too slow to deal with real-time

workloads, and fuU hardware prototyping is unable to respond well to design improvements. As the

calculation amount required in digital signal processing applications has been increasing such that a

single processor cannot afford to handle, performance evaluation becomes dfficult since workload

must be distributed among multiple processors through parallelization of a target application. With
these as background, important things to improve the design productivity of processors for digital
signal processing applications are software development tools available at an early design stage for
performance evaluation, overall performance evaluation on real workloads before LSI fabrication,

and software parallelization of calculation-requiring digital signal processing applications to ease

performance evaluation. First, this thesis describes a design experience of a digital signal processor

core as an example of hand-optirtrrzedperformance evaluation at a processor design stage. Next, to

improve the efficiency of overall performance evaluation, this thesis describes a method for rapidly
verifying and evaluating overall performance on real-time workloads of LSIs before fabrication.

The developed method makes it possible to emulate the target LSI composed of the processor core

shown in the design experience and many peripherals running at a scaled-down operating frequency

1/3 and to evaluate audio and video processing on the LSI for actual situations. Then, to provide

software development tools at an early design stage, this thesis describes a method to generate soft-

ware development tools, and demonstrates that a generated compiler gives as good performance

such that can be used for performance evaluation. Finally, to increase the productivity in terms of
parallelization of digital signal processing algorithm, this thesis describes a method to generate par-

allel C code from models that represent behavior of digital signal processing applications as block
diagrams. The total work of this thesis has made improvement on major three aspects in terms of
design productivity of processors and software for digital signal processing systems.

・Ⅳ

Acknowledgements

I would sincerely like to thank Professor Masaharu IMAI, Professor Tiakao ONOYE, Professor
Nagisa ISHIURA, and Associate Professor Yoshinori TAKEUCHI for having supervised me during
this work in Osaka University.

The development of the new DSP core described in chapters 2 and 3 has been made possible
by the hard work of a very large group of people at NEC Corporation and former NEC Elecftonics
Corporation, particularly, Mr. Masao IKEKAV/A, Dr. Ichiro KURODA, Mr. Makoto YOSHIDA,
and Professor Takao MSHIANI, to whom I express my sincere appreciation.

The work described in chapter 4 has been made possible by collaboration with, appropriate
assistance of, and suggestions of Mr. Soichiro TAGA, Mr. Syohei YOSHIDA, Ms. Aiko WATAI{-
ABE, Dr. Takuji HIEDA, and Dr. Yuki KOBAYASHI, to whom I express my sincere appreciation.

The research work described in chapter 5 would have not been possible without appropriate as-

sistance and suggestions of Professor Masaharu IMA[, Associate Professor Yoshinori TAKEUCHI,
Professor Nagisa ISHIURA, Professor Masato EDAHIRO, and Dr. Yuichi NAKAMLJRA.

I would like also to thank all my current and former colleagues in NEC Corporation, current
and former members of Integrated System Design Laboratory in Osaka University, and co-authors
of my publications.

Finally, but not least, I would like to thank my wife Asuka for her understanding and support
during this work. Her support and encouragement were in the end what made this thesis possible.

Contents

Publications

Joumal Ardclc(Refereed).......・ ・・・・・・・・・・・・・・・・・・・・・・・・・・

In1/ited M娼 厖ine Article(Refereed)… … .… … … … ・ … … ・ … … … … ・

Conたrenceざ崚 ers(Refereed).......・ ・・・・・・・・・・・・・・・・・・・・・・・

l

1

1

1

Domestic Conference Papers ii

Summary iv

Acknowledgements v

1 Introduction I
1.1 Digital signal processing devices and implementation 1

I.2 Processor design fbr digital signal processing 2

1.3 Overall performance evaluation before fabrication 3

1.4 Software development tools for early performance evaluation 3

1.5 Productivity of software parallelization for multiple processors 4
1.6 Thesis organization 4

2 Design of A Digital Signal Processor Architecture
2.1 Demand for high-perfonnance and low-power programmable digital signal processors

2.2 Architecture
2.3 Orthogonal instruction set.

2.3.1 Variable length instruction packet

2.3.2 Saturation mode
2.3.3 Special instructions for particular applications

2.4 Applicationbenchmarks
2.4.1 Delayed least mean square adaptive filtering
2.4.2 Viterbi decoding
2.4.3 MPEG-4 video encoding and decoding

2.5 Summary

3 Performance Evaluation Method Before SoC Integration
3.1 System performance evaluation for LSIs using processors

5

5

6

8

11

11

13

14

14

19

23

25

26

26

27

Vl

3.2 SPXK5 and SPXK5SC

co rlErvrs colvrErvrs

3.3

3.4
3.5

3.6

AV CODEC prototype system
Implementation of AV CODEC
Performance evaluation
Architecture design based on the emulation system

3.7 AV CODEC performance of pr,PD77050

3.8 Summary

Software Development Tool Generation for Architectur:e Design
4.1 ASIPs and their soflware development tools
4.2 Software development tool generation using plugins

4.2.1 Tool generation flow
4.2.2 Structure of the generated plugins
4.2.3 Internal tool flow working with the plugins
4.2.4 Assembling and encoding new instructions
4.2.5 Machine description of new instructions
4.2.6 Adding intrinsic functions on the GCC

4.3 Instruction set description using XML .

4.3.1 Registerdefinition
4.3.2 Instructiondefinition
4.3.3 Instruction behavior definition

4.4 Experiment
4.4.1 Generated toolchain for SIMD extension
4.4.2 Code generation using intrinsic functions

4.5 Related work errd discussion
4.6 Summary

Productivity improvement on parallelization of digital signal processing algorithm for
multiple processors
5.1 Multicore processors and software parallelization
5.2 Related work
5.3 Parallel C code generation from Simulink models
5.4 Analyzing C code

5.5 Analyzing model

28

30
32

36

37

38

40
40
4l
42
42
45

45
47
49
50
51

52

54
55

56
56
59
64

67
67
69
70
72
72

5.6 Flattening block hierarchy 73
5.7 Breaking loop structures 73
5.8 Generating parallel C code 75
5.9 Experiment 76

5.9.1 Audio equalizing 76
5.9.2 Lane detection 77

5.10 Discussion . 79
5.11 Summary 79

6 Conclusion

vll

82

List of Figures

1.1

2.1

2.2

z.)
2.4
2.5

2.6
2.7

2_8

2.9

2.10
2.tt
2.t2
2.13

2.14

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1 Concept flow underlying tool generation. 43

4.2 Generating plugins for GNU Binutils, GDB, and GCC. 44

4.3 Tool internal flow for enhanced assemblers, disassemblers, linkers, and simulators

working with plugins 46
4.4 Assembling instructions on the plugins. 48

4.5 A generated insfuction pattern. 49

4.6 Instruction field structure of MYADD. . . 52

Exploration of optimized combination of algorithms, processor architectures, and

software development tools to realize digital signal processing systems.

The SPXK5 block diagram showing seven functional units and four buses.

Pipeline diagram.
Chip micrograph of the SPXK5 and its memory banks.
lnsffuction packets containing one to four instructions.
C program fbr the Delayed LMS algorithm.
Two possible patterns of MADDR l6-bit MAC instruction.
Innermost loop code segment of an assembly program corresponding to Figure 2.5.

Unrolled innennost loop of Figure2.5.
Accelerated assembly code segment for the DLMS algorithm.
Add-compare- select operation s.

ACS operations on the SPXKS.
Assembly code segment for four ACS operations.
MAE calculation flow diagram for the SPXK5.
MPEG-4 encoderldecoder cycle counts (SP@L2, 352x288 pixels, 15 frames/sec).

2

8

9

10

13

t6
t7
18

19

20
2l
22
22
24
25

29
30
3l

Block diagram of the SPXK5.
Block diagram of the SPXK5SC.
Block diagram of the AV CODEC prototype system.

AV CODEC prototype system. 32
Average cycles per second of each function during AV CODEC execution. 34
Average bus traffic per second of each bus master during AV CODEC execution. 35

Block diagram of the pPD77050. . 37

AV CODEC performance af p,PD77A50. . . . 38

vul

LIST OF“ IJRES 闘 ST OFΠGURES

4.7 Example of an XML document with additional ISA specification 53
4.8 Behavior description of instruction MYADD written in C language. 55
4.9 Block diagram of the V850 processor with SIMD extension. 56
4. | 0 Increase in the number of executed instructions of compiler-generated codes using

intrinsic functions against that of hand-optimized assembly codes. 60
4.11 lncrease in the code size of compiler-generated codes using intrinsic functions

against that of hand-optimized assembly codes. 6l
4.12 FIR filtering functions: C language.
4.13

5.1

5.2
5.3

5.4
5.5

5.6
5.7

5.8

FIR filtering functions: assembly language.

The process to generate parallel C code from a Simulink model.
The flow chart of task execution.
Flattening block hierarchy.
How to break a loop structure.
Task dependency graph extracted from the audio equalizing model.
Task dependency graph extracted from the lane detection model.
Histogram of task execution time ratio for the audio equalizing. . 81
Histograrri of task execution time ratio for the lane detection. 81

65

66

70
7l
74
75

78

80

lX

List of Tables

Z.l Chip chiracteristics of the SPXK5.
2.2 Instruction set summary.
2.3 General DSP function benchmark comparison

3.1 Functional speci{ication of the AV CODEC prototype system.

3.2 Memory allocation of the prototype system
3.3 AV CODEC peuameters for performance evaluation. .

3.4 Estimated cycle counts and bus traflic of the AV CODEC on 250-MHz SPXK5SC
and 83-MHz AHB.

3.5 The pPD77050 specification.

4.1 Architecture surnmary of the V850 microcontroller with SIMD extension.
4.2 The code amount of the generated plugins for the SIMD extension.
4.3 Comparison among tool generation methods using the GNU toolchain. .

4.4 Lines of source codes: (a) original C code, (b) modifled C code using intrinsic
functions, (c) assembly code generated from (b), and (d) hand-optimized assembly

code. .

5.1 Experiment results of generating parallel C code from Simulink models.

9

12

15

33

33

35

35

39

57

57

63

“

　

７７

Chapter 1

Introduction

Digital signal processing technology has been evolving in recent decades in accordance with the
advance of semiconductor technology. The process of sampling and quantizing analog signals in
analog-to-digital conversion makes it possible to handle the signals without any degradation and
to process them in mathematical ways such as compressing, decompressing, eliminating noises,
enhancing, predicting, and so on. Initially, the main applications of digital signal processing were
voice coding, data modems, and echo cancellation. Then, the advances of the two technologies have
made it possible to realize baseband processing in faster wired/wireless communication systems,
audio encoding/decoding systems, and video encoding/decoding systems.

L.1 Digitat signal processing devices and implementation

There are many methods and devices to realize digital signal processing algorithms written in the
languages suited to implementation [1,2]. It is very important to use suitable methods and devices
for different purposes in terms of power consumption, required performance, and programmability.
Dedicated circuits such as application specific integrated circuits (ASICs) have strength in terms
of speed of operating frequency and power consumption while they do not have programmabil-
ity. Programmable processors make it possible to change algorithms of digital signal processing
by using software while they generally consume more power than ASICs and provide less perfor-
mance than ASICs. Among several types of programmable devices ranging from central processing
units (CPUS) [3] to field programrnable gate arays (FPGAs) [4], this thesis focuses on the design
productivity of processors and software for digital signal processing applications.

Programmable processors, as mentioned above, can handle different digital signal processing
apptcations if software for them is given. After processors are fabricated, software can change how
a processor works. If several different applications are implemented on a single device and they do
not work concurrently, processors are generally a better choice in terms of semiconductor area effi-
ciency compared with ASICs. To realize digital signal processing applications using programmable
processors, one of most irnportant things is to explore an optimized combination among digital sig-
nal processing algorithms, processor architectures, and software development tools as shown in
Figure 1.1.

働 aprer」 SccJom l.2

Design of processor
architecture

A19orithm of digital

signal processing
High‐ perforrnance and

Low―cornplexity

Software Development
tools

Absolutt plrfOrmaぬ cё′ ‐ Co“ pile4 Sim餞 latO弓

deb199el prO寵 ierr and

support for ll“ llё i:ZaむOn

footprint, power
consurnption,and ease of

Figure 1.1: Exploration of optimized combination of algorithms, processor architectures, and soft-
ware development tools to realize digital signal processing systems.

From the processor's point of view, efficient evaluation of processors' performance against tar-
get applications and software development tools at an early design stage for this evaluation play
important roles in this exploration of the optimized combination. As the calculation amount re-
quired in digital signal processing applications has been increasing such that a single processor

cannot afford to handle, performance evaluation becomes difficult since workload must be dis-
tributed among multiple processors through parallelization of a target application. With these as

background, important things to improve the design productivity of processors for digital signal
processing systems are: (1) software development tools available at an early design stage for per-

formance evaluation, (2) overall performance evaluation on real workloads before LSI fabrication,
and (3) software parallelization of calculation-requiring digital signal processing applications to
ease performance evaluation. Therefore, this thesis has studied these major aspects in terms of
design productivity of processors and software for digital signal processing systems.

L.2 Processor design for digital signal processing

To efficiently implement different kinds of digital signal applications on a prograrnmable processor,

processors to be designed should be assessed their performance of conceivable applications. In the

past, aptitude for digital signal processing was judged based on only how many multiply-accumulate

Chapter 1 Section l.3

operations are performed in a second. Now the situation has changed. Since algorithms of digital
signal processing get more diverse and complex, prograrnmable processors should be designed
so as to efficiently perform many kinds of operations in addition to multiply accumulation. With
regard to this point in performance evaluation during processor design, this thesis describes a design
experience of a digital signal processor core in chapter 2.

1.3 Overall performance evaluation before fabrication

As LSI designs have grown larger, estimation of overall performance on real workloads becomes
difficult on system LSIs integrated with a large number of hardware components and processor
cores. It is very important to evaluate the overall performance of target LSIs on real workloads
before actual LSI fabrication. However, software simulators, while relatively inexpensive, versa-
tile, and accurate, are too slow to deal with real-time workloads, e.g., audio/video signals, and full
hardware prototyping is unable to respond well to design improvements. In this regard, as an inter-
mediate approach between software simulation and full hardware prototyping, this thesis describes
a method for rapidly verifying and evaluating overall performance on real-time workloads of LSIs
before fabrication in chapter 3.

1.4 Software development tools for early pedormance evaluation

At the design experience of a digital signal processor architecture described in chapter 2, at an
early stage of the architecture design, only simple software development tools not including any C
compilers was developed for early performance evaluation. This made the early performance eval-
uation of the architecture inefficient in particular for larger applications because any C compiler
was not available at an early stage of the architecture design. As a remedy for this inefficiency
of the early performance evaluation, a hybrid programmable processor architecture composed of a
base processor and application specific functional units is promising, which is an application spe-
cific instruction set processor (ASIP) emerged in the 1990s [5]. ASIPs are designed so as to have
specialized instruction set that provide high perform on specific operations required in a particular
application. Since the fundamental instruction set of a base processor is not changed, it is possible
to optimize the C compiler for the base processor in advance. However, there is a problem. There
has not been an efficient way to exploit the processor's existing GNU toolchain as a base compiler
for ASIPs. The GNU toolchain is an open-source and a de-fact toolchain in the field of embedded
software development. Since the GNU toolchain supports many kinds of processors, it is very suit-
able to generate software development tools for the ASIPs based on existing embedded processors.
In addition, source availability of the GNU toolchain gives chances for ad-hoc modification that
might be required at early design stages of ASIPs. To address this problem, this thesis describes a
method of software development tool generation for instruction set extension of existing embedded
processors in chapter 4.

Chapter 1 SccJon l.5

1.5 Productivity of software parallelization for multiple processors

The calculation amount required in digital signal processing applications has been increasing such

that a single processor cannot afford to handle. The reasons may include enlargement of image

resolution from standard definition (SD) to high definition (HD), faster bit-rate of mobile wire-
less communication, and complication of signal processing algorithms for rich functionalities. To

realize such calculation-requiring applications, using multiple processors on a single LSI attracts at-

tention [6]. Platforms with multiple cores are now prevalent everywhere from desktops and graphics

processors to laptops and embedded systems. However, writing efficient digital signal processing

applications working in parallel that utilize the computing capability of many processing cores still
require much effort. Although it is very important to parallelize software working on a multicore
processor to exploit its inherent performance, parallelization is one of most difficult optimization
processes and should be eased by something useful such as language, compiler, and design tool.
To increase the productivity in terms of parallelization of digital signal processing algorithm, this
thesis describes a method to generate parallel C code from models that represent behavior of digital
signal processing applications in chapter 5.

1.6 Thesisorganization

The rest of this thesis is organized as follows. Chapter 2 describes a design experience of a processor

architecture suited to signal processing for communication and multimedia applications. Chapter 3

describes a method for rapidly verifying and evaluating overall performance on real-time workloads
of system LSIs by using an intermediate approach between software simulation and full hardware
prototyping, hardware emulation using FPGAs. Chapter 4 describes a method of software develop-

ment tool generation for architecture design. Chapter 5 proposes a method to improve productivity
on parallelization of digital signal processing algorithm for multiple processors. Finally, chapter 6

concludes this thesis and summarizes future work.

Chapter 2

Design of A Digital Signal Processor
Architecture

This chapter addresses the design of a digital signal processor (DSP) core architecture with low
power dissipation for use in third-generation (3G) mobile terminals. To obtain higher performance,
the DSP core employs a 4-way VLIW (very long instruction word) approach, as well as a dual-
multiply-accumulate (dual-MAC) architecture with good orthogonality. It is able to perform both
video and speech CODEC for 3G wireless communications at 384 Kbits/sec with a power consump-
tion of approximately 50 mW. This chapter presents an overview of both the DSP core architecture
and a DSP instruction set, and it also gives some application benchmarks.

2.1 Demand for high-performance and low-power programmable
digital signal processors

The fast bit-rate, complex modem processing required by next generation mobile terminals (e.g.,
rake combining, channel equalization, and forward error correction, etc.) will necessitate signal
processing power that can only be provided by high-perforrnance embedded devices. Further, mul-
timedia applications (e.g., video CODECs [7,8], speech/audio CODECs, echo cancellers, speech
recognition systems, etc.) will also need to be executed concurrently on such terminals.

This means that the development of programmable processors will be particularly important
because their flexibility and shorter development periods will be crucial to the success of both
enhanced modem processing and enhanced multimedia applications. That is to say, first of all, with
respect to modem processing, the flexibility provided by programmable processors will be needed
in order to respond to further changes in communication protocols and the need for algorithm
improvements. Multimedia applications have an even stronger requirement for flexibility. On the
same handheld terminal, for instance, a videophone would require encoding and decoding of video
and speech'/audio, while the browser would require only decoding, but at a far higher resolution for
the video, and at a hi-fi level for the audio. To be able to handle all the possible combinations in
which these two applications might be used separately or concurrently, a dedicated processor would
inevitably need to provide a far greater amount of processing power than would be needed with a

Chapter 2 Secσon 2.2

programmable processor, whose flexibility could eliminate much resource waste.

Among the various existing programmable processor architectures [9], programmable digital
signal processors (DSPs) seem particularly well suited to handheld terminals because of their energy

efficiency. In this regard, recent processors in such programmable DSP architectures as very long
instruction word (VLIW) based architectures are particularly noteworthy because they enable the

development of high-level language compilers that generate efficient codes [10, 1l], which will
be especially important in reducing development time for the applications to be used in DSPs.

Although the superscalar architectures that have orthogonality in their instruction set would also

be suitable for highJevel language compilers, VLIW architeotures would require less hardware

complexity because the superscalar architectures generally need a hardware logic block to find
instruction-level parallelism in instruction codes. Unfortunately, however, almost all early VLIW-
based DSPs have been developed for high-end applications, and they consume too much power for
use with handheld terminals.

A new DSP core has been developed for handheld terminals, the SPXK5 Uz} lt is a 4-way
VLIW DSP core with a highly orthogonal instruction set. It achieves high-performance and flex-
ibility, and it is compatible with high-level languages. In addition, its architecture features low-
power consumption. This chapter describe the SPXK5 architecture and its performance in DSP

applications.
This chapter also consider the question of application-specific enhancements. Such architecture

enhancements as add-compare-select instructions or co-processors for the Viterbi decoding algo-

rithm are employed in some recent programmable DSPs, and for video CODECs, other architectures

include either single-instruction multiple-data (SIMD) instructions or media co-processors [13-15].
While such application-specific enhancements are valuable when their applications are actually in
use, they do nothing to enhance the performance of other applications, and the more they are added,

the greater the increase in chip-size and energy requirements. In other words, for handheld ter-

minals, such enhancements need to be chosen in a careful and balanced way. This has been done

in developing the SPXKS, in which a wide range of signal processing algorithms are efficiently
implemented.

2.2 Architecture

The SPXK5 is a 16-bit general-purpose DSP core based on the incorporation of a VLIW architecture

into the NEC pPD7701x architecture [6]. Its low-power consumption and high-performance make

it suitable for use in handheld terminals. Figure 2.1 shows a block diagram of the SPXKS, which
contains register files, buses, several control blocks, and seven functional units. The functional units

consist of two multiply-accumulate (MAC) units for 16-bit by 16-bit multiplication and 40/16-

bit accumulation; two arithmetic logical units (ALU) for addition/subtraction, shift, and logical

operations; two data address units (DAU) for load and store; and one system control unit (SCU) for
branch, zero overhead looping, and conditional execution.

The SPXK5 has been designed so that up to four of the seven units can work in parallel during

the same clock cycle. With an instruction length of 16 bits, this means that the SPXK5's instruction

fetch length is 64 bits. While the ability to issue insffuctions to all seven functional units might
be desirable in certain respects, this would require the SPXK5 either to have such a large memory

Chaprer 2 SecJon 2.2

bandwidth or to operate its instruction bus at such high speeds as to increase power consumption
beyond desired levels. With a maximum of four units operable in parallel, however, power con-
sumption can be kept low enough for use in handheld terminals.

The SPXK5 is based on a load/store architecture. Data from the memory connected to it is
read into its registers, and operations are executed on the basis of that data. The results of these
operations are input in the registers and then written back into the memory. The SPXK5 has eight
general-purpose 40-bit registers (R0-R7). To avoid increasing power consumption in the SPXK5,
the number of general-puq)ose 40-bit registers (8), which was found in the original p,PD770lx
architecture, has not been increased, but this insufficient number has been compensated for by
allowing each 40-bit register also to be so divided as to provide two 16-bit register portions (R0H,
R0L, ...). Since such portions can be handled by almost all instructions, the number of registers
is, in effect, roughly doubled, greatly enhancing performance with no significant increase in power
consumption.

The SPXK5 also has eight address registers (DP0-DP7) and eight corresponding offset registers
(DN0-DN7). The address registers are 32 bits wide, and the offset registers are 16 bits wide. The
address registers indicate addresses to access memory and can be used for address calculation in
such simple arithmetic operations as addition and subtraction, which eliminates the need to use the
general-purpose registers. Each of the offset registers has an offset value for use in modifying its
corresponding address register.

Outside the SPXK5, instructions and data architecturally reside in a single unified 32-bitmem-
ory space which consists of a number of memory banks. Instructions and data are stored separately,
i.e., in different banks from one another in order to make sure that the SPXK5 can concurrently
access both of them. That is to say, while they are in the same single 32-bit memory space, they are
kept in physically separate memory banks. Memory banks to store instructions are all connected to
a single 64-bit instruction bus and each memory bank to store data is connected to both of two 32-
bit data buses. With three buses, the SPXK5 can access three different memory banks at the same
time. Specifically, it can fetch a64-bit instruction word and can load/store two 32-bit data items
during the same clock cycle. Through a32-b1t data bus, two 16-bit data items located adjacent to
one another in a memory bank can be transferred to registers as a single 32-bit data item.

For faster operational frequency, the SPXK5 has a six-stage deep pipeline: instruction fetch
(IF), dispatch queue (DQ), decode (DE), DP register update (DP), and execution phases 1 (EXl)
and execution phase 2 (EXz) shown in Figure 2.2. Instructions for both the ALU and the SCU are
executed during the EXI stage. MAC operations are executed during both the EXI and the EX2
stages. Load./store operations are executed during both the DP and the EXl stages. The DP register
update operation for post-modification load/store is executed during the DP stage, and the address
calculation for pre-modification load./store is executed during the DE stage. Since each instruction
has the different execution stages, there is the possibility that the result of a calculation might
not be available at the next clock on some combinations of instructions (i.e., a pipeline hazard).
In order to avoid pipeline hazards, such code generators as compilers and assemblers are used to
control instruction scheduling so as to maintain the correctness of programs. This software solution
eliminates the need for the SPXK5 to contain an interlocking system for register files as a hardware
solution; this would need to work every cycle and would dissipate considerable power. Because the
SPXK5 relies on software for the optimized instruction scheduling that is required by superscalar
and VLIW architectures, it requires fewer circuits and consumes less power.

Chapter 2 SecJon 2.3

Table 2.1 summarizes the chip characteristics of the SPXK5. A 0.13-micron logic process

was used to fabricate the SPXK5, which measures 2.56 square millimeters and can operate at250
MHz, equivalent to 1000 MIPS. Its energy efficiency reaches 0.05 mWiIMIPS at 0.9 volts. Figure

2.3 shows a chip micrograph of the SPXK5 and its memory banks, which consist of 64 Kbytes

instruction memory 64 Kbytes data memory and 16 Kbytes instruction cache.

Figure 2.1: The SPXK5 block diagram showing seven functional units and four buses.

2.3 Orthogonal instruction set

The SPXK5 can issue up to four instructions in parallel during the same clock cycle, and the total

length of the instructions can be as great as 64 bits. Users are free to choose instructions for parallel

issue so long as the number and total length of those instructions fall within these limits. In addition,

all arithmetic, logical, and store operations other than MAC operations are single-cycle operations.

These fewer restrictions on parallel instructions (high orthogonality) and single-cycle operations

are very important features in the SPXK5 instruction set architecture because they allow users and

System registers40‐bit general‐purpose registers

RO

R,I

R2

R3

R4

R5

R6

R7

ROH ROL

Rl H RlL

R2H R2L

R3H R3L

R4H R4L

R5H R5L

R6H R6L

R7H R7L

32-bit address registers 16-bit offset registers

ＰＯ

Ｐｌ

Ｐ２

Ｐ３

岡

Ｐ５

Ｐ６

Ｐ７

Ｄ

Ｄ

Ｄ

Ｄ

Ｄ

Ｄ

Ｄ

Ｄ

Ｎ

Ｎ

Ｎ

Ｎ

Ｎ

Ｎ

Ｎ

Ｎ

Ｄ

Ｄ

Ｄ

Ｄ

Ｄ

Ｄ

Ｄ

Ｄ

Chapler 2 SecJom 2.3

Pipeline sfages

lF DQ DE DP EXl EX2

Execution

Pipeline sfages

lF Instruction fetch

DQ Dispatch queue

DE Decode

DP DP register update

EXI Execution phase 1

EX2 Execution phase 2

Technology

Die size

Transistor count

Maximum operational frequency

Average power consumption

Execution sfages

ADDR Pre modified address calculation

DPM DP register modification

MEM Memory access

ALU ALU operations

MAC MAC unit operations

SCU SCU operations

Figure 2.2: Pipeline diagram.

Table 2.1:Chi charactenstics ofthe SPXK5.

0.13 pm, s-level metal CMOS

1.6 mm x 1.6 mm

730 K transistors

250 MHz atl.5V,
180‐200 MHz atO.9V

0.15 mW/MIPS atl.5V,
0.05 mⅥr/MiPs at O.9V

sfages MEM

ADDR DPM ALU

SCU

MAC

Cllaprer 2 Section 2.3

Figure 2.3: Ctnp micrograph of the SPXK5 and its memory banks.

10

Chapter 2 Section 2.3

compilers to generate more efftcient programs. Moreover, a C-like algebraic assembly language
has been developed to help prograrnmers to develop highly parallelized programs easily.

Table 2.2 summarizes the SPXK5 instruction set. Each instruction is executed by its corre-
sponding functional unit, e.g., general-purpose register addition is executed by either of the ALUs.

MAC instactions include 16- x 16-bit multiplications and 40(16)-bit + 16- x 16-bit multiply-
accumulate operations. All 16-bit + 16- x 16-bit multiply-accumulate operations may involve
rounding during accumulation. Each of the general-purpose registers can be used as an accumulator
for these instructions. Either 16-bit portion of a general-purpose register can also be assigned for
use as an accumulator or as a source operand.

ALU instructions include general arithmetic, shift, and logical operations. They also include
such media instructions as parallel addition/subtraction, parallel absolute addition, parallel shift,
format conversion between 8-bit and 16-bit, and parallel maximum/minimum operations.

DAU instructions include both load,/store and such address register modifications as DP register
addition/subtraction. Load/store operations on data stored in the local memory connected directly
to the SPXK5 are executed in a single cycle.

,SCU instructions include register transfers between general-purpose registers and other regis-
ters (e.g., address registers, offset registers, system registers), branch, subroutine calVreturn, zero
overhead looping, conditional execution, and other program sequence control operations. Here,
zero overhead loops can be nested up to four levels and will have three delay cycles through which
users can issue instructions. Instructions fetched within the three cycles after a loop instruction are
executed before the loop begins and are not part ofthe loop. The only instructions that cannot be
issued in the delay cycles are branch, subroutine calVreturn, and a new loop instruction. Branch
and subroutine calUreturn instructions involve 3 to 5 cycles oflatency. Conditional execution can
be applied to all ALU instructions and to register transfers between general-purpose registers and
address registers.

2.3.1 Variable length instruction packet

All SPXK5 instructions are either 16 or 32 bits long. Instruction codes that include instructions
to be executed in parallel are referred to as an instruction packet. The total length of instructions
in an instruction packet can vary from 16 bits to 64 bits, i.e., they will be multiples of 16. This is
in contrast to a conventional VLIW architecture, which requires that the length of each instruction
packet be the same. Variable-length instruction packets allow the elimination of the redundant non-
operations (e.g. NOPs) used to fill packets, thus producing higher code density. Each instruction
code has a field to indicate its execution unit, code length, and parallel execution. Figure 2.4 shows
instruction packets containing from one to four instructions.
2.3.2 Saturation mode

The SPXK5 has a saturation mode for all arithmetic operations (addition, subtraction, multiply-
accumulate operation, etc.) in order to efficiently implement such media processing as speech
CODEC, video CODEC, etc., and the saturation mode can be turned off/on for each destination
register individually. Those arithmetic operations in the saturation mode are compliant with the
speech CODEC standards of the European Telecommunications Standards Institute (ETSI). When

Chapter 2 SCCゴOr2 2.3

Table2.2: Instruction set summary.
Instruction description Syntax example

MAC unit operations

Multiply

Multiply-accumulate

Multiply-accumulate with rounding

ALU operations

Add or subtract two operands

Absolute value

Various logical operations

Negate

Clip and/or round

Clear an operand register

Divide

Exponent

Compare two operands

Pack two values in a register

Parallel add/subtract

Parallel maximum/minimum

Parallel shift

shift

Sign/zero extension

Unpack two values in a register

DAU operations

Add/subtract DP registers

Modify a DP register

Sign/zero extension

Load with post modification

Load with pre modification

Direct addressing load

Store with post modification

Store with pre modification

Direct addressing store

SGU operations

Branch

Subroutine call/return

Zero overhead loop

Move

Conditional execution

Kemel state control

R0=R1H*R2H

R0=R0+R1H*R2H

ROH=maddr (R1H, R2H)

KU =Kf +KZ

R0=abs (R1)

R0=R1 and R2

KU= -Kf

Ro=clip (R1)

clr (R0)

R0/=P1

R0=exP (R1)

R0=1t (R1 , R2)

RO=packv (R0)

P6=padd (R0, R1)

R0=pmax (R0, R1)

P9=psra1 (R0)

Ro=RL sra R2

R0=signext (R0HL)

R0=unpackv (R0)

DP0=DP1+DP2

DP0=DP0+DN0

DPo=signext (DPo)

R0=*DP0++

pg=* (Dp0+N)

R0=* (DBASE+lV)

*DP0++=R0H

* (DPO+IV) =ROH

* (DBASE+N) =ROH

Jmp Iabe1

call labef

loop ItI

DP0=R0HL

if (R0==0)

halt

12

Chapter 2 Sec″on 2.3

Instruction packet #1

#2

clr(RO) clr(R■) R2=★ DPO R3=■ DP■

RO=RO+R2 R■ =R■ +R3 R2=ナ DP2

RO=RO+R2 R■ =R■+R2

RO=RO+Rl

#3

Figure 2.4: Instruction packets containing one to four instructions.

the saturation mode is turned on for the destination register of an arithmetic instruction, the result
of the instruction will be saturated. This destination-register-dependent saturation mode has two
benefits: it enables simultaneous execution of instructions both with and without the saturation
mode, and it allows for a reduction in the number of instructions whose results are saturated, which
leads to reduced instruction code length, i.e., most instructions can be expressed in 16 bits.

2.3.3 Special instructions for particular applications

The VLIW-based architecture of the SPXK5 accelerates applications by utilizing instruction-level
parallelism. It also contains a number of SIMD instructions so as to take advantage of data-level
parallelism [7] as well. In addition, a number of application-specific instructions are included in
its instruction set for image/video processing and Viterbi decoding. These special instructions are
executed on each of the two ALUs. Although this kind of enhancement could be implemented
on a co-processor, the co-processor approach tends to be less flexible than the instruction-level
approach, and it also tends to increase chip area. Here, rather, the logic blocks dedicated to these
special instructions occupy only 2.5Vo of the DSP core, and their power dissipation can be reduced
by completely stopping the switching activity of those logic blocks when they are not being used.

Eight special instructions were carefully selected from among the great variety of conceivable
SIMD instructions so as to provide sufficient coverage without significantly increasing either the
length of instruction encoding fields or the total code size. Since all special instructions share eight
general-purpose registers with all the other instructions, it is easy for them to use the results of
other instructions, and for other instructions to use theirs. The eight special instructions are briefly
described below.

PADD and PSUB instructions perform two add operations or two subtract operations, respec-
tively, in parallel. PADD instruction adds 16-bit values placed in the high portions of source and
destination registers, and also adds 16-bit values placed in the low portions of source and destina-
tion registers at the same time. The same thing is done for PSUB instruction. These instructions
are general SIMD instructions and are applicable to such applications as video encoding/decoding,
Viterbi decoding, FFT, etc.

PSHIFT instruction shifts right two 16-bit values placed in the high and low portions of a
destination register, and rounds each of the values. The amount of shift is specified in the instruction
format. This instruction is also a general SIMD instruction and is useful for motion compensation

#4

13

Chapter 2 SecJon 2.4

in video encoding/decoding and for scaling in FFT.
PADDABS instruction calculates the absolute values of two 16-bit values placed in the high and

low portions of a source register and adds those absolute values to two 16-bit values placed in the

high and low portions of a destination register. This instruction is useful for motion estimation in
video encoding.

PACKV instruction packs two signed 16-bit values into two unsigned 8-bit values. The two 8-bit
values are then packed and stored in the low portion of a destination register. If a signed 16-bit value
is beyond the range ofan unsigned 8-bit value (i.e., greater than 255 or less than 0), the saturated

value (255 or 0, respectively) is stored. This instruction is effective for motion compensation in
video encoding/decoding for storing calculated pixel values into memory.

UNPACKV instruction unpacks the two packed unsigned S-bit values placed in the low portion
of a destination register to the high and low portions of a destination register. This instruction is
used in video encoding/decoding for reading pixel values stored in memory.

PMAX and PMIN instructions perform two maximum operations or two minimum operations,
respectively, in parallel, and also perform specific bit-manipulation functions for both Viterbi de-

coding and maximum/minimum index search.

2.4 Applicationbenchmarks

This section presents processing performance results for the SPXK5. Table 2.3 lists the benchmarks
for the p,PD772l0 (the latest product employing the p,PD7701x architecture), the SPXK5, Texas In-
struments C55xTM [14,18], and InteVADI Micro Signal Architecture (MSA) [15] for several basic
applications: finite impulse response (FIR) filtering, infinite impulse response (IIR) filtering, least

mean square (LMS) adaptive filtering, fast Fourier transformation (FFT), maximum value/index
search, and Viterbi decoding. As shown in the table, the SPXK5 is at least twice as fast as the
pPD772I0 for all benchmarks other than IIR filtering. Since the SPXK5 has two MAC units, it can

perform FIR filtering twice as fast as DSPs with only one MAC unit. Furthermore, the SPXK5 is
highly optimized so as to execute more efficiently the basic applications compared does an off-the-
shelf low-power DSP core such as C55x.

The following sections addresses three apptcation examples: delayed least mean square adap-

tive filtering, Viterbi decoding, and MPEG-4 video encoding/decoding, all important applications
for handheld terminals. Delayed least mean square adaptive filtering is applied in echo cancella-
tion, channel equalization, etc.; Viterbi decoding is one of the most commonly used forward-error-
correction techniques in wireless communication systems; MPEG-4 video encoding and decoding

are necessary for videophones. These three examples illustrate how the 4-way VLIW architecture,
dual MAC units, and the eight special instructions on the SPXK5 can be efficiently utilized.

2.4.1 Delayed least mean square adaptive filtering

The least mean square (LMS) algorithm employed in transversal filter structures is widely used in
many digital signal processing applications, e.9., echo cancellation, channel equalization, etc. [9].
The input, output, and desired signals at time index i are defined as, respectively, ri, !,;, and d6, and

14

Chapter 2 Section 2.4

Benchmarks

On

Cycle counts

μPD77210 SPXK5 丁l C55x'1 lnte1/ADI
MSA'2

FIR filtering (N samples, f taps) ArT ArT/2 rVT/2 rVT/2

llR filtering (N samples, B biquads) 5NB 3NB 3NB 2.5 AIB

LMS adaptive filtering (N samples, f taps) 3N丁 Nア 2Alア 1.5Nア

Maximum value search (N samples) 2N A1/4 N/2 N/2

Maximum index search (N samples) 3Al N/4 N/2 N/2

Radix-2 complex FFT butterfly 8 3 5 3

256-point complex FFT 9196 2944 4786 3176

ACS in Viterbi decoding 5 1 1

Viterbi decoding for GSM (1G5, R=112) 19478 6048 6357

Table 2.3:General DSP function benchnlark

*1: sources http://www.ti.com and [17]
*2: source [9]

the j-th filter coefficient as ui. The LMS adaptive filtering can then be formulated as

T-ls:Ai: 2-wi 'r1-i,
j:o

e,i.: di - Ai,

'tDi : wi * 2t-t' €i' I1-Jt

(2.1)

(2.2)

(2.3)ブ=0,1,2,… .,T-1,

where p is a small positive constant referred to as the step size, and ? is the number of filter taps.
In this algorithm, the estimated signal yi in each data interval is calculated and subtracted from the
desired signal di. The error is then used to update the coefficients before the next sample arrives.

For algorithmic or hardware architectural reasons, however, when updating coefficients in cer-
tain practical applications, there may be a delay in the LMS algorithm. Here, an LMS algorithm
with such a delayed coefficient adaptation is dealt with as an example. This kind of LMS algorithm
is referred to as a delayed LMS (DLMS) algorithm [20]. This DLMS algorithm gains an advantage
in acceleration for both Equations (2. 1) and (2.2) by using the previous error signal ei-1 in Equa-
tion (2.3) to update each coefficient, rather than using current error signal q. This allows both (2.1)
and (2.3) easily to be combined into a single loop, which in turn makes it possible to share load
operations in terms of both input signals and coefficients, and unified-loop implementation of (2.1)
and (2.3) is faster than individual-loop implementation.

15

Chapter 2 Sec″on 2.4

Implementation of the DLMS algorithm

Figure 2.5 shows a C program of the DLMS algorithm. In the innermost loop of the figure, co-

efficients are updated using previous error signals while outputs are also calculated. Here, it is
assumedthatallsignalsarefixed-pointandthatinputsignalsxli*jl,coefficientswIj],andthe
error signal err are all expressed as 16-bit values in a Ql5 format. Note that, in a Qn format, n
bits are used to represent the two's complement fractional portion. Output signal y Ii] is assumed

to be 40-bit values in a Q31 format. Repetitive accumulations are required for the calculation of
each of the outputs, and ideally, to avoid overflow at that time, each should be calculated within
a 40-bit general-purpose register Each coefficient, on the other hand, will be updated with only a
single accumulation, after which the result will be written back into memory. When the coefficients
are expressed as 16-bit values, this kind of MAC operation will not require a 40-bit accumulator
because saturation and rounding in the accumulation allow sufficient accuracy to be maintained.

As previously noted, the SPXK5 has a useful saturation mode for arithmetic operations. In addi-

tion, its instruction set includes 16-bit MAC instructions with rounding. One of these instructions is

referred to as the MADDR instruction. It occupies either the high or low 16-bit portion of a general-

purpose register being used as an accumulator. Figure 2.6 shows two possible MADDR instruction
patterns, in which each has a different 16-bit accumulator, either r4H or r4L, respectively, neither

affecting the other. With this instruction, two coefficients placed in a general-purpose register can

be updated individually. Thus, the number of registers for updating coefficients can be halved and

optimizing techniques such as loop unrolling and software pipelining can be applied by utilizing the

registers that have consequently become vacant. This instruction can be used effectively when an

application does not require significant repetition of a MAC operation in its innermost loops, e.g.,

coefficient updating in LMS algorithms and butterfly operations in FFT.

■

2

4

5

6

7

8

3

9

err=0′

for (i=0 ′ iくN ′ i++) {
for (j=0 ′ j<T ′ j十 +) {

y[i]+=W[j]十 x[土 ―j]′
W[j] 十= err ★ x[i― j― ■]′

}

e[i]=d[i]― y[i]′

err 〓 2 ★ u ★ e[i]′

Figure 2.5: C progrcm for the Delayed LMS algorithm.

16

Chapter 2 Sccゴοコ2.4

R4H=maddr (R3H, R1H) R4L=maddr (R3H, Rl,H)

Figure 2.6: Two possible patterns of MADDR 16-bit MAC instruction.

Operations in the innermost loop

Figure 2.7 shows an assembly code segment for the innermost loop of the DLMS algorithm in
Figure 2.5. Each of lines 1 through 4 and 6 through 11 represents an instruction packet. Lines
5 and 12 are loop brackets to indicate, respectively, the beginning of the loop and the end of the
loop. Here, each packet contains one instruction. Three instruction packets after line I (i.e., lines
2 through 4) are not part of the loop and are executed before the loop begins. The innermost loop
in the figure (i.e., lines 6 through 11) contains five actual operations, and line 10 contains a non-
operation that provides the time required to wait for the preceding MAC result. The five operations
include two MAC operations, two 16-bit load operations, and one 16-bit store operation. One of
the MACs is an ordinary MAC instruction 40-bit * 16- x 16-bit (R0+:R4L*R1H), and the other
is an MADDR instruction 16-bit * l6- x l6-bit (R4L:maddr (R3H, R1H)). The load operations
in both the third and fifth lines use address register DP4 in a post-increment mode (R4 L: 't DP 4 ++),
and DPO in a post-decrement mode (R1H:*DP0--). The store operation in the eighth line uses

address register DP5 in a post-increment mode (*DP5++:R4L). If the load and store operations are

reduced to two by utilizing 32-bit load/store instructions, the number of operations in the innermost
loop will become four, so that through the optimization techniques, these operations can be executed
at I cycleltap. Note that the SPXK5 can execute up to four instructions during the same clock cycle.

Optimization of the DLMS algorithm

In order to accelerate the innermost loop, 32-bit load/store instructions were used, rather than 16-bit
load/store instructions. to read and write coefflcients. In this case. each 32-bitload instruction reads

17

Chapter 2 Sec″om 2.4

■

2

3

4

5

6

7

8

9

■

■

■

lttop T
R■ H=★ DPO― ―

NOP
NOP

{

load x[i― ■]

load w[j]
y[i]+=w[j]十 X[i― j]

load x[土 ―j― ■]

W[j]+=err★ x[i― ゴー■]

wait for w[ゴ]

store w[j]

‥
　

●
●
　

‥
　

●
●

０

■

２

R4L〓 士DP4++ ′

RO+〓 R4L★ R■H ′

R■H=十 DPO― ― ′

R4L〓maddr(R3H′ R■ H)′

NOP ′
★DP5++=R4L ′

Figure 2.7; Innermost loop code segment of an assembly program corresponding to Figure 2.5.

two adjacent coefficients, w Ij] and w t j+11, into a general-purpose register and each 32-bit store

instruction writes back into the memory two coefficients that had been placed in a register. As a
result, the total number of 32-bit load/store instructions in terms of coefficients in the innermost
loop can be reduced by hall and the number of load/store instructions per tap can be reduced to
two.

Figure 2.8 shows the unrolled innermost loop of Figure 7.5. In Figure 2.8 the first (leftmost) of
the four columns represents the calculation of output y Ii] , the second the updates of coefficients,

the third load/store operations for coefficients w Ij] and w Ij+1], and the fourth load operations

for inputs x Ii- j] . Here it is assumed that a 32-bit load operation is used to read two coefficients
at a time, and that, similarly, a32-bit store operation is also used to write two coeffrcients at a time
back into the memory. In the third column, 32-bit load and store operations appear alternately,

which allows each clock cycle to be filled with four operations.
Figure 2.9 shows the assembly code segment corresponding to the unrolled operations in Figure

2.8, minus the prologue and epilogue. Here, the delay cycles of the loop instruction are ignored and

the focus for analysis is set on the inside of the loop. Each of the four columns corresponds to
a column in Figure 2.8. Note that in the third column, the 32-bit load and store instructions in
the post-increment mode are denoted as, respectively, Rn=*DPm.d++ and *DPm.d**=Rrr, where

m and n are arbitrary integers between 0 through 7. In the figure, sixteen multiply-accumulate
operations, for updating eight coefficients and for calculating the output y [i] on eight taps, are

simultaneouslyexecutedintheloopbrackets,i.e., loop T/8 {... }. Theinsideof theloopis
executed T/8 times. While the output is calculated within general-purpose register R0, eight 16-

bit portions of four general-purpose registers, R4-R7, are used as 16-bit accumulators to update

18

Chapler 2 SecJon 2.4

Ｘ
Ｏ
つ
Ｃ
一
ｙ
０
０
（
）

j-2:

j_■
:

j:

j+■
:

j+2:

j+3:

j+4:

j+5:

T:

T+■ :

T+2:

T+3:

Possible parallel operations

EIIIII]

雲:甕議
=::華

I~二
~II]

Figure 2.8: Unrolled innermost loop of Figurc2.5.

eight coefftcients. This code scheduling is possible because of a highly orthogonal instruction set,
single-cycle throughput MAC operations, single-cycle load/store operations, and efficient register
handling. Consequently, the DLMS algorithm can be implemented on the SPXK5 at I cycle/tap.
Since the same strategy of using a MADDR instruction can also be applied to the innermost loop of
regular LMS algorithms (non-delayed), non-delayed LMS algorithms can be implemented on the
SPXK5 at 1 cycle/tap.

2.4.2 Viterbi decoding

The Viterbi decoding algorithm is a maximumlikelihood decoding algorithm for convolutional
codes and is commonly used in forward error correction because it is simple to implement and

19

Chapter 2 SccJom 2.4

loop T/8′

{

Figure 2.9: Accelerated assembly code segment for the DLMS algorithm.

offers large coding gain l2ll. To decode the encoder output, the algorithm attempts to recreate all
state transitions possible for the encoder and to choose the most likely set of state transitions for
use as original encoder inputs. The path metric of each state and the branch metric of each state

transition are used as criteria for this selection. A path metric is the likelihood ratio between the

original encoder inputs and the recreated set of state transitions. A branch metric is the likelihood
ratio between the original encoder state transition and the recreated state transition. The structure

of the state transitions is referred to as a trellis diagram, and the trellis diagram for an R : I ln
convolutional code, where .R is a coding rate and n is an integer larger than l, can be subdivided

into a number of basic modules because of the inherent symmetry of the trellis structure. These

basic modules can be represented as state transitions between two old states (rn, m+ M 12) in stage

k andtwonew states (2m,2m+ 1) in stage k * 1, where rrl:0,I,...,Mf2 - l shown inFigure
2.10.

A path metric at state rn in stage k is defined 7s prn,k, and also define a branch metric as bm.

The two path metrics in stage k + 1, pzrn,k+r and p2^11,1"1r ma] be expressed as

■■ :

P2m,k+l - maxlP*,n * bm, P^*u 1z,n - bm),

pzrn+t,k+t - maxlp^,k - bm, p^+u /z,x * bm),

(2.4)

(2.5)

where max[r, gr] represents a larger value of either r or g. The operations represented by Equa-

tions (2.4) and (2.5) are referred to as add-compare-select (ACS) operations. The speed of ACS

operations is crucial to the successful implementation of Viterbi decoding on DSPs because the

operations are repeated millions of times to recreate all state transitions.

With respect to ACS operations, the SPXK5 has three useful SIMD instructions for calculat-

ing path metrics efficiently, PADD, PSUB, and PMAX. Figure 2.1 I illustrates how to use these

20

Chapter 2 SccJon 2.4

SIMD instructions to perform two ACS operations. Here, both path metrics and branch metrics are
assumed to be signed 16-bit integers. First, PADD and PSUB calculate two candidate values for
one of two path metrics at stage k + 1 in (2.4) and (2.5), respectively. Specifically, the first two
candidates re pm,k * bm and pm+M/2,k - bm for p2rn,k+r, while the second two candidates are

Prn,k - bm and Prn*M/2,k I bm for p2m+t,k+L. The first two candidates are placed into the high
and low 16-bit portions, respectively, of register R0; the same is done for the second two candi-
dates with respect to register R1. Next, PMAX compares the two candidates in each register and
selects the largest from each. As a result, p2m+r,k+r and p2rn,1rs1 are obtained and both of them
are placed in register Rl. PMAX also stores two l-bit selection flags in a32-bit shift register,
i.e., a Viterbi history register (VHR), in order to indicate which candidate is larger in each of the
two comparisons. After calculating path metrics at all stages, these flags are used to determine the
maximum-likelihood surviving path.

Figure 2.12 shows an assembly code segment for four ACS operations, represented in four
lines. Before execution, in both the first and third lines, registers R0 and R2 have branch metrics,
and registers Rl and R3 have path metrics. The SPXK5 can execute the PADD, PSLIB and PMAX
instructions in two cycles to perform two ACS operations, i.e., I ACS/cycle.

stage k stage k+1

Pz^,**rP m,k bm

Pzm+'t,*+'t

Pm+M/2,k

-bm

bm

Figure 2. I 0: Add-compare-select operations.

21

働 apter 2 Sectio12 2.4

Parallel operations

16-bit load 16-bit:oad

Figure 2.11: ACS operations on the SPXK5.

■:

2:

3:

4:

store pm(2m′ k+■)pm(2m+■ ,k,■)

store pm(2m+2′ k+■)pm(2m+3′ k■■)

Figure 2.12: Assembly code segment for four ACS operations.

32-bit load or move

32‐ bit store

>>2

22

Chapter 2 SccJon 2.4

2.4.3 MPEG-4 video encoding and decoding

Here it is shown how media instructions are effective for the core functions of a video en-
coder/decoder algorithm. In previous work, the H.263 video CODEC (I76xIM pixels, 7.5
frames/sec) have been already implemented on a p,PD770lx architecture at 50 MHz in 1998 [22]
and the MPEG-4 video CODEC SP@LI (176x144 pixels, 15 frames/sec) on the p,PD772l0 at47.I
MHz in 2001 [231. The target for the SPXK5 implementation was the MPEG-4 video CODEC
SP@L2 (352x288 pixels, 15 frames/sec), which is expected to be a key application in next genera-

tion mobile terminals. The main components in the MPEG-4 video CODEC are motion estimation
(ME), discrete cosine transform (DCT), inverse DCT (IDCT), motion compensation (MC), quanti-
zation (Q), inverse quantization (IQ), variable length code coding (VLC), and variable length code
decoding (VLD). Among them, SIMD instructions are effective forboth ME and MC.

Motion estimation (ME)

ME is one of the most heavily demanding operations in video encoders. It uses block-matching
techniques to search a motion vector for a desired macroblock. In a block-matching algorithm, both
the mean absolute error (MAE) and the mean square error (MSE) between a current macroblock
and a reference macroblock are feasible as block-matching criteria. The MAE and the MSE are

defined as:

M_I N_L
MAE: t t lo^,n-b*,nl,

rn:O n:O
M_I N_I

MSE: t t (o,n,n-b*,n)2,
m:O n:O

(2.6)

(2.7)

where arn,n andb*, ate pixel values in, respectively, current and reference macroblocks. In the
video CODEC implementation on the p,PD77210, MAC instructions were used to calculate the
MSE values that would serve as block matching criteria. The MSE for 1 pixel could be calculated
in 2 cycles on the single MAC architecture. By way of contrast, for the SPXK5 implementation,
MAE values were used for the criteria and they were calculated with two SIMD instructions, PSUB
and PADDABS. The MAE for I pixel could be calculated in 0.5 cycles on the SPXKS. Figure
2.13 shows an MAE calculation flow diagram. A two-step search algorithm were used, which was
similar to that used in 1221. Overall, ME in the SPXK5 architecture is 2.3 times faster than in the

1lPD77210.

Motion compensation (MC)

One of the core functions in MC is 4-pixel interpolation, in which averages of every 4 pixel values
are calculated. By using three of the eight special instructions, PADD, PSHIFT, and UNPACKY an
average can be calculated in 1.5 cycles. PACKV instruction can also be used effectively to enable
MC to store those averages into memory. Overall, MC is 1.8 times faster in the SPXK5 architecture
than in the p,PD772I0.

23

Chaprcr 2 Sccゴor1 2.4

Parallel operations

32‐ bit load 32-bit load

PADDABS ∠

“

′′l]三
三ヨ

::|[:::]ゴ
::::::li::;三

lII二

:::ili::≡

ヨ

)ad 32¨ bit load

)it load 32-bit load

Figure 2.13: MAE calculation flow diagram for the SPXK5.

Discrete cosine transform (DCT)

In a previous study, a fast S-point DCT algorithm was introduced, which required 23 MAC opera-

tions and 12 additions [16]. This algorithm was implemented in 35 cycles on the pPD772I0. On the

SPXKS, the same algorithm has been able to be implemented in only 15 cycles, using PADD and

PSLIB instructions in combination with two MAC units and two ALUs. The DCT in the SPXK5
architecture is 2.3 times faster than it was in the uPD7721O.

Performance of MPEG-4 video CODEC on the SPXK5

On the SPXK5, MPEG-4 video CODEC SP@L2 (352x288 pixels, 15 frames/sec) has been im-
plemented. Both encoding and decoding can typically be conducted at less than 105 MHz, with a

power consumption of 21 mW at 0.9 volts. Figure 2.14 shows a cycle-count comparison for a typi-
cal case of MPEG-4 video encoding and decoding SP@L2 on both the SPXK5 architecture and the

p,PD77210. In order to focus on the difference between the core architectures, the respective over-

heads for external memory accesses have been excluded. As may be seen, the SPXK5 architecture

is 1.8 times faster.

‐+=
==]

24

Chapter 2 Sectior2 2.5

０
０
０
ヽ
の
の
一０
ゝ
Ｏ
Σ

200

150

100

50

L_J Decoder

Encoder

0
prPD7701x SPXK5

Figure 2.14: MPEG-4 encoder/decoder cycle counts (SP@L2, 352x288 pixels, 15 frames/sec).

2.5 Summary

A new-generation, general-purpose DSP core, the SPXK5 has been developed. It is a 4-way VLIW
DSP core designed for multimedia applications on handheld terminals. Many low-power consump-
tion features of the VLIW-based architecture make it possible for the SPXK5 to achieve both high
performance and low-power consumption. These features include compact register files, fewer
restrictions in terms of parallel instructions, single-cycle operations for most ins8uctions, software-
based instruction scheduling, and an instruction set based on 16-bit encodings, etc. In addition, a

set of eight special purpose instructions makes it possible to implement multimedia applications
efficiently on the SPXK5 with no significant increase of its chip area.

25

Chapter 3

Performance Evaluation Method Before
SoC Integration

This chapter provides a performance evaluation of audio and video CODECs by using a method for
rapidly verifying and evaluating overall performance on real-time workloads of system LSIs inte-
grated with SPXK5SC DSP cores. The SPXK5SC have been developed as a DSP core well-suited
to system LSIs. Despite the fact that it is very important to evaluate the overall performance of target

LSIs on real workloads before actual LSI fabrication. software simulators are too slow to deal with
real workloads and full hardware prototyping is unable to respond well to design improvements.

Therefore, a hardware emulation system has been developed to be used for system LSIs integrated

with a SPXK5SC DSP core in order to evaluate the overall performance of audio/video CODEC on

a target system. The emulation system using a DSP core TEG, which has a bus interface, and an

FPGA is suitable for overall system evaluation on real-time workloads as well as architectural in-
vestigation. This chapter discuss the use of the emulation system in evaluating performance during
AV CODEC execution. In addition, an architecture design based on the emulation system is also

described.

3.1 System performance evaluation for LSIs using processors

As LSI designs have grown larger, the biggest development bottleneck has become LSI operational

verification at the design level. On the system LSIs integrated with a large number of hardware

components, the estimation of overall performance on real workloads becomes difficult. System

LSIs now include different intellectual properties (IPs) such as CPUs and DSPs, and those IPs are

connected to a backbone bus on the system LSIs. As the number of masters on the bus increases,

since different kinds of data are transferred through the bus, the estimation of traffic on the bus be-

comes difficult. Access conflicts among bus masters could degrade the CPUs perforlnance because

the conflicts would disturb cache access of CPUs.

It is very important to evaluate the overall performance of target LSIs on real workloads before

actual LSI fabrication. However, software simulators, while relatively inexpensive, versatile, and

accurate, are too slow to deal with real-time workloads, e.g., audio/video signals, and full hardware

prototyping is unable to respond well to design improvements. In this regard, as an intermediate

26

Chapter 3 Sccゴon 3.2

approach between software simulation and full hardware prototyping, hardware emulation using
FPGAs appears promising [24].

This chapter provides a method for rapidly verifying and evaluating overall performance on
real-time workloads of system LSIs integrated with SPXK5SC DSP cores. The SPXK5SC is a DSP
core well-suited to system LSIs, and is composed of the SPXK5 core 1251, a 64 Kbyte instruction
memory a 64 Kbyte data memory a 16 Kbyte instruction cache, and an AMBA AHB interface. Its
high pedormance and low-power consumption make it suitable for use in mobile terminals.

Here, an emulation system has been developed using an FPGA and an SPXK5SC core TEG (test
element group), which has a system bus interface for it to be connected to the system backbone bus
implemented on the FPGA. The FPGA is used to emulate the system bus and peripherals of target
LSIs, making it possible to verify and evaluate the operations of hardware blocks in real situations
and to develop improved designs.

Since the DSP core should be implemented as a discrete chip on the emulation system, the de-
veloped method is far faster than software simulators and can handle real-time audio/video signals.
In addition, since new hardware components can be added to the FPGA to reflect recent additions to
hardware designs, the developed method is able to respond well to design improvements. While the
system bus and the peripherals implemented on the FPGA are operated at slower frequencies than
those of target LSIs (roughly 1/3), since the frequency ratios between them can be made the same,
the emulator essentially becomes a scaled-down version of the target LSI, enabling estimation of
the overall performance before actual LSI fabrication. The method using a DSP core TEG and
FPGA also makes it possible that architectures of system LSIs are investigated in real situations.

AV CODEC software for the SPXK5SC has been developed on the emulation system, and
its overall performance (e.g., number of cycles, bus traffic, etc.) has been evaluated on real-time
audio/video signals. Based on the evaluation results obtained with the emulation system, a new
DSP integrated with the SPXK5SC core has been designed and fabricated. This chapter discusses
the evaluation and architecture design based on the emulation system.

3.2 SPXKS and SPXKSSC

The SPXK5 is a 16-bit general-purpose DSP core based on a VLfW architecture shown in Figure
3. I . It contains register files, buses, control blocks, and seven functional units. These functional
units consist of two multiply-accumulate (MAC) units for 16-bit by 16-bit multiplication and 40-bit
accumulation; two arithmetic logical units (ALU) for addition and subtraction, shift, and logical
operations; two data address units (DAU) for load and store; and one system control unit (SCU) for
branch, zero overhead looping, and conditional execution.

The SPXK5 instructions are either 16- or 32-bit wide and can be grouped into up to 64-bit in-
struction packets to be executed within a cycle. Users are free to choose instructions for parallel
issue so long as the number and total length of those instructions fall within these limits. In ad-
dition, all arithmetical, logical, and store operations other than MAC operations are single-cycle
operations. These fewer restrictions on parallel instructions and single-cycle operations are very
important features in the SPXK5 instruction set architecture because they allow users and compil-
ers to generate more efficient programs. Moreover, a C-like algebraic assembly language has been
developed, which helps programmers to create highly parallelized programs more easily.

27

働 aprer 3 SeCJO12 3.3

A number of application-specific instructions are included in the SPXK5 instruction set for
image/video processing and Viterbi decoding. These instructions are parallel operations for two
16-bit data items in registers (e.g., parallel additions, parallel subtractions, parallel shifts, parallel

absolute additions, and parallel maximum/minimum operations). Application-specific instructions
are executed on each of the two ALUs.

Outside the SPXK5, instructions and data are stored separately (i.e., in different banks) to make

sure that the SPXK5 can concurrently access both of them. Memory banks for instruction storage

are connected to a single 64-bitinstruction bus, while memory banks for data storage are connected

to both of two 32-bit data buses . With three buses. the SPXK5 is able to access three different
memory banks at the same time.

In developing the SPXK5SC core, a 64 Kbyte instruction memory a64Kbyte data memory a
16 Kbyte instruction cache, and an AMBA AHB interface have been added to the SPXK5 shown in
Figure 3.2.The instruction and data memory are sub-divided into 4 Kbyte memory banks. Memory
banks accessed by the SPXK5 are activated, and the others are suspended, in order to reduce power

consumption. With the SPXK5SC, instructions may reside in the internal 64 Kbyte instruction
memory or in an external memory. When instructions reside in an external memory the instruction
cache buffers the most recent instructions accessed by the SPXK5SC. The instruction cache is a
direct-map cache and holds up to 16 Kbytes, 128 lines, and 128 bytes per line. Users can improve

overall system performance by allocating instructions and data frequently used by the SPXK5SC
into the SPXK5SC internal memory. A 32-bit cycle counter is equipped with the SPXK5SC. It
counts the number of cycles and can be used for purposes of code profiling.

For a DSP core to be used in a system LSI, it needs a high-throughput interface to exchange

information between hardware blocks in the system LSI. Although some conventional system LSIs

use shared memory for that purpose, most recent system LSIs prefer the flexibility offered by a
system backbone bus, which makes the connection of peripherals much easier. In order to allow the

SPXK5SC to access the components in an LSI equipped with a backbone bus, an AMBA AHB inter-

face is employed. The AMBA AHB on-chip bus specification is used for high-perforrnance system

modules 1261. T\e interface also enables other components to access memory in the SPXK5SC, and

it provides a seamless interface to system LSIs that integrate the DSP cores, CPUs, and peripherals.

3.3 AV CODEC prototype system

The AV CODEC emulation system consists of an SPXK5SC evaluation board, an AV interface

board, a laptop PC for control, a monitor, and a camera shown in Figures 3.3 and 3.4. The

SPXK5SC evaluation board contains an SPXK5SC TEG, an FPGA, and 3-Mbyte SRAM. The

operating frequency of the SPXK5SC TEG can be set to be a multiple of the system bus frequency,

up to 200 MHz. The FPGA is used to emulate an AMBA AHB system bus and such peripherals for
the SPXK5SC as an EBIF (external bus interface), a DMAC (direct memory access controller), an

ASIO (audio serial inpuVoutput), and a VIF (video interface). The SPXK5SC TEG, the peripherals,

and 3-Mbyte SRAM are connected to an AHB.
The AV interface board includes AD/DA converters for real-time video and speech signals.

These converters are controlled by an FPGA in the AV interface board. The FPGA outputs digital

28

Chapter 3 SecJon 3.3

Instruction bus (64 bits)

JTAG On Chip ICE

32-bit address 16-bit offset
registers registers

DPO

DP1

DP2

DP3

DP4

DP5

DP6

DP7

DNO

DN1

DN2

DN3

DN4

DN5

DN6

DN7

40-bit general-pu
registers

ＲＯ

Ｒｌ

セ

Ｒ３

Ｒ４

Ｒ５

お

Ｒ７

ROH ROL

R1H R1L

R2H R2L

R3H R3L

R4H R4L

R5H R5L

R6H R6L

R7H R7L

System registers

Figure 3.1: Block diagram of the SPXK5.

video signals to the VIF, and speech signals to the ASIO. The VIF captures video signals single-
frame by single-frame at up to 30 frames/sec. The captured images are stored in the memory of the
evaluation board. The VIF also output images stored in the memory to the AV interface board. The
ASIO receives and outputs speech signals.

The DMAC transfers data between regions in the SPXK5SC memory map without intervention
by the SPXK5SC itself. It allows movement of data (to and from peripherals, as well as to and from
the internal memory of the SPXK5SC) to occur in the background of DSP operations. The DMAC
has eight independent programmable channels, including two dedicated channels to transfer data
representing rectangular regions of images.

In order to monitor the system bus, a bus traffic monitor is implemented in the FPGA. It counts
the number of active cycles for each bus master in the AHB. Bus traffic is a major concern in
designing systems, and the monitor provides an effective way to measure such trafflc.

Minimizing memory access latency is crucial in maximizing overall LSI performance. If the
operating frequency of the SPXK5SC were much faster than the AHB frequency, the SPXK5SC's

29

働 aprcr 3 Scction_3.4

lnstruction cache
16[KB] instruction rnemory

64[KB]

Instruction bus (64 bits)

X data bus (32 bits)

Data memory
64[KB]

Y data bus (32 bits)

1中■

"1lⅢ

llell今り肇lⅢ
te中

||‐

AHB(32 bls)

Figure 3.2: Block diagram of the SPXKSSC.

memory access to SRAM1 and SRAM2 (which are connected to the AHB) would create excessive

access latency. The frequency ratio between the SPXK5SC and the AHB needs to be low if external

memory access latency is to be kept low. In this work, the maximum frequencies of the SPXK5SC
and AHB on target LSIs are 250 MHz and 100 MHz, respectively. The SPXK5SC frequency

must be a multiple of the AHB frequency, here from 2:l to 4:1; a frequency ratio 3:l (i.e., a 250-
MHz SPXK5 and a 83-MHz AHB,) is expected to provide the best performance. Since, for most

accurate results, the AHB frequency in the emulation system should be kept at its maximum value
(25 MHz), adjustments in frequency are made by changing the SPXK5SC frequency. In terms of an

SPXK5SC's memory access latency, a75-MHz SPXK5SC and a 25-MHz AHB on the emulation

system are virtually equivalent to the combination of a 250-MHz SPXKSSC and a 83-MHz AHB
on a target LSI.

3.4 Implementation of AV CODEC

MPEG-4 video CODEC [7,8,271and AMR speech CODEC have been implemented on the em-

ulation system shown in Table 3.I . The two work in a loop-back manner. That is, the video and

speech CODEC follow the following procedure: (a) speech and video data from the AV interface

30

働 aprer 3 Section 3.4

（０
）
卜
⊃
０

卜
⊃
Ｏ

（己

ト
コ
Ｏ
ｇ
Ｏ
コ
く

（ｒ
）
卜
⊃
Ｏ

ｏ
も
コ
く

（∽
）
Ｚ
〓
只
）理
＞

Ｚ
一
〇
０
コ
＞

（コ
）
２
一
０
一０
ョ
ｑ

（匡
）
Ｚ
一
０
一０
コ
く

Figure 3.3: Block diagram of the AV CODEC prototype system.

board are encoded by the SPXK5SC, and the encoded stream is stored in an SRAM; (b) the stream
is decoded by the SPXK5SC, and the decoded speech and video data are output through the AV
interface board. These two procedures are continuously performed in real time without buffering
any video/speech signals for emulation.

The size of all instructions and data for the AV CODEC is so large that it cannot fit into the
internal memory of the SPXK5SC, and these instructions and data are placed separately in four

Chapter 3 Sec″on_3.5

Figure 3.4: AV CODEC prototype system.

different memory areas shown in Table 3.2. In order to minimize the need for SPXKSSC external

memory access, instructions and data accessed frequently are allocated to the internal memory of
the SPXK5SC. Instructions allocated to an external memory are accessed by the instruction cache of
the SPXKSSC. Data transfer between the SPXK5SC internal data memory and the external memory
is controlled by the DMAC. The only external-memory-stored data that is directly accessed by the

SPXK5SC itself are constant data for AMR speech CODEC and coded bit stream of the video
CODEC.

3.5 Performanceevaluation

The bus traffic and number of cycles were measured during AV CODEC execution under conditions
described in Table 3.3, and also Figures 3.5 and 3.6. During AV CODEC execution at 75-MHz

32

Chapter 3 Section 3.5

Table 3.1: Functional ofthe AV CODEC

SPXK5SC TEG instruction memory and cache: 64 tKBl and 16 [KB]
data memory: 64 [KB]
AHB interface

SRAMI I IMBI (no wait)
SRAM2 2 tMBl (l-cycle wait)

MPEG-4 video CODEC MPEG-4 visual simple profile
image size: up to CIF (352x288)
instruction size: 89.4 [KB]
data size: 53 tKBl
frame memory: 920 [KB]

AMR speech CODEC bit rate: I2.2 - 4.75 [Kbps]
instruction size: 65 [KB]
data size: 47 tKBl

Table 3.2: allocation of the

SPXK5SC inst. 42.6 U<Bl (video) 229 U<Bl (speech)

SPXK5SC data memorv 52.9 tKBl (video) r1.7 tKBl (
SRAM1 (no wait) 46.8 tKBl (video, inst.)

920 tKBl (video, frame buffer)
42.0 IKBI (speech, inst.)

SRAM2 (l-cycle wait) 49.2 tl<Bl (video, bit stream) 35.4 [KB] (speech, data)

SPXK5SC and 25-MHz AHB, the DSP load for the emulation was "l1%o, and 30Vo of the AHB
bandwidth, i.e., 33 Mbytes/sec, was used. At 100-MHz SPXK5SC and 25-MHz AHB, the DSP
load was 62Vo, and the same 30Vo of the AHB bandwidth was used.

As may be seen in Figure 5, the respective number of average cycles per second for encoding
and decoding in case of 100-MHz SPXK5SC and25-MHz AHB is a bit larger than that of 75-MHz
SPXK5SC and25-MHz AHB. This means that the frequency ratio between the SPXK5SC and the
AHB can affect average cycles for encoding and decoding. The DSP core occasionally accesses the
external memory during encoding and decoding, and the DSP core has to wait sometimes until the
DMA finishes transferring data between the external memory and the internal memory of the DSP
core. These data accesses related to the external memory can take a number of cycles at a time. So,
larger frequency ratio between the SPXK5SC and the AHB increases average cycles for encoding
and decoding. Further, as may be seen in Figure 3.6, at an unchanging AHB frequency of 25M}Jz,
changes in the SPXKSSC frequency did not affect bus traffic. Since it was necessary to map most of
the constant data for AMR speech CODEC on an external memory shown in Table 3.2, the number
of cycles for AMR speech CODEC is higher than desirable; if all instructions and data for AMR
speech CODEC could be mapped on the internal memory of the SPXK5SC, the number of cycles
could be held to 16 Mcycles or lower.

The performance of the AV CODEC was estimated on a 250-MHz SPXK5SC and a 83-MHz
AHB for a target LSI, maintaining a frequency ratio of 3:1 in the emulation system. Cycle counts

33

Cflaprer_3 Sccビon 3.5

and bus traffic for video CODEC depend on the number of pixels per frame and the frame rate.

Cycle counts and DMAC bus traffic increase roughly in proportion to the number of pixels and the

frame rate. VIF bus traffic increases only in proportion to the number of pixels. As may be seen

in Figure 3.6, SPXK5SC bus traffic is mainly composed of instruction cache access and memory
access used in the AMR speech CODEC. That is, it may be assumed here that SPXK5SC traffic
is independent of the number of pixels or frames of the video CODEC. Further, although DMAC
bus traffic includes memory access for AMR speech CODEC, that portion is so small that can

be ignored. In addition, it may also be assumed that the frame buffer for the video CODEC is
mapped on SRAMI and can be accessed without wait cycles, and that the video bit rate in this

estimation increases in proportion to image size and frame rate. As image size increases, SRAM1
will eventually be unable to contain the frame buffer, and the frame buffer will be placed in an

SDRAM instead of SRAMI.
As may be seen in Table 3.4, which lists estimated cycle counts and bus traffic for the AV

CODEC for various image sizes and frame rates, the combination of a 250-MHz SPXK5SC and a

83-MHz AHB is able to handle up to QVGA 30fps video CODEC and has the capability to execute

AMR speech CODEC. In this case, however, bus occupation is nearly 50Vo,which means that there

will be excessive conflict among bus masters, and some remedy, such as a multi-layer AI:[B, will be

needed.

SPXK5SC-75MHz/AHB-25MHz

は MPEC‐4 video enc.鐵 MPEG-4 video dec.|=AMR speech enc.AMR idle

0

[|IXКII111111^||′|||ヨ
|

20 40 60 80
Cycles per second IMcycles]

100

Figure 3.5: Average cycles per second of each function during AV CODEC execution.

120

34

Cflapler 3 SeCゴO123.5

70%

| | |

轟SPXK5SC M DMAC ri VIF
I I I

idl le

陣 KI“三璽

彗
藝
饗

70%

IMHiゴAHB‐25MHz

0% 400/0 60%
Bus tral■c of each bus rnaster

100%

Figure 3.6: Average bus traffic per second of each bus master during AV CODEC execution.

Table 3.3:AV CODEC evaluation.

Video frame size and rate
Video bit rate

QCIF(176x144),15[fps]
64[Kbps]

12.2[Kbps]

Table 3.4:Estimated cycle counts and bus tramc ofthe AV CODEC on 250-MHz SPXK5SC and

8

Cycle count

[Mcycles]

Trafflc

lMbytes/sec]

Occupation of
83-MHz AI{B IVol

QCIF 15fPs

QVGA 15fps
CIF 15fps

QCIF 30fps

QVGA 30fps
CIF 30わ s

７

８

３

２

５

３

５

２

６

９

３

０

１

１

　

　

２

３

０

３

４

１

８

０

３

７

９

５

３

８

％

％

％

％

％

％

９

２２

２８

‐５

４２

５４

35

Chapter 3 SecJon 3.6

3.6 Architecture design based on the emulation system

Through the careful observation of the AV CODEC operation implemented on the emulation sys-

tem, the following results have been found out:

o The 250-MHz SPXK5SC DSP core is able to perform QVGA-30fps video CODEC.

o DMAC bus traffic and VIF bus traffic occupy most of overall bus traffrc during QVGA-3Ofps
video CODEC.

o Since the QVGA-3Ofps AV CODEC use 42Vo of 83-MHz AHB bandwidth, a system LSI
having the same architecture as the emulation system might not be able to handle well overall
bus traffic during QVGA-30fps video CODEC due to access conflicts between the DMAC
and VIF.

These mean that the computational performance of the DSP core would be sufficient for QVGA-
30fps video CODEC but the bus transfer capability of the architecture might be insufficient. In
order to efficiently utilize the system bus bandwidth, DMAC bus traffic and VIF bus traffic in that
architecture should be separated. Since both the DMAC and VIF deal with image data stored in
memory the image data should also be placed in separated memory banks to make it sure that the

DMAC and the VIF can access them concurrently. Based on these investigations, a DSP has been

designed so as to be suited to AV CODEC.
The emulation system has been used to develop the p,PD77O50, the first DSP integrated with

the SPXK5. T\e p,PD77050 consists of a SPXK5SC DSP core, a 256Kbyte SRAM, a 64 Kbyte

ROM, and several selected peripheral components integrated together by two 32-bit AMBA AHBs:
DSPBUS and BRGBUS shown in Figure 3.7 and Table 3.5. The SPXK5SC in the pPD77050 can

operate at up to 250MHz, and the two AHBs at up to 83 MHz. Both instructions and data can be

stored in the single 256 Kbyte SRAM, which can be sub-divided into 4 Kbyte memory banks like
the internal memory of the SPXKSSC.

The peripheral components can be divided into two groups, PBUS peripherals and AHB pe-

ripherals. The PBUS peripherals contain such basic functions as an intemrpt control unit, serial

and parallel input/output, and timers. These peripherals do not require high throughput. The AHB
peripherals, on the other hand, do require high throughput. They contain a direct memory access

controller, two memory interfaces (EBIF and SDRAMIF), and an external AHB interface (SYS-

BUSIF). The SYSBUSIF acts as a system bus bridge between the BRGBUS and an external AHB.
Note that the VIF is not included in the DSP: it can be connected to the DSP via the SYSBUSIF.

The SPXK5SC and each of the AHB peripherals other than the SYSBUSIF can be a master

on the DSPBUS but not on the BRGBUS; only the SYSBUSIF can be a master on the BRGBUS.

Because there are two AHBs, the external bus masters through the BRGBUS will not conflict on

the BRGBUS with the SPXK5SC or the AHB peripherals. The idea of using a multiple bus has

come from the experience gained in using the emulation system. The two AHBs help peripheral

components of the pPD77050 to use the bus bandwidth more efficiently.

36

Chapter 3 Section 3.7

SYSCE NMICU ICU I H10畳 P10 AS10畳 丁S10量丁MU0 丁MUl

IROM
64KB

PBUS(1 6bits

も1慕RAMi鼻

Figure 3.7: Block diagram of the pPD77050.

3.7 AV CODEC performance of p"PD77050

Figure 3",$ shows an actual AV CODEC performance of the pPD77050, which was measured on a
sample of the pPD77050. In this measurement, the DSP core was set to operate at240 MHz and its
internal AHB buses to operate at 720 MHz. Outside of the DSP, SDRAMs were connected to the
DSP and operated at the same frequency of the AHB buses (120 MHz). The video frame buffer was
placed onto the SDRAMs. As may be seen, the measured performance in Figure 3.8 is very close
to the estimated performance in Table 3.4.

In previous work, an MPEG-4 video CODEC was implemented on the p,PD77210, which is a
single MAC DSP [231. In that implementation, QCIF 15fps CODEC, for example, was processed

at 47 Mcycles/sec and QVGA l5fps CODEC at 154 Mcycles/sec on the p"PD77210. According
to [28], TMS320C55l0, which is a dual MAC DSP of Texas Instruments, needs 58 Mcycles/sec to
perform QCIF l5fps CODEC. On the other hand, the respective cycle count for QCIF 15 fps and

QVGA 30fps has been reduced to 36 Mcycles/sec and 115 Mcycles/sec on the p,PD17050. That is,
this means that the 1IPD7705O can perform MPEG-4 video CODEC with 257o less cycles than the
pPD77210 does or 387o less cycles than the TMS320C5510 does. In addition, since the maximum
operating frequency of the pPD77270 was 160 MHz, it could not afford to deal with QVGA l5fps
CODEC and AMR speech CODEC at the same time. However, the p,PD77050 can deal with them
concurrently and there is still sufficient computational power available for other tasks such as video
deblocking filter or speech noise reduction.

37

〔haprer 3 Section 3.8

。
QVGA, 30fps,

l Mbps

QCIF,30fps,
l Mbps

Ш
∩
O
O
O
0
つ

>

101

:QVGA,1 5fps,
5 1MbpS
つ

5 QCll′渇鞣
M MPEG¨4 video encoding

lMPEG¨ 4 video decoding

羹AMR speech CODttC

50 100 150 200 250
DSP core frequency [MHz]

Figure 3.8: AV CODEC performance of pPD77050.

3.8 Summary

A method has been developed for using a DSP core TEG and FPGA-based hardware emulation
that is capable of handling real-time workloads and can rapidly verify and evaluate target LSIs
integrated with SPXK5SC cores. The presence of the SPXK5SC system bus interface and the use

of FPGA devices allowed us rapid development of the real-time emulation system. The developed

method would be applicable to other DSP cores that have a system bus interface. It has been found
that the SPXK5SC can be used with AV CODEC (QVGA 30fps). The emulation system using a
DSP core TEG, which has a bus interface, and an FPGA is suitable for overall system evaluation on

real-time workloads as well as architectural investigation. In addition, the emulation system makes

it possible to verify the operation of peripherals inside a p,PD77050 and to evaluate AV CODEC
software on a DSP for actual situations. Evaluation results obtained with the emulation system have

been used as feedback in the development of a p,PD77050.

38

Chapter 3 SecJon 3.8

Table 3.5:The

Peripherals

2501ⅥHz@1.5Ⅵ l

0.23nlW/MIPS(Dl.5V
O.09mW/MIPS(DO.9V

16[KB]
64 [KB]

64 [KB]

256[KB]
64[KB]
8-channel direct memory access controller
16-bit external bus interface. 16-MBvte
able external memory space

16 bits or 32 bits

AIIB i

Boot controller

ory con

Intemrpt conffol unit, 16 mas

available
on-maskable i control unit

power control, mem-

tput,

bits

8 bits or 16 bits

purpose Uoutput pins
ume umts. k sources available

hstruction cache

lnstruction RAM

Data Rノ ヽヽ 1

SRAヽ1

ROM

Time-division

39

Chapter 4

Software Development Tool Generation
for Architecture Design

This chapter addresses a method of software development tool generation suitable for instruction
set extension of existing embedded processors. The key idea in the method proposed in this chapter

is to enhance a base processor's toolchain by adding plugins, which are software components that

handle additional instructions and registers. The proposed method generates a compiler, assembler,

disassembler, and instruction set simulator. Generated compilers with the plugins provide intrinsic
functions that are translated directly into the new instructions. To demonstrate that the proposed

method works effectively, this chapter presents an experimental result of the proposed method in
the study of adding SIMD instructions to the embedded microprocessor V850. In the experiment,

by using intrinsic functions, the compiler generated efficient code with only 7Vo increase in the

number of instructions against the hand-optimized assembly codes.

4.1 ASIPs and their software development tools

Application specific instruction set processors (ASIPs) are increasingly employed in embedded sys-

tems for multimedia and mobile wireless applications because they are programmable and provide

better performance for applications. The flexibility of software allows designers to make late design

changes or additions, and the instruction sets tuned for target applications improve performance. To

design ASIPs, people recently use design tools to generate hardware description language (HDL)

source codes or software development tools. There have been many previous approaches in terms

of exploring both the processor architecture and instruction set architecture (ISA) for ASIPs using

architecture description languages (ADLs) such as nML, LISA, and EXPRESSION 129-321.
One of the main challenges in making the best use of ASIPs is to provide software development

tools such as assemblers and C compilers at the early stages of architecture design. To provide

an optimized C compiler at early stages of architecture design, most ASIPs consist of application

specific functional units and a base processor, which has a fundamental insffuction set. Such ASIPs

consisting of application specific functional units and a base processor are accepted in the market

and are commercially available from several sources such as Tensilica. The design tools for the

ASIPs have also been released by CoWare Inc., Target Compiler Technologies, and ASIP Solutions.

40

Chapter 4 Sec」on 4.2

Looking closer at tool generation processes, most of these ASIP design tools and previous
related works have focused on generating whole part of the tools from scratch and have not con-
sidered reusing existing tools for base processors or manually improving the generated tools. If
existing processors are used as the base processors for the ASIPs, a complete set of tools is already
available. The tools would include a hand-optimized compiler or a simulator equipped with features
such as particular performance profiling. These features may not be always available on the tools
generated by using the conventional methods.

Another important aspect on the tool generation for ASIPs is fundamental toolchain used for
the tool generation. While most of ASIP design tools and previous related works [3]-34] have
been developed based on their own compilers, simulators, or binary tools, some of the conventional
approaches t35-391 have used the GNU toolchain, which is an open-source and a de-fact toolchain
in the field of embedded software development. Since the GNU toolchain supports many kinds
of processors, it is very suitable to generate software development tools for the ASIPs based on
existing embedded processors. However, excepting the tool generation method for the Xtensa [39],
the conventional tool generation methods targeted at the GNU toolchain have mainly focused on
part of the toolchain like GNU Binutils not the whole part. Although the tool generation method
for the Xtensa can generate all the tools based on the GNU toolchain, its target processor is limited
to the Xtensa and does not support any other processor architectures. Therefore, a new method of
generating tools based on the GNU toolchain is required.

This chapter describes a method of software development tool generation for instruction set ex-
tension of existing embedded processors. The key idea behind the proposed method is to enhance a
base processor's toolchain by adding plugins, which are software components that handle additional
instructions and registers added to the base processor. Plugins are generated from the specification
information of the additional instructions and registers. The only modification that needs to be
made to the base processor's toolchain is to provide the sockets to accept the plugins. This chapter
overviews the proposed approach in terms of how the specifications for additional resources are
described, what plugins are generated to handle the additional resources, and what modifications
need to be made to the base toolchain to accept plugins. In addition, the experimental results on the
study of adding SIMD extension to the V850 microcontroller are presented.

The rest of this chapter is organized as follows. Section 2 introduces the proposed tool gen-
eration method. Section 3 gives an outline of the ISA description language for the proposed tool
generation. Section 4 describes an experimental result. Section 5 discusses the difference between
the proposed method and related work. Finally, section 6 concludes this chapter.

4.2 Software development tool generation using plugins

The goal of tool generation addressed in this chapter is to provide an efficient way of generating
the software development tools for instruction enhanced processors, which are based on existing
microprocessors. To achieve this goal, a method using plugins is chosen, where software compo-
nents are added as plugins to the existing toolchain to handle additional features, e.g., for parsing,
encoding, or decoding new instructions. The plugins allow the existing toolchain to continue to
be used and to be enhanced its functionalities for new instructions by adding more plugins. As a
result, the proposed method can generate a compiler, assembler, disassembler, linker, and simulator

41

Chapter 4 Scc」on 4.2

for instruction enhanced processors.

4.2.1 Tool generation flow

Figure 4.1 shows the concept flow underlying the proposed method for tool generation. The flow
begins with a specification document written in extensible markup language (XML). The XML doc-
ument contains an additional ISA specification for the target processor. Here, it has been assumed

that the target processor's ISA consists of the base processor's instruction set and the additional
instruction set which is written in the XML document. The additional ISA specification includes
the base processor's name, the base processor's register information, and the specifications for new
registers and instructions added to the base processor. However, it does not include the definition of
the base processor's instruction set. Designers write this XML document for their target processor
and feed the document to the tool generator.

The tool generator, then, generates the plugins to be added to the software development tools
of the base processor (base tools). The base tools are modified once in advance so that they have

sockets that can be connected to the plugins, the plugins can be integrated with the base tools, and

the integrated software can become enhanced tools for the target processor. The enhanced tools
with the plugins have four main features of assembling, disassembling, relocating, and executing
the new instructions, and they also provide intrinsic functions translated by the enhanced compiler
directly into the new instructions.

4.2.2 Structure of the generated plugins

What distinguishes the proposed method from conventional methods is to propose plugins pro-
duced from templates and parameters and to easily add the support for new instructions to existing
toolchain for base processors. This work is a very complicated task and requires deep knowledge
about the GNU toolchain if you do manually the same things. Since the templates are designed
so as to support a variety of instructions, the specification of desired new instructions can be de-

scribed in a simple format. In addition, generating plugins from templates and parameters increases

readability of the plugins and decreases possibility of involving errors in the plugins.
Each command of the GNU toolchain such as gas has an internal flow in which it identifies one

instruction and another extracted from input programs and performs particular operations on the

instruction. The operations performed to instructions can be composed of several fundamental sub-

operations. Field structures and syntaxes of instructions determine which sub-operation is used and

how sub-operations are mixed. The proposed method represents a combination of sub-operations as

a template and parameters, which will become a plugin. Templates are code fragments commonly
used for every instruction, and parameters are a variety of information items on instructions. The
parameters drive the templates to perform particular operations. Such generation scheme allows the

structure ofthe generated plugins to be easily understood and to be verified ifthe generated plugins
work correctly. If different control code fragments were generated for different instructions, it could
make the tool generator complicated and make it diffrcult to verify the generated plugins since the

generated plugins would differ greatly depending on instructions.

42

Chapter 4 Section 4。 2

Assembling Disassembling Relocating rnw Executing neru Intrinsics for new
new instucttions new instructions instruc'tions instuc'tions insfirction

Base tools: GNU Binutils, GDB, and GCC modified for adding the plugins

Figure 4.1: Concept flow underlying tool generation.

43

Chapter 4 SecゴoI1 4.2

mcpu€im.c.in

‐

…

.

申婦■■■。|

‐

…

.‐‐‐・
―

lmMd.Inh■■|

●ode ttments

Coda frqmenb

hd鰯鞣編蝿Ⅲ.h

Figure 4.2: Generaing plugins for GNU Binutils, GDB, and GCC.

4

Cflapter 4 SecJon 4.2

Figure 4.2 shows the process to generate the plugins for the GNU toolchain in detail. The
tool generator generates the plugins by adding data arrays and code fragments into pre-described
template files. While the template files are commonly used, the data arrays and code fragments vary
depending on XML documents and instruction behavior description files.

Template files have common functions used to handle any new instructions and registers. For
example, the common functions include functions for encoding, decoding, assembling, and dis-
assembling new instructions. These common functions perform their operations according to the
information on new instructions and registers. The information is generated into plugins as structure
data arrays, which are used as a database on new instructions and registers.

For GNU Binutils and GDB, instruction information and register information required for as-
sembling, disassembling, linking and executing are generated as data arrays, and the body of in-
struction behavior functions are generated as code fragments. The information for each of instruc-
tions includes a niune, syntax in assembly language, pointer of the method to execute the instruc-
tion, and the information on the instruction fields. Each of the instruction fields information further
includes its length and position in the instruction codeword, a field type to specify what the field
represents (register, immediate, or operation code), a default value expression of the field, and three
pointers to methods for encoding/decoding/parsing.

For the GCC, register macros and instruction information are generated as code fragments. On
the GCC, the register-related macros give the registers information such as their usage, names,
classes, and letters to represent registers. The instruction information includes machine descrip-
tion, prototype definitions of the intrinsic functions, and functions to check operand types for the
instructions.

4.2.3 Internal tool flow working with the plugins

The base tools and the plugins work together on the enhanced tools for the target processor, as

shown in Figure 4.3, which is a simplified flow chart on how the plugins are employed to process
each of instructions for the target processor. On the enhanced tools for the target processor, instruc-
tions are processed through either a conventional procedure or an additional procedure. First, the
enhanced tools determine whether a given instruction is of new instructions added to the base pro-
cessor or not. Then, the enhanced tools process the instruction through an appropriate procedure.
The conventional procedure is a path to handle the instructions ofthe base processor, and the addi-
tional procedure, which is a feature provided by the plugins, is a path to handle the new instructions
added to the base processor. In order to make the enhanced tools behave in this way, the base tools
need to be modified at once so as to work with the plugins.

4.2.4 Assembling and encoding new instructions

Here, how the enhanced assemblers process new instructions is outlined. The parser plugin built in
the enhanced assemblers can handle any one of three instruction synftx styles in assembly language:
a mnemonic style, a function style, and an algebraic style. In the mnemonic style, a mnemonic
comes first and is followed by several operands. In the function style, input operands and an output
operand are denoted respectively as function arguments and a return value. In the algebraic style,

45

Chapter 4 Section 4.2

Assembling instructions,
disassembl ing instructions,
relocating instructions, or
executing instructions

Figure 4.3: Tool internal flow for enhanced assemblers, disassemblers, linkers, and simulators

working with plugins.

46

Chapter 4 Secゴon 4.2

operators such as '*','-', and '*' denote instructions' operations and ':' is used to specify a
destination operand.

Mnemonic style: add3i 14, 15, Ox22
Function style: r4:add3i (r5, 0x22)
Algebraicstyle: r4:r5+0x22

The mnemonic style is the most major syntax style, and the latter two styles are used favorably for
digital signal processors to make it easy to understand their assembly codes. Supporting these three
styles contributes to increasing the freedom to choose syntax styles for readability.

The parser plugin processes new instructions as shown in the following five steps and Figure
4.4. After assembling a new instruction, if any of operands refers to an unresolved symbol, the
enhanced assemblers make relocation information for the unresolved symbol.

1. Token decomposition: The pirser plugin breaks the input string into tokens, which are classi-
fied into either a symbol token, expression token, or a code token. In Figure 4.4, there are 6
tokens.

2. Candidate selection: The parser plugin chooses instruction candidates which have the same
number of tokens as in the input instruction. In Figure 1.4, tlree instructions are selected as

candidates.

3. Token comparison: For each of candidates, the parser plugin compares tokens at the corre-
sponding position of the input instruction and a candidate, and find the instruction X which
fits to the token pattern of the input instruction. In Figure 4.4,the instruction add3i has the
same token pattern as of the input instruction.

4. Operand calculation: The tokens corresponding to operand variables like %xxx in the instruc-
tion X are operands. The parser plugin calculates operand values from those tokens of the
instruction X. For example, if a token corresponding to an operand variable represents a reg-
ister name, the assembler translates the name to an operand value.

5. Instruction encoding: The parser plugin encodes the input instruction by using the operation
code of the instruction X and the operand values of the input instruction.

4.2.5 Machine description of new instructions

The tool generator generates machine description of the new instructions. The machine description
is the instruction patterns of the new instructions, and is used in the processor-dependent compo-
nents of the GCC. The instruction patterns are written in the GCC's intermediate representation
called the register transfer language (RTL). Figure .1.5 shows an example of the generated machine
description.

Normal instruction patterns defined using the statement of def ine_insn usually have be-
havior description specified in their contents. With the behavior description given in the pattern,

47

働 apter 4 Secびon 4.2

Input ″
add3i r4′ r5′ Ox22″

輌鮨
・Token

2.Candidate se:eC鰤on

31T●籍彙COmpl暉|●n

牛10peⅢⅢⅢ CalCulat10韓

5, Instruction encoding

庭:萎釧匡鷹茫炒 はII
SyFnbOi Symboi syrnbol expression

code code

はR沐躙曖躙 ヅ藝仁
颯 躙 饉躙 慮財 |

曖

“

輻 蝙鰊 ポ削 |
Wmbd葛

緊 :∬緊 :li緊
{regiSter〕 (regLter)lmmediate}

input inttruction

m鱚 颯餡 囃癒璽
卜1隆塾躙 蝙鰈 鰈‐2
Matched instruction X selected among candidates

operand values 4

江1縮1%仁鯰 蝙邁
operation code: 0x1200 0000

「轟菱錢糧轟蝙―ド ロ褻塵

Encoded instruction: Ox1200 4522

Figure 4.4: Assembling instructions on the plugins.

48

Chapter 4 SecJon 4.2

i; syntax: myadd reg1, reg2, reg3
(def ine_insn "buil-t in_cpu_MYADD "
t

(set
(match_operand: SI 0 "cpu_gpr_regs_operand" tr:rn

)

/rrnqnon.\/nTn I
L

(match_operand: SI 1 "cpu_gpr_regs_operandtf tru
)

(match_operandzSI 2 "cpu_gpr_regs_operand" ur*)
] UNSPEC_BUILT]N-MYADD))

rIt

ttmvadd *'l *2 - U 0ue -, e4 t

[(set_attr "lengthu "4 ")]
)

ii Define the defaul-t J-atency of 'myadd, as 1.
(de fine_insn_reservat ion WMYADD" 1

(eq_attr " insn_mnemonictt "MYADDTT)

"nothingt'

Figure 4.5: A generated instruction pattern.

the GCC recognizes what kinds of operations the instruction performs. The generated instruction
patterns, however, do not have well specified meaningful behavior, but just simple information that
gives input and output operands. With the information on input and output operands given for
machine description, the GCC can recognize which operand is used in which instruction and can
also schedule instructions without meaningful behavior in machine description. Therefore, it was
decided to omit meaningful behavior from generated instruction patterns.

The statement of def ine-insn-reservation at lines 16-19 simply defines the default
latency for a new instruction. This statement allows the GCC to determine how many cycles are
taken before the output operand of the new instruction becomes available. Instruction scheduling
enabled by this statement gives a chance to improve the performance of the compiler-generated
code. In particular, this is important for high-latency load instructions to read data from memory.

If a target processor has move instructions for new registers which do not exist in the base
processors, the tool generator generates move instruction patterns from and to the new registers.
The generated move instruction patterns have meaningful behavior description, so that the GCC
can recognizethat they perform move operations and the GCC can use them in code generation
process.

4.2.6 Adding intrinsic functions on the GCC

In order to add intrinsic functions on the GCC, two macro functions TARGET_INrT_BUILTINS
and taRce T-EXPAND_BUTLTTN are used. TARGET_rNrT_BUTLTTNS represents the name of

1

2

5

4

5:
6.
7.
R.
g-

10
11
I2
13
L4
15
T6
71
_1 6

49

Chapter 4 Secゴon 4.3

a function that performs initialization for intrinsic functions. For each of intrinsic functions, the
initialization function makes registration of the information such as a return value type, arguments
types, a function name, and an ID number. The tool generator generates statements for this regis-
tration of intrinsic functions. The generated statements are inserted into the function represented by
the macTo TARGET_IN I T_BUI LT INS.

TARGET EXPAND_BUILTIN represents the name of a function that generates in-
struction patterns from given intrinsic functions. The function corresponding the macro
TARGET_EXPAND_BUILTIN determines which instruction pattern should be used for a given in-
trinsic function and how arguments of the given intrinsic function should be translated into operands

of the instruction pattern. The tool generator generates tables used for retrieving instruction patterns

and their operand types from given intrinsic functions.
On the GCC, instead of intrinsic functions, there is another way to use new instructions added

to the base processors, that is, inline assembly can also exploit the new instructions in C codes.

Intrinsic functions, however, is better than inline assembly in terms of the following points.

o There is possibility that the GCC can schedule the instructions corresponding to intrinsics and

optimize them if information on the instructions such as a latency and code size is given to
the compiler. Inline assembly, however, has no means for better scheduling and optimization.

o The GCC can check types of output and input operands for intrinsic functions. Inline assem-

bly, however, cannot do that.

o Although inline assembly is available only for its target processors, intrinsic functions could
be emulated on non-target processors if emulation functions for the intrinsic functions were
provided.

These reasons led to the choice of intrinsic functions rather than inline assembly.

Several methods !40421for automated instruction set extension have been reported so far,
which generate compilers that can exploit the extended instructions without the need for modifying
source codes of applications. Contrary to this, on the proposed method, the enhanced compiler does

not automatically exploit the new instructions and programmers have to invoke intrinsic functions
if they want to make the compilers to use the new instructions. However, changing algorithms or
rewriting source codes for more speed is still important in many practical situations. Therefore,

using intrinsic functions to accelerate target applications is a practical method.

4.3 Instruction set description using XML

This section explains the additional ISA specification in the proposed framework. The proposed tool
generation flow begins with an XML document, which contains an additional ISA specification for
the target processor. The XML provides a flexible and extensible framework for representing and

structuring all kinds of data. In addition, XML is widely used in the World Wide Web community as

a means of structured information exchange, and there are many software components and libraries
that handle XML documents. In the case, of this framework an XML document is used to describe

the specification of new registers and instructions to be added to the base processor.

50

Chapter 4 SecJon 4.3

The XML of the proposed method can describe not only ISAs of general RISC processors but
also the following complex instructions:

f . instructions that have an operand with a restriction, e.g., the operand must be an
even number register.

2. instructions in which an operand value is separated and placed into two different
instruction fields. This tricky field arrangement might be used when there is not
enough instruction field space for additional instructions.

3. instructions in which a value calculated from an operand is placed into an instruc-
tion field. This calculation might happen when the least significant n-bits of an
immediate operand is trimmed offbefore the operand is placed into an instruction
field.

4. instructions that use pair registers that consist of two contiguous registers.

5. instructions that have two or more output operands or have many input operands
(The number of total operands must be less than or equal to ten).

6. instructions in which any combinations of the above ones are used.

Although these complex instructions do not appear in general RISC processors, in fact, they are used
in the experiment based on the V850 processor described afterward. In addition, since the behavior
of instructions is written in C language apart from XML documents, any kinds of operations of
instructions can be described.

Here is a simple example in which the new instruction MYADD depicted in Figure 4.6 is added
to a base processor. Figure 4.7 shows an XML document for the simple example. The)ilvll-
document contains:

l. the base processor's nickname defined by the <nickname> tag,

2. the base registers on the base processor and new registers added to it defined by
the <re gi st e r_bank> tag,

3. new instructions defined by the <insn> tag,

4. GDB register numbers defined by the <gdb> tag, and

5. the file name containing the behavior of instructions defined by the
<behavior> tag.

The behavior of the new instructions in the XML document is described in C language in a different
file.

Since new definitions of instructions are important for generating the enhanced tools and they
take up many lines in an XML document, the following sections will explain how instructions and
registers are defined in an XML document.

4.3.1 Registerdefinition

Register information is described using three tags: <register_type>, <register_bank>,
and <register-group>. The <register-type> tag defines a register-type name and a

51

Cflapter 4 Section 4.3

Name Type Bits Description
regl
regZ

reg3
opc0
opcl

GPR
GPR
GPR
opcode

opcode

5

5

5

6

11

Register index of GPR registers
Register index of GPR registers
Register index of GPR registers
Bit pattem to distinguish it from other instructions
Bit pattern to distinguish it from other instructions

Syntax: MYADD
31

reg1, reg2, reg3
27 26 t6 15

Fields: reg3 opcl reg2 opc0 regl

Figure 4.6: Instruction field structure of MYADD.

register length in bits. The <register_bank> tag defines a register bank, which consists of the
same type of registers defined by the <register_type> tag.

The <register_bank> tag has several attributes, which are 'type', 'size','prefix',
'base', and 'Ietter'. The 'type' denotes a register type, which is one of the register types
defined by the <register_type> tag. The 'size' denotes the number of registers included in
the register bank. The 'pref ix' denotes a prefix of register names. The prefix and a register index
in the register bank become a register name. The 'base' denotes whether the base processor has

the register bank or not. The 'letter', which is not used in Figure 4.7, denotes a letter for the

GCC to represent a register class.

The <register_group> tag, which is not used in Figure 4.7, defines a register group that
consists of several registers. The registers in a register group must be a register in any of the register
banks and may belong to different register banks. The register banks and register groups defined

by the tags <register_bank> and <register_group> are used as register operand types
in <insn> tag.

4.3.2 Instruction definition

Each new instruction is defined using the <insn> tag. The (insn) tag has several child tags

in its content. Here, important tags to define a new instruction are outlined. The <mnemonic>
tag defines a mnemonic of the new instruction. Since the mnemonic is used as an ID of the new

instruction, it must be different from other instructions' mnemonics. The <syntax) tag defines an

instruction syntax, in which the operands of the instruction are denoted by names that begin from ?,

e.g. %reg1 or %reg2. The instruction syntix may be formatted in any one of three styles: a style

of mnemonic plus operands, a function style, or an algebraic style. The plugins are constructed to
be able to accept these styles. The <length> tag defines the length of the new instruction in bits.

If this tag is omitted, the default instruction length defined by the <insn_Iength> tag is used.

The <f ield> tag defines each of the instruction fields that are part of an instruction code word.
If the new instruction's code word has many different fields, the designer writes <f iel-d> tags for
all the fields. The <f ield> tags are supposed to be listed from the least significant bit (LSB)

52

Chaprer 4 SeCゴO124.3

1

2

3

4

5

6

7

8

(Processor)
<n i ckname > cpu<,/ n i ckname)
< regi st er_t ype length: ft 3 2 tr >GPR_type<,/ regi st er_type>
<register_bank type:'rGPR_Iype" size:u 32n

pre f ix: rr R" bas e: rr t rue ")GpR(/ regi st er_bank>
< insn_l- en gLh> 32 < / i.nsn_l ength>
<l-nsn>

<mnemon i c>MYADD <,/mnemon i c)
<syntax>MYADD %regl_, %req2, %reg3</syntax>
<fleld type:rrGPR" length:"5")re91</fiel_d>
<fi-eld type:'ropcode" value:"0b11_1111" length="6tr)

opc0<,/fieId>
<field type:trGPR" length:"5,'>reg2</field>
<fiefd type:r'opcodeI va]-ue:"0b111_1100_1000" length:u11">

opcl<,/ f ield>
<fiel-d type:"GPR" length="5,'>reg3</field>
<j-nput>

<operand type:rrGPR" wi_dth:n32">reg1</operand>
<operand type:rrGPRW width:" 32tt >reg2<,/operand>

</input>
<output>

<operand type:rrGPRrr width:"32">reg3<,/operand>
</ output >

<description>
This instructi-on calculates the sum of the contents
of registers regl and reg2t and stores the result
into register reg3.

</description>
</ lnsn>
<gdb>
<reqnum name:"R0 ">0</regnum>
<reg'num name:ttR1 t')1</regnum)

<regnum name:rrR31 " >3 1</regnum>
</qdb>
<behavior>cpu-isa . c</behavior>
(/ Proces sor>

Figure 4.7: Exarrryle of an XML document with additional ISA specification.

9:

10:
11:

12:
13:

14:
15:
16:
17:

18:
19:

20:
21:
22:
23:
24:

25:
26:
27:
28:
29:
30:
31

32

33
34

35
36
37

53

Chapter 4 Sec」on 4.3

to the most significant bit (MSB). The <f ield> tag has several attributes, which are 'type',
'subtype', 'length', and 'va1ue'. The 'type' denotes an instruction field type, i.e., what
the instruction field represents. The fleld type may be either a register, an immediate value, or an

operation code. If the field type is a register, its register type name is specified in 'subtype'. The
'Iength' denotes the length of the instruction field in bits. The 'val-ue' denotes the numeric
value of the instruction field for immediate values and operation codes. The numeric value can

be represented as an expression, e.9., 0xF<<2, and the values of fields can be referred to in the
expression using field names.

When a field's value is represented as an expression using the values of other fields, the tool
generator needs to know how to obtain the values of instruction operands from the values of in-
struction fields. In this case, <disas> tag is used, which is not used in Figure 4.7. The <disas>
tag denotes an instruction operand type and how to calculate its value from the instruction fields.
The <disas> tag also has the same attributes that <fiel-d> tag has. The calculation expres-

sion is represented in the attribute 'val-ue'. If an operand value can be obtained directly from the
corresponding field value, you do not need to use <disas> tag.

If the new instruction has an immediate operand in its syntax and if the name of the immediate
operand is defined by <f ield> tag or <disas> tag, the tool generator creates a new relocation
type for the immediate operand. A new relocation type is also created if the attribute 'val-ue' of
the <fiel-d> tag includes a variable named 'cia' (current instruction address) or'nia' (next
insffuction address).

The <input> and <output> tags define the input and output operands of the new instruction.
Each of the input and output operands is defined by the <operand> and <memory> tags. The
new instructions can have multiple input operands and multiple output operands. The tool generator

uses the information given by these tags when generating the plugins of the compilers for the target
processor. The prototypes of intrinsic functions and machine descriptions of the new instructions
are defined according to the definition of the <input> and <output> tags. If a new instruction
has an output operand, the intrinsic function corresponding to it retums the output operand. If a new
instruction has multiple-output operands or no output operands, the intrinsic function corresponding
to it becomes a void-type function, and the output operands are passed as arguments of the intrinsic
function.

The <l-atency> tag, which is not used in Figure 4.7, defines the default latency of the new
instruction. The default latency indicates how many cycles are consumed before the output operand

of the new instruction becomes available. In the case of the default latency is larger than one it is
used to generate fragments of machine descriptions for instruction scheduling.

4.3.3 Instruction behavior definition

Designers describe the behavior of a new instruction in C language in a different file other than

in an XML document. There is an example of a behavior description in Figure 4.8, which is

the behavior description for the new instruction defined in the)CVIL document in Figure 4.7.

The behavior of a new instruction is described in a single function. The function begins with
'behavior (mnemonic)' and has several unspecified arguments available in the function. The

arguments are the values of instruction fields other than those of operation codes. Each of the

arguments has the name defined by the <f iel-d> tag or <disas> tag.

54

Chapter 4 Secゴon 4.4

1

z

3

4

5

7

6

9

10
11

/* MYADD: mnemonic defined by <mnemonic> Lag */
/* syntax: MYADD %req1, %req2, %reg3 */
behavior (MYADD)

{

/* GPR: register bank name. */
/* reg7, reg2, and reg3: register ind.ex *,/
int32_t val-1 : REG_read32 (cPR, regl);
int32_t val2 : REG_read32 (GPR, req2);
int32_t val3 : val1 + val-2;
REG_write32 (GPR, reg3, val3);

I

Figure 4.8: Behavior description of instruction MYADD written in C language.

There are three non-operational-code fields in Figure 4.7: regl, req2, and reg3. They are
all register operands and the same named arguments are available in the behavior function in Figure
4.8. Designers can access registers and memory in the behavior function through functions such as

REG-read32 (REGTYPE, rDX) and MEM_read32 (ADDR) . The macro NIA_SET (ADDR) is
used to modify the program counter and the macro CIA to get the content of the program counter.

4.4 Experiment

Here, the experiment on the tool generation using the proposed method is explained. The base
processor used in this experiment is the V850 microcontroller. The V850 is a RISC processor op-
timized for embedded systems [43]. In the experiment, the proposed method generates a toolchain
including a compiler for the target processor that consists of the V850 microcontroller and an SIMD
extension.

Using the generated compiler and intrinsic functions for exploiting the SIMD extension, the
code quality of the generated compiler is shown. Note that in this experiment the inline assembly
cannot be an alternative means to exploit the SIMD extension because the SIMD extension includes
additional registers which cannot be addressed on the base compiler without any modification.
Adding the plugins to the base compiler allows the compiler to handle the SIMD extension.

Figure 4.9 and Table 4.1 show the target processor's block diagram and the summary of its
SIMD extension. The SIMD extension includes 32 64-bitregisters, an SIMD instruction set, and an
SIMD functional unit which addresses 64-bitwide packed data. Available data types arc 16 bits x 4,
32 bits x 2, and 64 bits x l. The SIMD instruction set includes logical operations, data interleaving
operations, data type conversions load/store operations, and packed arithmetic operations such as

addition, subtraction, multiplication, and comparison.

55

働 apter 4 SeCゴO124.4

Instruction memory

Program
counter

32 general
purpose
registers

System
registers

Additional

components
′
′
′
′

: Multiplyer

13arrei shitter

■■■彗
=≡

■|■

|1彗髪■■●11■|≡ |

ξ ALU

一■
■

:・・

Data memCIry

一‥軒一一一一”「ヽ一一一一一一一一一一一一一一一銀一

Figure 4.9: Block diagram of the V850 processor with SIMD extension.

4.4.1 Generated toolchain for SIMD extension

The specification of the SIMD extension was ftanslated into an XML document and insffuction
behavior description, which were input files to the proposed tool generator. Then, the tool generator

generated a toolchain with the plugins in it for the target processor. Table 4.2 shows the code amount

of input files and the generated plugins. The number of SIMD instructions added to the V850
microcontroller is 179, and the input files to the tool generator have 10370 lines in total ()OVIL:

5934, *.c: 436). Although the code amount of the input files is not so small compared with the

output files, which have 30098 lines in total, generating several tools such as a compiler, assembler,

and simulator from simple specification documents is very beneficial.

4.4.2 Code generation using intrinsic functions

In order to investigate the compiler efficiency in terms of code generation using intrinsic functions,
comparison between hand-optimized assembly codes and compiler-generated codes is discussed.

56

Chapter 4 SccJon 4.4

Thble 4.1: Architecture summary of the V850 microcontroller with SIMD extension.

Base

architecture

SIMD
extension

RISC processor for embedded systems.
Harvard architecture.
Single cycle instruction execution.
Compact code size allowed by 2-byte instructions.
32 32-bit general registers.

3264-bit registers

Data types: 16 bits× 4,32 bits× 2,64 bits× 1.

Packed arithetic instructions.

Load/store instructions.
Data type conversion.

ical operation.

Table 4.2: The code amount of the for the SIMD extension.
Base tools GNU Binudls 2.17

GDB 6.6
GCC 3.4.6

Number of instructions
Number of lines of the input XML file
Number of lines of the input behavior description
Number of lines of the assembler plugin
Number of lines of the simulator plugin
Number of lines of the compiler code fragments

179

5934

4436

8903

7699

13496

57

Cflaprer 4 Sectton 4.4

For a number of basic signal processing functions such as filtering, sorting, and FFT, two kinds
of programs were developed: (1) hand-optimized assembly codes using the SIMD extension, and

(2) compiler-generated codes using intrinsic functions for the SIMD extension. Then the programs

were profiled in terms of the number of executed instructions by using the generated simulator.
In order to build program (2), a new C program was developed using intrinsic functions from

scratch for each of the signal processing functions. Since the progr:rms of the signal processing

functions written in normal C language have fewer lines than 100lines, writing a new C program
using intrinsic functions took a day or less per one signal processing function. However, for sorting
and FFT which have more lines and require algorithm tuning suited to SIMD instructions, writing
programs using intrinsic functions for them took a month per each. Table 4.4 shows lines of source

codes: (a) original C code, (b) C code using intrinsic functions, (c) assembly code generated from
(b), and (d) hand-optimized assembly code. Regarding all signal processing functions in Table 4.4,

code (b) using intrinsic functions has more lines than code (a) written in normal C language.
As an example, an FIR filtering function written in normal C language is shown in Figure

4.12 (a), its variant using intrinsic functions is shown in Figure 4.12 (b), an assembly code gen-

erated from Figure 4.12 (b) is shown in Figure 4.12 (c), and a hand-optimized assembly code is

shown in Figure 4.12 (d). In Figure 4.12 (b) and (c), intrinsic functions such as _vxor O and

_vf d dw_inc () are translated into their corresponding assembly instructions such as vxor and

vld. dw, respectively.
Figure 4.10 shows the increase in the number of executed instructions of the compiler-generated

codes against the hand-optimized assembly codes. The number of executed instructions increases

by only 7Vo on average when using intrinsic functions. Since compiler-generated codes without
using intrinsic functions for the SIMD extension could increase to 900Vo on average against the

hand-optimized assembly codes, only 7Vo increase in the executed instructions is acceptable. Fur-
thermore, more than half the applications fall below the average of I07Vo in the ratio of the numbers

of executed instructions. By using intrinsic functions, the compiler will replace variables with ac-

tual registers, ensuring better allocation, which is a bothersome work for programmers. In addition,
the compiler-generated codes using intrinsic functions are nearly as good as the hand-optimized
assembly codes. The proposed tool generation method made it possible to generate the compiler
with such useful intrinsic functions.

T\e7Vo increase could be caused by the following reasons:

Range checking before loops Compiler-generated codes have range checking before loops

whether the condition to begin and continue the loops is met or not. Hand-optimized codes do

not usually have such range checking because programmers know whether the range check-

ing is unnecessary in their programs or not.

Redundant register transfers Compiler-generated codes have redundant register transfers on ar-

guments and a return value of functions. Arguments given to functions are copied to local
variables, and a local variable having a return value is also copied to a register at the end

of functions. These register transfers sometimes may not be optimized and they remain as

redundant move instructions.

A similar comparison done here was reported in the application note [44] for IDCT on Pen-

tium4. The application note compared elapsed time for two types of IDCT implementation on

58

Chapter 4 SccJon 4.5

Pentium4 with the SSE2 instruction set: one is written in C language using intrinsic functions
and the other written manually in assembly language. The increase of the elapsed time when us-
ing intrinsic functions was 9Vo over that of the hand-optimized assembly code. This is a practical
example of how to improve IDCT on Pentium4 using intrinsic functions instead of assembly lan-
guage. Therefore, 7Vo increase on average shown in Figure 4.10 is acceptable overhead and enough
effi cient against hand-optimized assembler.

Figure 4.ll shows the increase in the code size of the compiler-generated codes against the
hand-optimized assembly codes. The code size decreasesby 2Vo on average when using intrinsic
functions while more than half the apptcations exceed I00Vo in the ratio of the code size shown.
Although there exists a large variance of the ratio of the code size from 77Vo to ll5%o in Figure
4.11, it can be observed that the compiler-generated codes using intrinsic functions are nearly as

good as the hand-optimized assembly codes in terms of the code size too.

4.5 Related work and discussion

Here, the proposed approach is compared with several related work for retargeting GNU Binutils
and discuss how they differs. There have been a lot of works for generating tools from proces-
sor architecture description language. Table 4.3 shows a comparison among several conventional
methods using the GNU toolchain and the proposed approach.

Tensilica developed a configurable processor core, called Xtensa, in the late 1990s and pro-
vided a tool generator for the Xtensa [45]. Although the target processor architecture of the tool
generator is limited to the Xtensa, it can generate ports of both GNU Binutils and GNU Debugger,
simulators, and compilers for customized Xtensa cores. Unfortunately, according to t}te reference
manual [45], there is not any description on the capability of adding extra relocation types used for
extra instructions.

CGEN [35], which was released as open-source software from Red Hat in 2000, is a tool to
generate code fragments for assemblers, disassemblers, and simulators. The generated codes can
be embedded into GNU Binutils. Only for the MeP processor, CGEN has a feature to add intrinsic
functions to the GCC.

Abbaspour presented in2002 a systematic approach to retarget GNU Binutils [36]. An experi-
mental result to generate GNU Binutils was reported in [36] for the SPARC architecture. In those
years, the development of the ArchC started, which is an open-source binary utility generator [38].
Baldassin reported in [38] that the ArchC can retarget GNU Binutils and generate simulators for
several processor architectures including the i8051 processor, for which there was no reference
ports in the original GNU Binutils.

On the other hand, the proposed method can generate a set of the GNU toolchain including a
compiler for a target processor. Regarding the kinds of tools that can be generated, i.e., compiler,
assembler, simulator, etc., the proposed method has the same capability as the tool generator for the
Xtensa. However, there is a difference between the tool generator for the Xtensa and the proposed
method, in which the main scope of the proposed method is to add new instructions to existing base
processors but not to modify the ISA of a base processor. While the Xtensa's tool generator can
be used only for the Xtensa, the proposed tool generator can be used for the existing processors

59

Chapter4 Section 4.5

32‐b腱 ∞mp:ex FFT(N=256)

1いl comp:ex FFT(N=256)

32‐btt bitonic sort(N刊)

10btt bitonic sort(N=64)

16わ泄∞ mplex F:R(N=16,T=16)

16‐bn∞mplex F:R(N=1,T=16)

32‐b忙 ∞ mplex F:R(N=16,手 =16)

32‐btt cornp:ex F:R(NEl,卜 16)

16‐ bit F:R(N=16,T=16)

16‐blt F:R(NEl,T=16)

32‐bit F:R(N=16,T=16)

32■戯F:R(N=1,T=16)

16■ b■ ‖Rw′o sca‖ng(N■ ,B=2)

16に b忙 llR wro sca:h9(N=1,B=2)

1●Ы忙‖R with sca:ing(N=8,B=2)

1●bl‖ R win sca:hg(N=1,B=2)

32‐bl::R wro sca:ing(N報,B=2)

32‐bl:lR wro sca:ing(N=1,B=2)

32‐bit‖ R wlh sca:ing(N=0,B=2)

32‐bit‖ RⅥ膚h sca:ing(N=1,B=2)

1いit LMS adaptive FiR(N=1,T=16)

32‐bit LMS adaplive F:R(N=1,T■ 16)

1●bl mxlmum sean (Nく鴻)

32‐bl maximum seatt tN■ 湾)

16わ識minimum sea薇わ (N癬)

32おl minimum sear由 (Nく4)

lιbtt normalレ alon(N報 4)

32‐btt norlnaiレa」on(N謝)

100%:handく ηttniZed assembly codes

鼈

鬱

願

灘

1070/Oo average

膊

―――――――――」饒――ぃぃぃ

攣

彎

攣

黎

疇

摯

靡

麟

N:Number oF詢
T Numberofl
8:Number ofL

購

騨

鼈

―
 ‐

腱

攣

鞭

彎

購

95% 1∞% 105% 110% 115%

Figure 4.10: Increase in the number of executed instructions of compiler-generated

inuinsic functions against that of hand-optimized assembly codes.

120%

codes using

60

Chapter 4 Secゴol1 4.5

lGbit complex FFT (N=256)

32-bit complex FFT (N=256)

l&bit bitonic sort (N=84)

32{it tritonic sort (N=64)

l6.bit complex FIR (N=16, T=16)

lGbit compl€x FIR (N=1, T=16)

32-bit complex FIR (N=16, T=16)

32-bit compl€x FIR (N=1, T=16)

l&bit FIR (N=16, T=16)

l&bit FIR (N=1, T=16)

32tit FIR (N=16, T=16)

32-bit FIR (N=1, T=16)

'lGbit llR w/o scaling (NE8, B=2)

l&bft llRWo scaling (N=1, B=2)

1ftit llRwith scaling (N=8, B=2)

l&blt llRwith scalirqg (N=1, B=2)

32-bit llRWo scaling (N=8, B=2)

32tlt llR w/o scaling (N=1, B=2)

32-bit llRwith scallng (N=8, B=2)

32-bit llR with scaling (N=1, B=2)

l&bit LMS adapt've FIR (N=1,T=16)

32-bit LMS adaptive FIR (N=1,T=16)

lffiit madmum search (N=64)

326it mardmum soarch (NE64)

1Fbft minimum eoarcft (N=64)

32-bit minlmum ssarch (N=64)

'l &.bit normalization (N=84)

32-bit nomalization (N=64)

70%

Figure 4.1 1: Increase in the code
that of hand-optimized assembly

85% 90% 95% 't00% 105% 11595 120%

size of compiler-generated codes using inhinsic functions against
codes.

膊

lumb€r of inpul samdos
umber of ftbr taps
lumbor of bhuad stages

⑮

赫購
颯
盪
鼈
雛
m

rc

眈

■

Ｂ

鷺

m 989

m
on aⅥ ag€

T

磯

雛

鷺

TX
m
m
:E:

61

Chapter 4 SecJon 4.5

that have ports of the GNU toolchain. There is also a difference in instruction syntaxes. The

conventional methods (a)-(d) in Table 4.3 has a rule that instructions be written in a syntax of single

mnemonic plus multiple operands. The proposed tool generator, however, generates the assembler

that can handle not only a mnemonic style but also a function style and an algebraic style.

In terms of the amount of handwork necessary for generating toolchain, the proposed method

and conventional methods require similar amount of handwork such as describing instruction spec-

ification. Although XML documents for the proposed method are tend to have more lines than

conventional methods, it does not have a big impact on the amount of handwork.

Regarding the time needed to generate toolchain, there is no big difference among the proposed

method and conventional methods. The proposed method takes a couple of seconds to generate

plugins, and takes several tens of minutes to build the toolchain involving the plugins. The time
needed to build toolchain on the proposed method is the same as those of conventional methods

such as ArchC and rbinutils.
On the proposed method, prograrnmers need source modification using intrinsic functions in

order to exploit new instructions and to make applications faster. This is a negative point com-
pared with auto-customizationframeworks of ISAs reported in references[40421. While rewriting
source codes for more speed is still a practical method, exploiting new instructions without source

modification on the proposed method is one of the future work.
The proposed approach is not only dedicated to the V850, but it can also be applied to other

processors. In fact, the proposed method can generate toolchains for processors with a simple

instruction extension based on the ARM and MIPS processors although these trials based on the

ARM and MIPS processors are very simple and not mentioned in details in this chapter.

Other than the experiment shown in this chapter, two more experiments using the proposed

approach are reported in 146,471. The experiment reported in [46] shows that the proposed method

can be used in the performance evaluation of processor architecture enhancement for variable length

decoding. Another experiment reported in 147) shows that the proposed method is applicable to

retargeting GNU Binutils and GNU GDB based on simple architecture specifications for newly

developed processors ranging from a tiny 16-bit processor having 48 instructions to an in-house

32-bit processor having 461 instructions.
In addition, the proposed approach is applicable to toolchains other than the GNU

toolchain since most of templates for generating plugins such as instruction pars-

ing/encoding/decoding/disassembling plugins are independent from the GNU toolchain. Although

templates and instruction patterns for adding intrinsic functions to compilers is dependent on the

GCC, the underlying ideas of the proposed approach is able to be used in other toolchains.

62

Chapter 4 SecJon 4.5

Table 4.3: Comparison among tool generation methods using the GNU toolchain.
(a) The Xtensa tool generator by Tensilica [45]
O) CGEN: Cpu generator by Red Hat [35]
(c) rbinutils by Abbaspour [36]
(d) ArchC by Baldassin [38]
(e) The proposed method

(a) Xtensa configurable cores
(b),(c) RISC CPUs
(d) RISC/CISC CPUs
(e) Existing CPUs which have ports of the GNU toolchain

(a) TIE (Tensilica Instruction Extension) language
(b) LispJike language
(c) Simple language
(d) Simple C-like language
(e) XMl-based language

How to generate GNU Binutils
(a) Base binutils + dynamic link libraries (DLLs)
(b) Only opcode library

(c),(d) Templates + code fragments
(e) Base binutils + Templates + plugins + code fragments

How to define relocation ty)es
(a),(b) N/A
(c) Explicit definitions written in instruction set description

(d),(e) Implicit definitions extracted from instruction set description
How to generate simulators

(a) Base simulator + DLLs
(b) Only libraries to execute/decode instructions
(c) N/A
(d) Templates + code fragments
(e) Base simulator + templates + plugins + code fragments

How to generate compilers
(a) Base compiler + DLLs + header files for intrinsics

(b),(c),(d) N/A
(e) Base compiler + templates + code fragments

+ header files for intrinsics and emulation libraries

63

Chapter 4 SecJon 4.6

4.6 Summary

A new method to generate software development tools has been proposed for instruction set exten-
sion of existing embedded processors. The proposed approach generates a toolchain (assembler,

disassembler, linker, simulator, and compiler) for a target processor, which is based on an existing
processor and which has additional instructions and registers, by adding software components as

plugins to the base processor's toolchain to handle additional instructions and registers. This chap-
ter demonstrated that the approach worked effectively through an experiment based on the V850
microcontroller. As shown in this chapter, by using intrinsic functions, the generated compiler
could give as good performance as that of hand-optimized assembly codes.

Table 4.4: Lines of source codes: (a) original C code, (b) modified C code using intrinsic functions,

32-bit normalization (N=64)
I 6-bit normalization (N=64)
32-bit minimum search (N=64)
l6-bit minimum search (N=64)
32-bit maximum search (N=64)
16-bit maximum search (N=64)
32-bit LMS adaptive FIR (N=l,T=16)
16-bit LMS adaptive FIR (N=1,T=16)
32-bit IIR with scaling (N=1, B=2)
32-bit IIR with scaling (N=8, B=2)
32-bit IIR w/o scaling (N=1, B=2)
32-bit IIR w/o scaling (N=8, B=2)
l6-bit IIR with scaling (N=1, B=2)
l6-bit IIR with scaling (N=8, B=2)
16-bit IIR w/o scaling (N=1, B=2)
16-bit m. w/o scaling (N=8, B=2)
32-bit FIR (N=1, T=16)
32-bit FIR (N=16, T=16)
16-bit FIR (N=1, T=16)
l6-bit FIR (N=16, T=16)
32-bit complex FIR (N=1, T=16)
32-bit complex FIR (N=16, T=16)
16-bit complex FIR (N=1, T=16)
16-bit complex FIR (N=16, T=16)
32-bit bitonic sort (N=64)
l6-bit bitonic sort (N=64)

32-bit complex FFT (N=256)

16-bit complex FFI (N=256)

N: Number of input samples, T: Number of filter taps, B: Number of biquad stages

(d)
３２

３５

３４

４‐

３４

４‐

６３

６２

２６

３０

２３

２８

２６

３‐

２２

２８

４。

６‐

３９

６２

４‐

４５

４７

４‐

１９７

‐４‐

２７４

２９２

３。

３０

２０

２。

２。

２。

２５

‐８

３。

３３

２９

３３

３‐

４‐

３。

４２

２２

３３

‐７

３３

３４

４‐

２６

３３

‐２７

‐２７

３３０

３２。

５５
５７
“
７９
“
７９
０
‐０２
５。
５６
４３
４８
４７
５９
“
６２
６２
９９
５６
８。
６９
８２
８‐
７７
２
‐８８
３２０
３３８

３８

４‐

４‐

４９

４‐

４９

７‐

７。

２９

３８

２８

３４

３２

３９

２９

３５

４５

７‐

４

６。

４６

５６

５５

５５

２‐５

‐５６

２４２

２７４

64

Chapter 4 Sec“on 4.6

l: int32_t
2: fir16_single_sirnrl intrinsic (

3: int16_t *sig, int16_t *coef,
4 : int T, .int of f set)

:':b: ant fi
7: int64_t w_321-0, w_7654, w_ba98, w_fedc;
8: int64_t x_32L0, x_7654, x ba98, x_fedc, acc;
9: jnt32_t step_and_offset

10: : (8<<16) | (2*(offset - (3 c offser)));
l-1: int32_t buff_size : 2*T - I;
L2: inlL64_t mod3ararn
13: : _deposit_64 (buff_size, step_and_offseti ;
14: int32_t align_byte = 2 * (3 & offset);
15: short l-oop_cnt = T >> 4i
16: acc : _vxor (acc, acc) ;
Ilz /* foad coefficients */
18: _vlrl dw_inc(w_3210, coef);
19: _v1rr dw_inc(w_7654, coef);
20: /* load input signals */
21: _vld dw_mod(x_3210, modjaram, sig)i
22 : _vld_dw_mod (x_7 554, modjaram, sig) i
23: _vld_dw_mod (x_ba98, modjaram, sig) i
24 : _vld dw_mod (x_fedc, modjaram, sig) i
25: for (i:0; i < foop_cnt i i++)

26: I /* muJ,tiply and accumul-ate */
27: int64_t xx;
28: xx : _vconcat_b(align_byte, x_3210, x_76541 ;
29t _vfd dw_inc(w_ba98, coef);

l-: int32_t 30: acc : _vmsumad_h(acc, w_3210, xx);
2: firl5-single (31: _vf rl_dw_mod (x_3210, modparam, sig) ;
3: int16_t *sig, 32.. xx : _vconcat_b(afign_byte, x_7654, x_ba98);
4: int16_t *coef, 33: _vlrl dw_inc(w_fedc, coef)i
5: int T, 34: acc = _msumad_h (acc, w_7554, xx) ;
6: int offset) 35: _v1d_dw_mod(x_7654, modjaram, sig);
'7: I 36: xx : _vconcat_b(align_byte, x_ba98, x_fedc);
8 : int i; 37 z _vl-d_dw_inc (w_32LO, coef) ;
9: int32_t y : 0; 38: acc : _vmsumad_h(acc, w_ba98, xx);

l-0: for (i:0 ; i<T ; i++) 39: _vlc]_dw_mod (x_ba98, modjaram, sig) ;
11: { 40: xx : _vconcat_b(align_byte, x_fedc, x_32L0l;
12: int idx:i+offset; 4).t _vl,d_dw_inc (w_7654, coef);
l-3: if (T<:idx) idx-:T; 42: acc = _vmsumad_h(acc, w_fedc, xx)i
14i y+=coef Ii]*sigIidx]; 43: _vld dw_mod(x_fedc, mod3aram, sig);
15:) 442 \
16: return y; 45: ret,,rn avrra.t 1^ AAtacc]'ii
L7:) 46: l

(a) C code written in normal C language (b) C code using intrinsic functions

Figure 4.12: FIR filtering functions: C language.

65

Chapter 4 SecJon 4.6

1: firl5 sinole simd intrinsic:
2: mov -4,110
3: and r9,rl0 1: _asm-fir16-single-simd:
4: add r10,r10 2: mov r0, r10
5: mov r8,rl1 3: andi 3, 19, r15
6: add r8,rl-1 4: mov rI5, rI4
7 i movhi hiO (524288) , r0, rI2 5 : shl- L, rL4
8: or r10,rl2 6: sub r15, 19
9: addi -1,r11,r13 7: add 19, 19

10: andi 3, 19, 19 8: mov r8, rll
11 : add 19, 19 9: sar 4, rLL
L2: sar 4,r8 l0: movhi 8, 19, rL2
13: sxh r8 l-l-: mov r8, r13
I4'. vxor vr3, vr3, vr3 12: add r8, r13
15: vl-d.dw lr'7)+, vr9 13: movea -1, r13, r1-3
16: vl,d.dw [r7]+, vr8 14: vld.dw [r7]+, vr1-0
L'l: vld.dw 116l*, rI2, vr'l 15: vfd.dw [r7]+, vr11
l8: vld.dw [16]*, rI2, vt6 16: vxor vr4, vr4, vr4
L9: v1d.dw [16l*, 1L2, vr5 17: v]-d.dw 116l?, rI2, vr6
20: vfd.dw 11614, 1L2, vr4 18: vld.dw 116)2, r72, vr1
2I: cmp 0,r8 19: vl-d.dw 116)*, rI2, vr8
22: bfe .L7 20: v1d.dw 116l*, r\2, vr9
23:.L8: 21:.L1:
24: vconcat.b 19, vrl, vr6, vr2 22, vconcat.b xL4, vr6, vr1, vtl4
25: vfd.dw [r7]+, vrO 23: vld.dw lr7l+, vr1.2
26: vmsumad.h vr9, vr2, vr3 24: vmsumad.h vr14, vr10, vr4
2'l: vld.dw 116l*, 1L2, vrl 25: vld.dw 116l*, r12, vr6
28: vconcat.b 19, vr6, vr5, vr2 26: vconcat.b r14, vr7, vr8, vr14
29: vld.dw [r7]+, vr1 27: vfd.dw [r?]+, vr13
30: vmsumad.h vr9, vr2, vr3 28: vmsumad.h vr14, vrl-1' vr4
31: vfd.dw 11612, rI2, vr6 29: vld.dw 116)*, 1L2, vr1
32: vconcat.b 19, vr5, vr4, vr2 30: vconcat.b r14, vr8, vr9, vrL4
33: vfd.dw lrTl+, vr9 31: vl-d.dw [r7]+, vr10
34: vmsumad.h vrO, vr2, vr3 32: vmsumad.h vr14, vrL2, vr4
35: vld.dw 116)2, r'1,2, vr5 33: vld.dw lx6)2, rI2, vr8
36: vconcat.b 19, vr4, vr1, vr2 34: vconcat.b rL4, vr9, vr6, vrL4
31: vfd.dw [r7]+, vr8 35: vld.dw [r7]+, vr11
38: vmsumad.h vrl-, vr2, vr3 36: vmsunad.h vr14, vr13' vr4
39: vld.dw 116l*, r1,2, vr4 37: v1d.dw 116)%, 1L2, vr9
40: loop r8, .L8 38: loop r11, .L1
4Lz .L7: 39: .L2:
42: mov.dw vr3, r10 40: mov.w 0, vr4, r10
432 jmp [r31] 41: jmp tlpl

(c) assembly code generated from (b) (d) hand-optimized assembly code

Figure 4.13: FIR filtering functions: assembly language.

66

Chapter 5

Productivity improvement on

parallelization of digital signal
processing algorithm for multiple
processors

This chapter addresses software parallelization based on schematic models of digital signal pro-
cessing algorithms, and proposes a method to generate parallel C codes suited to pipeline process-
ing from the models developed on the Simulink which is a model-based development tool. The
Simulink are widely used in the field of control systems for ranging from algorithm development to
code generation for embedded systems. Although there are several researches which focus on par-
allelization based on Simulink models, they exploit parallelism mainly within one step processing
of the models, or among multiple-step processing by ignoring inter-step data dependencies. Here,
one step processing means that a model processes an input signal and calculate an output signal.
In order to exploit more parallelism among multiple-step processing while preserving the original
semantics of the model, this chapter focuses on a pipeline processing based on a way of apply-
ing the theory of communicating sequential processes (CSP). Under the parallelization process, the
proposed method eliminates loop structures in models and builds directed acyclic graphs (DAGs)
suited to a pipeline processing. While data items are transferred through communication on the
CSP, they are stored and shared in double buffers on the proposed method. On the experiment
of applying the method for an audio processing model, the execution time of the parallelized code
could be reduced successfully to263Vo on a 4-core processor running at 400MHz with a symmetric
multi-processing real-time operating system, compared with that of the sequential code.

5.1 Multicore processors and software parallelizafron

Multicore processors have been becoming popular to increase their performance in the field of PCs
and embedded systems [48-50]. For example, communication infrastructures such as mobile base

stations work on heterogeneous and/or homogeneous multicore processors to handle radio signals

67

chaprer 5 SecJon 5。 1

and packets of many users [51]. Furthermore, multicore processors are also used for encoding,
decoding, and image processing on high definition televisions [52-54], and are evaluated for car
navigation systems [55,56]. Behind this trend focused on multicore, there is a story that mul-
ticore is becoming one of key technologies to increase processors' performance since increasing
processors' operating frequency is more and more difficult and requires much power consumption.
This movement toward multicore is remarkable in the field of communication infrastructures which
require higher processing performance than in other fields.

To exploit the inherent performance of multicore processors, it is very important to parallelize
software working on them. However, parallelization makes it difficult to develop software since par-

allelization requires adequate workload balancing and access controlling of shared resources [57].
To ease parallelizing software, so far there have been many researches of parallel languages, frame-
works, and compilers, etc. 16,56,581. Recent examples are GPU-oriented frameworks such as

CUDA [59] and OpenCL [60] to exploit data parallelism in which same calculations are performed
for many pixels, and the Intel C/C++ compiler that has features such as automatic loop paralleliza-
tion and automatic vectorization.

To take advantage of task parallelism, which is another aspect for parallelism, parallelization
methods based on dataflow and pipeline processing have also been actively researched [61-63]. For
example, Streamlt [61] is a research project on a source-to-source compiler for stream processing,

which handles continuous data streams such as audio and video signals. Programmers describe
pipelines in the language of the Streamlt for dataflow of stream processing, then the Streamlt com-
piler generates source codes that make every stage of the pipelines work in parallel. For another
example, Molatomium [63] is a research project that also focuses on dataflow.

While these novel frameworks based on dataflow and pipeline processing are very useful for
parallelizing software developed from scratch, they have a problem in terms of translation from
conventional languages. To cure this problem, this chapter focus on the Simulink, a model de-

velopment tool, which is widely used in a model-based development method spreading recently
in the field of control systems. Models developed on the Simulink are widely used in the field of
control systems for raging from algorithm development to code generation for embedded systems.

Simulink models are just dataflow graphs themselves, and are suited to parallelization since they

represent structural parallelism visually in them. If parallel software can be generated from existing
models developed on the popular Simulink, language translation by hand should never be needed

to make software parallel.
There are several activities by the MathWorks and others in terms of Simulink models and

parallelization [64,65]. The MathWorks, a developer of the Simulink, provides Parallel Computing
Toolbox (PCT) as his own product before, which allows programmers to run large-scale models

for simulation in parallel. On the latest version of the C code generation tool from the Simulink
models, internal processing of individual blocks such as FFT and filters is parallelized. Although
there have been several other researches and products for generating parallel code from Simulink
models [6ffi8], progriunmers on these researches and products have to take charge of making
tasks and allocating tasks to CPUs. One of conventional research extracts parallelism only from
one-step processing of models [64]. Here, one step processing means that a model processes an

input signal and calculate an output signal. Another research extracts parallelism among multiple-
step processing by ignoring inter-step data dependencies, which may cause acceptable numerical
enors [65]. The first one has an issue of less parallelism, and the second one has an issue of trade-off

68

Chapter 5 Secだon 5.2

between obtained parallelism and numerical error.
This chapter proposes a method to generate parallel C code from the Simulink models. The aim

of the method is to extract parallelism from multiple-step processing without ignoring inter-step
dependencies. Specifically, the method transforms a model having feedback loops to a directed
acyclic graph (DAG) while preserving the original semantics of the model, and executes every
node of the DAG concurrently on the basis of the theory of communicating sequential processes
(CSP) [69,701. While the theory of CSP transfers data items through communication, which may
cause data copies from buffer to buffer, the proposed method shares data items by using double
buffers placed at shared memories. The contribution of this work is the CSP-based method using
double buffering in combination with the loop structure decomposition for pipeline processing,
and the evaluation of the proposed method. In the rest of this chapter, the proposed method is
described, and then parallelization experiment is explained. Finally, this chapter shows that as
a result of parallelizing an audio equalizer model on a 4-core processor running at 400MHz the
proposed method reduces execution time down to 26.3Vo through parallelization.

5.2 Related work

There exists several approaches aiming at mapping an application onto processors including multi-
ple cores in the most efficient way. The references l7l13l present a large overview of the different
methodologies. Here several approaches are picked up.

Ptolemy [74] focuses on component-based heterogeneous modeling and allows to combine hier-
archically different models of computations at high level of abstraction in a Simulink fashion. It
uses tokens as the underlying communication mechanism. Controllers regulate how actors fire and
how tokens are sent between each actors. This mechanism allows different models of computation
to be combined within the Ptolemv framework.

PeaCE [75] specifies the system behavior with a heterogeneous composition of several models of
computation. The PeaCE framework provides seamless co-design flow from functional simulation
to system synthesis, utilizing the features of the formal models maximally during the whole design
process. This framework is based on the Ptolemy project [76]. When dealing with C/C++ specifica-
tions, the PeaCE approach does not propose an automatic procedure to transform this specification
into dataflow graphs. This step is manual and an example of this transformation on a MPEG-4
decoder is given in 1771.

Daedalus [78] is a framework for system-level architecture exploration, high-level synthesis, pro-
gramming, and protofyping of MPSoC architectures. This framework is based on the theory of Kahn
Process Network (KPN) t791. KPN is well suited for signal processing systems. The design flow of
this framework is fully automated and comprises several tools. The KPNgen tool, which is one of
tools in the framework, converts sequential applications written in C/C++ into KPNs. Based on the
KPNs, sequential applications are mapped onto processor cores. Some modifications in the C/C++
specification as an input are sometimes needed in case the specification does not meet requirements
of the KPNgen tool.

69

Chapter 5 SecJon 5.3

Building interrnediate rnodel!

Flattening block hierarchy!

and breakinq looo structures

Generatino Parallel C code

Simulink

■ |||ヽ
||■ ‐ ‐

罐 ‐

1は Par劉 ld C Code

Figurc 5.1:「 Fhe proccss to generate parallel C code from a SIInulink model.

5.3 Parallel C code generation from Simulink models

This chapter proposes a method to generate parallel C code from Simulink models on the basis of the

theory of CSP. The Simulink is a model-based design tool, which uses a block diagram notation to
represent mathematical operations of dynamic systems. Models designed by the Simulink includes

blocks and lines, and blocks may include another blocks and lines hierarchically. The proposed

method regards blocks in Simulink models as tasks and lines between blocks in Simulink models

as communication channels. Figure 5.1 shows a process to generate parallel C code from Simulink
models. Underling concepts of the proposed method are described below.

Mapping a block in a model to a task: The proposed method regards the processing of a block
in a Simulink model as a task, and a dataflow graph represented with blocks and lines of a Simulink
model as a data dependency graph of tasks, respectively. Then behavior of each task is retrieved

from the sequential C code generated from a Simulink model by the Real-Time Workshop, which
is a Simulink component.

一〇
０
〕
Ｃ
Ｏ
軍
０
」
①
Ｃ
０
０

０
０
０
０

０
二
①
〓
０
」
Ｏ
Ｌ

70

Chapter 5 Secびon 5.3

(1) Receiving events from all the incom edges.

Termination event received?

Calculatinq output data.

(3) Sending events to all the outgoing edges.

Figure 5.2: The flow chart of task execution.

Signaling completion of tasks with synchronized task communication: In the theory of CSP,
processes running concurrently communicate via synchronized message passing. The proposed
method make the tasks run concurrently while communicating based on the data dependency graph
extracted from a Simulink model. The proposed method uses synchronized task communication
as a means to notify completion of tasks to each other. An event of completion of task calculation
is transmitted to other tasks via synchronized task communication, and the tasks that receive the
event begin their own calculation. During synchronized task communication, tasks wait until the
communication partners become ready. Figure 5.2 shows the task execution flow. Each task repeats
the following steps:

(1) receiving events to know completion of ascending tasks that feed input data to this task,

(2) calculating output data, and

(3) sending events to notify that output data is ready to descending tasks that uses the output data.

Pipeline parallel processing using double buffers for task output data: On the proposed
method, tasks obtain the calculation results of other tasks from shared memories but not from task
communication. Although the theory of CSP transfers the calculation results of tasks through task
communication, task communication is not adequate for large data transfer on multicore processors
having shared memory since it is necessary to transfer data from the buffer storing the calculation
results to the buffer for task communication. The data copies from buffer to buffer could be a prob-
lem when large data items are transferred through task communication. To avoid the data copies

71

Chapter 5 Sec」on 5.4

from buffer to buffer, the proposed method transfers a buffer index via task communication, and

shares data items among tasks via double buffers storing calculation results of tasks. The buffer
index transferred from task to task represents which buffer to be used. When alarge amount of data

of a task is fed to multiple descending tasks, the proposed method write the output data to shared

memory one time, while the original CSP requires data copy the number of descending tasks. Us-
ing double buffers to store task outputs and switching the buffers alternately allow data-producer
tasks and data-consumer tasks to work in parallel simultaneously. In this way, costly data copies
between buffers can become needless in the proposed method. Since the proposed method targets

at multicore processors on PCs and embedded systems and they have shared memories, the cost of
data transfer using double buffering on shared memories is smaller than using task communication.

Although Simulink can work with various models, the proposed method handles only models
subjected to the following restrictions: fixed time step, discrete-time solver, and single signal rate.

These restrictions make analyzing C code simple, and are acceptable ones for developing practical
Simulink models.

5.4 Analyzing C code

The Simulink has a feature named as the Real-Time Workshop, which can generate sequential
C code corresponding to given Simulink models. Here, the word of sequential means being not
parallelized. The proposed method analyzes two files generated from the Real-Time Workshop:
model . c and model. h. The file of model. c contains the followine three functions:

model_sLep o
executing a single step of the target model.

model_tnj.tialize o
initializing the internal status of the target model.

model_Lerminate o
terminating the processing of the target model.

In these functions, the function to be parallelized is model_sLep O . The proposed method

breaks the content of the function of model_step () into code blocks separated by comment tags

that represent which code block comes from which Simulink block. The comment tags are inserted

by the Real-Time Workshop for code tracing between a Simulink model and C code, and make
it possible to find one-to-one relationship between code blocks and model blocks. In the file of
model. c, all variables and :urays to store output data of model blocks are put together into a single

structure. Each ofthese variables and irrays are read also as input data. The aggregated structure

makes it easy to duplicate the structure for double buffering. The header file of model. h contains

input and output data structures of model blocks and a list of subsystem names included in the target

model. A subsystem is a group of blocks, and is one level of hierarchy in models.

5.5 Analyzing model

The proposed method reads the model file model. mdl, analyzes it, and finds its hierarchical struc-

ture and connection of blocks. Simulink models have a hierarchy of blocks. A subsystem, which is

72

Chapter 5 Sec″on 5.6

a group of blocks, forms one level of hierarchy and can contains other subsystems. In the files of
Simulink models, information on block connection is recorded individually for every level of block
hierarchy. In order to generate parallel C code, it is necessary to get block connection information
between different levels of block hierarchy.

The proposed method finds a model block in a Simulink model corresponding to every code
block in the function of model-step O , and binds them. Since every code block has an ID that
represents the name of the corresponding model block, the ID is used during binding. Under the
generation of sequential C code from Simulink models, code blocks for the model blocks that do
not have any arithmetic operation such as constants, input ports, and output ports are merged into
other code blocks in advance. Each of code blocks in sequential C code must correspond to a model
block in a Simulink model, although the opposite relationship does not always hold.

5.6 Flattening block hierarchy

The proposed method builds an intermediate model, which becomes a task dependency graph to
generate parallel C code. In the building process of an intermediate model, to take advantage of
the inherent structural parallelism represented in Simulink models that have hierarchical structures,
the proposed method flattens the hierarchical structure of model blocks. Target model blocks for
this flattening are subsystem blocks that do not have any binding to code blocks extracted from the
sequential C code. After the flattening, input and output port blocks included in such subsystem
blocks are connected to external model blocks outside the subsystem blocks as shown in Fieure 5.3.

5.7 Breaking loop structures

Several Simulink models have loop structures. Here, a loop structure means a feedback loop but
neither a for-loop nor a while-loop. Loop structures prevent the proposed method from determining
the execution order of model blocks in the intermediate models, and make parallelization difficult.
To cure this problem, the proposed method breaks loop structures that exist in the intermediate
models by dividing indirect-feedthrough blocks such as delay element blocks and integral blocks
in loop structures while preserving the original semantics of Simulink models. Output data yn and
internal status in an indirect-feedthroush block are calculated as follows:

Output: An :f(statusn-t)
Update: statusn : g(rn)

(s.1)

(s.2)

In a usual design guideline of Simulink models, there must be indirect-feedthrough blocks
somewhere in usual loop structures of Simulink models. Tbking advantage of the fact that indirect-
feedthrough blocks can calculate output data gn by using only internal status without using their
input data trn, as shown in Figure 5.4, anindirect-feedthrough block can be divided into two blocks:
an output calculation block and a status update block. After this process of breaking loop structures,
a DAG in terms of tasks and their data dependency is obtained from the modified intermediate
model. The specific steps for dividing an indirect-feedthrough block are as follows.

73

chaprcr 5 SccJon 5.7

聰 Flattening block hierarchy

tl Model block that has a link to corresponding code blocks.

Figure 5.3: Flattening block hierarchy.

(1) Dividing a delay element block into two blocks: The proposed method finds indirect-
feedthrough blocks, and divides such a delay element block into an output calculation block and a

status update block. The output calculation block is made so as to have a binding with a code block
for calculating output data, and the status update block is made so as to have a binding with a code

block fro updating internal status. The status update block takes over the incoming edges of the

indirect-feedthrough block, and the output calculation block takes over the outgoing edges of the

indirect-feedthrough block.

(2) Adding an edge from the start block to an output calculation block: The proposed method

creates the start block that starts the processing of the target model, adds an edge from the start

block to the output calculation block. The edge added here means that the output calculation block

does not have any data dependency from the other model blocks and it can calculate its output data

using its own internal status.

(3) Adding an inter-step data dependency edge from a status update block to an output calcu-

lation block: Since the internal status updated at the current time step in the status update block

will be used in the output calculation block at the future time step, there is a data dependency from

74

Chapter 5 Scction 5.8

(a) Original model including loop structure

Output pdate

I nter-step data dependency

(b) Modified model not containing loop structure

Figure 5.4: How to break a loop structure.

the status update block at time step n to the output calculation block at time step n * 1. This
dependency is one between different time steps, and this chapter calls such a dependency as an
inter-step data dependency. The proposed method adds an edge for this inter-step data dependency
from the status update block to the output calculation block. The inter-step data dependency edge
is used only for determining if a model block becomes ready for execution at run time but not for
determining the execution order of model blocks before run time. The modified intermediate model
in this way becomes a directed acyclic graph by ignoring edges of inter-step data dependency.

5.8 Generating parallel C code

After building an intermediate model for the target model, the proposed method generates parallel C
code based on the intermediate model. Nodes and edges in the intermediate model are translated to
tasks and task communications, respectively, and the generated parallel code includes the following
three functions. These functions correspond to ones in the sequential C code generated from the
target Simulink model.

model_sLep3araItel ()

model_init iali ze3aralle1 ()

model_termi nat e_paraI l- e l- ()

75

Cflaprer 5 Secゴon 5.9

These functions are to be invoked from the task corresponding to the start block. The function of
model_initiaf izejarallel- O startsupallthetasksforthetargetmodel. Eachtaskrepeats
the following steps: (1) receiving events, (2) calculating output data, and (3) sending events. In step
(l), a task receives calculation completion events sent from ascending tasks that feed input data to
this task. After receiving events from all the ascending tasks, the task moves on to step (2). In
step (3), then, the task sends a calculation completion event to each of descending tasks that use the
output data of the task. After sending events to all the descending tasks, the task goes back to step
(1).

The function of model_sLep3a r a I I e I () sends a calculation completion event to the tasks

corresponding to the model blocks that are connected to the start block, and then returns without
waiting for the completion of the tasks. Tasks receiving the event sent from the start task calculate
their output data, and send another event to their descending tasks. By invoking the function of
model_sLep3aral1el () any iterations you need, a plurality of iterations of the target model
can be run simultaneously in parallel. At the end of iterations you execute, when you want to stop

the operation of target model, you invoke the function of model_terminate_parallel O,
which sends a terminate event to running tasks and returns. Tasks receiving a terminate event
immediately come to a halt.

The proposed method does not have any rules in terms of (a) task assignment onto CPUs and (b)

task scheduling, and those two features are up to the operating systems and/or other tools working
with. In this chapteq (a) and (b) are provided by a symmetric multi-processing (SMP) operating
system.

5.9 Experiment

To investigate how effective the proposed method works, in this section, experiment results are de-

scribed for generating parallel C code from two Simulink models [80,81]. The target environments
to execute generated C code are a PC running the Windows operating system and an embedded
system running a real time operating system RIOS). The details of the environments and results

of the experiment are shown in Table -5. 1 .

5.9.1 Audio equalizing

Audio equalizing in the model of [80] is an audio processing that reads audio signals from a file and

modifies their waveform in both time and frequency domains. The audio signals are stereo and 16

bits/sample, and their sampling rate is M.lkllz. Each of signals is represented as a 32-bit floating-
point number. The audio equalizing model used in this experiment performs audio processing for
a 1024-sample audio frame at a time. The number of blocks included in the model is 252, which
includes the number of the subsystems as containers of blocks.

Figure 5.5 shows a task dependency graph extracted from the audio equalizing Simulink model.

The number of tasks is 57, which includes the main task corresponding to the beginning block. Ex-
tracted tasks perform addition, subtraction, filtering, or FFT for 1024 audio signals. Since the PC

used in this experiment has 4 CPUs, the execution time of parallelized programs could be ideally
decreased down to 1,/4=25Vo. For the experiment on the Windows PC, the execution time of the

76

働 apter 5 Secびon 5.9

Table 5 Expeument results ol C code from Simulink

R4odel

blocks

Tasks Execution time ratio
compared with

sequential programs.
PC0 PCl RTOS

Audio equalizi 252 57 85.8% 38.3% 26.3%

Lane detection 302 64 94.9% 鋼 .3% 39%

models.

MATLAB/Simulink version: R2010b
Experiment environment: PCO and PCI

OS: Windows Server 2008
processor: Xeon@ l.83GHz (4 cores)
compiler: Intel C++ Compiler XE I2.l
compiler options: /O2 /Qparallel
task communication: Win32 API
PCO does not use the proposed method.
PCl use the proposed method.
r. Scores of PCO and PCl are the execution time ratio
against PCO without option /Qparallel.

Experiment environment: RTOS
OS: eSOL eT-Kernel Multi-Core Edition (SMP) I82l
processor: NaviEngine ARMII MPCore@40OMHz (4 cores) [55]
compiler: ARM RealView Compiler 3.0
compiler options: -S -O3
task communication: message buffers (no queues, no time out)

parallelized program using the proposed method is reduced to 38.3Vo compared with a sequential
program before parallelization while the execution time ratio of the program parallelized automat-
ically by the Intel Compiler is 94.9Vo. For the experiment on the RTOS system, the execution time
of the program parallelizedby the proposed method is reduced to 26.3Vo, which is very close to the
ideal case.

5.9.2 Lane detection

Lane detection in the model of [81] is an image processing that detects car lanes from roadway
images captured by a camera in a car, tracks the detected lanes, and makes alert messages if the
car is going to be out of the lanes. The size of the roadway images is 360 x 240 pixels. Hough
transformation is used for detecting car lanes, and kalman filtering is used for tracking the detected
lanes. Pixels in the image processing of this lane detection are represented as 32-bit floating-point
numbers.

Figure 5.6 shows a task dependency graph extracted from the lane detection Simulink model.
The number of blocks included in the lane detection model is 302. which includes the number of the

77

Chapter 5 Section 5.9

Node tN represents a task.

Node t0 is a main task, which corresponds to the beginning block and invokes such functions

like model-step-parallel O .

Edges between nodes represent data dependencies of tasks.

Dashed edges between nodes represent inter-step data dependencies of tasks, which are the

dependencies between different time steps.

Figure 5.5: Task dependency graph extracted from the audio equalizing model.

subsystems as containers of blocks. For the experiment on the Windows PC, the execution time of
the parallelized program using the proposed method is reduced to 35Vo compared with a sequential

program before parallelization, while the execution time ratio of the program parallelized automat-

ically by the Intel Compiler is 85.87o. For the experiment on the RTOS system, the execution time

of it has been reduced to 39Eo. On both of the PC and the embedded system that does not have

any display device, any of result images were not displayed for the sake of profiling on different

svstems under the similar conditions.

●

　

●

●

　

●

78

Chapter 5 Scctioコ 1■ lθ

5.10 Discussion

As shown in the experimental results in Table 5.1, the proposed method has worked effectively
for the audio equalizing model, for which the execution time was reduced to 26.3Vo on the RTOS
system. This result is very close to the ideal case for a 4-core processor. For the lane detection
model, on the other hand, the execution time was reduced to 39Vo on the RTOS system. This
section discusses this result.

One problem comes from a structure of task dependency graph. The task dependency graph of
the audio equalizing model shown in Figure 5.5 has a simpler straight-forward structure than that of
the lane detection model shown in Figure 5.6. This difference of task dependency graphs in terms
of their structure results in the difference of perfonnance in Table 5.1 . In Figure 5.6, there are more
long edges than in Figure 5.5. If there is a long edge between two nodes A and B and there is
another path from node A to node B via other nodes, the nodes on the another path are difficult to
be parallelized in a pipeline manor because node A cannot finish its task until node B starts its task.
Remember each node works in the way shown in Figure 5.2.

Another problem is task granularity. Figures 5.7 and 5.8 show distribution of task execution
time ratios for the audio equalizing and the lane detection, respectively. In these figures, a task
execution time ratio over the maximum task execution time for the two models respectively is
calculated for every task, and the number of tasks within every IVo segment of the ratio is plotted.

While the number of tasks that have lower task execution time ratio than IVo is 19 in the audio
equalizing, the number of such tasks is 49 in the lane detection, as can be seen in Figures 5.7 and
5.8. The tasks that have lower task execution time ratio than lTo does not practically perform any
calculation and does consume task communication overhead. This means that the parallelized lane
detection has more workloads in terms of task communication than does the audio equalizing, and
it leads to the lower execution time reduction of 39Vo.

5.11 Summary

This chapter proposes a method to generate parallel C code from models developed by the Simulink,
which is a model development tool. The proposed method regards blocks in Simulink models as

tasks and lines between blocks in Simulink models as communication channels respectively, and
then generates parallel C code on the basis of the theory of communicating sequential processes
(CSP). Under the process of parallelization, the proposed method breaks loop structures in Simulink
models for parallelization while preserving the original semantics of the model. While the theory of
CSP transfers data items through communication, the proposed method shares data items by using
double buffers placed at shared memories. As a result of parallelizing an audio equalizer model on
a four-core processor running at 400MHz the proposed method has reduced execution time down
to 26.3Vo through parallelization.

79

CLapter5 Sec」on,11

Figure 5.6: Task dependency graph exnacted from the lane detection model.

Chapter 5 Secビon ill

５。

４。

３。

２。

１。

。

ｏ
翻
Ｓ

〕
ｏ
．日
●
Ｚ

５。

４。

３。

２。

１。

。

型
罐
一
嘔
ｏ
，日
●
Ｚ

o% to% 20% 30% 40yo 50% 60% 70% 80% 90%

Thsk execution time ratio over the maximum task execution time.

Figure 5.7: Histogram of task execution time ratio for the audio equalizing.

^
r. a ..\a} .tl,lrr l, < aar

o% Lo% 20% 30% 40% 50% 60% 70% 80% 90%

Thsk execution time ratio over the maximum task execution tine.

Figure 5.8: Histogram of task execution time ratio for the lane detection.

81

Chapter 6

Conclusion

This thesis studied performance evaluation and design productivity improvement for digital signal
processing systems. To deal with this enornous challenge, this thesis focused on the following
major issues:

1. software development tool available at an early design stage for performance evaluation,

2. overall performance evaluation on real workloads before LSI fabrication, and

3. software parallelization of calculation-requiring digital signal processing applications to ease

performance evaluation.

With regard to performance evaluation during actual processor design, this thesis first overviewed
a design experience of a digital signal processor core in chapter 2. Through this design experience,
the above major issues were derived.

The first contribution of this thesis is early-stage performance evaluation of a digital signal
processing system composed of a processor core and many peripherals before LSI fabrication. To
handle heavy real workloads of audio and video signals forperformance evaluation, this method
makes use of an FPGA and a test chip of a digital signal processor core as an intermediate approach
between software simulation (versatile but slow running speed) and full hardware prototyping (fast

running speed but difficult to modification). The developed method made it possible to emulate the

target LSI composed of the processor core shown in the design experience and many peripherals

running at a scaled-down operating frequency l/3 and to evaluate audio and video processing on

the LSI for actual situations.
The second contribution is demonstration of software development tool generation applica-

ble for the use of performance evaluation. In the experimental result of the proposed method for
software development tool generation in the case of adding SIMD instructions to the embedded

microprocessor V850, by using intrinsic functions, the generated compiler yielded good code with
only 7Vo increase in the number of instructions against the hand-optimized assembly codes. This
means that the compiler generated from the proposed method gave a sufficient performance such

that be able to be used for performance evaluation. This makes it possible to provide software

development tool at an early design stage of processors for digital signal processing systems, and

compiler availability improves productivity of performance evaluation of processors.

82

Chapter 6

The third contribution is a solution to software parallelization. To increase the productivity
in terms of parallelization of digital signal processing algorithm, this thesis proposed a method
to generate parallel C codes suited to pipeline processing from models that represents behavior
of digital signal processing applications as block diagrams. On the experiment of applying the
method for an audio processing model, the execution time of the parallelized,code could be reduced
successfully to 26.3Vo on a 4-core processor running at 400MHz with a symmetric multi-processing
real-time operating system, compared with that of the sequential code. Through this experiment
this thesis demonstrated that parallelization based on models is promising to improve productivity
of software parallelization for digital signal processing systems.

Future work

In the technology of software development tool generation, the optimized compiler generation from
processor architecture descriptions is still challenging topic. To create machine-dependent part of
compilers, in addition to deep knowledge of a target processor architecture, designers need exten-
sive knowledge of specific rules on the internal structure of compilers. If many tasks involving
compiler generation can be automated, which will significantly reduce development time required
for a compiler based on the GCC, and you will be able to focus more time on architecture optimiza-
tion of the target processor and compiler optimization.

In terms ofgeneration ofdebuggers from processor architecture descriptions, supporting calling
convention for target processors on debuggers is a task to be addressed. Convenient step execution
commands such as 'step over', 'step into', and 'run untile return' will become available if debuggers
understand the calling convention from a function to another on target processors. Although it is not
difficult to implement the support for simple calling convention on debuggers, creating a scheme to
accept various conceivable types of calling convention for debuggers is difficult in reality. If such a
scheme is established indeed, designers will be able to generate more useful debuggers with more
features for step execution.

Model-based parallelization still has several issues on both sides of software and hardware,
which include, for example, model partitioning, task assignment to multiple processors, scheduling
of multiple tasks, efficient method for communication and synchronization, finding bottlenecks of
parallelized software, and so on. There are a number of previous studies on parallel programming
based on dataflow so far. Dataflow programming, which is focused on and is used in particular
fields, are in general not widely spread. One of the reasons is that there is no de facto open-source
tool for dataflow programming. Model-based development is a kind of dataflow programming, and
situation surrounding model-based development is being used in specific fields, same as that of
dataflow programming. However, the larger the size of software becomes and the more the number
of processors in a chip increases, situation could change. Models and dataflow have structural paral-
lelism represented visually in them, and they are clearly suitable for intuitive parallel programming
compared to programming based on just source code. If models are utilized in early design stages

and in abstract level design and executable programs generated from the models come into prac-
tical use, the productivity of parallel software development of complex systems will be improved
definitelv.

83

Bibliography

[1] Keshab K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation, Joltn
Wiley and Sons, 1998.

[2] Keshab K. Parhi and Takao Nishitami, eds., Digital Signal Processingfor Multimedia Systems,

CRC Press. 1999.

[3] John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach,
5th ed., Morgan Kaufmann, 2011.

[4] Uwe Meyer-Baese, Digital Signal Processing with Field Programmable Gate Arrays,3rd ed.,

Springer,2007.

[5] Dake Liu, Embedded DSP Processor Design Embedded DSP Processor Design: Application
Specific Instruction Set P roce s sors, Elsevier, 2008.

[6] Maurice Herlihy and Nir Shavit, The Art of Multiprocessor Programming, Morgan Kaufmann,
March 2008.

t7l S. Bauer, J. Kneip, T. Mlasko, B. Schmale, J. Vollmer, A. Hutter, and M. Berekovic, "The

MPEG-4 multimedia coding standard: algorithms, architectures and applicationsl' Journal

of VLSI Signal Processing, Yol.23, pp.7-26, October 1999.

[8] Madhukar Budagavi, Wendi Rabiner Heinzelman, Jennifer Webb, and Raj Talluri, "Wireless

MPEG-4 video communication on DSP chipsl' IEEE Signal Processing Magazine, Vol. 17,

No. 1, pp. 36-53, January 2000.

[9] Ichiro Kuroda and Takao Nishitani, "Multimedia processorsl' Proceedings of the IEEE,

Vol. 86, No. 6, pp.1203-1221, June 1998.

[10] Paolo Faraboschi, Giuseppe Desoli, and Joseph A. Fisher, "The latest word in digital and

media processing|'IEEE Signal Processing Magazinq Vol. 15, No. 2, pp. 59-85, March 1998.

[11] Jennifer Eyre and Jeff Bier, "The evolution of DSP processorsl' IEEE Signal Processing Mag-

azine, pp. 43-51, March 2000.

[12] Takahiro Kumura, Daiji Ishii, Masao Ikekawa, Ichiro Kuroda, and Makoto Yoshida, "A low-

power programmable DSP core architecture for 3G mobile terminalsl' Proceedings of Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 2, No. ITT-
4-3, pp. l0l7 -1020, May 2001.

84

BIBI」OGRAPIY BIBL10GRAPHY

[13] Tom R. Halftrill, "StarCore reveals its first DSP:' Microprocessor Report, Vol. 13, No. 6,
pp. 13-16, May 1999.

[14] Texas Instruments lnc., TMS320C55x Technical Overview. Literature Number SPRU393.
February 2000.

[15] Ravi K. Kolagotla, Jose Fridman, Marc M. Hoffman, William C. Anderson, Bradley C.
Aldrich, David B. Witt, Michael S. Allen, Randy R. Dunton, and Lawrence A. Booth Jr., "A
333-MHz dual-MAC DSP architecture for next-generation wireless applications," Proceed-
ings of International Conference on the Acoustics, Speech, and Signal Processing, Yol.2,
pp. 1013-1016,2001.

[16] Makoto Yoshida, Hiroyasu Ohtomo, and Ichiro Kuroda, "A New generation 16-bit general
purpose programmable DSP and its video rate applicationl' VLSI Signal Processing VI,
pp.93-101, 1993.

[17] Jose Fridman, "Sub-word parallelism in digital signal processingl' mEE Signal Processing
Magazine, Vol. 17, No. 2, pp.27-35, March 2000.

[18] Texas Instruments lnc., TMS320C55x DSP Programnxer's Guide. Literature Number
SPRU376A, July 2001.

[19] Simon Haykin, Adaptive Filter Theory, 3rd ed., Prentice Hall, 1996.

[20] Guozhu Long, Fuyun Ling, and John G. Proakis, "The LIVIS algorithmwith delayed cofficient
adaptationl' IEEE Transactions on Acoustics, Speech and Signal Processing, Yol. 37, No. 9,
pp. 1397-1405, September 1989.

[21] Andrew J. Viterbi, CDMA Principles of Spread Spectrum Communicarion, Addison-Wesley
Publishing Company, 1995.

[22] Yukihiro Naito and Ichiro Kuroda, "H.263 mobile video CODEC based on a low power con-
sumption digital signal proceJ,ior," Proceedings of International Conference on the Acoustics,
Speech, and Signal Processing, Vol. 5, pp. 3041-3044,1998.

[23] Atsushi Hatabu, Takashi Miyazaki, and Ichiro Kuroda, "QVGA/CIF resolution MPEG-4 video
CODEC based on a low-power and general-purpose DSPI' Proceedings of IEEE Workshop
on Signal Processing Systems (SIPS), pp.15-20,2002.

[24] Yuichi Nakamura, Kouhei Hosokawa, Ichiro Kuroda, Ko Yoshikawa, and Thkeshi Yoshimura,
"A fast hardware/sofa'vare co-verification method for system-on-a-chip by using a C/C++
simulator and FPGA emulator with shared register communication]' Proceedings of Design
Automation Conference (DAC), pp. 299-304, 2004.

[25] Takahiro Kumura, Masao Ikekawa, Makoto Yoshida, and Ichiro Kuroda, *VLIW
DSP for rno-

bile applicationsl'IEEE Signal Processing Magazine, Vol. 19, No.4, pp. 1G-21, July 2002.

t26l ARM Holdings, AMBA Specification, 2.0 ed., 1999.

85

B■3L10GRAPHY B13L10GRAPHY

[27]ISO/1EC,``ル ′ソ
“
α′jθ4た C乃 4θわ″ ―θθdingげα

“
′θ―νj∫

“
αJ θれたεお―′α″2rソお

“
α″'ISO/1EC

14496-2,1999.

[28]Jamil Chaoui,“ OMAPTM「
`ん

αbJJんg“
“
ルj“ι″α9ρ′ιJεα″Jθん∫

jκ ttjπ g`4ι″′jθκ(3Gリ ッJκ―

ルss′ιttFjκαお′'Dedicated Systems Magazine 2001 Q2,pp.3準 39,2001.

[29]A.Fauth,J.Van Praet,and M.Freencks,``Dι scrjわれg J4s′r“criθんsι′′″θιSSθ rS“S'4g″Иι′'

Proceedings ofthe European Design and Test Conference,pp.503-507,March 1995.

[30]Paul C.Clements,`■ s“″り げ ακttJttε″
“
″ グιscr,′″θκ滋

“
g“αgιs′ 'PrOceedings of lntcma―

tional Workshop on Software Speciflcation and Design,pp.16,NIIarch 1996.

[31]Vlin ZiVanovic,Stefan Pces,and Hcinrich Meyr9`リ リシ1-陥zεんれθルscr″′Jθ
“
″κg“αgι α4グ

gιんιriθ

“
αελれ

`“
θごιJ′,rn/sw θθ_Jθsなη′'PrOceedings ofthe IEEE Workshop on VLSI

Signal Processing,pp.127-136,1996.

[32]Ashok Halambi,Pcter Grun,Viiay Ganesh,Asheesh Khare,Nikil Du■ ,and Alex Nicolau,

“EXPRESSIθⅣf α滋んg“αgι ル r αrc乃′たε′
““

ι″ Jθ″′Jθκ ttκ
“
gtt θθ

“
ρJJ`r/sJ“

“
滋
"r″

たr―

g`たわJJJ″′'PЮCeedings ofthe Conference on Design,Automation and Testin Europe(DATE),

pp.485-490,ヽlarch 1999.

[33]Manuel HOhenaucL Hanno Scharwacchteち Kingshuk Kamri,01市 er Wahlen,Tim Kogel,

Rainer Leupers,Gerd Ascheid,Hcillnch NIleytt Gunnar Braun,and Hans van Someren,`И

“
ιЙθJθιOtt α4グ

"θ
J∫

“

j″
′9r C εθ

“
ριJ`rg`4`″ ′jθれル

“
ADL′κθιssθ r“θαιJs′'PrOCeed_

ings ofthe Conferencc on Design,Automation and Testin EuЮ pe(DATE),Vol.2,pp.127(ト

1281,NIlarch 2004.

[34]ShinSuke KOBAYASHI,Yoshino五 TAKEUCHI,Akira KI■ に田MA,and NIlasaharu INIIAI,

“Cθ4ρ Jル r gικικ′jθ

“
れ PEAS―I″」α

“
AS,Pグιソ

`J"“
ι
“
′ッsた

“
′'PrOCeedings of lntema―

tional Workshop on Software and Compilers for Embedded Processors(SCOPES),MarCh

2001.

[35]Redhat,“ CGEⅣ「滋
`υ“

ゎθJs gι″ι
“
α
"r."http://sources.redhatocom/cgen/.

[36]MaghSOud Abbaspour and Jianwen Zhu,“ Rι″rg`″bル bjんαη
“
′jJ′″ιS′'ProCeedings of De―

sign Automation Conferencc(DAC),pp.331-336,June 2002.

[37]Prabhat]Mishra,Aviral Shrivastava,and Nikil Dutt,`■ κんJた c′

“

″ グιscr″′わ″ 滋んg“αg`

64DIj9-グ riソι4s9/h″α″
"θ

ttj′ g`ん
`■

α′Jθ4ノbr ακ乃′たθ
"“

αJ ιィpJθ
“
α′jθ4 9′ ′″gハα

“
αわJθ

Sθ Cs′ 'ACヽ〔Transactions on Design Automation of Electronic Systems(TODAES),Vol.11,

No.3,pp.626-658,July 2006.

[38]Alexandro Baldassin,Paulo Centoducatte, and Sandro Rigo, `■ κ 9ρι4-sο
“

κι bj“αη
“
″7-

jク gι4`″
"r′

'ACM Transacdons on Design Automation of Electronic Systems(TODAES),

Vol.13,No.2,pp.1-17,Ap五 12008.

[39]Ricardo E.Gonzalez,`γ′
`ん

∫α「α θO′′g“認わ′ιαんグα′
`4sjbル

′″θ
`ssθ

だ'IEEE MicЮ ,Vol.20,

No.2,pp.60-70,NIlarch― Ap五12000.

86

BIBりOGRAPIY BBL10GWHY

[40] David Goodwin and Darin Petkov, "Automatic generation of application specific processors]'
Proceedings of International Conference on Compilers, Architecture and Synthesis for Em-
bedded Systems (CASES), pp. 137-147, 2003.

[41] Fei Sun, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha,"Custom-instruction synthesis

for extensible-processor platformsl' IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems,Yol.23, No. 2, pp.216-228, February 2004.

[42] Yuji Nagamatsu, Nagisa Ishiura, and Nobuyuki Hikichi, "Retargeting GCC and GNII
toolchainfor extended instruction sef," Technical report of IEICE, No. VLD2005-103, pp.37-
41, Janaary 2006.

t43l NEC Electronics Corporation, User's Manual: V850 Family for Architecture,March2OOL

[44] Intel Corporation, Using Streaming SIMD Extensions 2 (SSE2) to Implement an Inverse Dis-
crete Cosine Transform,2.0 ed., September 2000.

[45] Tensilica, Inc., Tbnsilica Instruction Extension (TIE) I-anguage Reference Manual,November
2006.

[46] Yuji Kunitake, Takahiro Kumura, and Hiroto Yasuura, "A case study on instruction set ex-
tension for variable length decoding on a custom processorj' IPSJ Technical Report ARC,
Vol. 2010-ARC-187, No. 21, pp. 1-6, January 2010 (in Japanese).

[47] Takahiro Kumura, Soichiro Thga, Nagisa Ishiura, Yoshinori Takeuchi, and Masaharu Imai,
"Automatic generation of GNU binutils and GDB for ASIP cores based on plug-in methodl'
Proceedings of Workshop on Synthesis And System Integration of Mixed Information tech-
nologies (SASIMI), March 2012, to appear.

[48] Lina J. Karam, Ismail AlKamal, Alan Gatherer, Gene A. Frantz, David V. Anderson, and
Brian L. Evans, "Trends in multicore DSP platforms," IEEE Signal Processing Magazine,
Yol.26, No. 6, pp. 38-49, November 2009.

[49] Yukihiro Takeuchi, Yohei Nakata, Hiroshi Kawaguchi, and Masahiko Yoshimoto, "Scalable
parallel processing for H.264 encoding application to multilmany-core processor," Proceed-
ings of International Conference on Intelligent Control and Information Processing (ICICIP),
pp. 163-170, August 2010.

[50] Ngai-Man Cheung, Xiaopeng Fan, Oscar C. Au, and Man-Cheung Kung, "Vdeo coding on
multicore graphics processorsl' IEEE Signal Processing Magazine, YoL 27 , No. 2, pp. 79-89,
March 2010.

[51] Doug Pulley, "Multi-core DSP for base stations: large and smalll' Proceedings of Asia and
South Pacific Design Automation Conference (ASPDAC), pp. 389-391, March 2008.

[52] Mitsuhiro Matsunaga, Eiji Tsuboi, Satoru Shimojima, Masaki Nakamizo, and Hiroyuki Go-
jima,"EMMA3, an LSIfor HD DVD player/recorder systemsl'NEC Technical Journal, Yol.2,
No.4, December 2007.

87

BIBL10GRAPHY BIBりOGRAPHY

[53] Richard Selvaggi and Larry Pearlstein, "Broadcom mediaDSP: a platform for building pro-
grammable multicore video proce,s,sor.i," IEEE Micro,Yol.29, No. 2, pp. 3G45, Marcl/April
2009.

[54] Masanori Mori, Yoshihiro Nishida, and Kenichi Doniwa, "CELL platform expanding limits of
TV performance," TOSHIBA REVIEW Vol. 65, No.4, 2010 (in Japanese).

[55] Masayasu Yoshida, Takeshi Sugihara, Toshiaki Takahashi, Yasuhiko Koumoto, and Toshinori
Ishihara, ""NaviEngine 1," system LSI for SMP-based car navigation systemsl' NEC Techni-
cal Journal, Yol.2, No. 4, 2007.

156l Takamichi Miyamoto, Saori Asaka, Hiroki Mikami, Masayoshi Mase, Yasutaka Wada, Hi-
rofumi Nakano, Keiji Kimura, and Hironori Kasahara, "Parallelization with automatic par-
allelizing compiler generating consumer electronics multicore APII' Proceedings of Interna-
tional Symposium on Parallel and Distributed Processing with Applications (ISPA), pp. 600-
607, December 2008.

[57] Edward A. Lee, "The problem with threadsl' IEEE Computer, Vol. 39, No. 5, pp. 3342,May
2006.

t58l Hahn Kim and Robert Bond,"Multicore software technologies," IEEE Signal Processing Mag-
azine, Vol. 26, No. 6, pp. 8G-89, November 2009.

[59] Jason Sanders and Edward Kandrot, CUDA by Example: An Introduction to General-Purpose
G P U P ro grammin g, Addison-Wesley Professional, July 20 1 0.

[60] John E. Stone, David Gohara, and Guochun Sli, "OpenCL: a parallel programming standard

for heterogeneous computing systemsl'Computing in Science and Engineering, Vol. 12, No. 3,

pp. 66-7 3, May/June 20 10.

[61] Michael L Gordon, William Thies, and Saman Amarasinghe,"Exploiting coarse-grained task,

data, and pipeline parallelism in stream programsl' Proceedings of International Conference

on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
pp. 15I-162,2006.

[62] William Thies, Michal Karczmarek, and Saman P. Amarasinghe, "Streamlt: a language for
streaming applications," Proceedings of International Conference on Compiler Construction,
pp. 179-196,2002.

[63] Motohiro Takayama, Ryuji Sakai, Nobuhiro Kato, and Tomofumi Shimada, "Molatomium:
parallel programming model in practicel' USENX Workshop on Hot Topics in Parallelism,
June 2010.

[64] Arquimedes Canedo, Takeo Yoshizawa, and Hideaki Komatsu, "Automatic parallelization of
Simulink applicationsl'Proceedings of IEEE/ACM International Symposium on Code Gener-

ation and Optimization (CGO), pp. 151-159,2010.

88

BBttOGRAPHY BIBI」OGRAPHY

[65]Arquimedes Canedo,Takeo Yoshizawa,and Hideaki Komatsu,“ Sた
`wι

ご′″
`Jjκ

Jんg′,r′αttJ―

Jι J Sj′η
“
Jjんたs力π

“
ια′′θ

“
s,''PrOCeedings of Design,Automation and Testin Europe Conference

and Exhibition(DATE),pp.891-896,NIlarch 2010.

[66]Sang il Han,Xavier Guc五 n,Soo― Ik Chae,and Ahmed.A.Jerraya,“ BιJシr“ι
“
θッ η ″

“
JZα―

′jθ4ノbrッJグιθ θθグιθ cP′ιJεα″Jθκ
“
θグιJιJれ S力η

“
JJんた′'PrOceedings of Design Automation

Confercncc(DAC),pp.689694,July 2006.

[67]Lisane B五 s01ara,Sang il Han,Xavier Guc五 n,Luigi Carro,Ricardo Reis,Soo¨ Ik Chae,and
Ahmed Jcraya,`り Rιグ

“
εJ4gノんι―gハαれ θθz“

““
Jθα′jθκ θソ

`滋 `α
グ J“

““
J′
j力″αごθοα

`gι
んιr―

α′われル rんιた″g`κ
`θ“

s MPSoC"PrOCeedings of htemational Workshop on Software and

Compilers for Embedded Systems(SCOPES),pp.81-89,2007.

[68]dSPACE,`宏
`α

ι―tim`滋″J夕θ
`ル

r“
“
ル″κθιSSθr Fys″zs(Rrf_lИPだ'httP://www.

dspace.jp/en/pub/home/products/sw/irtps・ A7/rtimpb■ oocfm.

[69]Stephen D.Brookes,Charlcs Antony Richard Hoare,and A.W Roscoe,`■ 力
`θ
70βεθ

“““

―

んJθα″4g sι 9“ικ′′α′′κθιss`∫ ,"JOumal of ACNII,Vol.31,No.3,pp.560L599,July 1984.

[70]Charles Antony Richard Hoare,Cθ
““

況κJεα′滋g Sι 9“
`4ガ

αJPκθ
`ss`S,Prendce Hall,1985.

[71]Stephen Edwards,Luciano Lavagno,Edward A.Lce,and Alberto Sangiovanni― Vincentelli,

R`αごJ4gsれ 鳳α″レッα,eFSttα ″ Cθ―ル Sなれ,Ch.Design ofembedded systems:fo..1lal models,
validation,and synthesis,pp.86-107,Kluwcr AcadellllllC Publishers,2002.

[72]Axel Jantsch and lngo Sandet`範
`θ

グ
`Js`ノ

θθ′η,“″′′θκ′フrθ
“

bιttcグ sys″

“
α
`sな

ん′'皿
Proceedings of Computers and Digital Techniques,Vol.152,No.2,pp.114-129,NIIar 2005.

[73]Alberto Sangiovanm― Vincentelli and Marco Di Natale,“ E“b`ddcグ

`ッ

∫た
“
グ
`Sjgん

。ゎrα

“"“
θ―

″ソ
`c′

ριJθα′Jθκs,''Computer・ Vol.40,pp.42-51,Θ ctober 2007.

[74]JameS Lyle Peterson,2′ r′ N`′ 刀りιθッ ακグルιル「θグ
`JJ4gげ

ル S″

“
S,Prentice Hall PTR,1981.

[75]SoonhOi Ha,Sungchan Kinl,Choonseung Lce,YoungIIlln Yi,Seongnaln Kwon,and Young―
Pyo Joo,“Rttα CE=α んαガンッα″―S″‰ノα″ εθごιsなκι″ J″η

“`ん
′′)rZ“ Jr,“ι″αι

“
bιddeグ sys―

た協s′'ACM Transactions on Design Automatton of Electronic Systems(TODAES),Vol.12,

No.3,pp.24:1-24:25,May 2008.

[76]Universlty of Califomia Berkele/y9 `?"J`“ ッ ′raJ`c′′' http://pto■emy.eecs.
berkeley.edu/,2011.

[77]HyeyOung Hwang,Taewook Oh,Hyunuk Jung,and Soonhoi Ha,“ Cθんソ
`rsJθ

4 9′ 段グツ″4θι σ

θθごι
"α

α″ヴο″
“
θグιJ二 26イ

`ん
εθグιr cαsι s効″ガ'Proceedings of Asia and South Pacinc

Conference On Design Automation(ASPDAC),pp.152-157,March 2006.

[78]H五stO Nikolo、 ⅣIark Thompson,Todor Stefano、 Andy Pimentel,Simon Polstra,R.Bose,

Claudiu Zissulescu,and Ed Deprettere,`ち Dα
`α

αJ“sr"wαガ cθttpθ sαわル
““

J′J“ιごJα 』匠P―SθC
ごι∫な

“
′'PrOCCedings of Design Automation Conferencc(DAC),pp.574-579,2008.

89

BIBIゴOGRAPIY BIBL10GMPHY

[79]G.Kahn,``コ吻ι sι
“
αη′jcs″ 'α SJttρ Jι ″んg“αgιυわr′α″Jι

`J′
″gκ

““
jκg′'PrOceedings of the

IFIP Congress,pp.471-475,1974.

[80]Younes Seyedi, ``P“ り●ssJοんαJ Sj“
“

Jjκた α
“
ごJο ι9“αJたιrF' http://www.mathworks.

com/mat■ abcentra■ /fi■ eexchange/.

[81]The Mathworks,“Ijaκιごηαr′

“
κ wα

“

jκgッs″

“
′'a sample model distributed with Video

and lmage Processing Toolbox for NIIメ 飼日LAB/Simulink.

[82]Masaki Gondo,`り Jικttκg αッ
““`′

riC α
“
グッ

““
ι″riθ

““
J′″″θιSSj“g wjtt α sJκgJ`θS θん

ARyff MPCθ
“

′'cSOL Co.,Ltd.white papet lnfo.1..ation Quarterlゝ Vol.6,No.2,2007.

90

〓」』」け‐中」

