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The study presented in this dissertation was carried out under the guidance of Associate
Professor Motohiro Nakano at Division of Applied Chemistry, Graduate School of Engineering,

Osaka University.

The objective of the present study is to fully analyze the physical properties of a series of
mononuclear manganese(I1I) and cobalt(Il) complexes on the basis of ligand-field theory aiming to
provide a way to regulate electronic states of single metal centers as functional synthons in
construction of higher assembled systems, e.g. nanomagnets. The author hopes that these results and

findings contribute to the rational design of the paramagnetic polynuclear complexes.
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Part 1. General Introduction

Chapter 1. Background

Self-assembled metal complexes and their functionalities have been extensively studied during
the past decades and new field of metal-organic framework (MOF) is now opening practical
applications of nanopore space as functional adsorbents, hydrogen-storage materials, specific
catalysts, guest-dependent magnets, and so on [1]. In order to develop and improve functionalities of
metal-assembled ‘systems, it is essential to get better understanding of single-metal centers as
functional elements. In the present dissertation, single-metal centers for assembling nanomagnets
including single-molecule magnets (SMMs) and single-chain magnets (SCMs) were closely
investigated so as to give criteria in rational design of magnetic anisotropy and electronic states via
chemical modification of coordination environments.

Single-molecule magnets are discrete molecules, which behave as molecular-size permanent
magnets at low temperature, and most of them belong to a class of paramagnetic polynuclear
complexes [2]. Potential huge capacity of magnetic information storage attracts a lot of attention and
SMM is expected to bring about nanodevice applications such as quantum computer and molecular
memory [3]. The origin of SMM behavior is the combination of large magnetic anisotropy and giant
spin quantum number. Among SMMs consisting of first-row transition metal ions, manganese(lII)
and cobalt(Il) ions are most commonly used owing to their magnetic anisotropy. The first SMM was
a dodecanuclear manganese acetate complex discovered at the beginning of the 1990s [4]. The
polynuclear manganese-based SMMs are most popular and the magnetic anisotropy is attributable to
the Jahn-Teller stretched octahedral manganese(I1I) centers of high-spin (3a)* configuration. On the
other hand, the first cobalt-based SMM was reported in 2002 and consists of four cobalt(I) ions

which possess octahedral coordination environment with high-spin (3d)’ electron configuration [5].



The orbital angular momentum in an octahedral cobalt(II) ion is not fully quenched and causes large
magnetic anisotropy. In this manner, there are many factors affecting magnetic anisotropy in single
metal ions [6], and it is worthwhile to elucidate the electric structure of mononuclear complexes and
the associated magnetic anisotropies in order to grasp the character of synthons for SMMs [7].

In the next chapter, theoretical prerequisites including outline of ligand-field theory and its AOM
(angular-overlap model) formulation are summarized, followed by a short chapter on the objective

and composition of the dissertation.



Chapter 2. Fundamentals of Electronic States of Transition-Metal Complexes

In order to understand magnetic properties of transition metal complex, it is necessary to obtain
the wavefuntions and energies by solution of following Schrédinger equation:
Hy =Ey (I-1)

Then, the complete Hamiltonian operator is expressed as:

47[‘("0” i<j rij i=1

H-= Z[——-Vz ze” }+Zn:é+zn:g“(ri)li-si+VCf+y-H (I-2)
where, the first term is free ion Hamiltonian including the kinetic energy of electrons and
electrostatic interaction of the electrons with nuclei, the second term is interelectronic repulsion, the
third term is spin-orbit coupling, the fourth term is ligand-field potential, and the fifth and last terms
are interaction of electron and magnetic field. Here %= h/2x, h is Planck constant, m is electron
mass, Z is charge of the nucleus, e is elementary charge, and & is vacuum permittivity. It is very
complicated problem to solve the equation. Now, perturbation method is employed to the
approximate solution. As first step, the unperturbed Hamiltonian operator for free ions is featured.
Next, the spin-orbit coupling, crystal field potential, spin-orbit coupling, and the effect of magnetic

field as small perturbation are treated. Then, related phenomena, theory, and methods are introduced

sequentially.
2.1. Genaral Hamiltonian for Free Ions [8]

The unperturbed Hamiltonian for free ions is expressed as:

H-= Z{ % 4”80ri} (1-3)

using spherical polar coordinates, the wavefunctions are expressed as:




¥ oim = Ry (Y (0,9) (1-4)
where, R,(r) is the radial distribution function and Y;"(6, ¢) the spherical harmonics. Here, » is the
principal quantum number, / the quantum number of orbital angular momentum of the electron, and
m the magnetic quantum number. # is a positive integer, / takes on integral value from 0 to n-1, and
m takes on integral value from —/ to /. the orbital multiplicity for 3d orbitals is 2/+1 = 5, and

therefore angular dependent part, spherical harmonic ¥;"(6, @) corresponding to this multiplicity is:

1 5
Y28, 9) = —-J:3cos20—l
2(6,0) ,/2” - )
Yf‘(e,m=,/$,/§sinemsa.ew 1.5)
1 15 ;
Y2(0, =1f—-1f—sin29-ei’2"’
5> (6,9) 27 V16

From Next section, the further behavior of multielectron system is explained and the splitting of

3d-orbitals in the case of transition ion placed in a crystal field described later.
2.2. Russell-Saunders Coupling in Free Ions [8]

The energy levels for free ion of » electron system are determined by the total orbital angular
momentum quantum number L and total spin angular quantum number S. L is the largest sum of
orbital angular momentum m; of individual electrons, and zero or a positive integer. S is the largest
sum of spin angular momentum m; of individual electrons, and zero or a positive integer or

half-integer. The values M; and Ms, which are allowed for L and S, respectively, are:
M, =L(L-1),-L
M, =S,(5-1)--,-S
A state for specific L and S is defined as term @S$*Dx, where X corresponds to L as follows:

L 01 2 3 4 5
XS PDFGH



The quantity (25+1) is multiplicity of the term. Here, it is necessary to explain the stability of the
term when the energies levels for each term are ordered. Thus, the energy for interelectronic

repulsion is considered.
2.3. Interelectronic Repulsion [9-10]

In order to solve interelectronic interactions for two electrons, matrix elements of following type

are evaluated:
2
(ab | ——l cd > (1-6)
5V

Here, a, b, c, and d refer to each population of d-orbitals. Thus, 1/ 7y, is:

n

_‘Z Z nm(el,gpl)-Yn’”*(ez,%) -7

2n+1 r"+1

n=0 m=—n

where r- denotes the shorter distance from the origin to the points i and j. The spherical harmonic is

expanded as:

l m im
" (0,9)= ,/EPI (cos O™ (I-8)

Here, P;"(cos8) is associated Legendre function, and the two functions for two electron system are

defined as:

c"(Imy,I'm)) = ‘/ 2471 '[: P (cos Q)P (cos 8)P (cos @)sin 846

(I1-9)
R(abed)=e* " [ " TR \RZR\R3%>ridndr
Using these functions the matrix elements for interelectronic repulsion is expressed as:
2
(ab‘e—‘ cd> = ﬁ(m;',msc )5(mf,mf k(m;',maf)é(mf +ml mf + mf)
iz (1-10)

ic"(lam, y) ) (lbm, N )R"(abcd)

n=0

Because the direct products of two d-orbitals do not have fifth or more rotational symmetry, the sum



over the fifth or more 7 is zero and reduced ton =0, 2, 4.

When ab = cd, the matrix element include two important functions:
2 2 2
(bl fab) = (R ]albl2) - (a2 |bl)a(2) = Sa8)- Klad) (1)
12 12 12

where J(a, b) is a Coulomb integral and K{(a, b) is an exchange integral. Using these integrals total

energy of an n electron determinant is expressed as:

E@)=Y h+D Jpp= > Ky n8(5,55,) (1-12)

m<n m<n

Where h, is one electron energy and the second and third terms correspond to the energy of
interelectronic repulsion. In order to evaluate these two integrals, they are regarded as radial
parameters and the term of radial function is replaced as:

F" = R"(abcd) (1-13)

Furthermore these parameters are expressed as:

Fy=F°,F,=F*/49,F, = F*/441

(1-14)
A=TF,-49F,,B = F, - 5F,,C =35F,

Here, Fy, F> and F,are Condon-Shortley parameters and 4, B, and C are Racah parameters. Racah
parameters are most useful because the energy level separation between the same spin multiplicities
for d-electron configuration is expressed as a function of the parameter B alone.

In the case of two or more d-electrons, it is necessary to derive resultant angular momentum for all
electrons. For this, following couplings are considered:
8 Ll s
When the coupling of spin angular momenta above is the largest value, the term is most stable and
each spin becomes parallel (Hund’s first rule). When the coupling of orbital angular momenta above
is the largest value, the term is also most stable and the orbital vectors become parallel (Hund’s

second rule). The spin-orbit coupling above explained later. Here total angular momentum quantum

number J about (3d)" electron configuration is expressed as the vector sum of L and S and this



coupling is called Russell-Saunders coupling or LS coupling. In the case of Russell-Saunders
coupling, these resultant angular momenta are determined under relative magnitude:

| s,--sj>l,--lj>si-l,.
According to these procedure and Pauli exclusion principle, the several terms of free ion are

determined.
2.4. Spin-Orbit Coupling [8,11]

In order to describe energy level of spin-orbit coupling for one-electron system, a new quantum

number j is defined as:

j=s+1 (1-15)
The operator of spin-orbit coupling for one electron system is expressed as:

4 (’? )li ' S;
where {(r;) is the radial component of the wavefunction. The energy E(n, I, s, j) of spin-orbit

coupling is described as:
E(n,l,s,j):%[j(j+1)—l(l+1)—s(s+l)] (1-16)

where ¢ is spin-orbit coupling constant for one electron and a positive value. The operator of

spin-orbit coupling for multielectron system is given by the sum of operator for one-electron system:
=3¢ -5 (-17)
i=1
The energy E(J, L, S) of spin-orbit coupling for muiltielectron system is described as:
E(J,L,S)= %[J(J +1)=L(L +1)-S(S +1)] (1-18)
where J = L+S, L+5-1, -+, |L-S] and the energy separation between J and (J+1) levels are given by

A(J+1). A and { are related :



/1=i% (1-19)

(is positive value while the sign of A changes depending on d-electron configuration. When
d-electrons fill into the shells more than half full, A is negative value. For this, the order of

energy-level splitting for 4" configuration is inverted against d"*" configuration.
2.5. Effect of Crystal Field [8,12]
Considering the crystal field of MX, type complexes, ligand X~ can be regarded as negative point

charge, —Z'e. The electrons surrounding a central atom are subjected to V¢ electric field from the six

point charges. The result given by:

ivl ze (1-20)

i=1 e 2N

Here, r; indicates the distance from the i-th charge to the point (x,y,z). This field Vtis Coulomb field
from surrounding ions in ionic crystal, and corresponds to the part of electron-nucleus or
‘electron-electron interactions. In preceding section, the eigenfunctions of the unperturbed
Hamiltonian for free ions were obtained. When this complex possesses octahedral structure, the
crystal field is represented as V. Then, the energy of the crystal field contributing d-orbitals is

expanded as following spherical harmonic when it is regarded as perturbation to the free ions:

z;‘mz 2n+1'r:<+1 70,0, 700 (1-21)

oct
47r£0

where 7. denotes the electron-nucleus distance and 7 denotes electron-ligand distance. For simplicity
the two distances 7 and 7 replaced to r and q, individually, and each spherical harmonics were

expressed as:



4z Z'e *
y — 2 ¥y (8.0,
9m Im+1 4”£0an+1 n ( i ¢1)

(1-22)
4z
C = " yre,
" 2n+1" ( ¢)
Thus Eq. I-21 is expressed as:
Voa =D 27" 0mCrh (1-23)

n=0 m=-n

The polar coordinates (8, @) of six charges are (n/2, 0), (n/2, n/2), (0, @), (n/2, &), (n/2, 37/2), and
(m, @), individually. Because V. belongs to a;,representation of Oy group, the spherical harmonics
of expansion also belongs to a;, and so n is zero or even. Furthermore, ¥,"(8, @) with odd # is not

aigrepresentation. Thus, Eq. I-21 is:

7 2 1 2 4 1 2.6
Viulr,0,0)= 2284 T2 {Ch\/l%(ChCL)}Z’Zg . [C€+\E(Cf+cz)}+w (1-24)

2reqa 8meya l67g,a

The first term increases all orbital energy for free ions and the second or later terms give the

crystal-field splitting. Because the direct products of two d-orbitals do not have fifth or more
rotational symmetry, the fifth or more integral of <d |I}w|d> is zero. For simplicity, the mixture of

the wavefunctions which has distinct » each other is neglected, and the wavefunction in Vo is

expressed as a linear combination of 3d orbitals (¢s2,):
2
Q= Zam¢32m (1_25)
=2

Voet is regarded as perturbation for the Hamiltonian of Eq. I-3 and substituted to the following

equation:
E=(p|H +V,q0) (1-26)

With variation method about a,, the following simultaneous equation is obtained:

2

(& -Ea, + D (mPo|ma,, =0 (1-27)

m'=-2

In order to solve the determinant from this equation, the following elements are displaced:



2|I}oct|2> = <_ 2|l}oct‘— 2> =Dq

(
W, |1) = (-1, |- 1) =—4D
(W os]1) = (= 1Woa| -1) = -4Dg 1-28)
<01Voct I O> = 6Dq
<2|I}oct|_ 2> = <— 2|I}05t|2> = SDq
Here,
r 2
D= 357
167z50a5
- (1-29)
_ 2¢°r*
=05

r* is the mean fourth power radius for the 34 radial function Rsr). The determinant from Eq. 1-27

is expressed as:

&,+Dg-E' 0 0 0 5Dq
0 &y —4Dq-E’ 0 0 0
0 0 & +6Dg-E' 0 0 =0 (1-30)
0 0 0 & —4Dg-E’ 0
5Dq 0 0 0 &, +Dg-E'
Here,
r 2
g =g-2e (1-31)
2rgya

This determinant can be easily reduced to a 2-by-2 determinant and three 1-by-1 determinants, and
two eigenvalues g+&y+6Dq and &+ay-4Dq (au = 3Z'¢*/2n&ya) are obtained. The former eigenvalue
is doubly degenerated and the latter is triply degenerated. As a result, the five d-orbitals which split

into #,, and eg-orbitals (10Dgq) are obtained:

10



5
€p:d, =@y =Ry, (r)‘/—m” (3cos2 6—1)
d, - L [(0322 + @5 2]=R (”)\f = sin® @cos 2¢
=2 B 2 16z

1 15 . .
e id, = \/E_i [(/’321 — P39 ] =R;, (’")\/ an sin @ cos fsin ¢ (I-32)
1 15 .
d,= ﬁ[¢321 + (0324]: Rs, (”)‘/E sin @ cos & cos ¢
d =—1-[ ~ P35 ]= Ry, (r) 15 Gin? Osin2
xy x/Ei D3 — P32 32 a7 4

Furthermore, these wavefunctions on Cartesian coordinate are:

5 3z2-p7
d, =R _
z 32(r)\l167: r?
15 )cz—y2
dao =R32(’)\/Er—z

15
dyz = R32(r) Ef_j

,15
dxz = R32 (r) E :—i

(1-33)

2.6. Ligand Field Theory [8,12]

According to crystal field theory, the splitting of d-orbitals into #,, and e,-orbitals (10Dg) are
obtained. However, there are some experimental facts against crystal-field theory: CO ligand without
negative charge affords large the energy-level separation and OH™ ligand affords lower than H,O and
so on. In order to explain these facts, it is necessary to develop from the theory to ligand-field theory
based on molecular-orbital theory. The ligand-field splitting is also given as 10Dg and the magnitude
is available from spectroscopic data and the series for each ligand is arranged in order of the measure

of Dq:

11



CO >CN >NO; >NH;3>H,0>0ONO>NCS>0OH>F>Cl>Br>1
This alignment is known to spectrochemical series. By ligand-field theory, the interactions of
d-orbitals in metal ion and ligand orbitals can be classified as c-orbital and m-orbital interactions.

The evaluation of these interactions is explained later.
2.7. Molecular Structure and Extended Hiickel Method [13]

Extended Hiickel method is one of the molecular orbital calculations which lead to powerful
information about the electronic structure of metal complexes. As basic assumption, the Hamiltonian
of one-molecular orbital ¢, does not correctly include electrostatic interaction and consists of only
simple one-electron operator. Thus, the Hamiltonian of all electrons H is expressed as:

H = h(1)+h(2)+---h(N) (1-34)
Because h(N) is the Hamiltonian which corresponds to the orbital energy obtained from N-th

electron, H is the sum of the Hamiltonian of h(N). This eigenfunction of Hamiltonian ¥ is

expressed as Slater-type determinant:

¥ = (s (2)-+- 0ps (V = g, (V) (I-35)
The energy of total electrons F is afforded as the sum of occupied-orbital energy, but not reliable
value compared with DFT or ab initio calculations because the Hamiltonian of one-molecular orbital
o, does not correctly include electrostatic interaction. For this reason, Extended Hiickel calculation is
suitable to visualize the delocalized molecular orbitals on determined molecular structures at low
calculation cost, but not to optimize molecular geometry. The energy of total electrons £ was
diagonalized according to the determination of the matrix elements of (V) using the three following
step:

1. Overlap integrals S,, (p # ¢) are calculated by LCAO-MO method using Slater-type orbital.

12



2. Coulomb integral a, is evaluated as follows using valence state ionization potential I, obtained
experimentally:

a,=-I (1-36)

q q

3. Resonance integral B,, (p # g) is evaluated as following Wolfsberg-Helmholz equation:

By =KS,,la, +a,)2 (1-37)
where, K is constant and usually adopted for 1.75.
Using atomic coordinates of complexes obtained from X-ray crystallography, specific energies of
one-electron derived from d-orbitals can be determined. It enables to evaluate the strength of

ligand-field by comparing this result to the ligand-field theory, perturbational phenomenology.
2.8. Angular Overlap Model and Ligand-Field Parameters [8,14]

Overlap integral can be expressed as cross product of the terms attributed to atomic distance and
depending on angle (configuration). Angular-dependant terms are not influenced by the types of
atoms because these terms are occupied by only relative configuration of atomic orbitals.
| Considering each atomic orbital on two atoms, the orbital energies £ of one-electron which takes

account of orbital overlap follow as:

E =+ (B, - Sy ) Mo - @) (-38)
E,=a, + (ﬁlz - S12a1)2 /(a2 - al)

If Bis approximated as K = 2, the energies are:

E =« +(S120‘2 )2 /(al —a2)

R 1-39)
E,=a, +(S12a1) /(a2 _al)

These perturbation energies (difference of F;and «;) are allowed to be proportional to the squared

overlap integral.

13



Angular overlap model (AOM) determines these angular-independent components of overlap
integral as empirical parameters and expresses orbital interaction of general molecular structure
without symmetry restriction. If a vector connecting the atoms has the length r, and direction 6, ¢ on
the local coordinate system of two atoms, the overlap integral is expressed as the equation by
separation of variables: Sy, = S(r)F12(6, ¢). If the two atoms system regards as the coordination bond
metal (M) - ligand (L), the energy shifts (AEy = Em — o, AEL = Er — o) of d-orbital and ligand

orbital by the forming of coordinate bond are:

AEy = (SMLaL)Z /(aM _aL):FMLZ(H’(oxsaL)Z /(aM —aL)

(1-40)
AE; = (SMLaM )2 /(aM —ay ) = FML2 (9’ ¢X5aM )2 /(aL - aM)
When all angular independent terms are replaced with e,, these equations are expressed as:
AEy =e,Fag’
e 1-41)
AE| =€ Fy

These differences of energy become maximum when the configuration takes as maximum orbital
overlap, FML2 = 1. The parameters e, and e’ are interpreted as maximum stabilization or
unstabilization parameters obtained by the maximum overlap. A shows local symmetry about types
of orbital overlap, o, m, 3---. Appling these parameters to metal complexes, ligand-field parameters
es, e; can be distinguishable if the types of d-orbital and ligand-orbital overlap take whether
o-symmetry or n-symmetry. By the estimation of these parameters, the influence of ligand field in

the case of no high-symmetry complexes can be discussed generally.
2.9. Spin Hamiltonian [15]

The spin magnetic moment g of electron is given by:

eh

Hs = —ge(z——js (1-42)
mc

14



where g, is electron g factor and c is speed of light in vacuum. Here, Bohr magneton ug is defined as:

eh?
Hp =>— (1-43)
2mc

The orbit magnetic moment g of electron is given by:

. _(ﬁ) L (144)
2mc

The energy E of electron in magnetic field H is written by:
E=—p-H=py(g.S+L)H (1-45)
Thus, the energy levels split into (25+1) and (2L+1) levels. This is the first order Zeeman effect.

The magnetic properties of atom or ion depend on its ground state. Only Zeeman terms are not
enough to describe the magnetic property because the complexes have spin-orbit coupling. The
Hamiltonian is described as:

H=-A(L-8S)+uy(g.S+L)-H (1-46)

For further consideration, it is necessary to derive spin Hamiltonian. When (2L+1) orbital states
on lowest energy level of multiplicity split in crystal, the orbital wavefunctions are defined as yy,

¥i,"", W, in the order of increasing energy and (25+1) spin states as @, @1, -, ¢ in the same way.

Here, the wavefunction ¥ for arbitrary level is expressed as:

Y= Zanmy/n¢m (1_47)

v, is assumed to orthogonalize up to all ligand field on true Hamiltonian, and the
Hamiltonian W, = /1(1: . S‘) for spin-orbit coupling and Zeeman energy W, are regarded as
perturbation. Thus, the Hamiltonian is expressed as:
H =W, +W, (1-48)
The Hamiltonian for ligand-field is defined as H . and total Schrédinger equation is:
(A, + B =Ew (1-49)

A

Here, the eigenenergies for H  are defined as Ky, £, -, E, in the order of increasing energy and:

15



(n|H\n)=E,5,, (1-50)

nn

The Schrodinger equation above is multiplied by y;, and integrated as follows:

D {n|Hn)a ity = (E-E, )Z o (1-51)

n',m

Here, E is considered in the case of ¢ (n = 0) and anything else (n # 0) separately. When n = 0, Eq.

I-51 is written as:

2.

n,>an'm¢m = (E - En )Z a0m¢m (1_52)
Because the left-hand member also includes spin wavefunctions for any states but ground state, Eq.
I-51 in the case of n # 0 is employed in order to rewrite the above equation. First, E in the case of n =

0 is approximated as Ej, because Zeeman energy is much less than (£-Ej). When the information of

only ground state is considered (only »' = 0), Eq. I-52 is organized:

Zanm¢ = |H"0 Zao,n (n>1) (1-53)

n of Eq. I-53 is replaced »’' and substituted to Eq. I-51. For simplicity, #' of calculated equation is

replaced » again, and following equation is obtained:

O|H|0 +Z O|H| ZaOVn m T O_En)za0m¢m (1_54)

nz0
Therefore, the effective Hamiltonian including up to second-order perturbation is defined as

effective spin Hamiltonian H:

_tolirloy s S L 1)l H0)
={0lA10)+ 3 == (1-55)

n#0

Here the spin wavefunction of ground state is:

Z a0m¢m = YIOS (1'56)
The Schrodinger equation including spin function alone is explained as:

H ¥os = (E —E, )YIOS (I-57)

16



The effective spin Hamiltonian H gives Zeeman energy. Next section, the magnetic property of

complex by contribution of spin Hamiltonian is explained.
2.10. Symmetry Lowering of Ligand Field and Zero-Field Splitting {8,11,15]

In order to evaluate spin Hamiltonian, Eq. I-46 is substituted to Eq. I-55 and following equation
is obtained:
H =g 1;8g,(1- A4)H — A2SAS — ul HAH (1-58)
where A is a symmetric traceless tensor:
#0

If A =0, the first term of Eq. I-58 is expressed as Zeeman energy for free ion. The second term is

OIL IL 9 (v =xy,) (1-59)

n .

spin self-energy. The third term is neglected because the term gives little effect to spin energy.

Take for example of octahedral manganese(Ill) complexes, the symmetry reduction of the
complexes occurs when different ligands coordinate to each sites. If axial ligand is different to
equatorial ligand, the symmetry reduces from Oy to Dg,. Under this environment, a SEzg ground state
splits to 5A1g and SBlg. The SBlg ground state, which is still magnetically isotropic, is admixed with
excited states by spin-orbit coupling to occur the splitting of the SBlg ground state. This splitting is
phenomenologically described by the zero-field splitting because this splitting is prefer to some
directions in the absence of an external field. This zero-field splitting can be expressed as the second
term of Eq. I-58. For simplicity, the equation is:

H,. = SDS (1-60)

When the main axes of tensor are x, y, and z, this Hamiltonian can also be explicitly rewritten as:

SDS = D[S, - S(S +1)/3]+ E(Sf - Sf) (1-61)
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where D is uniaxial and E is rhombic zero-field splitting parameter, they are correlated with the main

value of D ; Dy(u = x, y, 2) as follows:

D=-3D_ /2

E=|D,-D,|/2 (-62)

Since trans-ML4X, type complexes are allowed to have axial distortion and no distortion to
xy-direction, rhombic axis zero-field splitting parameter E is zero. The term of zero-field splitting
identifies the splitting of states belonging to the same S multiplet and different value Ms, which leads
to a preferential axis. Taking the example of low-spin trans-Mn"'L,X, complex (S = 1), the splitting
ID| between Ms = =1 and Ms = 0 levels occurs. On the other hand, high-spin trans-Mn""L,X,
complex (S =2) gives the splitting 4|D| totally, which includes the energy gap of 3|D|, and |D|
between Ms = +2, Ms = £1 and Ms = 0, respectively. For D > 0 the anisotropy is of easy-plane type
and gives Ms = 0 ground state while D < 0 the anisotropy is of easy-axis type and gives Ms = £§
ground state.

In order to estimate the value of zero-field splitting parameter from the result of magnetic
susceptibility, energy eigenvalue and eigenvector are determined from diagonalization of Hzg with
Zeeman term. Based on these eigenvalue and eigenvector, the simulation of magnetization curve is
performed from the expectation, which is calculated by the statistical averaging and further powder
averaging, of spin component to an external field direction. From this simulation, the model
parameters D, g (Landé factor), and TIP (temperature-independent paramagnetism) are optimized
and determined at once to fit the observed data. This optimization program axfit,f was put as

Appendix I [16-21].

2.11 General Theory of Energy Calculation for a Given Electron Configuration
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Molecular orbital of one-electron is not enough to describe d-electron states of metal complexes
because the d-electron takes over the feature from free atom dominated by Hund’s rule. Thus,
interelectronic repulsion is essential to describe the d-electron of metal complexes. In the case of
manganese(III) complexes which possess d* electron configurations, 210 electron configurations are

-adopted for basic functions. Then, the interelctronic repulsion (Racah parameter B, C), spin-orbit
coﬁpling ¢, and Zeeman interaction introduce into the Hamiltonian as one-electron operator of
ligand-field splitting. The diagonalization of this Hamiltonian enables to determine the all spin-orbit

levels and the magnetic dependency.

2.12 Nephelauxetic Effect [8,9]

Compared to free transition ion, the interelectronic repulsion of the complexes is reduced. The
electron clouds of d-orbitals in transition metal ion expand when a transition metal forms complex.
Then, the interelectric repulsion is weakened and this phenomenon is referred to as nephelauxetic
(cloud-expanding) effect. When the interelectronic repulsion is weakened, the d-orbitals interact with
ligand orbitals covalently and the d-electron and ligand electron delocalize. This effect is shown by
the ratio £:

B =B/B, (1-63)
Here Byis a Racah parameter of free ion. B is available from spectroscopic data and the series for
each ligand is arranged in order of the measure of B:
F>H,0>NH;>en~Ox>SCN>Cl>CN>Br>1
This series is independent of metal ion and the ligands which contribute to metal ion covalently are

called soft ligands.
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Chapter 3. Objective and Plan of the Present Study

In this dissertation, a series of mononuclear manganese(IlI) and cobalt(I) complexes were newly
synthesized and their spectroscopic and magnetic properties were examined in detail. These physical
properties were fully analyzed on the basis of ligand-field theory, aiming to provide a way to
regulate electronic states of single metal centers as functional synthons in construction of higher
assembled systems, e.g. nanomagnets.

The present dissertation is composed of the following two parts.

In Part II, a series of octahedral manganese(Ill) complexes were synthesized, of which axial
ligands were chosen among a variety of monodentate ligands, while the equatorial ligand was kept to
be tetradentate cyclam (1,4,8,11-tetraazacyclotetradecane) across the series. The magnetic
measurements of them revealed that the electron configuration depends on the nature of axial ligands
to be high-spin or low-spin complexes. The combined application of angular-overlap method (AOM)
and extended Hiickel molecular-orbital calculations indicated that the relationship between
molecular structure and magnetic anisotropy of axially elongated high-spin manganese(III)
complexes.

In Part III, several sulfur-coordinate cobalt(I/II) complexes of soft-scorpionate which bear
sulfur donor tripodal ligand belonging to thioamide family were synthesized. These complexes can
be grouped into [COHSG], [Colllss], and [CoHS4] coordination centers and single-crystal X-ray
analysis revealed that one of the cobalt(Il) complexes has a [Co"S¢] center, which is a first case
distinguished from already-known [Co™S¢] or [Co"Ss] soft-scorpionate complexes. X-ray
photoelectron spectroscopic and magnetic measurements demonstrated that this complex has a
high-spin cobalt(Il) metal center\ of [Co™(L)]-type electron configuration. Small ligand-field splitting

and also small Racah’s parameters determined from the electronic spectrum of the [Co"Ss] complex
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were successfully transferred in the analysis of magnetic susceptibility. Remarkable delocalization of

d-electron onto the ligand moieties was also suggested from the simulation of the magnetic behavior.
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Part II. Magnetostructural Examination of Manganese(III) Complexes

[Mn(cyclam)X,]" with Strong Axial Ligands

Chapter 4. Introduction of manganese(I1I) complexes [Mn(cyclam)X,]*

The magnetism of manganese(Ill) complexes receives much attentions recently because their
large magnetic anisotropy serves useful pinning potentials for magnetization reversal in various
nanomagnets [1] and their complicated d" electron configurations provide a potential for multiple
bistabilities including spin crossover and the Jahn-Teller effects [2-5]. A lot of mononuclear
hexacoordinate manganese(Ill) complexes take a high-spin electron configuration (tz,;eg1 ;SEg) as
their ground states. The doubly-degenerate SEg ground state is unstable against the tetragonal axial
clongation or compression. This Jahn-Teller distortion is just the source of magnetic anisotropy, or
strictly a zero-field splitting, in manganese(Ill) complexes. The contribution of a single metal center
to the net magnetic anisotropy of a polynuclear metal assembly is mainly attributed to the zero-field
splitting of each metal center rather than anisotropic superexchange interactions. Although high-spin
ground states 5Eg of mononuclear manganese(IIl) complexes are commonly found, low-spin ground
states °T, ¢ are rare and spin-crossover phenomena between these two ground states are uncommon
[3-5].

A series of manganese(IIl) complexes, trans-[Mn(cyclam)X,]” (cyclam = 1,4,8,11-tetraazacyclo-
tetradecane, X~ = axial anionic ligand), has been extensively studied, focusing on the electronic
structure and magnetic properties, which may take high-spin or low-spin electron configurations
[8-13]. Throughout the series, only one low-spin species is known with X~ = CN™ [14], and no
spin-crossover complexes are reported yet. The stronger side of a range of axial ligand field is

interesting, and three novel complexes with X~ = NCBH;™ (1), NCBPh;™ (2), and NCSe™ (3), were
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obtained in order to explore the spin-crossover boundary on the interaction parameter space. The
crystal structure of frans-[Mn(cyclam)(NCBH;),](CF;SOs;) (1) and trans-[Mn(cyclam)(NCBPhs);]
(CF3;S03) (2) were solved and reported in detail. Several known complexes [8,9,11] were also
prepared along with novel ones and their magnetic susceptibilities were measured aiming to
determine the magnetic anisotropy parameter (uniaxial zero-field splitting parameter D) as a guide
scale of axial ligand field. By applying angular-overlap model and extended Hiickel
molecular-orbital calculations, the relation between magnetic anisotropy and electronic structure was

discussed for a series of [Mn(cyclam)X,] complexes.
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Chapter 5. Experimental for [Mn(cyclam)X;]"

Commercially available solvents and chemicals were used without further purification. The
reaction procedures of trans-[Mn(cyclam)(NCBH;),]J(CF;SO;) (1), and trans-[Mn(cyclam)-
(NCBPh;),](CF;S0;) (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) were carried out in ambient
atmosphere. The reaction procedure of trans-[Mn(cyclam)(NCSe),](CF3SO;) (3) was performed
under an argon atmosphere using standard Schrenk technique. The complex trans-
[Mn(cyclam)(OH,),](CF3SOs);-H,O was prepared according to the literature method [8]. frans-
[Mn(cyclam)Cl,]C1-4H,0 was prepared according to the literature method [12]. Elemental analyses
were carried out at the Laboratory for Instrumental Analysis, Graduate School of Engineering, Osaka
University. IR spectra were recorded on a JASCO FT/IR-300E spectrometer. Solid state magnetic
measurements of 1, 2, trans-[Mn(cyclam)(CN),](CF;SO;) (4), trans-[Mn(cyclam)(NCO),](CF5503)
(5), and trans-[Mn(cyclam);]I (6) were carried out on a Quantum Design MPMS-XL5 SQUID
magnetometer equipped with reciprocating sample option (RSO) at magnetic fields of 1.0 and 5.0 T.
Solid state magnetic measurement of 3 was carried out on a Quantum Design MPMS-2 SQUID
magnetometer at a field of 1.0 T. Polycrystalline samples were mounted in calibrated gelatin

capsules held at the center of a polypropylene straw fixed to the end of the sample rod.
5.1. Synthesis of complexes

trans-[Mn(cyclam)(NCBH;),](CF3SO3) (1)
To an aqueous solution (3 mL) of trans-[Mn(cyclam)(OH;),](CF3S03);-H,O (378 mg, 0.5 mmol)
was added an aqueous solution (2 mL) of NaNCBH; (62.9 mg, 1.0 mmol) at room temperature and

the mixture was stirred. Sky-blue solid precipitated immediately was filtered off and dried in air
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(vield 135 mg, 56%). Infrared spectrum (KBr disk, cm™): 2184 (v{C=N}), 2350 (v{B-H}). 4nal.
Calc. for C13H;30B,FsMnNgOsS: C, 32.26; H, 6.25; N, 17.36%. Found: C, 31.77; H, 6.18; N, 17.35%.
For X-ray crystallographic analysis, an aqueous solution (1.5 mL) of NaNCBH; (13.1 mg, 0.21
mmol) was carefully layered on an aqueous solution (1 mL) of #rans-[Mn(cyclam)(OHy,),]-

(CF3503)3-H,O (76.1 mg, 0.10 mmol) to yield sky-blue single crystals in 2 h.

trans-[Mn(cyclam)(NCBPh;),] (CF3SO;3) (2)

A mixture of KCN (130 mg, 2.0 mmol) and BPh; (484 mg. 2.0 mmol) in ethanol (2.5 mL) at
room temperature was stirred for 1 h to give a clear solution. To an aqueous solution (2 mL) of
trans-[Mn(cyclam)(OH,),](CF3803);-H,0 (756 mg, 1.0 mmol) was added the ethanolic solution and
the mixture was stirred. Immediately yellowish green solid was precipitated and filtered off. The
solid was washed by ethanol, and dried in air (yield 357 mg, 38%). Infrared spectrum (KBr disk,
cm'l): 2171 (W{C=N}). Anal. Cale. for C4Hs4B,FsMnN¢OsS: C, 62.57; H, 5.79; N, 8.93%. Found: C,
62.30; H, 5.82; N, 8.98%. For X-ray crystallographic analysis, a yellowish green crystal was

obtained from acetonitrile solution by vapor diffusion of diethylether.

trans-{ Mn(cyclam)(NCSe),]/(CF;S03)-H,0 (3)

To a solution of KSeCN (143 mg, 0.99 mmol) in acetonitrile (10 mL) was added a solution of
trans-[Mn(cyclam)(OH;),](CF;S0s);-H,O (376 mg, 0.50 mmol) in the same solvent (5 mL) at room
temperature. The deep purple solution changed to a clear orange solution immediately after stirring.
After 20 min, the solution was evaporated in vacuo. In a half volume of solvent evaporated a
dark-orange solid started to precipitate. The solid was washed by ethanol and dried in vacuo (yield
86.7 mg, 28%). Infrared spectrum (KBr disk, cm'): 2055 (v{C=N}). dnal. Calc. for

Ci3Ha6FsMnNgO4SSe;: C, 24.69; H, 4.14; N, 13.29%. Found: C, 24.68; H, 3.78; N, 13.23%.
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trans-{Mn(cyclam)(CN),](CF3S03) (4)

Complex 4 was prepared following the literature method [11]. To a solution of NaCN in water
added a solution of trans-[Mn(cyclam)(OH;),](CF3SO03);-H,O in the same solvent at room
temperature. Immediately yellow solid was precipitated and filtered off. The solid was immediately
washed by ethanol, and dried in vacuo. Anal. Calc. for C3H,4F3MnNgO,S: C, 34.21; H, 5.30; N,

18.42%. Found: C, 34.18; H, 5.19; N, 18.41%.

trans-{Mn(cyclam)(NCO),](CF3503) (5)

Complex 5 was prepared following the literature method [6]. To a solution of KNCO in water
added a solution of frans-[Mn(cyclam)(OH;);](CF3S05);-H,0 in the same solvent at room
temperature. Immediately yellowish green solid was precipitated and filtered off. The solid was
washed by ethanol, and dried in air. 4nal. Calc. for Ci3H,4F:MnNOsS: C, 31.97; H, 4.95; N,

17.21%. Found: C, 31.43; H, 4.76; N, 16.88%.

trans-{Mn(cyclam)I,]I (6)

Complex 6 was prepared following the literature method [12]. To a solution of #rans-
[Mn(cyclam)Cl,]Cl- 4H,0 in water added concentrated HI solution in the same solvent at room
temperature. Immediately dark red solid was precipitated and filtered off. The solid was washed by
dichrolomethane and ethanol, and dried in air. Anal. Calc. for C;gH4I3MnNy: C, 18.89; H, 3.80; N,

8.77%. Found: C, 19.28; H, 3.66; N, 8.77%.

5.2. X-ray structure determination
Single-crystal structure determination was performed for the compounds 1 and 2 at 123 K using

a Rigaku RAXIS RAPID imaging-plate area detector with graphite monochromated Mo-K,, radiation
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(4 =0.071073 nm). The structure of the compound 1 was solved by direct methods (SIR 92) [13] and
expanded using Fourier techniques (DIRDIF99) [14]. The positions of all non-hydrogen atoms were
refined anisotropically. Hydrogen atoms were included and their positions were refined using a
riding model. All calculation of the compound 1 were performed using the CrystalStructure
crystallographic software package [15,16]. The data collection, cell refinement, and absorption
corréction of 2 were performed using the CrystalStructure crystallographic software package. Data
reduction by the the CrystalStructure crystallographic software package was applied. The structure
was solved by direct methods and refined by full-matrix least squares method on F* with anisotropic
thermal parameters for all non-hydrogen atoms using the SHELXTL-PC V 6.1 software package [17,
18]. Hydrogen atoms bound to a carbon atom were placed in calculated positions and refined
isotropically with a riding model. Detail on the data collections and refinements are summarized in

Table II-1.
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Table H-1. Crystallographic data and structure refinements for trans-[Mn(cyclam)(NCBH;),]J(CF3SOs3)

and trans-[Mn(cyclam)(NCBPh;),](CF3S03).

[Mn(cyclam)(NCBH;),](CF;S05)

[Mn(cyclam)(NCBPh;),](CF;S05)

Emprical formula
Formula weight
Crystal system
Space Group
a(h)

b(A)

c(A)

a(®)

BE)

y ()

V(A%

VA

rX)

Dea (g cm’)
Crystal Color, Habit

Crystal Dimensions (mm)

. Fooo

(Mo Ka) (em™)
Total data
Unique data
Rint
Ry [I>150(])]
wR, [1> 1.50(1)]

Ry [[>2.00(D)]
wR, [I>2.00(D)]
Goodness of fit

Flack parameter [19]

C13H30B,FsMnN¢O;S
484.03
Orthorhombic
P2,2,2,
8.6989(5)
13.3506(8)
19.3131(10)
90

90

90

2242.9(2)

4

123

1.433

sky blue, prism
0.15x0.10 x 0.10
1008.00

7.315

21475

5125

0.126

0.0717

0.0823

1.070
0.49

CaoH5oB2F3MnNgO;S
940.60
Monoclinic

C2c

18.892(4)
16.155(3)
16.811(3)

90

115.42(3)

90

4634.0(16)

4

123

1.348

yellowish green, needle
0.45X0.30X0.10
1968.00

3.910

9598

5244

0.043

0.0656
0.1548
1.214
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Chapter 6. Results and Discussion on [Mn(cyclam)X;]"

6.1. Molecular structure of complexes

Crystal structure was determined for frans-[Mn(cyclam)(NCBH;),](CF3SO3) (1) (cyclam =
1,4,8,11-tetraazacyclotetradecane) which crystallizes in the non-centrosymmetric space group

P21212;. The molecular structure is depicted in Figure 1I-1. The counter anion CF;SO; links
neighboring complex cations via weak hydrogen bonds O---N forming a chain structure along ¢ axis

(Figure I1-2).

Figure II-1. Molecular structure of trans-[Mn(cyclam)-
(NCBH;),](CF5;S03). All H atoms are shown as open circles,
and thermal ellipsoids for heavier atoms are drawn at the 50%

probability level.
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Figure II-2. Chain structure of  frans-[Mn(cyclam)(NCBH3),](CF3SOs) with weak hydrogen bonds

along c axis.

The coordination environment around manganese(Ill) is elongated-octahedron type. The
equatorial Mn-N distances fall in a range of 2.004-2.034 A. The axial Mn-N distances are
significantly longer than them, being 2.209 and 2.215 A. The Mn-N and N=C bonds in Mn---NCBH;
axial coordination are non-collinear with the Mn-N-C angle of 169.4-173.7°, which gives rise to a
small deviation from tetragonal symmetry, while the axial Mn-N bond is almost normal to the

equatorial Ny plane with the tilt angle of 1.06° (Table 1I-2).
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Table II-2. Comparison of structural data for trans-[Mn(cyclam)Xz]H3+ complexes.

axial spin  coordination.  average Mn-X  average Mn-Ngycam  7(°)"  references
ligand X state  Sphere distance / A distance / A

I HS 4N, 2I 2.9416(2) 2.028(2) 371 [8]

Br HS 4N, 2Br 2.689(1) 2.029(6) 328 [6]

cl HS  4N,2Cl 2.527(1) 2.035(3) 250 [6,7]
OH, HS  4N,20 2.187(8) 2.037(6) 7.80  [8]

ClO, HS 4N, 20 2.1909(9) 2.0280(7) 8.71 [8]

NO; HS  4N,20 2.221(4) 2.036(7) 449  [6]

NO, HS  4N,20 2.188(12) 2.034(3) 590  [8]

N; HS 6N 2.175(3) 2.041(3) 376 [10]
NCS HS 6N 2.166(17) 2.038(4) 148 [6]
NCBH; HS 6N 2.212(7) 2.020(9) 1.06  this work
NCBPh; HS 6N 2.237(3) 2.041(4) 1047 this work
NCO  HS 6N 2.148(4) 2.043(4) 140 [9]

CN LS  4N,2C 2.007(4) 2.029(4) 130 [11]

* Tilt angle 7 is defined as the angle between the normal to the equatorial MnN, plane and the Mn—X

bond [8].
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Crystal structure was determined for trans-[Mn(cyclam)(NCBPh;),](CF;SOs5) (2) which
crystallizes in the space group C2/c and the manganese(l1l) ion has a centrosymmetric octahedral N
coordination environment. The molecular structure is depicted in Figure 1I-3. The counter anion
CF;SO; does not link neighboring complex cations via no hydrogen bonds O---N forming a chain

structure (Figure 11-4).

Figure II-3. Molecular structure of trans-[Mn(cyclam)(NCBPh;),](CF;S05).
All H atoms are shown as open circles, and thermal ellipsoids for heavier atoms

are drawn at the 50% probability level.
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Figure II-4. Crystal structure of trans-[Mn(cyclam)(NCBPh3),](CF;S0s3).

The coordination environment around manganese(IIl) is elongated-octahedron type. The counter

N distances fall in a range of

Mn

anion is disordered at 123 K (Figure II-5). The equatorial

N distances are significantly longer than them, being 2.237 A. These

2.035-2.044 A. The axial Mn-

-reported [Mn(cyclam)X;]"

Mn-N distances in the hitherto

values are the longest among axial

C bonds in Mn---NCBPh; axial coordination are non-collinear

complexes [6-11]. The Mn-N and N

which gives rise to a small deviation from tetragonal symmetry,

H

with the Mn-N-C angle of 162.5°

while the axial Mn-N bond is almost normal to the equatorial Ny plane with the tilt angle of 10.47°

(Table II-2).
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Figure II-5. Orientational disorder in the counter anion of frans-[Mn(cyclam)-

(NCBPh;),](CF3S05).
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6.2. Magnetic properties

Isofield magnetizations of 1, 2, trans-[Mn(cyclam)(CN),](CF;SO;) (4), trans-[Mn(cyclam)-
(NCO),]J(CF;S8053) (5), and frans-[Mn(cyclam)l;]1 (6) were measured from 2 to 350 K, and the ones
of trans-[Mn(cyclam)(NCSe),](CF;SO3)-H,O (3) were from 4 to 350 K. The magnetic
susceptibilities of a polycrystalline sample of 1-6 are shown in Figure II-6 to 1I-11, respectively. All
the compounds except for 4 showed effective magnetic moments geg of 4.9-5.2 u at room
temperature, which agree well with the spin-only value of 4.9 (S = 2) expected for a high spin &'
electron configuration of manganese(lll), while low-spin complex 4 showed effective magnetic
moments /g at room temperature which agree well with the spin-only value of 2.8 (S = 1). The
Herr drops observed at low temperature should be attributable to the zero-field splitting
accompanying with tetragonal coordination environment, rather than to antiferromagnetic
intermolecular interactions. The uniaxial zero-field splitting parameters D were estimated by

assuming random orientation of crystallites (Table 1I-3).
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Figure I1-6. The temperature dependence of effective magnetic moment of a polycrystalline

sample of trans-[Mn(cyclam)(NCBH3),](CF;SO;) from 2 K to 350 K.
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Figure I1-7. The temperature dependence of effective magnetic moment of a polycrystalline

sample of trans-[Mn(cyclam)(NCBPh;),](CF;SO;) from 2 K to 350 K.
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Figure I1-8. The temperature dependence of effective magnetic moment of a polycrystalline

sample of trans-[Mn(cyclam)(NCSe),](CF;SO;)- H,O from 4 K to 350 K.
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Figure 11-9. The temperature dependence of effective magnetic moment of a polycrystalline

sample of trans-[Mn(cyclam)(CN),](CF;SO;) from 2 K to 350 K.
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Figure I1-10. The temperature dependence of effective magnetic moment of a polycrystalline

sample of trans-[Mn(cyclam)(NCO),](CF;SO;) from 2 K to 350 K.
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Figure II-11. The temperature dependence of effective magnetic moment of a polycrystalline

sample of trans-[Mn(cyclam)L,]I from 2 K to 350 K.

Table II-3. Uniaxial zero-field splitting parameter D of trans-[Mn(cyclam)X,]" complexes.

axial ligand X spin state D/ he cm’ References
I HS 0.82" this work
Br HS -1.67 [20]
NCBH; HS -4.65 this work
NCBPh; HS -5.76" this work
NCSe HS 9.05° this work
NCO HS -10.26" this work

" Apparent value estimated by fitting of magnetic susceptibility data.
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6.3. Magnetic anisotropy analysis on the basis of AOM

Ligand-field splitting based on extended Hiickel calculations

Extended Hiickel molecular-orbital calculations [21] were made to figure out one-electron orbital
energies for the complexes with X~ = CI', Br, I, NCBH;", NCBPh;~, NCO™, NCS™, N;~, CN", ClO,,
NO;", and NO,™ using their crystallographic atomic coordinates [6-11]. The orbital energies of five
d-character molecular orbitals are depicted in Figure II-12. It is obvious that the d,, orbitals are
strongly affected by c-donor character of axial ligands, while the orbital energy of the dj;.y, orbitals
are dominated by the equatorial ligand cyclam and kept almost unchanged at around -8.2 eV
throughout the series. Non-bonding #,, orbitals found below -12 eV are slightly lifted by
n-donor/acceptor character of the axial ligands, providing a single- and a doubly-degenerate levels.
Further investigation of the splitting in #,, orbitals was done, having the benefit of fragment
molecular-orbital (FMO) analysis. Except for CN™ ligand, n-ligand orbitals on X" interact with di,
and d,, orbitals of the manganese(IIl) ion, working as n-donor ligands. It is not the case in CN~
ligand, of which n-character ligand orbitals interact with dy, and dy, atomic orbaitals, thus working
as m-acceptor ligand. The n-orbitals from N-donor and halide ligands are mixed with #, orbitals via
n-overlap by over 15% contribution, while O-donor ligands have little contribution. On the other
hand, the c-orbitals of axial ligands and equatorial cyclam ligand interact with e, orbitals by around
15% contribution, while the mixing ratio exceeds 50% in axial CN~ coordination showing very
strong o-donor character. In spite that the splitting in the #,, orbitals are much smaller than that in e,
orbitals, this small splitting plays an essential role in the low-spin electronic configuration under a
very strong ligand field, where the ordering of split levels (2:1 or 1:2) determines orbital degeneracy

for the partially-lifted (tzg)4 configuration.
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Figure II-12. 3d-levels for trans—[Mn(cyclam)Xz]H3+ estimated by extended Hiickel

calculations. Anions noted on the abscissa stand for the axial ligand X in the complex.

Estimation for ligand-field parameters of each axial ligand

One-electron orbital energies obtained from extended Hiickel molecular orbital calculations are
useful to estimate ligand-field parameters. The angular-overlap model (AOM), instead of a
conventional cubic harmonics expansion, was adopted to describe the ligand fields in
[Mn(cyclam)X,]" complexes, since it is more convenient to attribute the effect of individual ligand
to the AOM parameters representing localized o- and n-donors (e, and e, respectively). For an

octahedral complex trans-[ML4X5] of Dy, symmetry, the orbital-energy relations:
E(x? - ?)=3¢,(L)
E(:2)=e,(L)+ 2¢,(X)
E(yz)= E(zx) = 2e,(L)+ 2e,(X)
E(xy)=4e,(L)=0

are known for o-donor equatorial ligand L and o, n-donor axial ligand X, where E(d) stands for the

one-electron orbital energy of d-character orbital [22]. These relations were used to extract AOM
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parameters which are compiled in Table II-4. If e (X) is smaller than e,(L), i.e. E(yz), E(zx) < E(xy),
the axial ligand behaves as a m-acceptor rather than a n-donor. In this case, the possible low-spin
electronic configuration is orbitally-degenerate {(dy,)(dzx)} (dxy)', MOt (dyy)*(dyz)'(ds)', which is
subject to the Jahn-Teller instability. It is proposed to be responsible for the tilting of axial ligands
observed in X~ = CN [11]. The es(X)’s for axial N-donor ligands are unexpectedly small because
axially-elongated manganese(IIl) ion diminishes the overlap with ligand n-donor orbitals. Halide
ligands, which are known to be weak ligands in the spectrochemical series, possess large ex(X) in
our results. It is conceivable if remarkably expanded p-orbitals of halide ions are taken into account,
in comparison to N- and O-donor ligands, sufficient orbital overlap is afforded in spite of the axial

elongation.

Table II-4. AOM parameters of trans-[Mn(cyclam)X,]™" extracted from

extended Hiickel energy levels.

axial ligand X es(X) he cm™ ex (X)/ he cm™ e (L) he cm™
I 3860 800 11600
Br 5660 970 11650
Cl 7930 960 11200
OH, 4220 420 11440
ClO, 4640 490 11600
NO; 4070 490 11410
NO, 5700 410 11410
N, 5900 860 11160
NCBH; 7830 410 11820
NCBPh; 7430 280 11270
NCS 7290 840 11340
NCO 9100 710 11330
CN 17660 -260 11640
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Dependence of zero-field splitting on ligand-field splitting on manganese(Ill) complexes

Although there is a report that the magnetic anisotropy in the high-spin [Mn(cyclam)l,]"
complex may be dominated by MLCT excited states mixing into the high-spin °B; ground state [23],
the contribution of such low-energy MLCT excited states is very rare and reliably ignored in most of
the [Mn(cyclam)X,]" complexes. Thus, the magnetic anisotropies of them were examined taking
only d-orbitals into account. Figure II-13 shows the zero-field splitting parameter (D) of
[Mn(cyclam)X,]" series mapped on an e,(X)—e.(X) plane, which was calculated by AOM in
conjunction with typical values for manganese(IlI) electronic parameters: Racah’s parameters B / hc
= 1140 cm™ and C/B = 4.3 [24]; spin-orbit coupling £ / hc = 355 cm™' [22]; Stevens’ orbital
reduction factor k£ = 0.8 [25]; the AOM parameter of equatorial cyclam ligands e,(L) / Ac = 10000
cm . The red broken curve on the map is a spin-crossover boundary separating high-spin (S = 2) and
low-spin (S = 1) region. On this map, e5(X) and e (X) values of several complexes summarized in
Table II-4 are also plotted. This map suggested that zero-field splitting parameter D is usable as the
indicator of ligand-field strength. On the contrary, the large zero-feild splitting parameter of
high-spin [Mn(cyclam)X,] " complexes can be obtained if an axial ligand gives strong ligand-field
parameter which locates neighbor of spin-crossover boundary. Then, this map also suggested that the
high-spin complexes 1 and 2 do not have enough strong ligand field to break Hund’s rule, and the
cyanohydroborate anion behaves as not a m-acceptor expected but a weak mn-donor for
manganese(III) ion. Given the comparison of D-value in Table 1I-3, complex 3 appears to be located
between 1, 2 and [Mn(cyclam)(NCO),]". Therefore, it is revealed that spin-crossover manganese(IIT)

cyclam complexes should have stronger o-donor and n-acceptor ligands.
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Figure 11-13. Zero-field splitting parameter D of trans-[Mn(cyclam)X,]" complexes as a function of
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Chapter 7. Conclusion of [Mn(cyclam)X,]"

The manganese(IIT) complexes trans-[Mn(cyclam)(NCBH3),](CF5S03) (1) (cyclam = 1,4,8,11-
tetraazacyclotetradecane), trans-{Mn(cyclam)(NCBPh;),](CF3SO;) (2), and trans-[Mn(cyclam)-
(NCSe),](CF3S03) (3) were newly prepared and found to be in the high-spin state. The magnetic
measurements of them revealed very large uniaxial zero-field splittings D of 1-3. The crystal
structures of 1, 2 and analogous complexes were utilized in extended Hiickel and AOM calculations,
providing two useful information of the ligand-field control for the large magnetic anisotropy, and

the spin crossover boundary of [Mn(cyclam)X2]+.
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Part II1. Magnetic and Spectroscopic Characterizations of
Cobalt(II/1IT) Complexes Consisting of Soft-Scorpionate Ligands

Chapter 8. Introduction to Cobalt(II/III) Complexes Consisting of
Soft-Scorpionate Ligands

Sulfur-atom coordination to transition metal centers is fascinating in the research of electronic
structures because of the polarizablity of sulfur ligands and associated nephelauxetic effect. Among
sulfur ligands with weak o-donor character preferring high-spin transition metal complexes, crown
thioether ligands are known to give low-spin complexes due to their m-acceptor characters and
remarkable nephelauxetic effects reducing interelectronic repulsions [1-7]. In the sharp contrast to it,
thiolate and thioamide ligands work as n-donor ligands resulting in high-spin complexes [8-11].

High-spin octahedral cobalt(II/II) complexes are known as “T-term ions” with very strong
magnetic anisotropy attributable to unquenched orbital angular momenta mixing to pure spins via
spin-orbit coupling. In the last decade, this large magnetic anisotropy of cobalt(ll) centers was
successfully utilized to afford cobalt(II)-based single molecule magnets (SMMs) [12], but the use of
high-spin cobalt(IIT) centers were not made because most of ligands yield low-spin complexes with
diamagnetic low-spin '4, ground states, not high-spin. Exceptional cases reported are the high-spin
cobalt(llI) complexes [C0F6]3“ [13] and [CoF3(H,0);] [14]. It should be worthwhile if some weak
and versatile ligands deliver a series of high-spin cobalt(I1l) complexes.

The sulfur ligands are also interesting for their coordination versatility toward paramagnetic
cluster complexes.

Monodentate thiourea and bidentate dithiooxamide ligands are known to give high-spin
cobalt(II) complexes, which have fully characterized by vibrational and electronic spectroscopies but
X-ray crystal structure analysis [15-16]. There is a possibility of obtaining high-spin complexes even

with cobalt(II]) ions if weak enough sulfur ligands are adopted.
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Soft-scorpionate ligands Tm" [17] which bear three sulfur coordination sites on a molecule based
on l-alkylimidazol-2-ylthione donors belong to the thioamide family and a number of complexes
were synthesized with focuses on not only metalloenzyme mimics but also industrial applications for
sensors [18]. Among the soft-scorpionate cobalt complexes, the ocatahedral low-spin cobalt(IIT)
complex [Co™(Tm™)]" [19] and the tetrahedral cobalt(I) complex [Co™(Tm"),] (R = ‘Bu [20], Ph
[21]) bave been obtained. However, the nephelauxetic effects in them as soft donor ligands and
detailed magnetochemical studies are not investigated yet. The soft scorpionate ligand based on
2-benzothiazolethione, NaTbz (Tbz = hydrotris(2-mercaptobenzothiazolyl)borate), is interesting
because this ligand has a benzene-ring substructure on each pod, extending wider n-conjugation than
in Tm® ligand [22].

In the Part III, the synthesis, molecular structure, magnetic property, and electronic spectrum of a
novel cobalt(II) complex [Co"(Tbz),] were studied and the ligand-field splitting and nephelauxetic
effect in the complex are discussed. Aiming to the high-spin ocatahedral configuration or

(Tm™®),)(Tm™®) was examined in

spin-crossover phenomenon of cobalt(Ill) S¢ complex [23], [Co
terms of crystal structure, magnetic susceptibility and electronic spectrum. [Co™(Tm™),]-4H,0 was

obtained as a byproduct and examined in terms of crystal structure and magnetic susceptibility. The

molecular structures and electronic structures of these complexes are compared.
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Chapter 9. Experimental for [Co“(sz)z] and [Co"’HI(TmMe)z]O/ *

Commercially available solvents and chemicals were used without further purification. The
reaction procedure of ligand "BusNTbz (Tbz = hydrotris(2-mercaptobenzothiazolyl)borate) was
performed under a nitrogen atmosphere. Na(Tm™*)-4.5H,0 (Tm™® = hydrotris(2-mercapto-1-
methylimidazolyl)borate) was prepared according to the literature method [24-25]. All reaction
procedures of complexes were carried out in ambient atmosphere. Elemental analyses (C, H, N)
were carried out at the Laboratory for Instrumental Analysis, Graduate School of Engineering, Osaka
University. Electronic spectrum of [Co"(Tbz),] (1) was measured on Jasco V-570 UV/Vis
spectrophotometer equipped with a diffuse reflectance option at room temperature by using a
powder sample sticking on a filter paper. Electronic spectrum of the acetonitrile solution in
[Co™(Tm™*),](Tm™*®) (2) was measured on the same spectrometer above. IR spectra were recorded
on a Thermo Nicolet NEXUS 470 ESP FT-IR spectrometer. NMR spectrum was recorded on a JEOL
INM-EX270 spectrometer. Solid-state magnetic measurements of 1 was carried out on a Quantum
Design MPMS-XL5 SQUID magnetometer equipped with reciprocating sample option (RSO) at
magnetic fields of 1.0 T. Solid-state magnetic susceptibility measurements of 2 and [CoH(TmMe)z]-
4H,0 (3) were performed on a Quantum Design MPMS-2 SQUID magnetometer in a field of 1.0 T.
Polycrystalline samples were mounted in calibrated gelatin capsules held at the center of a
polypropylene straw fixed to the end of the sample rod. X-ray photoelectron spectra were obtained
by irradiating the complex with Mg-K, X-rays (300 W) at 298 K using an ULVAC-PHI ESCA

5700 photoelectron spectrometer and calibrated with the carbon 1s;,, photoelectron peak (285.0 eV).

9.1. Synthesis of a ligand and complexes

Tetrabutylammonium hydrotris(2-mercaptobenzothiazolyl)borate ("Bu/NTbz)
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Tetrabutylammonium tetrahydroborate, (2.06 g, 8 mmol) and 2-mercaptobenzothiazole, (5.35 g,
32 mmol) were mixed together in a 200 mL round-bottomed flask, which was fitted with an air
jacket condenser. After the reaction vessel was flashed with nitrogen gas, the vessel was placed in an
oil bath and the temperature was raised slowly to 170°C. The mixture started melting at
approximately 120°C (tetrabutylammonium tetrahydroborate; mp 124 C), whereupon the vigorous
evolution of hydrogen gas began. Above 130°C the reaction mixture changed to a suspension and
then the evolution of hydrogen gas stopped. Upon reaching 170 C (2-mercaptobenzothiazole; mp
168 C), the suspension completely melted to clearness and the evolution of hydrogen gas began
again. The temperature should be kept under 180°C to avoid decomposition. The reaction was
allowed to proceed until the gas evolution stopped again. Once the reaction was complete the
mixture was allowed to cool. In order to take the solid reaction mixture out of the flask, the yellow
solid was dissolved in THF. Then solution was partially evaporated and the half-dry solid was
extracted with hot toluene to isolate the product from excess 2-mercaptobenzothiazole and yellow
decomposition by product. Large volume of ethanol was added to the grey-colored solid mass with
vigorous stirring until white powder was suspended. The powder was filtered, washed with diethyl
ether, and dried in vacuo, yield 3.30 g (55%). Calc. for C;;HasBN4Se: C, 59.02; H, 6.56; N, 7.44%.
Found: C, 59.09; H, 6.36; N, 7.40%. &g (270.05 MHz; solvent CDCl3) 0.88 (t, 12H, W(CHZCHZ—
CH,CH,)s), 1.28 (sextet, 8H, "N(CH,CH,CH,CH3)s), 1.55 (quintet, 8H, "N(CH,CH,CH,CHs),),
3.13 (t, 8H, +N(CH2CH2CH2CH3)4), 7.05 (br, 6H, benzothiazole H), 7.27 (br, 6H, benzothiazole H),

BH not observed; Infrared spectrum (KBr disk, cm™'): 2478 (v{B-H}, w), 736 (v{C=S}, m).

[Co"(Tbz),] (1)
An 20 mL acetone solution of Co(NOs),-6H,0 (291 mg, I mmol) was added under stirring to an

acetone solution (60 mL) of "BusNTbz (1.50 g, 2 mmol) at room temperature. Yellow solid
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immediately precipitated. After 5 minutes, the solid was filtered off and washed with acetone,
ethanol and diethyl ether, and dried in air (yield 388 mg, 36%). Calc. for C4;H;6B,CoNgS12: C,
46.71; H, 2.43; N, 7.78%. Found: C, 46.57; H, 2.53; N, 7.74%. Infrared spectrum (KBr disk, cm’l):
2478 (v{B-H}, w), 726 (v{C=S}, m). To obtain single crystals, Co"(NO5),-6H,0 and 2 equiv of
"BuyNTbz were placed at each side of an H-shaped tube. Then, acetone and acetonitrile were
carefully added to the cobalt salt and the ligand in the H-tube, respectively, up to the level of solution
contact. Yellow single crystals were obtained by allowing slow diffusion of two solutions for two
weeks. Two different polymorphs of [Co"(Tbz),] were obtained in the same crystallization batch.

One is prism and another is thombus in shape.

[Co™(Tm")2] (Tm"") (2)

CoF; (463 mg, 4 mmol) was added under stirring to an aqueous solution (80 mL) of
Na(Tm™)-4.5H,0 (1.92 g, 4 mmol) at room temperature. Green solid immediately precipitated and
subsequently turned to brown. After 5 minutes, the brown solid was filtered and extracted by acetone.
bark red solution was concentrated to minimal volume. The brown solid was collected by filtration
from the concentrated solution, washed With minimal ethanol and diethyl ether, and dried in air
(yield 1.40 g, 25%). For X-ray crystallographic analysis, a dark red crystal was obtained from
acetonitrile solution by vapor diffusion of diethyl ether. Calcd. for C;¢HasB3CoN5Se: C, 38.85; H,
4.35; N, 22.66%. Found: C, 38.83; H, 4.20; N, 22.66%. Infrared spectrum (KBr disk, cm‘l): 2468,

2437 (v{B-H}).
[Co™(Tm™),]-4H,0 (3)
Complex 3 was isolated from the same reaction condition of 2. Green solid precipitated was

filtered quickly before the solid color turned to brown. The solid was washed with copious ethanol.
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The green solid was extracted by acetonitrile and the dark-green solution was concentrated to
minimal volume and stood for a few hours. Dark green crystalline solid was deposited, collected by
filtration, washed with minimal acetonitrile and diethyl ether, and dried in air (yield <2%). For X-ray
crystallographic analysis, a dark green crystal was obtained from acetonitrile solution by vapor
diffusion of diethyl ether. Calcd. for C,yH3,B,CoN1Se-4.5H,0: C, 34.21; H, 4.90; N, 19.95%.

Found: C, 33.90; H, 4.50; N, 19.78%. Infrared spectrum (KBr disk, cm™): 2375 (v{B-H}).

9.2. X-ray structure determination

Single crystal structure determinations of compounds 1-3 were performed at 173 K (1) and 123 K
(2-3). The yellow prism crystal of 1 was covered with Paraton N oil and scooped up in a cryo-loop.
The dark-red crystal of 2 and the dark-green crystal of 3 were attached to the tip of a glass fiber.
These crystals were mounted on a Rigaku RAXIS RAPID imaging-plate area detector with graphite
monochromated Mo-K,, radiation (4 = 0.071073 nm). The structures were solved by direct methods
[26] and expanded using Fourier techniques [27]. Some non-hydrogen atoms for 1 were refined
anisotropically, while the rest were refined isotropically. All non-hydrogen atoms for 2 and 3 were
refined anisotropically. Hydrogen atoms were refined using the riding model. All calculations were
performed using the CrystalStructure crystallographic software package [28-29]. Detail on the data
collections and refinements are summarized in Table III-1. On the other hand, the rhombus-shaped
polymorph crystal of 1 has crystal solvent and effloresces immediately in air, so that the crystal

structure could not be solved even in Paratone oil.
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Table III-1. Crystallographic data and structure refinement for [Co"(Tbz),], [Co™ (Tm™®),)(Tm™*)

and [Co"(Tm™®),]-4H,0

[Co™(Tbz),]

[ COIII(T mMe)z] (T mMe)

[Co™(Tm™*),]-4H,0

Emprical formula
Formula weight
Crystal system
Space group
a(A)

b(A)

c(A)

a (%)

BC)

7(®)

V(A%

zZ

T(K)

Deatc (g cm™)
Crystal color, habit

Crystal dimensions (mm)

Fooo

(Mo Ky) (cm™)
Total data
Unique data

Rin

R, [I>2.00(])]
wR, [1> 2.00(1)]
R, [I>4.00(])]
wR, [I> 4.00(1)]
Goodness of fit

C42H6B2CoNgS1;
1079.98
Monoclinic
C2/c
19.038(3)
13.142(2)
18.141(3)

90
103.467(5)
90

4414(1)

4

173

1.625

yellow, prism
0.6 0.1 x0.1
2196

9.999

11094

4729

0.1871
0.0893
0.0932

1.135

C36H4sB3CoN5Sg
1112.80
Monoclinic
P2,/a
19.1540(5)
13.5985(4)
20.5414(6)

90

112.945(1)

90

4927.0(3)

4

123

1.500

dark red, prism
0.70 x 0.45 x 0.45
2304.00

7.806

15033

10041

0.0346

0.0379

0.0408

1.082

C14H40B>CoN 150456
833.57
Monoclinic
P2\/n

14.143(1)
18.089(2)
15.282(1)

90

102.382(2)

90

3818.6(5)

4

123

1.450

dark green, block
0.45x0.25 x0.15
1732.00

8.257

35290

8685

0.0880

0.0944
0.1141
1.262
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Chapter 10. Results and Discussion on [Co"(Tbz),] and [CoII/m(TmM")z]"’Jr

10.1. Syntheses

[Co"(Tbz),] (1) (Tbz™ = hydrotris(2-mercaptobenzothiazolyl)borate) was synthesized by the
reaction of a cobalt(Il) salt and "BuyNTbz which is a good starting material with high solubility in
polar organic solvents. The complex is insoluble iq water and most of common organic solvents,
while soluble in DMF to decompose rapidly.

Meanwhile the preparation of Ss;Fs;-coordination cobalt(II) complex, highly likely to show
high-spin state, initially was attempted starting from CoF;. Because CoFj;is sensitive to water, the
powder was added promptly to an aqueous solution of soft S; tripodal ligands Tbz™ or Tm™
(hydrotris(2-mercapto-1-methylimidazolyl)borate). In the case of Tbz", yellow solid immediately
precipitated at this moment, while in that of Tm™®", green solid immediately precipitated at this
moment and fully turned to brown a few minute later.

On dissolution of CoF; in water, cobalt(Il) ion is known to be the dominant species presented in
the solution owing to rapid decomposition. Thus it is assumed that the low-solubility cobalt(II)
complex precipitates as yellow solid for Tbz .

Another syntheses of [Co™(Tbz),]” from other cobalt(Ill) materials were also attempted but
failed. It is possible that Tbz™ immediately reduces cobalt(IIl) ion to afford neutral [COH(TbZ)z]. On
the other hand, in the case of Tm"™", it is likely that the low-solubility cobalt(II) complex precipitates
as green solid at first and the residual cobalt(Il) complex in the solution is readily oxidized into
cobalt(III) cation, [Co™(Tm™®),]". Soon after the cobalt(Ill) cation forms, it captures one unreacted

Tm™® anion and precipitates as brown solid of the Tm™®

salt. As a result, stoichiometric product
[CoF5(Tm™*)] ~ was not obtained and complex 1 formed instead.

Though the green product is not fully identified, it provides the dark green complex
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[CoH(TmMe)z] -4H,0 (3) by recrystallization from an acetonitrile solution.
10.2. Molecular structure of complexes

Single crystal X-ray structure was determined for the complexes 1-3. Selected bond lengths and
angles for 1 are listed in Table III-2. The space group of 1 is C2/c and the cobalt(Il) ion has a
centrosymmetric octahedral S4 coordination environment. It is a first report of [Co"S¢] core in the
soft-scorpionate chemistry (Figure III-1). All Co—S distances are 2.489-2.535 A and much longer
than that of octahedral low-spin octahedral cobalt(I) complexes with thioether ligands (Table III-3)
[2-3, 30]. The £S-Co-S bite angles in a same Tbz moiety vary from 92.0 to 99.5°, while other
ZS-Co-S angles defined for two S atoms originating from different Tbz™ moieties are less than 90°.
It means the coordination octahedron in [Co"(Tbz),] is slightly compressed along its pseudo-C; axis

(Figure III-2).

Table III-2. Selected bond distances (A) and angles (°) for [CoH(sz)z].

Col-S1 2.489(3) S1-Co1-S2 99.5(1)

Col-S2 2.535(3) S2-Col-S3 92.0(1)
Col-S3 2.451(3) S3-Col-S1 95.8(1)
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Figure III-1. Molecular structure of [Co"(Tbz),] with thermal ellipsoids drawn at 50%

probability level. Hydrogen atoms are omitted for clarity.

Table III-3. Comparison of structural data for [Co"S¢] complexes.

complex spin state average Co-S / A references

[Co"(Tbz),] HS 2.492(3) this work
[Co"(983),] *"* LS 2.321(5) [5]
[Co"(1083)]*"" LS 2.324(4) [6]
[Co"(Ttn),]*" ¢ LS 2.372(3) [3]
[Co"(PhTt),] ¢ LS 2.383(1) [30]

“9S3 = 1,4,7-trithiacyclononane. ®10S3 =1,4,7- trithiacyclodecane.
¢ Ttn = 2,5,8-trithianonane. ¢ PhTt = phenyltris((methylthio)methyl)borate.
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Figure I1I-2. Top view of [Co"(Tbz),] along B---Co---B direction.

Selected bond distances and angles for [Com(TmMc)z](TmMe) (2) are listed in Table 1II-4. The
space group of 2 is P2;/a. An imidazole ring in [Co™(Tm™*),]" moiety and another ring in counter
anion, Tm™" are mutually slant-stacked with the m-m distance of ~3.4 A (Figure III-3). The
cobalt(III) ion of 2 is hexacoordinate. Co—S distances fall in the range of 2.293-2.321 A and are
slightly shorter than that of other reported [Co™(Tm™),]" moiety (Table I1I-5) [19], while much
shorter than that of [Co"(Tbz),]. The ZS—Co-S bite angles in which S-atoms come from a same
Tm"" moiety vary from 93.09 to 97.26°, while all the Z/S—Co-S angles defined for two S atoms

originating from different Tm™®" moieties are less than 90°. It means the coordination octahedron in
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complex 2 is slightly compressed along its pseudo-C; axis (Figure III-4). The C=S thione group

bond lengths of [COIH(TmM")z]+ moiety (1.722-1.738 A) is longer than that of counter anion Tm"

(1.697-1.700 A).

Table I11-4. Selected bond distances (A) and angles (*) for [Co™(Tm"),](Tm™™).

Col-Sl1 2.3109(6) S6-C21 1.726(3)
Col-S2 2.3066(6) $7-C25 1.699(3)
Col-S3 2.2934(5) S8-C29 1.700(3)
Col-S4 2.2934(6) $9-C33 1.697(3)
Col-S5 2.3213(5)

Col-S6 2.3111(6) S1-Col-S2 93.09(2)
S1-C1 1.732(3) $2-Col-S3 97.26(3)
S2-C5 1.722(3) S3-Col-S1 96.37(3)
$3-C9 1.731(3) S4-Col-S5 95.55(3)
S4-C13 1.728(3) S5-Col-S6 95.076(18)
S5-C17 1.738(3) S6-Col-S4 95.51(2)

Figure III-3. Crystal structure of [Co™(Tm"),J(Tm™) with thermal ellipsoids drawn at 50%

probability level. Hydrogen atoms are omitted for clarity.
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Table 111-5. Comparison of Co—S bond distances (&) for [Co™(Tm"),]Y.

Y = Tm™® BF,
2.3109 2.327
2.3066 2.326
2.2934 2317
2.2934 2.311
2.3213 2312
23111 2.304

Figure I11-4. Top view of [Com(TmMe)z](TmMe) along B---Co- B direction.

Complex 3 exhibits tetracoordinate tetrahedral structure and the space group is P2;/n. The
average Co—S bond distance is 2.36 A (Table I11-6) and shorter than that of [CoH(TmMe)Z] analogue
(Table I1I-7) [20-21] and fall between that of complex 1 and 2. The ZS—Co-S bite angles are 109.28°

and 114.72°, so the tetrahedral structure of 3 is slightly distorted (Figure III-5).
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Table I11-6. Selected bond distances (A) and angles (°) for [Co"(Tm"),]-4H,0.

Col-S1 2.375(2) Col-S2 2.391(3)
Col-S4 2.345(3) Col-S5 2.3402(19)
S1-Col-S2 114.72(8) S4-Col-S5 109.28(8)

Table III-7. Comparison of Co-S bond distances (A) for tetrahedral soft tripodal cobalt(II)

complexes.
[Co'(Tm™*),] [Co(Tm™*),]*"! [Co"(Tm"™),]!
2.375 2.3804 2.370
2.391 2.3607 2.372
2.345
2.340

Figure III-5. Crystal structure of [Co"(Tm™®),]-4H,O with thermal ellipsoids

drawn at 50% probability level. Some of hydrogen atoms are omitted for clarity.
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10.3. X-ray photoelectron spectra

The X-ray photoelectron spectra of complexes 1-3 were measured (Figure 111-6).The spectrum
of 1 showed Co(2p1/2) and Co(2p3/2) peaks at 795.5 and 780.0 eV, respectively, both of which are
associated with shake-up satellites at higher binding energies characteristic to cobalt(I1l) compounds
[26]. The Co(2p1/2)-Co(2p3/2) energy separation (spin-orbit splitting) was 15.5 eV, much larger
than the cobalt(III) norm of 15.0 eV. The spin-orbit splitting of complex 3 was also 15.5 eV and
again shake-up satellites were observed. On the other hand, the spin-orbit splitting of complex 2
was 15.0 eV and no satellite peaks were found. These results certify the valence state of complex 1
is +2 and reject the possibility of a valence tautomer [Com(sz_)(sz'z')]. Taking into account the
fact that the low-spin cobalt(I) compounds do not show remarkable satellites [31], it is consistent

to conclude complex 1 to be a high-spin cobalt(II) complex.

[COIII(TmMe)Z](TmMe)

T, Me,
[Co (Tm ),]*4H,0

arbitrary unit

}

Co(2p,1)

[Co' (Tbz),]
Co(2p3)

1 | 1

810 800 790 780 770
Binding Energy / eV
Figure I11-6. The Co(2p) spectra of complexes [Co"(Tbz),], [Co" (Tm"),](Tm"™),
and [Co"(Tm"¢),]-4H,0. These spectra were normalized at the Co(2ps/,) peak.
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10.4. Magnetic properties

Isofield magnetizations of complexes 1-3 were measured from 3 to 350 K (1) and from 4 to 330
K (2-3). The effective magnetic moments sz of complex 1 increased gradually with heating to 4.8
Mg at room temperature (Figure 111I-7), which is indicative of the high-spin electron configuration of
cobalt(Il) (S = 3/2). Over the range of measurement temperature, complex 2 indicated diamagnetic
behavior, so complex 2 is typical low-spin cobalt(I1I) species. Complex 3 showed effective magnetic
moments e of 4.4 15 at room temperature (Figure III-8), which was somewhat higher than the
expected value 3.9 y for a high-spin cobalt(Il) (S = 3/2). This value is about the same as the analog
of compound 3 [20]. This behavior may arise from mixing of low-energy excited states in tetrahedral

complexes with small ligand-field splitting.

5.0

o000 000

3.0 l | | | | |
0 50 100 150 200 250 300 350

T/K

Figure III-7. The temperature dependence of effective magnetic moment of a
polycrystalline [Co"(Tbz),] recorded on a SQUID at 1.0 T. Open circles denote observed
values and the solid curve is simulated by using parameters 4,/ hc = 8000 cm™, B / he =

560 cm™, ¢ /he =515 cm”, C/B =3.1, and k= 0.74.
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Figure I11-8. The temperature dependence of effective magnetic moment of a

polycrystalline [Co"(Tm™*),]-4H,0 recorded on a SQUID at 1.0 T.

For reference, the powder of [Co"(Tbz),] including impurity was obtained from the attempt of
syntheses of [Co“'(sz)z]’. Isofield magnetization of this compound was measured from 2 to 300 K
under applied high pressure 0.7 GPa (Figure I1I-9). Compared to ambient pressure 0.1 MPa, decrease
of the effective magnetic moment below 150 K was observed. It is possible that pressure induced

low-spin transition of [Co"(Tbz),] component occurs.
P p

6.0
doOodoooe’QOMQ
5.5 - 3- h*o(tod.cv doo° i
00 il
@ 50F i +O.g.;o"ooou
SN + t,00°
\Q_ 4.5 I+ A '(‘l"ooc;o
3 # °
< 40 %&W + 0.1 MPa
" > 0.7 GPa
3.5F
30 | | | 1 |
0 50 100 150 200 250 300
T/K

Figure III-9. The temperature dependence of effective magnetic moment of
polycrystalline [Co"(Tbz),] including impurity recorded on a SQUID at 1.0 T under
ambient pressure 0.1 MPa (+) and applied pressure 0.7 Gpa (©).
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10.5. Electron absorption spectra

The electronic spectrum of complex 1 shows a strong absorption band at around 20000 cm’
(ligand m-m*transition) and at 22000 cm™ (MLCT). In addition, it has two weak d-d bands around
14700 cm™ and 7140 cm™ (Figure III-10). Assuming the O, symmetry, the former can be assigned to
‘T g—>4T 1¢(P) and the latter to ‘T g—>4T 2¢(F). Similar d-d transitions were also reported in the diffuse
reflectance spectrum of high-spin [Co"(DCTU))(NOs), (DCTU = N,N-dicyclohexylthiourea) [13].
Based on these d-d transitions, the ligand field splitting and the Racah’s parameter were estimated as
Ao/ he = 8000 cm™' and B / he = 560 cm™, respectively [32]. The magnitude of A, is relatively low in
comparison to that of hexaaqua cobalt(II) complex (8400 cm™) [33], and B is much smaller than the
free ion value (Bo/ hc = 989 cm’™) [34] and that reported for other thioamide complexes [13-14].
This value is even comparable to that of the thiacrown complex [Co"(18S6)]*" with a low-spin
[C0HS6] center (B / hc = 580 cm'l) attributable to large nepelauxetic effect [3,7]. These results
suggest the complex 1 has also significantly covalent coordination bonds arising a remarkable
nephelauxetic effect. By using these values of 4; and B, ligand-field calculations were carried out to
simulate the magnetic susceptibility curve. Non-linear least squares fittings to the magnetic
susceptibility were performed with fixed parameters 4y and B and adjustable parameters of the
Racah’s parameter C, spin-orbit coupling ¢, and Stevens’ orbital reduction factor k. Optimized
reduction factor & for given {'and C/ B ratio is mapped on a contour plot in Figure III-11. A cross on
the map stands for a best-fitting parameter set (¢/ hc = 515 cm™, C / B = 3.1, k = 0.74) determined
for the spin-orbit coupling fixed to the free-ion value [34], which yield a simulation curve in Figure
III-12. The small k£ value also suggests intense delocalization of d-electrons éver the ligands,

weakening electron-electron repulsion on the cobalt ion.
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Figure I1I-10. Diffuse reflectance spectra of [Co'(Tbz),]
recorded for a powder sample (left) and a KBr-diluted sample

(right) at room temperature.
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Figure III-11. Contour map of Stevens’ orbital reduction factor k on a

parameter plane of the spin-orbit coupling ¢ and the ratio between the

Racah’s parameters C / B, determined by non-linear least-squares

fitting to the magnetic susceptibility. A cross (+), placed at the point

of ¢ /he = 498 cm', C/ B = 3.1, and k = 0.74, corresponds to the

simulation curve in Figure 11I-7. The spin orbit-coupling for a free

cobalt(II) ion is shown as a dotted line.
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Figure I1I-12. Contour map of fitting residual on a parameter plane of the
Stevens’ orbital reduction factor & and the ratio between the Racah’s parameters C
/ B, calculated by non-linear least-squares fitting to the magnetic susceptibility. A
cross (+) stands for a best-fitting parameter set ({/ hc=515cm™, C/B =3.1,k=
0.74). Filled circles denote & values optimized for given { and C / B values using

the magnetic data.

The electronic spectrum of complex 2 (3.1x10™° M) in acetonitrile solution shows a strong
absorption band at around 40000 cm’” (ligand mt-m*transition) and the splitting bands on MLCT at
25000 cm™ (&= 32800 mol”’ L cm™) and 21000 cm™ (&= 18700 mol” L cm™). In addition, it has
weak d-d band around 12500 cm™ (£ =280 mol” L cm™) (Figure I1I-13). Assuming the O, symmetry,
the former can be assigned to 'Alg—>'Eg. Generally another d-d band assigned to 'Alg—>'A2 for
low-spin octahedral cobalt(I1ll) complexes is observed but may be hidden by the presence of MLCT

bands. Although the d-d band for Alg—>'Eg is lower than that of hexaaqua cobalt(I1l) complex (16500
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cm") [35], complex 2 possess low-spin configuration. It is conceivable that the reason is the
stabilization of low-spin configuration from large nephelauxetic effect for soft-scorpionate ligand

M_.
Tm"°.

40000 f
MLCT

T 30000 - '

O

—
T 20000 MILGL

& 1 1 |

10000 - A'gr Ee

O = | L | L | L
10000 20000 30000 40000

A
wavenumber / cm

Figure III-13. Electron absorption spectrum of [Co"(Tm™®),](Tm"™),
3.1x10° M in CH;CN.
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Chapter 11. Conclusion of [Co"(Tbz),] and [Co"™(Tm™®);]"*

A novel cobalt(IT) soft-scorpionate complex [Co"(Tbz),] (Tbz = hydrotris(2-mercaptobenzo-
thiazolyl)borate) was synthesized. Single-crystal X-ray analysis revealed that this complex has a
[Co"Se] center, which is a first case distinguished from [Co™'Sg] or [Co"S4] soft-scorpionate
complexes [19-21]. The diffuse reflectance spectrum of [Co"(Tbz),] and the electron absorption
spectrum of [Co™(Tm™®),](Tm™®) (Tm™* = (hydrotris(2-mercapto-1-methylimidazolyl)borate)
demonstrated that the soft-scorpionate Tbz™ and Tm™*" ligand gives a small ligand-field splitting and
a strong nephelauxetic effect. The ligand-field parameters derived from the electronic spectrum of
[Co'(Tbz),] were successfully served in the analysis of magnetic susceptibility. Remarkable
delocalization of d-electron onto the ligand moieties was also suggested from the simulation of the
magnetic behavior. On tuning of these parameter, soft scorpionate ligands are expected to give
paramagnetic cobalt(IlI) complexes and polynuclear cobalt(Il) complexes which possess high-spin

ground state.
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Summary

The present dissertation is intended to deliver some ideas on rational molecular design of
paramagnetic polynuclear complexes through the theoretical analysis of magnetic and spectroscopic
properties of mononuclear manganese(II1) and cobalt(Il) complexes. The contents are constructed in

two Parts following a concise General Introduction in Part I.

In Part II, a series of octahedral manganese(Il) complexes were synthesized, of which axial
ligands were chosen among a variety of monodentate ligands, while the equatorial ligand was kept to
be tetradentate cyclam (1,4,8,11-tetraazacyclotetradecane) across the series. The magnetic
measurements of them revealed that the electron configuration depends on the nature of axial ligands
to be high-spin or low-spin complexes. Axial ligands of cyanoborohidride derivatives exert a
relatively strong ligand field, despite not enough to yield a low-spin complex, to invest a large
easy-axis magnetic anisotropy. The combined application of angular-overlap method (AOM) and
extended Hiickel molecular-orbital calculations confirmed that stronger axial ligands, just
’ neighboring to spin-crossover boundary, bring about larger magnetic anisotropy of axially elongated

high-spin manganese(I1I) complexes.

In Part III, several sulfur-coordinate cobalt(II/III) complexes of soft-scorpionate ligands were
synthesized, which can be grouped into [Co"Se], [Co™S¢], and [Co"S4] coordination centers.
Single-crystal X-ray analysis revealed that one of the cobalt(II) complexes has a [Co"Se] center,

Se] or [Co"Sq] soft-scorpionate

which is a first case distinguished from already-known [Co
complexes. X-ray photoelectron spectroscopic and magnetic measurements demonstrated that this

complex has a high-spin cobalt(II) metal center of [Co"(L)]-type electron configuration and rejected

75



the possibility of valence tautomer [Co™(L™)]. Small ligand-field splitting and also small Racah’s
parameters determined from the electronic spectrum of the [Co"Ss] complex were successfully
transferred in the analysis of magnetic susceptibility. Remarkable delocalization of d-electron onto

the ligand moieties was also suggested from the simulation of the magnetic bebavior.

These findings on high-spin [Mn""Ng] and [Co"Ss] cores presented how the electronic ground
state of a mononuclear metal complex unit is controlled by chemical modification of coordination
environment. In order to address engineering the magnetic anisotropy of nanomagnets, e.g. single
moleclule magnets, these results should contribute to the rational design of the paramagnetic

polynuclear complexes.
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Appendix

Fitting Program for Magnetic Susceptibility

axfit.f



aaaaQ

ana

&

/// MAGNETIZATION OF ANISOTROPIC SPIN UNDER FIELD ///

{ UNIAXIAL, POWDER, GAUSSIAN QUADRATURE, LAPACK )
CODED BY M. NAKANO (1998)
REVISED 2002 / 04 / 03

PROGRAM AXFIT

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
IMPLICIT INTEGER (I-N)

PARAMETER (NPMAX = 6, NAPEXMAX = NPMAX + 1)
PARAMETER (NAV = 16, NAVO = 2 * NAV + 1)

--- SPIN MULTIPLICITY
PARAMETER (MSPIN = 5)
PARAMETER (LWORK = 3030000}

DIMENSION EO(MSPIN}, LE(MSPIN), A(MSPIN, MSPIN), AO(MSPIN, MSPIN)

DIMENSICON XMU(MSPIN), ZMU(MSPIN), WORK (LWORK)
DIMENSION BASIS (MSPIN)

DIMENSION P(NPMAX}), DP(NPMAX), ALPHA(NAV0), BETA(NAVO)
DIMENSION Q(NAV0), Z(NAVO), W(NAVO)

COMMON /STATE/ SPIN, ZSPIN

COMMON /MAGDATA/ OMAG (300, 100), CMAG(300, 100), OMU(300,
CMU (300, 100), FIELD(100), TEMP(300, 100), NTEMP({(100),

COMMON /PHYSCONST/ AVOGADRO, BOHR, BOLTZMANN, CO
COMMON /HAMILTONIAN/ G, D, E, 040, 044, TIP
COMMON /CRITERIA/ FTOL, OTOL

COMMON /SUBSPACE/ IOPT(NPMAX), NOPT

COMMON /REV_COMM/ SIMPLEX (NAPEXMAX, NPMAX), Y (NAPEXMAX),

R{NPMAX), PBAR(NPMAX), YNEW, YPR, YAV,

INDEX (NAPEXMAX), ICOMM1, ICOMM2, ITER, IKI, INHI,

SPIN = (MSPIN - 1) / 2.0DC

AVOGADRO = 6.0221415D23

BOHR = 9.27400949D-24

BOLTZMANN = 1.3806505D-23

CO = BOHR / BOLTZMANN

FTOL = 1.0D-10

IF (FTOL .LT. DIMACH(3)) FTOL = D1MACH(4)

READ (*, *} G, IOPT(1)
READ (*, *) D, IO0PT (2)
READ (*, *) E, IOPT(3)
READ (*, *) 040, IOPT(4)
READ (*, *) 044, IOPT(5)
READ (*, *} TIP, IOPT(6
READ (*, *) NFIELD

DO IB = 1, NFIELD
READ (*, *) FIELD(IB), NTEMP(IB)
DO IT = 1, NTEMP(IB)
READ (*, *) T, EFF

100},
NFIELD

ILO

TEMP{IT, IB) =T
--- conversion from mu_eff to M / N mu_B
MU (IT, IB) = EFF
OMAG(IT, IB) = CO * FIELD(IB) * EFF * EFF / (3.0D0 * T)
OMU(IT, IB) = SQRT (3.0D0 * EFF * T / (CO * FIELD(IB)))
G(IT, IB) = EFF
ENDDO
ENDDO
NOPT = 0

DO I = 1, NPMAX
IF (IOPT(I) .NE. 0) THEN
NOPT = NOPT + 1
IOPT(NOPT) = I
ENDIF
ENDDO
NAPEX = NOPT + 1
DO I = 1, MSPIN
BASIS(I) = (I - 1) - SPIN
ENDDO

CALL DRECUR (NAVO, 1, 0.0DC, 0.0DO, ALPHA, BETA, IERR)
IF (IERR .GT. O) PRINT *, 'DRECUR:IERR=', IERR

CALL DGAUSS (NAVO, ALPHA, BETA, DIMACH(3), %, W, IERR, Q)

IF {(IERR .GT. 0) PRINT *, 'DGAUSS:IERR=', IERR

W(NAV + 1) = W(NAV + 1) / 2.0DO

ICOMM]1 = O
CALL SET_PARAMETER (P, 1)
CALL PARAMETER_CONTROL (P) .
DO WHILE (ICOMM1 .GT. 0)
CALL SET_PARAMETER (P, -1)
CALL MATRIXCLEAR (AO, MSPIN)
CALL D_TERM (D, AO, BASIS, MSPIN)
CALL E_TERM (E, AC, BASIS, MSPIN)
CALL ORDER4 (040, 044, A0, BASIS, MSPIN)
DO IB = 1, NFIELD
B = FIELD(IB)

CDIA = 10.0D0 * TIP * B / (AVOGADRO * BOHR)

DO IT = 1, NTEMP(IB)
CMAG(IT, IB) = CDIA
ENDDO
DO ITHETA = 1, NAV + 1
COS_T = Z(ITHETA)
8IN_T = SQRT(1.0D0 - COS_T * COS_T)
CALL COPYMATRIX (A0, A, MSPIN)

CALL ZEEMAN X (G, B * SIN T, A, BASIS, MSPIN)
CALL 2EEMAN Z (G, B * COS_T, A, BASIS, MSPIN)

--- LAPACK diagonalization routine

CALL DSYEV ('V', 'U', MSPIN, A, MSPIN, EQC, WORK,

INFO)
IF (INFO .NE. 0) PRINT *, '"INFO =',
CALL SORT (EO, LE, MSPIN, MSPIN)

CALL MOMENT X (XMU, A, BASIS, MSPIN)
CALL MOMENT_2Z (2ZMU, A, BASIS, MSPIN)
DO IT = 1, NTEMP(IB)

T = TEMP(IT, IB)

LWORK,

INFO

F = SIN_T * THERM AV (T, EO, XMU, LE, MSPIN)

+ COS_T * THERM AV (T, EO, 2ZMU, LE, MSPIN)
CMAG(IT, IB) = CMAG(IT, IB) - G * F * W(ITHETA)
ENDDO
ENDDO

DO IT = 1, NTEMP(IB)
T = TEMP{IT, IB)
CMU(IT, IB) = SQRT {3.0D0 * CMAG(IT,
ENDDO
ENDDO
YNEW = DEVIATION ()
CALL PARAMETER_CONTROL (P)
ENDDO

PRINT *
VX = 0.5D0 * SQRT (Y(ILO) / FTOL)
DO J = 1, NOPT
PMIN = SIMPLEX (1, J}
PMAX = PMIN
DO IAPEX = 2, NAPEX
IF (PMIN .GT. SIMPLEX(IAPEX, J)) PMIN
IF (PMAX .LT. SIMPLEX(IAPEX, J)) PMAX
ENDDO
DP(J) = VX * (PMAX - PMIN)
P(J) = SIMPLEX(ILO, J)
ENDDO
CALL SET_PARAMETER (P, -1)

PRINT *
PRINT *, ‘g =', G
PRINT *, 'D / kB = ', D, 'K'
PRINT *, 'E  / kB = ', E, 'K'
PRINT *, '040 / kB = ', 040, 'K'
PRINT *, '044 / kB = ', 044, 'K'
PRINT *, 'TIP = ', TIP
PRINT *
PRINT *, 'DEV(final) = ', Y(ILO)
PRINT *
DO J = 1, NOPT
PRINT *, 'P(', J, ') ="', P{J), " +/- ",
ENDDO

IB) * T / (CO * B)

SIMPLEX (IAPEX, J)
SIMPLEX (IAPEX, J)

DP(J)



PRINT *
PRINT *, ' B/T T/K',
& ' mu_obs mu_calc'
DO IB = 1, NFIELD - -
B = FIELD(IB)
DO IT = 1, NTEMP(IB)
T = TEMP(IT, IB)
WRITE (*, 10) B, T, OMU(IT, IB), CMU(IT, IB)
ENDDO
ENDDO

PRINT *
PRINT *, ' B/T T/K',
& ' M obs M calc'
DO IB = 1, NFIELD
B = FIELD(IB)
DO IT = 1, NTEMP({IB)
T = TEMP(IT, IB)
WRITE (*, 10) B, T, OMAG(IT, IB), CMAG(IT, IB)
ENDDO
ENDDO
10 FORMAT (1X, 4E15.5)
END

DOUBLE PRECISION FUNCTION DEVIATION ()
IMPLICIT DCUBLE PRECISION (A-H, O-Z)
COMMON /MAGDATA/ OMAG (300, 100), CMAG(300, 100), OMU(300, 100},
& CMU(300, 100), FIELD{100), TEMP{300, 100), NTEMP(100), NFIELD
N =20
SUM = 0.0D0
W = 1.0D0
DO IB = 1, NFIELD
DO IT = 1, NTEMP(IB)
N =
SUM
SUM
SUM
ENDDC
ENDDO
DEVIATION = SQRT{SUM / (N - 1)}
END

=z

1

UM + (OMAG(IT, IB) - CMAG(IT, IB)) ** 2.0D0

UM + W * (OMU(IT, IB) - CMU(IT, IB)) ** 2.0DO

UM + (1.0D0 - OMU(IT, IB) / CMU(IT, IB)) ** 2.0D0

SUBROUTINE MATRIXCLEAR (A, N)
DOUBLE PRECISION A{N, N)
DOJ =1, N
DOI =1, N
A(I, J) =
ENDDO
ENDDO
END

0.0D0

SUBROUTINE COPYMATRIX (A, B, N)
DOUBLE PRECISION A(N, N), B(N, N)
DOJ =1, N
DOI =1, N
B(I, J) =
ENDDO
ENDDO
END

A(I, J)

DOUBLE PRECISION FUNCTION UP ()

IMPLICIT DOUBLE PRECISION {(A-H, 0-Z)

COMMON /STATE/ SPIN, ZSPIN

IF (ZSPIN .GE. SPIN) THEN
UP = 0.0DO

ELSE
UP = SQRT({(SPIN - ZSPIN) * (SPIN + ZSPIN + 1.0D0))
ZSPIN = ZSPIN + 1.0DO

ENDIF

END

DOUBLE PRECISION FUNCTION DOWN ()

IMPLICIT DOUBLE PRECISION (A-H, 0-2)

COMMON /STATE/ SPIN, ZSPIN

IF (ZSPIN .LE. -SPIN) THEN
DOWN = 0.0D0

ELSE
DOWN = SQRT((SPIN + ZSPIN) * (SPIN - ZSPIN + 1.0D0))
ZSPIN = ZSPIN - 1.0DO

ENDIF

END

INTEGER FUNCTION IROW ()

IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
COMMON /STATE/ SPIN, ZSPIN

IROW = INT(SPIN + ZSPIN + 1.0DO)
END

SUBRCUTINE D_TERM (D, A, BASIS, NSPIN)
IMPLICIT DOUBLE PRECISION (A-H, 0-2)
COMMON /STATE/ SPIN, ZSPIN
DIMENSION A(NSPIN, NSPIN), BASIS(NSPIN}
DO IBASIS = 1, NSPIN

Z = BASIS({IBASIS)

S = SPIN
ELEMENT = D * (Z * 2 -~ S * (8§ + 1,0D0) / 3.0D0)
A(IBASIS, IBASIS) = A{IBASIS, IBASIS) + ELEMENT
ENDDO
END

SUBROUTINE E_TERM (E, A, BASIS, NSPIN)
IMPLICIT DOUBLE PRECISION (A-H, 0O-2}
COMMON /STATE/ SPIN, ZSPIN
DIMENSION A(NSPIN, NSPIN), BASIS(NSPIN)
DO IBASIS = 1, NSPIN

ZSPIN = BASIS(IBASIS)

ELEMENT = 0.5D0 * E

ELEMENT = ELEMENT * UP ()

ELEMENT = ELEMENT * UP ()

IOFFD = IROW ()

A(IOFFD, IBASIS) = A(IOFFD, IBASIS) + ELEMENT
ENDDO
DO IBASIS = 1, NSPIN

ZSPIN = BASIS(IBASIS)

ELEMENT = 0.5D0 * E

ELEMENT = ELEMENT * DOWN ()

ELEMENT = ELEMENT * DOWN ()

IOFFD = IROW ()

A(IQFFD, IBASIS) = A(IOFFD, IBASIS) + ELEMENT
ENDDO
END

SUBROUTINE ORDER4 (040, 044, A, BASIS, NSPIN)
--- 040 * (SZ)"4 + 044 * [ (S+)"4 + ($-)"4 ]
IMPLICIT DOUBLE PRECISION(A-H, 0O-2)
COMMON /STATE/ SPIN, ZSPIN
DIMENSION A (NSPIN, NSPIN), BASIS(NSPIN)
DO IBASIS = 1, NSPIN
ZSPIN = BASIS{IBASIS)
ELEMENT = 040 * ZSPIN * ZSPIN * ZSPIN * ZSPIN
A{IBASIS, IBASIS) = A(IBASIS, IBASIS) + ELEMENT
ENDDO
DO IBASIS = 1, NSPIN
ZSPIN = BASIS (IBASIS)
ELEMENT = 044
ELEMENT = ELEMENT * UP
ELEMENT = ELEMENT * UP
ELEMENT = ELEMENT * UP
ELEMENT = ELEMENT * UP
IOFFD = IROW {)
A(IOFFD, IBASIS) = A(IOFFD, IBASIS) + ELEMENT
ENDDO
DO IBASIS = 1, NSPIN
ZSPIN = BASIS(IBASIS)
ELEMENT = 044
ELEMENT = ELEMENT * DOWN ()



ELEMENT = ELEMENT * DOWN (

)
ELEMENT = ELEMENT * DOWN () SUBRQUTINE SORT (E, IORDER, N, NMAX)
ELEMENT = ELEMENT * DOWN (} IMPLICIT DOUBLE PRECISION (A-H, 0-2)
IOFFD = IROW () DIMENSION E (NMAX), IORDER (NMAX)
A(IQFFD, IBASIS) = A(IOFFD, IBASIS) + ELEMENT LOGICAL SORTED
ENDDO DOI =1, N
END IORDER(I) =T
ENDDO
SUBROUTINE ZEEMAN X (G, FIELD, A, BASIS, NSPIN) DO I =N+ 1, NMAX
IMPLICIT DOUBLE PRECISION (A-H, 0-Z) TORDER(I) = 0
COMMON /STATE/ SPIN, ZSPIN ENDDO
COMMON /PHYSCONST/ AVOGADRO, BOHR, BOLTZMANN, CO K =N
DIMENSION A(NSPIN, NSPIN), BASIS(NSPIN) SORTED = .FALSE.
DO IBASIS = 1, NSPIN DO WHILE (.NOT. SORTED)
ZSPIN = BASIS(IBASIS) IF (K .LE. 1) THEN
ELEMENT = 0.5D0 * G * CO * FIELD * UP () SORTED = ,TRUE.
IOFFD = IROW () ELSE
A(IOFFD, IBASIS) = A(IOFFD, IBASIS) + ELEMENT K=K-1
ENDDO SORTED = ,TRUE.
DO IBASIS = 1, NSPIN DOI =1, K
2SPIN = BASIS (IBASIS) IF (E(IORDER(I)) .LT. E(ICRDER(I + 1))) THEN
ELEMENT = 0.5D0 * G * CO * FIELD * DOWN () ITEMP = IORDER(I)
IOFFD = IROW () IORDER(I) = IORDER(I + 1)
A(IOFFD, IBASIS) = A(IOFFD, IBASIS) + ELEMENT IORDER(I + 1) = ITEMP
ENDDO SORTED = .FALSE.
END ENDIF
ENDDO
SUBROUTINE ZEEMAN Z (G, FIELD, A, BASIS, NSPIN) ENDIF
IMPLICIT DOUBLE PRECISION (A-H, 0-Z) ENDDO

COMMON /PHYSCONST/ AVOGADRO, BOHR, BOLTZMANN, CO o} EMIN = E(IORDER(N))
DIMENSION A (NSPIN, NSPIN), BASIS(NSPIN) o} DOI=1, N
DO IBASIS = 1, NSPIN C E(I} = E(I) - EMIN
ELEMENT = G * CO * FIELD * BASIS(IBASIS) c WRITE (*, 10) E(I)
A(IBASIS, IBASIS) = A(IBASIS, IBASIS) + ELEMENT c 10 FORMAT (1X, F15.5)
ENDDO C ENDDO
END END
SUBROUTINE MOMENT_X (XMU, V, BASIS, NSPIN) DOUBLE PRECISION FUNCTION THERM_AV (T, E, A, LE, N)
IMPLICIT DOUBLE PRECISION (A-H, 0-2Z) IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
COMMON /STATE/ SPIN, ZSPIN DIMENSION E(N), A(N), LE(N)
DIMENSION XMU(NSPIN), BASIS(NSPIN) EMIN = E(LE(N))
DIMENSION V(NSPIN, NSPIN) SUM1 = 0.0DO
DO IVEC = 1, NSPIN SUM2 = 0.0D0
SUM = 0.0DO DOI =1, N
DO IBASIS = 1, NSPIN J = LE(I)
ZSPIN = BASIS (IBASIS) BF = EXP(-(E(J) - EMIN) / T)
Ul = V(IBASIS, IVEC) SUM1 = SUM1 + A(J) * BF
P = 0.5D0 * UP () SUM2 = SUM2 + BF
U2 = V(IROW (), IVEC) ENDDO
SUM = SUM + U2 * p * Ul TEERM_AV = SUM1 / SUM2
ENDDO END
DO IBASIS = 1, NSPIN
ZSPIN = BASIS (IBASIS) SUBROUTINE SET_PARAMETER (P, IBACK)
Ul = V(IBASIS, IVEC) IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
P = 0.5D0 * DOWN () PARBMETER (NPMAX = &, NAPEXMAX = NPMAX + 1)
U2 = V(IROW (), IVEC) COMMON /HAMILTONIAN/ G, D, E, 040, 044, TIP
SUM = SUM + U2 * p * Ul COMMON /SUBSPACE/ IOPT (NPMAX), NOPT
ENDDO DIMENSION P (NPMAX)
XMU (IVEC) = SUM IF (IBACK .GT. 0) THEN
ENDDO DO I = 1, NOPT
END IF (IOPT(I) .EQ. 1) P(I) =G
IF (IOPT(I) .EQ. 2) P(I) =D
SUBROUTINE MOMENT_Z (ZMU, V, BASIS, NSPIN) IF (IOPT(I) .EQ. 3) P(I) = E
IMPLICIT DOUBLE PRECISION (A-H, 0-Z} IF (IOPT(I) .EQ. 4) P({I) = 040
DIMENSION ZMU(NSPIN), BASIS(NSPIN) IF (IOPT(I) .EQ. S5) P({(I) = 044
DIMENSION V(NSPIN, NSPIN) IF (IOPT(I) .EQ. 6) P(I) = TIP
DO IVEC = 1, NSPIN ENDDO
SUM = 0.0D0 ELSE
DO IBASIS = 1, NSPIN DO I =1, NOPT
V2 = V(IBASIS, IVEC) * V(IBASIS, IVEC) IF (IOPT(I) .EQ. 1) G = P(I)
SUM = SUM + V2 * BASIS(IBASIS) IF (IOPT(I) .EQ. 2) D = P(I)
ENDDO IF (IOPT(I) .EQ. 3) E = P(I)
ZMU(IVEC) = SUM IF (IOPT(I) .EQ. 4) 040 = P(I}
ENDDO IF (IOPT(I) .EQ. 5) 044 = P(I)
END IF (IOPT(I) .EQ. 6) TIP = P(I)
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ENDDO PRINT *, 'VMAX = ', VMAX

ENDIF PRINT *, 'OTOL = ', OTOL
END PRINT *, 'SG = ', {(8G(J), J = 1, NOPT)
. ELSE
SUBROUTINE PARAMETER_CONTROL (P) ICOMMZ = ICOMM2 + 1
/// Nelder-Mead Downhill Simplex Method /// DO J = 1, NOPT
ICOMM1 = 0: Start/Terminate Iteration N P(J) = SIMPLEX (ICOMM2, J)
ICOMM1 = Simplex Initialization ENDDO
ICOMML = Convergence Check & Simplex Reflection RETURN
IcoMM1l Simplex Expansion ENDIF
ICOMM1 = 4: Simplex Contraction ENDIF
ICOMML = 5: Simplex Shrinkage
ICOMML = 10: No Optimization IF (ICOMM1 .EQ. 3) THEN
IMPLICIT DOUBLE PRECISION (A-H, 0-2) C --- STAGE 3 ---
PARAMETER (NPMAX = 6, NAPEXMAX = NPMAX + 1) C SIMPLEX EXPANSION
PARAMETER (ITMAX = 2000) IF (ICOMM2 .EQ. Q) THEN
PARAMETER (ALPHA = 1.0D0O, BETA = 0.25D0, GAMMA = 2.5DO) YPR = YNEW
DIMENSION P (NPMAX), SG(NPMAX) IcoMM2 = 1
COMMON /CRITERIA/ FTOL, OTOL IF (YPR .LE. Y(ILO)) THEN
COMMON /SUBSPACE/ IOPT (NPMAX), NOPT DO J =1, NOPT
COMMON /REV_COMM/ SIMPLEX (NAPEXMAX, NPMAX), Y(NAPEXMAX), P(J) = GAMMA * PR{J) + (1.0D0 - GAMMA) * PBAR(J)
& PR{NPMAX), PBAR{NPMAX), YNEW, YPR, YAV, ENDDO
INDEX {(NAPEXMAX), ICOMM1, ICOMM2, ITER, IHI, INHI, ILO RETURN
LOGICAL ORS ELSE
ORS = .TRUE. ICOMML = 4
ORS = .FALSE. IcCoMM2 = O
ENDIF
IF (NOPT .EQ. 0) THEN ELSE
ICOMM1 = 10 - ICOMM1 IF (YNEW .LT. YPR) THEN
ILO = 1 DO J = 1, NOPT
Y{ILO)} = YNEW SIMPLEX (IHI, J) = P{J)
RETURN ENDDO
ELSE Y(IHI) = YNEW
NAPEX = NOPT + 1 ELSE
ENDIF DO J = 1, NOPT
SIMPLEX (IHI, J) = PR(J)
IF {ICOMM1 .EQ. 0) THEN ENDDO
--- STAGE 0 --- Y(IHI) = YPR
CLEAR COMMUNICATION FLAG & ENDIF
SIMPLEX INITIALIZATION (1/2) ICOMMI = 2
IcomMMl = 1 ICOMM2 = O
IcoMM2 = 1 ENDIF
ITER = 0O ENDIF
IHI = 0
INHI = 0 IF (ICOMM1 .EQ. 4) THEN
ILO = 0 C --- STAGE 4 ---
DO J = 1, NOPT C SIMPLEX CONTRACTION
SIMPLEX (1, J) = P({J) IF (ICOMM2 .EQ. 0) THEN
ENDDO IcomM2 = 1
DELTA = 0.05D0 IF {YPR .GT. Y(INHI)) THEN
DO IAPEX = 2, NAPEX IF (YPR .LT. Y{IKI)) THEN
DO J = 1, NOPT DO J = 1, NOPT
FACTOR = 1.0DC SIMPLEX (IKI, J) = PR(J)
IF (IAPEX .EQ. J + 1) FACTOR = 1.0D0 - DELTA ENDDO
SIMPLEX (IAPEX, J)} = SIMPLEX(l, J) * FACTOR Y(IHI) = YPR
ENDDO ENDIF
ENDDO DO J = 1, NOPT
P(J) = BETA * SIMPLEX(IHI, J} + (1.0D0O - BETA) * PBAR(J}
DO J = 1, NOPT ENDDO
P(J) = SIMPLEX(ICOMM2, J) RETURN
ENDDO ELSE
RETURN DO J = 1, NOPT
ENDIF SIMPLEX (IHI, J) = PR{J)
ENDDO
IF (ICOMM1 .EQ. 1) THEN Y{IHI) = YPR
--- STAGE 1 --- ICOMML = 2
SIMPLEX INITIALIZATION (2/2) ICOMM2 = O
Y(ICOMMZ) = YNEW ENDIF
IF (ICOMM2 .GE. NAPEX) THEN ELSE
ICoOMML = 2 IF (YNEW .LT. Y(IHI)) THEN
ICCMM2 = 0 DO J = 1, NOPT
YAV = 1.0D+100 SIMPLEX (IHI, J) = P(J)
CALL SIMPLEX_CHECK (S8G, SGN2, VMIN, VMAX, INFOX, NOPT) ENDDO
IF (INFOX .EQ. 0) OTOL = 1.0D-6 * VMAX / SQRT(SGN2) Y(IHI) = YNEW

PRINT *, 'SGN2 = ', SGN2 ICOMML = 2
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IcomMz = 0
ELSE
ICoMMl = 5
IcoMmM2 = 0
ENDIF
ENDIF
ENDIF

IF (ICOMM1 .EQ. 5) THEN
--- STAGE 5 ---
SIMPLEX SHRINKAGE
IF (ICOMM2 .EQ. 0) THEN
I=0
DO J = 1, NAPEX
IF (J .NE. ILO) THEN
I=I+1
INDEX(I) = J
ENDIF
ENDDO
ICoMM2 = 1
I = INDEX(ICOMM2)
DO J = 1, NOPT

P(J) = 0.5DO * (SIMPLEX(I, J) + SIMPLEX({ILO, J)

SIMPLEX(I, J) = P(J)

ENDDO
RETURN
ELSE

Y(INDEX{ICOMMZ2)) = YNEW

IF (ICOMM2 .GE. NAPEX - 1) THEN
ICOMML = 2
ICOMMZ = O

ELSE

IcoMM2 = ICOMM2 + 1
I = INDEX (ICOMM2)
DO J = 1, NOPT
P(J) = 0.5D0 * (SIMPLEX(I, J) + SIMPLEX(ILO,
SIMPLEX (I, J)} = P(J)
ENDDO
RETURN
ENDIF
ENDIF
ENDIF

IF (ICOMM1 .EQ. 2) THEN
--~ STAGE 2 ---
CONVERGENCE CHECK & REFLECTION

CALL SIMPLEX_CHECK (SG, SGN2, VMIN, VMAX, INFCX, NOPT)

IF ({INFOX .EQ. 0) .AND. ORS) THEN
YAVO = 0.0DO
DO I = 1, NAPEX
YAVO = YAVO + Y (I)
ENDDO
YAVO = YAVO / NAPEX
IF (YAV - YAVO .LE. OTOL * SGN2) THEN
—--- SIMPLEX ORIENTED RESTART ---
PRINT *, 'ORIENTED RESTART !’
DO J = 1, NOPT
= SIMPLEX(ILO, J)

Y(1) = Y{ILO)
DO IAPEX = 1, NAPEX
DO J = 1, NOPT
SIMPLEX (IAPEX, J) = P(J)
ENDDO
ENDDO
DO IAPEX = 2, NAPEX
J = IAPEX - 1
FACTOR = 0.5D0 * VMIN
IF (SG{(J} .NE. 0.0D0) THEN
FACTOR = FACTOR * DSIGN({1.0D0, SG(J)

ENDIF

SIMPLEX (IAPEX, J) = SIMPLEX (IAPEX, J) + FACTOR
ENDDO
IcoMMl = 1
ICOMM2 = 2

(oo ReNe}

DO J = 1, NOPT
P(J) = SIMPLEX (ICOMMZ2, J)
ENDDO
RETURN
ELSE
YAV = YAVO
ENDIF
ENDIF

e =1
IF (Y(l) .GT. Y(2)) THEN
IHI = 1
INHI = 2
ELSE
IHI = 2
INHI =1
ENDIF
DO I = 1, NAPEX
IF (Y(I) .LT. Y(ILO)) ILO = I
{I) .GT. Y(IHI)) THEN
I = IHI

IF (Y
INH
IHI = I
ELSE
IF (Y(I) .GT. Y(INHI)) THEN
IF (I .NE. IHI) INHI = I
ENDIF
ENDIF
ENDDC
RTOL = 2.0D0 * ABS(Y(IHI) - Y(ILO))
RTOL = RTOL / (ABS(Y(IHI)) + ABS(Y(ILO))}
WRITE (*, 10) ITER, Y(ILO), RTOL,
& (SIMPLEX (ILO, J), J = 1, NOPT)
10 FORMAT (1X, I4, 10(1X, E10.4))

IF (RTOL .LT. FTOL) THEN
ICOMM]1 = ©
RETURN
ENDIF
IF (ITER .EQ. ITMAX) THEN
PRINT *, 'Amoeba exceeding max iterations.'
DO J = 1, NOPT
PRINT *, 'P(', J, ") = ', SIMPLEX(ILO, J
ENDDO
STOP
ICOMML = 0
RETURN
ENDIF
DO J = 1, NOPT
PBAR(J) = 0.0DO
ENDDO
DO I = 1, NAPEX
IF (I .NE. IHI) THEN
DO J = 1, NOPT
PBAR(J) = PBAR(J)} + SIMPLEX(I, J)
ENDDO
ENDIF
ENDDO
DO J = 1, NOPT
PBAR(J) = PBAR(J) / NOPT
ENDDO
ITER = ITER + 1
DO J = 1, NOPT

P{J) = (1.0D0 + ALPHA) * PBAR(J) - ALPHA * SIMPLEX{IHI,

PR(J) = P(J}
ENDDO
ICOMML = 3
IcoMmM2 = 0
RETURN
ENDIF

PRINT *, 'STACK IN PARAMETER CONTRCL !'
STOP
END

SUBROUTINE SIMPLEX CHECK (SG, SGN2, VMIN, VMAX,
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BEvaluation of Simplex Gradient and Diameters
Ref. C. T. Kelly, SIAM J. Optim. 10(1l), 43-55 (1999).
IMPLICIT DOUBLE PRECISION (A-H, 0-Z)
PARAMETER (NPMAX = 6, NAPEXMAX = NPMAX + 1)
COMMON /REV_COMM/ SIMPLEX (NAPEXMAX, NPMAX), Y(NAPEXMAX},
& PR (NPMAX), PBAR(NPMAX), YNEW, YPR, YAV,
& INDEX (NAPEXMAX), ICOMM1, ICOMM2, ITER, IHI, INHI, ILO
DIMENSION SG{NPMAX)
DIMENSION V(NOPT, NOPT), VF(NOPT, NOPT), VNORM(NOPT)
DIMENSION SGRAD({NOPT), DELF(NOPT), WORK(4 * NOPT), IWORK(NOPT)
DIMENSION IPIV(NOPT), BERR(NOPT), DUMMY1 (NOPT), DUMMYZ2 (NOPT)
CHARACTER EQUED
VMIN = 1.0D+100
VMAX = 0.0D0
IVEC = 0
DO I =1, NOPT + 1
IF (I .NE. ILO) THEN
IVEC = IVEC + 1
VNORM(IVEC) = 0.0D0
DO J = 1, NOPT
V(J, IVEC) = SIMPLEX(I, J) - SIMPLEX(ILO, J)
VNORM(IVEC) = VNORM(IVEC) + V(J, IVEC) * V{(J, IVEC)
ENDDO
VNORM (IVEC) = SQRT (VNORM(IVEC)
IF (VMIN .GT. VNORM(IVEC)) VMIN = VNORM(IVEC)
IF (VMAX .LT. VNORM(IVEC)) VMAX = VNORM(IVEC)
DELF (IVEC) = Y(I) - Y(ILO)
ENDIF
ENDDO
RCOND = 0.0D0
FERR = 0.0DC

INFO = 0

CALL DGESVX ('N', 'T', NOPT, 1, V, NOPT, VF, NOPT, IPIV, EQUED,
& DUMMY1, DUMMY2, DELF, NOPT, SGRAD, NOPT, RCOND,

& FERR, BERR, WORK, IWORK, INFO}

IF (INFO .NE. 0) PRINT *, 'DGESVX INFO:', INFO
SGN2 = 0.0D0
DO J = 1, NOPT

S$G(J) = SGRAD(J)

SGN2 = 8SGN2 + SG(J)} * SG(J)
ENDDO
PRINT *, ' GRAD:', SQRT(SGN2), RCOND, VMAX
END

Following routines are a part of ORTHPOL.
Ref. Walter Gautschi, ACM Transactions on Mathematical
Software, Vol.20, No.l, Pages 21-62 (1994).

subroutine dlob(n,dalpha,dbeta,dleft,dright,dzerc,dweigh,
*ierr,de,da,db)

This is a double-precision version of the routine lob.

double precision dleft,dright,depsma,dp0l,dpOr,dpll,dplr,dpmlil,
*dpmlr, ddet,dalpha(*},dbeta(*),dzero(*),dweigh(*),de(*),da(*},
*db (*),dlmach

The arrays dalpha,dbeta,dzero,dweigh,de,da,db are assumed to have
dimension n+2.

depsma=dlmach (3)

depsma is the machine double precision.

npl=n+l

np2=n+2

do 10 k=1,np2
da (k) =dalpha (k)
db (k) =dbeta (k)

10 continue

20

c
¢ Thi
c

100

105

110
120

dp01=0.d0
dp0r=0.d0
dpll=1.d0
dplr=1.d0
do 20 k=1,npl
dpmll=dp0l
dp0l=dpll
dpmlr=dpOr
dpOr=dplr
dpll=(dleft-da(k})*dp0l-db (k) *dpmll
dplr={(dright-da(k)) *dpOr-db (k) *dpmlr
continue
ddet=dp11*dp0r-dplr*dp0l
da(np2)={dleft*dpll*dpOr-dright*dplr*dp0l)/ddet
db(np2)=(dright-dleft) *dpll*dplr/ddet
call dgauss (np2,da,db,depsma,dzero,dweigh,iexrr,de)
return
END

subroutine dgauss{n,dalpha,dbeta,deps,dzero,dweigh,ierr,de)
s is a double-precision version of the routine gauss.

double precision dalpha, dbeta,deps,dzero, dweigh,de,dp,dg,dr,
*ds,dc,df,db
dimension dalpha(n},dbeta(n),dzero(n),dweigh(n),de(n)
if(n.1lt.1l) then
ierr=-1
return
end if
ierr=0
dzero(l)=dalpha(l)
if(dbeta(l).1t.0.d0) then
ierr=-2
return
end if
dweigh({l)=dbeta(l
if (n.eq.1l) return
dweigh{1)=1.d0
de(n)=0.d0
do 100 k=2,n
dzero (k)=dalpha (k)
if(dbeta(k).1lt.0.d40}) then
ierr=-2
return
end if
de (k-1)=dsqrt (dbeta(k))
dweigh(k)=0.d0
continue
do 240 1=1,n
j=0
do 110 m=1,n
if(m.eq.n) goto 120
if(dabs(de(m)).le.deps* (dabs(dzero(m))+dabs(dzero(m+l))))
* goto 120
continue
dp=dzero{l)
if{m.eq.l) goto 240
if{j.eq.30) goto 400
J=j+1
dg=(dzero (1+1)-dp) / (2.d0*de (1)
dr=dsqrt{(dg*dg+1.d0)
dg=dzero{m)-dp+de (1) / (dg+dsign (dr, dg)
ds=1.d0

do 200 ii=1,mml
i=m-ii
df=ds*de (i)
db=dc*de (i)
if(dabs (df).lt.dabs{dg)) goto 150
de=dg/df
dr=dsqrt (dc*dc+1.d0)



de (i+1)=df*dr
ds=1.d0/dr
dc=dc*ds
goto 160
ds=df/dg
dr=dsqrt(ds*ds+1.d0)
de (i+1)=dg*dr
dc=1.d0/dr
ds=ds*dc
dg=dzero(i+l) -dp
dr={dzero(i)-dg) *ds+2.d0*dc*db
dp=ds*dr
dzero (i+1l)=dg+dp
dg=dc*dr-db
df=dweigh(i+1)
dweigh (i+1l)=ds*dweigh{i)+dc*df
dweigh (i)=dc*dweigh (i) -ds*df
continue
dzero(l)=dzero(l)-dp
de (1)=dg
de (m}=0.4d0
goto 105
continue
do 300 ii=2,n
i=ii-1
k=i
dp=dzero(i)
do 260 j=ii,n
if(dzero(j).ge.dp)
k=3
dp=dzero(j)
continue
if{k.eq.i) goto 300
dzero(k)=dzero(i)
dzero(i)=dp
dp=dweigh (i)
dweigh(i)=dweigh (k)
dweigh (k) =dp
continue
do 310 k=1,n
dweigh(k)=dbeta(1l)*dweigh{k) *dweigh{k
continue
return
ierr=1
return
END

150

30

160

40
200

240 50

goto 260

60
260

300

310

400

subroutine drecur(n,ipoly,dal,dbe,da,db,iderr)
c
c This is a double-precision version of the routine
c

recur.

external dgamma

double precision dal,dbe,da,db,dlmach,dlmach, dkml, dalpbe,dt,

*dlga,dal2, dbe2, dgamma

dimension da{n),db(n)

if(n.lt.1) then
iderr=3
return

end if

dlmach=dlog (dlmach{2})

iderr=0

do 10 k=1,n
da(k)=0.d0

continue

if(ipoly.eq.1)
db(1)=2.d0
if (n.eq.l)
do 20 k=2,n

dkml=dble (k-1}
db(k)=1.d0/(4.40-1.d0/ (dkml*gkml)

continue
return

else if(ipoly.eq.2)
da(l)=.5d0

70

10
then

return

20

then

db(1)=1.d0
if(n.eq.1)
do 30 k=2,n
da (k)=.5d0
dkml=dble (k-1)
db (k)=.25d0/(4.80-1.d0/ {(dkml*dkml)
continue
return
else if{ipoly.eq.3) then
1)=4.d0*datan(1.d0)
n.eq.1) teturn

return

db(
if(
db (
if(n.eq.2)
do 40 k=3,n
db (k)=.25d0
continue
return
else if({ipoly.eqg.4) then
db{1)=2.d0*datan(1.d0)
if{n.eq.1l) return
do 50 k=2,n
db (k)=.25d0
continue
return
else if({ipoly.eq.5) then
db(1l)=4.d0*datan(1.d0)
da{l)=.5d0
if(n.eq.1)
do 60 k=2,n
db (k)=.25d0
continue
return
else if(ipoly.eq.6)
if{dal.le.~1.d0 .or.
iderr=1
return
else
dalpbe=dal+dbe
da(1)=(dbe-dal)/ (dalpbe+2.d0)
dt={dalpbe+1.d0) *dlog{2.d0)+dlga(dal+1.d0)+dlga (dbe+1.d0)-
dlga (dalpbe+2.d0)
if(dt.gt.dlmach) then
iderr=2
db (1)=dlmach (2
else
db (1)=dexp (dt)
end if
if(n.eq.1l) return
dalz=dal*dal
dbe2=dbe*dbe
da(2)=(dbe2~dal2)/{{dalpbe+2.d0) * (dalpbe+4.d0})
db(2)=4.d0* (dal+1.d0) * (dbe+1.d0)/ ((dalpbe+3.d0) * (dalpbe+
2.d0) **2)
if(n.eq.2)
do 70 k=3,n
dkml=dble (k-1)
da(k)=.25d0* (dbe2-dal2)/ (dkml*dkml* (1.d40+.5d0*dalpbe/dkml)
*(1.d0+.530* (dalpbe+2.d0) /dkml))
db (k)=.25d0* (1.d40+dal/dkml)* (1.d0+dbe/dkml}* (1.d0+dalpbe/
dkml)/ ((1.d0+.5d0* (dalpbe+1.d0)/dkml)* (1.d0+.5d0* (dalpbe
-1.d0)/dkml) * (1.d0+.5d0*dalpbe/dkml) **2
continue
return
end if
else if(ipoly.eq.7)
if(dal.le.-1.d0)
iderr=1
return
else

return

return

then

dbe.le.-1.d40) then

return

then
then

y=dal+1l.4d0

y=dgamma (dal+1.40,iderr
db (1)=dlmach(2)
return

da(l

db (1

if (iderr.eq.2)

if(n.eq.1)

do 80 k=2,n
dkml=dble{k-1)
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da(k})=2.d0*dkml+dal+1.40
db {k)=dkml* (dkml+dal)
80 continue
return
end if
else if(ipoly.eq.8) then
db(1)=dsqrt(4.d0*datan{1.d0}}
if(n.eq.1l) return
do 90 k=2,n
db (k)=.5d0*dble (k-1)
920 continue
return
else
iderr=4
end if
RETURN
END

double precision function dlga{dx)
double precision dbnum,dbden,dx,dlmach,dc,dp,dy,dt,ds
dimension dbnum({8),dbden(8)

This routine evaluates the logarithm of the gamma function by a
combination of recurrence and asymptotic approximation.

The entries in the next data statement are the numerators and
denominators, respectively, of the quantities B[16]/{16*15),
B(14]/(14*13),..., B[2)/(2*1), where B[2n] are the Bernoulli
numbers.

data dbnum/-3.617d3,1.d0,-6.9142,1.40,-1.4d0,1.d0,-1.40,1.d0/,
* dbden/1.224d5,1.56d2,3.6036d5,1.188d3,1.68d3,1.26d3,3.6d2,
*1.2d81/

The quantity dprec in the next statement is the number of decimal
digits carried in double-precision floating-point arithmetic.

dprec=-aloglO(sngl{dlmach(3))}
dc=.5d0*dlog(8.d0*datan(1.d0))
dp=1.d0

dy=dx

y=sngl (dy)

The quantity yO0 below is the threshold value beyond which asymptotic
evaluation gives sufficient accuracy; see Eq. 6.1.42 in M. Abramowitz

and I.A. Stegun,Handbook of Mathematical Functions''. The constants
are .12118868... = 1n(10)/19 and .05390522... = 1n([B[20]|/190)/19.

yO0=exp(.121189*dprec+.053905)
10 if(y.gt.y0) goto 20

dp=dy*dp

dy=dy+1.d0

y=sngl (dy)

goto 10

20 dt=1.4d0/(dy*dy)

o

The right-hand side of the next assignment statement is B(18]/(18%17).

ds=4.3867d4/2.44188d5
do 30 i=1,8
ds=dt*ds+dbnum (i) /dbden(i)

30 continue
dlga={dy-.5d0) *dlog (dy)-dy+dc+ds/dy-dlog{dp}
return
END

double precision function dgamma (dx,iderr)

This evaluates the gamma function for real positive dx, using the
function subroutine dlga.

double precision dx,dlmach,dlmach,dt,dlga
dlmach=dlog (dlmach(2))
iderr=0
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dt=dlga (dx)

if (dt.ge.dlmach) then
iderr=2
dgamma=dlmach (2}
return

else
dgamma=dexp (dt)
return

end if

RETURN

END

DOUBLE PRECISION FUNCTION DIMACH(I)
INTEGER I

DOUBLE-PRECISION MACHINE CONSTANTS

DIMACH( 1) = B**{(EMIN-1), THE SMALLEST POSITIVE MAGNITUDE.
DIMACH( 2) = B**EMAX*(l - B**(-T)), THE LARGEST MAGNITUDE.
DIMACH( 3) = B**(-T), THE SMALLEST RELATIVE SPACING.
DIMACH( 4) = B**(1-T), THE LARGEST RELATIVE SPACING.
DIMACH( 5) = LOGl0({B}

INTEGER SMALL(2)
INTEGER LARGE(2)
INTEGER RIGHT(2)
INTEGER DIVER(2)
INTEGER LOG10 (2}
INTEGER SC, CRAY1(38), J
COMMON /D9MACH/ CRAY1
SAVE SMALL, LARGE, RIGHT, DIVER, LOG10, SC
DOUBLE PRECISION DMACH(S)
EQUIVALENCE (DMACH(1),SMALL(1
EQUIVALENCE (DMACH(Z2),LARGE(1l
EQUIVALENCE (DMACH(3),RIGHT{(1}
EQUIVALENCE (DMACH(4),DIVER(1)
EQUIVALENCE (DMACH(5),LOG10 (1)
THIS VERSION ADAPTS AUTOMATICALLY TOC MOST CURRENT MACHINES.
RIMACH CAN HANDLE AUTO-DOUBLE COMPILING, BUT THIS VERSION OF
DIMACH DOES NOT, BECAUSE WE DO NOT HAVE QUAD CONSTANTS FOR
MANY MACHINES YET.
TO COMPILE ON OLDER MACHINES, ADD A C IN COLUMN 1
ON THE NEXT LINE
DATA SC/0/
AND REMOVE THE C FROM COLUMN 1 IN ONE OF THE SECTIONS BELOW.
CONSTANTS FOR EVEN OLDER MACHINES CAN BE OBTAINED BY
mail netlib@research.bell-labs.com
send oldlmach from blas
PLEASE SEND CORRECTIONS TO dmg OR ehg@bell-labs.com.

))
)
)
)
)

MACHINE CONSTANTS FOR THE HONEYWELL DPS 8/70 SERIES.

DATA SMALL(1),SMALL(2) / 0402400000000, 0000000000000 /

DATA LARGE(1),LARGE(2) / 0376777777777, 0177177771177 /

DATA RIGHT(l),RIGHT{2) / 0604400000000, 0000000000000 /

DATA DIVER(1),DIVER{2) / 0606400000000, 0000000000000 /

DATA LOG10(1),LOG10(2) / 0776464202324, 0117571775714 /, SC/987/
MACHINE CONSTANTS FOR PDP-11 FORTRANS SUPPORTING

32-BIT INTEGERS.

DATA SMALL(1),SMALL(2) / 8388608, 0/

DATA LARGE(1),LARGE(2) / 2147483647, -1/

DATA RIGHT(1),RIGHT(2) / 612368384, o/

DATA DIVER(1),DIVER(2) / 620756992, 0/

DATA LOG10(1),LOGL0(2) / 1067065498, -2063872008 /, SC/987/
MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.

DATA SMALL(1),SMALL(2) / 0000040000000, 0000000000000 /

DATA LARGE(1),LARGE(2) / 0377777777177, 0777117771177 /

DATA RIGHT({1},RIGHT(2) / 0170540000000, 0000000000000 /

DATA DIVER(1},DIVER{2) / 0170640000000, 0000000000000 /

DATA LOG10(1),LOGl0{2} / 0177746420232, 0411757177572 /, SC/987/

ON FIRST CALL, IF NO DATA UNCOMMENTED, TEST MACHINE TYPES.
IF (SC .NE. 987) THEN

DMACH (1) = 1.D13

IF ( SMALL (1) .EQ. 1117925532



.AND. SMALL(2) .EQ. -448790528) THEN
*** TEEE BIG ENDIAN ***

SMALL(1) = 1048576
SMALL(2) = O

LARGE (1) = 2146435071
LARGE (2) = -1

RIGHT (1) = 1017118720
RIGHT (2} = 0

DIVER(1l) = 1018167296
DIVER(2) = 0

LOG1l0O(1) = 1070810131
LOG10(2) = 1352628735

ELSE IF ( SMALL(2) .EQ. 1117925532
-AND. SMALL(1l) .EQ. -448790528) THEN
*** TEEE LITTLE ENDIAN ***

SMALL (2)

RIGHT (1
DIVER(2

LOG10(2
LOGl0(1) =

= 1048576

0
2146435071

-

1017118720
0
1018167296
0
1070810131
1352628735

ELSE IF ( SMALL(1l) .EQ. -2065213935
.AND. SMALL{2) .EQ. 10752) THEN
*** VAX WITH D_FLOATING ***

SMALL(1l) =

RIGHT
RIGHT
DIVER(1l) =
DIVER(2) =
LOGLO(1) =
LOGl0(2) =

128

=0

-32769

-1

9344

0

9472

0
546979738
-805796613

ELSE IF ( SMALL{1) .EQ. 1267827943
AND. SMALL(2) .EQ. 704643072) THEN
“+% IBM MAINFRAME ***

SMALL(l] =
SMALL
LARGE
LARGE
RIGHT
RIGHT (2
DIVER(1l} =
DIVER(2) =
LOGl0 (1) =
LOG10(2) =

(2
()
(2) =
(1)
)

1048576

0
2147483647
-1
856686592
0
873463808
o
1091781651
1352628735

ELSE IF { SMALL(l) .EQ. 1120022684
.AND. SMALL(2) .EQ. -448790528) THEN

**+* CONVEX C-

SMALL(1l) =
SMALL(2)
LARGE (1) =
LARGE (2) =
RIGHT

1 ok

1048576

=0

2147483647
-1
1019215872
0
1020264448
0
1072907283

= 1352628735
SMALL(1l) .EQ. 815547074

LAND. SMALL(2) .EQ. 58688) THEN
*** VAX G-FLOATING ***

16

0
-32769
-1
15552
0
15568
0

*

10

20

LOG10(1) = 1142112243
LOG10(2) = 2046775455
ELSE
DMACH(2) = 1.D27 + 1
DMACH(3) = 1.p27
LARGE (2) = LARGE (2} - RIGHT(2)

IF (LARGE(2) .EQ. 64 .AND. SMALL(2) .EQ. O) THEN

CRAY1(1l) = 67291416
DO 10 J =1, 20

CRAY1(J+1) = CRAY1(J) + CRAY1(J)

CONTINUE

CRAY1(22) = CRAY1(21) + 321322

DC 20 J = 22, 37

CRAY1 (J+1) = CRAY1(J) + CRAY1({(J)

CONTINUE

IF (CRAY1(38) .EQ. SMALL(1)

4kk CRAY ***
CALL IIMCRY(SMALL(1), J,
SMALL(2) = 0

CALL IIMCRY(LARGE(1l), J,

CALL IIMCRY{LOG10(1l), J,

CALL IIMCRY({LOG10(2), J,
ELSE

WRITE (*, 9000)

STOP 779

END IF

CALL I1MCRY(LARGE(2), J,
CALL IIMCRY(RIGHT(1l), J,
RIGHT (2} = 0
CALL IIMCRY(DIVER(1l), J,
DIVER(2) = 0

{

(

ELSE
WRITE (*, 9000)
sTOP 779
END IF
END IF
SC = 987
END IF
SANITY CHECK
IF (DMACH(4) .GE. 1.0D0O} STOP 778
IF (I .LT. 1 .OR. I .GT. 5) THEN

THEN

8285, 8388608,

24574, 16777215,

0, 16777215, 16
16291, 8388608,

16292, 8388608,

16383, 10100890,

0, 16226447, 90

[
16777215)
777214)

0}

0}

8715215)
01388)

WRITE(*,*) 'DIMACH(I): I =',I,' is out of bounds.'

STOP

END IF
DIMACH = DMACEK (I}
RETURN

9000 FORMAT (/' Adjust DIMACH by uncommenting data statements'/

*' appropriate for your machine.')

* /* Standard C source for DIMACH -- remove the * in column 1 */
*#include <stdio.h>
*#include <float.h>
*#include <math.h>
*double dlmach_(long *i)

-

-

L S

{

switch(
case
case

i){
¢ return DBL_MIN;
return DBL_MAX;

case
case
}

fprintf(stderr, "invalid argument:

return DBL_EPSILON;
return loglO (FLT_RADIX);

*j
1
2: 1

case 3: return DBL_EPSILON/FLT_RADIX:
q:
5

dlmach(%2d)\n",

*i):

exit(1l}; return 0; /* some compilers demand return values */

RETURN
END
SUBROUTINE I1MCRY(A, Al, B, C, D)

**%* SPECIAL COMPUTATION FOR OLD CRAY MACHINES ****

INTEGER A, Al, B, C, D
Al = 16777216*B + C

A = 16777216*Al + D
RETURN

END






