Title	Ligand－Field Theoretical Studies on Magnetic Properties of Manganese and Cobalt Mononuclear Complexes
Author（s）	Baba，Haruyuki
Citation	大阪大学，2012，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／26862
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／

Osaka University

Ligand-Field Theoretical Studies on Magnetic Properties of Manganese and Cobalt Mononuclear Complexes

HARUYUKI BABA
Division of Applied Chemistry
Graduate School of Engineering
Osaka University

Ligand－Field Theoretical Studies on Magnetic Properties of Manganese and Cobalt Mononuclear Complexes

（マンガンおよびコバルト単核錯体の磁性の配位子場理論による研究）

HARUYUKI BABA

Division of Applied Chemistry
Graduate School of Engineering
Osaka University

Preface

The study presented in this dissertation was carried out under the guidance of Associate Professor Motohiro Nakano at Division of Applied Chemistry, Graduate School of Engineering, Osaka University.

The objective of the present study is to fully analyze the physical properties of a series of mononuclear manganese(III) and cobalt(II) complexes on the basis of ligand-field theory aiming to provide a way to regulate electronic states of single metal centers as functional synthons in construction of higher assembled systems, e.g. nanomagnets. The author hopes that these results and findings contribute to the rational design of the paramagnetic polynuclear complexes.

Haruyuki Baba

Division of Applied Chemistry
Graduate School of Engineering
Osaka University
2-1 Yamadaoka, Suita, Osaka, 565-0871, JAPAN

Contents

Page
Part I. General Introduction
Chapter 1. Background 1
Chapter 2. Fundamentals of Electronic States of Transition-Metal Complexes 3
2.1. General Hamiltonian for Free ions 3
2.2. Russell-Saunders Coupling in Free Ions 4
2.3. Interelectronic Repulsion 5
2.4. Spin-Orbit Coupling 7
2.5. Effect of Crystal Field 8
2.6. Ligand-Field Theory 11
2.7. Molecular Structure and Extended Hückel Method 11
2.8. Angular Overlap Model and Ligand-Field Parameters 13
2.9. Spin Hamiltonian 14
2.10. Symmetry Lowering of Ligand Field and Zero-Field Splitting 16
2.11. General Theory of Energy Calculation for a Given Electron Configuration 18
2.12. Nephelauxetic Effect 19
Chapter 3. Objective and Plan of the Present Study 20
References for Part I 22
Part II. Magnetostructural Correlation of Manganese(III) Complexes [Mn(cyclam) $\left.\mathbf{X}_{2}\right]^{+}$with Strong Axial Ligands
Chapter 4. Introduction to Manganese(III) Complexes [Mn(cyclam) $\left.\mathbf{X}_{2}\right]^{+}$ 24
Chapter 5. Experimental for $\left[\mathbf{M n}(\mathbf{c y c l a m}) \mathbf{X}_{2}\right]^{+}$ 26
5.1. Synthesis of Complexes 26
5.2. X-ray Structure Determination 29
Chapter 6. Results and Discussion on [Mn(cyclam) $\left.\mathbf{X}_{2}\right]^{+}$ 30
6.1. Molecular Structure of Complexes 30
6.2. Magnetic Properties 37
6.3. Magnetic Anisotropy Analysis on the Basis of AOM 41
Chapter 7. Conclusion of [Mn(cyclam) $\left.\mathbf{X}_{2}\right]^{+}$ 46
References for Part II 47
Part III. Magnetic and Spectroscopic Characterizations of Cobalt(II/III) Complexes Consisting of Soft-Scorpionate Ligands
Chapter 8. Introduction to Cobalt(II/III) Complexes Consisting of Soft-Scorpionate Ligands 50
Chapter 9. Experimental for $\left[\mathrm{Co}^{\mathrm{II}}(\mathbf{T b z})_{2}\right]$ and $\left[\mathrm{Co}^{\mathrm{II} / 11 \mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]^{0 /+}$ 52
9.1. Synthesis of a Ligand and Complexes 52
9.2. X-ray Structure Determination 55
Chapter 10. Results and Discussion on $\left[\mathrm{Co}^{\mathrm{II}}(\mathbf{T b z})_{2}\right]$ and $\left[\mathrm{Co}^{\mathrm{II} / \mathrm{II}}\left(\mathbf{T m}^{\mathrm{Me}}\right)_{2}\right]^{0 /+}$ 57
10.1. Syntheses 57
10.2. Molecular Structure of Complexes 58
10.3. X-ray Photoelectron Spectra 64
10.4. Magnetic Properties 65
10.5. Electronic Absorption Spectra 67
Chapter 11. Conclusion of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ and $\left[\mathrm{Co}^{\mathrm{II} / \mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]^{0 /+}$ 71
References for Part III 72
Summary 75
List of Publications 77
Acknowledgments 78
AppendixFitting Program for Magnetic Susceptibility

Part I. General Introduction

Chapter 1. Background

Self-assembled metal complexes and their functionalities have been extensively studied during the past decades and new field of metal-organic framework (MOF) is now opening practical applications of nanopore space as functional adsorbents, hydrogen-storage materials, specific catalysts, guest-dependent magnets, and so on [1]. In order to develop and improve functionalities of metal-assembled systems, it is essential to get better understanding of single-metal centers as functional elements. In the present dissertation, single-metal centers for assembling nanomagnets including single-molecule magnets (SMMs) and single-chain magnets (SCMs) were closely investigated so as to give criteria in rational design of magnetic anisotropy and electronic states via chemical modification of coordination environments.

Single-molecule magnets are discrete molecules, which behave as molecular-size permanent magnets at low temperature, and most of them belong to a class of paramagnetic polynuclear complexes [2]. Potential huge capacity of magnetic information storage attracts a lot of attention and SMM is expected to bring about nanodevice applications such as quantum computer and molecular memory [3]. The origin of SMM behavior is the combination of large magnetic anisotropy and giant spin quantum number. Among SMMs consisting of first-row transition metal ions, manganese(III) and cobalt(II) ions are most commonly used owing to their magnetic anisotropy. The first SMM was a dodecanuclear manganese acetate complex discovered at the beginning of the 1990s [4]. The polynuclear manganese-based SMMs are most popular and the magnetic anisotropy is attributable to the Jahn-Teller stretched octahedral manganese(III) centers of high-spin (3d) ${ }^{4}$ configuration. On the other hand, the first cobalt-based SMM was reported in 2002 and consists of four cobalt(II) ions which possess octahedral coordination environment with high-spin (3d) ${ }^{7}$ electron configuration [5].

The orbital angular momentum in an octahedral cobalt(II) ion is not fully quenched and causes large magnetic anisotropy. In this manner, there are many factors affecting magnetic anisotropy in single metal ions [6], and it is worthwhile to elucidate the electric structure of mononuclear complexes and the associated magnetic anisotropies in order to grasp the character of synthons for SMMs [7].

In the next chapter, theoretical prerequisites including outline of ligand-field theory and its AOM (angular-overlap model) formulation are summarized, followed by a short chapter on the objective and composition of the dissertation.

Chapter 2. Fundamentals of Electronic States of Transition-Metal Complexes

In order to understand magnetic properties of transition metal complex, it is necessary to obtain the wavefuntions and energies by solution of following Schrödinger equation:

$$
\begin{equation*}
\hat{\boldsymbol{H}} \psi=\mathrm{E} \psi \tag{I-1}
\end{equation*}
$$

Then, the complete Hamiltonian operator is expressed as:

$$
\begin{equation*}
\hat{\boldsymbol{H}}=\sum_{i=1}^{n}\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{i}}\right]+\sum_{i<j}^{n} \frac{e^{2}}{r_{i j}}+\sum_{i=1}^{n} \zeta\left(r_{i}\right) \boldsymbol{l}_{i} \cdot \boldsymbol{s}_{i}+\boldsymbol{V}_{\mathrm{cf}}+\boldsymbol{\mu} \cdot \boldsymbol{H} \tag{I-2}
\end{equation*}
$$

where, the first term is free ion Hamiltonian including the kinetic energy of electrons and electrostatic interaction of the electrons with nuclei, the second term is interelectronic repulsion, the third term is spin-orbit coupling, the fourth term is ligand-field potential, and the fifth and last terms are interaction of electron and magnetic field. Here $\hbar=h / 2 \pi, h$ is Planck constant, m is electron mass, Z is charge of the nucleus, e is elementary charge, and ε_{0} is vacuum permittivity. It is very complicated problem to solve the equation. Now, perturbation method is employed to the approximate solution. As first step, the unperturbed Hamiltonian operator for free ions is featured. Next, the spin-orbit coupling, crystal field potential, spin-orbit coupling, and the effect of magnetic field as small perturbation are treated. Then, related phenomena, theory, and methods are introduced sequentially.

2.1. Genaral Hamiltonian for Free Ions [8]

The unperturbed Hamiltonian for free ions is expressed as:

$$
\begin{equation*}
\hat{\boldsymbol{H}}=\sum_{i=1}^{n}\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r_{i}}\right] \tag{I-3}
\end{equation*}
$$

using spherical polar coordinates, the wavefunctions are expressed as:

$$
\begin{equation*}
\Psi_{n l m}=R_{n l}(r) Y_{l}^{m}(\theta, \varphi) \tag{I-4}
\end{equation*}
$$

where, $R_{n l}(r)$ is the radial distribution function and $Y_{l}^{m}(\theta, \varphi)$ the spherical harmonics. Here, n is the principal quantum number, l the quantum number of orbital angular momentum of the electron, and m the magnetic quantum number. n is a positive integer, l takes on integral value from 0 to $n-1$, and m takes on integral value from $-l$ to l. the orbital multiplicity for $3 d$ orbitals is $2 l+1=5$, and therefore angular dependent part, spherical harmonic $Y_{l}^{m}(\theta, \varphi)$ corresponding to this multiplicity is:

$$
\begin{align*}
& Y_{2}^{0}(\theta, \varphi)=\sqrt{\frac{1}{2 \pi}} \cdot \sqrt{\frac{5}{8}}\left(3 \cos ^{2} \theta-1\right) \\
& Y_{2}^{ \pm 1}(\theta, \varphi)=\sqrt{\frac{1}{2 \pi}} \cdot \sqrt{\frac{15}{4}} \sin \theta \cos \theta \cdot e^{ \pm \varphi} \tag{I-5}\\
& Y_{2}^{ \pm 2}(\theta, \varphi)=\sqrt{\frac{1}{2 \pi}} \cdot \sqrt{\frac{15}{16}} \sin ^{2} \theta \cdot e^{ \pm i 2 \varphi}
\end{align*}
$$

From Next section, the further behavior of multielectron system is explained and the splitting of $3 d$-orbitals in the case of transition ion placed in a crystal field described later.

2.2. Russell-Saunders Coupling in Free Ions [8]

The energy levels for free ion of n electron system are determined by the total orbital angular momentum quantum number L and total spin angular quantum number $S . L$ is the largest sum of orbital angular momentum m_{l} of individual electrons, and zero or a positive integer. S is the largest sum of spin angular momentum m_{l} of individual electrons, and zero or a positive integer or half-integer. The values M_{L} and M_{S}, which are allowed for L and S, respectively, are:

$$
\begin{aligned}
& M_{L}=L,(L-1), \cdots,-L \\
& M_{s}=S,(S-1), \cdots,-S
\end{aligned}
$$

A state for specific L and S is defined as term ${ }^{(2 S+1)} \mathrm{X}$, where X corresponds to L as follows:

$$
\begin{array}{cccccccc}
L & 0 & 1 & 2 & 3 & 4 & 5 & \cdots \\
\mathrm{X} & \mathrm{~S} & \mathrm{P} & \mathrm{D} & \mathrm{~F} & \mathrm{G} & \mathrm{H} & \cdots
\end{array}
$$

The quantity $(2 S+1)$ is multiplicity of the term. Here, it is necessary to explain the stability of the term when the energies levels for each term are ordered. Thus, the energy for interelectronic repulsion is considered.

2.3. Interelectronic Repulsion [9-10]

In order to solve interelectronic interactions for two electrons, matrix elements of following type are evaluated:

$$
\begin{equation*}
\langle a b| \frac{e^{2}}{r_{12}}|c d\rangle \tag{I-6}
\end{equation*}
$$

Here, a, b, c, and d refer to each population of d-orbitals. Thus, $1 / r_{12}$ is:

$$
\begin{equation*}
\frac{1}{r_{12}}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{4 \pi}{2 n+1} \cdot \frac{r_{<}^{n}}{r_{3}^{n+1}} \cdot Y_{n}^{m}\left(\theta_{1}, \varphi_{1}\right) \cdot Y_{n}^{m^{*}}\left(\theta_{2}, \varphi_{2}\right) \tag{I-7}
\end{equation*}
$$

where $r_{>}$denotes the shorter distance from the origin to the points i and j. The spherical harmonic is expanded as:

$$
\begin{equation*}
Y_{l}^{m}(\theta, \varphi)=\sqrt{\frac{1}{2 \pi}} P_{l}^{m}(\cos \theta) e^{i m \varphi} \tag{I-8}
\end{equation*}
$$

Here, $P_{l}^{m}(\cos \theta)$ is associated Legendre function, and the two functions for two electron system are defined as:

$$
\begin{align*}
& c^{n}\left(l m_{l}, l^{\prime} m_{l}^{\prime}\right)=\sqrt{\frac{4 \pi}{2 n+1}} \int_{0}^{\infty} P_{n}^{m_{l}-m_{l}^{\prime}}(\cos \theta) P_{n}^{m_{l}}(\cos \theta) P_{n}^{m_{l}^{\prime}}(\cos \theta) \sin \theta d \theta \tag{I-9}\\
& R^{n}(a b c d)=e^{2} \int_{0}^{\infty} \int_{0}^{\infty} \frac{r_{c}^{n}}{r_{>}^{n+1}} R_{a}^{1} R_{b}^{2} R_{c}^{1} R_{d}^{2} r_{1}^{2} r_{2}^{2} d r_{1} d r_{2}
\end{align*}
$$

Using these functions the matrix elements for interelectronic repulsion is expressed as:

$$
\begin{align*}
\langle a b| \frac{e^{2}}{r_{12}}|c d\rangle= & \delta\left(m_{s}^{a}, m_{s}^{c}\right) \delta\left(m_{s}^{b}, m_{s}^{d}\right) \delta\left(m_{s}^{a}, m_{s}^{c}\right) \delta\left(m_{l}^{a}+m_{l}^{b}, m_{l}^{c}+m_{l}^{d}\right) \\
& \sum_{n=0}^{\infty} c^{n}\left(l^{a} m_{l}^{a}, l^{c} m_{l}^{c}\right) c^{n}\left(l^{b} m_{l}^{d}, l^{b} m_{l}^{d}\right) R^{n}(a b c d) \tag{I-10}
\end{align*}
$$

Because the direct products of two d-orbitals do not have fifth or more rotational symmetry, the sum
over the fifth or more n is zero and reduced to $n=0,2,4$.
When $a b=c d$, the matrix element include two important functions:

$$
\begin{equation*}
\langle a b| \frac{e^{2}}{r_{12}}|a b\rangle=\langle a(1) b(2)| \frac{e^{2}}{r_{12}}|a(1) b(2)\rangle-\langle a(1) b(2)| \frac{e^{2}}{r_{12}}|b(1) a(2)\rangle=J(a, b)-K(a, b) \tag{I-11}
\end{equation*}
$$

where $J(a, b)$ is a Coulomb integral and $K(a, b)$ is an exchange integral. Using these integrals total energy of an n electron determinant is expressed as:

$$
\begin{equation*}
E(\Psi)=\sum_{n} h_{n}+\sum_{m<n} J_{m, n}-\sum_{m<n} K_{m, n} \delta\left(s_{m}, s_{n}\right) \tag{I-12}
\end{equation*}
$$

Where h_{n} is one electron energy and the second and third terms correspond to the energy of interelectronic repulsion. In order to evaluate these two integrals, they are regarded as radial parameters and the term of radial function is replaced as:

$$
\begin{equation*}
F^{n}=R^{n}(a b c d) \tag{I-13}
\end{equation*}
$$

Furthermore these parameters are expressed as:

$$
\begin{align*}
& F_{0}=F^{0}, F_{2}=F^{2} / 49, F_{4}=F^{4} / 441 \tag{I-14}\\
& A=F_{0}-49 F_{4}, B=F_{2}-5 F_{4}, C=35 F_{4}
\end{align*}
$$

Here, F_{0}, F_{2} and F_{4} are Condon-Shortley parameters and A, B, and C are Racah parameters. Racah parameters are most useful because the energy level separation between the same spin multiplicities for d-electron configuration is expressed as a function of the parameter B alone.

In the case of two or more d-electrons, it is necessary to derive resultant angular momentum for all electrons. For this, following couplings are considered:

$$
s_{i} \cdot s_{j}, \quad l_{i} \cdot l_{j}, \quad s_{i} \cdot l_{i}
$$

When the coupling of spin angular momenta above is the largest value, the term is most stable and each spin becomes parallel (Hund's first rule). When the coupling of orbital angular momenta above is the largest value, the term is also most stable and the orbital vectors become parallel (Hund's second rule). The spin-orbit coupling above explained later. Here total angular momentum quantum number J about (3d) ${ }^{n}$ electron configuration is expressed as the vector sum of L and S and this
coupling is called Russell-Saunders coupling or $L S$ coupling. In the case of Russell-Saunders coupling, these resultant angular momenta are determined under relative magnitude:

$$
s_{i} \cdot s_{j}>l_{i} \cdot l_{j}>s_{i} \cdot l_{i}
$$

According to these procedure and Pauli exclusion principle, the several terms of free ion are determined.

2.4. Spin-Orbit Coupling [8,11]

In order to describe energy level of spin-orbit coupling for one-electron system, a new quantum number j is defined as:

$$
\begin{equation*}
\boldsymbol{j}=\boldsymbol{s}+\boldsymbol{l} \tag{I-15}
\end{equation*}
$$

The operator of spin-orbit coupling for one electron system is expressed as:

$$
\zeta\left(r_{i}\right) l_{i} \cdot s_{i}
$$

where $\zeta\left(r_{i}\right)$ is the radial component of the wavefunction. The energy $E(n, l, s, j)$ of spin-orbit coupling is described as:

$$
\begin{equation*}
E(n, l, s, j)=\frac{\zeta}{2}[j(j+1)-l(l+1)-s(s+1)] \tag{I-16}
\end{equation*}
$$

where ζ is spin-orbit coupling constant for one electron and a positive value. The operator of spin-orbit coupling for multielectron system is given by the sum of operator for one-electron system:

$$
\begin{equation*}
\hat{\boldsymbol{H}}=\sum_{i=1}^{n} \zeta\left(r_{i}\right) \hat{\boldsymbol{l}}_{i} \cdot \hat{\boldsymbol{s}}_{i} \tag{I-17}
\end{equation*}
$$

The energy $E(J, L, S)$ of spin-orbit coupling for muiltielectron system is described as:

$$
\begin{equation*}
E(J, L, S)=\frac{\zeta}{2}[J(J+1)-L(L+1)-S(S+1)] \tag{I-18}
\end{equation*}
$$

where $J=L+S, L+S-1, \cdots,|L-S|$ and the energy separation between J and $(J+1)$ levels are given by $\lambda(J+1) . \lambda$ and ζ are related :

$$
\begin{equation*}
\lambda= \pm \frac{\zeta}{2 S} \tag{I-19}
\end{equation*}
$$

ζ is positive value while the sign of λ changes depending on d-electron configuration. When d-electrons fill into the shells more than half full, λ is negative value. For this, the order of energy-level splitting for d^{n} configuration is inverted against d^{10-n} configuration.

2.5. Effect of Crystal Field [8,12]

Considering the crystal field of MX_{6} type complexes, ligand X^{-}can be regarded as negative point charge, $-Z^{\prime} e$. The electrons surrounding a central atom are subjected to $V_{\text {cf }}$ electric field from the six point charges. The result given by:

$$
\begin{equation*}
\boldsymbol{V}_{\mathrm{cf}}=\sum_{i=1}^{6} \boldsymbol{v}_{i}=\sum_{i=1}^{6} \frac{Z^{\prime} e^{2}}{4 \pi \varepsilon_{0} r_{i j}} \tag{I-20}
\end{equation*}
$$

Here, $r_{i j}$ indicates the distance from the i-th charge to the point (x, y, z). This field V_{cf} is Coulomb field from surrounding ions in ionic crystal, and corresponds to the part of electron-nucleus or electron-electron interactions. In preceding section, the eigenfunctions of the unperturbed Hamiltonian for free ions were obtained. When this complex possesses octahedral structure, the crystal field is represented as $\boldsymbol{V}_{\text {oct }}$. Then, the energy of the crystal field contributing d-orbitals is expanded as following spherical harmonic when it is regarded as perturbation to the free ions:

$$
\begin{equation*}
\boldsymbol{V}_{\text {oct }}=\frac{Z^{\prime} e^{2}}{4 \pi \varepsilon_{0}} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{4 \pi}{2 n+1} \cdot \frac{r_{<}^{n}}{r_{>}^{n+1}} \cdot Y_{n}^{m}\left(\theta_{j}, \varphi_{j}\right) \cdot Y_{n}^{m^{*}}\left(\theta_{i}, \varphi_{i}\right) \tag{I-21}
\end{equation*}
$$

where $r_{>}$denotes the electron-nucleus distance and $r_{<}$denotes electron-ligand distance. For simplicity the two distances $r_{>}$and $r_{<}$replaced to r and a, individually, and each spherical harmonics were expressed as:

$$
\begin{align*}
& q_{n m}=\sqrt{\frac{4 \pi}{2 n+1}} \frac{Z^{\prime} e}{4 \pi \varepsilon_{0} a^{n+1}} Y_{n}^{m^{*}}\left(\theta_{i}, \varphi_{i}\right) \\
& C_{m}^{n}=\sqrt{\frac{4 \pi}{2 n+1}} Y_{n}^{m}(\theta, \varphi) \tag{I-22}
\end{align*}
$$

Thus Eq. I-21 is expressed as:

$$
\begin{equation*}
V_{\mathrm{oct}}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} r^{k} q_{n m} C_{m}^{n} \tag{I-23}
\end{equation*}
$$

The polar coordinates $\left(\theta_{i}, \varphi_{i}\right)$ of six charges are $(\pi / 2,0),(\pi / 2, \pi / 2),(0, \varphi),(\pi / 2, \pi),(\pi / 2,3 \pi / 2)$, and (π, φ), individually. Because $V_{\text {oct }}$ belongs to $a_{1 \mathrm{~g}}$ representation of O_{h} group, the spherical harmonics of expansion also belongs to a_{lg} and so n is zero or even. Furthermore, $Y_{2}{ }^{m}(\theta, \varphi)$ with odd n is not $a_{1 \mathrm{~g}}$ representation. Thus, Eq. I-21 is:

$$
\begin{equation*}
V_{\text {oct }}(r, \theta, \varphi)=\frac{3 Z^{\prime} e^{2}}{2 \pi \varepsilon_{0} a}+\frac{7 Z^{\prime} e^{2} r^{4}}{8 \pi \varepsilon_{0} a}\left[C_{0}^{4}+\sqrt{\frac{5}{14}}\left(C_{4}^{4}+C_{-4}^{4}\right)\right]+\frac{3 Z^{\prime} e^{2} r^{6}}{16 \pi \varepsilon_{0} a}\left[C_{0}^{6}+\sqrt{\frac{7}{2}}\left(C_{4}^{6}+C_{-4}^{6}\right)\right]+\cdots \tag{I-24}
\end{equation*}
$$

The first term increases all orbital energy for free ions and the second or later terms give the crystal-field splitting. Because the direct products of two d-orbitals do not have fifth or more rotational symmetry, the fifth or more integral of $\langle d| \hat{V}_{\text {oct }}|d\rangle$ is zero. For simplicity, the mixture of the wavefunctions which has distinct n each other is neglected, and the wavefunction in $V_{\text {oct }}$ is expressed as a linear combination of $3 d$ orbitals $\left(\varphi_{32 m}\right)$:

$$
\begin{equation*}
\varphi=\sum_{m=-2}^{2} a_{m} \varphi_{32 m} \tag{I-25}
\end{equation*}
$$

$V_{\text {oct }}$ is regarded as perturbation for the Hamiltonian of Eq. I-3 and substituted to the following equation:

$$
\begin{equation*}
E=\langle\varphi| \hat{\boldsymbol{H}}+\hat{\boldsymbol{V}}_{\mathrm{oct}}|\varphi\rangle \tag{I-26}
\end{equation*}
$$

With variation method about a_{m}, the following simultaneous equation is obtained:

$$
\begin{equation*}
\left(\varepsilon_{3}-E\right) a_{m}+\sum_{m^{\prime}=-2}^{2}\langle m| \hat{\boldsymbol{V}}_{\mathrm{oct}}\left|m^{\prime}\right\rangle a_{m^{\prime}}=0 \tag{I-27}
\end{equation*}
$$

In order to solve the determinant from this equation, the following elements are displaced:

$$
\begin{align*}
& \langle 2| \hat{V}_{\text {oct }}|2\rangle=\langle-2| \hat{V}_{\text {oct }}|-2\rangle=D q \\
& \langle 1| \hat{V}_{\text {oct }}|1\rangle=\langle-1| \hat{V}_{\text {oct }}|-1\rangle=-4 D q \tag{I-28}\\
& \langle 0| \hat{V}_{\text {oct }}|0\rangle=6 D q \\
& \langle 2| \hat{V}_{\text {oct }}|-2\rangle=\langle-2| \hat{V}_{\text {oct }}|2\rangle=5 D q
\end{align*}
$$

Here,

$$
\begin{align*}
& D=\frac{35 Z^{\prime} e^{2}}{16 \pi \varepsilon_{0} a^{5}} \tag{I-29}\\
& q=\frac{2 e^{2} \overline{r^{4}}}{105}
\end{align*}
$$

$\overline{r^{4}}$ is the mean fourth power radius for the $3 d$ radial function $R_{3 d}(r)$. The determinant from Eq. I-27 is expressed as:

$$
\left|\begin{array}{ccccc}
\varepsilon_{3}+D q-E^{\prime} & 0 & 0 & 0 & 5 \mathrm{Dq} \tag{I-30}\\
0 & \varepsilon_{3}-4 D q-E^{\prime} & 0 & 0 & 0 \\
0 & 0 & \varepsilon_{3}+6 D q-E^{\prime} & 0 & 0 \\
0 & 0 & 0 & \varepsilon_{3}-4 D q-E^{\prime} & 0 \\
5 \mathrm{Dq} & 0 & 0 & 0 & \varepsilon_{3}+D q-E^{\prime}
\end{array}\right|=0
$$

Here,

$$
\begin{equation*}
E^{\prime}=E-\frac{3 Z^{\prime} e^{2}}{2 \pi \varepsilon_{0} a} \tag{I-31}
\end{equation*}
$$

This determinant can be easily reduced to a 2-by-2 determinant and three 1-by-1 determinants, and two eigenvalues $\varepsilon_{3}+\varepsilon_{M}+6 \mathrm{Dq}$ and $\varepsilon_{3}+\varepsilon_{\mathrm{M}}-4 \mathrm{Dq}\left(\varepsilon_{\mathrm{M}}=3 Z^{\prime} e^{2} / 2 \pi \varepsilon_{0} a\right)$ are obtained. The former eigenvalue is doubly degenerated and the latter is triply degenerated. As a result, the five d-orbitals which split into $t_{2 \mathrm{~g}}$ and e_{g}-orbitals ($10 D q$) are obtained:

$$
\begin{align*}
& e_{g}: d_{z^{2}}=\varphi_{320}=R_{32}(r) \sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right) \\
& d_{x^{2}-y^{2}}=\frac{1}{\sqrt{2}}\left[\varphi_{322}+\varphi_{32-2}\right]=R_{32}(r) \sqrt{\frac{15}{16 \pi}} \sin ^{2} \theta \cos 2 \varphi \\
& t_{2 g}: d_{y z}=\frac{1}{\sqrt{2} i}\left[\varphi_{321}-\varphi_{32-1}\right]=R_{32}(r) \sqrt{\frac{15}{4 \pi}} \sin \theta \cos \theta \sin \varphi \tag{I-32}\\
& d_{x z}=\frac{1}{\sqrt{2}}\left[\varphi_{321}+\varphi_{32-1}\right]=R_{32}(r) \sqrt{\frac{15}{4 \pi}} \sin \theta \cos \theta \cos \varphi \\
& d_{x y}=\frac{1}{\sqrt{2} i}\left[\varphi_{322}-\varphi_{32-2}\right]=R_{32}(r) \sqrt{\frac{15}{4 \pi}} \sin ^{2} \theta \sin 2 \varphi
\end{align*}
$$

Furthermore, these wavefunctions on Cartesian coordinate are:

$$
\begin{align*}
& d_{z^{2}}=R_{32}(r) \sqrt{\frac{5}{16 \pi}} \frac{3 z^{2}-r^{2}}{r^{2}} \\
& d_{x^{2}-y^{2}}=R_{32}(r) \sqrt{\frac{15}{16 \pi}} \frac{x^{2}-y^{2}}{r^{2}} \\
& d_{y z}=R_{32}(r) \sqrt{\frac{15}{4 \pi}} \frac{y z}{r^{2}} \tag{I-33}\\
& d_{x z}=R_{32}(r) \sqrt{\frac{15}{4 \pi}} \frac{x z}{r^{2}} \\
& d_{x y}=R_{32}(r) \sqrt{\frac{15}{4 \pi}} \frac{x y}{r^{2}}
\end{align*}
$$

2.6. Ligand Field Theory [8,12]

According to crystal field theory, the splitting of d-orbitals into $t_{2 \mathrm{~g}}$ and e_{g}-orbitals ($10 D q$) are obtained. However, there are some experimental facts against crystal-field theory: CO ligand without negative charge affords large the energy-level separation and OH^{-}ligand affords lower than $\mathrm{H}_{2} \mathrm{O}$ and so on. In order to explain these facts, it is necessary to develop from the theory to ligand-field theory based on molecular-orbital theory. The ligand-field splitting is also given as 10 Dq and the magnitude is available from spectroscopic data and the series for each ligand is arranged in order of the measure of $D q$:

$$
\mathrm{CO}>\mathrm{CN}>\mathrm{NO}_{2}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{ONO}>\mathrm{NCS}>\mathrm{OH}>\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}
$$

This alignment is known to spectrochemical series. By ligand-field theory, the interactions of d-orbitals in metal ion and ligand orbitals can be classified as σ-orbital and π-orbital interactions. The evaluation of these interactions is explained later.

2.7. Molecular Structure and Extended Hückel Method [13]

Extended Hückel method is one of the molecular orbital calculations which lead to powerful information about the electronic structure of metal complexes. As basic assumption, the Hamiltonian of one-molecular orbital φ_{1} does not correctly include electrostatic interaction and consists of only simple one-electron operator. Thus, the Hamiltonian of all electrons $\hat{\boldsymbol{H}}$ is expressed as:

$$
\begin{equation*}
\hat{\boldsymbol{H}}=\hat{\boldsymbol{h}}(1)+\hat{\boldsymbol{h}}(2)+\cdots \hat{\boldsymbol{h}}(N) \tag{I-34}
\end{equation*}
$$

Because $\boldsymbol{h}(N)$ is the Hamiltonian which corresponds to the orbital energy obtained from N-th electron, $\hat{\boldsymbol{H}}$ is the sum of the Hamiltonian of $\boldsymbol{h}(N)$. This eigenfunction of Hamiltonian Ψ is expressed as Slater-type determinant:

$$
\begin{equation*}
\Psi=\left|\varphi_{1}(1) \varphi_{1}(2) \cdots \varphi_{n-1}(N-1) \varphi_{n}(N)\right| \tag{I-35}
\end{equation*}
$$

The energy of total electrons E is afforded as the sum of occupied-orbital energy, but not reliable value compared with DFT or ab initio calculations because the Hamiltonian of one-molecular orbital φ_{1} does not correctly include electrostatic interaction. For this reason, Extended Hückel calculation is suitable to visualize the delocalized molecular orbitals on determined molecular structures at low calculation cost, but not to optimize molecular geometry. The energy of total electrons E was diagonalized according to the determination of the matrix elements of $\boldsymbol{h}(N)$ using the three following step:

1. Overlap integrals $S_{p q}(p \neq q)$ are calculated by LCAO-MO method using Slater-type orbital.
2. Coulomb integral α_{q} is evaluated as follows using valence state ionization potential I_{q} obtained experimentally:

$$
\begin{equation*}
\alpha_{q}=-I_{q} \tag{I-36}
\end{equation*}
$$

3. Resonance integral $\beta_{p q}(p \neq q)$ is evaluated as following Wolfsberg-Helmholz equation:

$$
\begin{equation*}
\beta_{p q}=K S_{p q}\left(\alpha_{p}+\alpha_{q}\right) / 2 \tag{I-37}
\end{equation*}
$$

where, K is constant and usually adopted for 1.75 .
Using atomic coordinates of complexes obtained from X-ray crystallography, specific energies of one-electron derived from d-orbitals can be determined. It enables to evaluate the strength of ligand-field by comparing this result to the ligand-field theory, perturbational phenomenology.

2.8. Angular Overlap Model and Ligand-Field Parameters [8,14]

Overlap integral can be expressed as cross product of the terms attributed to atomic distance and depending on angle (configuration). Angular-dependant terms are not influenced by the types of atoms because these terms are occupied by only relative configuration of atomic orbitals. Considering each atomic orbital on two atoms, the orbital energies E of one-electron which takes account of orbital overlap follow as:

$$
\begin{align*}
& E_{1}=\alpha_{1}+\left(\beta_{12}-S_{12} \alpha_{2}\right)^{2} /\left(\alpha_{1}-\alpha_{2}\right) \tag{I-38}\\
& E_{2}=\alpha_{2}+\left(\beta_{12}-S_{12} \alpha_{1}\right)^{2} /\left(\alpha_{2}-\alpha_{1}\right)
\end{align*}
$$

If β is approximated as $K=2$, the energies are:

$$
\begin{align*}
& E_{1}=\alpha_{1}+\left(S_{12} \alpha_{2}\right)^{2} /\left(\alpha_{1}-\alpha_{2}\right) \tag{I-39}\\
& E_{2}=\alpha_{2}+\left(S_{12} \alpha_{1}\right)^{2} /\left(\alpha_{2}-\alpha_{1}\right)
\end{align*}
$$

These perturbation energies (difference of E_{i} and α_{i}) are allowed to be proportional to the squared overlap integral.

Angular overlap model (AOM) determines these angular-independent components of overlap integral as empirical parameters and expresses orbital interaction of general molecular structure without symmetry restriction. If a vector connecting the atoms has the length r, and direction θ, ϕ on the local coordinate system of two atoms, the overlap integral is expressed as the equation by separation of variables: $S_{12}=S(r) F_{12}(\theta, \phi)$. If the two atoms system regards as the coordination bond metal (M) - ligand (L), the energy shifts $\left(\Delta E_{\mathrm{M}} \equiv E_{\mathrm{M}}-\alpha_{\mathrm{M}}, \Delta E_{\mathrm{L}} \equiv E_{\mathrm{L}}-\alpha_{\mathrm{L}}\right)$ of d-orbital and ligand orbital by the forming of coordinate bond are:

$$
\begin{align*}
& \Delta E_{\mathrm{M}}=\left(S_{\mathrm{ML}} \alpha_{\mathrm{L}}\right)^{2} /\left(\alpha_{\mathrm{M}}-\alpha_{\mathrm{L}}\right)={F_{\mathrm{ML}}}^{2}(\theta, \varphi)\left(S \alpha_{\mathrm{L}}\right)^{2} /\left(\alpha_{\mathrm{M}}-\alpha_{\mathrm{L}}\right) \\
& \Delta E_{\mathrm{L}}=\left(S_{\mathrm{ML}} \alpha_{\mathrm{M}}\right)^{2} /\left(\alpha_{\mathrm{M}}-\alpha_{\mathrm{L}}\right)={F_{\mathrm{ML}}}^{2}(\theta, \varphi)\left(S \alpha_{\mathrm{M}}\right)^{2} /\left(\alpha_{\mathrm{L}}-\alpha_{\mathrm{M}}\right) \tag{I-40}
\end{align*}
$$

When all angular independent terms are replaced with e_{λ}, these equations are expressed as:

$$
\begin{align*}
& \Delta E_{\mathrm{M}}=e_{\lambda} F_{\mathrm{ML}}^{2} \tag{I-41}\\
& \Delta E_{\mathrm{L}}=e_{\lambda}^{\prime} F_{\mathrm{ML}}^{2}
\end{align*}
$$

These differences of energy become maximum when the configuration takes as maximum orbital overlap, $F_{\mathrm{ML}}{ }^{2}=1$. The parameters e_{λ} and $e_{\lambda}{ }^{\prime}$ are interpreted as maximum stabilization or unstabilization parameters obtained by the maximum overlap. λ shows local symmetry about types of orbital overlap, $\sigma, \pi, \delta \cdots$. Appling these parameters to metal complexes, ligand-field parameters e_{σ}, e_{π} can be distinguishable if the types of d-orbital and ligand-orbital overlap take whether σ-symmetry or π-symmetry. By the estimation of these parameters, the influence of ligand field in the case of no high-symmetry complexes can be discussed generally.

2.9. Spin Hamiltonian [15]

The spin magnetic moment μ_{S} of electron is given by:

$$
\begin{equation*}
\boldsymbol{\mu}_{S}=-g_{e}\left(\frac{e \hbar}{2 m c}\right) \boldsymbol{S} \tag{I-42}
\end{equation*}
$$

where g_{e} is electron g factor and c is speed of light in vacuum. Here, Bohr magneton μ_{B} is defined as:

$$
\begin{equation*}
\mu_{\mathrm{B}}=\frac{e \hbar^{2}}{2 m c} \tag{I-43}
\end{equation*}
$$

The orbit magnetic moment $\boldsymbol{\mu}_{L}$ of electron is given by:

$$
\begin{equation*}
\boldsymbol{\mu}_{L}=-\left(\frac{e \hbar}{2 m c}\right) \boldsymbol{L} \tag{I-44}
\end{equation*}
$$

The energy E of electron in magnetic field \boldsymbol{H} is written by:

$$
\begin{equation*}
E=-\boldsymbol{\mu} \cdot \boldsymbol{H}=\mu_{\mathrm{B}}\left(g_{\mathrm{e}} \boldsymbol{S}+\boldsymbol{L}\right) \cdot \boldsymbol{H} \tag{I-45}
\end{equation*}
$$

Thus, the energy levels split into $(2 S+1)$ and $(2 L+1)$ levels. This is the first order Zeeman effect.
The magnetic properties of atom or ion depend on its ground state. Only Zeeman terms are not enough to describe the magnetic property because the complexes have spin-orbit coupling. The Hamiltonian is described as:

$$
\begin{equation*}
\hat{\boldsymbol{H}}=-\lambda(\boldsymbol{L} \cdot \boldsymbol{S})+\mu_{\mathrm{B}}\left(g_{\mathrm{e}} \boldsymbol{S}+\boldsymbol{L}\right) \cdot \boldsymbol{H} \tag{I-46}
\end{equation*}
$$

For further consideration, it is necessary to derive spin Hamiltonian. When ($2 L+1$) orbital states on lowest energy level of multiplicity split in crystal, the orbital wavefunctions are defined as ψ_{0}, $\dot{\psi}_{1}, \cdots, \psi_{n}$ in the order of increasing energy and $(2 S+1)$ spin states as $\phi_{s}, \phi_{s+1}, \cdots, \phi_{s}$ in the same way. Here, the wavefunction Ψ for arbitrary level is expressed as:

$$
\begin{equation*}
\Psi=\sum_{n, m} a_{n m} \psi_{n} \phi_{m} \tag{I-47}
\end{equation*}
$$

ψ_{n} is assumed to orthogonalize up to all ligand field on true Hamiltonian, and the Hamiltonian $\boldsymbol{W}_{L S}=\lambda(\hat{\boldsymbol{L}} \cdot \hat{\boldsymbol{S}})$ for spin-orbit coupling and Zeeman energy \boldsymbol{W}_{0} are regarded as perturbation. Thus, the Hamiltonian is expressed as:

$$
\begin{equation*}
\hat{\boldsymbol{H}}^{\prime}=\boldsymbol{W}_{L S}+\boldsymbol{W}_{0} \tag{I-48}
\end{equation*}
$$

The Hamiltonian for ligand-field is defined as $\hat{\boldsymbol{H}}_{\mathrm{c}}$ and total Schrödinger equation is:

$$
\begin{equation*}
\left(\hat{\boldsymbol{H}}_{\mathrm{c}}+\hat{\boldsymbol{H}}^{\prime}\right) \Psi=E \Psi \tag{I-49}
\end{equation*}
$$

Here, the eigenenergies for $\hat{\boldsymbol{H}}_{\mathrm{c}}$ are defined as $E_{0}, E_{1}, \cdots, E_{n}$ in the order of increasing energy and:

$$
\begin{equation*}
\langle n| \hat{\boldsymbol{H}}^{\prime}\left|n^{\prime}\right\rangle=E_{n} \delta_{n n^{\prime}} \tag{I-50}
\end{equation*}
$$

The Schrödinger equation above is multiplied by ψ_{n} and integrated as follows:

$$
\begin{equation*}
\sum_{n^{\prime}, m}\langle n| \hat{\boldsymbol{H}}^{\prime}\left|n^{\prime}\right\rangle a_{n^{\prime} m} \phi_{m}=\left(E-E_{n}\right) \sum_{m} a_{n m} \phi_{m} \tag{I-51}
\end{equation*}
$$

Here, E is considered in the case of $\phi_{0}(n=0)$ and anything else $(n \neq 0)$ separately. When $n=0$, Eq. I - 51 is written as:

$$
\begin{equation*}
\sum_{n^{\prime}, m}\langle 0| \hat{\boldsymbol{H}}^{\prime}\left|n^{\prime}\right\rangle a_{n^{\prime} m} \phi_{m}=\left(E-E_{n}\right) \sum_{m} a_{0 m} \phi_{m} \tag{I-52}
\end{equation*}
$$

Because the left-hand member also includes spin wavefunctions for any states but ground state, Eq. $\mathrm{I}-51$ in the case of $n \neq 0$ is employed in order to rewrite the above equation. First, E in the case of $n=$ 0 is approximated as E_{0}, because Zeeman energy is much less than $\left(E-E_{0}\right)$. When the information of only ground state is considered (only $n^{\prime}=0$), Eq. I-52 is organized:

$$
\begin{equation*}
\sum_{m} a_{n m} \phi_{m}=\frac{\langle n| \hat{\boldsymbol{H}}^{\prime}|0\rangle}{E_{0}-E_{n}} \sum_{m} a_{0 m} \phi_{m} \quad(n>1) \tag{I-53}
\end{equation*}
$$

n of Eq. I-53 is replaced n^{\prime} and substituted to Eq. I-51. For simplicity, n^{\prime} of calculated equation is replaced n again, and following equation is obtained:

$$
\begin{equation*}
\left[\langle 0| \hat{\boldsymbol{H}}^{\prime}|0\rangle+\sum_{n \neq 0} \frac{\langle 0| \hat{\boldsymbol{H}}^{\prime}|n\rangle\langle n| \hat{\boldsymbol{H}}^{\prime}|0\rangle}{E_{0}-E_{n}}\right] \sum_{m} a_{0 m} \phi_{m}=\left(E_{0}-E_{n}\right) \sum_{m} a_{0 m} \phi_{m} \tag{I-54}
\end{equation*}
$$

Therefore, the effective Hamiltonian including up to second-order perturbation is defined as effective spin Hamiltonian $\widetilde{\boldsymbol{H}}$:

$$
\begin{equation*}
\widetilde{\boldsymbol{H}}=\langle 0| \hat{\boldsymbol{H}}^{\prime}|0\rangle+\sum_{n \neq 0} \frac{\langle 0| \hat{\boldsymbol{H}}^{\prime}|n\rangle\langle n| \hat{\boldsymbol{H}}^{\prime}|0\rangle}{E_{0}-E_{n}} \tag{I-55}
\end{equation*}
$$

Here the spin wavefunction of ground state is:

$$
\begin{equation*}
\sum a_{0 m} \phi_{m}=\Psi_{0 s} \tag{I-56}
\end{equation*}
$$

The Schrödinger equation including spin function alone is explained as:

$$
\begin{equation*}
\widetilde{\boldsymbol{H}} \Psi_{0 s}=\left(E-E_{0}\right) \Psi_{0 s} \tag{I-57}
\end{equation*}
$$

The effective spin Hamiltonian $\widetilde{\boldsymbol{H}}$ gives Zeeman energy. Next section, the magnetic property of complex by contribution of spin Hamiltonian is explained.

2.10. Symmetry Lowering of Ligand Field and Zero-Field Splitting [8,11,15]

In order to evaluate spin Hamiltonian, Eq. I-46 is substituted to Eq. I-55 and following equation is obtained:

$$
\begin{equation*}
\widetilde{\boldsymbol{H}}=g_{\mathrm{e}} \mu_{\mathrm{B}} \boldsymbol{S} g_{\mathrm{e}}(1-\lambda A) \boldsymbol{H}-\lambda^{2} \boldsymbol{S} \boldsymbol{S} \boldsymbol{S}-\mu_{\mathrm{B}}^{2} \boldsymbol{H} \boldsymbol{A} \boldsymbol{H} \tag{I-58}
\end{equation*}
$$

where Λ is a symmetric traceless tensor:

$$
\begin{equation*}
\Lambda_{\mu \nu}=\sum_{n \neq 0} \frac{\langle 0| \boldsymbol{L}_{\mu}|n\rangle\langle n| \boldsymbol{L}_{v}|0\rangle}{E_{0}-E_{n}} \quad(\mu, v=x, y, z) \tag{I-59}
\end{equation*}
$$

If $\lambda=0$, the first term of Eq. I-58 is expressed as Zeeman energy for free ion. The second term is spin self-energy. The third term is neglected because the term gives little effect to spin energy.

Take for example of octahedral manganese(III) complexes, the symmetry reduction of the complexes occurs when different ligands coordinate to each sites. If axial ligand is different to equatorial ligand, the symmetry reduces from O_{h} to $D_{4 \mathrm{~h}}$. Under this environment, a ${ }^{5} E_{2 \mathrm{~g}}$ ground state splits to ${ }^{5} A_{1 g}$ and ${ }^{5} B_{1 g}$. The ${ }^{5} B_{1 g}$ ground state, which is still magnetically isotropic, is admixed with excited states by spin-orbit coupling to occur the splitting of the ${ }^{5} B_{1 g}$ ground state. This splitting is phenomenologically described by the zero-field splitting because this splitting is prefer to some directions in the absence of an external field. This zero-field splitting can be expressed as the second term of Eq. I-58. For simplicity, the equation is:

$$
\begin{equation*}
\hat{\boldsymbol{H}}_{\mathrm{ZF}}=\boldsymbol{S} \widetilde{D} \boldsymbol{S} \tag{I-60}
\end{equation*}
$$

When the main axes of tensor are x, y, and z, this Hamiltonian can also be explicitly rewritten as:

$$
\begin{equation*}
\boldsymbol{S} \widetilde{D} \boldsymbol{S}=D\left[S_{z}-S(S+1) / 3\right]+E\left(S_{x}^{2}-S_{y}^{2}\right) \tag{I-61}
\end{equation*}
$$

where D is uniaxial and E is rhombic zero-field splitting parameter, they are correlated with the main value of $\widetilde{D} ; D_{u u}(u=x, y, z)$ as follows:

$$
\begin{align*}
& D=-3 D_{z z} / 2 \\
& E=\left|D_{x x}-D_{y y}\right| / 2 \tag{I-62}
\end{align*}
$$

Since trans $-\mathrm{ML}_{4} \mathrm{X}_{2}$ type complexes are allowed to have axial distortion and no distortion to $x y$-direction, rhombic axis zero-field splitting parameter E is zero. The term of zero-field splitting identifies the splitting of states belonging to the same S multiplet and different value $M \mathrm{~s}$, which leads to a preferential axis. Taking the example of low-spin trans $-\mathrm{Mn}^{\mathrm{II}} \mathrm{L}_{4} \mathrm{X}_{2}$ complex $(S=1)$, the splitting $|D|$ between $M \mathrm{~s}= \pm 1$ and $M \mathrm{~s}=0$ levels occurs. On the other hand, high-spin trans $-\mathrm{Mn}^{\mathrm{II}} \mathrm{L}_{4} \mathrm{X}_{2}$ complex ($S=2$) gives the splitting $4|D|$ totally, which includes the energy gap of $3|D|$, and $|D|$ between $M \mathrm{~s}= \pm 2, M \mathrm{~s}= \pm 1$ and $M \mathrm{~s}=0$, respectively. For $D>0$ the anisotropy is of easy-plane type and gives $M \mathrm{~s}=0$ ground state while $D<0$ the anisotropy is of easy-axis type and gives $M \mathrm{~s}= \pm S$ ground state.

In order to estimate the value of zero-field splitting parameter from the result of magnetic susceptibility, energy eigenvalue and eigenvector are determined from diagonalization of $\boldsymbol{H}_{\mathrm{ZF}}$ with Zeeman term. Based on these eigenvalue and eigenvector, the simulation of magnetization curve is performed from the expectation, which is calculated by the statistical averaging and further powder averaging, of spin component to an external field direction. From this simulation, the model parameters D, g (Landé factor), and TIP (temperature-independent paramagnetism) are optimized and determined at once to fit the observed data. This optimization program axfit.f was put as Appendix I [16-21].

2.11 General Theory of Energy Calculation for a Given Electron Configuration

Molecular orbital of one-electron is not enough to describe d-electron states of metal complexes because the d-electron takes over the feature from free atom dominated by Hund's rule. Thus, interelectronic repulsion is essential to describe the d-electron of metal complexes. In the case of manganese(III) complexes which possess d^{4} electron configurations, 210 electron configurations are - adopted for basic functions. Then, the interelctronic repulsion (Racah parameter B, C), spin-orbit coupling ζ, and Zeeman interaction introduce into the Hamiltonian as one-electron operator of ligand-field splitting. The diagonalization of this Hamiltonian enables to determine the all spin-orbit levels and the magnetic dependency.

2.12 Nephelauxetic Effect [8,9]

Compared to free transition ion, the interelectronic repulsion of the complexes is reduced. The electron clouds of d-orbitals in transition metal ion expand when a transition metal forms complex. Then, the interelectric repulsion is weakened and this phenomenon is referred to as nephelauxetic (cloud-expanding) effect. When the interelectronic repulsion is weakened, the d-orbitals interact with ligand orbitals covalently and the d-electron and ligand electron delocalize. This effect is shown by the ratio β :

$$
\begin{equation*}
\beta=B / B_{0} \tag{I-63}
\end{equation*}
$$

Here B_{0} is a Racah parameter of free ion. B is available from spectroscopic data and the series for each ligand is arranged in order of the measure of B :

$$
\mathrm{F}>\mathrm{H}_{2} \mathrm{O}>\mathrm{NH}_{3}>\mathrm{en} \sim \mathrm{Ox}>\mathrm{SCN}>\mathrm{Cl}>\mathrm{CN}>\mathrm{Br}>\mathrm{I}
$$

This series is independent of metal ion and the ligands which contribute to metal ion covalently are called soft ligands.

Chapter 3. Objective and Plan of the Present Study

In this dissertation, a series of mononuclear manganese(III) and cobalt(II) complexes were newly synthesized and their spectroscopic and magnetic properties were examined in detail. These physical properties were fully analyzed on the basis of ligand-field theory, aiming to provide a way to regulate electronic states of single metal centers as functional synthons in construction of higher assembled systems, e.g. nanomagnets.

The present dissertation is composed of the following two parts.
In Part II, a series of octahedral manganese(III) complexes were synthesized, of which axial ligands were chosen among a variety of monodentate ligands, while the equatorial ligand was kept to be tetradentate cyclam (1,4,8,11-tetraazacyclotetradecane) across the series. The magnetic measurements of them revealed that the electron configuration depends on the nature of axial ligands to be high-spin or low-spin complexes. The combined application of angular-overlap method (AOM) and extended Hückel molecular-orbital calculations indicated that the relationship between molecular structure and magnetic anisotropy of axially elongated high-spin manganese(III) complexes.

In Part III, several sulfur-coordinate cobalt(II/III) complexes of soft-scorpionate which bear sulfur donor tripodal ligand belonging to thioamide family were synthesized. These complexes can be grouped into [$\left.\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right],\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$, and $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{4}\right]$ coordination centers and single-crystal X-ray analysis revealed that one of the cobalt(II) complexes has a $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$ center, which is a first case distinguished from already-known $\left[\mathrm{Co}^{\mathrm{III}} \mathrm{S}_{6}\right]$ or $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{4}\right]$ soft-scorpionate complexes. X-ray photoelectron spectroscopic and magnetic measurements demonstrated that this complex has a high-spin cobalt(II) metal center of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{L})\right]$-type electron configuration. Small ligand-field splitting and also small Racah's parameters determined from the electronic spectrum of the $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$ complex
were successfully transferred in the analysis of magnetic susceptibility. Remarkable delocalization of d-electron onto the ligand moieties was also suggested from the simulation of the magnetic behavior.

References for Part I

[1] (a) S. Kiatgawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 43 (2004) 2334;
(b) R. E. Morris, Paul. S. Wheatley, Angew. Chem. Int. Ed. 47 (2008) 4966;
(c) J. R. Long, O. M. Yaghi, Chem. Soc. Rev. 38 (2009) 1213;
(d) G. Férey, C. Serre, Chem. Soc. Rev. 38 (2009) 1380;
(e) J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 38 (2009) 1477;
(f) L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 38 (2009) 1294;
(g) L. Ma, C. Abney, W. Lin, Chem. Soc. Rev. 38 (2009) 1248;
(h) J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Chem. Soc. Rev. 38 (2009) 1450;
(i) Z. Wang, G. Chen, K. Ding, Chem. Rev. 109 (2009) 322;
(j) D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 36 (2007) 770;
(k) P. Dechambenoit, J. R. Long, Chem. Soc. Rev. 40 (2011) 3249.
[2] (a) D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets, Oxford University Press, Oxford, 2006;
(b) Single-Molecule Magnets and Related Phenomena, Structure and Bonding, Ed. R. Winpenny, Splinger, Berlin/Heidelberg, 2006, vol. 122.
[3] (a) M. N. Leuenberger, D. Loss, Nature 410 (2001) 789;
(b) L. Bogani, W. Wernsdorfer, Nat. Mater. 7 (2008) 179;
(c) M. Mannini, F. Pineider, P. Sainctavit, C. Danieli, E, Otero, C. Sciancalepore, A. M. Talarico, M.-A. Arrio, A. Cornia, D. Gatteschi, R. Sessoli, Nat. Mater. 8 (2009) 194;
(d) F. Troiani, M. Affronte, Chem. Soc. Rev. 40 (2011) 3119.
[4] R. Sessoli, H. L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Foliting, D. Gatteschi, G. Christou, D. N. Hendrickson, J. Am. Chem. Soc. 115 (1993) 1804.
[5] E.-C. Yang, D. N. Hendrickson, W. Wernsdorfer, M. Nakano, L. N. Zakharov, R. D. Sommer, A. L. Rheingold, M. Ledezma-Gairaud, G. Christou, J. Appl. Phys. 91 (2002) 7382.
[6] R. L. Carlin, Magnetochemistry, Splinger, Berlin/Heidelberg, 1986.
[7] M. Nakano, H. Oshio, Chem. Soc. Rev. 40 (2011) 3239.
［8］B．N．Figgis，M．A．Hitchman，Ligand Field Theory and its Application，Wiley－VCH，New York， 2000.
［9］E．U．Condon，G．H．Shotley，The Theory of Atomic Spectra，Cambridge University Press， Cambridge， 1935.
［10］A．B．P．Lever，Inorganic Electronic Spectroscopy，Elsevier，Amsterdam，2nd edn．， 1968.
［11］大川尚士，朝倉化学体系 9 磁性の化学，朝倉書店， 2004 ．
［12］山内清吾，野㥓浩一，複合采の光機能研究会選書1配位化合物の電子状態と光物理，朝倉書店， 2010 。
［13］大塚齊之助，巽和行，分子軌道法に基づく錯体の立体化学（上），講談社， 1986 ．
［14］大野公一，量子物理化学，東京大学出版会， 1989.
［15］伊達宗之，新物理学シリーズ 20 電子スピン共鳴，培風館， 1978 ．
［16］E．Anderson，Z．Bai，C．Bischof，L．S．Blackford，J．Demmel，J．Dongarra，J．Du Croz，A． Greenbaum，S．Hammarling，A．McKenney，D．Sorensen，LAPACK Users＇Guide，Third Edition，Software，Environments and Tools Vol．9，Society for Industrial and Applied Mathematics，Philadelphia，1999．URL：＜http：／／www．netlib．org／lapack／＞
［17］M．Edén，M．H．Levitt，J．Magn．Reson． 132 （1998）220．URL：＜http：／／www．mhl．soton．ac．uk／ research／software／Orientations／＞
［18］J．A．Nelder，R．Mead，Computer Journal 7 （1965） 308.
［19］J．M．Parkinson，D．Hutchinson，Numerical Methods for Non－linear Optimization，Pages 115－135，Ed．F．A．Lootsma，Academic Press，London， 1972.
［20］W．H．Press，S．A．Teukolsky，W．T．Vetterling，B．P．Flannery，Numerical Recipes，Cambridge University Press，Cambridge， 1986.
［21］C．T．Kelly，SIAM J．Optim． 10 （1999） 43.

Part II. Magnetostructural Examination of Manganese(III) Complexes $\left[\mathbf{M n}(\text { cyclam }) \mathbf{X}_{2}\right]^{+}$with Strong Axial Ligands

Chapter 4. Introduction of manganese(III) complexes [Mn(cyclam) $\left.\mathbf{X}_{2}\right]^{+}$

The magnetism of manganese(III) complexes receives much attentions recently because their large magnetic anisotropy serves useful pinning potentials for magnetization reversal in various nanomagnets [1] and their complicated d^{4} electron configurations provide a potential for multiple bistabilities including spin crossover and the Jahn-Teller effects [2-5]. A lot of mononuclear hexacoordinate manganese(III) complexes take a high-spin electron configuration $\left(t_{2 \mathrm{~g}}{ }^{3} e_{\mathrm{g}}{ }^{1}{ }^{5} E_{\mathrm{g}}\right.$) as their ground states. The doubly-degenerate ${ }^{5} E_{\mathrm{g}}$ ground state is unstable against the tetragonal axial elongation or compression. This Jahn-Teller distortion is just the source of magnetic anisotropy, or strictly a zero-field splitting, in manganese(III) complexes. The contribution of a single metal center to the net magnetic anisotropy of a polynuclear metal assembly is mainly attributed to the zero-field splitting of each metal center rather than anisotropic superexchange interactions. Although high-spin ground states ${ }^{5} E_{\mathrm{g}}$ of mononuclear manganese(III) complexes are commonly found, low-spin ground states ${ }^{3} T_{\mathrm{g}}$ are rare and spin-crossover phenomena between these two ground states are uncommon [3-5].

A series of manganese(III) complexes, trans- $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$(cyclam $=1,4,8,11$-tetraazacyclotetradecane, $\mathrm{X}^{-}=$axial anionic ligand, has been extensively studied, focusing on the electronic structure and magnetic properties, which may take high-spin or low-spin electron configurations [8-13]. Throughout the series, only one low-spin species is known with $\mathrm{X}^{-}=\mathrm{CN}^{-}$[14], and no spin-crossover complexes are reported yet. The stronger side of a range of axial ligand field is interesting, and three novel complexes with $\mathrm{X}^{-}=\mathrm{NCBH}_{3}{ }^{-}(\mathbf{1}), \mathrm{NCBPh}_{3}{ }^{-}$(2), and NCSe^{-}(3), were
obtained in order to explore the spin-crossover boundary on the interaction parameter space. The crystal structure of trans-[Mn(cyclam) $\left.\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (1) and trans-[Mn(cyclam) $\left.\left(\mathrm{NCBPh}_{3}\right)_{2}\right]$ $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (2) were solved and reported in detail. Several known complexes $[8,9,11]$ were also prepared along with novel ones and their magnetic susceptibilities were measured aiming to determine the magnetic anisotropy parameter (uniaxial zero-field splitting parameter D) as a guide scale of axial ligand field. By applying angular-overlap model and extended Hückel molecular-orbital calculations, the relation between magnetic anisotropy and electronic structure was discussed for a series of $\left[\mathrm{Mn}(\mathrm{cyclam}) \mathrm{X}_{2}\right]$ complexes.

Chapter 5. Experimental for $\left[\mathbf{M n}(\text { cyclam }) \mathbf{X}_{2}\right]^{+}$

Commercially available solvents and chemicals were used without further purification. The reaction procedures of trans-[Mn(cyclam) $\left.\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (1), and trans-[Mn(cyclam)$\left.\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)(\mathbf{2})($ cyclam $=1,4,8,11$-tetraazacyclotetradecane) were carried out in ambient atmosphere. The reaction procedure of trans-[$\mathrm{Mn}($ cyclam $)\left(\mathrm{NCSe}_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (3) was performed under an argon atmosphere using standard Schrenk technique. The complex trans$\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{OH}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ was prepared according to the literature method [8]. trans[Mn (cyclam $\left.) \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was prepared according to the literature method [12]. Elemental analyses were carried out at the Laboratory for Instrumental Analysis, Graduate School of Engineering, Osaka University. IR spectra were recorded on a JASCO FT/IR-300E spectrometer. Solid state magnetic measurements of 1, 2, trans- $\left[\mathrm{Mn}(\right.$ cyclam $)\left(\mathrm{CN}_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)(4)$, trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)(\mathrm{NCO})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (5), and trans-[Mn(cyclam)I $\left.\mathrm{I}_{2}\right] \mathrm{I}$ (6) were carried out on a Quantum Design MPMS-XL5 SQUID magnetometer equipped with reciprocating sample option (RSO) at magnetic fields of 1.0 and 5.0 T . Solid state magnetic measurement of 3 was carried out on a Quantum Design MPMS-2 SQUID magnetometer at a field of 1.0 T . Polycrystalline samples were mounted in calibrated gelatin capsules held at the center of a polypropylene straw fixed to the end of the sample rod.

5.1. Synthesis of complexes

trans-[Mn(cyclam) $\left.\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (1)
To an aqueous solution (3 mL) of trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{OH}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}(378 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added an aqueous solution $(2 \mathrm{~mL})$ of $\mathrm{NaNCBH}_{3}(62.9 \mathrm{mg}, 1.0 \mathrm{mmol})$ at room temperature and the mixture was stirred. Sky-blue solid precipitated immediately was filtered off and dried in air
(yield $135 \mathrm{mg}, 56 \%)$. Infrared spectrum (KBr disk, $\left.\mathrm{cm}^{-1}\right): 2184(\nu\{\mathrm{C} \equiv \mathrm{N}\}), 2350(\nu\{\mathrm{~B}-\mathrm{H}\})$. Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{~F}_{3} \mathrm{MnN}_{6} \mathrm{O}_{3} \mathrm{~S}$: C, 32.26; H, 6.25; N, 17.36\%. Found: C, 31.77; H, 6.18; N, 17.35\%. For X-ray crystallographic analysis, an aqueous solution (1.5 mL) of $\mathrm{NaNCBH}_{3}(13.1 \mathrm{mg}, 0.21$ mmol) was carefully layered on an aqueous solution $(1 \mathrm{~mL})$ of trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{OH}_{2}\right)_{2}\right]$ $\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}(76.1 \mathrm{mg}, 0.10 \mathrm{mmol})$ to yield sky-blue single crystals in 2 h .
trans-[Mn(cyclam) $\left.\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (2)

A mixture of $\mathrm{KCN}(130 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{BPh}_{3}(484 \mathrm{mg} .2 .0 \mathrm{mmol})$ in ethanol $(2.5 \mathrm{~mL})$ at room temperature was stirred for 1 h to give a clear solution. To an aqueous solution (2 mL) of trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{OH}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}(756 \mathrm{mg}, 1.0 \mathrm{mmol})$ was added the ethanolic solution and the mixture was stirred. Immediately yellowish green solid was precipitated and filtered off. The solid was washed by ethanol, and dried in air (yield $357 \mathrm{mg}, 38 \%$). Infrared spectrum (KBr disk, $\left.\mathrm{cm}^{-1}\right): 2171(v\{\mathrm{C} \equiv \mathrm{N}\})$. Anal. Calc. for $\mathrm{C}_{49} \mathrm{H}_{54} \mathrm{~B}_{2} \mathrm{~F}_{3} \mathrm{MnN}_{6} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 62.57 ; \mathrm{H}, 5.79 ; \mathrm{N}, 8.93 \%$. Found: C , $62.30 ; \mathrm{H}, 5.82 ; \mathrm{N}, 8.98 \%$. For X-ray crystallographic analysis, a yellowish green crystal was obtained from acetonitrile solution by vapor diffusion of diethylether.
trans-[Mn(cyclam) $\left(\mathrm{NCSe}_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (3)
To a solution of $\mathrm{KSeCN}(143 \mathrm{mg}, 0.99 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ was added a solution of trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{OH}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}(376 \mathrm{mg}, 0.50 \mathrm{mmol})$ in the same solvent $(5 \mathrm{~mL})$ at room temperature. The deep purple solution changed to a clear orange solution immediately after stirring. After 20 min , the solution was evaporated in vacuo. In a half volume of solvent evaporated a dark-orange solid started to precipitate. The solid was washed by ethanol and dried in vacuo (yield $86.7 \mathrm{mg}, 28 \%)$. Infrared spectrum (KBr disk, cm^{-1}): $2055(v\{\mathrm{C} \equiv \mathrm{N}\})$. Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{MnN}_{6} \mathrm{O}_{4} \mathrm{SSe}_{2}$: C, 24.69; H, 4.14; N, 13.29\%. Found: C, $24.68 ; \mathrm{H}, 3.78 ; \mathrm{N}, 13.23 \%$.
trans-[Mn(cyclam) $\left.\left(\mathrm{CN}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (4)
Complex 4 was prepared following the literature method [11]. To a solution of NaCN in water added a solution of trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{OH}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ in the same solvent at room temperature. Immediately yellow solid was precipitated and filtered off. The solid was immediately washed by ethanol, and dried in vacuo. Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{MnN}_{6} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 34.21 ; \mathrm{H}, 5.30 ; \mathrm{N}$, 18.42%. Found: C, $34.18 ;$ H, $5.19 ;$ N, 18.41%.
trans-[Mn(cyclam) $\left(\mathrm{NCO}_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (5)
Complex 5 was prepared following the literature method [6]. To a solution of KNCO in water added a solution of trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{OH}_{2}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ in the same solvent at room temperature. Immediately yellowish green solid was precipitated and filtered off. The solid was washed by ethanol, and dried in air. Anal. Calc. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{MnN}_{6} \mathrm{O}_{5} \mathrm{~S}$: C, 31.97; H, 4.95; N, 17.21%. Found: C, 31.43 ; H, 4.76 ; N, 16.88%.
trans-[Mn(cyclam) $\left.I_{2}\right] I$ (6)
Complex 6 was prepared following the literature method [12]. To a solution of trans[Mn (cyclam) Cl_{2}] $\mathrm{Cl} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in water added concentrated HI solution in the same solvent at room temperature. Immediately dark red solid was precipitated and filtered off. The solid was washed by dichrolomethane and ethanol, and dried in air. Anal. Calc. for $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{I}_{3} \mathrm{MnN}_{4}: \mathrm{C}, 18.89 ; \mathrm{H}, 3.80 ; \mathrm{N}$, 8.77%. Found: C, 19.28; H, 3.66; N, 8.77\%.

5.2. X-ray structure determination

Single-crystal structure determination was performed for the compounds 1 and 2 at 123 K using a Rigaku RAXIS RAPID imaging-plate area detector with graphite monochromated Mo- K_{α} radiation
$(\lambda=0.071073 \mathrm{~nm})$. The structure of the compound 1 was solved by direct methods (SIR 92) [13] and expanded using Fourier techniques (DIRDIF99) [14]. The positions of all non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included and their positions were refined using a riding model. All calculation of the compound 1 were performed using the CrystalStructure crystallographic software package [15,16]. The data collection, cell refinement, and absorption correction of 2 were performed using the CrystalStructure crystallographic software package. Data reduction by the the CrystalStructure crystallographic software package was applied. The structure was solved by direct methods and refined by full-matrix least squares method on F^{2} with anisotropic thermal parameters for all non-hydrogen atoms using the SHELXTL-PC V 6.1 software package [17, 18]. Hydrogen atoms bound to a carbon atom were placed in calculated positions and refined isotropically with a riding model. Detail on the data collections and refinements are summarized in Table II-1.

Table II-1. Crystallographic data and structure refinements for trans-[$\mathrm{Mn}($ cyclam $\left.)\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ and trans-[Mn(cyclam) $\left.\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$.

	[$\mathrm{Mn}($ cyclam $\left.)\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$	$\left[\mathrm{Mn}(\mathrm{cyclam})\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$
Emprical formula	$\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{~B}_{2} \mathrm{~F}_{3} \mathrm{MnN}_{6} \mathrm{O}_{3} \mathrm{~S}$	$\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{~B}_{2} \mathrm{~F}_{3} \mathrm{MnN}_{6} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	484.03	940.60
Crystal system	Orthorhombic	Monoclinic
Space Group	P2, $212{ }_{1}$	C2/c
$a(\AA)$	8.6989(5)	18.892(4)
$b(\AA)$	13.3506(8)	16.155(3)
$c(\AA)$	19.3131(10)	16.811(3)
$\left.\alpha{ }^{(}\right)$	90	90
$\beta\left(^{\circ}\right)$	90	115.42(3)
$\gamma\left({ }^{\circ}\right)$	90	90
$V\left(\AA^{3}\right)$	2242.9(2)	4634.0(16)
Z	4	4
T (K)	123	123
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.433	1.348
Crystal Color, Habit	sky blue, prism	yellowish green, needle
Crystal Dimensions (mm)	$0.15 \times 0.10 \times 0.10$	$0.45 \times 0.30 \times 0.10$
F_{000}	1008.00	1968.00
$\mu(\mathrm{Mo} \mathrm{K} \alpha)\left(\mathrm{cm}^{-1}\right)$	7.315	3.910
Total data	21475	9598
Unique data	5125	5244
$R_{\text {int }}$	0.126	0.043
$R_{1}[I>1.5 \sigma(I)]$	0.0717	
$w R_{2}[I>1.5 \sigma(I)]$	0.0823	
$R_{1}[I>2.0 \sigma(I)]$		0.0656
$w R_{2}[I>2.0 \sigma(I)]$		0.1548
Goodness of fit	1.070	1.214
Flack parameter [19]	0.49	

Chapter 6. Results and Discussion on $\left[\mathbf{M n}(\text { cyclam }) \mathbf{X}_{2}\right]^{+}$

6.1. Molecular structure of complexes

Crystal structure was determined for trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (1) (cyclam $=$ 1,4,8,11-tetraazacyclotetradecane) which crystallizes in the non-centrosymmetric space group $\mathrm{P} 21^{2} 1^{2}$. The molecular structure is depicted in Figure II-1. The counter anion $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$links neighboring complex cations via weak hydrogen bonds $\mathrm{O}---\mathrm{N}$ forming a chain structure along c axis (Figure II-2).

Figure II-1. Molecular structure of trans-[Mn(cyclam)$\left.\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$. All H atoms are shown as open circles, and thermal ellipsoids for heavier atoms are drawn at the 50% probability level.

Figure II-2. Chain structure of trans-[$\mathrm{Mn}($ cyclam $\left.)\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ with weak hydrogen bonds along c axis.

The coordination environment around manganese(III) is elongated-octahedron type. The equatorial Mn-N distances fall in a range of 2.004-2.034 \AA. The axial $\mathrm{Mn}-\mathrm{N}$ distances are significantly longer than them, being 2.209 and $2.215 \AA$. The $\mathrm{Mn}-\mathrm{N}$ and $\mathrm{N} \equiv \mathrm{C}$ bonds in $\mathrm{Mn}---\mathrm{NCBH}_{3}$ axial coordination are non-collinear with the Mn-N-C angle of 169.4-173.7 ${ }^{\circ}$, which gives rise to a small deviation from tetragonal symmetry, while the axial $\mathrm{Mn}-\mathrm{N}$ bond is almost normal to the equatorial N_{4} plane with the tilt angle of 1.06° (Table II-2).

Table II-2. Comparison of structural data for trans-[Mn(cyclam) $\left.\mathrm{X}_{2}\right]^{+/ 3+}$ complexes.

axial	spin	coordination.	average $\mathrm{Mn}-\mathrm{X}$	average $\mathrm{Mn}-\mathrm{N}_{\text {cyclam }}$	$\tau\left(^{\circ}\right)^{\mathrm{a}}$	references
ligand X	state	Sphere	distance $/ \AA$	distance $/ \AA$		
I	HS	$4 \mathrm{~N}, 2 \mathrm{I}$	$2.9416(2)$	$2.028(2)$	3.71	$[8]$
Br	HS	$4 \mathrm{~N}, 2 \mathrm{Br}$	$2.689(1)$	$2.029(6)$	3.28	$[6]$
Cl	HS	$4 \mathrm{~N}, 2 \mathrm{Cl}$	$2.527(1)$	$2.035(3)$	2.50	$[6,7]$
OH_{2}	HS	$4 \mathrm{~N}, 2 \mathrm{O}$	$2.187(8)$	$2.037(6)$	7.80	$[8]$
ClO_{4}	HS	$4 \mathrm{~N}, 2 \mathrm{O}$	$2.1909(9)$	$2.0280(7)$	8.71	$[8]$
NO_{3}	HS	$4 \mathrm{~N}, 2 \mathrm{O}$	$2.221(4)$	$2.036(7)$	4.49	$[6]$
NO_{2}	HS	$4 \mathrm{~N}, 2 \mathrm{O}$	$2.188(12)$	$2.034(3)$	5.90	$[8]$
N_{3}	HS	6 N	$2.175(3)$	$2.041(3)$	3.76	$[10]$
$\mathrm{NCS}^{\mathrm{HS}}$	6 N	$2.166(17)$	$2.038(4)$	1.48	$[6]$	
NCBH_{3}	HS	6 N	$2.212(7)$	$2.020(9)$	1.06	this work
NCBPh	HS	6 N	$2.237(3)$	$2.041(4)$	10.47	this work
NCO	HS	6 N	$2.148(4)$	$2.043(4)$	1.40	$[9]$
CN	LS	$4 \mathrm{~N}, 2 \mathrm{C}$	$2.007(4)$	$2.029(4)$	1.30	$[11]$

${ }^{\text {a }}$ Tilt angle τ is defined as the angle between the normal to the equatorial MnN_{4} plane and the $\mathrm{Mn}-\mathrm{X}$ bond [8].

Crystal structure was determined for trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (2) which crystallizes in the space group $C 2 / \mathrm{c}$ and the manganese(III) ion has a centrosymmetric octahedral N_{6} coordination environment. The molecular structure is depicted in Figure II-3. The counter anion $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$does not link neighboring complex cations via no hydrogen bonds $\mathrm{O}---\mathrm{N}$ forming a chain structure (Figure II-4).

Figure II-3. Molecular structure of trans-[Mn(cyclam) $\left.\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$. All H atoms are shown as open circles, and thermal ellipsoids for heavier atoms are drawn at the 50% probability level.

Figure II-4. Crystal structure of trans- $\left[\mathrm{Mn}(\right.$ cyclam $\left.)\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$.

The coordination environment around manganese(III) is elongated-octahedron type. The counter anion is disordered at 123 K (Figure II-5). The equatorial $\mathrm{Mn}-\mathrm{N}$ distances fall in a range of 2.035-2.044 \AA. The axial Mn-N distances are significantly longer than them, being $2.237 \AA$. These values are the longest among axial $\mathrm{Mn}-\mathrm{N}$ distances in the hitherto-reported $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$ complexes [6-11]. The $\mathrm{Mn}-\mathrm{N}$ and $\mathrm{N} \equiv \mathrm{C}$ bonds in $\mathrm{Mn}---\mathrm{NCBPh}_{3}$ axial coordination are non-collinear with the $\mathrm{Mn}-\mathrm{N}-\mathrm{C}$ angle of 162.5°, which gives rise to a small deviation from tetragonal symmetry, while the axial $\mathrm{Mn}-\mathrm{N}$ bond is almost normal to the equatorial N_{4} plane with the tilt angle of 10.47°
(Table II-2).

Figure II-5. Orientational disorder in the counter anion of trans-[Mn(cyclam)$\left.\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$.

6.2. Magnetic properties

Isofield magnetizations of 1, 2, trans-[Mn(cyclam) $\left.(\mathrm{CN})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (4), trans-[Mn(cyclam)$\left.(\mathrm{NCO})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)(5)$, and trans-[Mn(cyclam) $\left.\mathrm{I}_{2}\right] \mathrm{I}(6)$ were measured from 2 to 350 K , and the ones of trans- $\left[\mathrm{Mn}(\right.$ cyclam $)\left(\mathrm{NCSe}_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ (3) were from 4 to 350 K . The magnetic susceptibilities of a polycrystalline sample of 1-6 are shown in Figure II-6 to II-11, respectively. All the compounds except for 4 showed effective magnetic moments μ_{eff} of 4.9-5.2 μ_{B} at room temperature, which agree well with the spin-only value of $4.9 \mu_{\mathrm{B}}(S=2)$ expected for a high spin d^{4} electron configuration of manganese(III), while low-spin complex 4 showed effective magnetic moments $\mu_{\text {eff }}$ at room temperature which agree well with the spin-only value of $2.8 \mu_{\mathrm{B}}(S=1)$. The $\mu_{\text {eff }}$ drops observed at low temperature should be attributable to the zero-field splitting accompanying with tetragonal coordination environment, rather than to antiferromagnetic intermolecular interactions. The uniaxial zero-field splitting parameters D were estimated by assuming random orientation of crystallites (Table II-3).

Figure II-6. The temperature dependence of effective magnetic moment of a polycrystalline sample of trans-[$\mathrm{Mn}($ cyclam $\left.)\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ from 2 K to 350 K .

Figure II-7. The temperature dependence of effective magnetic moment of a polycrystalline sample of trans-[Mn(cyclam) $\left.\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ from 2 K to 350 K .

Figure II-8. The temperature dependence of effective magnetic moment of a polycrystalline sample of trans-[Mn(cyclam) $\left.(\mathrm{NCSe})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \cdot \mathrm{H}_{2} \mathrm{O}$ from 4 K to 350 K .

Figure II-9. The temperature dependence of effective magnetic moment of a polycrystalline sample of trans-[Mn(cyclam) $\left.(\mathrm{CN})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ from 2 K to 350 K .

Figure II-10. The temperature dependence of effective magnetic moment of a polycrystalline sample of trans-[Mn(cyclam) $\left.(\mathrm{NCO})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ from 2 K to 350 K .

Figure II-11. The temperature dependence of effective magnetic moment of a polycrystalline sample of trans-[Mn(cyclam) $\left.\mathrm{I}_{2}\right] \mathrm{I}$ from 2 K to 350 K .

Table II-3. Uniaxial zero-field splitting parameter D of trans- $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$complexes.

axial ligand X	spin state	$D / h c \mathrm{~cm}^{-1}$	References
I	HS	0.82^{*}	this work
Br	HS	-1.67	$[20]$
NCBH_{3}	HS	-4.65^{*}	this work
NCBPh_{3}	HS	-5.76^{*}	this work
NCSe	HS	-9.05^{*}	this work
NCO	HS	-10.26^{*}	this work

*Apparent value estimated by fitting of magnetic susceptibility data.

6.3. Magnetic anisotropy analysis on the basis of AOM

Ligand-field splitting based on extended Hückel calculations

Extended Hückel molecular-orbital calculations [21] were made to figure out one-electron orbital energies for the complexes with $\mathrm{X}^{-}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \Gamma, \mathrm{NCBH}_{3}{ }^{-}, \mathrm{NCBPh}_{3}{ }^{-}, \mathrm{NCO}^{-}, \mathrm{NCS}^{-}, \mathrm{N}_{3}{ }^{-}, \mathrm{CN}^{-}, \mathrm{ClO}_{4}^{-}$, $\mathrm{NO}_{3}{ }^{-}$, and $\mathrm{NO}_{2}{ }^{-}$using their crystallographic atomic coordinates [6-11]. The orbital energies of five d-character molecular orbitals are depicted in Figure II-12. It is obvious that the $d_{z 2}$ orbitals are strongly affected by σ-donor character of axial ligands, while the orbital energy of the $d_{x 2-y 2}$ orbitals are dominated by the equatorial ligand cyclam and kept almost unchanged at around -8.2 eV throughout the series. Non-bonding $t_{2 \mathrm{~g}}$ orbitals found below -12 eV are slightly lifted by π-donor/acceptor character of the axial ligands, providing a single- and a doubly-degenerate levels. Further investigation of the splitting in $t_{2 \mathrm{~g}}$ orbitals was done, having the benefit of fragment molecular-orbital (FMO) analysis. Except for CN^{-}ligand, π-ligand orbitals on X^{-}interact with d_{yz} and d_{xz} orbitals of the manganese(III) ion, working as π-donor ligands. It is not the case in CN^{-} ligand, of which π-character ligand orbitals interact with $d_{y z}$ and $d_{x z}$ atomic orbaitals, thus working as π-acceptor ligand. The π-orbitals from N -donor and halide ligands are mixed with $t_{2 \mathrm{~g}}$ orbitals via π-overlap by over 15% contribution, while O -donor ligands have little contribution. On the other hand, the σ-orbitals of axial ligands and equatorial cyclam ligand interact with e_{g} orbitals by around 15% contribution, while the mixing ratio exceeds 50% in axial CN^{-}coordination showing very strong σ-donor character. In spite that the splitting in the $t_{2 g}$ orbitals are much smaller than that in e_{g} orbitals, this small splitting plays an essential role in the low-spin electronic configuration under a very strong ligand field, where the ordering of split levels (2:1 or 1:2) determines orbital degeneracy for the partially-lifted $\left(t_{2 g}\right)^{4}$ configuration.

Figure II-12. $3 d$-levels for trans- $\left[\mathrm{Mn} \text { (cyclam) } \mathrm{X}_{2}\right]^{+/ 3+}$ estimated by extended Hückel calculations. Anions noted on the abscissa stand for the axial ligand X in the complex.

Estimation for ligand-field parameters of each axial ligand

One-electron orbital energies obtained from extended Hückel molecular orbital calculations are useful to estimate ligand-field parameters. The angular-overlap model (AOM), instead of a conventional cubic harmonics expansion, was adopted to describe the ligand fields in $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$complexes, since it is more convenient to attribute the effect of individual ligand to the AOM parameters representing localized σ - and π-donors (e_{σ} and e_{π}, respectively). For an octahedral complex trans-[$\mathrm{ML}_{4} \mathrm{X}_{2}$] of $D_{4 \mathrm{~h}}$ symmetry, the orbital-energy relations:

$$
\begin{gathered}
E\left(x^{2}-y^{2}\right)=3 e_{\sigma}(\mathrm{L}) \\
E\left(z^{2}\right)=e_{\sigma}(\mathrm{L})+2 e_{\sigma}(\mathrm{X}) \\
E(y z)=E(z x)=2 e_{\pi}(\mathrm{L})+2 e_{\pi}(\mathrm{X}) \\
E(x y)=4 e_{\pi}(\mathrm{L}) \cong 0
\end{gathered}
$$

are known for σ-donor equatorial ligand L and σ, π-donor axial ligand X , where $E(d)$ stands for the one-electron orbital energy of d-character orbital [22]. These relations were used to extract AOM
parameters which are compiled in Table II-4. If $e(\mathrm{X})$ is smaller than $e_{\pi}(\mathrm{L})$, i.e. $E(y z), E(z x)<E(x y)$, the axial ligand behaves as a π-acceptor rather than a π-donor. In this case, the possible low-spin electronic configuration is orbitally-degenerate $\left\{\left(\mathrm{d}_{\mathrm{yz}}\right)\left(\mathrm{d}_{\mathrm{zx}}\right)\right\}^{3}\left(\mathrm{~d}_{\mathrm{xy}}\right)^{1}$, not $\left(\mathrm{d}_{\mathrm{xy}}\right)^{2}\left(\mathrm{~d}_{\mathrm{yz}}\right)^{1}\left(\mathrm{~d}_{\mathrm{zx}}\right)^{1}$, which is subject to the Jahn-Teller instability. It is proposed to be responsible for the tilting of axial ligands observed in $\mathrm{X}^{-}=\mathrm{CN}^{-}$[11]. The $e_{\sigma}(\mathrm{X})$'s for axial N -donor ligands are unexpectedly small because axially-elongated manganese(III) ion diminishes the overlap with ligand π-donor orbitals. Halide ligands, which are known to be weak ligands in the spectrochemical series, possess large $e_{\sigma}(\mathrm{X})$ in our results. It is conceivable if remarkably expanded p-orbitals of halide ions are taken into account, in comparison to N - and O -donor ligands, sufficient orbital overlap is afforded in spite of the axial elongation.

Table II-4. AOM parameters of trans-[Mn(cyclam) $\left.\mathrm{X}_{2}\right]^{+/ 3+}$ extracted from extended Hückel energy levels.

axial ligand X	$e_{\sigma}(\mathrm{X}) / h c \mathrm{~cm}^{-1}$	$e_{\pi}(\mathrm{X}) / h c \mathrm{~cm}^{-1}$	$e_{\sigma}(\mathrm{L}) / h c \mathrm{~cm}^{-1}$
I	3860	800	11600
Br	5660	970	11650
Cl	7930	960	11200
OH_{2}	4220	420	11440
ClO_{4}	4640	490	11600
NO_{3}	4070	490	11410
NO_{2}	5700	410	11410
$\mathrm{~N}_{3}$	5900	860	11160
NCBH_{3}	7830	410	11820
NCBPh_{3}	7430	280	11270
NCS	7290	840	11340
NCO	9100	710	11330
CN	17660	-260	11640

Dependence of zero-field splitting on ligand-field splitting on manganese(III) complexes

Although there is a report that the magnetic anisotropy in the high-spin $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{I}_{2}\right]^{+}$ complex may be dominated by MLCT excited states mixing into the high-spin ${ }^{5} B_{1}$ ground state [23], the contribution of such low-energy MLCT excited states is very rare and reliably ignored in most of the $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$complexes. Thus, the magnetic anisotropies of them were examined taking only d-orbitals into account. Figure II-13 shows the zero-field splitting parameter (D) of $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$series mapped on an $e_{\sigma}(\mathrm{X})-e_{\pi}(\mathrm{X})$ plane, which was calculated by AOM in conjunction with typical values for manganese(III) electronic parameters: Racah's parameters $B / h c$ $=1140 \mathrm{~cm}^{-1}$ and $C / B=4.3$ [24]; spin-orbit coupling $\zeta / h c=355 \mathrm{~cm}^{-1}$ [22]; Stevens' orbital reduction factor $k=0.8[25]$; the AOM parameter of equatorial cyclam ligands $e_{\sigma}(\mathrm{L}) / h c=10000$ cm^{-1}. The red broken curve on the map is a spin-crossover boundary separating high-spin $(S=2)$ and low-spin $(S=1)$ region. On this map, $e_{\sigma}(\mathrm{X})$ and $e_{\pi}(\mathrm{X})$ values of several complexes summarized in Table II-4 are also plotted. This map suggested that zero-field splitting parameter D is usable as the indicator of ligand-field strength. On the contrary, the large zero-feild splitting parameter of high-spin $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$complexes can be obtained if an axial ligand gives strong ligand-field parameter which locates neighbor of spin-crossover boundary. Then, this map also suggested that the high-spin complexes 1 and 2 do not have enough strong ligand field to break Hund's rule, and the cyanohydroborate anion behaves as not a π-acceptor expected but a weak π-donor for manganese(III) ion. Given the comparison of D-value in Table II-3, complex 3 appears to be located between 1,2 and $\left[\mathrm{Mn}(\text { cyclam })(\mathrm{NCO})_{2}\right]^{+}$. Therefore, it is revealed that spin-crossover manganese(III) cyclam complexes should have stronger σ-donor and π-acceptor ligands.

Figure II-13. Zero-field splitting parameter D of trans- $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$complexes as a function of axial ligand AOM parameters $e_{\sigma}(\mathrm{X})$ and $e_{\pi}(\mathrm{X})$.

Chapter 7. Conclusion of $\left[\mathbf{M n}(\text { cyclam }) \mathbf{X}_{2}\right]^{+}$

The manganese(III) complexes trans-[$\mathrm{Mn}($ cyclam $\left.)\left(\mathrm{NCBH}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)(\mathbf{1})$ (cyclam $=1,4,8,11$ tetraazacyclotetradecane), trans-[Mn(cyclam) $\left.\left(\mathrm{NCBPh}_{3}\right)_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right) \quad$ (2), and trans-[Mn(cyclam)$\left.(\mathrm{NCSe})_{2}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)$ (3) were newly prepared and found to be in the high-spin state. The magnetic measurements of them revealed very large uniaxial zero-field splittings D of 1-3. The crystal structures of $\mathbf{1 , 2}$ and analogous complexes were utilized in extended Hückel and AOM calculations, providing two useful information of the ligand-field control for the large magnetic anisotropy, and the spin crossover boundary of $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$.

References for Part II

[1] (a) R. Sessoli, D. Gatteschi, A. Caneschi, M. A. Novak, Nature 365 (1993) 141;
(b) R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G. Christou, D. N. Hendrickson, J. Am. Chem. Soc. 115 (1993) 1804;
(c) D. Gatteschi, A. Caneschi, L. Pardi, R. Sessoli, Science 265 (1994) 1054;
(d) H. J. Eppley, H.-L. Tsai, N. de Vries, K. Folting, G. Christou, D. N. Hendrickson, J. Am. Chem. Soc. 117 (1995) 301;
(e) L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Nature 383 (1996) 145;
(f) J. Villain, F. Hartman-Boutron, R. Sessoli, A. Rettori, Europhys. Lett. 27 (1997) 159;
(g) S. L. Castro, Z. Sun, C. M. Grant, J. C. Bollinger, D. N. Hendrickson, G. Christou, J. Am. Chem. Soc. 120 (1998) 2365;
(h) D. Ruiz, Z. Sun, B. Albela, K Folting, J. Ribas, G. Christou, D. N. Hendrickson, Angew. Chem. Int. Ed. 37 (1998) 300;
(i) Z. Sun, D. Ruiz, E. Rumberger, C. D. Incarvito, K. Folting, A. L. Rheingold, G. Christou, D. N. Hendrickson, Inorg. Chem. 37 (1998) 4758;
(j) W. Wernsdorfer, N. Aliaga-Alcalde, D. N. Hendrickson, G. Christou, Nature 416 (2002) 406;
(k) W. Wernsdorfer, S. Bhaduri, C. Boskovic, G. Christou, D. N. Hendrickson, Phys. Rev. B 65 (2002) 180403;
(1) S. Hill, E. S. Edwards, N. Aliaga-Alcalde, G. Christou, Science 302 (2003) 1015;
(m) D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 42 (2003) 268;
(n) M. Soler, W. Wernsdorfer, K. Folting, M. Pink, G Christou, J. Am. Chem. Soc. 126 (2004) 2156;
(o) M. Murugesu, M. Habrych, W. Wernsdorfer, K. A. Abboud, G. Christou, J. Am. Chem. Soc. 126 (2004) 4766;
(p) H. Oshio, N. Hoshino, T. Ito, M. Nakano, J. Am. Chem. Soc. 126 (2004) 8805;
(q) A. J. Tasiopoulos, A. Vinslava, W. Wernsdorfer, K. A. Abboud, G. Christou, Angew. Chem. Int. Ed. 43 (2004) 2117;
(r) A. K. Boudalis, B. Donnadieu, V. Nastopoulos, J. M. Clemente-Juan, A. Mari, Y. Sanakis, J.-P. Tuchagues, S. P. Perlepes, Angew. Chem. Int. Ed. 43 (2004) 2266;
(s) H. Miyasaka, R. Clérac, W. Wernsdorfer, L. Lecren, C. Bonhomme, K. Sugiura, M. Yamashita, Angew. Chem. Int. Ed. 43 (2004) 2801.
[2] Y. Garcia, P. Gütlich, Top. Curr. Chem. 234 (2004) 49.
[3] P. G. Sim, E. Sinn, J. Am. Chem. Soc. 103 (1981) 241.
[4] M. Nakano, G. Matsubayashi, T. Matsuo, Phys. Rev. B 65 (2002) 212412.
[5] G. G. Morgan, K. D. Murnaghan, H. Müller-Bunz, V. McKee, C. J. Harding, Angew. Chem. Int. Ed. 45 (2006) 7192.
[6] P. A. Daugherty, J. Glerup, P. A. Goodson, D. J. Hodgson, K. Michelsen, Acta Chem. Scand. 45 (1991) 244.
[7] P.-K. Chan, C.-K. Poon, J. Chem. Soc., Dalton Trans. (1976) 858.
[8] S. Mossin, H. O. Sørensen, H. Weihe, J. Glerup, I. Søtofte, Inorg. Chim. Acta 358 (2005) 1096.
[9] A. D. Rae, S. Mossin, H. O. Sørensen, Acta Crystallogr., Sect. B 61 (2004) 407.
[10] K. Meyer, J. Bendix, N. Meltzler-Norte, T. Weyhermüller, K. Wieghardt, J. Am. Chem. Soc. 120 (1998) 7260.
[11] S. Mossin, H. O. Sørensen, H. Weihe, Acta Crystallogr., Sect. C 58 (2002) m204.
[12] F. Létumier, G. Broeker, J. -M. Barbe, R. Guilard, D. Lucas, V. Dahaoui-Gindrey, C. Lecomte, L. Thouin, C. Amatore, J. Chem. Soc., Dalton Trans. (1998) 2233.
[13] SIR92: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 27 (1994) 435.
[14] DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, (1999). The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
[15] CrystalStructure 3.8: Crystal Structure Analysis Package, Rigaku and Rigaku Americas (2000-2007). 9009 New Trails Dr., The Woodlands, TX 77381, USA.
[16] CRYSTALS Issue 11: J. R. Carruthers, J. S. Rollett, P. W. Betteridge, D. Kinna, L. Pearce, A. Larsen, E. Gabe, Chemical Crystallography Laboratory, Oxford, UK. 1999.
[17] G. M. Sheldrick (1997). SHELXS97. University of Göttingen, Germany.
[18] G. M. Sheldrick (1997). SHELXL97. University of Göttingen, Germany.
[19] H. D. Flack, Acta Crystallogr., Sect. A 39 (1983) 876.
[20] S. Mossin, M. Stefan, P. T. Heerdt, A. Bouwen, E. Goovaerts, H. Weihe, Appl. Magn. Reson. 21 (2001) 587.
[21] (a) M. Wolfsberg, L. J. Helmholz, J. Chem. Phys. 20 (1952) 837;
(b) R. Hoffmann, J. Chem. Phys. 39 (1963) 1397;
(c) R. Hoffmann, W. N. Lipscomb, J. Chem. Phys. 36 (1962) 2179; 3489;
(d) J. H. Ammeter, H.-B. Burgi, J. C. Thibeault, R. Hoffmann, J. Am. Chem. Soc. 100 (1978) 3686;
(e) C. Mealli, D. M. Proserpio, J. Chem. Educ. 67 (1990) 399.
[22] B. N. Figgis, M. A. Hitchman, Ligand Field Theory and Its Applications, Wiley-VCH, New York, 2000.
[23] S. Mossin, H. Weihe, A.-L. Barra, J. Am. Chem. Soc. 124 (2002) 8764.
[24] A. Bencini, I. Ciofini, M. G. Uytterhoeven, Inorg. Chim. Acta 274 (1998) 90.
[25] (a) J. J. Salzmann, H. H. Schmidtke, Inorg. Chim. Acta 3 (1969) 207;
(b) S. A. Cotton, Inorg. Nucl. Chem. Lett. 8 (1972) 371;
(c) N. Juranić , Spectrochim. Acta 36A (1980) 249.

Part III. Magnetic and Spectroscopic Characterizations of Cobalt(II/III) Complexes Consisting of Soft-Scorpionate Ligands

Chapter 8. Introduction to Cobalt(II/III) Complexes Consisting of Soft-Scorpionate Ligands

Sulfur-atom coordination to transition metal centers is fascinating in the research of electronic structures because of the polarizablity of sulfur ligands and associated nephelauxetic effect. Among sulfur ligands with weak σ-donor character preferring high-spin transition metal complexes, crown thioether ligands are known to give low-spin complexes due to their π-acceptor characters and remarkable nephelauxetic effects reducing interelectronic repulsions [1-7]. In the sharp contrast to it, thiolate and thioamide ligands work as π-donor ligands resulting in high-spin complexes [8-11].

High-spin octahedral cobalt(II/III) complexes are known as "T-term ions" with very strong magnetic anisotropy attributable to unquenched orbital angular momenta mixing to pure spins via spin-orbit coupling. In the last decade, this large magnetic anisotropy of cobalt(II) centers was successfully utilized to afford cobalt(II)-based single molecule magnets (SMMs) [12], but the use of high-spin cobalt(III) centers were not made because most of ligands yield low-spin complexes with diamagnetic low-spin ${ }^{1} A_{1}$ ground states, not high-spin. Exceptional cases reported are the high-spin cobalt(III) complexes $\left[\mathrm{CoF}_{6}\right]^{3-}[13]$ and $\left[\mathrm{CoF}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$ [14]. It should be worthwhile if some weak and versatile ligands deliver a series of high-spin cobalt(III) complexes.

The sulfur ligands are also interesting for their coordination versatility toward paramagnetic cluster complexes.

Monodentate thiourea and bidentate dithiooxamide ligands are known to give high-spin cobalt(II) complexes, which have fully characterized by vibrational and electronic spectroscopies but X-ray crystal structure analysis [15-16]. There is a possibility of obtaining high-spin complexes even with cobalt(III) ions if weak enough sulfur ligands are adopted.

Soft-scorpionate ligands $\operatorname{Tm}^{\mathrm{R}}$ [17] which bear three sulfur coordination sites on a molecule based on 1-alkylimidazol-2-ylthione donors belong to the thioamide family and a number of complexes were synthesized with focuses on not only metalloenzyme mimics but also industrial applications for sensors [18]. Among the soft-scorpionate cobalt complexes, the ocatahedral low-spin cobalt(III) complex $\left[\mathrm{Co}^{\text {III }}\left(\mathrm{Tm}^{\mathrm{Me}}\right)\right]^{+}[19]$ and the tetrahedral cobalt(II) complex $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{R}}\right)_{2}\right]\left(\mathrm{R}={ }^{t} \mathrm{Bu}[20], \mathrm{Ph}\right.$ [21]) have been obtained. However, the nephelauxetic effects in them as soft donor ligands and detailed magnetochemical studies are not investigated yet. The soft scorpionate ligand based on 2-benzothiazolethione, $\mathrm{NaTbz}\left(\mathrm{Tbz}^{-}=\right.$hydrotris(2-mercaptobenzothiazolyl)borate), is interesting because this ligand has a benzene-ring substructure on each pod, extending wider π-conjugation than in $\mathrm{Tm}^{\mathrm{R}-}$ ligand [22].

In the Part III, the synthesis, molecular structure, magnetic property, and electronic spectrum of a novel cobalt(II) complex $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ were studied and the ligand-field splitting and nephelauxetic effect in the complex are discussed. Aiming to the high-spin ocatahedral configuration or spin-crossover phenomenon of cobalt(III) S_{6} complex [23], $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)$ was examined in terms of crystal structure, magnetic susceptibility and electronic spectrum. [$\left.\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was obtained as a byproduct and examined in terms of crystal structure and magnetic susceptibility. The molecular structures and electronic structures of these complexes are compared.

Chapter 9. Experimental for $\left[\mathrm{Co}^{\mathrm{II}}(\mathbf{T b z})_{2}\right]$ and $\left[\mathrm{Co}^{\mathrm{II} / \mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]^{0 /+}$

Commercially available solvents and chemicals were used without further purification. The reaction procedure of ligand ${ }^{n} \mathrm{Bu}_{4} \mathrm{NTbz}\left(\mathrm{Tbz}^{-}=\right.$hydrotris(2-mercaptobenzothiazolyl)borate) was performed under a nitrogen atmosphere. $\mathrm{Na}\left(\mathrm{Tm}^{\mathrm{Me}}\right) \cdot 4 \cdot 5 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Tm}^{\mathrm{Me}}=\right.$ hydrotris(2-mercapto-1methylimidazolyl)borate) was prepared according to the literature method [24-25]. All reaction procedures of complexes were carried out in ambient atmosphere. Elemental analyses (C, H, N) were carried out at the Laboratory for Instrumental Analysis, Graduate School of Engineering, Osaka University. Electronic spectrum of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ (1) was measured on Jasco V-570 UV/Vis spectrophotometer equipped with a diffuse reflectance option at room temperature by using a powder sample sticking on a filter paper. Electronic spectrum of the acetonitrile solution in $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)(\mathbf{2})$ was measured on the same spectrometer above. IR spectra were recorded on a Thermo Nicolet NEXUS 470 ESP FT-IR spectrometer. NMR spectrum was recorded on a JEOL JNM-EX270 spectrometer. Solid-state magnetic measurements of 1 was carried out on a Quantum $\dot{\text { Design MPMS-XL5 SQUID magnetometer equipped with reciprocating sample option (RSO) at }}$ magnetic fields of 1.0 T . Solid-state magnetic susceptibility measurements of 2 and $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]$. $4 \mathrm{H}_{2} \mathrm{O}(3)$ were performed on a Quantum Design MPMS-2 SQUID magnetometer in a field of 1.0 T . Polycrystalline samples were mounted in calibrated gelatin capsules held at the center of a polypropylene straw fixed to the end of the sample rod. X-ray photoelectron spectra were obtained by irradiating the complex with $\mathrm{Mg}-\mathrm{K}_{\alpha}$ X-rays (300 W) at 298 K using an ULVAC-PHI ESCA 5700 photoelectron spectrometer and calibrated with the carbon $1 \mathrm{~s}_{1 / 2}$ photoelectron peak (285.0 eV).

9.1. Synthesis of a ligand and complexes

Tetrabutylammonium hydrotris(2-mercaptobenzothiazolyl)borate (${ }^{n} B u_{4} N T b z$)

Tetrabutylammonium tetrahydroborate, $(2.06 \mathrm{~g}, 8 \mathrm{mmol})$ and 2-mercaptobenzothiazole, $(5.35 \mathrm{~g}$, 32 mmol) were mixed together in a 200 mL round-bottomed flask, which was fitted with an air jacket condenser. After the reaction vessel was flashed with nitrogen gas, the vessel was placed in an oil bath and the temperature was raised slowly to $170^{\circ} \mathrm{C}$. The mixture started melting at approximately $120^{\circ} \mathrm{C}$ (tetrabutylammonium tetrahydroborate; mp $124^{\circ} \mathrm{C}$), whereupon the vigorous evolution of hydrogen gas began. Above $130^{\circ} \mathrm{C}$ the reaction mixture changed to a suspension and then the evolution of hydrogen gas stopped. Upon reaching $170^{\circ} \mathrm{C}$ (2-mercaptobenzothiazole; mp $168^{\circ} \mathrm{C}$), the suspension completely melted to clearness and the evolution of hydrogen gas began again. The temperature should be kept under $180^{\circ} \mathrm{C}$ to avoid decomposition. The reaction was allowed to proceed until the gas evolution stopped again. Once the reaction was complete the mixture was allowed to cool. In order to take the solid reaction mixture out of the flask, the yellow solid was dissolved in THF. Then solution was partially evaporated and the half-dry solid was extracted with hot toluene to isolate the product from excess 2-mercaptobenzothiazole and yellow decomposition by product. Large volume of ethanol was added to the grey-colored solid mass with vigorous stirring until white powder was suspended. The powder was filtered, washed with diethyl ether, and dried in vacuo, yield $3.30 \mathrm{~g}(55 \%)$. Calc. for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{BN}_{4} \mathrm{~S}_{6}$: $\mathrm{C}, 59.02 ; \mathrm{H}, 6.56 ; \mathrm{N}, 7.44 \%$. Found: C, $59.09 ; \mathrm{H}, 6.36 ; \mathrm{N}, 7.40 \% . \delta_{\mathrm{H}}\left(270.05 \mathrm{MHz}\right.$; solvent $\left.\mathrm{CDCl}_{3}\right) 0.88\left(\mathrm{t}, 12 \mathrm{H},{ }^{+} \mathrm{N}^{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{-}\right.\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}$), 1.28 (sextet, $8 \mathrm{H},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}$), 1.55 (quintet, $8 \mathrm{H},{ }^{+} \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}$), $3.13\left(\mathrm{t}, 8 \mathrm{H}, \quad{ }^{+} \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}\right), 7.05(\mathrm{br}, 6 \mathrm{H}$, benzothiazole H), $7.27(\mathrm{br}, 6 \mathrm{H}$, benzothiazole H), BH not observed; Infrared spectrum (KBr disk, cm^{-1}): $2478(v\{\mathrm{~B}-\mathrm{H}\}, \mathrm{w}), 736(v\{\mathrm{C}=\mathrm{S}\}, \mathrm{m})$.

$$
\left[\mathrm{Co}^{I I}(\mathrm{Tbz})_{2}\right](1)
$$

An 20 mL acetone solution of $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(291 \mathrm{mg}, 1 \mathrm{mmol})$ was added under stirring to an acetone solution (60 mL) of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NTbz}(1.50 \mathrm{~g}, 2 \mathrm{mmol})$ at room temperature. Yellow solid
immediately precipitated. After 5 minutes, the solid was filtered off and washed with acetone, ethanol and diethyl ether, and dried in air (yield $388 \mathrm{mg}, 36 \%$). Calc. for $\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{~B}_{2} \mathrm{CoN}_{6} \mathrm{~S}_{12}$: C, 46.71; H, 2.43; N, 7.78\%. Found: C, $46.57 ; \mathrm{H}, 2.53 ; \mathrm{N}, 7.74 \%$. Infrared spectrum $\left(\mathrm{KBr}\right.$ disk, $\left.\mathrm{cm}^{-1}\right)$: $2478(v\{\mathrm{~B}-\mathrm{H}\}, \mathrm{w}), 726(v\{\mathrm{C}=\mathrm{S}\}, \mathrm{m})$. To obtain single crystals, $\mathrm{Co}{ }^{\mathrm{II}}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 2 equiv of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NTbz}$ were placed at each side of an H -shaped tube. Then, acetone and acetonitrile were carefully added to the cobalt salt and the ligand in the H-tube, respectively, up to the level of solution contact. Yellow single crystals were obtained by allowing slow diffusion of two solutions for two weeks. Two different polymorphs of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ were obtained in the same crystallization batch. One is prism and another is rhombus in shape.

$$
\left[\mathrm{Co}^{I I I}\left(\mathrm{Tm}^{M e}\right)_{2}\right]\left(\mathrm{Tm}^{M e}\right)
$$

$\mathrm{CoF}_{3}(463 \mathrm{mg}, 4 \mathrm{mmol})$ was added under stirring to an aqueous solution (80 mL) of $\mathrm{Na}\left(\mathrm{Tm}^{\mathrm{Me}}\right) \cdot 4.5 \mathrm{H}_{2} \mathrm{O}(1.92 \mathrm{~g}, 4 \mathrm{mmol})$ at room temperature. Green solid immediately precipitated and subsequently turned to brown. After 5 minutes, the brown solid was filtered and extracted by acetone. Dark red solution was concentrated to minimal volume. The brown solid was collected by filtration from the concentrated solution, washed with minimal ethanol and diethyl ether, and dried in air (yield $1.40 \mathrm{~g}, 25 \%$). For X-ray crystallographic analysis, a dark red crystal was obtained from acetonitrile solution by vapor diffusion of diethyl ether. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~B}_{3} \mathrm{CoN}_{18} \mathrm{~S}_{9}$: $\mathrm{C}, 38.85 ; \mathrm{H}$, $4.35 ; \mathrm{N}, 22.66 \%$. Found: C, $38.83 ; \mathrm{H}, 4.20 ; \mathrm{N}, 22.66 \%$. Infrared spectrum ($\mathrm{KBr} \mathrm{disk}, \mathrm{cm}^{-1}$) : 2468, $2437(v\{B-H\})$.
$\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (3)
Complex 3 was isolated from the same reaction condition of 2 . Green solid precipitated was filtered quickly before the solid color turned to brown. The solid was washed with copious ethanol.

The green solid was extracted by acetonitrile and the dark-green solution was concentrated to minimal volume and stood for a few hours. Dark green crystalline solid was deposited, collected by filtration, washed with minimal acetonitrile and diethyl ether, and dried in air (yield $<2 \%$). For X-ray crystallographic analysis, a dark green crystal was obtained from acetonitrile solution by vapor diffusion of diethyl ether. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~B}_{2} \mathrm{CoN}_{12} \mathrm{~S}_{6} \cdot 4.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 34.21 ; \mathrm{H}, 4.90 ; \mathrm{N}, 19.95 \%$. Found: C, $33.90 ; \mathrm{H}, 4.50 ; \mathrm{N}, 19.78 \%$. Infrared spectrum (KBr disk, cm^{-1}): $2375(\nu\{\mathrm{~B}-\mathrm{H}\})$.

9.2. X-ray structure determination

Single crystal structure determinations of compounds $\mathbf{1 - 3}$ were performed at $173 \mathrm{~K}(\mathbf{1})$ and 123 K (2-3). The yellow prism crystal of $\mathbf{1}$ was covered with Paraton N oil and scooped up in a cryo-loop. The dark-red crystal of $\mathbf{2}$ and the dark-green crystal of $\mathbf{3}$ were attached to the tip of a glass fiber. These crystals were mounted on a Rigaku RAXIS RAPID imaging-plate area detector with graphite monochromated Mo- K_{α} radiation $(\lambda=0.071073 \mathrm{~nm})$. The structures were solved by direct methods [26] and expanded using Fourier techniques [27]. Some non-hydrogen atoms for 1 were refined anisotropically, while the rest were refined isotropically. All non-hydrogen atoms for $\mathbf{2}$ and $\mathbf{3}$ were refined anisotropically. Hydrogen atoms were refined using the riding model. All calculations were performed using the CrystalStructure crystallographic software package [28-29]. Detail on the data collections and refinements are summarized in Table III-1. On the other hand, the rhombus-shaped polymorph crystal of $\mathbf{1}$ has crystal solvent and effloresces immediately in air, so that the crystal structure could not be solved even in Paratone oil.

Table III-1. Crystallographic data and structure refinement for $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right],\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)$ and $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$

	[$\mathrm{Co}^{\text {II }}(\mathrm{Tbz})_{2}$]	$\left[\mathrm{Co}^{\text {III }}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)$	$\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
Emprical formula	$\mathrm{C}_{42} \mathrm{H}_{26} \mathrm{~B}_{2} \mathrm{CoN}_{6} \mathrm{~S}_{12}$	$\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~B}_{3} \mathrm{CoN}_{18} \mathrm{~S}_{9}$	$\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~B}_{2} \mathrm{CoN}_{12} \mathrm{O}_{4} \mathrm{~S}_{6}$
Formula weight	1079.98	1112.80	833.57
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	$P 2{ }_{1} /$ a	$P 2_{1} / \mathrm{n}$
$a(\AA)$	19.038(3)	19.1540(5)	14.143(1)
$b(\AA)$	13.142(2)	13.5985(4)	18.089(2)
$c(\AA)$	18.141(3)	20.5414(6)	15.282(1)
$\left.\alpha{ }^{(}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	103.467(5)	112.945(1)	102.382(2)
$\gamma\left({ }^{\circ}\right)$	90	90	90
$V\left(\AA^{3}\right)$	4414(1)	4927.0(3)	3818.6(5)
Z	4	4	4
T (K)	173	123	123
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.625	1.500	1.450
Crystal color, habit	yellow, prism	dark red, prism	dark green, block
Crystal dimensions (mm)	$0.6 \times 0.1 \times 0.1$	$0.70 \times 0.45 \times 0.45$	$0.45 \times 0.25 \times 0.15$
F_{000}	2196	2304.00	1732.00
$\mu\left(\mathrm{Mo} K_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	9.999	7.806	8.257
Total data	11094	15033	35290
Unique data	4729	10041	8685
$R_{\text {int }}$	0.1871	0.0346	0.0880
$R_{1}[I>2.0 \sigma(I)]$	0.0893	0.0379	
$w R_{2}[I>2.0 \sigma(I)]$	0.0932	0.0408	
$R_{1}[I>4.0 \sigma(I)]$			0.0944
$w R_{2}[I>4.0 \sigma(I)]$			0.1141
Goodness of fit	1.135	1.082	1.262

Chapter 10. Results and Discussion on $\left[\mathrm{Co}^{\mathrm{II}}(\mathbf{T b z})_{2}\right]$ and $\left[\mathrm{Co}^{\mathrm{II} / I I I}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]^{0 /+}$

10.1. Syntheses

$\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ (1) ($\mathrm{Tbz}^{-}=$hydrotris(2-mercaptobenzothiazolyl)borate) was synthesized by the reaction of a cobalt(II) salt and ${ }^{n} \mathrm{Bu}_{4} \mathrm{NTbz}$ which is a good starting material with high solubility in polar organic solvents. The complex is insoluble in water and most of common organic solvents, while soluble in DMF to decompose rapidly.

Meanwhile the preparation of $\mathrm{S}_{3} \mathrm{~F}_{3}$-coordination cobalt(III) complex, highly likely to show high-spin state, initially was attempted starting from CoF_{3}. Because CoF_{3} is sensitive to water, the powder was added promptly to an aqueous solution of soft S_{3} tripodal ligands Tbz^{-}or $\mathrm{Tm}^{\mathrm{Me}-}$ (hydrotris(2-mercapto-1-methylimidazolyl)borate). In the case of Tbz^{-}, yellow solid immediately precipitated at this moment, while in that of $\mathrm{Tm}^{\mathrm{Me}-}$, green solid immediately precipitated at this moment and fully turned to brown a few minute later.

On dissolution of CoF_{3} in water, cobalt(II) ion is known to be the dominant species presented in the solution owing to rapid decomposition. Thus it is assumed that the low-solubility cobalt(II) complex precipitates as yellow solid for Tbz^{-}.

Another syntheses of $\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{Tbz})_{2}\right]^{-}$from other cobalt(III) materials were also attempted but failed. It is possible that Tbz^{-}immediately reduces cobalt(III) ion to afford neutral $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$. On the other hand, in the case of $\mathrm{Tm}^{\mathrm{Me}-}$, it is likely that the low-solubility cobalt(II) complex precipitates as green solid at first and the residual cobalt(II) complex in the solution is readily oxidized into cobalt(III) cation, $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]^{+}$. Soon after the cobalt(III) cation forms, it captures one unreacted $\mathrm{Tm}^{\mathrm{Me}-}$ anion and precipitates as brown solid of the $\mathrm{Tm}^{\mathrm{Me}-}$ salt. As a result, stoichiometric product $\left[\mathrm{CoF}_{3}\left(\mathrm{Tm}^{\mathrm{Me}}\right)\right]^{-}$was not obtained and complex 1 formed instead.

Though the green product is not fully identified, it provides the dark green complex
$\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}(3)$ by recrystallization from an acetonitrile solution.

10.2. Molecular structure of complexes

Single crystal X-ray structure was determined for the complexes 1-3. Selected bond lengths and angles for $\mathbf{1}$ are listed in Table III-2. The space group of $\mathbf{1}$ is C2/c and the cobalt(II) ion has a centrosymmetric octahedral S_{6} coordination environment. It is a first report of $\left[\mathrm{Co}^{1 I} \mathrm{~S}_{6}\right]$ core in the soft-scorpionate chemistry (Figure III-1). All Co-S distances are 2.489-2.535 \AA and much longer than that of octahedral low-spin octahedral cobalt(II) complexes with thioether ligands (Table III-3) [2-3, 30]. The $\angle \mathrm{S}-\mathrm{Co}-\mathrm{S}$ bite angles in a same Tbz moiety vary from 92.0 to 99.5°, while other $\angle \mathrm{S}$-Co-S angles defined for two S atoms originating from different Tbz^{-}moieties are less than 90°. It means the coordination octahedron in $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ is slightly compressed along its pseudo- C_{3} axis (Figure III-2).

Table III-2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$.

Col-S1	$2.489(3)$	S1-Co1-S2	$99.5(1)$
Co1-S2	$2.535(3)$	S2-Co1-S3	$92.0(1)$
Col-S3	$2.451(3)$	S3-Co1-S1	$95.8(1)$

Figure III-1. Molecular structure of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

Table III-3. Comparison of structural data for $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$ complexes.

complex	spin state	average Co-S / \AA	references
$\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$	HS	$2.492(3)$	this work
$\left[\mathrm{Co}^{\mathrm{II}}(9 \mathrm{~S} 3)_{2}\right]^{2+\mathrm{a}}$	LS	$2.321(5)$	$[5]$
$\left[\mathrm{Co}^{\mathrm{II}}(10 \mathrm{~S} 3)\right]^{2+\mathrm{b}}$	LS	$2.324(4)$	$[6]$
$\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Ttn})_{2}\right]^{2+\mathrm{c}}$	LS	$2.372(3)$	$[3]$
$\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{PhTt})_{2}\right]^{\mathrm{d}}$	LS	$2.383(1)$	$[30]$

[^0]

Figure III-2. Top view of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ along $\mathrm{B} \cdots \mathrm{Co} \cdots \mathrm{B}$ direction.

Selected bond distances and angles for $\left[\mathrm{CO}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)$ (2) are listed in Table III-4. The space group of $\mathbf{2}$ is $P 2_{1} /$ a. An imidazole ring in $\left[\mathrm{Co}^{\text {III }}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]^{+}$moiety and another ring in counter anion, $\mathrm{Tm}^{\mathrm{Me}-}$ are mutually slant-stacked with the $\pi-\pi$ distance of $\sim 3.4 \AA$ (Figure III-3). The cobalt(III) ion of $\mathbf{2}$ is hexacoordinate. Co-S distances fall in the range of $2.293-2.321 \AA$ and are slightly shorter than that of other reported $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]^{+}$moiety (Table III-5) [19], while much shorter than that of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$. The $\angle \mathrm{S}-\mathrm{Co}-\mathrm{S}$ bite angles in which S -atoms come from a same $\mathrm{Tm}^{\mathrm{Me}-}$ moiety vary from 93.09 to 97.26°, while all the $\angle \mathrm{S}-\mathrm{Co}-\mathrm{S}$ angles defined for two S atoms originating from different $\mathrm{Tm}^{\mathrm{Me}-}$ moieties are less than 90°. It means the coordination octahedron in
complex 2 is slightly compressed along its pseudo- C_{3} axis (Figure III-4). The $\mathrm{C}=\mathrm{S}$ thione group bond lengths of $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]^{+}$moiety $(1.722-1.738 \AA)$ is longer than that of counter anion $\mathrm{Tm}^{\mathrm{Me}-}$ (1.697-1.700 \AA).

Table III-4. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)$.

Co1-S1	$2.3109(6)$	$\mathrm{S} 6-\mathrm{C} 21$	$1.726(3)$
Co1-S2	$2.3066(6)$	$\mathrm{S} 7-\mathrm{C} 25$	$1.699(3)$
Co1-S3	$2.2934(5)$	$\mathrm{S} 8-\mathrm{C} 29$	$1.700(3)$
Co1-S4	$2.2934(6)$	$\mathrm{S} 9-\mathrm{C} 33$	$1.697(3)$
Co1-S5	$2.3213(5)$		
Co1-S6	$2.3111(6)$	$\mathrm{S} 1-\mathrm{Co1-S} 2$	$93.09(2)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.732(3)$	$\mathrm{S} 2-\mathrm{Co1-S} 3$	$97.26(3)$
$\mathrm{S} 2-\mathrm{C} 5$	$1.722(3)$	$\mathrm{S} 3-\mathrm{Co1-S} 1$	$96.37(3)$
$\mathrm{S} 3-\mathrm{C} 9$	$1.731(3)$	$\mathrm{S} 4-\mathrm{Co1-S5}$	$95.55(3)$
$\mathrm{S} 4-\mathrm{C} 13$	$1.728(3)$	$\mathrm{S} 5-\mathrm{Co} 1-\mathrm{S} 6$	$95.076(18)$
$\mathrm{S} 5-\mathrm{C} 17$	$1.738(3)$	$\mathrm{S} 6-\mathrm{Co} 1-\mathrm{S} 4$	$95.51(2)$

Figure III-3. Crystal structure of $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)$ with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms are omitted for clarity.

Table III-5. Comparison of Co-S bond distances (\AA) for $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \mathrm{Y}$.

$\mathrm{Y}=\mathrm{Tm}^{\mathrm{Me}-}$	$\mathrm{BF}_{4}{ }^{-}$
2.3109	2.327
2.3066	2.326
2.2934	2.317
2.2934	2.311
2.3213	2.312
2.3111	2.304

Figure III-4. Top view of $\left[\mathrm{Co}^{\text {III }}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)$ along $\mathrm{B} \cdots \mathrm{Co} \cdots \mathrm{B}$ direction.

Complex 3 exhibits tetracoordinate tetrahedral structure and the space group is $P 2_{1} / \mathrm{n}$. The average Co-S bond distance is $2.36 \AA$ (Table III-6) and shorter than that of $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]$ analogue (Table III-7) [20-21] and fall between that of complex $\mathbf{1}$ and $\mathbf{2}$. The $\angle \mathrm{S}-\mathrm{Co}-\mathrm{S}$ bite angles are 109.28° and 114.72°, so the tetrahedral structure of $\mathbf{3}$ is slightly distorted (Figure III-5).

Table III-6. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$.

Co1-S1	$2.375(2)$	$\mathrm{Co1-S} 2$	$2.391(3)$
Co1-S4	$2.345(3)$	$\mathrm{Co1}-\mathrm{S} 5$	$2.3402(19)$
S1-Col-S2	$114.72(8)$	$\mathrm{S} 4-\mathrm{Co} 1-\mathrm{S} 5$	$109.28(8)$

Table III-7. Comparison of $\mathrm{Co}-\mathrm{S}$ bond distances (\AA) for tetrahedral soft tripodal cobalt(II) complexes.

$\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]$	$\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{t \mathrm{Bu}}\right)_{2}\right]^{[20]}$	$\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Ph}}\right)_{2}\right]^{[21]}$
2.375	2.3804	2.370
2.391	2.3607	2.372
2.345		
2.340		

Figure III-5. Crystal structure of $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with thermal ellipsoids drawn at 50% probability level. Some of hydrogen atoms are omitted for clarity.

10.3. X-ray photoelectron spectra

The X-ray photoelectron spectra of complexes $\mathbf{1 - 3}$ were measured (Figure III-6). The spectrum of 1 showed $\mathrm{Co}(2 \mathrm{pl} / 2)$ and $\mathrm{Co}(2 \mathrm{p} 3 / 2)$ peaks at 795.5 and 780.0 eV , respectively, both of which are associated with shake-up satellites at higher binding energies characteristic to cobalt(II) compounds [26]. The $\operatorname{Co}(2 \mathrm{p} 1 / 2)-\operatorname{Co}(2 \mathrm{p} 3 / 2)$ energy separation (spin-orbit splitting) was 15.5 eV , much larger than the cobalt(III) norm of 15.0 eV . The spin-orbit splitting of complex 3 was also 15.5 eV and again shake-up satellites were observed. On the other hand, the spin-orbit splitting of complex 2 was 15.0 eV and no satellite peaks were found. These results certify the valence state of complex 1 is +2 and reject the possibility of a valence tautomer $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tbz}^{-}\right)\left(\mathrm{Tbz}^{-2-}\right)\right]$. Taking into account the fact that the low-spin cobalt(II) compounds do not show remarkable satellites [31], it is consistent to conclude complex 1 to be a high-spin cobalt(II) complex.

Figure III-6. The $\mathrm{Co}(2 \mathrm{p})$ spectra of complexes $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right],\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)$, and $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. These spectra were normalized at the $\mathrm{Co}\left(2 \mathrm{p}_{3 / 2}\right)$ peak.

10.4. Magnetic properties

Isofield magnetizations of complexes $\mathbf{1 - 3}$ were measured from 3 to 350 K (1) and from 4 to 330 $\mathrm{K}(\mathbf{2 - 3})$. The effective magnetic moments $\mu_{\text {eff }}$ of complex $\mathbf{1}$ increased gradually with heating to 4.8 μ_{B} at room temperature (Figure III-7), which is indicative of the high-spin electron configuration of cobalt(II) $(S=3 / 2)$. Over the range of measurement temperature, complex 2 indicated diamagnetic behavior, so complex 2 is typical low-spin cobalt(III) species. Complex $\mathbf{3}$ showed effective magnetic moments $\mu_{\text {eff }}$ of $4.4 \mu_{\mathrm{B}}$ at room temperature (Figure III-8), which was somewhat higher than the expected value $3.9 \mu_{\mathrm{B}}$ for a high-spin cobalt(II) $(S=3 / 2)$. This value is about the same as the analog of compound 3 [20]. This behavior may arise from mixing of low-energy excited states in tetrahedral complexes with small ligand-field splitting.

Figure III-7. The temperature dependence of effective magnetic moment of a polycrystalline $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ recorded on a SQUID at 1.0 T . Open circles denote observed values and the solid curve is simulated by using parameters $\Delta_{0} / h c=8000 \mathrm{~cm}^{-1}, B / h c=$ $560 \mathrm{~cm}^{-1}, \zeta / h c=515 \mathrm{~cm}^{-1}, C / B=3.1$, and $k=0.74$.

Figure III-8. The temperature dependence of effective magnetic moment of a polycrystalline $\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ recorded on a SQUID at 1.0 T .

For reference, the powder of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ including impurity was obtained from the attempt of syntheses of $\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{Tbz})_{2}\right]^{-}$. Isofield magnetization of this compound was measured from 2 to 300 K under applied high pressure 0.7 GPa (Figure III-9). Compared to ambient pressure 0.1 MPa , decrease of the effective magnetic moment below 150 K was observed. It is possible that pressure induced low-spin transition of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ component occurs.

Figure III-9. The temperature dependence of effective magnetic moment of polycrystalline $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ including impurity recorded on a SQUID at 1.0 T under ambient pressure $0.1 \mathrm{MPa}(+)$ and applied pressure $0.7 \mathrm{Gpa}(\circ)$.

10.5. Electron absorption spectra

The electronic spectrum of complex 1 shows a strong absorption band at around $20000 \mathrm{~cm}^{-1}$ (ligand $\pi-\pi^{*}$ transition) and at $22000 \mathrm{~cm}^{-1}$ (MLCT). In addition, it has two weak $d-d$ bands around $14700 \mathrm{~cm}^{-1}$ and $7140 \mathrm{~cm}^{-1}$ (Figure III-10). Assuming the O_{h} symmetry, the former can be assigned to ${ }^{4} T_{1 \mathrm{~g}} \rightarrow{ }^{4} T_{1 \mathrm{~g}}(\mathrm{P})$ and the latter to ${ }^{4} T_{1 \mathrm{~g}} \rightarrow{ }^{4} T_{2 \mathrm{~g}}(\mathrm{~F})$. Similar d - d transitions were also reported in the diffuse reflectance spectrum of high-spin $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{DCTU})_{6}\right]\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{DCTU}=N, N^{\prime}\right.$-dicyclohexylthiourea) [13]. Based on these $d-d$ transitions, the ligand field splitting and the Racah's parameter were estimated as $\Delta_{0} / h c=8000 \mathrm{~cm}^{-1}$ and $B / h c=560 \mathrm{~cm}^{-1}$, respectively [32]. The magnitude of Δ_{0} is relatively low in comparison to that of hexaaqua cobalt(II) complex $\left(8400 \mathrm{~cm}^{-1}\right)$ [33], and B is much smaller than the free ion value $\left(B_{0} / h c=989 \mathrm{~cm}^{-1}\right)$ [34] and that reported for other thioamide complexes [13-14]. This value is even comparable to that of the thiacrown complex $\left[\mathrm{Co}^{\mathrm{II}}(18 \mathrm{~S} 6)\right]^{2+}$ with a low-spin $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$ center $\left(B / h c=580 \mathrm{~cm}^{-1}\right)$ attributable to large nepelauxetic effect $[3,7]$. These results suggest the complex 1 has also significantly covalent coordination bonds arising a remarkable nephelauxetic effect. By using these values of Δ_{0} and B, ligand-field calculations were carried out to simulate the magnetic susceptibility curve. Non-linear least squares fittings to the magnetic susceptibility were performed with fixed parameters Δ_{0} and B and adjustable parameters of the Racah's parameter C, spin-orbit coupling ζ, and Stevens' orbital reduction factor k. Optimized reduction factor k for given ζ and C / B ratio is mapped on a contour plot in Figure III-11. A cross on the map stands for a best-fitting parameter set $\left(\zeta / h c=515 \mathrm{~cm}^{-1}, C / B=3.1, k=0.74\right)$ determined for the spin-orbit coupling fixed to the free-ion value [34], which yield a simulation curve in Figure III-12. The small k value also suggests intense delocalization of d-electrons over the ligands, weakening electron-electron repulsion on the cobalt ion.

Figure III-10. Diffuse reflectance spectra of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ recorded for a powder sample (left) and a KBr -diluted sample (right) at room temperature.

Figure III-11. Contour map of Stevens' orbital reduction factor k on a parameter plane of the spin-orbit coupling ζ and the ratio between the Racah's parameters C / B, determined by non-linear least-squares fitting to the magnetic susceptibility. A cross (+), placed at the point of $\zeta / h c=498 \mathrm{~cm}^{-1}, C / B=3.1$, and $k=0.74$, corresponds to the simulation curve in Figure III-7. The spin orbit-coupling for a free cobalt(II) ion is shown as a dotted line.

Figure III-12. Contour map of fitting residual on a parameter plane of the Stevens' orbital reduction factor k and the ratio between the Racah's parameters C $/ B$, calculated by non-linear least-squares fitting to the magnetic susceptibility. A cross (+) stands for a best-fitting parameter set $\left(\zeta / h c=515 \mathrm{~cm}^{-1}, C / B=3.1, k=\right.$ 0.74). Filled circles denote k values optimized for given ζ and C / B values using the magnetic data.

The electronic spectrum of complex $2\left(3.1 \times 10^{-5} \mathrm{M}\right)$ in acetonitrile solution shows a strong absorption band at around $40000 \mathrm{~cm}^{-1}$ (ligand $\pi-\pi^{*}$ transition) and the splitting bands on MLCT at $25000 \mathrm{~cm}^{-1}\left(\varepsilon=32800 \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right)$ and $21000 \mathrm{~cm}^{-1}\left(\varepsilon=18700 \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right)$. In addition, it has weak $d-d$ band around $12500 \mathrm{~cm}^{-1}\left(\varepsilon=280 \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~cm}^{-1}\right)$ (Figure III-13). Assuming the O_{h} symmetry, the former can be assigned to ${ }^{1} A_{\lg } \rightarrow^{1} E_{\mathrm{g}}$. Generally another $d-d$ band assigned to ${ }^{\prime} A_{\lg } \rightarrow{ }^{1} A_{2}$ for low-spin octahedral cobalt(III) complexes is observed but may be hidden by the presence of MLCT bands. Although the $d-d$ band for $A_{1 g} \rightarrow{ }^{1} E_{g}$ is lower than that of hexaaqua cobalt(III) complex (16500
cm^{-1}) [35], complex 2 possess low-spin configuration. It is conceivable that the reason is the stabilization of low-spin configuration from large nephelauxetic effect for soft-scorpionate ligand $\mathrm{Tm}^{\mathrm{Me}-}$.

Figure III-13. Electron absorption spectrum of $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)$, $3.1 \times 10^{-5} \mathrm{M}$ in $\mathrm{CH}_{3} \mathrm{CN}$.

Chapter 11. Conclusion of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ and $\left[\mathrm{Co}^{\mathrm{II} / \mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]^{0 /+}$

A novel cobalt(II) soft-scorpionate complex $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]\left(\mathrm{Tbz}^{-}=\right.$hydrotris(2-mercaptobenzothiazolyl)borate) was synthesized. Single-crystal X-ray analysis revealed that this complex has a $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$ center, which is a first case distinguished from $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$ or $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{4}\right]$ soft-scorpionate complexes [19-21]. The diffuse reflectance spectrum of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ and the electron absorption spectrum of $\left[\mathrm{Co}^{\mathrm{III}}\left(\mathrm{Tm}^{\mathrm{Me}}\right)_{2}\right]\left(\mathrm{Tm}^{\mathrm{Me}}\right)\left(\mathrm{Tm}^{\mathrm{Me}-}=\right.$ (hydrotris(2-mercapto-1-methylimidazolyl)borate) demonstrated that the soft-scorpionate Tbz^{-}and $\mathrm{Tm}^{\mathrm{Me}-}$ ligand gives a small ligand-field splitting and a strong nephelauxetic effect. The ligand-field parameters derived from the electronic spectrum of $\left[\mathrm{Co}^{\mathrm{II}}(\mathrm{Tbz})_{2}\right]$ were successfully served in the analysis of magnetic susceptibility. Remarkable delocalization of d-electron onto the ligand moieties was also suggested from the simulation of the magnetic behavior. On tuning of these parameter, soft scorpionate ligands are expected to give paramagnetic cobalt(III) complexes and polynuclear cobalt(II) complexes which possess high-spin ground state.

References for Part III

[1] S. R. Cooper, Acc. Chem. Res. 21 (1988) 141.
[2] K. Wieghardt, H.-J. Küppers, J. Weiss, Inorg. Chem. 24 (1985) 3067.
[3] J. R. Hartman, E. J. Hintsa, S. R. Cooper, J. Am. Chem. Soc. 108 (1986) 1208.
[4] D. Sellmann, H.-P. Neuner, F. Knoch, Inorg. Chim. Acta 190 (1991) 61.
[5] W. N. Setzer, C. A. Ogle, G. S. Wilson, R. S. Glass, Inorg. Chem. 22 (1983) 266.
[6] W. N. Setzer, E. L. Cacioppo, Q. Guo, G. J. Grant, D. D. Kim, J. L. Hubbard, D. G. VanDerveer, Inorg. Chem. 29 (1990) 2672.
[7] G. J. Grant, C. G. Brandow, C. W. Bruce, M. A. Bryant, R. M. Kirk, S. D. Lee, K. R. Rickerd, L. F. Mehne, J. Hetrocycl. Chem. 38 (2001) 1281.
[8] K. Fukui, N. Kojima, H. Ohya-Nishiguchi, N. Hirota, Inorg. Chem. 31 (1992) 1338.
[9] M. T. Ashby, N. A. Sheshtawy, Organometallics 13 (1994) 236.
[10] P. A. Fox, M. A. Bruck, S. D. Grey, N. E. Gruhn, C. Grittini, D. E. Wigley, Organometallics 17 (1998) 2720.
[11] W. R. W. Welch, S. Harris, Inorg. Chim. Acta 361 (2008) 3012.
[12] (a) E.-C. Yang, D. N. Hendrickson, W. Wernsdorfer, M. Nakano, L. N. Zakharov, R. D. Sommer, A. L. Rheingold, M. Ledezma-Gairaud, G. Christou, J. Appl. Phys. 91 (2002) 7382.
(b) K. W. Galloway, A. M. Whyte, W. Wernsdorfer, J. Sanchez-Benitez, K. V. Kamenev, A. Perkin, R. D. Peacock, M. Murrie, Inorg. Chem. 47 (2008) 7438.
(c) D. Wu, D. Guo, Y. Song, W. Huang, C. Duan, Q. Meng, O. Sato, Inorg. Chem. 48 (2009) 7413.
(d) F. Klöwer, Y Lan, J. Nehrkorn, O. Waldmann, C. E. Anson, A. K. Powell, Chem. Eur. J. 15 (2009) 7413.
(e) M. Murrie, S. J. Teat, H. Stockli-Evans, H. U. Güdel, Angew. Chem. Int. Ed. 42 (2003)
4653.
(f) Y.-Z. Zhang, W. Wernsdorfer, F. Pan, Z.-M. Wang, S. Gao, Chem. Commun. (2006) 3302.
(g) S. J. Langley, M. Helliwell, R. Sessoli, P. Rosa, W. Wernsdorfer, R. E. P. Winpenny, Chem. Commun. (2005) 5029.
(h) M.-H. Zeng, M.-X. Yao, H. Liang, W.-X. Zhang, X.-M. Chen, Angew. Chem. Int. Ed. 46 (2007) 1832.
(i) M. Marrie, Chem. Soc. Rev. 39 (2010) 1986.
[13] R. Hoppe, Recl. Trav. Chim. Pays-Bas 75 (1956) 569.
[14] H. C. Clark, B. Cox, A. G. Sharpe, J. Chem. Soc. (1957) 4132.
[15] G. Yagupsky, R. Levitus, Inorg. Chem. 4 (1965) 1589.
[16] G. Peyronel, G. C. Pellacani, A. Pignedoli, G. Benneti, Inorg. Chim. Acta 5 (1971) 263.
[17] M. Garner, J. Regrinski, I. Cassidy, M. D. Spicer, A. R. Kennedy, J. Chem. Soc., Chem. Commun. (1996) 1975.
[18] (a) L. Maria, A. Paulo, I. C. Santos, I. Santos, P. Kurz, B. Springer, R. Alberto, J. Am. Chem. Soc. 128 (2006) 14590.
(b) M. D. Spicer, J. Regrinski, Eur. J. Inorg. Chem. (2009) 1553.
(c) G. Dyson, A. Hamilton, B. Mitchell, G. R. Owen, Dalton Trans. (2009) 6120.
(d) R. Garcia, A. Paulo, I. Santos, Inorg. Chim. Acta 362 (2009) 4315.
[19] C. A. Dodds, M.-A. Lehmann, J. F. Ojo, J. Reglinski, M. D. Spicer, Inorg. Chem. 43 (2004) 4927.
[20] D. J. Mihalcik, J. L. White, J. M. Tanski, L. N. Zakharov, G. P. A. Yap, C. D. Incarvito, A. L. Rabinnovich, Dalton Trans. (2004) 1626.
[21] C. Kimblin, D. G. Churchill, B. M. Bridgewater, J. N. Girard, D. A. Quarless, G. Perkin, Polyhedron 20 (2001) 1891.
[22] J. F. Ojo, P. A. Slavin, J. Regrinski, M. Garner, M. D. Spicer, A. R. Kennedy, S. J. Teat, Inorg. Chim. Acta 313 (2001) 15.
[23] W. Kläui, J. Chem. Soc. Chem. Commun. (1979) 700.
[24] J. Reglinski, M. Garner, I. D. Cassidy, P. A. Slavin, M. D. Spicer, D. R. Armstrong, J. Chem. Soc., Dalton Trans. (1999) 2119.
[25] P. J. Bailey, D. J. Lorono-Gonzales, C. McCormack, S. Parsons, M. Price, Inorg. Chim. Acta 354 (2003) 61.
[26] SIR92: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G. Polidori, M. Camalli, J. Appl. Cryst. 27 (1994) 435.
[27] DIRDIF99: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, (1999). The DIRDIF-99 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
[28] CrystalStructure 4.0: Crystal Structure Analysis Package, Rigaku and Rigaku Americas (2000-2007). 9009 New Trails Dr., The Woodlands, TX 77381, USA.
[29] CRYSTALS Issue 11: J. R. Carruthers, J. S. Rollett, P. W. Betteridge, D. Kinna, L. Pearce, A. Larsen, E. Gabe, Chemical Crystallography Laboratory, Oxford, UK. 1999.

* [30] C. Ohrenberg, P. Ge, P. J. Schebler, C. G. Riodan, G. P. A. Yap, A. L. Rheingold, Inorg. Chem. 35 (1996) 749.
[31] D. C. Frost, C. A. McDowell, I. S. Woolsey, Mol. Phys. 27 (1974) 1473.
[32] A. B. P. Lever, J. Chem. Educ. 45(1968) 711.
[33] D. A. Johnson, P. G. Nelson, Inorg. Chem. 34 (1995) 5666.
[34] B. N. Figgis, M. A. Hitchman, Ligand Field Theory and its Application, Wiley-VCH, New York, 2000.
[35] A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 2nd edn., 1968.

Summary

The present dissertation is intended to deliver some ideas on rational molecular design of paramagnetic polynuclear complexes through the theoretical analysis of magnetic and spectroscopic properties of mononuclear manganese(III) and cobalt(II) complexes. The contents are constructed in two Parts following a concise General Introduction in Part I.

In Part II, a series of octahedral manganese(III) complexes were synthesized, of which axial ligands were chosen among a variety of monodentate ligands, while the equatorial ligand was kept to be tetradentate cyclam (1,4,8,11-tetraazacyclotetradecane) across the series. The magnetic measurements of them revealed that the electron configuration depends on the nature of axial ligands to be high-spin or low-spin complexes. Axial ligands of cyanoborohidride derivatives exert a relatively strong ligand field, despite not enough to yield a low-spin complex, to invest a large easy-axis magnetic anisotropy. The combined application of angular-overlap method (AOM) and extended Hückel molecular-orbital calculations confirmed that stronger axial ligands, just neighboring to spin-crossover boundary, bring about larger magnetic anisotropy of axially elongated high-spin manganese(III) complexes.

In Part III, several sulfur-coordinate cobalt(II/III) complexes of soft-scorpionate ligands were synthesized, which can be grouped into $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right],\left[\mathrm{Co}^{\mathrm{III}} \mathrm{S}_{6}\right]$, and $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{4}\right]$ coordination centers. Single-crystal X-ray analysis revealed that one of the cobalt(II) complexes has a $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$ center, which is a first case distinguished from already-known [$\mathrm{Co}^{\mathrm{III}} \mathrm{S}_{6}$] or [$\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{4}$] soft-scorpionate complexes. X-ray photoelectron spectroscopic and magnetic measurements demonstrated that this complex has a high-spin cobalt(II) metal center of [$\left.\mathrm{Co}^{\mathrm{II}}(\mathrm{L})\right]$-type electron configuration and rejected
the possibility of valence tautomer $\left[\mathrm{Co}^{\text {III }}\left(\mathrm{L}^{\bullet}\right)\right]$. Small ligand-field splitting and also small Racah's parameters determined from the electronic spectrum of the $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$ complex were successfully transferred in the analysis of magnetic susceptibility. Remarkable delocalization of d-electron onto the ligand moieties was also suggested from the simulation of the magnetic behavior.

These findings on high-spin $\left[\mathrm{Mn}^{\mathrm{II}} \mathrm{N}_{6}\right]$ and $\left[\mathrm{Co}^{\mathrm{II}} \mathrm{S}_{6}\right]$ cores presented how the electronic ground state of a mononuclear metal complex unit is controlled by chemical modification of coordination environment. In order to address engineering the magnetic anisotropy of nanomagnets, e.g. single moleclule magnets, these results should contribute to the rational design of the paramagnetic polynuclear complexes.

List of Publications

Part II.

1. Magnetostructural Examination of $\mathrm{Mn}(\mathrm{III})$ Complexes $\left[\mathrm{Mn}(\text { cyclam }) \mathrm{X}_{2}\right]^{+}$with Strong Axial Ligands

Haruyuki Baba and Motohiro Nakano
Polyhedron 28 (2009) 2087.

Part III.

2. Magnetic Properties of Cobalt(II/III) Complexes with Sulfur-Scorpionate Ligands Haruyuki Baba and Motohiro Nakano

Polyhedron 30 (2011) 3182.
3. Magnetic and Spectroscopic Characterizations of High-Spin Cobalt(II) Complex with Soft-Scorpionate Ligand

Haruyuki Baba and Motohiro Nakano
Inorganic Chemistry Communications 17 (2012) 177.

Acknowledgments

First of all, the author would like to express his most sincere gratitude to his Ph.D supervisor, Associate Professor Motohiro Nakano for his invaluable instructions, helpful suggestions, untiring patience, and hearty encouragement to the author. Without them, the author cannot complete this dissertation. The author would also like to express his gratefully appreciation to Professor Shu Seki for his insightful suggestions and comments, vital encouragements to the author, and reviewing this dissertation.

The author is deeply indebted to Professor Sensuke Ogoshi for reviewing this dissertation and providing relevant comments.

The author is also grateful to Assistant Professor Akinori Saeki for his valuable suggestions, generous encouragements to the author.

The author is grateful to Dr. Tetsusya Takeuchi at Low Temperature Center and Professor Takayoshi Kuroda-Sowa in Kinki University for magnetic measurements. The author also thanks so much Professor Yuko Hosokoshi in Osaka Prefecture University for magnetic measurement under applied pressure. The author would like to thank sincerely Dr. Nobuko Kanehisa for her useful suggestions and technical advices in X-ray crystal structure determinations.

Elemental analyses were carried out by Mr. Kunihiko Kamon and Mr. Masahiro Matsuoka, and X-ray photoelectron spectra were recorded by Dr. Seiji Watase in Osaka Municipal Technical Reserch Institute. The author expresses his sincere thanks to them, and hears with deep regret of the passing of Mr. Matsuoka.

The author acknowledges financial supports from the Ushio Foundation and the Japan Student Service Organization.

The author also expresses appreciation to Dr. Hiroaki Iguchi, Mr. Ryuta Ishikawa, Dr. Koichi

Kagesawa, Dr. Masaaki Omichi, Dr. Yoshiko Koizumi, Dr. Kazuyuki Enomoto, Dr. Vijayakumar Chakkooth, Dr. Bijitha Balan, and Dr. Prasankumar Seelam for their kind encouragements and advice.

The author also thanks Mr. Yoshihito Honsho, Mr. Shogo Watanabe, Mr. Masanori Kashine, Mr. Tadakazu Itoh, Ms. Shima Nakanishi, Mr. Sohei Enomoto, Mr. Atsushi Asano, Mr. Yuta Maeyoshi, Mr. Takahiro Fukumatsu, Mr. Masashi Tsuji, Mr. Takenori Fujiwara, Ms. Hiromi Marui, Mr. Yoshihiro Yasutani, Ms. Marina Ide, Ms. Tomoyo Miyakai, Mr. Sho Yamanaka, Ms. Saya Yoshikawa and Ms. Yuko Fujiie as well as all members of the Seki laboratory for their kind support and creating a pleasant atmosphere.

The author also thanks Mr. Naoto Matsuyama, Mr. Takashi Tamaki, Mr. Yusuke Ano, Mr. Tsuneaki Sakurai, Mr. Satoru Tsukada, Mr. Akira Sugahara, Mr. Kazuhiro Ohtsuka, Mr. Yoshiharu Hirano, Mr. Hideaki Nakamura, Mr. Hiroyuki Taka, and Dr. Jaursap Boonmak as well as all my friends for their unwavering encouragements and support.

Finally, the author would like to express his thanks to his parents, Kenzo Baba and Ikuko Baba and his brothers, Tomoyuki Baba and Masayuki Baba for their understanding of this study, continuous encouragements, and supporting spiritually and financially.

Appendix

Fitting Program for Magnetic Susceptibility
axfit.f

```
MAGNETIZATION OF ANISOTROPIC SPIN UNDER FIELD ///)
            CODED BY M. NAKANO (1998)
```

 REVISED 2002 / 04 / 03
 frogram axfit
MPLICIT DOUBLE PRECISION (A-H, O-Z)
IMPLICIT INTEGER (I-N)
PARAMETER (NPMAX $=6$, NAPEXMAX $=$ NPMAX +1$) ~$
PARAMETER (NAV $=16$, NAVO $=2+\operatorname{NAV}+11$
c --- SPIN MULTIPLICITY
$\underset{\text { PARAMETER }}{\text { PARAMERK }}=3030000)$
 DIMENSION XMU (MSPIN), ZMU (MSPIN), WORK (LWORK)
DIMENSION P (NPMAXY, DP (NPMAX), ALPHA (NAVO), BETA (NAVO)
DIMENSION O(NAVO), Z (NAVO), W (NAVO)
COMMON /STATE/ SPIN, 2SPIN
COMMON /MAGEATA/ OMAG (300, 100), CMAG(300, 100), OMU(300, 100$),$
$\& \operatorname{CMU}(300,100), \operatorname{FIELD}(100), \operatorname{TEMP}(300,100), \operatorname{NTEMP}(100), \operatorname{NFIELD}$
COMMON/PHYSCONST/ AVOGADRO, BOHR, BOLTZMANN, CO
COMMON/HAMILTONIAN/ G, D, E, O4O, O44, TIP
COMMON /CRITERIA/ FTOL, OTOL
COMON /SUBSPACE/ IOPT (NPMAX), NOPT
COMMON /REV COMM/ SIMPLEX (NAPEXMAX, NPMAX), Y(NAPEXMAX),
$\varepsilon_{\&} \quad$ PR (NPMAX), PBAR (NPMAX), YNEW, YPR, YAV,
INDEX (NAPEXMAX), ICOMM1, ICOMM2, ITER, IHI, INHI, ILO

```
    SPIN = (MSPIN - 1)/2.ODO
```



```
    AVGADRO = 6.0221415D23
    CO = BOHR / BOLTZMANN
    ToL = 1.0D-10
    FTOL = 1.0D-10
    lol
    READ (*, *) G, 
    READ (*, *) G, 
    READ (*, *) G, 
    READ \*, *) NFIELD
    DO IB = 1, NFIELD
    READ (*, NFIFIDIELD(IB), NTEMP(IB)
        READ (*, *) T, EFF
        TEMP(IT, IB ) = T
        OMU(IT,IB) = = EFF
        OMU(IT, IB) = EFF (IB) = FO *IEID (IB) * EFF * EFF / (3.0DO * T
        OMU(IT,IB) = SQRT 
    ENDDO
    NDDO
    NOPT = 0 , NPMAX
        IF (IOPT (I) .NE. 0) THEN
        NOPT = NOPT +
            DIE
    ENDI
    NAPEX = NOPT + 1 
    DOI = 1, MSPIN - 1) - SPIN
    ENDDO
    CALL DRECUR (NAVO, 1, 0.0D0, 0.0DO, ALPHA, BETA, IERR
    IF (IERR GT, 0) PRINT *', 'DRECUR:IERR=', IERR
    Clol
    OLTZMANN = 1.3806505D-23
        -- conversion from
            OPT (NOPT) = I
```



```
double frecision function deviation
MPLICIT DOUBLE PRECISION ( \(\mathrm{A}-\mathrm{H}, \mathrm{O}\)
COMMON /MAGDATA/ OMAG (300, 100), CMAG(300, 100), OMU(300, 100),
\(\operatorname{CMU}(300,100), \operatorname{FIELD}(100), \operatorname{TEMP}(300,100)\), \(\operatorname{NTEMP~(100),} \operatorname{NEIELD}\)
\(\operatorname{SIM}=0.0 \mathrm{DO}\)
\(\mathrm{w}=1.0 \mathrm{DO}\)
    DO IB \(=1\), NFIELD
DO IT \(=1, ~ N T E M P ~\)
    IT \(=1, \mathrm{NTEMP}\) (IB)
\(\mathrm{N}=\mathrm{N}+1\)
    SUM \(=\) SUM \(+(\) OMAG (IT, IB) - CMAG (IT, IB) \() * * 2.0 \mathrm{DO}\)
    SUM \(=\) SUM \(+\mathrm{W} *\) (OMU(IT, IB) - CMU (IT, IBY) \({ }^{2}+2.000\)
    \(\operatorname{SUM}=\operatorname{SUM}+(1.0 \mathrm{DO}-\mathrm{OMU}(\mathrm{IT}, \mathrm{IB}) / \mathrm{CMU}(\mathrm{IT}, \mathrm{IB})) * * 2.0 \mathrm{DO}\)
ENDDD
DEVIATION \(=\operatorname{SQRT}(S U M /(N-1))\)
SUBROUTINE MATRIXCLEAR (A, N)
DOUBLE PRECISION A(N, N)
DO \(J=1, ~ N\)
DO \(\mathrm{I}=1, \mathrm{~N}\)
\(\begin{array}{ll}\mathrm{DO} \\ \mathrm{I}(\mathrm{I}, \mathrm{J}, \mathrm{J}) & \mathrm{N} \\ =0.000\end{array}\)
ENDDD
\({ }_{\text {ENDD }}\)
UBROUTINE COPYMATRIX (A, B, N)
DOUBLE PREC
DO \(\mathrm{J}=1, \mathrm{~N}\)
DOI \(=1, N\)
ENDDO
ENDDO
ENDD
DOUBLE PRECISION FUNCTION UP ()
implicit double precision (A-h, o-z
COMMON /STATE/ SPIN, ZSPIN
If (ZSPIN .GE. SPIN)
THEN
\(=0.00\)
\(\mathrm{UP}=\operatorname{SQRT}(\) (SPIN - ZSPIN \() *(\) SPIN +2 ZPIN \(+1.0 D 0)\)
ZSPIN \(=2\) SPIN +1.0 DO
END
```

DOUBLE PRECISION FUNCTIION DOWN ()
IMPLICIT DOUBLE PRECISION (A-H, O-Z
COMMON /STATE/ SPIN,
ZSPIN
COMMON /STATE/ SPIN, ZSPIN
IF (ZSPIN .LE. -SPIN) THEN
DOWN $=0.0 \mathrm{DE} 0$
ELSE
DOWN $=\operatorname{SQRT}(($ SPIN +2 SPIN $) *($ SPIN -2 SPIN $+1.0 D 0)$
ZSPIN $=2$ SPIN $-1.0 D 0$
ENDI
END
integer function irow
tmplicit double precision (A-h, O-z)
RON $=$ INTATE $/$ SPIN, ZSPIN $+z S I N+1.0 \mathrm{D} 0)$
END
SUBROUTINE D TERM (D, A, BASIS, NSFIN
IMPLICIT DOUBLLE PRECISION $(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$
COMMON /STATE/SPIN, ZSPIN
DIMENSION A(NSPIN, NSPIN), BASIS(NSPIN)
DO IBASIS $=1$, NSPIN
$z=$ BASIS (IBASIS)
$2=$ SASIS
$S=$ SPIN

A(IBASIS, IBASIS) $=$ A(IBASIS, IBASIS) + ELEMENT ENDDC
END

Subroutine e term (e, a, basis, nspin)
IMPLICIT DOUBLE PRECISION ($\mathrm{A}-\mathrm{H}, \mathrm{O}, \mathrm{Z}$)
COMMON STATE/ SPIN, ZSPIN
DIMENSION A(NSPIN, NSPIN), BASIS(NSPIN)
DO IBASIS $=1$, NSPIN
ZSPIN $=$ BASIS(IBASIS

ELLMENT $=$ ELEMENT $*$ UP
ELEMENT
IELEMENT
IOFFD $=$ IROW 19
A(IOFFD, IBASIS $)=A($ IOFFD, IBASIS $)+$ ELEMENT
ENDDO
ZSPIN $=$ BASIS (IBASIS)
LEMENT $=0.5 \mathrm{DD} * \mathrm{E}$
ELEMENT $=$ ELEMENENT $*$ DOWN
$\mathrm{A}(\mathrm{IOFFD}, \mathrm{IBASIS})=\mathrm{A}($ IOFFD, IBASIS $)+$ ELEMENI ENDDO

SUBROUTINE ORDER4 1040, 044, A, BASIS, NSPIN
C $\quad--\quad 040 \star(\mathrm{SZ})^{\wedge} 4+044 *\left[(\mathrm{~S}+)^{\wedge} 4+(\mathrm{S}-)^{\wedge} 4\right]$
IMPLICIT DOUBLE PRECISION (A-H, O-2)
COMMON /STATE/ SPIN, ZSPIN
DIMENSION A(NSPIN, NSPIN), BASIS(NSPIN)
DO IBASIS $=1$, NSPIN
ZSPIN $=$ BASIS (IBASIS)
ELEMENT $=040 * 2$ ZPIN $* 2$ 2SPIN $* 2$ ZSPIN $* 2$ 2SPIN
A(IBASIS, IBASIS $)=A($ IBASIS, IBASIS $)+$ EIEMEN
DO IBASIS $=1$, NSPIN
ZSPIN $=$ BASIS (IBASIS)
ELEMENT $=044$
ELEMENT $=$ ELE
ELEMENT - ELEMENT * UP U
ELEMENT $=$ ELEMENT * UP
ELEMENT = ELEMENT * UP
ELEMENT = ELEMENT * UP (1)
A(IOFFD, IBASIS $)=\mathrm{A}($ IOFFD, IBASIS $)+$ ELEMEN
$\begin{aligned} & \text { ENDDO } \\ & \text { DO } \\ & \text { IBASIS }\end{aligned}=1$, NSPIN
SSPIN $=$ BASIS (IBASIS
LLEMENT $=$ O44
ITEMENT
$=$ ELEMENT $*$ dOWN

ELEMENT $=$ ELEMENT $*$ DOWN
ELEMENT $=$ EEEMENT
ELEMENT $=$ ELEMENT $*$ DOWN
ELEMENT $=$ ELEMENT $*$ DOWN
IOFFD $=$ IROW
$\left.\begin{array}{l}\text { IOFFD } \\ \text { A(IOFED } \\ \text { IROW } \\ \text { IBASIS }\end{array}\right)=\mathrm{A}($ IOFFD, IBASIS $)+$ ELEMENT

END

SUBROUTINE ZEEMAN X (G, FIEID, A, BASIS, NSPTN) IMPLICIT DOUBLE PRECISION (A-H, O-Z
COMMON /PHYSCONST/ AVOGADRO, BOHR, BOLTZMANN, C
DIMENSION A (NSPIN, NSPIN), BASIS (NSPIN
DO IBASIS = 1 , NSPIN
ELEMENT $=0.5 D 0 * G * C 0 *$ FIELD * UP ()
IOFED = IROW (1)
$\left.\begin{array}{c}\text { A(IOFFD, } \\ \text { ENDASO } \\ \text { IBAS }\end{array}\right)=$ A(IOFFD, IBASIS $)+$ ELEMENT ENDDO
IBASIS $=1$,
2SPIN $=$ BASIS
ELEMENT $=0.5 \mathrm{DO} * \mathrm{G} * \mathrm{CO} *$ FIELD * DOWN (
IOFFD $=$ IROW ()
A(IOFFD, IBASIS $)=$ A(IOFFD, IBASIS $)+$ ELEMENT R(IO
ENDDO
END
SUBROUTINE ZEEMAN_z (G, FIELD, A, BASIS, NSPIN) IMPLICIT DOUBLE PRECISION (A-H, O-Z) dimension a (nspin, nspin), basis (nspin)
DO IBASIS $=1$, NSPIN
EEMENT $=G * C O *$ FIELD * BASIS(IBASIS)
A(IBASIS, IBASIS) $=A($ IbASIS, IBASIS $)+$ ELEMENT ENDDO
END
SUBROUTINE MOMENT X (XMU, V , BASIS, NSPIN)
SUBROUTINE MOMENT X (XMU, V, BASIS,
IMPLICIT DOUBE PRECISION $(A-H, \quad 0-2)$
IMPLICIT DOUBLE PRECISION
COMMON /STATE/SPIN, ZSPIN
DIMENSION XMU (NSPIN), BASIS(NSPIN
DIMENSION V(NSPIN, NSPIN)
DO $\operatorname{IVEC}=1$, N
$\mathrm{SUM}=0.0 \mathrm{DO}$
DO IBASIS $=$
ZSPIN $=$ BR , NSPIN
U1 $=\mathrm{V}$ (IBASIS (IBASIS
$\mathrm{P}=\mathrm{V}$ (IBASIS, IVEC

ENDDO
Do IBASIS $=1$, NSPIN
ZSPIN $=$ BASIS (IBASIS
$P=0.5 D 0 *$ DOWN
$\mathrm{U} 2=\mathrm{V}$ (IROW \quad (1, IVEC)
$\mathrm{SUM}=\mathrm{SUM}+\mathrm{U} 2 * \mathrm{P} * \mathrm{UI}$
SUM $=\operatorname{SUM}+U^{2}$
NDDO
ENDDO
END
SUBROUTINE MOMENT_z (ZMU, V, BASIS, NSPIN)
IMPLICIT DOUBLE PRECISION (A-H, O-2)
DINENSION ZMU (NSPIN), BASIS (NSPIN)
DIMENSION V(NSPIN, NSPIN)
DO IVEC $=1$, NSPIN
SUM $=0.0 \mathrm{D} 0$
$\mathrm{V} 2=\mathrm{V}$ (IBASIS, IVEC) * V(IBASIS, IVEC)
SUM $=\mathrm{SOM}+\mathrm{V} 2 *$ BASIS (IBASIS)
NDD
ENDD

SUBROUTINE SORT (E, IORDER, N, MMAX MPLICIT DOUBLE PRECISION (A-H, O-2 IMENSION E (NMAX), TORDER (NMAX)
OGICAL SORTE
DO $I=1,{ }^{N}=$
IORDER (1)
ENDD
DO $\mathrm{I}=\mathrm{N}+1$, NMAX
ENDDD
$K=\mathbb{N}$
SORTED $=$ FALSE
While (.Not. sorted) SORTED = .TRUE. ELSE
$\mathrm{K}=\mathrm{K}-1$
SORTED $=$. TRUE.

-TEMP $=$ IORDER(I)
$\operatorname{TORDER}(I)=\operatorname{IORDER}(I+1)$
$\operatorname{IORDER}(I)+1)=$
SORTED $=$. FALSE.

ENDI ENDDO

ENDIF
MMIN $=E(\operatorname{IORDER}(N)$
DO $I=1, N$
$E(I)=E(I)-E M I N$
$\operatorname{WRITE}(*, 10) E(I)$
10
ENDD
ouble precision function therm av (t, e, a, Le, n) IMPLICIT DOUBLE PRECISION (A-H, $\mathrm{O}-\mathrm{Z}$)
MPLICIT DOUBLE PRECISION
TMENSTON E(N), A(N), LE (N)
$\operatorname{EMIN}=E(\operatorname{LE}(\mathbb{N}))$
SUM1 $=0.0 \mathrm{D}$
SUM2 $=0.0 \mathrm{D}$
$\begin{aligned} & \text { SUM2 }=0.0 D 0 \\ & \text { DO } I=1, N\end{aligned}$
$B E=\operatorname{EXP}(-(E(J)-\operatorname{EMIN}) / T)$
STOM1 $=$ SUM1 $+A(J) *$ EF
$\operatorname{SUM}_{\operatorname{SNDO}}=\operatorname{SUM} 2+\mathrm{BF}$
THERM_AV = SUM1 $/$ SUM2
SUBROUTINE SET PARAMETER ($\mathrm{P}, \mathrm{IBACK}$)
MPLICIT DOUBLE PRECISION (A-H, O-Z)
PARAMETER (NPMAX $=6$, NAPEXMAX $=$ NPMAX +1
PARAMETER (NPMAX $=6$, NAPEXMAX $=$ NPMAX +11$)$
COMMON $/$ HMMILTONIAN $/ G, D, E, O 40$, O44, TIP
COMMON /SUBSPACE/ IOPT(NPMAX), NOPT
dimension p (npmax)
F (IBACK .GT.
DO $I=1$, NOPT

IF (IOPT(I).EQ. 5) $\mathrm{P}(\mathrm{I})=044$
$\begin{array}{ll}\mathrm{IF}(\operatorname{IOPT}(\mathrm{I}) & \mathrm{EQ} \text {. 5) } \mathrm{P}(\mathrm{I})=044 \\ \mathrm{IF}(\mathrm{IOPT}(\mathrm{EQ} . & \text { 6) } \mathrm{P}(\mathrm{I})=\mathrm{TIP}\end{array}$
ELSE
DO $I=1$, NOPT

IF (IOPT (I).EQ. 3) $\mathrm{E}=\mathrm{P}(\mathrm{I})$

IF (IOPT (I) EQ .6 6) $\mathrm{TIP}=\mathrm{P}(\mathrm{I})$

ENDD

ENDIF
END
SUBROUTINE PARAMETER CONTROL (P)
/// Nelder-Mead Downhill simplex Method //
ICOMM1 $=0:$ Start/Terminate Iteration
ICOMM1 $=1:$ Simplex Initialization
ICOMM1 $=2:$ Convergence Check \& Simplex Reflection
ICOMM1 $=2:$ Convergence Che
ICOMM1
ICMM1 $=3:$ Simplex Expansion
ICOMM1 $=4:$ Simplex Contraction
ICOMM1 $=$ 5: Simplex Shrinkage
ICOMM1 $=10:$ No Optimization
IMPLICIT DOUBLE PRECISION (A-H, $0-2$
PARAMETER (NPMAX $=6$, NAPEXMAX $=$ NPMAX +1
PARAMEEER (NPMAX $=6, ~ N A$
PARAMETER (ITMAXX $=2000$)
PARAMETER (ALPBA $=1.0 \mathrm{DO}, \mathrm{BETA}=0.25 \mathrm{DO}, \mathrm{GAMMA}=2.5 \mathrm{DO}$
DIMENSION F (NPMAX), SG (NPMAX)
COMMON /CRITERIA/ FTOL, OTOI
COMMON CRITERIA/ FTOL, OTOL
COMMON /SUBPACE/ IOPT (NPMAX), NOPT
COMMON /REV COMM/ SIMPLEX (NAPEXMAX, NPMAX), Y(NAPEXMAX),
${ }_{\alpha}{ }_{\alpha}^{2}$
PR(NPMAX), PBAR (NPMAX), YNEW, YPR, YAV, LOGICAL ORS
c ORS $=$. FRALSE
If (NOPT .EQ. 0) THEN
ICOMM1 $=10-$ ICOMM
Y(ILO) = YNEW
$\underset{\text { RESE }}{\text { RETURII }}$
$\underset{\substack{\text { NAPEX } \\ \text { ENDIF }}}{\text { ELSE }}=\mathrm{NOPT}+1$
IF (ICOMM1 , EQ. 0) then
CLEAR COMMUNICATION FLAG \&
SIMPLEX INITIALIZATION (1/2)
ICOMM1 $=1$
ICOMM2 $=$
TTER $=0$
IHI $=0$
INHi $=0$
ILO $=0$
DO $J=1$, NOPT

ENDD
DELTA $=0.05 \mathrm{DO}$
DO TAPEX $=2$, NAPE
DO $\mathrm{J}=1$, NOPT
IF (IAPEX .EQ. J + l) FACTOR = 1.ODO - DELT
$\operatorname{SIMPLEX}(\operatorname{IAPEX}, \mathrm{J})=\operatorname{SIMPLEX}(1, \mathrm{~J}) *$ FACTOR
${ }_{\text {ENDDD }}^{\text {END }}$
DO $\mathrm{J}=1$, NOPT
$\mathrm{P}(\mathrm{J})=\operatorname{SIMPLEX}($ ICOMM2, J)
ENDD
RETURN
IF (ICOMM1 .EQ. 1) THEN
STAGE 1 ---
SIMPLEX initialization ($2 / 2$)

IсомM1 $=2$
COMM2
YAV
$=0$
CALI SIMPIEX_CHECK (SG, SGN2, VMIN, VMRX, INFOX, NOPT) IF (INFOX ED. ED) OTOL $=1.0 \mathrm{D}-6 *$ VMAX / SQRT (SGN2)

PRINT * ${ }^{\prime}$ 'MMAX $=1$, MMAX
PRINT * ' OTOL = ' , oto
PRINT *, 'SG $=$ ', $(\operatorname{SG}(J), \mathrm{J}=1$, NOPT $)$
ICOMM2 $=$ ICOMM2 +1
DOMM2 $=1$, NOPT
$\mathrm{P}(\mathrm{J})=\operatorname{SIMPLEX}($ ICOMM2, J $)$
ENDDO
RETURN
RETU
ENDIF
ENDIf
IF (ICOMM1 .EQ. 3) THEN
SIMPLEX EXPANSION
IF (ICOMM2 ECO. 0) THEN
YPR $=$ YNEW
ICOMM2 $=1$
COMM2 $=1$
IF (YPR $. \operatorname{LE}, Y(I L O)$) THEN
DO $\mathrm{J}=1$, NO (IT
$P(J)=G A M M A * P R(J)+(1.0 D 0-G A M M A) * \operatorname{PEAR}\langle J\rangle$
ENDDO
RETURN
$\underset{\text { RLSE }}{\text { RETUR }}$
ICOMM1 $=4$
ICOMM2 $=0$
$\underset{\text { ENDIF }}{\text { ICO }}$
IF (YNEW LT, YPR) THEN
DO $J=1$, NOPT
SDD
$\underset{\mathrm{Y}(\mathrm{IHI})}{\mathrm{ENDO}}=\mathrm{YNEW}$
ELSE
DO $J=1$, NOPT
$\operatorname{SIMPIEX}($ IHI, J) $=\operatorname{PR}(J$
$\left.\begin{array}{l}\text { ENDDO } \\ \mathrm{Y}(\mathrm{IHI})\end{array}\right) \mathrm{YPR}$
$\underset{\text { ENDIF }}{\text { ICOMMI }}=$
ICOMM1 $=2$
ICOMM2 $=0$
$\underset{\text { ENDIE }}{\text { ENDIE }}$
IF (ICOMMI .EQ. 4) THEN
-- STAGE 4 ---
IF (ICOMM2 .EQ. 0) THEN
ICOMM2 $=1$
IF (YPR .GT. Y(INHI)) TH

(YPR .LTT. Y(IHI)) THEN
DO J = 1, NOFT
STMPLEX (IHI, J) $=$ PR(J)
ENDDO
$\underset{\text { Y (IHI) }}{ }=\mathrm{YPR}$
ENDIF
DO $J=1, ~ N O P T ~$
$\mathrm{P}(\mathrm{J})=\operatorname{BETA} * \operatorname{STMPLEX}(\mathrm{IHI}, \mathrm{J})+(1.0 \mathrm{D} 0-\operatorname{BETA}) * \operatorname{PBAR}(\mathrm{~J}\rangle$
ENDDO
RETURN
ELSE
DO $J=1$, NOPT
SIMPLEX $(I H I, ~ J)=\operatorname{PR}(J)$
$\underset{Y}{\text { ENDDD }}$
ENDDO $=\mathrm{YPR}$
Y(IHI)
ICOMM1 $=2$
ICOMM1 $=2$
ICOMM2 $=0$
ENDIF
ELSE
(YNEW LTT. Y(IHI)) THEN
DO $\mathrm{J}=1$, NOPT
SIMPLEX (IHI, J) $=P(J)$
$\underset{Y(I N I)}{\text { ENDDO }}=$ YNEW
$\mathrm{Y}(\mathrm{IHI})=\mathrm{YNEW}$
$\mathrm{Y}(\mathrm{IHI})=\mathrm{YNEW}$
$\mathrm{ICOMM1}=2$

```
ICOMM2 \(=\)
    Icomm1
    ICOMM1 \(=5\)
ICOMM2 \(=0\)
\(\underset{\substack{\text { ENDIF } \\ \text { ENDIF }}}{\substack{\text { ICOM } \\ \text { ENDI }}}\)
IF (ICOMM1 .EQ. 5) THEN
--- STAGE 5 ---
SIMPLEX SHRINKAGE
F (ICOMM2 .EQ. O) THE
\(=0\)
    DO \(J=1\), NAPEX
        If ( \(J\) NE. NLO) THEN
        \(I=I+1\)
\(\operatorname{INDEX}(I)=J\)
        ENDIF
    ENDD
    \(\begin{aligned} & \text { ENDDO } \\ & \text { ICOMM2 }\end{aligned}=1\)
    I \(=\) INDEX (ICOMM2
```



```
        \(\operatorname{SIMPLEX}(\mathrm{I}, \mathrm{J})=\mathrm{P}(\mathrm{J}\)
    ENDDO
RETURI
ELSE
Y(INDEX (ICOMM2)) = YNEW
    (ICOMM2 GE. NAPEX - 1) THEN
    ICOMM1 \(=2\)
ICOMM2 \(=0\)
    ELSE
    ICOMM2 \(=\) ICOMM2 +
    I \(=\) INDEX (ICOMM2
    \(\mathrm{P}(\mathrm{J})=0.5 \mathrm{NO} *(\operatorname{SIMPLEX}(\mathrm{I}, \mathrm{J})+\operatorname{SIMPLEX}(\mathrm{ILO}, J)\)
        \(\operatorname{SIMPLEX}(\mathrm{I}, \mathrm{J})=\mathrm{P}(\mathrm{J})\)
    ENDDO
    \begin{tabular}{c} 
ENDD \\
RETU \\
ENDIE \\
\hline
\end{tabular}
\(\underset{\text { END }}{\text { END }}\)
ENDIF
ENDIF
IE (ICOMM1 .EQ. 2) THEN
    CONVERGENCE Check \& Reflection
CALL SIMPIEX_CHECK (SG, SGN2, MMIN, VMAX, INFOX, NOPT)
TF ((INFOX. EQ. 0) AND. ORS) THEN
YAVO \(=0.0 \mathrm{DD}\)
YAVO \(=\) YAVO \(+\mathrm{Y}(\mathrm{I}\)
ENDDO
YAVO = YAVO / NAPEX
IF (YAV - YAVO. LE. OTOL * SGN2) THEN
```



```
print *, 'ORIENTED RESTART ! !
    \(\mathrm{DO}_{\mathrm{P}(\mathrm{J})}=1, \operatorname{NOPT}=\operatorname{SIMPLEX}(\mathrm{ILO}, \mathrm{J})\)
    \(\underset{\text { ENDDO }}{\text { P(J) }}\)
    \(Y(1)=Y(\) ILO \()\)
    DO IAPEX = 1, NAPE
    DO \(\mathrm{J}=1\), NOPT
    X(IAPEX, J) \(=8\)
    ENDDO
    DO IAPEX \(=2\), NAPEX
    \(\mathrm{J}=\) IAPEX -1
FACTOR \(=0.5 \mathrm{DO}\)
        FACTOR \(=0.5 D 0 *\) VMIN
TF (SG (J) NE, 0 ODO)
        FACTOR \(=\) FACTOR \(* \operatorname{DSIGN(1.ODO,SG(J)~}\)
        \(\stackrel{\text { ENDTF }}{ }\)
    ENDIF
SIMPLEX (IAPEX, J)
Simplex (IAPEX, J)
( FACTOR
    ENDDO
    COMM1 \(=1\)
COMM2 \(=2\)
```

```
    \(\begin{array}{ll}\mathrm{DO} J \\ \mathrm{~F}(\mathrm{~J}) & =1, \operatorname{NOPT} \\ =\operatorname{SIMPLEX}(\text { ICOMM2, J) }\end{array}\)
    \(\underset{\text { RETURN }}{\text { ENDDO }}\)
ELSE
YAV \(=\) YAV
ENDIF
ENDIF
ILO \(=1\)
IF \((Y(1)\). GT. \(Y(2))\) THEN
    \(\mathrm{IHI}=1\)
\(\mathrm{INHI}=2\)
    LSE
    \(\frac{\mathrm{IHI}}{}=2\)
    TNHI
TNH
\(=1\)
ENDIF \(\mathrm{I}=1, \mathrm{~N}\)
```



```
        INBI \(=I\)
IHI \(=I\)
        \(\underset{\text { ELSE }}{\text { IHI }}=\mathrm{I}\)
        IF (Y(I) GT. Y(INHI)) THEN
        IF (I
ENDIF
    \(\underset{\text { ENDIF }}{\text { ENDIF }}\)
\begin{tabular}{c} 
END \\
ENDD \\
\hline
\end{tabular}
RTOLL \(=2.0 D 0 * \operatorname{ABS}(Y(\) IHI \()-Y(I L O))\)
RTOL \(=\) RTOL
RTOL \(=2.000(\operatorname{ABS}(Y(I H I)-Y(I L O))\)
RTOL \(=\operatorname{RTOL})(\operatorname{ABS}(Y(I H I))+\operatorname{ABS}(Y(I L O)))\)
```



```
IF (RTOL . LT. FTOL) THEN
        ICOMM1 \(=0\)
RETU
END
IF (ITER EQ. ITMAX) THEN
PRINT + Amoeba exceeding max iterations.
```



```
        ENDDO
        ENDDO
STOP
TCOM
        \(\stackrel{\text { STOP }}{\text { ICOMM1 }}=\)
\(\stackrel{\text { RETU }}{ }\)
\(\stackrel{\text { RETE }}{\text { EMDIF }}\)
\(\mathrm{DO} J=1, \mathrm{NOPT}\)
PBAR \((J)=0.0 \mathrm{DO}\)
ENDDO
DO I \(=1\), NAPEX
IF (I. NE. IHI) THEN
    PBAR \((J)=\operatorname{INOPT}(J)+\operatorname{SIMPLEX}(I, J)\)
    ENDD
ENDI
ENDD
ENDDO
\({ }_{\text {DO }}^{\text {ENDDO }}=1\), NOP
\(\mathrm{JBAR}(\mathrm{J})=\mathrm{MOPT}\)
\(=\) PBAR (J) \(/\) NOPT
ITER \(=\) ITER +1
TTER \(=\) ITER + 1
DO \(J=1\), NOPT
\(P(J) \xlongequal{=}=(1.0 D 0+\operatorname{NLPHA}) * P B A R(J)-A L P H A * \operatorname{SIMPLEX}(I H I, J)\)
\(P(J)=P(J)\)
\begin{tabular}{c} 
PR(J) \\
ENDDO \\
\hline Remin
\end{tabular}
\(\underset{\text { ECOMM1 }}{\text { ENDD }}=3\)
ICOMM1 \(=3\)
ICOMM2 \(=0\)
ICOMM2
RETURN
ENDIF
PRINT *, 'STACK IN PARAMETER_CONTROL !'
\begin{tabular}{l} 
PRIN \\
STOP \\
\hline
\end{tabular}
\({ }_{\text {END }}\)
SUbroutine simplex_check (SG, sGN2, vmin, vmax, info, nopt
```

$\begin{array}{lll}\text { C } & \text { Evaluation of Simplex Gradient and Diameters } \\ \text { C } & \text { Ref. C. T. Kelly, STAM J. Optim. } 10(1), 43-55(1999)\end{array}$ IMPIICIT DOUBLE PRECISION (A-H, O-z)
PARAMETER (NPMAX $=6$, NAPEXMAX $=$ NPMAX +11
COMMON /REV COMM/ SIMPIEX (NAPEXMAX, NPMAX), Y(NAPEXMAX)

DIMENSION SG (NPMAX)
DIMENSION V(NOPT, NOPT), VF (NOPT, NOPT), VNORM(NOPT)
DIMENSION V(NOPT, NOPT) VF (NOPT, NOPT), VNOR (NOPT)
DIMENSTON SGRAD(NOPT), DELF (NOPT), WORK (4 4 NOPT), IWORK (NOPT DIMENSION IPIV (NOPT), BERR(NOPT), DUMMY1 (NOFT), DUMMY2 (NOPT) Character equed
VMIN $=1.0 \mathrm{D}+1$
VMAX $=0$
IVEC $=0$
DO $I=1$, NOPT +1
IF (I, NE. ILO) THEN
IVEC $=$ IVEC +1
NNORM (IVEC) $=0$
V(J, IVEC) $=\operatorname{SIMPLEX}(I, J)-\operatorname{SIMPLEX}(I L O, ~ J)$
WNORM $($ IVEC $)=$ VNORM (IVEC) $+\mathrm{V}(\mathrm{J}$, IVEC $) *$ V(J, IVEC ENDDO
IF (VMIN .GT. VNORM (IVEC)) VMIN = VNORM (IVEC

DELF (IVEC) $=Y(I)-Y(I L O$
ENDIF
RCOND $=0.000$
FERR $=0.0 \mathrm{DO}$
FERR $=0.0 \mathrm{DO}$
TNFO $=0$
CALL DGESVX ('N', 'T', NOPT, 1, V, NOPT, VF, NOPT, IPIV, EQUED
$\stackrel{\delta}{\delta}$ DUMMY1, NOPT, $1, \mathrm{~V}, \mathrm{NOPT}, \mathrm{VE}$, NOPT, IPIV, EQUD
IF (INFO .NE. FERR, BERR, WORK, IWORK, INFO)
$\mathrm{SGN} 2=0.0 \mathrm{DO}$
$\operatorname{SG}(\mathrm{J})=\operatorname{SGRAD}(\mathrm{J}$
SGN2 $=\operatorname{SGN} 2+S G(\mathrm{~J}) * S G(J)$
ENDDO
PRINT *,, GRAD:', SORT(SGN2), RCOND, VMAX
END

C Following routines are a part of ORTHPOL
Ref. Walter Gautschi, ACM Transactions on Mathematical Software, Vol.20, No.1, Pages 21-62 (1994)
$\underset{\text { tierr, de, da, db) }}{\text { subroutine }}$ (n,dalpha, dbeta, dleft, dright, dzero, dweigh,
This is a double-precision version of the routine lob
double precision dleft,dright, depsma, dp01,dp0r, dpll, dplr, dpmll
dpmlr, ddet, dalpha (*), dbeta $(*)$, dzero (*), dweigh(*), de (*), da (*).
db (), d1mach
c The arrays dalpha,dbeta, dzero, dweigh, de,da, db are assumed to have
dimension $n+2$.
depsma=d1mach (3)
c depsma is the machine double precision

$$
\begin{aligned}
& \mathrm{np} 1=\mathrm{n}+1 \\
& \mathrm{np} 2=\mathrm{n}+2 \\
& \mathrm{do} 10 \mathrm{k}=1, \mathrm{np} 2 \\
& \mathrm{da}(\mathrm{k})=\mathrm{dalpha}(\mathrm{k}) \\
& \mathrm{db}(\mathrm{k})=\mathrm{dbeta}(\mathrm{k})
\end{aligned}
$$

dp01 $=0 . \mathrm{do}$
$\mathrm{dp} 0 \mathrm{r}=0 . \mathrm{do}$
$d p 0 r=0 . d 0$
$d p 11=1 . d 0$
dp1r=1.d0
do $20 \mathrm{k}=1, \mathrm{np} 1$
dpmal $=\mathrm{dp} 01$
$\mathrm{dpm11}=\mathrm{dp} \mathrm{p}^{2}$
$\mathrm{dp} 01=\mathrm{dp} 11$
$\left.\begin{array}{l}\text { dpmlr }=\text { dpor } \\ \text { dpor }\end{array}\right]=$ dplr
dp1l=(dleft-da $(\mathrm{k})) * d p 01-\mathrm{db}(\mathrm{k}) * \mathrm{dpm11}$
dp1r=(dright-da(k))*dp0r-db(k)*dpmlr
0 continue

call dgauss (np2, da, db, depsma, dzero, dweigh, ierr, de return
subroutine dgauss(n,dalpha,dbeta, deps,dzero,dweigh,iexr, de
c This is a double-precision version of the routine gauss.
double precision dalpha, dbeta,deps, dzero, dweigh, de, $d p, d g, d r$,
$d s, d c, d f, d b$
dimension dalpha(n), dbeta(n), dzero(n), dweigh (n), de (n)
if $(\mathrm{n} .1 \mathrm{t} .1)$ then
ierr=-
end if
ierr=0
dzero(1)=dalpha (1)
if(dbeta(1).1t.0.d0) then
ierr=-2
return
end $i f$
end if
dwe igh $(1)=$ dbeta (1)
if (n.eq. 1) return
dweigh(1) $=1 . d 0$
dweigh $(1)=1$. do
de $(\mathrm{n})=0 \mathrm{do}$
de $(\mathrm{n})=0$. do
do $100 \mathrm{k}=2, \mathrm{n}$
dzero(k)=dalpha(k)
if (dbeta $(\mathrm{k}) .1 \mathrm{t} .0 . \mathrm{d} 0)$ then
ierr=-2
return
end if
$\operatorname{de}(\mathrm{k}-1)=\operatorname{dsqrt}(\operatorname{dbeta}(\mathrm{k}))$
\quad dweigh $(k)=0 . d$
do $240 \quad \mathrm{l}=1, \mathrm{n}$
105 do $110 \mathrm{~m}=1$, r
if (m.eq.n) goto 120
if(dabs (de (IM)). le.deps*(dabs (dzero(m)) +dabs (dzero(m+1)))
$10^{*} \quad \begin{gathered}\text { goto } \\ \text { continue }\end{gathered}$
120 dp=dzero(1)
if (m.eq. 1) goto 240
if
$j=j+1$
j
$d g=($ dzero $(1+1)-d p) /(2 . d o * d e(1)$
$\mathrm{dr}=\mathrm{dsqrt}(\mathrm{dg} \star \mathrm{dg}+1 . \mathrm{do})$
$d g=d 2 e r o(m)-d p+\operatorname{de}(1) /(d g+d s i g n(d r, d g))$
$d s=1 . d 0$
$d c=1 . d 0$
$\mathrm{dp}=0 . \mathrm{d}$
$\mathrm{dp}=0 . \mathrm{m}^{2}$
$\mathrm{mml}=\mathrm{m}-1$
$\mathrm{mml}=\mathrm{m}-1$
do $200 \quad \mathrm{i}=1, \mathrm{mml}$
m^{2}
$i=m-1 i$
$d f=d s *$
$d \mathrm{~d}=\mathrm{dc*}$ de (i)
if (dabs (df). 1t.dabs (dg)) goto 150
dc=dg(df)
$\mathrm{dc}=\mathrm{dg} / \mathrm{df}$
$\mathrm{dr}=\mathrm{dsqrt}$
$\left(\mathrm{dc}{ }^{\star} \mathrm{dc}+1 . \mathrm{do}\right)$
$\mathrm{de}(1+1)=\mathrm{df} \star \mathrm{dr}$
$\mathrm{ds}=1 . \mathrm{do}$
dr
$\mathrm{dc}=\mathrm{dc}{ }^{\star} \mathrm{ds}$
goto 160
$\mathrm{ds}=\mathrm{df} / \mathrm{dg}$
dr=dsqrt(ds*ds+1.do)
de $(i+1)=d g * d r$
$\mathrm{dc}=1 . \mathrm{d} 0 / \mathrm{dr} \mathrm{r}$
$\mathrm{ds}=\mathrm{ds} * \mathrm{dc}$
$d s=d s \star d c$
$d g=d z e r o(i+1)-d p$
$d g=d z e r o(i+1)-d p$
$d r=(d z e r o(i)-d g) * d s+2 . d o * d c * d b$
$d p=d s^{*} d r$
$d z e r o(i+1)=d q+d p$

$\mathrm{df}=\mathrm{dweigh}(i+1)$
$\mathrm{dwe} 2 \mathrm{gh}(\mathrm{i}+1)=\mathrm{ds}{ }^{\star} \mathrm{dwe} i g h(i)+d c^{\star} d$
dweigh(i) $=$ de*dweigh(i)-ds*df
200
dzero(1)=dzero(1)-dp
$\mathrm{de}(1)=\mathrm{dg}$
$\mathrm{de}(\mathrm{m})=0 . \mathrm{do}$
goto 105
$40 \begin{aligned} & \text { continue } \\ & \text { do } 300 \\ & \text { i }=2, n\end{aligned}$
$\underset{\substack{i=1 i-\\ k=i}}{ }$
$\mathrm{dp}=\mathrm{dzero}(\mathrm{i})$
$\mathrm{do} 260 \mathrm{j}=1 \mathrm{i}$
do $260 \mathrm{j}=1 \mathrm{i}, \mathrm{n}$
if(dzero(j).ge.dp) goto 260
dp=dzero(j
260 continue
if (k.eq.i) goto 300
dzero(k)=dzero(i)
$\mathrm{dz}=\mathrm{dweigh}(\mathrm{i})$
dwe igh h (i) (i) wheigh (k)
00 continue
do $310 \mathrm{k}=1$, n
dweigh $(k)=$ dbeta $(1) *$ dweigh $(k) *$ dweigh (k)
310 continue
400 return
retur
END
subroutine drecur ($\mathrm{n}, \mathrm{ipoly}$, dal, dbe, da, db,iderr
${ }_{c}^{c}$ This is a double-precision version of the routine recur
double precision dal,dbe,da,db, dlmach, d1mach, dkm1,dalpbe,dt
-dlga, da12, dbe2, dganna
dimension $d a(n), d b(n)$
dimension da (n), db
if (n.It.
iderr $=3$
return
end if
dlmach=dlog (d1mach (2)
iderr $=0$
do $10 \mathrm{k}=1$
do $\left.\begin{array}{l}10(k=1, n \\ d a\end{array}\right)=0 . d o$
10 continue
f(ipoly.eq. 1) then
db(1) $=$. do
if (n.eq. 1)
do $20 \mathrm{k}=2, \mathrm{n}$
$\mathrm{dkm} 1=\mathrm{dble}(\mathrm{k}-1)$
$\mathrm{db}(\mathrm{k})=1 . \mathrm{d} 0 /(4 . \mathrm{do-1} . \mathrm{d} 0 /(\mathrm{dkm} 1 * \mathrm{dkm} 1))$
20 continue
else if (ipoly.eq. 2) then
da(1) $=5 d 0$
$\mathrm{db}(1)=1 . \mathrm{do}$
if n .eq. I) retur
do $30 \mathrm{k}=2$ n
$\mathrm{da}(\mathrm{k})=.5 \mathrm{~d} 0$
$\mathrm{dkml}=\mathrm{dble}(\mathrm{k}-1)$
$\mathrm{db}(\mathrm{k})=.25 \mathrm{do} /(4 . \mathrm{d} 0-1 . \mathrm{d} 0 /(\mathrm{dkml} * \mathrm{dkm} 1))$
$30 \begin{gathered}\text { continue } \\ \text { return }\end{gathered}$
else if (ipoly.eq. 3) then
if (n.eq. 1) ${ }^{\text {detan }}$ ($1 . \mathrm{d} 0$
if (n.eq. 1$)$ feturn
$\mathrm{db}(2)=.5 \mathrm{do}$
if (n.eq. 2) return
do $40 \mathrm{k}=3, \mathrm{n}$
40 continue
else if (ipoly.eq.4) then
$\mathrm{db}(1)=2 . \mathrm{do} *$ datan $(1 . \mathrm{do})$
do $50 \mathrm{k}=2, \mathrm{n}$ (n
$\mathrm{do} 50 \mathrm{k}=2, \mathrm{n}$
$\mathrm{db}(\mathrm{k})=.25 \mathrm{~d}$
50 continue
else if(ipoly.eq.5) then
da (1) $=.5 \mathrm{~d} 0$
if (n.eq.1) return
do $60 \mathrm{k}=2, \mathrm{n}$
60 continue
lse if (ipoly.eq.6) the
if(dal.le.-1.do .or. dbe.le.-1.d0) then iderr=1
else
dalpbe=dal+dbe
da $(1)=($ dbe-dal $) /$ dalpbe $+2 . d 0)$
$d t=(d a l p b e+1 . d 0) * d \log (2 . d 0)+d l g a(d a l+1 . d 0)+d l g a(d b e+1 . d 0)$
dlga (dalpbe +2. do
if $(\mathrm{dt} . \mathrm{gt} . \mathrm{dlmach})$
if (dt.gt. d
$\mathrm{db}(1)=\mathrm{d} 1$ mach (2)
else
db
(
end if
if (n.eq.1) return
$\mathrm{dbe} 2=\mathrm{dbe} * \mathrm{dbe}$
da $(2)=($ dbe 2 -dal2 $) /(($ dalpbe $+2 . d 0) *($ dalpbe $+4 . d 0))$

* $\quad \begin{gathered}\mathrm{db}(2)=4 \cdot \mathrm{~d} 0 *(\mathrm{dal}+1 \cdot \mathrm{~d} 0) *(\mathrm{dbe}+1 \cdot \mathrm{~d} 0) /((\mathrm{dalpbe}+3 \cdot \mathrm{~d} 0) *(\text { dalpbet } \\ 2 \cdot \mathrm{~d} 0) * * 2)\end{gathered}$
if (n .eq. 2) return
if (n.eq. 2) return
do $70 \mathrm{k}=3, \mathrm{n}$
dkm1=dble (k-1)

$*(1 . \mathrm{d} 0+.5 \mathrm{do}$
$\mathrm{db}(\mathrm{k})=2.2 \mathrm{dalpbe}+2 . \mathrm{d} 0) / \mathrm{dkm} 1)$
 $-1 . d 0) /(\mathrm{km1}) *(1 . \mathrm{d} 0+.5 d 0 * \mathrm{dalpbe} / \mathrm{dkm} 1) * * 2)$
ontinue
70^{*} continu
end if
else if (ipoly.eq. 7) then
if(dal.le.-1.do) then
iderr=1
else
da(1)=dal+1.do
$\mathrm{db}(1)=$ dgamma (dal $+1 . \mathrm{do}$, iderr)
if (iderr.eq. 2) $\mathrm{db}(1)=\mathrm{dlmach}(2)$
if (n.eq.1) return
if ($\mathrm{n} . \mathrm{eq} .1$)
do $80 \mathrm{k}=2, \mathrm{n}$
dkm1 $=$ dble $(\mathrm{k}-1$)
else if (ipoly.eq.8) then
$\mathrm{db}(1)=\mathrm{dsqrt}(4 . \mathrm{do}$ datan $(1 . \mathrm{d} 0)$
if (n.eq.
if (n.eq. 1) return
do 90
do $90 \mathrm{k}=2, \mathrm{n}$
$\mathrm{db}(\mathrm{k})=.5 \mathrm{~d} 0 * \mathrm{dble}(\mathrm{k}-1)$
90 continue
return
rese
else
iderr=4
end if
RETUR
END
double precision function dlga (dx)
double precision dbnum,dbden, dx, d1mach, dc,dp,dy,dt,ds
dimension dbnum (8), dbden (8)
${ }_{c}^{c}$ This routine evaluates the logarithm of the gamma function by
c combination of recurrence and asymptotic approximation.
c The entries in the next data statement are the numerators and
c denominators, respectively, of the quantities $B[16] /(16+15)$,
c numbers.
data dbnum/-3.617d3,1.d0,-6.91d2,1.d0,-1.d0,1.d0,-1.d0,1.d0/,
${ }_{*}^{*} 1.2 \mathrm{~d} 1 / \mathrm{dbd}$
c The quantity dprec in the next statement is the number of decimal
c digits carried in double-precision floating-point arithmetic
dprec=-alog10(sngl $(\operatorname{dlmach}(3)))$
$d c=.5 d 0 * d l o g(8 . d 0 * d a t a n(1 . d 0))$
$d \mathrm{p}=1 . \mathrm{d} 0$
$d y=d x$
$\mathrm{y}=$ sngl (dy)
c The quantity yo below is the threshold value beyond which asymptotic
cevaluation gives sufficient accuracy; see Eq. 6.1.42 in M. Abramowitz
C and I.A. Stegun, Handbook of Mathematical Functions''. The constants
c_{c}^{c} are $.12118868 \ldots=\ln (10) / 19$ and
$10 \begin{gathered}\mathrm{y} 0=\mathrm{exp}(121189 * \mathrm{dpre} \\ \text { if } \mathrm{f}(\mathrm{y} \cdot \mathrm{gt} \cdot \mathrm{yo}) \text { goto } 20\end{gathered}$
$d p=d y * d p$
$d y=d y+10$
$y=d y+1$. d
$\mathrm{y}=$ sngl 1 dy
goto 10
20 goto 10
c
c
c
The right-hand side of the next assignment statement is $\mathrm{B}\left[18 \mathrm{f} /\left(18^{*} 17\right)\right.$.
$\mathrm{ds}=4.3857 \mathrm{~d} 4 / 2.44188 \mathrm{~d} 5$
do $30=1=1,8$
$d s=d t * d s+d b n u m(i) / d b d e n(i)$

return
double precision function dgama(dx,iderr)
${ }_{c}^{c}$ This evaluates the gamma function for real positive $d x$, using the
c function subroutine dla dlmach $=$ dilog $($ dlimach (2) $)$
ider $=0$

```
dt=dlga(dx)
        iderr=2 = \
        \gamma=d1mach (2)
    else
    dgamma=dexp (dt)
    Meturn
end if
```

RETD
double precision function dimach (i)
INTEGER I
$\begin{array}{ll}\mathrm{c} & \\ \mathrm{c} & \text { Do } \\ & \\ \text { c }\end{array}$
double-prectsion machine constants
DOUELE- PRECISION MACHINE CONSTANTS
DIMACH (1) 1$)=\mathrm{B}^{\star \star}($ EMIN-1), THE SMALIEST POSITIVE MAGNITUDE
D1MACH (2) $=\mathrm{B}^{* *} \mathrm{EMAX}^{*}\left(1-\mathrm{B}^{* *}(-\mathrm{T})\right)$, THE LARGEST MAGNITUDE
D1MACH (3) $=\mathrm{B}^{\star * *}(-\mathrm{T})$, THE SMALLEST RELATTVE SPACING.
D1MACH (4) $=\mathrm{B}^{* *}(1-\mathrm{T})$, the Largest relative spacing.
D1MACH (5) $=$ LOG10(B)
INTEGER SMALL (2)
INTEGER LARGE (2)
INTEGER LARGE (2)
INTEGER RIGHT (2)
INTEGER RIGHT (2)
INTEGER DIVER(2)
INTEGER DIVER(2)
INTEGER LOG10(2)
INTEGER LOGL CRAY1 (38),
ITREGRR SC, CRAY1 (38),
COMMON /D9MACH/ CRAY1
save smale, large, right, diver, Logio, sc
DOUBLE PRECISION DMACH (S)
EQUIVALENCE (DMACH (1), SMALL (1)
GUUVALENCE (DMACH (2), LARGE (1)
EQUIVALENCE (DMACH (3), RIGHT (1)
EQUIVALENCE (DMACH (4), DIVER(1)
THIS VERSION ADAPTS AUTOMATICALIY TO MOST CURRENT MACHINES,
THIS VERSION ADAPTS AUTOMATICALLY TO MOST CURRENT MACHINES.
R1MACH CAN HANDLE AUTO-DOUBLE COMPILING, BUT THIS VERSION
DIMACH DOES NOT, BECAUSE WE DO NOT HAVE QUAD CONSTANTS FOR
MANY MACHYNES YET.
TO COMPILE ON ODDER MACHINES, ADD A
To COMPILE ON OIDER MACHINES, ADD A C IN COLUMN 1
ON THE NEXT LINE
AND REMOVE THE C FROM COLUMN 1 IN ONE OF THE SECTIONS BELOW
CONSTANTS FOR EVEN OLDER MACHINES CAN BE OBTATNED BY
mail netliberesearch.bell-labs.com
PLEASE SEND CORRECTIONS TO dmg OR ehg@bell-labs.com.
MACHINE CONSTANTS FOR THE HONEYWELL DPS 8/70 SERIES .
DATA SMALL (1), SMALL (2)/O402400000000, O000000000000/

DATA LARGE (1), LARGE (2)	
DATA RIGHT(1),RIGHT(2)	0376777777777,07777777777

DATA DIVER(1), DIVER(2) / O606400000000, 0000000000000 /,
machine constants for pdp-11 fortrans sufporting
32-BIT INTEGERS.

MACHINE CONSTANTS FOR THE UNTVAC 1100 SERIPS
MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES
DATA SMALL (1), SMALL (2) / 0000040000000, 0000000000000

on first call, if no data uncommented, test machine types,
IF (SC.NE. 987) THEN
DMACH (1) $=1$. D13

$* * *$ IEEE BIG ENDIAN
SMALL (1)
$=1048576$
$\begin{aligned} & \operatorname{SMALL}(1) \\ & \operatorname{SMALL}(2)\end{aligned}=0$
$\begin{aligned} \operatorname{LARGE}(1) & =2146435071 \\ \text { LARGE } 2) & =-1\end{aligned}$
LARGE (2) $=-1$
RIGHT $(1)=1017118720$
$\begin{aligned} \operatorname{RIGHT}(2) & =0 \\ \text { DIVER(1) } & =1018167296\end{aligned}$
DIVER($=1018167296$
DIVER 2) $=0$
LOG10 () $=1070810131$
LOG10 2) $=1352628735$
ELSE IF (SMALL (2) .EQ. 1117925532
AND. SMALL (I) EQ. -448790528) THEN
$\star * *$ IEEE LITTIE ENDIAN ***
$\operatorname{SMALL}(2)=1048576$
SMALL
$\operatorname{SMALL}(1)=0$
Large (1) $=-16435071$
Let
$\operatorname{LARGE}(1)=-1$
RIGHT(2) $=1017118720$
$\begin{aligned} \operatorname{RIGHT}(1) & =0 \\ \operatorname{DIVER}(2) & =1018167296\end{aligned}$
DIVER (2) $=1018167296$
$\operatorname{DIVER}(1)=0$
LOG10 (2) $=1070810131$
ELSE IF (SMALL (1) EO.

$\operatorname{SMALL}(1)=128$
SMALL $(2)=0$
SMALL (2) $=0$
LARGE(1) $=-3276$
LaRGE (2) $=-1$
RIGGT (1) $=9344$
RIG
$\operatorname{RIGHT}(2)=0$
$\operatorname{DIVER}(1)=9472$
$\begin{aligned} \operatorname{DIVER}(1) & =947 \\ \operatorname{DIVER}(2) & =0\end{aligned}$
LOG10(1) $=546979738$
LOG10 (2) $=-805796613$
ELSE IF (SMALL (1) EQ. 1267827943
AND. SMALL (2).EQ. 704643072) THEN
SMALL (1) $=1048576$
$\operatorname{SMALL}(2)=0$
$\begin{aligned} \operatorname{LARGE}(1) & =2147483647\end{aligned}$
$\begin{aligned} \operatorname{LARGE}(2) & =-1 \\ \text { RIGHT (1) } & =856686592\end{aligned}$
$\operatorname{RIGHT(1)}=85668659$
$\operatorname{RIGHT}(2)=0$
RIGH $(2)=8$
DIVER $(1)=873463808$
DIVER (2) $=0$
LOG10(1) $=1091781651$
DGE10 $(1)=1091781651$
LOG10 2$\}=1352628735$
ELSE IF (SMALL (1) .EQ. 1120022684
 SMALL CONEX $(1)=104857$
$\operatorname{SMALL}(1)=$
$\operatorname{SMALL}(2)=$
$\operatorname{SMALL}(2)=0$
$\operatorname{LARGE}(1)=2147483647$
LARGE ($)=2147483647$
LARGE (2) $=-1$
$\operatorname{RIGHT}(1)=1019215872$
$\operatorname{RIGHT}(2)=0$
$\operatorname{DIVER}(1)=1020264448$
DIVER(1) $=1020264448$
DIVER 2) $=0$
LOG10(1) $=1072907283$
LOG10(2) $=1352628735$
ELSE IF (SMALL (1) EQQ. 815547074 .AND. SMALL (2) EO. 58688) THEN $+*+$ VAX G-FLOATING ${ }^{+}$
$\operatorname{SMALL}(1)=1$
$\operatorname{SMALL}(2)=0$
$\operatorname{SMALL}(2)=0$
$\operatorname{LARGE}(1)=-32769$
LARGE (2) $=-1$
$\operatorname{RIGGE}(1)=-1$
$\operatorname{RIG}=15552$
$\operatorname{RIGHT}(2)=0$
$\operatorname{DIVER}(1)=155$
$\begin{aligned} \operatorname{DIVER}(1) & =155 \\ \operatorname{DIVER}(2) & =0\end{aligned}$

LOG10(1) $=1142112243$
LOG1O 2) $=2046775455$
$\operatorname{DMACH}(2)=1 . \mathrm{D} 27+$
$\mathrm{DMACH}(3)=1 . \mathrm{D} 27$
$\operatorname{LARGE}(2)=\operatorname{LARGE}(2)-\operatorname{RIGHT}(2)$

CRAY1 (1) $=6729141$
$\underset{\operatorname{CRAY1}(\mathrm{J}+1)}{ }=\operatorname{CRAY1}(\mathrm{J})+\operatorname{CRAY1}(\mathrm{J})$
$\begin{gathered}\text { CONTINUE } \\ \text { CRAY1 (22) }\end{gathered}=$ CRAY1(21) +321322
CRAY1(22) $=$ CRAY1(21) +321322
DO $20 \mathrm{~J}=22,37$
CRAY1 $(\mathrm{J}+1)=\operatorname{CRAY1}(\mathrm{J})+\mathrm{CRAY1}(\mathrm{~J})$
CONTINUE

CALL IMMCRY (SMALL (1), J, 8285, 8388608, 0
SMALL (1) $=0$
CALL IIMCRY (LARGE (2), J, 0, 16777215, 16777214 CALL IIMCRY (RIGHT (1), J. $16291,8388608,0)$
CALL IIMCRY (DIVER (1) , J, 16292, 8388608, 0) DIVER (2) $=0$ CALL I1MCRY (LOG10 (1), J, 16383, 10100890, 8715215) CALL IMCRY (LOG10 (2), J, 0, 16226447, 9001388
LSE WRITE ($*, 9000$)
STOF 779
STOP 779
END IF
ELSE
WRITE $/ *, 9$
STOP 779
END If
$\mathrm{SC}=987$
END IF
SANITY CHECK
IF (DMACH (4) .GE. 1.0 OD) STOP 778

STOP
END 1 IF
DIMACH $=$ DMACH (I)
9000 FORMAT(/' Adjust D1MACH by uncommenting data statements'/
*' appropriate for your machine.
/* Standard C source for D1MACH -- remove the * in column 1 */
*\#include <stdio.h>
*\#include <float.h>
\#include <float.h>
\#include <math.h>
*double dlmach_(long *i)
switch(*i) \{
case 1: return DBL MTN;
case 1: return DBL_MIN;
case 2 :
Ceturn DEL_MAX;
case 3: return DEL_EPSILION/FLTT_RADIX;
case 4: return DBL EPSILON;
case 5: return logio (FLT RADIX);

xit(1); return 0; /* some compilers demand return values */
RETURN
SUBROUTINE IIMCRY (A, A1, B, C, D)
** SPECIAL COMPUTATION FOR OLD CRAY MACHINES ****
INTEGER $A, A 1, B, C, D$
$A 1=16777216 * B+C$
$\mathrm{A} 1=16777216 * \mathrm{~B}+\mathrm{C}$
$\mathrm{A}=16777216 * \mathrm{~A}+\mathrm{D}$
RETURN

[^0]: ${ }^{\text {a }} 9 \mathrm{~S} 3=1,4,7$-trithiacyclononane. ${ }^{\text {b }} 10 \mathrm{~S} 3=1,4,7$ - trithiacyclodecane.
 ${ }^{\mathrm{c}} \mathrm{Ttn}=2,5,8$-trithianonane. ${ }^{\mathrm{d}} \mathrm{PhTt}=$ phenyltris((methylthio $)$ methyl $)$ borate.

