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Preface

nrRv tolerant networks (DTNs) provide networking in infrastructure-less environ-
ments, e.g., deep space, rural areas, disaster iueas, undenuater fields, etc. In DTNs,

the current TCP/IP model cannot work well due to lack of continuous end-to-end
connectivity. A store-carqr-forward message delivery scheme and custody transfer
mechanism is used in DTNs to confirm reliable transfer of bundles with custody
transfer request among nodes, by delegating the responsibility of custody-bundle
transfer through intermediate nodes in a hop-by-hop manner. Note that a bundle is
the protocol data unit in DTNs. The intermediate nodes keeping custody bundles are

called custodians. Each custodian must reserve a sufficient amount of storage and
energy for receiving and holding the custody bundles until their successfi.rl delivery
or delivery expiration. Due to shortage of storage capacity, custodians sometimes
face storage congestion, where they have to refuse to receive any custody bundle
from other nodes. In addition, each battery-powered node has to be awake while
holding the bundles. Since each custodian also generates its own custody bundles,
it is naturally selfish in behavior and rejects requests of custody transfer from other
nodes to save its storage as well as its energy. Intuitively, this problem is aggravated in
long-term isolated networks.

In such a situation, some movable vehicles referred to as message ferries can
solve the storage congestion problem by actively visiting the network and gather
bundles from custodians. Note that message ferries are equipped with a storage

enough to carry collected bundles to the destination, i.e., a base station referred to
as a sink node, and it can also supply energy to the custodians if required. When
there are multiple isolated networks referred to as clusters, message ferries have to
periodically visit those clusters and collects bundles from custodians there. This
network architecture is suitable for wide area sensing. Note that each node in a cluster
can directly/indirectly communicate with other cluster members through multi-hop
communication but cannot communicate with nodes in other clusters due to long
distances among them. A message ferry helps the inter-cluster communication by
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acting as a mediator between each cluster and the outer world via the sink node which

serves as a connector to the Internet or to other sink nodes.

In such ferry-assisted multi-cluster scenario, inter-cluster communication and

intra-cluster communication should be carefirlly considered to minimize the total
mean delivery delay of bundles. This thesis mainly focuses on these inter-cluster

and intra-cluster communications by combining three research studies. The inter-

cluster communication has been studied by two studies: 1) Grouping clusters, and2)

Optimal visiting order of isolated clusters. And, the intra-cluster communication has

been studied by self-organized data aggregation technique among selfish nodes in an

isolated cluster.

Thesis Organization

The content of this thesis is organized into following five chapters:

t. Introduction
2. Self-org anized data aggregation technique

3. Optimal visiting order of isolated clusters

4. Grouping clusters

5. Conclusions

Chapter I provides the background of recent development of DTNs, the motiva-

tion for the studies and the aim of the research.

Chapter 2 addresses intra-cluster communication by self-organized data aggre-

gation technique among selfish nodes in an isolated cluster. We proposed a self-

organized data aggregation technique for collecting data from nodes efficiently, which

can automatically accumulate data from nodes in a cluster to a limited number of
nodes (called aggregators) in the cluster. The proposed scheme was developed based

on the evolutionary game theoretic approach, in order to take account of the inherent

selflshness of the nodes for saving their own batterylife. The number of aggregators

can be controlled to a desired value by adjusting the energythat the message ferry

supplies to the aggregators. We further examine the proposed system in terms of
successful data transmission, system survivability and the optimality of aggregator

selection. We introduce two game models bytaking account of the retransmissions

mechanism of bundles. Through both theoretical and simulation-based approaches,

we reveal feasible piuameter settings that can achieve a systemwith desirable charac-

teristics of stability, survivability, and successfirl data transfer.
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Chapter 3 focuses on one part of inter-cluster communication by studying the
optimal visiting order of isolated clusters. \,Vhen there are lots of distant static clusters,

the message ferry should visit them efficiently to minimize the mean delivery delay
of bundles. We propose an algorithm for determining the optimal visiting order of
isolated static clusters in DTNs. We showthat the minimization problem of the overall

mean delivery delay in our system is reduced to that of the weighted mean waiting
time in the conventional polling model. We then solve the problem with the help
of an existing approach to the polling model and obtain a quasi-optimal balanced
sequence representing the visiting order. Through numerical examples, we showthat
the proposed visiting order is effective when arrival rates at clusters and/or distances

between clusters and the sink are heterogeneous.

Chapter 4 focuses on another part of the inter-cluster communication by study-
ing the grouping of clusters. When there are lots of distant static clusters, multiple
message ferries and sink nodes will be required. We aim to make groups each of
which consists of physically close clusters, a sink node, and a message ferry'. Our main
objective is minimizing the overall mean delivery delay of bundles in consideration of
both offered load of clusters and distance between clusters and their sink nodes. We

first model this problem as a nonlinear integer progftlmming, based on the knowledge

obtained in our previous work. Because it might be hard to solve this problem directly,

we take two-step optimization approach based on linear integer programming, which
yields an approximate solution of the problem. Through numerical results, we show
the two - step optimi zation approach works well.

Chapter 5 presents the conclusions of this thesis by summarizing all results and
observations we obtained through the researches.
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OsakaUniversity
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CHAPTER I

Introduction

rH the development of networking technologies, many researchers and devel-

opers have tried to achieve data communications in challenged networks, called

delay tolerant networks (DTNs) [1], 151, e.g., deep space, battle fields, disaster areas,

underwater fields, rural areas without infrastructure, sensor networking of distant
regions, etc. DTNs cause data communications with long delay, asymmetric data
rates, and long queueing delay due to lack of continuous end-to-end connectivity.
This class of challenged networks does not adequatelywell match with the current
end-to-end TCP/IP model. In this chapter, a brief background and survey of DTNs,

and motivation of the research are discussed.

1。l DelayTolerallt Nettorks

The Internet and TCP/P [28,54,58]

To interconnect the communication devices around the globe the Internet be-

comes a great success. It provides the inter connecting services by using a homo-
geneous set of communication protocols, called the TCP/IP (Ttansmission Control
Protocol/Internet Protocol) protocol suite. All devices that construct the Internet
use these protocols for routing the data and insuring the reliability of message ex-

changes. Wired-links connection primarily ensures the connectivity on the Internet
which includes the wired telephone network. Currently, however, many newwireless

technologies, e.9., short-range mobile, satellite links, etc, are also appearing in the
Internet technology. To guarantee the connectivity these links should be continu-
ously connected in end-to-end and there should be low-delaypaths between sources
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Figure 1.1: Data communication in the Internet.

and destinations as shown in Figure 1.1. The inter connectivity of Internet relies on
following important assumptions :

i Bidirectional and Continuous End-to-End Path: To establish the end-to-end con-

nectivity a bidirectional continuous connection between source and destination
is always required.

ii Short Round-Trips: lt is required that data round trip is relatively short, i.e., a

relatively consistent network delay in sending data packets and receiving the
corresponding acknowledgement packets is required.

iii Symmetric Data Rates: It is required that in both directions between source and

destination a relatively consistent symmetric data rates t are provided.

iv Low Error Rates: It is required that each link confirms low data loss or relatively
low failure of data.

On the the Internet communication is primarily based on packet switching and

transfer of data is mainly achieved by protocol layers.

Packet Switching 128,54,581 In data communication, packets are defined as pieces

of a complete block of user data. Packets travel independently from source to des-

tination through a network of links connected by routers. Each packet that makes

up a complete message can take a different path through the network. If one link
is disconnected, packets take another link. The header block of a packet contains

lNote here that symmetry implies the case where the data rates are sl.rnmetric in orders of magni-
tude.



l. I Delav Tolerant Networks

the destination address and other information that determines how the packet is
switched from one router to another [28,54,58].

Protocol Layers [28,54,58] Messages are moved through the Internet by protocol
layers: A set of predefined functions performed by each network node (i.e., network
connection point) for data communication between nodes 128,54,581. Host nodes
(computers or other communicating devices that are the sources or destinations of
messages) usually implement at least five protocol layers, which perform the following
functions:

a) Application Layer: The network applications and their application-layer pro-
tocol are located at application layer. An application layer protocol is distributed
over multiple end systems. The application in one end system uses the protocol to
exchange messages with the application in another end system. The application layer
of the Internet includes various protocols,8.9., HTTB SMTB FTB etc.

b) Transport Layer: The transport layer is responsible for transporting application-
layer messages between the application endpoints. In the Internet, two transport
protocols, TCP (Transmission Control Protocol) and UDP (User Datagram Proto-
col) are used. TCP offers connection-oriented service which provides guaranteed

delivery of application-layer messages to the destination and confirms data flow con-
trol (i.e., speed synchronization between sender and receiver). TCP also segments
long messages into shorter segments and provides a congestion control mechanism.

On contrary, the UDP protocol provides a connectionless service where there is no
reliabiliry no flow control, and no congestion control.

c) Network Layer/Internet Protocol Layer: The network layer is responsible for
routing datagrams, i.e., network layer basic packets of data from one host to another
by Internet Protocol (IP). Here, IP provides the basic task of transferring datagrams

from source to the final destination with a hierarchical addressing system, i.e., IP

addressing. All Internet components that have a network layer must run the IP
protocol. The network layer of the Internet also contains routing protocols that
determine the routes of the datagrams between sources and destinations.

d) Data Link Layer: To transfer a datagram from a source to its flnal destination the
network layer of the Internet provides the route through a series of packet switches
(i.e., routers). The overall data transfer relies on data link layer which provides a raw
transmission facility. The link layer packets of data is known as data frames and data
link layer sends data frames sequentially. When a packet from one node (host or
router) is transferred to the next node in the route, the network layer of host first
transfers datagrams down to the link layer which delivers the datagram to the next

3
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合
―官    阜+m+m+

Router Router

―
尋

Figure 1.2: Protocol layers in the Internet.

node. From there, the link layer transfer the datagram up to the network layer. The

data link layer services depend on the specific link-layer protocol that is employed

over the link. As datagrams typically need to traverse several links to travel from
source to destination, a datagram maybe handled by different link-layer protocols

at different links along its route. For a reliable data transfer, the receiver sends an

acknowledgment frame to the sender.

e) Physical Layer: The physical layer provides the service to transmit the individual
rawbits within the frame from one node to the next. The protocols in this layer are

again link dependent, and further depend on the actual transmission medium of the

link (in each case, a bit is transmitted across the link in a different way).

In the Internet data communication, routers are used to forward data from one

node to another. The Figure 1.2 shows the basic mechanism of protocol layers. Each

hop on a path can use a different link-layer and physical-layer technology, and the

TCP protocol runs only on source and destination end points, but the IP protocol

runs on all nodes. To provide routing path discovery path selection, name resolution,

and error recovery services other Internet protocols and applications are also used

128,54,581.

Wireless Network Communications Outside of the Internet [l7,58]

Communications outside of the Internet are mainly defined by the communica-

tions in wireless networks, e.9., power limited mobile wireless, sensor nodes, satellite,

and interplanetary communications. They are called challenged networks and are ac-

complished on independent networks, each supporting specialized communication

requirements. Figure 1.3 shows an example of the challenged networks. These net-

works do not use Internet protocols and they are mutually incompatible: each wireless
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Figure 1.3: Example of the challenged networks.

network is good at passing messages within its network, but not able to exchange

messages between networks. Each network is adapted to a particular communication
region, in which communication characteristics are relatively homogeneous. The

boundaries between regions are defined by link delay, link connectivity, data-rate
asymmetry error rates, addressing and reliability mechanisms, quality-of-service
provisions, and trust boundaries. Unlike the Internet, these wireless networks support

long and variable delays, arbitrarily long periods of link disconnections, high error
rates, and large bidirectional data-rate asyrnmetries. Examples of wireless networks

outside of the Internet include [ 17, 58] :

. Terrestrial civilian networks connecting mobile wireless devices, including per-

sonal communicators, intelligent highways, and remote Earth outposts.

. Wireless military battlefield networks connecting troops, aircraft, satellites, and

sensors (on land or in water).

. Outer-space networks, such as the InterPlaNetary (IPN) Internet project [3].

In such networks, an agent is required which can translate between the incompatible
networks and can act as a buffer for mismatched network delays.

These kind of challenged networks representing the wireless network communica-

tions outside of the Internet are compatible with a new kind of networks called delay
tolerant networks. In short, it is DTNs, which is also compatible with conventional
Internet. Here, delay implies the end-to-end latency of round trip data transmission
which occurs sometimes inherently in the transmission medium, or sometimes due to
geometry of the system. Alternatively, the term DTNs is also referred to as disruption
tolerant networks, where, disruption implies the factors that cause break dornrn of the
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connections, or incomplete connection due to transient or quickly changing aspects

of the system. As, disruption in the network also causes long end-to-end delay in the

data transmission, in our research, we collectively call this kind of networks delay

tolerant networks (DTNs).

Delay Tolerant Networks (DTNs) [, 17, 58]

A delay-tolerant network (DTN) can be defined as a network of regional networks.

DTNs provide networking which can overlay on top of regional networks, including
the Internet. DTNs support interoperability of regional networks by accommodat-
ing long delays between and within regional networks, and by translating between
regional network communication characteristics. In providing these functions, DTNs

accommodate the mobility and limited power of evolving wireless communication
devices. The wireless DTNs technologies may be diverse, including not only radio fre-

quency (RF) but also ultra-wide band GfWB), free-space optical, and acoustic (sonar

or ultrasonic) technologies. Note that the delay tolerant network (DTNs) architecture

is originally generated to support the InterPlanetary Internet (IPN). The primary goals

of a DTNs are interoperability across network environments, and reliability which
can capable of surviving hardware (networh and software (protocol) failures. More
information about the DTNs architecture is available at: a) The Internet Research

Task Force's Delay-Tolerant Networking Research Group (DTNRG) [1], and b) the
InterPlaNetary (IPN) Internet Project [31.

The above mentioned challenged and potential networks (Figure 1.3), do not con-

form to the underlying assumptions of the Internet. These networks have following
characteristics [,11,17,58] (Figure 1.4) :

(a) Intermittent Connectiuity: If there is no end-to-end path between source and
destination called network partitioning, or if there is discontinuous connection,
end-to-end communication using the TCP/IP protocols does not work. Other
protocols are required.

(b) Long orVariable Delay: In addition to intermittent connectivity, long propagation

delays between nodes and variable queuing delays at nodes contribute to end-to-

end path delays that can defeat Internet protocols and applications that rely on
quick return of acknowledgments or data.

(c) Asymmetric Data Rates: The Internet supports moderate asymmetries of bidirec-
tional data rate. But if asymmetries of data rates in order of magnitude are large,

they defeat conversational protocols.
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Figure 1.4: Characteristics of DTNs.

(d) HiSh Error Rates; Bit errors on links require correction (which requires more bits
and more processing) or retransmission of the entire packet (which results in more
network traffic). For a given link error rate, fewer retransmissions are needed for
hop-by-hop than for end-to-end retransmission (linear increase vs. exponential
increase, per hop).

Characterized by DTNs in wireless networks, communications are mainly estab-

lished by a) opportunistic contacts, and b) scheduled contacts.

Opportunistic Contacts Network nodes may need to communicate during oppor-
tunistic contacts, in which a sender and receiver make contact at an unscheduled
time. Moving people, vehicles, aircraft, or satellites may make contact and exchange

information when theyhappen to be within line-of-sight and close enough to commu-

nicate using their available (often limited) power [, 11, 17,58]. For example, wireless

Personal DigitalAssistants (PDAs) can be designed and programmed to send or receive

information when certain people carrying the PDAs come within communication
range, or when a PDA is carried past a certain type of information kiosk.
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Scheduled Contacts Nodes move along predictable paths, they can predict or re-

ceive time schedules of their future positions and thereby.urange their future commu-

nication sessions. Scheduled contacts may involve message-sending between nodes

that are not in direct contact. They may also involve storing information until it can be

forwarded, or until the receiving application can catch up with the sender's data rate.

Scheduled contacts require time-synchronization throughout the DTNs [1, I l, 17,58].

DTNs overcome the problems associated with intermittent connectivity, long or

variable delay, asymmetric data rates, and high error rates by using store-carry and

forward message switching.

Store-Carry and Forward Message Switching [l, I l, 17,58]

With store-carry and forward message switching mechanism whole messages (en-

tire blocks of application- program user data) or pieces (fragments) of such messages

are moved (forwarded) from a storage place on one node (switch intersection) to a

storage place on another node, along a path that eventually reaches the destination,

as shornrn in Figure 1.5.

The storage places (such as hard disk) can hold messages indefinitely. They are

called persistent storage, as opposed to very short-term storage provided by memory

chips. Internet routers use memory chips to store (queue) incoming packets for a few

milliseconds while they are waiting for their next-hop routing table lookup and an

available outgoing router port. DTNs routers need persistent storage for their queues

for one or more of the following reasons: a) A communication link to the next hop

may not be available for a long time, b) one node in a communicating pair may send

or receive data much faster or more reliably than the other node, and c) a message,

once transmitted, may need to be retransmitted if an error occurs at an upstream
(toward the destination) node or link, or if an upstream node declines acceptance of a

forwarded message.
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Figure 1.6: Bundle layer in DTNs.

By moving whole messages (or fragments thereof) in a single transfer, the message-

switching technique provides network nodes with immediate knowledge of the size

of messages, and therefore the requirements for intermediate storage space and
retransmission bandwidth.

The DTNs architecture implements store-carry and forward message switching
by overlaying a new protocol layer called the bundle layer on top of heterogeneous

region- specific lower layers.

The Bundle Layer and Bundle Protocol [l, ll, 17,47,58]

The bundle layer ties together the region specific lower layers so that application
programs can communicate across multiple regions.

Bundle is regarded as the protocol data unit in DTNs which is also called message

(as in message-switched). The bundle layer stores and forwards entire bundles (or

bundle fragments) between nodes. A single bundle-layer protocol is used across all
networks (regions) that make up a DTNs. By contrast, the layers below the bundle
layer (the transport layer and below) are chosen for their appropriateness to the
communication environment of each region. The Figure 1.6 illustrates the bundle
layer as a overlay (top) layer and compares Internet protocol layers with DTNs protocol

layers (bottom).

On intermittently connected links with long delays, conversational protocols such

at TCP that involve many end-to-end round-trips may take impractical amounts of
time or fail completely. For this reason, DTNs bundle layers communicate between

themselves using simple sessions with minimal or no round-trips. Any acknowl-
edgement from the receiving node is optional, depending on the class of service
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selected. The lower-layer protocols that support bundle-layer exchanges may of
course, be conversational like TCP But on intermittently connected links with long

delays, non-conversational or minimally-conversational lower-layer protocols can be

implemented (Figure I.7).

Bundle Protocol: Delay Isolation via Transport Layer Termination [, ll,17r 47,

5Bl On the Internet, the TCP protocol provides end-to-end (source-to-destination)

reliability by retransmitting any segment that is not acknowledged by the destination.

The network, link, and physical layers provide other types of data-integrity services.

In DTNs, the bundle layer relies on these lower-layer protocols to insure the reliability

of communication.

However, DTNs routers and gateways nodes that can forward bundles within or

between DTNs regions, respectively terminate transport protocols at the bundle layer.

The bundle layers thus act as surrogates for end-to-end sources and destinations, as

shor,vn in Figure 1.8. The side-effect is that conversational lower layer protocols of
low-delay regions are isolated at the bundle layer from long delays in other regions

of the end-to-end path. The bundle layer alone supports end-to-end messaging.

Bundles are typically delivered atomically, from one node to the next, independent

of other bundles except for optional responses, although a bundle layer may break a

single bundle into multiple bundle fragments.

On the Internet, the TCP and IP protocols are used throughout the network. TCP

operates at the end points of a path, where it manages reliable end-to-end delivery of
message segments.
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Classes of Bundle Service [l,1],17,47,581

The bundle layer provides six classes of service (CoS) for a bundle:

i Custody TTansfer: Delegation of retransmission responsibility to an accepting

node, so that the sending node can recover its retransmission resources. The

accepting node returns a custodial-acceptance acknowledgement to the previous

custodian.

ii Return Receipt: Conflrmation to the source, or its reply-to entity, that the bundle

has been received by the destination application.

iii Custody-Transfer Notification: Notification to the source, or its reply-to entity,
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when a node accepts a custody transfer of the bundle.

iv Bundle-ForwardingNotification: Notification to the source, or its reply-to entity,

whenever the bundle is forwarded to another node.

v Priority of Deltuery: Bulk, Normal, or Expedited.

w Authentication: The method (e.g., digital signature), if any, used to veri$r the

sender's identity and the integrity of the message.

DTNs Nodes

In a DTN, a node is an entity with a bundle layer. A node may be a host, router,

or gateway (or some combination) acting as a source, destination, or forwarder of
bundles, as shown in Figure 1.9:

Host: Sends and/or receives bundles, but does not forward them. A host can be a

source or destination of a bundle transfer. The bundle layers of hosts that operate

over long-delay links require persistent storage in which to queue bundles until
outbound links are available. Hosts may optionally support custody transfers.

Router: Forwards bundles within a single DTNs region and may optionally be

a host. The bundle layers of routers that operate over long-delay links require

persistent storage in which to queue bundles until outbound links are available.

Routers may optionally support custody transfers.
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. Gatewa!: Forwards bundles between two or more DTNs regions and may op-
tionallybe a host. The bundle layers of gateways must have persistent storage

and support custody transfers. Gateways provide conversions between the
lower-layer protocols of the regions they span.

In a DTN, the protocol stacks of all nodes include both bundle and transport layers.

DTNs gateways have the same double-stack layers as DTNs routers, but gateways

can run different lower-layer protocols (below the bundle layer) on each side of their
double stack. This allows gateways to span two regions that use different lower-layer
protocols. For reliable data transfer, DTNs provide custody transfer mechanism.

Custody Transfers Mechanism I l, 16, 47]

DTNs support node-to-node retransmission of lost or corrupt data at both the

transport layer and the bundle layer. However, because no single transport-layer
protocol (the primary means of reliable transfer) operates end-to-end across a DTN,

end-to-end reliability can only be implemented at the bundle layer. In what follows,

the term retransmission is referred to the bundle layer's retransmission.

The bundle layer supports node-to-node retransmission by means of custody
transfers. Such transfers are arranged between the bundle layers of successive nodes,

at the initial request of the source application. Nodes with custody transfer request

are called custodians. As shor,r,m in Figure 1.10, a sender first establishes link with
a neighboring receiver. Then the sender sends the bundle from its storage to the

receiver's storage and starts a time-to-acknowledge retransmission timer. Next, sender

requests a custody transfer and if the next-hop bundle layer accepts custody, it returns
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Figure l.l1: Bundle transfer with custody transfer mechanism in DTNs.

an acknowledgment to the sender. If no acknowledgment is returned before the
sender's time to acknowledge expires, the sender retransmits the bundle. The value

assigned to the time to acknowledge retransmission timer can either be distributed
to nodes with routing information or computed locally, based on past experience

transmitting to a particular node. After successful transmitting, sender deletes the
bundle from its storage to reuse and to prevent from duplicates.

A custodian must store a bundle with custody transfer request until either (t)
another node accepts custody, or (2) expiration of the bundle's time to live, which
is intended to be much longer than a custodian's time-to-acknowledge. However,

the time to acknowledge should be large enough to give the underlyrng transport
protocols every opportunity to complete reliable transmission.

Custody transfers provide guaranteed end-to-end reliabitity if a source requests

both custody transfer and return acknowledgment receipt. In that case, the source

must retain a copy of the bundle until receiving a return receipt, and it will retransmit
if it does not receive the return receipt.

The bundle layer uses reliable transport-layer protocols together with custody
transfers to move points of retransmission progressively forward toward the desti-

nation (as shown in Figure 1.f l). The advance of retransmission points minimizes
the number of potential retransmission hops, the consequent additional network
load caused by retransmissions, and the total time to convey a bundle reliably to its

destination. This benefits networks with either long delays or very lossy links. For
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paths containing many lossy links, retransmission requirements are much lower for
hop by hop retransmission than for end-to-end retransmission (linear increase vs.

exponential increase, with respect to hop count).

In summary, we can conclude the above discussion regarding the characteristics
of DTNs that in DTNs, the current TCP/IP model cannot work well due to lack of
continuous end-to-end connectivity. Hence, a store-carry-forward llll message de-

livery mechanism is used: A source node combines multiple data into a bundle and
transmits it to the destination node in a hop-by-hop manner. However, instantaneous

acknowledgment cannot be obtained due to lack of permanent end-to-end connec-
tivity. Therefore, custody transfer mechanism [16] is used in store-carry-forward
scheme which ensures reliable data transfer among nodes in DTNs: It offers that a

bundle with custody must be perfectly delivered from a source to the corresponding

destination by delegating the responsibility of reliable transfer with the bundle in a
hop-by-hop manner. Figure 1.12 presents a example of reliable bundle transfer in
DTNs with store-carry-forward and custody transfer mechanism. Note here that to
be a custodian, a node must reserve a sufficient amount of storage and energy to
receive bundles with custody and hold them until successful delivery or the expiration

of the bundle's delivery time. Custodians sometimes face storage congestion when
they must refuse to receive a new bundle with custody due to lack of their storages or

their sufficient energy to keep awake t161. An increase of bundles with custody and

long-term network partitioning accelerate the storage congestion.

In such a situation, some movable vehicles referred to as rn essage ferries [63, 65]
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can solve the storage congestion problem by activelyvisiting the network and gather

bundles from custodians. If the network is divided into several isolated networks
(clusters), message ferries move around the deployrnent area and deliver bundles

among the clusters. In addition, each battery powered node must be awake while
holding the bundles to obtain the opportunistic contact of the message ferry.

1.2 Message Ferrying Scheme

There are two message ferry schemes [63,65]: Node-initiated message ferry scheme

and ferry-initiated message fer4r scheme. In the node-initiated message ferry scheme,

ferries move around the deployed area according to knovrrn routes and communicate

with other nodes they meet. In this scheme, node requires to be mobile. With knowl-

edge of the ferry routes, node that wants to transmit the bundle periodically move

close to a ferry route and communicate with the ferry (as shown in Figure 1.13(a)). In
the ferry-initiated message ferry scheme, nodes are generally static and the message

ferry move proactively to meet nodes. When a node wants to send bundles, it gen-

erates a service request and transmits it to the ferry using a long range radio. Upon
reception of a service request, the ferrywill adjust its trajectory to meet up with the

node and collect bundles using short range radios (as shown in Figure l.f 3(b)). In
both schemes, nodes can communicate with distant nodes that are out of range by

using ferries as relays.

In message ferry schemes, most communication involves short range radios. Long

range radios are only used in ferry-initiated message ferry for small control messages,

avoiding excessive energy consumption. By using ferries as relays, routing is efficient

without the energy cost and the network load burden involved in other mobility-
assisted schemes that use flooding [63,65].

In ferry-assisted DTNs, regular nodes are assumed to have assigned tasks and lim-

ited in resources such as battery memory and computation power. Ferries are special

mobile nodes which take responsibility for carryring data between regular nodes and

have fewer constraints in resources, e.9., equipped with renewable power, large mem-

ory and powerful processors. The purposes of ferries are to provide communication

capacity between regular nodes.

Message Ferrying is suitable for applications which can tolerate significant transfer

delay, such as messaging, file transfer, email, data collection in sensor networks and

other non-real-time applications. These applications would benefit from the eventual

delivery of data even if the delay is moderate. For example, in a college campus,
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Figure 1.13: Message ferry schemes.

buses equipped with hard disks and wireless interfaces can act as ferries to provide

messaging service to students; in battlefield and disaster relief environments, aerial or

ground vehicles can be used as ferries to gather and carry data among disconnected

areas.

The design of the Message Ferry schemes is based on location awareness and

mobility. Each node or ferry is aware of its ornm location, for example through receiving

GPS signals or other localization mechanism.

1。3 M[ulti‐Cluster DTNs

In our proposed DTNs scenario, we aim to achieve a system that periodically
collects information from multiple isolated networks, e.g., several sensing areas in
sensor networks, many evacuation sites in disaster areas, etc. We can model these

scenarios as follows. The svstem consists of one or more base stations referred to
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as sink nodes. In this scenario, each static node can wirelessly communicate only
with other nodes in the transmission range. Hence, physically close nodes form
isolated networks referred to as clusters. In general, in such DTNs, each node has

heterogeneous arrival rate of bundles, and hence, each cluster has average arrival rate

of bundles (average heterogeneous offered load). In our proposed DTNs scenario, we

consider multiple such kind of clusters which we refer to as multi-cluster DTNs. In
general, multi-cluster DTNs consists of more than three clusters with several static

nodes inside. In such scenario, to collect bundles from the clusters to the sink node, we

apply the ferry-initiated message ferry scheme [63], where the message ferry departs

from the sink node, visits each cluster to gather bundles, and then brings them back

to the sink node as shor,rm in Figure 1.14. We called this scenario as ferry-assisted
multi-cluster DTNs. This network architecture is suitable for wide area sensiog, €.g.,

DataMULE t48l 2. Note that in this kind of scenario, message ferries are equipped with
a storage enough to carry collected bundles to the destination and it can also supply

energyto the custodians if required. The duration of the cycle of the message ferry

2A vehicle (message ferry) that physically carries a wireless compatible communication device
between remote locations to efficiently create a DTN data communication link. DataMULE specially
offers Internet connectivity to remote villages by attaching wireless compatible computers to buses
(message ferries); and while the bus stops at a village, the DTN router on the bus communicates with a

DTN router in the bus station over wireless communication.
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i.e., duration between message ferry's departs from the sink node and next returns
to the sink node, should be as short as possible so that the sink node can grasp the
current conditions of all the clusters. When there are so many clusters and/or nodes,

the duration tends to be longer. In that situation, we may divide clusters into several

groups, based on their locations and the expected amount of generated bundles, and

assign a single message ferry to each of those groups. Note that the scheme considered

in this research is applicable to such a case because each group of clusters behaves

independently.

The duration of the cycle of the message ferry is mainly determined by two
factors: The path length of the message ferry and the time for collecting bundles
from the clusters and supplying energy to them. In our proposed system, the ferry
path/communication is calculated in a hierarchical manner: Inter-cluster communi-
cation (the communication between the clusters), and intra-cluster communication
(the communication within one cluster, i.e., between the nodes). We assume that the

length of the intra-cluster path is negligible compared to that of the inter-cluster path

because the distance between nodes in an identical cluster is sufficiently shorter than
that between clusters. The sink node can calculate the inter-cluster path in advance

by obtaining the information on the physical locations of all clusters.

In such ferry-assisted multi-cluster DTNs scenario, one of the main challenges is

to determine a system which can minimize the total mean delivery delay of bundles,

where, mean delivery delay defines as the average time interval from the generation

of a bundle in a cluster to the completion of its delivery to the sink node. Hence,

the objective becomes optimizing inter-cluster communication and intra-cluster
communication by taking account of the heterogeneous physical distances of the
clusters, heterogeneous arrival rate of bundles where service time of bundles is not
negligible, in order to minimize the total mean delivery delay of bundles. Note here

that the whole system should be decentralized and autonomous because it is difficult
to achieve a centralized control in DTNs due to lack of persistent connectivity.

By taking account of the above objectives, we propose three research studies
(Figure 1. 15) . The inter-cluster communication is focused on by studying the grouping

of clusters and the optimal visiting order of isolated clusters. And, the intra-cluster
communication is addressed by self-organized data aggregation technique among
selfish nodes in an isolated cluster.

19
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1.3.1 GroupingClusters

\Mhen there are lots of clusters in ferry-assisted multi-cluster DTNs, multiple
message ferries and sink nodes will be required to adopt with the system capacity
limit. Hence, clusters can be divided into groups such that each group consists of
physically close clusters, a sink node, and a message ferry. In order to minimize the

overall mean delivery delay of bundles, group should be created by taking account
of the offered load of each cluster, distance between them and capacity limit of each

sink node. Hence, a suitable technique is proposed to appropriately locate each base

cluster to establish sink node, and to create the groups for the optimal situation.

1.3.2 Visiting order of Clusters

In ferry-assisted multi-cluster DTNs, the message ferry should visit the clusters in
a group efflciently to minimize the mean delivery delay of bundles. Hence, the goal

is to determine the visiting order of message ferry by taking account of arrival rate,

service time, and one-way traveling time between cluster and sink node. A technique
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to determine quasi-optimal balanced sequence is proposed in the visiting order of
clusters scheme.

1.3.3 Self-Organtzed,DataAggregation

In a cluster, to collect bundles efficiently from custodian nodes during each visit
of the message ferry bundles can be automatically accumulated to a limited number
of nodes (called aggregators). In such case, the message ferry needs to collect the
bundles only from the aggregators. This can minimize the traveling distance of the
message ferry in a cluster. Self-organized data aggregation technique provides an
autonomous and decentralized system to determine the controllable number of
aggregators by taking account of the inherent selfishness of the nodes for saving their
own battervlife.

1.4 Overview of the Thesis

By combining above three research studies, the whole thesis is prepared. A com-
plete system can comprehensively achieve efficient bundle gathering in ferry-assisted

multi-cluster DTNs by til making groups and determining sink nodes accordingly, (ii)

obtaining a visiting order for each group, and (iii) electing aggregators in each cluster.

The thesis is organized in down to top manner according to the above studies.

Chapter 2 addresses intra-cluster communication by self-organized data aggre-

gation technique among selfish nodes in an isolated cluster. We proposed a self-

organized data aggregation technique for collecting data from nodes effrciently, which
can automatically accumulate data from nodes in a cluster to a limited number of
nodes (called aggregators) in the cluster. The proposed scheme was developed based

on the evolutionarygame theoretic approach, in order to take account of the inherent
selfishness of the nodes for saving their own batterylife. The number of aggregators

can be controlled to a desired value by adjusting the energy that the message ferry
supplies to the aggregators. This chapter is constructed based on the publications in
A-1, B-l and B-2.

Chapter 3 focuses on one part of inter-cluster communication by studying the
optimal visiting order of isolated clusters. When there are lots of distant static clusters,

the message ferry should visit them efficiently to minimize the mean delivery delay

of bundles. We propose an algorithm for determining the optimal visiting order of
isolated static clusters in DTNs. We show that the minimization problem of the overall

mean delivery delay in our system is reduced to that of the weighted mean waiting
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time in the conventional polling model. We then solve the problem with the help

of an existing approach to the polling model and obtain a quasi-optimal balanced

sequence representing the visiting order. This chapter is constructed based on the

publication inA-2.
Chapter 4 focuses on another part of the inter-cluster communication by study-

ing the grouping of clusters. When there are lots of distant static clusters, multiple
message ferries and sink nodes will be required. We aim to make groups each of
which consists of physically close clusters, a sink node, and a message ferry. Our main

objective is minimizing the overall mean delivery delay of bundles in consideration of

both offered load of clusters and distance between clusters and their sink nodes. We

first model this problem as a nonlinear integer programming, based on the knowledge

obtained in our previous work. Because it might be hard to solve this problem directly,

we take two-step optimization approach based on linear integer programming, which

yields an approximate solution of the problem. This chapter is constructed based on

the publications in B-3 and C-1.

Chapter 5 presents the conclusions of this thesis by summarizing all results and

observations we obtained through the researches.
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Self- O r ganrzed D ata Aggregation Technique

rnHIS chapter discusses the intra-cluster communication. Recall that in our pro-
I posed system, a fixed sink node collects bundles from nodes in isolated clusters
with the help of the message ferry as shornm in Figure 2.1. Each node in a cluster
can communicate with other cluster members within the transmission range, called
neighbors, but cannot communicate directly with the sink node and/or nodes in
other clusters due to the long distances among clusters. The message ferry serves the
inter-cluster communication byvisiting custodians in each cluster.
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Figure 2.1: Proposed scenario.
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2.I Self-Organized Data Aggregation Technique among
Selfish Nodes in an Isolated Cluster

In long term partitioned networks of our proposed scenarios, any custodian cannot

predict how long it should keep bundles with custody. Note that each node in DTNs

is basically powered by a battery and it has to be always awake when holding the

bundles. Since each custodian also generates its or,rm bundles with custody, it may be

selfish and reject requests for custody transfer from other nodes to save its storage as

well as its energy. This means that the custody transfer mechanism [16] fails without
taking the selfishness of custodians into account.

In summary we face two challenges: a) It is very difficult for message ferries to

communicate all storage-congested nodes in a given period of time and b) nodes

are potentially selflsh and are not willing to store others' bundles. To tackle these

challenges, we propose a system that can a) gather all bundles in a partitioned network

to some selected nodes in the network so that message ferries can collect them
effectively and b) take the nodes' selfishness into account (Figure 2.2).

Wchawmmieclins

Cathering data to
$me nodes $ tltal
the mesn6e ferry
cu colleci drem

eftcientty

Matingthenodcbe
more cooperarnre

and rseim bmdles
of othsnodet

Figure 2.2: Challenges and objective to design self-organized data aggregation tech-
nique.

To accomplish such a system, evolutionary game theoretic approach becomes one

of the most appropriate mechanisms.

Proposed Methodt Euolutionary Game Theory: Evolutionary game theory origi-
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nally explores the dynamics of a population of players under the influence of natural
selection [44,59]. In evolutionary game theory we assume that fitness (payoff) of a

species is determined by not only its ovrrn behavior (strategy), which is programmed

by genes, but also the behavior of surrounding individuals: the more the fitness is

acquired, the larger the population of the corresponding species is [49]. With the help

of this scheme, we can finally select some special custodians referred to as aggregators,

which are cooperative in nature and willingly hotd bundles with custody of other
nodes.

We developed a self-organized data aggregation technique in Iz3lby taking ac-

count of the challenges. With the help of the evolutionary game theoretic approach

[35-37], our system can automatically select some aggregatorg which are cooperative

in custody transfer mechanism with other nodes referred to as senders. Therefore, the
message ferry needs to collect the bundles only from the aggregators. Note here that
in this scheme, each aggregator should keep awake to receive bundles from senders

anytime and hold bundles until transferring them to the message ferry, while each

sender wakes up only when generating and sending bundles, as well as deciding its
next role. In addition, each aggregator c€ul obtain energy supply from a message ferry
onlywhen it finds a sender among its neighboring nodes. In our scheme, each node

appropriately selects its strategy (i.e., being a sender or aggregator), depending on
strategies of neighboring nodes. This interaction among nodes is modeled as a game

in game theory. The detail will be given in section 2.3.

We examine the characteristics of the proposed scheme by introducing two game

models by taking account of the bundle layer's retransmissions mechanism, i.e., reli-
able transmission of bundles by custody transfer mechanism. Bundle retransmissions

are required when a sender cannot find an aggregator in its neighboring nodes. We

also introduce a mechanism to adapt to sudden failures of neighboring nodes caused

by mismatching of waking time of sender and receiver nodes.

We discuss the system stability through the analysis based on a replicator equation

on graphs. Since the replicator equation on graphs focuses only on the strategy

distribution, we also investigate the node-level behavior using agent-based dynamics

that is a simulation-based approach. Through simulation experiments, we confirm
the validity of the analytical results and evaluate the system performance in terms of
successftrl bundle transfer, optimality of aggregator selection, and resilience to node

failures.

The rest of the chapter is organized as follows. Section 2.2 reviews the related work.

Section 2.3 introduces our self-organized data aggregation scheme. In section2.4,
we analyze the system dynamics and derive the stability condition with the help of a



26 Chapter 2. Self-Organized Data Aggregation Technique

replicator equation on graphs. We also discuss the system survivability in section 2.5.

After a brief introduction of agent-based dynamics, we show some simulation results

in section 2.6. Finally, section 2.7 concludes this chapter.

2。2 Related Works

Aggregator selection in our scenario is similar to cluster-head selection in cluster-

ing schemes. In general, clustering schemes select some nodes as cluster heads, and

then form clusters each of which consists of a cluster head and its physically close

nodes. Each cluster head has a responsibility to collect data from cluster members

and communicate with other cluster heads. Since the cluster heads consume much

energy than normal nodes, several energy-effrcient clustering schemes have been pro-

posed. Low-energy adaptive clustering hierarchy (LEACH) 112,20,21,611and hybrid,

energy-efficient, and distributed (HEED) clustering approach [62] are well-known
schemes for wireless sensor networks.

LEACH aims to achieve balanced energy consumption among nodes by rotating
cluster heads round by round. Each node probabilisticdly serves as a cluster head,

based on a predefined fraction of cluster heads in the network and its role (i.e., a cluster

head or normal node) in recent rounds. HEED elects cluster heads in proportion to
the residual energy of nodes: Nodes with large residual energy tend to become cluster

heads. It has been pointed out that HEED improves network lifetime over LEACH.

These existing approaches work well when all nodes are cooperative. This as-

sumption might crumble in some situations,8.9., when nodes operated by different

administrators coexist in the system. In such a situation, nodes are potentially selfish

and interested in their own benefit (e.9., battery life), rather than the performance of
the whole system (e.g., system lifetime). Evolutionary game theory 122,50,591is useful

to model such individual selfishness, which was originally devised to reveal the mech-

anism that superior genes with high fitness for the environment are inherited from

ancestors to offspring, through competition among individuals in the evolutionary
process of organisms. In the proposed scheme, aggregator selection totally depends

on the nodes'mutual interactions bytaking account of selfishness of each node. Thus,

the proposed scheme is also applicable to the cluster head selection in a more robust

manner.

Evolutionary game theory provides us with both theoretical framework and

simulation-based framework. The theoretical framework called replicator dynamicsis

a mathematical model, where the ratio of individuals selecting a strategy increases
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when the strategy can yield more payoff than the average payoff of the whole sys-

tem 122,50, 591. The replicator dynamics is applicable when the population composed

of the society is relatively large and well mixed. In actual situations, however, the
interactions among individuals are restricted: Each indMdual knows only a small
fraction of members in the societv.

To overcome this drawback, Ohtsuki et al. proposed replicator dynamics on graphs

by introducing the concept of topological structure into replicator dynamics t35-371.

They derived replicator dyramics on graphs for three kinds of strategy-updating rules:

Birth-death updating, death-birth updating, and imitation updating. We will apply
imitation updating to aggregator selection, taking account of rational behavior of
each node: Each node tries to select a strategy expected to lead to larger payoffs (i.e.,

residual battery) based on the strategies of neighboring nodes. The detail will be given

in the next section.

Inter-cluster communication is also required in DTNs. If the network is partitioned

for a long time, the storage congestion frequently occurs in custodians. To alleviate the

storage congestion,Zhao et al. proposed message ferry schemes which provide nodes

with opportunities of communications among clusters [55, 64,65]. There are two
message ferry schemes [63]: Node-initiated message ferry scheme and ferry-initiated
message ferry scheme. In the node-initiated message ferry scheme, nodes knowthe
route of the message ferry in advance and move close to the ferry to transfer bundles

on demand, where each node requires to be mobile. On the other hand, in the ferry-

initiated message ferry scheme, nodes are generally static and the message ferry takes

proactive movement to meet the custodian nodes those require to transfer bundles.

After receiving the service request from a custodian, the message ferryproceeds to
the custodian and collects bundles. The message ferry can also supply energy to the

custodian if required.

In our proposed scenario, in order to communicate static nodes in isolated clusters,

we consider ferry-initiated message ferry scheme to collect bundles proactively from

custodians. Sometimes it is difficult for message ferries to visit all custodians because

of route limitations and traveling costs. In such a case, aggregating bundles to some

selected nodes results in reducing the points where message ferries should visit.
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2.3 Proposed Scheme

2.3.1 Overview

In our proposed system, in a cluster, the path length of the message ferry is negli-
gible but the time for collecting bundles from nodes and supplyrng energy to them
linearly increases with the number of nodes to be visited. To shorten this time, we

propose a scheme to aggregate bundles in each cluster to some nodes referred to as

aggregators. In each cluster, the aggregators are autonomously selected from nodes,

called cluster members, by local interactions among them. Each non-aggregator
(sender) sends its bundles to the aggregators so that the message ferry requires to visit
only the aggregators as illustrated in Figure 2.3.

In the above scenarios, we assume that each node is equipped with a long range

radio and a short range radio. \tVhile the message ferry is approaching a cluster, it
broadcasts its availability to all members of the cluster. Only aggregators those paired

with sender(s) among their neighboring nodes are allowed to transmit service requests

to the message ferry by their long range radio. These service request messages contain
the information of each aggregator's location and the amount of bundles it wants to

transfer. To guide the message ferry, aggregators occasionally transmit location update

messages. On reception of each information, the message ferry calculates the intra-
cluster path in an ad hoc manner. When the message ferry and one aggregator are

close enough, the aggregator transfers bundles by its short range radio to the message

ferry. At the same time, it obtains energy supply from the message ferry. In such

situation, wireless energy transfer [29] can reduce the overhead and time for energy

supply. Note that the range of long range radio transmission of each aggregator may

not necessarily cover the whole deployrnent area due to power constraints. On the

other hand, each sender sends its bundles to the aggregators within the transmission

range by its short range radio.

At the initial stage, none of cluster members have any bundles, so they act as

senders. While some cluster members generate their own initial bundles, they seek

for aggregators within the transmission range. If no aggregator is available, the initial
bundle's generators become aggregators. Under cluster members' mutual interactions,

aggregators in the next round are selected with the help of evolutionary game theory.

We describe the selection procedure of a limited number of aggregators in the next

sub-section.

We can summarize the above scenario in each cluster as the repetition of the

following three phases ( as shown in Figure 2.4):
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Figure 2.4: Proposed three phase schemes.

l. Aggregator selecting phase - Each node selects to be an aggregator or a sender

based on local interactions with the neighboring nodes.

2. Bundle aggregating phase - When each sender generates its o'vrm bundles, it
transmits them to one of the aggregators in the transmission range.

3. Bundle collecting phase - Each aggregator transmits its service request to the
message ferry and sends all bundles to the ferry. The message ferry supplies

energy to aggregators.

We define a round as the unit of this repetition. During each round, each node
performs these three phases. We presume that all nodes synchronize eachother and

know the length of the round. The length of the round is pre-determined by the sink
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Figure 2.5: Intra-cluster timing chart of cluster f with nodes energy consumption
(proportional to awaking period) and role of each node (aggregator or
sender), and inter-cluster timing chart for clusters I,2, and 3.

node which can also be updated through the communication between the ferry and

nodes if needed.

Initially, in aggregator selecting phase, each node randomly chooses to be an

aggregator or a sender because it cannot know the neighbors' roles. In the subsequent

rounds, each node selects its role based on the results of the previous round with the

help of evolutionary game theory whose details are described in later subsections.

During bundle aggregating phase, each sender transmits its bundles to one of the

aggregators within its transmission range. Then, in the bundle collecting phase, each

aggregator transmits its service request to the message ferry transfers all bundles, and

obtains energy supply from the message ferry.

This scenario not only shortens the duration of the round but also gives all nodes

benefits in terms of prolonging their battery life. As shornrn in Figure 2.5, the duration

of a round of a cluster depends on the inter-cluster visiting duration. Therefore,

during intra-cluster visit in a cluster the message ferry can shorten the duration by

visiting only aggregators. On the other hand, in such kind of isolated networks, each

custodian node has to consume energy, i.e., battery life by generating its ornm bundle

and awaking all the time by holding bundles until delivering to the message ferry.

Note here that the awaking period of nodes is proportional to the energy consumption.

There are two ways to keep their batteries in high levels: l) Obtaining the battery

supply from the message ferry at the phase 3 of the round and 2) reducing the battery

consumption by sleeping as long as possible in the round. The former (latter) case can
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be regarded as being an aggregator (a sender). In our proposed scenario, aggregators

should be awake all the time in the round to receive bundles from senders. As a

result, they consume much energy than senders but can also obtain the battery

supply from the message ferry. On the other hand, senders cannot obtain the battery
supply but can reduce the battery consumption by waking up only when it needs to

generate and transmit its own bundle to the aggregators. Figure 2.5 presents the above

characteristics of aggregators and senders. We will give more detailed discussion

about the battery life in Sect. 2.6.3.6.

Taking account of these characteristics, we expect that the system works well under

the conditions: 1) There exist a small number of aggregators and many senders, and2)

the role of a node should change per round. This can be shown in Figure 2.5: In each

round limited number of aggregators is equal to 2 and the role (to be an aggregator

or a sender) changes among nodes in each round. We will discuss detail about the

role transition of nodes in Sect. 2.6.3.3. These challenges can be divided into two
problems: l) How to select aggregators autonomously under situations where all

nodes are potentially selfish, and 2) how to control the number of aggregators. To

cope with these problems, we adopt evolutionary game theoretic approach. In the
next subsection, we discuss the problem formulation of our proposed scenario based

on evolutionary game theory.

2.3.2 Modeling as a game: Selection of the Aggregators

Since it is difncult to achieve a centralizedcontrol in DTNs due to lack of persistent

connectivity among arbitrarynodes, the selection of aggregators should be realized in
a decentralizedway. Also, centralized control increases communication overheads

among cluster members and it is vulnerable to node failures. More specifically, each

node determines to be an aggregator or a sender based on its own benefit, through
mutual interaction among neighboring nodes.

We assume that energy consumed by each node in a round increases with the

length of time it keeps awake. As illustrated in Figure 2.5 and presented detailed in Fig-

ure2.6, recall that aggregators should always be awake during a round while senders

only wake up when generating and transmitting their bundles, as well as deciding
their own role. As we already mentioned, all nodes presumed to be synchronized each

other and know the length of the round, before the start of each round (just after the

message ferryleaves the cluster) all nodes wake up regardless of their current roles

and select their next role based on their current conditions (as shown in Figure 2.6).

Let c and s denote the amount of energy consumption per round for aggrega-

31



32 Chapter 2. Self-Organized DataAggregation Technique

Senden
a*'ake druilg selcling

令袢沐轡珀　一̈
i\lessage ferries
suppl-v elerg-v

■:電l管]:lumed'an aggregaordunng

□翼鷲竃Ⅷ鍬 :』 :llT』:J::

■霜:%lI輩響野
he me5age LI,to

①②O Thrcphaws

Figure 2.6: Role and node level energy consumption of an aggregator and a sender in
one round. During the role selection period all nodes wakeup for a short
time and select their next role based on their current conditions.

tors and senders, respectively. s increases with the rate of generating bundles. If
retransmissions in the bundle layer do not allow in the sender, we have c > s > 0.

On the other hand, when senders allow to retransmit bundles without limit, energy

consumption of senders increases but never exceeds c. Recall that the bundle layer's

retransmissions mechanism, i.e., reliable transmission of bundles by custody transfer

mechanism is required when a sender cannot find an aggregator in its neighboring

nodes, and failures of transmission in a sender mainly occur due to the mismatch

of the waking time of neighboring sender nodes. Next, let b represent the energy

supplied by the message ferry to each aggregator. Intuitively, the larger b is, the more

the aggregators increase. We assum e b > c, which is necessary to suppress the number

of senders as well as to avoid battery shortages of nodes. Figure 2.6 illustrates the
node level behavior for no-retransmission case and retransmission case.

The interaction among nodes can be modeled as a game between two neighboring
nodes in evolutionary game theory which is represented by a payoffmatrix. In our

scenario, there are two roles (strategies) for each node: An aggregator (aggregate) and

a sender (send). Therefore, there are four possible combinations of the strategies

of the two nodes, and payoff of each node depends on the combination of strate-

gies. Thbles 2.1 and2.2 illustrate the payoff matrices in the no-retransmission and

retransmission cases, respectively. Note that in the payoffmatrix, the actions of node I
form the rows, and the actions of node 2 form the columns. The entries in the matrix

are two numerical values representing the payoff of node I and node 2 due to the

corresponding combination of the strategy, respectively. We discuss detail of them as

follows.
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Table 2.1:Payofflnatrix in no― retransrFliSSion case.

node 2 sender I aggregatornode I

sender -s, -s -s,b-c
aggregator b-c,-s -c, -c

Table 2.2: Payoffmatrix in retransmission case.

----1tode 2
node I --=-..- sender aggregaror

sender -c, -c -s,b - c
agttegator b-c,-s -c, -c

Thble 2.3: Abstract payoffmatrix.

node I
2lr".,d"rluggr"gu,o.

sender R,R s,7
aggregaror T,S P,P

The resulting payoffs for each combination can be modeled by taking the energy
supply and energy consumption into account. If both nodes select to be aggregators,

theyboth loose the largest amount of energy P : c, because in our proposed system,

each aggregator can obtain energy supply from a message ferry onlywhen it finds
a sender among its neighboring nodes. On the other hand, an aggregator paired
with a sender obtains the largest amount of energy T : b - c because it looses c but
obtains b from the message ferry. In this case, the corresponding sender looses the
smallest amount of energy,S : s. When both nodes select to be senders, two possible

cases can take place, depending on the presence of bundle layer's retransmissions
mechanism. In the no-retransmission case, they both consume ft : s. On the
contrary in the retransmission case, both of the senders consume R: ci this is the
worst case that each sender spends all the period of a round on trying to transfer
bundle(s) by retransmissions mechanism in bundle layer. Note that we assume that
the failure of bundle transfer is mainly caused by the mismatch of waking time of
sender and receiver nodes, hence, it needs to retransmit.

2.3.3 Role selection based on imitation and mutation updating

Based on the discussion in the preceding section, we present the abstracted payoff
matrix in Table 2.3. We obtained the relationship: T ) ,S : R > P in the no-
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retransmission case and T > S ) R : P in the retransmission case. In either case,

each node not only has a temptation (7 > R) to be an aggregator but also a fear

(S > P) to be an aggregator. The larger b is, the more the temptation is. This indicates

that the sink node can control the number of aggregators by setting b adequately. We

showthedetailinSection.2.4.Ontheotherhand,theconditionT>Rand^9>Palso
has another significant characteristic; taking a strategy different from the opponent is

better than taking the same strategy as the opponent. As a result, both aggregating

and sending strategies stably coexist [35]. Thus, with the help of the payoff-matrix

and evolutionary game theory when each node undertakes suitable strategies to

optimize its own payoff, then the system converges to a fully stable situation where

both senders and aggregators stably coexist.

The strategy selection in the aggregator selecting phase of the second and subse-

quent rounds is conduced as follows. At first, each node calculates its own payoffs

according to the strategies of its neighbors, as well as its own strategy, in the previ-

ous round. It then chooses between keeping its current strategy or imitating one of
the neighbor's strategies proportional to payoffs, because it is selfish in nature and

aims to maximize its own payoff, i.e., prolonging its own battery life. This strategy

updating is called imitation updatingin [37]. As a result, the replicator equation on

graphs derived in t37l is applicable to our system, and we can obtain the relationship

between the parameters, i.e., b, c, s, the average number of neighbors, and the fraction

of aggregators in the system.

Even though imitation updating ordinarilyworks well, it has one drawback Each

node cannot change its strategywhen all neighbors take the same strategy as that the

node takes. Each node wants to avert such a situation because its main purpose is

sending bundles to the sink node via the message ferry. To cope with this problem,

we also consider a system vnth mutation updatingl\T).In [57], mutations occurwith
probability Pu ) 0 in each round, while in our case, a node changes its strategywith

mutation probability & only when the node and all the neighbors take the same

strategy.

In the next sections, we clari$r the relationship between the parameters and the

ratio of number of aggregators using evolutionary game theory.

2.4 Analytical Results

In this section, we discuss the relationship between the ratio of aggregators, param-

eters of the payoffmatrix, topological structure, and updating rules. We consider the
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Table 2.4:NIIodifler matrix.

node
2l send I uggr"gu,"

send 0,0 -mrm
aggregate m, -rfl 0,0

proposed scheme without mutation updating (i.e., Pu: 0). To reveal the relationship
among those, we consider the replicator equation on graphs in evolutionary game

theory [37,38]. The basic concept of replicator dynamics is that the growth rate of
nodes taking a specific strategy is proportional to the payoff acquired by the strategy.

Thus the strategy that yields more payoff than the average payoff of the whole system

increases. Replicator dynamics on graphs additionally takes account of the effect of
the topological structure of the network which is suitable for our system. We give

the details of evolutionary game theory and the replicator equation on graphs in
AppendixA.

2.4.1 Replicator Equation on Graphs: System Dynamics and
Stability

We first briefly introduce the replicator equation on graphs in [37] and model
our proposed system for no-retransmission case to match adequately. There are n
strategies labeled i (i, : 1,,2,. .. , n) and the payoff of strategy i versus strategy j is

denoted by oo,j.The relative frequency of strategy z is given by ,0, where D7:, rr : l.
The average payoff of strategy z is then given by

α物

η

Σ

戸

〓ん (2.r)

In our system, we consider two kinds of strategies, €.9., aggregating and sending.

In what follows, we regard strategies I and 2 for aggregator and sender, respectively,

i.e., rl denote the ratio of the number of aggregators to the total number of cluster
members and 12 - 1 - u 1 r€pr€s€nts the ratio of the number of senders. Following
Table 2.I t}:,le expected payoff fi and f2 of aggregators and senders are grven by

A=(1-″ 1)(b― C)一 α町, ん=― S, (2.2)

respectively.

Let k denote the number of neighbors of each node, called degree [36] . Although
the equation is derived for k-regular graph for k > 3, it is also applicable to non-regular
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graphs, e.9., unit disk graph, random networks, scale free networks, etc [36,37]. In
such a case, k represents the average degree (ko,g 2 3). The modified payoff matrix for

evolutionary game theory on graphs is defined as the sum of the original payoffmatrix
and a modifier matrix [37]. Table 2.4 shows the modifier matrix, where rra describes the

Iocal competition between the strategies [37]. The gain of one strategy is the loss of
another and local competition between the same strategies results in zero. It follows

from Eq. (A.5) thatm becomes

鶴 =
3b-(k+6)(c-s)

た>3. (2.3)
(た +3)(ん -2)'

Follows from Eq. (A.6)the expected payoff for the local competitiotr 9r ffid g, of aggre-

gators and senders are obtained to be

θl=(1-″ 1)鶴 , θ2=~″ 1%, (2.4)

respectively, where zn is given by Eq. (2.3).The average payoff/ of two strategies is

then given by

From Eqs. (2.2), (2.4), and (2.5), we obtain the replicator equation on graphs [37]

in the no-retransmission case to be
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(2.5)

Substitutinr it: 0 yrelds three equilibriai rt : 0, 1, and

ri:r-c-s 1 t ";".l , k:2,4,.... (2.7)i + 
1n+211n -z1Lt- t*+6)' o l

Note that the equilibrium in Eq. (2.7) is feasible if

0<ri<1,

or equivalently,

,'u*(", ffi'@-',) 'u'-W+z'("-'), k:3,4, ' (2.8)
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Because0 < s < c < band I < (k, +2k)l&2 +k- 3) < 5/3 <1513 < (k, +2k)l3for
all k > 3, there always exists b (b > c) that satisfles Eq. (2.8). Thus the equilibrium in
Eq. (2.7) is controllable. Furthermore, r{ in Eq. (2.7) is stable for such b because h > 0

if 0 < 11 I rlt and otherwise, ir < 0.

Similarly, in the retransmission case, with the help of the payoffmatrix in TabIe2.2,

the stable and controllable equilibrium becomes

″I=1-

that is valid for

C一 S

b+c― s+ (た +3)(た -2) [一争二肇宅|,た =錆… 20

c<b< (た +3)(た -2) .("-"), k:3,4,.... (2.10)

In the same way as for Eq. (2.8), we can show that there always exists b (b > c) satisSring

Eq. (2.10) and that el in Eq. (2.9) for such b is stable. In what follows, we call Eqs. (2.8)

and (2.10) as stability conditions.

Note that in equilibrium, the fraction of aggregators in the system is fixed but the
strategy of each node will change round by round [23]. This feature is suitable for our
system because each node can acquire opportunities to obtain energy supplywhen it
serves as an aggregator.

2.4.2 Valid parameter settings for permanently living system

Although each node has a chance of obtaining energy supply, carefirl parameter
tuning is required to achieve high system survivability. We assume that in equilibrium,
each sender can find an aggregator among neighbors and vice versa. Thus each

sender consumes s units of energy and each aggregator obtains b - c units of energy
in equilibrium. The expected payoffof each node per round is then given by

E[p] : (b - c)ri- s(l - r;),

where, Eftl represents the expected amount of energy supplied to a randomly chosen

node per round. Note that E[p] should be positive because the systemwould die out
if E[e] : 0. In our proposed system, by adequately adjusting the amount of initial
energy of each node, the system can handle losses of nodes. Moreover, during low
energy level a node can change its role to become an aggregator so that it can be
allowed to get energy supply from the message ferry in the next round. We will give

more detailed discussion about the batterylife in Sect. 2.6.3.6. Therefore, for E[p] > 0,
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b, c and s should satisfythe following inequality

"i>.2 (z.rl)- o-c+s
In what follows, we call Eq. (2. f l) running condition.

In practice, the sink node tries to achieve a feasible rj that satisfies both the

stability condition and the running condition. The amount of energy supply from
the message ferry b, can be fully controlled by the sink node while c and s seem to

be partly controllable: They are proportional to the length of waking period and

the generation rate of bundles. The average node degree, k, is also given from the

environment. As a result, the sink node achieve desirable and feasible ri by mainly
controlling b.

2.4.3 Discussions

It is preferable to achieve small, feasible ri. Therefore we discuss the infimum of
feasible ri for fixed k, c, ands. Recall that in no-retransmission case, the equilibria
ri(b) :: rj is an increasing function of b, while ri(b) should satisfy Eq. (2.8) and (2.11),

i.e.,

L=<zi(b) <1'

As a result, the infimum of feasible ri(b) is obtained for b : b* such that

,;(b.):,-i-, (2.12)' 0* - c+ s

Notehere thatsl@- c* s)is a decreasingfunction of b. Therefore r{(b) > sl(b - c* s)

forall b (b > b-). Furthermore, 0 < sl(b - c*s) < 1, so that0 < ri(b-) < 1.

We first consider the no-retransmission case. It follows from Eqs. (2.7) and (2.12)

that

(k' + k - 3)(y.)' - (k +3)(' - s + (k - 2)')a-

- (k + 3)(fr - 2)(" - s)s : 0, (2.13)

where a* : b* - cl s. Recallthatrl(b.) : t/a*. Substitutinra* : s/r into Eq. (2.13)

and rearranging terms yield

.fN"(r) :(k+3)(k- 2)("- s)r2 + (k+3)(c-s* (k-2)s)r

-(k'+k-3)s:0. (2.I4)
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We then have

/ilo: r;(b-):!l
Lt \ /

(: *=1 .)l e.rs)- \"7"r - k-2))
It is easy to see that rl(b.) goes to zero as cf s -+ oo. Furthermore, it can be shown that

"i(b.) 
<I12if cls > 3- 4l&+3).

Next we consider the retransmission case. According to the s€une procedure as

in the no-retransmission case, we obtain the following equation corresponding to
Eq. (2.1D.

/n"(r) : 2(k+ 3)(k - 2)(" - t)r' - (k +3)(,k - 2)(c - 2s)r

-(k'+k-3)s:0, (2.16)

and therefore

/i" : ui(b.) :|* 
^lL'

-:b-1 . Q.r7)cls- L)

It is easy to see that ri(b.) > 112 and it goes to ll2 as cf s -+ x.
We now compare rfro and rf", which are given by the larger real roots of convex,

quadratic equations Eq. (2.I4) and (2.16), respectively. See Figure 2.7 thatplots "fN"(r)
and /s"(r) for k : 3, c:2, and s : 1. It can be shown that

,fro.(r) -,f*"(") >0 for r>0 <+ 0<r<1+*

Because 0 < rt" < 1, we have fi1"(rt") - "fn"(ri.") > 0, so that

rfro ( ui., (2.18)

for anyfixed k, c, and s.

Owing to Eq. (2.12), Eq. (2.18) implies that b* in the no-retransmission case is

greater than b* in the retransmission case. As shown in Tables 2.1 and 2.2, the no-
retransmission case gives nodes less fear to become senders than the retransmission

case. As a result, the no-retransmission case requires larger b to generate aggregators

adequately. In the next subsection, we show some numerical results to illustrate the
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Figure 2.7: Quadratic functions "f*"(r) and /s.(r) (k -- 3, c:2, s : 1).

feasible parameter settings.

2.5 Numerical Results

In this section, we show some numerical examples of the adequate parameter

settings according to the theoretic analysis in sections2.4.l and2.4.2.

We have four independent variables, b, c, s and k, which affect ri. First we observe

the results for no-retransmission case. Here for simplicity, c - s is assumed to be one.

Note that this simplification does not lose generality. Note here that the (average)

degree k is a pre-determined parameter representing the density of nodes in the

system under consideration. As a result, the ratio of aggregators can be controlled
only by b according to Eq. (2.7). The expected number of aggregators c€ur be obtained

bythe product of ri and the number of cluster members.

Figure Z.B(a) illustrates the range of b with the supremum and infimum that satisfy

Eq. (2.8), as a function of k. We observe that the valid range of b widens with k, while

the infimum is almost constant. Figure 2.8(b) shows the controllable equilibrium rj
as a function of k. As shown in Eq. (2.7), ri can take anyvalue between 0 and t in both

cases, depending on b and k. From those figures, we observe that for each b, ri does

not change when k becomes large, because the modifier rn converges to zero with an

increase of k, as shown in Figure 2.8(c). We also observe that for a fixed k,the small b

leads to the small r{, which can be shown analyticallywith Eq. (2.7). When k is less

than 20, the controllable equilibrium r{ shows different characteristics, depending on

b. Roughly speaking, if the modifier rn is negative (i.e., b < 3), ri is a non-decreasing

function of k, and otherwise, rf is a non-increasing function of k.

Finally, for a given k, Figure 2.8(d) shows appropriate values of b to achieve a

specific value of. ri, where ri is set to be 0.1, 0.3, and 0.5. We first find that b cart be less
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Figure 2.8: The supremum and infimum of b satisfying stable and/or running condi-
tions (No-retransmission case).

than 3.00. Note that this value of b is valid under the assumption of c - s : 1. We do

not need much larger b to achieve our objective that is limiting the ratio of aggregators.

Furthermore, if k is larger than 20, b converges to a value, depending on the target

level of ri.
Next, we clari$/ the impact of stable and/or running conditions and the effect of

retransmission mechanism. Figure 2.9 depicts the valid range of controllable benefit b

as a function of k when c : 10 and s : 0.1. Figure 2.10 illustrates the corresponding

range of z{. Note that we show the results for larger k to reveal the basic characteristics

even though they rarely occur in actual situations. We observe that the supremum

of b increases with k and its has the same characteristic for both conditions. On the

contrary the infimum is almost constant while satisffing the two conditions. Although

the presence of retransmission does not almost affect the valid range of b, Figure2.IO

indicates that the retransmission mechanism narrows the valid range of equilibrium

compared with no-retransmission case. Speciflcally, zi must be greater than 0.505 to

satisfy both conditions in retransmission case.
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satistring stable and/or running

Next, we reveal how c and s affect the valid range of b and r{. Figure 2.1I illustrates

the supremum and infimum of b satis$ring stable and/or running conditions when
c and s vary. We observe that for a specific k, the range of b shifts up with c. This

simply means that b - c should be positive. On the contrary, increase of s decreases

the supremum of b. This is because when senders lose more energy, temptation b to

become an aggregator can be smaller.

Figure 2.12 presents the supremum and inflmum of r{ corresponding to Fig-

ure 2.11. We observe that s has more impact on infimum than c. This is mainly
caused by running condition. From Eq. (2. I l), keeping low energy consumption of a

sender is important for prolonging the battery life. We also find that no-retransmission

case has wider feasible area than that with retransmission.
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2.6 SimulationExperiments

Replicator dynamics is a powerful mathematical tool to predict the macro-level
system behavior and it clarifies the effect of parameters on it. However, we can gain

little insight into the micro-level system behavior such as the influence of irregularity
of the topology on the system behavior, the geographical distribution of strategies,

transient phenomena (including the convergence time to the equilibrium), and so

on. Therefore we conduct simulation experiments based on agent-based dynamics,

which is a complementary method to understand the micro-level system behavior
in the evolutionary game theory. It models such a phenomenon that a superior
strategy spreads over the network in a hop-by-hop manner, where local interactions
among neighboring nodes are defined explicitly. In agent-based dynamics, each

node interacts with neighboring nodes in every round and determines its strategy

for the next round based on the acquired payoffs. In the case of imitation updating,
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each node chooses between keeping its current strategy and imitating one of the
neighbors' strategies proportional to the payoff [37]. In what follows, we conduct

simulation experiments of agent-based dynamics for two purposes, the validation of
the analytical results, and the investigation of the micro-level system behavior.

2.6.1 Agent-basedDynamics

In agent-based dynamics, each agent (i.e., node) interacts only with physically-

closed nodes, called neighbors, rather than all other agents in replicator dynamics. In
DTNs, nodes within the transmission range of a node can be regarded as neighbors of
the node. Each node decides its behavior (a strategy) in the next round based on the

information obtained in the preceding round. Agent-based dynamics reveals how the

strategies, which are determined from local interactions, affect the performance of
the whole system.

In every round, each node determines its strategy by comparing its own payoff
with that of a randomly chosen neighboring node at the preceding round. Note that
there is no assumption on the initial distribution of strategies. As we will see later,

the initial strategy distribution almost does not have any influences on the system

performance, except that it slightly affects the convergence time to the expected

equilibrium of z{ discussed in Sect. 2.6.3. The strategy update of node u is conducted

in the following probabilistic manner, called betters-possess-chance [19,60]. At the

beginning of each round, node z randomly chooses one of neighboring nodes, say,

node o. If the average payoff Q" of node u is greater than the average payoff Q" of
node u, node z then imitates the strategy of node'r.' with probability H(u,u).

H(u,u): Q,_Q"
(2.19)T-P,

where, T - P (: b) represents the maximum payoff difference. Otherwise, node u

does not change its strategy. Thus, the more a strategy acquires the payoff, the more it
spreads over the networkthrough the imitation process in a hop-by-hop manner.

2.6.2 Simulation Model

Simulation experiments were conducted with Netlogo l4l, a multi-agent pro-

grammable modeling simulator. For simplicity, we assume that the duration of a

round is fixed and each node periodically generates a fixed number of bundles per

round. Therefore c and s are constant and set accordingly as discussed in section 2.5.

Mutation updating is introduced only in subsection 2.6.3.9. In the following figures,
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the average of 100 independent simulation experiments is plotted.

2.6.3 SimulationResults

We first confirm the range of the number ,n/ of cluster members to which the
prediction through replicator dlmamics is applicable. After that, we discuss system
characteristics in detail: The transient behavior, the role transitions of nodes, the effect

of topological structures, the battery life of nodes, and successful bundle transfer
characteristics.

2.6.3.1 System size valid for replicator dynamics

Figure 2.13 compares the analytical results of replicator dynamics on graphs with
the simulation results of agent-based dpramics, where graphs are regular. We first
conduct the experiments for no-retransmission case. Here b is set to be 1.67 and
c- s : 1. When both the number,A/ of nodes and the degree k are large enough, agent-

based dynamics attains the same equilibrium as predicted by replicator dynamics
on graphs, because replicator dynamics on graphs assumes that,n/ : m and k is
sufficientlylarge. When k is small, however, we observe a slight difference even for a

large l/. For example, when iy' : 100, the equilibrium in the agent-based dlmamics
is at most 0.079 greater than that in the replicator dynamics. Contrarily, the results

of agent-based dynamics for,A/ : 10 totally differ from those of replicator dyramics.
Thus the number.A/ of cluster members is essential in applying replicator dynamics to
predicting the ratio of aggregators in equilibrium. In what follows, N is set to be 100.

2.6.3.2 Tlansientbehavior

Figure 2.14 shows how the ratio ri of aggregators converges to the equilibrium,
where graphs are regular. We observe that rl converges after 20 rounds for all cases.

This quick convergence property is suitable for achieving a stable system. The result-

ing equilibrium is not greater than the predicted ri in general and it coincides with zi
in the full mesh case, as shown in Figure 2.13.

Next, we investigate the influence of the initial strategy distribution on the conver-

gence property. Recall that the predicted equilibrium ri bythe replicator dlmamics
is almost globally stable, i.e., if the initial value of rf is in (0, 1), the replicator equa-

tion in (2.6) converges to the equilibrium riinEq. (2.7). Therefore we expect that
the agent-based dynamics inherits the stable convergence property. Although the
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convergence time depends on the initial value of ri, we found that ri converges to
the same equilibrium after at most 20 rounds.

2.6.3.3 Role transition of nodes

We showed that the ratio of aggregators quickly converges to the equilibrium. The

role of each node, however, is not fixed but it alternates dynamically over rounds,

because each node selects its own strategy in a probabilistic manner. Figure 2.15

illustrates the probability of being an aggregator of node i, pn (i, : 1,2,...,100), in
3,000 rounds, where nodes are sorted in ascending order of p;. Note that the average p

ofp; is equal to 0.2508 and the standard deviation of that is equal to 0.2000. The role

transition contributes to load balancing and robustness against node failures.

‐ b=200,k=99 oH nlesh)十 b‐ 167,k‐ 99 oH IneSh)
H}b=200よ ‐50       Xb=167,k‐ 50
‐ b=200よ→      ‐ b=167,k→
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2.6.3.4 Effect of topological structures

So far we have shornrn the simulation results with k-regular graphs. We now con-

sider unit disk graphs which are more realistic networks and are suitable for abstract-

ing wireless networks. The unit disk graphs are generated by randomly located nodes

in 2-dimentional space where two nodes are adjacent if the transmission ranges of the

nodes mutually cover each other. By setting the number N of nodes to be 100 we set

the area size to be I x I [km2], and the transmission range of each node is set to be 100

lml in default. We additionally produce two famous network topologies: Scale-free

networks and random networks with Barabasi-Albert (BA) model [7] and Erdos-Renyi

(ER) model [14], respectively. Note that we can control the average degree k..,, by

adjusting parameters in those models adequately. With those network models, we

discuss the influence of topological structures on the system performance.

+ k-reguiar gEph
+ Replicator dynmi6
+ Unh disk lraph
+Rmdom nwork
+Scale-ftee netuork
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Figure 2.16 shows the equilibrium ri as a function of average degree k,.,* in net-

works with different topological structures, where ly' : 100, b : L.67 and c - s : 1.

The variance in the degree of nodes for k-regular, unit disk graph, random networks,

and scale-free networks are 4.0O,4.73,5.62 and 9.02, respectively. We observe that
the large variance in the degree of nodes leads to the small ratio of aggregators zi in
equilibrium.

To investigate this phenomenon more closely, we observe two figures. Figure 2.17

shows p6 oylr 3,000 rounds in a unit disk graph, where nodes are sorted in ascending

order of po. p is equal to O.2lI2 and the standard deviation of p; is equal to O.1247.

Compared with Figure2.I5 in a k-regular graph, we observe thatp becomes small in
the unit disk graph. Figure 2. I 8 is a scatter graph showing the degree di and pi of node z

(i, : I,2,. . . ,100) in aunit diskgraph. We observe thatthe positive correlation between

those two quantities; nodes with high degrees are likely to have large probabilities.

In fact, the overall average probabilityp, of being an aggregator weighted by node

degree is equal to 0.2933, where

FY':DL'doPn 'M - ,Ay'kavs 
)

which is greater than the un-weighted average probabilityp-. Thus we conclude that

nodes with large degrees have a stronger impact in playing games than those with
small degrees.

Next, we investigate the speed of the convergence to the equilibrium. Figure 2.19

shows the transient behavior of the ratio ri of aggregators in k-regular graph, unit
disk graph, random, and scale-free network with N : 100 and b : I.67, where the

average degree ku,* is set to be almost the same. We observe that it takes a longer time
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for networks with high degree variation, compared with networks with low degree

variation, yet 100 rounds is enough to converge to the equilibrium in all cases. In
summary the proposed scheme works well in those kinds of non-regular networks.

2.6.3.5 Consistency between replicator dynamics and agent-based dynamics

In what follows, we present the results of simulation experiments for both no-
retransmission case and retransmission case. Figure 2.20 illustrates the equilibria
ri in replicator dlmamics and agent-based dynamics, where the parameter sets are

chosen in such a way that both the stability and running conditions are satisfied. We

observe that ri in the agent-based dynamics is slightly smaller than r{ in the replicator
dynamics. These differences come from a relatively small system scale (l/ : 100) and

a diversity of node degrees in the unit disk graphs. We conclude that the analytical
result on the equiribria can grasp the general tendency of the system behavior.
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Figure 2.20:Yalidity of the theoretic analysis (c : 100, s : 1).

2.6.3.6 Batterylife

Next, we ex€rmine the validity of the running condition given by Eq. (2.11). As

discussed in Section 2.4.2, all nodes can survive forever under appropriate values of
the parameters bls and c/s. Figure 2.21 shows the transition of the number of nodes

with positive cumulative payoffs for different ri. Note that every node initially has no
payoff. Each node obtains energy supplyfrom the message ferrywhen it serves as an
aggregator and has at least one neighboring node being a sender. Our aim is to achieve

all nodes having positive cumulative payoffs, so that they can work permanently if
theyhaveasufficientamountof initialbattery. Givenc: 100, s: 1, andk:5, the
infimum b. f c of b/c satis$ring Eq. (z.LI) is given by 1.175 in the no-retransmission
case Ernd it is given by f .009 in the retransmission case. As shown in Figure 2.2l,we
observe that all nodes have positive cumulative payoffs when blcis enough large. On
the other hand, when b I c is larger than yet close to b* f c, many nodes have negative
cumulative payoffs. This phenomenon can be explained as follows. Recall that the
infimum of the equilibria rf in the agent-based dynamics is smaller than the infimum
of rf in the replicator dynamics. As indicated in Eq. (2.I2), the corresponding b* in the
agent-based dynamics would be greater than b* in the replicator dynamics. As a result,

if we set b in the agent-based dynamics to be close to b* in the replicator dynamics,
the agent-based system might fail to satis$r the running condition.

2.6.3.7 Successful bundle transfer

For senders (resp. aggregators), it is desirable that at least one aggregator (resp.

sender) exists among neighboring nodes for successful bundle transfer. We define
sender (resp. aggregator) success probability as the probability that senders (aggrega-

tors) have at least one neighboring node being an aggregator (resp. sender). These
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(b) Retransmission case.

Figure 2.2L:Transition of the number of nodes with positive cumulative payoffs (c :
100, s : I,k=5).

success probabilities are affected not only by bls and cf s, but also by k. Figure 2.22

depicts these probabilities as functions of k. We observe that in any case, both sender

and aggregator success probabilities go to one as k -+ oo. The reason is that each

node has manyneighbors on average when k is large.

Comparing Figs. 2.22 (b) and2.22 (c), we also observe that when k is small, ri has a

positive correlation with those success probabilities. Recall that small ei is preferable,

but these results indicates that small r{ and k do not necessarily yield the success

probabilities close to one. To clarify this, Figure2.23 illustrates the minimum k that
yields both probabilities over 0.9, as functions of. ri, where b is set adequately. We

observe that the minimum k increases as rl decreases but k is kept relativelylow. This

can be confirmed from the fact that k should be greater thanllri for senders to have

at least one aggregator in their neighbors.

2.6.3.8 Optimalityof aggregator selection

If a topological structure is given, there exists an aggregator placement with the
minimum number of aggregators, which satisfies both aggregator and sender suc-

cess probabilities become one. We regard such an aggregator placement as optimal.
The optimal aggregator placement can be obtained as the solution of the following
optimization problem P.

.\.-r: mlnlmrze Lto,
teN

subject to sd : {0, 1}, Yi e A[,

t'+Is3)o' YieN'
jeNt
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Figure 2.22: Sender/aggregator success probability satisfying stability and running
conditions (c: 100, s : 1).

where,A/ denote the set of nodes in the system andl/i denotes the set of neighboring

nodes of node i. Furthermore, si (i, e "A/) represents an indicator function of node i
being an aggregator; it takes one if node i is an aggregator, and otherwise it takes zero.

We examine the optimality of aggregator selection given bythe proposed scheme.

Figure 2.24 illustrates the relationship between rl and success probabilities for no-

retransmission case when c : 100, s : 1, and k : 10. We also show the quasi-optimal

result (ri:0.14), which is obtained by a greedy algorithm described inAlgorithmz.I.
We observe that the aggregator success probability of the proposed scheme is almost

equal to one regardless of ri. On the other hand, the sender success probability of the

proposed scheme is about 0.82 when ri:0.14 and it increases with ri. From these

results, we conclude that the proposed scheme cannot achieve the optimal aggregator

placement but it can sufnciently distribute aggregators over the network.

2.6.3.9 Mutationupdating

As mentioned in subsection 2.3.3, imitation updatinghas one drawback When a

node does not find any neighbors taking the different strategy, it cannot change the
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Figure 2.24: Optimalityof aggregator selection (No-retransmission case, c : 100, s : 1,

k: 10).

strategy. This feature will lead a slow convergence to the steady state. Moreover, this
feature becomes problematic when there are few aggregators in the initial state. In
such a situation, all nodes may choose to be senders in the next round and once this
happens, the system will break down eventually. This can be avoided with mutation
updating, where each node changes its strategywith probability P" when all neigh-

boring nodes take the same strategy as the node. Note that mutation updatingwill
workwhen all adjacent aggregators disappear due to node failures, and therefore the

resilience to node failures is expected to be improved with mutation updating.

In what follows, we examine extreme situations where only one aggregator exists

in the initial state (i.e., round 0). Figure 2.25(a) depicts the change of the number
of aggregators. We observe that the proposed scheme without mutation updating
(Pu :0) can reach the steady state in this example, even though the convergence

is slow compared with the system with P" : 0.1. Introducing mutation updating
(Pu :0.1) dramatically improves the speed of convergence, while ri increases slightly.
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Algorithm 2.1: Heuristic algorithm for Problem P.
r: ll Initialization
z: for all z e "A/ do
3: st :0
4: end for
s: I I Aggregator placement
O: wh@
7: / : ar$maxj€{ils,:o,Di.No
B: sJ:1
e: end while
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We further examine an appropriate setting of P". Figure 2.25(b) illustrates the

change of the number of aggregators in the first 25 rounds. Since there is only one

ag$egator in round 0, most of the nodes adopt mutation updatingwith probability p".

As a result, the number of aggregators steeply increases to about Puln the first round.

In the subsequent rounds, imitation updating dominates the system dynamics and

the system reaches the steady state. This indicates that setting Putobe ri in Eq. (2.8)

would be suitable for maximizing the convergence speed.

2.7 Conclusion

This chapter considered data aggregation in a cluster for ferry-assisted multi-
cluster DTNs. We considered that nodes were inherently selfish and non-cooperative

in nature. Applyrng evolutionary game theory, we proposed the self-organized data

aggregation scheme in such an environment. In this scheme, the selection of aggrega-
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tors is conducted through decentralized processes with the help of strategic decisions

of evolutionary game theory. The proposed scheme was evaluated and we showed

the excellent performance of the proposed scheme. In particular, we can control the

numbers of the aggregators by setting parameters adequately.

Note that the controllable and stable equilibrium of the ratio of aggregators fol-
lows from the fact that a strategy different from the opponent yields a larger payoff.

Therefore our proposed scheme also works well under such a situation that senders

need to retransmit bundles when their transmissions fail and therefore they should
awake until their successful transmissions. Thking account of this characteristics, we

also examined the characteristics by taking account of bundle retransmission when a

sender cannot find an aggregator as its neighbor. Through the analysis of replicator
equation on graphs, we showed that the no-retransmission case is more suitable for
achieving lower ri with slightly higher bf c compared with the retransmission case.

In addition, we discussed running condition where all nodes can survive without
battery outage which is important for permanently living systems. Moreover, we

considered mutation updating and examined its impact.
To evaluate the validity of theoretic analysis of replicator dynamics and reveal

feasible parameter settings achieving successful bundle transfer, we conducted simu-

lation experiments using agent-based dynamics. Through simulation experiments,

we obtained the following characteristics. (i) The analytical results grasp the gen-

eral tendency of the agent-based dynamics in the unit disk graph, even though they
assume a regular graph. (ii) Both sender and aggregator success probabilities can

be over 0.9 even under relatively small k. (iii) The proposed scheme can achieve

well-distributed placement of aggregators in a fully distributed manner. (iv) The mu-
tation updating can improve the convergence speed. Both theoretic and simulation
results presented appropriate parameter settings to achieve a system with desirable

characteristics: Stability, survivability, and success probability in bundle transfer.
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CHAPTER 3

Optimal Visiting Order of Isolated Clusters

Hts chapter focuses on one part of inter-cluster communication by studying the

optimal visiting order of isolated clusters. Recall that in our proposed scenario,

the fixed base station, i.e., sink node serves as a connector to the Internet or to other
sink nodes. Where a message ferry helps the inter-cluster communication by acting
as a mediator between each cluster and the outer world via the sink node, as shoum

in Figure 3.1. In such scenario, the problem is to flnd an efficient route alongwhich
the message ferryvisits isolated clusters and the sink node.

○

○

○

③・

○

00u"er

O&nk nO“
■ Message Ferry

Figure 3.1: Proposed scenario.
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00¨ ③尉nk n。“
■Mttrた rv

一 〇
a) TSP scheme which visits clusters along

with the shortest path that starts from
and ends al sink node.

b) Proposed scheme which visits clusters according
to arrival rates, service time, and distances. The

line's thickness implies frequency ofvisits.

Figure 3.2: Example of message ferry's visiting sequence in TSP-based routing and the
proposed scheme. Each arrow indicates the movement of message ferry
and the size of each cluster is proportional to the arrival rate of bundles.

3.1 Optimal Visiting Order of Isolated Clusters to Mini-
rnize the Total Mean Delivery Delay of Bundles

Suppose service times (i.e., times needed for collecting bundles from clusters and

unloading them to the sink node) are negligible. In such a case, the shortest cyclic

route seems to be a natural solution, which can be obtained by solving the traveling

salesman problem (TSP) [30]. The shortest cyclic route starts from the sink node,

passes through each cluster at once, and finally returns the sink node as shornrn in
Figure 3.2(a). Therefore in terms of the mean waiting time, all clusters are treated

fairly in this strategy. In practice, however, arrival rates of bundles are different among

clusters and service times are not negligible. In such situations, the TSP-based shortest

cyclic route strategy potentially has two drawbacks: f ) The time spent for one cycle

increases with the number of clusters, and 2) if the arrival rates of bundles at clusters

are different from each other and service times are not negligible, bundles in clusters

with high arrival rate have to wait for long time to be delivered to the sink node while

less important visits to clusters with a few bundles also take place.

In general, the visiting order of clusters by the message ferry should be determined

based on arrival rates, service times of bundles, and one-way traveling times between

clusters and the sink node. We assume that all the isolated clusters are significantly

apart from each other. As a result, the inter-uisit time of a cluster (i.e., the interval

time between a departure of the message ferry from the cluster and the next return of

the message ferry to that cluster) naturally becomes long. In such a situation, when
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the message ferry visits each cluster, it would find bundles that wait for a long time
with high probability. Therefore, in order to reduce the delivery delay, it might be

reasonable to deliverthose bundles to the sinknode directly, as shown in Figure 3.2(b),

rather than to visit other clusters while carrying them.

This inter-cluster communication of the message ferry can be best studied using a

pollingmodel [52,53],

Proposed Method: PollingModel: ln the polling system, the message ferry clus-

ters, and bundles are regarded as the server, stations, and customers, respectively, and
"service" means that the message ferry collects (unloads) bundles from (to) the cluster
(sink node). The optimization of the polling order are studied in [8,9,31], which is
equivalent to flnd an optimal visiting order of stations, which minimizes the expected

waiting time of all customers.

In the study of polling models, the waiting time (i.e., the length of an interval
from the generation of a bundle to the instant at which its service starts) is a primary
performance measure of interest. On the other hand, in our system, we are interested

in the deliuery delay, which is defined as the time interval from the generation of a

bundle to the completion of its delivery to the sink node. In this chapter, we show
that the metrn delivery delay of bundles is given in terms of the weighted sum of the

mean waiting times of bundles at respective clusters. We then apply the optimization
technique in [8, 10,43] to our system and obtain a quasi-optimal visiting order that
minimizes the total mean delivery delay of the system. Roughly speaking, clusters

with high arrival rate and/or close to the sink node are visited more frequently than
others in the optimal visiting order.

The rest of this chapter is organized as follows. In Section3.2. we review the related

work. We describe the mathematical model in Section 3.3. Sections 3.4 provides the

optimization problem formulation and its solution method. Section 3.5 shows the
result of simulation experiments and demonstrates the effectiveness of our scheme.

Finallywe conclude the chapter in Section 3.6.

3。2 Related Work

Zhao et al. first applied the TSP-based routing to highly-partitioned ad hoc wireless

networks [63,64] by introducing a message ferry as the traveling salesman. A single

ferry is used for communications among fixed nodes in partitioned networks [63,64]
and a heuristic method for flnding the visiting order is shown. In [63], they also

extended their message ferry scheme to that for systems with mobile nodes.
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In [6], Ammar et al. focused on the buffer size required for each node when the

message ferry travels along the shortest cyclic path. They presented an algorithm for
finding the visiting order that minimizes the maximum required buffer size among

nodes. This problem can be regarded as a variant of the TSP problem under the

assumptions of identical arrival rate and negligible service time, and minimizing the

buffer size is equivalent to minimuingthe mean waiting time for the ferryvisiting.
The objective is similar to ours but this approach is not suitable for scenarios with
heterogeneous arrival rate and non-negligible service time.

Some works tried to improve the scalability and robustness of the system with the

help of multiple message ferries, e.g., multiple ferries for a single route [6] and multiple
ferries for multiple routes [65]. They considered the message ferry assignment to

nodes and route making in such a way that the number of message ferries is minimized

when the number of nodes and the upper bound of the waiting time are given. Miura

et al. considered clustering of highly-partitioned wireless networks [3a]. They assume

that there are several partitioned clusters in which physically-close nodes exisU which

is similar to our scenario in Figure 4.1. They applied the TSP-based routing by setting

the visiting point of the message ferry to the center of each cluster.

All of the above mentioned studies assume that arrival rates are identical among

nodes and service times are negligible. In practical situations, however, these as-

sumptions do not necessarily hold. In such situations, finding the shortest cyclic

path is insufficient to achieve minimizing the overall mean delivery delay of bundles.

Kavitha et al. first tackled this problem by applytng the polling model. In 125-271,

they assumed message ferry-based wireless I-ANs, where nodes are well scattered

over the area and designed an optimal route (among some given class of trajectories,

e.g., circle and line) that minimizes the overall expected waiting times. The message

ferry can serve nodes within its transmission range at any point on the path. Their
approach can also support both uplink and downlink services.

Although our objective is similar to 125-27), the target scenario is totally different.

It is assumed in [25-27] that nodes can exist at any point in an area according to a

known probability distribution, while we assume that there are partitioned clusters,

each of which consists of physically-close nodes. If the approach in125-27) is applied

to our scenario, it requires many paths to cover the whole area, each of which is a

circle/line trajectory supported by a single message ferry. In addition, in [25-271 a

cyclic policy is used: The server visits the stations in a predetermined cyclic order.

Hence, if clusters with high arrival rates and those with low arrival rates coexist in
the area, it will not be effective. On the other hand, our proposed scheme applies a

non-cyclic policy, taking account of the arrival rate and location of each cluster.
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3。3 Model

Suppose the systen■ consists ofハ r clusters labeled l to Ar,the sink node,and

a lnessage ferryp a1l of which have buffers ofinflnite capacity. The rnessage ferry

periodicallyvisits clusters according to a predeinedvisiting order(1.e。 ,a polling table)。

When the rnessage ferry arrives at a clusteL it senres bundles under the exhaustive

service discipline,ioe。 ,bundles are trarlsmitted successively to■ e message ferryp and

when there are no walting bundles,the rnessage ferry leaves the clusten ltis knowll

that the exhaustive sepnce discipline has the best performance in terlns ofthe overall

meall waiting time[52].After collecting all bundles at the clustet the message ferry

inllnediately returns to the sink node,unloads all bundles it carries to the sink node,

and goes to the next cluste■

WⅥD deflne SJ(づ ∈ノVつ as the One― way traveling tilne between clusterづ and the sink

node,whereメ√={1,2,… 。,Ⅳ }。 We aSSumethat a(づ ∈ノVつ is Constant because ofthe

誡 d physicalroute and the constant speed ofd■ e rnessage ferry.Bundles at cluster

づ(づ ∈ノヤつare generated according to a Poisson process Mnth rate λづand all ofthem

are stored at dusterを .Selvice times χL(づ ∈ν
～
つOfbundles at dusterづ follow a general

distribution with inite mean tt and second moment覇 動。Note that Xづ ∞rresponds to
the transmission time of a randor」 y chosen bundle at dusterづ 。We assume that high

speed channels are available at the sink node,and therefore the unloading tilne of

bundles at the sink node is assulrled to be negligible。

Let ρづ=λづ″バを∈ノヤつdenOte the tramc intensity at clusterづ .The overall generation

rate of bundles and the overall tramc intensity are denoted by λ=〕ΣにⅣ λt and

ρ=Σづ∈Ⅳo,respectivett We assume that ρ<1,which ensures the stab■ ity ofthe
system 1521.In what follows,the system is assumed to be in steady state.

3.4 Optimization problem formulation and its solution
method

We define the delivery delay of bundles as the time interval from the generation of
the bundle to the instant at which it is delivered to the sink node. Let I/6"r;,,",,0 (t e N)
denote the delivery time of a randomly chosen bundle generated at cluster z. The goal

of this section is to formulate and solve a mathematical program to find the optimal
visiting order of clusters, which minimizes the overall mean delivery delay E[17,*"t]:

Σ

ｄ

61

EIフレ1。tall= *"[*"t'""',']' (3.1)
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Figure 3.3: Timing chart (exhaustive service policy). When the message ferry arrives
at cluster i, there are already three bundles waiting for the service. During
the service for them, one bundle is further generated. When there is no
bundle to be served, the message ferryleaves cluster i, andvisits the next
cluster j via the sink node.

As we will see, our problem is reduced to the minimization problem of a weighted sum

of mean waiting times of a polling model. Without loss of generality, we assume that
bundles at each cluster are served on an first-come, first-served (FCFS) basis, because

E[Wa"r.,,u,,;] (z e ,A/l is irrelevant to the service order of waiting bundles at cluster i in
the exhaustive service discipline.

We first divide Wd"hu",,i (i, e M into two disjoint parts Ti and,S1, where f. denotes

the sojourn time of a randomly chosen bundle at cluster z. See Figure 3.3. It then
follows that

EIИtteh“r,づ]=EI電
*]十 a, づ∈χ・ (3.2)

In the exhaustive service policy, the message ferryhas to stay at each cluster until it
finishes collecting all bundles. Therefore E[$] is considered as the mean delay cycle

with an initial delay Wwait,i * X;, where Wwait,i denotes the waiting time of a randomly
chosen bundle at cluster z (see Figure 3.3). We then have [13]

EI写]=
ElW*uit,tl I r'i

(3.3)
1-ρ t

Note that N、 ait,tis identicalto the waiting time in the ordinary polling rnodel.

It then follol～ rs frOnl Eqs。 (3.1),(3.2),and(3.3)that

到L調 =iン (鯰デ十七十→
=Σ QEI鴫J胡 +Q
j∈フヤ
′

(3.4)
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where

Q=赫 ,d

α=i凛 (七十九→.

EIИ毎J胡 =詰
鳴万
十′
万
, づ∈ノ
～

″
,

(3.5)

Because a is constant regardless of the visiting order of clusters, the minimiza-
tion of E[\4(ot.r] is equivalent to that of the weighted sum of the mean waiting times
E\W*uit,tl in the exhaustive-service polling model:

mi」mレe ΣQEl鴫」胡. (3.6)

ieN

In the rest of this section, we follow the lower bound approach in [8, l0], and obtain
an approximate solution of Eq. (3.6).

Under the exhaustive service discipline, the mean waiting time E[14/* u,,r,,o] (i € I/)
at cluster i takes a form: [8]

(3.7)

where%arld υ∫の(づ ∈M denote the irst andsecond moments ofintervallengths iom
departures ofthe message ferry fron■ cluster t to the next arrival instants.Because

θ≧υ子,meweightedsumofEI鴫」胡おbOunded iom bdow:

凛Q到鴫翻≧:凛Q(→ +%)・ (3.8)

We adoptthe approach of[81 1rlinirrlizing the lower bound g市 en by the right hand

side ofEq。 (3.8),instead of】 EにⅣ QE[ンレЪjt,づ ]・

Let%(づ ∈ノVつ denotethe mean number of宙 sits at clusterづ per unittime.Because

∝
4(づ ∈ν
～
つiS equalto the mean cycle timc EIc]=%/(1-ρ を)ba,we have

1-ρづ
づ∈ノ%′ .υt== (3.9)

Qt

Substituting Eq. (3.9) into the right hand side of Eq. (3.8), rearranging terms with
Eq. (3.5), and ignoring constant factors and terms, we obtain the objective function

/(q) of the minimization problem.

九

一
％
Σ
ｄ
〓∫(9) (3.10)
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where 9=(91,92,・ …,9Ⅳ )。

The constraints on g are obtained as follows. First of all, er. ) 0 for all i (i € N).
Furthermore

p+2DSiqi:1,
jeN

should hold. Note that2Spl (j e N) denote the time-average probability that the
message ferry is traveling between the sink node and cluster'i. Because p represents

the probability of one of the clusters being served. Therefore the sum of them should

be equal to one. In summary we have the following Problem P.

P:minimize x9),

SubieCttO ρ+22E島 %=1,         (3。 11)
′∈フ
～
′

%>0, づ∈ノV.

Problem P is easy to solve with the Lagrange multipliers method. We define L(q,0)

Z19,の =/1g)+θい 2ΣE島%-1),
′∈フ
～
´

where θ>O denotes the Lagrange rnultiplie■ 晩ヽ then have

:多
=-1)+2θ乱 =0, づ∈ノ%′ ,

from which,it fbllows that

%=品刈d
%in Eq。 (3.12)should SatisivEq。 (3.11),SO that

ρttvI「凛√再
=L

(3.12)

Σ
副

1-ρ
from which,it fo■owsthat

鴻= 編 '
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2λ′島

and therefore we obtain from Eq. (3.12)

l-p
Σ
則

Letpt (i € AD denote the ratio of the message ferry's visit to cluster i. It then follows

from Eq. (4.2) that

Pi:
>' \t^l e

(3.14)

jeN

Eq. (3.la) indicates that the optimal frequency of visits to clusters is determined only
by the ratio of the arrival rate ); (i € At) to the one-way travel times St (i, e "A/), and it is

independent of service times rr (i e M. Thus, in our proposed scheme, the message

ferry frequently visits clusters with high arrival rates and/or small distances to the
sink node.

The next is to find the visiting order of clusters, whose frequency is given by
Eq. (3.14). When non-periodic orders are allowed, this problem is called balanced
sequence/words and examined in [5,45], where each cluster is spaced as evenly

as possible in the sequence. In our system, however, the target frequency p; is an

approximate one and the frequenry of visits to each cluster is not exactly identical
to the target frequency. Taking account of it, we use the following procedure for
determining the visiting order of clusters, which is a combination of proposals in
[10,43].

Step 1: Determination of the cycle length and thefrequency of uisits. We borrow an idea

in [10]. Let M denote an positive integer representing the cycle length in terms of the

number of visited clusters. Also, let mt (i, e M denote the number of visits to cluster e

in a cycle. We define int(r) (r > 0) as

.., \ [ t"), tr-lr]<0.5,
int(z) :l 

l'f, otherwise'

For rn : .fy', ly' + 1, . . ., we seek minimum m : rn* such that

int(m*p5) 2I, i, e Af ,

l^*po - int(m"po)l < ., i e N,

, ieAl'. (3.13)

品

Dnt
jeN



66 Chapter 3. Optimal Visiting Order of Isolated Clusters

and

I int(rn. Pt) : ^",
terV

where e is a predetermined parameter. We then set

M : rn*, m;: inl(m*pt) Q e N).

Step 2: Determination of the uisiting order. We use the procedure given in Appendix C

of [43], which is summarized as follows. Let M : {mr; i € At} denote the set of the
numbers of visits to respective nodes in a cycle. For r e M,letT?) : {i e A[; m6: v]
denote the set of indices of clusters visited r times in a cycle. Furthermore, let Q(')
(r e M) denote a repeated string of symbols in Z('), where each symbol appetlrs r
times with equal distance. For example,lf I:@ : {2,4}, Q@ is given by 242424. For

any string A,let l,4l denote the length of string A.

1. PrePare Q(') for allr e M.

2. Choose r € M andD: {r}. LetP : g?).

3. lf M \ 2 : 0, stop the procedure, where P gives the visiting order of clusters.

4. Choose r e M\2 and D :: DtJ {r}. We then merge Q@ into P, and the resulting

string is denoted by P('), where lP(")l : lPl + lQo)l.The rule of this merging

operation is as follows. The kth syrnbol in qt'l is identical to the (k + d(k))th
symbol in P('), where

d(k) :int((k - r)lPlllQ?)D, k : r,2,...,1Q?)1.

The rest of syrnbols in P(') is identical to those in P, and the order of those

symbols are identical in P and P?).

5. Let P : P@) and go to step 3.

The flowchart of the overall procedures to obtain optimal visiting order is presented

in Figure 3.4.

3.5 Simulation results

In this section, we evaluate the performance of our proposed scheme through
simulation experiments.
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Figure 3.4:Flow、「chart of obtaining optirnal vising orde■

Table 3。 1:Scenarios of λ。(Ar=10,λ =0。 76[1/sI).

CaSe  l λl l λ2 1 λ3 1 λ4 1 λ5 1 λ6 1 λ7 1 λ8 1 λ9 1λЮ

3.5.1 Simulationsetting

We consider a system composed of a sink node and ten isolated clusters (N : 10).

We use two kinds of cluster layouts: Circle-based layout and random layout models.

In the circle-based layout model, ten clusters are placed equally dividing a circle
with a radius of 13km. and the sink node is located at the center of the circle. On

the other hand, the random layout model is illustrated in Figure 3.5. The circle-
based layout and random layout models correspond to the cases of identical and
different one-way traveling times Su 1i, : I,2,. .. , 10), respectively. We assume that
the message ferry travels at a fixed speed of l0m/s (i.e., 36km/h). We denote the
mean one-way traveling time by,S : l/-1 Drr*,9r., which is fixed to 1, 300 [s] in any
case. Transmission times of bundles at all clusters are independent and identically
distributed according to an exponential distribution with mean rr : 1[s]. For the
settings of ); (z : I,2,. . . , 10), we consider four cases, one is the homogeneous case

and other three cases are heterogeneous, as shornrn in Table 3.1. In the following
results, we mainly examine how )6 and ,9, affect the mean delivery delay E[tr4l.",r] (sec).

We compute the visiting order of clusters according to the procedure in Section 3.4,

where e is set to be 0.4. Recall that in the proposed visiting order, the message ferry

Hetero.
υescend. .30 10 .08 .07 .06 .05 .04 .03 .02 .01

Random .UZ .05 .6U lU .U0 .07 .04 .Ul .03 .06

ASCenCl. .01 .02 .U3 .U4 .Ub .06 .07 .08 10 .30

Homogeneous .076



68 Chapter 3. Optimal Visiting Order of lsolated Clusters

‐５　　　　　‐０　　　　　．さ　　　愚ｍヽ

0

①      。

O

O
O

15 ‐5

O    づ

O ・0
鼈

!0 15

O

O

Figure 3.5:RandoIIl layout model(Ar = 10, Sl=600, S2=900, S3=1,000, S4=1,100,

S5=1,200,S6=1,300,S7=1,400,S8=1,500,S9=1,600,S10=2,400,S= 1,300,
θ =13,304.94)。 The ClusterIDs are assigned in an ascending order ofthe

distance from the sink node.
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Figure 3.6: Message ferry's traveling sequence for the proposed optimal visiting order
(for example the visiting order becomes L-3-Z).

returns to the sink node before visiting the next cluster, as shor,rrn in Figures 3.2 (b)

and Figures 3.6. For the sake of comparison, we also consider a cyclic visiting order

and a TSP-based routing (cf. Figure 3.2 (a)).In the cyclic visiting order, the message

ferry visits clusters one by one via the sink node, i.e., 1-sink-2-sink-' . . . On the other

hand, in the TSP-based routing, the message ferry visits clusters according to the

shortest cyclic path that starts from and ends with the sink node. LetC denote the

traveling time of one cycle in the TSP-based routing. We then have C : 9,830.92 and

C : 73,304.94 in the circle-based and random layout models, respectively. For each

simulation experiment, we discard the initial interval of 50,000 seconds as transient

period and collect data in the subsequent interval from 50,000 to 6,000,000 (sec).

All simulation results are presented with 95% confidence intervals, based on ten

independent simulation runs.
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Table 3.2: Mean delivery delay E[Wt"tu] in the circle-based layout model with homo-
geneous arrival rates (l/=10).

I  ⅥdingOrder  l EI%。 t』
Proposal 1-2-3¨ 4¨ 5‐ 6-7¨ 8-9-10‐ 44,679.25±87.26

い clic 1-2-3‐ 4-5‐ 6-7‐ 8-9‐ 10- 44,679.25±87.26

1'SP SInK-1-Z-5‐ 4-b‐ 6-/‐ じ―υ…lU― SInK‐ 38,290.08±49.84

3.5.2 Performance evaluation

We first evaluate the performance of three schemes in the circle-based layout,
where ,S1 are homogeneous. Table 3.2 shows the visiting order and the mean delivery
delay E[l4z,otur] when );'s are homogeneous. Note that our proposed scheme is identical
with the cyclic scheme in this case because )1/S,'s (i e At) are identical. We observe

that the TSP-based routing has the smallest E[Wr*"r] in this scenario.

Next, we examine the influence of the heterogeneity of \. Table 3.3 shows

the result in the circle-based layout, where .\r's are set according to the descend-

ing/random/ascending arrival rate scenarios in Table 3.1. Note that the descending

and ascending scenarios are both extremes and therefore in each scheme, the random
arrival rate scenario yields the second best mean delivery delay. Even though the TSP-

based routing has the smallest delivery delay, the difference between our proposed

scheme and TSP-based routing becomes small, compared with the homogeneous

case in Table 3.2.

The small difference of the results within our proposed scheme comes from a
specific implementation of the procedure for generating the visiting order, where
clusters are always arranged in an ascending order of their indices. If we arranged

clusters in the descending order of their indices in the case of the ascending arrival
rate scenario, we would have the visiting order of 10-9-8-7-10-6-5-9 -4-10-3-2-l- and

the result would be identical to that in the descending arrival rate scenario. The

cyclic visiting order is essentially identical to the ordinary polling model, and the
mean waiting time in asyrnmetric polling models is known to depend on the visiting
order [lB].

Recall that neither the TSP-based routing nor the cyclic visiting order take account

of arrival rates at clusters. Compared with the cyclic visiting order, the difference be-

tween the mean delivery delay of the descending and ascending arrival rate scenarios

in TSP-based routing is significantly large by the following reason. In the TSP-based

routing, the message ferryvisits clusters successivelywhile carrying collected bundles

with it, before returning to the sink node. In the descending arrival rate scenario, the

message ferry tends to collect many bundles at clusters with small indices (i.e., in
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Table 3.3:Mean deliverydelayEI%。 t」 l in the Circle―based layout model wid■ hetero―

geneous arrival rates(Ⅳ =10).

l λ` I  
ⅥSitingorder  l EI%。 t』

Proposal
DeSCend. 1‐ 2-3-4-1‐ 5-6‐ 2-7-1‐ 8‐ 9-10- 38,004.41± 63.15

Kanaom 3‐4-1-2-3¨ 5‐ 6‐ 4-7-3‐ 3‐ 9-10- 38,142.16±38.95

Ascend. 10‐ 9-1-2-10‐ 3‐ 4‐ 9-5-10‐ 6-7-8‐ 38,246.43± 55.56

Cyclic
Descend. 1-2‐3-4‐ 5-6‐ 7‐ 8-9‐ 10¨ 45,353.64■61.46

Kanaom 1-2‐ 3‐ 4-5-6-7-8-9‐ 10- 45,434.70±63.28

Ascend. 1-2-3‐ 4-5-6-7‐ 8-9¨ 10¨ 45,654.29±53.12

TSP
Descend. S nk-1‐ 2-3-4-5-6‐ 7‐ 8-9-10¨ sink― 36,983.58± 82.62
Kanaom S nK‐ 1‐ 2-3-4-b― b‐ r‐ё―υ-lu‐ SInK― 36,384.11± 33.85

Ascend. S nk‐ 1‐ 2-3-4-5-6¨ 7¨ 8-9-10¨ sink― 33,/44.1/士 bb.4υ

Table 3.4:Mean delivery delay EIIグ iotal]
hea宙ly loaded cluster(N=
2,3,...,10))°

Visiting order EIンフ1。tall

Proposal 1-2-1… 3-1-4-・ ・・ ‐1-9-1‐ 10- 7072.23± 39.45

TSP
sink-1-2-3‐ 4-5‐ 6‐ 7-8-9-10-sink― 14901.43± 67.89

sink-10-9-8¨ 7-6-5¨ 4… 3-2-1-sink‐ UZUb.1/土 bb.1`

the former part of the cycle), and it carries them while visiting other lightly-loaded
clusters with large indices. In this way, many bundles suffer from long delay, which
leads to a significant increase of the mean delivery delay in the descending arrival

rate scenario.

Note here that the TSP-based routing is not always superior to our proposed

scheme. For example, suppose 90% of traffic is generated at cluster I and the rest

is divided evenly among nine other clusters, while keeping the total traffic intensity
fixed to )=0.76. Table 3.4 shows the result. The mean delivery delay in the TSP-based

routing is greater than that in our proposed scheme and in the TSP-based routing, the

direction at which the message ferry moves affects the performance significantly.

We nowturn our attention to the random layout model in Figure 3.5, where dis-

tances between clusters and between the sink node and respective clusters are not

Table 3.5: Mean delivery delay E[l/.*"r] in the random layout model with homoge-
neous arrival rates.

Visiting order Elシツ1。 tall

Proposal 1-2-7-3-4-5-8‐ 6… 1… 2-9-3‐ 4-5‐ 10-6- 44,325.52±56.87

Cyclた
1-2-3¨ 4¨ 5‐ 6‐ 7‐ 8-9-10- 49,357.16±49.41

10-9‐ 8¨ 7¨ 6-5‐ 4‐ 3-2¨ l 4坊41b./′土bZ.lU

TSP
sink‐ 9-7-2… 10-6-5¨ 4-3¨ 8… 1-sink― 45,842.34±55.98

sink‐ 1‐ 8-3¨ 4-5‐ 6-10-2¨ 7¨ 9-sink‐ 45,896。 17± 78.30

in the circle― based
10,λ =0.76,λ l=

layout rnodel with one

O.9λ ,λじ=0。 lλ/9(づ =



3.6 Conclusion

Thble 3.6: Mean delivery delay E[l/,*"r] in the random layout model with heteroge-
neous arrival rates.

λJ Visiting order EIフレ1。 tal

Proposal
Descend.

1-2-3-7‐ 1-4¨ 5¨ 1-2-8‐ 6-

1‐ 3-9-1-2-4‐ 5-1-10-6‐
31,749.81± 39.45

Kandom 3-2‐ 1‐ 4-3‐ 5-7-6‐ 8‐ 3-2¨ 4-9‐3-5-6-10‐ 33,748.28± 45.10

Ascend. 10‐ 1-2‐ 3‐ 4‐ 5-10-6-7‐ 8-9- 41,672.71± 70.32

Cyclた

Descend.
1-2-3-4¨ 5‐ 6-7-8-9-10- 45,954.46± 92.14

10¨ 9-8-7‐ 6‐ 5-4‐ 3-2‐ 1- 45,922.72± 53.58

Random
1‐ 2-3-4-5-6-7-8-9-10- 46,237.65± 48.98

10¨ 9-8-7‐ 6‐ 5-4‐ 3-2-1- 46,478.53± 87.18

Ascend.
1-2-3-4‐ 5‐ 6-7-8-9-10- 46,961.42± 37.85

10¨ 9-8-7‐ 6‐ 5-4-3-2… 1- 46,982.49± 34.47

TSP

Descend.
sink¨ 9-7… 2-10-6-5-4‐ 3-8-1-sink― 45,053.78± 69.97

sink… 1-8‐ 3-4-5‐ 6-10-2-7-9-sink― 47,838.46± 77.27

Random
sink‐ 9‐ 7… 2-10-6… 5-4-3-8-1-sink¨ 45,176.45± 78.48

SInK‐ 1-U‐ 3-4-b‐ b-lU― Z― r‐υ―SInK― 47,615.67± 32.09

Ascend.
sink¨ 9-7‐ 2-10-6‐ 5-4-3-8-1-sink― 46,776.59± 83.44

sink… 1-8‐ 3-4-5‐ 6-10-2-7-9-sink‐ 45,298.15± 32.95

identical. Recall that cluster indices are set in the ascending order of Si (i € AD.

Table 3.5 shows the result for the homogeneous arrival rate scenario. Our proposed

scheme is superior to the TSP-based routing, which indicates that serving clusters

close to the sink node more frequently is beneficial to the reduction of the overall

mean delivery delay.

Finally, Tables 3.6 shows the results when both.\6 and ^9r are heterogeneous. In
all arrival rate scenarios, our proposed scheme shows the better performance than

the TSP-based routing, and the difference between the mean delivery delays in our
proposed scheme and the TSP-based routing depends on the scenarios. In general, a

large variation in JTJ 56 (i, e At) yields the large variance of pr (i, € I/), and it leads to

a long visiting order sequence. Performance of our scheme has a strong correlation to

the length of the visiting order sequence and scenarios yielding long sequences are

more preferable for our proposed scheme.

3.6 Conclusion

We focused on a system where a message ferry collects bundles from isolated

clusters and delivers those to the sink node, where transmission times of bundles are

not negligible. To minimize the total mean delivery delay of bundles, we proposed

an algorithm for obtaining a quasi-optimal visiting order of clusters, with the help of
the optimization technique of the conventional polling model. Through simulation
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experiments, we showed that the proposed visiting order can perform well, especially

when the arrival rate and/or distances are heterogeneous.



CHAPTER 4

Grouping Clusters

HIs chapter addresses the another part of inter-cluster communication by study-

ing the grouping of clusters. Recall that when there are lots of clusters in ferry-
assisted multi-cluster DTNs, multiple message ferries and sink nodes will be required

to adoptwith the system capacitylimit. Hence, clusters need to be divided into groups

such that each group consists of physically close clusters, a sink node, and a message

ferry. In order to minimize the overall mean delivery delay of bundles, group should
be created by taking account of the offered load of each cluster, distance between
them and capacity limit of each sink node.

4.L Grouping Clusters to Minimize the Total Mean De-
livery

In the proposed multi-cluster delay tolerant networks, if the arrival rates of bundles

at clusters are different from each other and service times are not negligible, bundles

in clusters with high arrival rate must wait for a long time to be delivered to the
sink node, while less importantvisits to clusters with a fewbundles also take place.

In Chapter 3 , we have already proposed and discussed a scheme to determine an

optimal visiting order of a message ferry for one group 1241, which minimizes the
meqn deliuery delay of bundles, i.e., the average time interval from the generation of a

bundle in a cluster to the completion of its deliveryto the sinknode. This optimization
problem can be reduced to the minimization problem of the weighted mean waiting
time in the conventional polling model of queueing theory [3], 53]. The proposed

visiting order is effective, especiallywhen arrival rates of bundles in clusters and/or
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Figure 4.1: Example of grouping where the size of each cluster is proportional to the
arrival rate of bundles.

distances between clusters and the sink node are heterogeneous.

lVhen there are lots of distant static clusters with heterogeneous offered load, there

is potentially a drawback in designing a route using only one message ferry: The time

spent for one cycle of the route increases with the number of clusters. This issue is the

main concern of this chapter. The whole system is divided into multiple groups, each

of which consists of a sink node, clusters, and one message ferry. We assume that
the sink node is constructed in one of clusters in each group. In what follows, we call

the cluster with the sink node the base cluster and others group members. Figure 4.1

presents an example of grouping. We further assume that high speed channels are

available at the base cluster, so that the offered load of the base cluster is assumed to

be excluded from the total offered load in each group. Note here that the total offered

load handled by a message ferry should be less than one, and a moderate intensity,

say 0.7 or less, is preferable. Moreover, for given number and positions of clusters,

the total number of sink nodes (i.e., message ferries and groups) should be limited in
order to suppress the introduction cost of the system. Figure 4.2 illustrates an example

of grouping considering trafflc intensity.

Our main goal is making groups to minimizethe mean delivery delay of bundles

among groups. As mentioned above, in Chapter 3, we have already obtained the

solution in the case of one group l24l: We have the explicit objective function that
in a nonlinear function composed of arrival rate of bundles in clusters and distance

between clusters and their sink nodes. Based on this knowledge, we first model our

problem as a nonlinear integer programming. Due to the complexity of the objective

function, however, it might be hard to solve this problem directly. Furthermore,

髪
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Figure 4.2: Example of grouping by considering trafflc intensity < 0.7 ( the size of each
cluster is proportional to the arrival rate of bundles and the numerical
values inside the circle imply the average offered load of each cluster).

this formulation may sacrifice the performance of lightly-loaded clusters with long

distances from their base clusters, in order to minimize t}re overall mean delivery

delay.

To tackle these problems, we introduce two-step optimization technique based

on linear integer programming. In the flrst step, we find the minimum of longest

distances between group members and their base clusters under the constraint that

the offered load in each group is less than a predefined threshold (e.g., 0.7). For this

purpose, we use a variant of the capacitated vertex p-center problem (CVPCP) in
facility location problems [33,40, 4I,46].

Proposed Method: Capacitated uertex p-center problem: Capacitated vertex p-

center problem tries to find locations of p capacitated facilities and assign customers

to them when the locations and capacity of facilities, and the locations and demand

of customers are given. The objective function of this problem is the minimization of

the longest distance between customers and their associated facilities.

The first step optimization contributes to balancing the longest distance between

a base cluster and its group members among groups. The second optimization
reconfigures the groups in order to minimize the overall mean delivery delay. Because

the objective function in the original problem is an increasing function of the square

root of the product of group member's arrival rates and distances from their base

clusters, we consider minimizing the sum of those products under the constraint that

the longest distance does not exceed the first step optimization result. We give some

numerical results to evaluate the characteristics of the obtained groups and howto
find the optimal solution.
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The rest of this chapter is organized as follows. Section 4.2 provides the problem
formulation. In Section 4.3, through numerical results, we demonstrate the character-

istics of groups and explain how to find the optimal grouping. Finallywe conclude
the chapter in Section4.4.

4.2 Problemformulation

4.2.1 Overview

Our goal is the development of a method for dividing clusters into several disjoint
groups adequately in terms of the introduction cost and the total mean delivery delay.

For each group, we select a base cluster, where a sink node is located, and we assign a

message ferry. Recall that the sink node has a connection to the outer world and can

directly handle the traffic generated in its base cluster via high speed channels, and

the message ferry goes back and forth between the base cluster and other clusters

in order to collect bundles. The optimal visiting order of clusters in a group, which
results in the minimization of the total mean delivery delay is obtained according to

Chapter 3.

In general, the total mean delivery delay of bundles decreases with the increase of
the number of message ferries (which is equal to the number of groups). Therefore our
problem is multi-objective. In order to restrain the introduction cost, it is preferable

that the number of message ferries should be minimal within a range that the total
mean delivery delay is allowable. Note that the mean delivery delay in each group of
clusters has the following two features, because each group of clusters can be viewed

as a polling model [24] (discussed in Chapter 3 ).

The total offered load p handled by the message ferry should be moderate (e.9.,

p < 0.7) because the mean delivery delay is a nonlinear function of the total
offered load p, which involves the factor (1 - p)-t.

Travel times between base cluster and group members linearly affect the mean

delivery delay because they correspond to switchover times in the polling model.

Based on the above observation, we take the following approach. We first set

the maximum allowable 0 of offered load in each group and determine the lower

bound K,l-". of the number K of groups. We then attempt to solve a min-max integer

program in order to minimize the total mean delivery delay of bundles. Note here

that the number K of groups is first set to be Kf*"., and if the program is not feasible,

2)



4.2 Problem formulation

we add one to K and solve the program again. Repeating this procedure, we will have

the solution with a minimum feasible K : Kl,,n eventually.

4.2.2 Nonlinear integer programming formulation

We assume thatthere are y clusterslabeled l to y in a certain geographical area.

Letソ ={1,2,… 。,y}denote the set of cluster indices.恥 deflne d=[硫 ,′ ](づ ,」 ∈ソ)
as a rnatrix ofthe rnessage ferryt traveling tirne dを

,′
beNten clustert and clusterブ ,

where dを
,づ
(づ ∈ソ)iS equalto zero.Also,let ρ=[ρづ](づ ∈ソ)denOte avector ofthe offered

load ρづofclusterづ。We assume thattransnlission times ofbundles at all clusters are

independent and identica■y distributed(ioi.d。 )acCOr(五 ng to a general distribution

wlth meanれ。Let λを(を ∈ソ)denote arrivalrate ofbundles of clustert.

マ、しarstindttelowerboundKttr Ofthenumberκ ofgroups.Suppose■ ere e対st

K dittOint,non―empty group partitions for a given maximum allowable o“ ered load θ

in each groupo Withoutloss ofgenerality9 we assulrle ρl≧ ρ2≧ …・≧ρy.If Cluster t

forsomeづ >」r is a base cluster ofgroupた ,there exists a clusterJ o≦ 」κ)Of group

た′。We then swap thoseれ vo clusters;clusterブ beCOmes a base cluster ofgroupた and

clusterづ joins groupた′as a group member This swap yields arlotherfeasible group

partition because it decreases the total offered load ofgroupた ′by島 一ρづ,and when

た≠た
′
,the tOtal o■ iered load of groupた remains the same.Therefore,we consider

onlythe case that clusters l to K are base clustersin discussing ζtter fOr awhile.If a

feasible partition ofκ groups is glven,ρ K+1≦ θ and ρκ+1+ρκ+2+…・+ρy≦ スη.We

thus have
y

ス■w∝ =要丑捜与{K;ρK+1≦θ,Σ 2≦κθ}・
t=κ+1

Note thatthe minimum feasible number ζふh ofgrOups is notless than ζtter,ioe。 ,

κtth≧ Kttr・

We deflne the set ofbase dusters as κ,where lκ l=κ o Letソ (1)denote the set of

dusters h groupた,where lソ 01=yOo Let E「 44慢な』denote me Overall mean delivew
dday ofbundes ofgroupた。EI属性なJお deined as bllows:

Σ λづEI可霊“J
E[w,9.'l

;6yt*) _{e}

Σ λづ
(た ∈κ),

,isy{x) _{k}

is the average time interval from the generation of
k e K) to the completion of its deliveryto the sink

77

where me ddivewddayEI可霊
“L』

a bundle ofclusterづ (づ ∈ソ(λ )一 {λ },
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node in the base cluster at group k. The overall average weighted sum of total mean

delivery delay of bundles of all groups becomes

ΣttdE口性なJ
EI%。t』

た∈κ

RヽJ

where瑠」=Σづ∈メ→判 λt。

Our main objective is to create groups of clusters in order to minimizeB[W61^1].

Recall that minimization of E[ilzSi,,] can be obtained by optimizing the visiting order

of the message ferry in each group k. The optimal visiting order of the message

ferry can be achieved by adopting the minimization problem of conventional polling
model as described in our previous work [24] (discussed in Chapter 3 ). In [24], it is
obtained that by ignoring constant factors and terms, the objective function of the
minimization problem is reduced to

∫(た )(9(ん))= (4.1)

じ∈ソ(ん )一 {λ }

where q(&) is a vector of q6 Q, E )2Ue) - {k}), which is the mean number of visits at cluster

i per unit time at group k (k e K),i.e.,

1-ρl震al
(に ソ(た)一 {た },た ∈κ),

Σ y2λ′ご切
′∈ν(・ )一 {λ }

where p[j?, : fo.yror-1*1p;. Therefore /(t)(q(*)) in Eq. (4.r) is rewritten to be

Σ

ば

九

一
％

%

∫(ん )(9(た))=
(cЛ{4航)2
1-ρ
l潔 al

(4.2)

Based on the above discussion, in this chapter the objective function of the group-

ing problem can be reduced to the minimization of weighted average of 7(rl(q(*))

九
一鶴
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among all groups:

RヽJ/000)
A: minimize

Σλ椒J

SubieCt tO″り,′ ∈{0,1), ∀J,」 ∈ソ,

Σtt」 =1,力 ∈ソ,
こ∈ν

Σ島″=κ ,

づ∈ν

where χt,′ (づ ,ブ ∈ソ)are deCiSion variables such that

I r, if i : i and,cluster z is a base cluster,

tri,i :{'' :T:T:",?'#IJ:ililf" 
s€une grouP and

I

[ 0, otherwise.

Constraints (4.4) and (4.5) ensure that cluster j is either a base cluster (r j,j : 1) or a

cluster member in the same group as base cluster i. (rti : 1 for i + j). Constraint (4.6)

implies that there are K base clusters. Therefore K and V(k) can be defined by r6,i:

κ={づ ;″ちづ=1),  ソ(た)={ブ ;″た,′ =1)(た ∈κ)。

As Eq. (4.3) is a nonlinear function, it might be hard to solve Problem A with a
straightforward method. Furthermore, the mean delivery delay of lightly-loaded
group members with long distances from their base clusters may get large because

the minimization of the overall mean delivery delaywill be achieved at the sacrifice of
the bad performance of such clusters.

To tackle these problems, we take a two-step approach based on linear integer

programming. From the original objective function Eq. (4.3), we expect that achieving

the following two characteristics leads to our objective: a) Reducing and balancing

total offered load among groups under certain capacitylimitation, and b) reducing

and balancing the total traveling distances among groups. In the next subsection,

we show this can be realized by a two-step optimization technique based on linear
integer programming. Note that total offered load among groups can be reduced by

selecting clusters with high offered load as base clusters.

Σ

ば (4.3)

(4.4)

(4.5)

(4.6)
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4.2.3 Linear integer programming formulation for approximate so-
lution: Itryo-step optimization

From Eq. (4.2), we observe that the offered load p{f1,, in each group should be

moderate, s&y, O.7 or less. We then introduce the upper bound threshold d of the
offered load in each group. The first step in our approach is a relief of lightlyloaded
clusters. More speciflcally, given V, K , d, and 0, we first try to find grouping where

the longest distance between base clusters and their group members is minimized
under the constraint of K and?. This can balance the longest distance among groups.

Note here that this kind of problem can be best studied by the capacitated vertex
p-center problem in facility location problems 140,461. Hence, we can formulate the

flrst step optimization as the following modified version of the capacitated vertex
p-center problem.

B: nlinilnize W1/

SubieCt tO″づ,′ ∈{0,1}, ∀を,ノ ∈ソ,

Σtt」 =1,力 ∈ソ,
づ∈ソ

Σ銑́=κ ,

づ∈ソ

Σ乃銑」-2亀バθ銑め流∈ソ,
′∈ν

ΣαちルJ一″≦0,W∈ソ.
づ∈ν

(4.7)

(4.8)

Constraint (4.7) implies that for a base cluster i, the total offered load in its group is

not greater than d. Note here that for z e V such that16,6: 0, both left and right hand

sides of constraint (4.7) are equal to zero. Constraint (4.8) ensures that the distance

between a base cluster and group members in each group is not greater than l4l. Note

that other constraints used in Problem B are the same as those used in ProblemA.

Recall that the initial value of K is set to be Kf*". and is increased one by one to Kf,'n,

where a feasible solution is found. The solution gives us base clusters and a group

partition of clusters, which minimize the maximum distance between base clusters

and their group members.

By solving Problem B, we obtain the minimumW : W*, which provides the maxi-

mum allowable distance between group members and their base clusters. Under this

constraint, we then try to minimize the mean delivery delay of bundles. Unfortunately,

however, the objective function of the original problem is nonlinear and it might be
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diffrcult to solve it. We thus employ the following heuristics. From Eq. (4.2), we ob-

serve that the essential quantity in minimizing the mean delivery delay is 1/),id7,,6for
group member ? with base cluster k. Therefore, we reconfigure the groups to minimize
the sum of JTrtn" under the constraint of K, 0, andtrV*, where W* is the solution of
Problem B. The corresponding optimization problem is as follows.

C: minimize Σ

ρ
√Σ轟 もJ

81

iev
subject to ra,i € {0, 1}, Vi, j e V,

D'o'i :7' Yj ev'
iev

D*..'n: K'
i€V

I oi'n,i - P&1t I Ir'i,';, Vi e V,
j€v

Dd4,r4r-W"10, YjeV.
i€v

Note that in Problem C, the constraints are the same as those of Problem B except

thatW --Wt' is constant.

The remaining problem is finding optimal d that satisfles Eq. (a.3). Given ri,i
(i,, j e y) by solving the two-step optimizationproblem, we can calculate Eq. (4.f) for
each group. Therefore we can find the optimal9 as follows:

1. Set d to be a maximum allowable offered load, e.g., O.7.

2. Calculate the lower bound Kf*". of the number K ofgroups according to the
procedure in section 4.2.2.

3. Find the minimum feasible number Ki,i" of groups according to the procedure

in section 4.2.2.

4. With the help of line search technique l42l,findthe optimaT? : e* < 0.7, which
minimizes the value of the objective function of ProblemA. Note that the finally
obtained grouping also minimizes E[tr7,*,1].

4.3 Numerical results

We consider an area of 40 [km] x 30 [km], where fifty isolated clusters (V : 50)

are randomly located, as illustrated in Figure 4.3 and we then set d : [doi] (i, i € V)
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Figure 4.3: Random layout model with y : 50, where the numerical values inside
circles imply the cluster IDs.

Table 4.1: Settings of p6 (V=50).

Case ρl ρ2 ρ3 ρ50
一ρ

Ascending 0.01 0.02 0.03 0.50 0.255

Descending 0.50 0.49 0.48 0.01 0.255

accordingly. For inter-cluster communications, we assume that each message ferry
travels at a fixed speed of l0 m/s (i.e., 36 km/h). Table 4.1 illustrates two settings of p

for heterogeneous and moderatelyloaded cases where pa is assigned in an ascending

order and a descending order with cluster IDs, andp is 0.255 in both cases. We

assume that transmission times of bundles are i.i.d. according to an exponential

distribution with mean hr : 1[s] (z e V). Since pt : )rht (i e V), the settings of )i
(i e V) become identical to those of p in both cases. The total distance between base

cluster k and its group members is denoted as a{f]",. By setting g : 0.70,we obtained

K,L*". : Kl,'n : 12 according to the procedures in section 4.2.2. Therefore we fix
K : !2 in the rest of this section. We also found that the minimum feasible 06*., of 0

is given by 0.62, so that we consid er 0 e [0.62, 0.70].

We obtain the groups by solving the two-step optimization technique using

CPLEX t2l. Recall that Problem B provides temporary groups by minimizing the

longest distance I,7 between base clusters and their group members, while Problem C

reconfigures the groups and provides final results by minimizingthe sum of JTE41
under the constraint of the allowable longest distance trV*. Next, we determine the

optimal visiting order of the message ferry in each group according to in Chapter 3

and[24). Finally, we conduct the simulation experiments to obtain n[Wfj,,] of group
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Table 4.2i d,61u1,weighted average of /(k)(g(u)), and E[\4lt.t.r] (K - Iz,Ascending case).

θ
αtotal lknl] vvelgnted average

Of∫ (た )(9(た ))

LI″ totJl lSJ

Step l Step 2 Step l Step 2

0.70 300.1 272.6 8,277.5 7,088.7 6,481.6

0.69 302.8 278.1 8,345。 1 6,891.8 6,434.5

0.68 308.9 279.5 8,011.2 6,714.0 6,411.2

0.67 313.5 281.4 7,815.3 6,610.1 6,302.1

0.66 321.7 284.2 6,925.2 6,419.4 5,581.6

0.65 331.2 285.9 b,UUU.U 5,496.2 5,061.5

0.64 349.5 330.0 8,092.8 6,608.1 6,480.6

0.63 353.8 331.8 8,056.1 6,645.8 6,487.0

0.62 417.1 416.2 9,977.0 8,326.2 8,198.9

Thble 4.3: dao61, weighted average of /(k)(q(*)), and E[tr42..r^l (K - 12, Descending
case).

θ
島。tJ[km] VVeighted average

Of∫ (た )(9(ん ))

EIシフ1。 tall ISI

Step l Step 2 Step I Step 2
0.70 257.2 239.7 7,489.4 6,109.1 5,782.2

0.69 274.6 248.2 7,382.1 5,959.9 b,bUU.1

0.68 290.4 254.1 6,920.5 5,812.6 5,550.1

0.67 299.0 260.3 6,625.1 5,632.5 5,391.7

0.66 304.9 262.8 6,762.7 5,401.1 5,036.4

0.65 308.9 281.5 6,370.8 5,178.6 4,935.2

0.64 347.8 317.0 7,756.6 6,237.6 5,946.5

0.63 349.7 349.7 8,290.2 7,663.5 7,328.7

0.62 414.5 392.3 9,425.0 7,761.9 7,588.9

k and calculate E[lal,*,r].

First, we observe the characteristics of grouping for different settings of d in Ta-

ble 4.2 for ascending case and in Table 4.3 for descending case. To grasp how the
grouping of clusters changes, we show the sum d1o61 of distances d;,,a of group mem-

bers from their base clusters. As we expected, there is some room to improve the
performance, regardless of d, and E[lrVt"t,r] decreases in Step 2. Next, when d decreases,

d1o1u1 rnorrotonically increases while the weighted average of ;tt)1n(t)), which is the

objective function in the original problem, initially decreases but increases from a
certain value of d. This suggests that there is an optimal?* : 0.65. Figure 4.4 illustrates

this characteristic of the weighted average of /(k) (q(o)) for both cases. Note that error

bars indicate the range of one standard deviation o of the weighted average of 7w (q(*))

(k e K). We also observe that E[I4z1.tur] has the same tendency as the weighted average

of /(ft)(q(*)) and the minimum E[l,Vt"t.r] is achieved at d* : 0.65, which are shown

in Figure 4.5 and Figure 4.6. Therefore, we can obtain the optimal0 by examining

the weighted average of f(k)(q(k)). Because of the limited search space for 0, this

83



84 Chapter 4. Grouplng Clusters

ｏｏｏ
　
　
　
　
　
　
ｍ
　
　
　
　
　
　
ｍ

ご
こ
ヽ
ち
ε
あ
Ｂ
）‘ｍ
一ｏ■
ｏ“
●
ｏえ

¨

蜘

¨

枷

２０００

０

２

踊
ぎ
に

15000

S
き
:1°
OIXl

ξ
亀
■ 5000

●

t

0

055     060     065     070     075     080

θ

(a)Ascending case.

θ

(al Ascending case.

050    055

θ

(b) Descending case.

Figure 4.4: Relationship between 0 andweighted average of f (n)1n<x)) tN : I2).

15000

111tl1211

5000

0

［“

［冒
“
ミ

］ロ

〔ユ

〔コ
■
ミ
］ω

065     070

e

(b) Descending case.

075

Figure 4.5: Relationship between 0 and EIW* ,1(K : 12).

search does not require much computational overhead: d should be not more than a

moderate value, e.9.,0.7, and there will be the minimum feasible 0, 06*",.

To examine the mean delivery delay in each group, we show pl,?r^,d{j].,, and

EtW,f,),,] inThble 4.4(0:O.7),Thble 4.5(0:0* :0.65),andThble 4.6@:0ro*", :0.62)
for ascending case. From Table 4.4, Lf 0 > 9*, clusters with lower offered load, e.9., 14

and32, can become base clusters, which results in higher average of p{j?r, i.e, 0.66.

Note that the offered load of base cluster k is not included i" plj?",. In addition, plll^
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Figure 4.6: Relationship between E\W*,^l,weighted average of y(rl(g(*)), and0 (K :
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Table 4.4: Results of two-step optimization (K : 12,0 :0.7, Ascending case).

Base cluster ID
り

な
0.64 0.69 0.68 0.62 0.63

dlν.l lkln〕
aa^ 32.7 22.9 19.2 25.8

E「W胤』lSI 3,373.1 2,890.5 7,4627 6,4244 4,525.1 5,769.2 5,855.5 3,665.7 3,898.2 4,960.5 2,574.5 1,689.6

Table4.5: Results of two-step optimization (K : 12,0 : 0" : 0.65, Ascending
case).

Base cluster I1-)

バ留 0.65 0.63 0.64 0.64 0.65

針解J〔hn] 34.9 35.2 20.9 28.2 17.7 26.6

E「 T,11な』IsI 5,373.8 4,568.3 3,036.2 2,4t4.4 3,091.9 4,272.5 3,015.2 3,3850 2,353.2 2,929.5 1,001.2 3,t28.1

Thble 4.6: Results of two-step optimization (K : 12,0 : dro-". : 0.62, Ascending
case).

Base cluster ID

バ留J 0.62 o.62 0.62 o.62 o.62 o.62

4解J Ihnl 32.2 2t.4 27.1 36.6 37.3 23.9 34.6 57.2

EIW)財_ll lsI 4,755.9 2,928.3 4,658.6 4,867.4 5,605.6 3,859.9 6,0938 5,523.8 3,289.3 8,596.9 4,938.5 5,7t7.9

85

is notwell balanced: The maximum difference of p{3L, among groups becomes 0.12.

As a result, groups with high p{3], *d large a{j]., suffers high E[w,f]j, e.g., groups 37

and 38. If 0 : d- (Thble 4.5), the average and standard deviation of p{i]., is improved,

i.e., 0.64t0.02, with a small increase of d1o1u1l drorur : 272.6 for 0 : 0.7 and drorur : 285.9

for 0 :0.65. This can be achieved by selecting clusters with high p{i], in the dense

region. If e < d. (Thble 4.6), due to the severe bound of d, clusters with high plj],
become base clusters regardless of their locations. As a result, d{f].r steeply increases

and thus EtW,$,,] becomes worse. We observe the similar characteristics of grouping

for descending case in Table 4.7 (0 : 0.7), Thble 4.8 @ : 0* : 0.65), and Table 4.9

(0 : 0u*., :0.62).

Finally, examples of different grouping of clusters for both cases obtained by the

combined scheme are illustrated in Figure 4.7 for different settings of 9. We find that

lower E[\4lr*"r] can be achieved by two reasons: l) Selecting clusters with high offered

load as base clusters, and 2) balancing total offered load among groups. Note that the

offered load of base cluster is not included in the total offered load plj?", of group ft
(k e K).
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Table 4.7: Results of two-step optimization (K : 12,0 :0.7, Descending case).

Base cluster ID l 4 1 I
0.58 0.67 0.59 0.69

d,1イ _:Ikm] 28.7 32.9 24.8 28.6

EINRヽ ll lsI 1547.6 5287.1 1205.5 7724 4176.7 3252.8 65023 2443.9 34029 5504.7 4830.4

Table 4.8: Results of two-step optimization (K : 12,0 : d* : 0.65, Descending
case).

Base cluster ID 3 ti 7
り

汁 0.65 o.62

掛PJ【 km〕 22.8

EI″ 1547.6 4495.2 1205.5 3025.9 2755 3452 3246.5 4593 4619.3 3451.9 3651.8 1823.3

Table 4.9: Results of two-step optimization (K=I2, 0 : 0b*.,=0.62, Descending
case).

tsase cluster lI, 7
り

付
o.62 0.62 o.62 o.62 0.62 0.62 0.62

dl賢なl[km] 28.3 20.7

EI,シ1ヤhl IS] 6244.5 5028.7 3770.5 5179.5 25583 57791 5013.9 5858.1 46193 6773.9 3222.1 2434.5

4.4 Conclusion

In this chapter, we focused on grouping clusters in ferry-assisted DTNs in order
to minimizet}re mean delivery delay of bundles. We flrst modeled our problem as a

nonlinear integer programming for exact solution. Due to the complexity of this prob-

lem, we further introduce two-step optimization technique based on linear integer
programming for approximate solution. Through numerical results, we showed the
two-step optimization can obtain optimal solution by setting d adequately, which is

realizedusing the original objective function as the stopping criterion.
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(a) K : 12,0 :0.7 (Ascending case).

♂壕 ‰

(c)K=12,θ =θ*=0.65(optimal as― (d)K=12,θ =θ*=0.65(optimal de‐

cending case).                     scending case).

(e) K=12, d : d1o*",=Q.62 (lowerbound (f) K=12,0 : 0ro*.,=0.62 (lowerbound
ascending case) . descending case).

Figure 4.7: Grouping obtained by combined scheme for Fig 4.3 and Table 4.1, where
rectangles are base clusters, i.e., locations of sink nodes and lines are drawn
between sink nodes and their group members.

(b) l( : 12,e :0.7 (Descending case).





CTIAPTER 5

Conclusions

N this thesis, we proposed three techniques and studies to accomplish a complete

system which can achieved effrcient bundle gathering in ferry-assisted multi-cluster
DTNs. We explicitly studied inter-cluster communication and intra-cluster communi-
cation carefully in order to minimue the total mean delivery delay of bundles. The

inter-cluster communication was studied by two studies: 1) Grouping clusters, and
2) Optimal visiting order of isolated clusters. And, the intra-cluster communication
was studied by self-organized data aggregation technique among selfish nodes in an

isolated cluster. Figure 5.1 presents the summary of our proposed researches.

Chapter 2 addressed intra-cluster communication by self-organized data aggre-

gation technique among selfish nodes in an isolated cluster. We proposed a self-

organized data aggregation technique for collecting data from nodes efficiently, which

can automatically accumulate data from nodes in a cluster to a limited number of
nodes (called aggregators) in the cluster. The proposed scheme was developed based

on the evolutionary game theoretic approach, in order to take account of the inherent

selfishness of the nodes for saving their own battery life. The number of aggregators

can be controlled to a desired value by adjusting the energy that the message ferry
supplies to the aggregators. We further examined the proposed system in terms of
successful data transmission, system survivability and the optimality of aggregator

selection. We introduced two game models by taking account of the retransmissions

mechanism of bundles. Through both theoretical and simulation-based approaches,

we revealed feasible p€uameter settings that can achieve a system with desirable

characteristics of stabiliry survivability, and successful data transfer.

Chapter 3 focused on one part of inter-cluster communication by studying the

89
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Figure 5.1: Proposed research studies.

optimal visiting order of isolated clusters. \Mhen there are lots of distant static clusters,

the message ferry should visit them efficiently to minimize the mean delivery delay

of bundles, where transmission times of bundles are not negligible. We proposed

an algorithm for determining the optimal visiting order of isolated static clusters in
ferry-assisted multi-cluster DTNs. We showed that the minimizalion problem of the

overall mean delivery delay in our system is reduced to that of the weighted mean

waiting time in the conventional polling model. We then solved the problem with
the help of an existing approach to the polling model and obtain a quasi-optimal

balanced sequence representing the visiting order. Through numerical examples,

we showed that the proposed visiting order is effective when arrival rates at clusters

and/or distances between clusters and the sink are heterogeneous.

Chapter 4 focused on another part of the inter-cluster communication by study-

ing the grouping of clusters. lVhen there are lots of distant static clusters, multiple
message ferries and sink nodes will be required. We aimed to make groups each of
which consists of physically close clusters, a sink node, and a message ferry, in order to

minimize the overall mean delivery delay of bundles in consideration of both offered

load of clusters and distance between clusters and their sink nodes. We first modeled

this problem as a nonlinear integer programming, based on the knowledge obtained

in our previous work [24] (discussed in Chapter 3 ). Because it might be hard to solve
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this problem directly, we took two-step optimization approach based on linear integer

programming, whichyielded an approximate solution of the problem. Through simu-

lation experiments, we showed that the optimal solution can be obtained by setting
the control parameter appropriately, at least when clusters are distributed randomly
over the area. Finally,a general guideline is proposed to achieve optimal grouping in
ferry- assisted multi- cluster DTNs.

We hope that our proposed three techniques and studies to achieve a complete sys-

tem for efficient bundle gathering in ferry-assisted multi-cluster DTNs can contribute
to the delay tolerant networks (DTNs) communities.





AppendixA

Replicator Equation in Evolutionary Game Theory

The replicator equation [22,50,56,59] is one of the fundamental equations in
evolutionary game theory. Evolutionary game theory assumes that the population of
a group (e.g., species) is proportional to the fitness (i.e., payoff) of the strategy that
the group selects. Since each group is under mutual dependencywith other groups,

the superiority of the strategy is determined relatively by the strategy distribution.

We first formalize the general case for two players with rz strategies. An n x n payoff
matrix, A : [ooi], represents all possible strategy pairs of the two players. The entries,
aij,(i,i:1,2,...,22),denotethepayoffof strategyicompetingwithstrategyj.

Let ra (i, : 7,2, . . . ,n) denote the ratio (relative frequency) of each strategy. A7l 15

add up to 1, i.e., n

\*o: t. (A.l)
't: L

The expected payoff fl of strategy z is given by

"a\Io: ) .riati.
j:1'

We can obtain the average payoffof the population to be

φ=Σ銑ル
i:I

It then follows from Eqs. (A.2) and (A.3) that the standard replicator equation is given

as

島=″」(ん ―φ),づ =1,… .,η , (A.4)

where a dot represents time derivative. Eq. (A.a) indicates that the number of players

selecting strategy z increases with the relative difference between the expected payoff

of strategy z and the average payoffof all strategies. Note that Eq. (A.a) is applicable
only to an infinitely large and well-mixed population where each player can equally

(4.2)

(A.3)
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play games with all other nodes [56].

Evolutionarygame theoryon graphs 132,35,37-39,511 is an extension of the original

theory to a finite size population. Members of a population are represented by vertices

of a graph and interact with connected individuals. It describes how the expected

frequency of each strategy in a game changes over time within the graphs. The pair

approximation [36] is applied to regular graphs of degree k ] 2, i.e., each individual
is connected to k other individuals. Each node represents a player with a selected

strategy. Each player derives a payofffrom interactions with all of its neighbors. Then,

it compares the obtained payoffwith a randomly chosen neighbor. If it overcomes

the opponent, it keeps the current strategy, and otherwise, it imitates the strategy of
the opponent. This kind of strategy updating rule is called "imitation updating ruIe."

By modifying the original payoff matrix A, the evolutionary game dynamics in
a well-mixed population can be transformed into that on a k-regular graph. The

modified payoffmatrtx, A' : [o'oi], is defined by the sum of the original n x n payoff

matrix, A: looil, and an n x n modifier matrix, M : l*',il, where, rn63 describes the

local competition between strategies z and j [37]. The transformed entries alo, of t}:e

modified payoff mat.rw, A' becomes

alrj:aU*mil.

In [37], m6i for the imitation updating rule is defined as for k > 2,

(k * 3)a'i'i -t Sa'ii - 3ai,i - (k -t 3)aii
(k+3)(k-2)

Note that off-diagonal elements of matrix M is anti syrnmetric, i.e., vnii -rnji,
because the gain of one strategy in local competition is the loss of another. Further,

diagonal elements Tn,ii iaite always zero, suggesting that local competition between the

same strategies results in zero. The expected payoff gi for the local competition of
strategy z is defined as

go:Drimq. (4.6)

J:L

Note that the average payoffof the local competition of strategy i sums to zero,i.e.,

\--1

L'ngo: u'
i:l

We thus obtain the average payoff/ of the population on graph to be

=\ .\0:Lrlfi-te):) r6fo,

Tn,;i: (A.5)

(4.7)

which is the same as Eq. (A.3).

i:7
(,{.8)
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Let ra denote the frequency of strategy e on a k-regular graph. Replicator equation

on graphs can be obtained as follows [36-38]:

力づ=″。(氏 十働―φ),づ =1,_.,η ,
(A.e)

where f r gr and S are given in Eqs. (A.2), (A.6), and (A.8), respectively.

It is interesting to observe that Eq. (A.9) takes the s€une form as the standard
replicator equation in Eq. (A.4), where the payoffmatrix [a1r] is replaced by looi .1^,i.
Therefore, many aspects of evolutionary dynamics on graphs can be analyzed by
studying a standard replicator equation with the transformed payoffmatrwla6i 1- 

^0i1.
Note that as k increases, the relative contribution of 91 decreases, compared to fi,
and in the limit of k -+ m, Eq. (A.9) is reduced to Eq. (A.4). Therefore the replicator
equation on a highly connected graph converges to the standard replicator equation

t371.
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