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Abstract

The sinoatrial node (cardiac pacemaker) cells generate rhythmic action potentials
spontaneously to cause the cardiac activity, and the pacemaker rhythm (frequency
of spontaneous action potential generation) in sinoatrial node cells decides the heart
rate. Since various ion channels in cell membranes mainly control the action potential
generation, their abnormalities disturb the pacemaker rhythm, and then the heart
rate. As a result, a cardiac disease called a sinus arrhythmia may be caused. The
arrhythmia is usually treated by drugs which have effects on ion channels. Thus, the
study on the relation between ion channels and pacemaker rhythm is necessary for
arrhythmia treatment. Besides physiological experiments (in vivo and in vitro exper-
iments), numerical simulations and analyses (in silico experiments) of mathematical
models are also useful for the study.

In our study, we utilize two typical sinoatrial node cell models: the YNI model
and the Zhang model. Both the two models are Hodgkin-Huxley-type cell models,
which describe the dynamic process of action potential generation by nonlinear or-
dinary differential equations with various parameters. The YNI model is a simple
but rather classic one, and the Zhang model is a detailed one which considers the
difference between periphery and center cells of sinoatrial node. We vary ion channel
conductances as bifurcation parameters, to analyze the global bifurcation structures
of the two models and the parameter sensitivities of pacemaker rhythm. Based on
these analysis results, we investigate the effects of changing ion channel conductances

on pacemaker rhythm.
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Chapter 1
Introduction

The heart repeats contraction and relaxation to pump blood to the whole body.
Due to its importance in physiology and pathology, the heart has been studied by
a vast amount of physiological experiments (i.e., in vivo and in vitro experiments)
in different levels: molecule, cell, tissue, and then the whole heart. Based on the
obtained experimental data, various mathematical models which describe cardiac
structure and function of these levels have been developed. These mathematical
models are not only able to represent various known physiological processes, but
also able to predict some new discoveries leading to physiological experiments [1-7].
Therefore, besides physiological experiments, numerical simulations and analyses
(i.e., in silico experiments) of mathematical models also help us in understanding
physiology and pathology. With such a viewpoint, a “physiome project” aimed at
“in silico medicine”, which aids human medical care by numerical simulations and
analyses, is proposed [8-10] and is now in progress worldwide, such as the IUPS phys-
jome!, the NSR physiome?, the Europhysiome?, and the Physiome.jp?. Compared
to other organs’ physiome projects, the cardiac physiome project is a well-developed
one, although it is still in the early stage and needs further development [1,11-14].

The cardiac activity (contraction and relaxation) is caused by cardiac cells’ elec-
trical excitations, which are initiated from sinoatrial node (SA node) and then prop-
agated to atria, atrioventricular node (AV node), His bundle, Purkinje fibers, and
ventricles [15]. The electrical excitation of a cardiac cell represents an action po-

tential (AP) generation, and the action potential generation is mainly controlled by

Thttp://www.physiome.org.nz/
2http:/ /www.physiome.org/
3http://www.europhysiome.org/
4http:/ /www.physiome.jp/



various ion channels (pore-forming proteins) in the cell membrane [16]. Since the
ion channels play a critical role in action potential generation, their abnormalities
disturb the frequency of action potential generation or even stop the action poten-
tial generation in serious cases. As a result, a cardiac disease called an arrhythmia
may be caused [17,18]. Such diseases due to the abnormalities of ion channels are
called channelopathies, e.g., arrhythmias and diabetes [19]. The channelopathies are
usually treated by applying drugs which have effects on ion channels [18,19].

Among various cardiac cells, the sinoatrial node (cardiac pacemaker) cells gen-
erate rhythmic action potentials spontaneously (pacemaker activity) to initiate the
excitation conduction through the whole heart [20-22]. The pacemaker rhythm (fre-
quency of spontaneous action potential generation) in sinoatrial node cells decides
the heart rate. Therefore, the abnormalities of ion channels in sinoatrial node cells
disturb the pacemaker rhythm, and then the heart rate. The corresponding arrhyth-
mia is called a sinus arrhythmia. Thus, the study on how these ion channels’ changes
affect the pacemaker rhythm is necessary for sinus arrhythmia treatment. Here we
carry out the study in silico, namely, we utilize sinoatrial node cell models, which
describe the dynamic process of action potential generation of sinoatrial node cells,
for the study.

Most cardiac cell models are Hodgkin-Huxley-type (HH-type) models, which are
based on the Hodgkin-Huxley (HH) model of a squid giant axon (a nerve cell of
squid) [23]. The HH model and also the HH-type models are dynamic models which
are described by nonlinear ordinary differential equations (ODEs) with various pa-
rameters, on which their behaviors depend. Thus, the behavior may qualitatively
change when varying parameters. Such a qualitative change of behavior is called a
bifurcation [24,25]. A nonlinear analysis which focuses on the bifurcation structures
of dynamic models is called a bifurcation analysis [25]. The bifurcation analysis is
an efficient method which can obtain the parameter dependance and sensitivity of
behavior directly and globally [26-29], whereas the numerical simulation only can
show one behavior as for specific initial conditions and specific parameter values,
and should be executed plenty of times for different parameter values to obtain the
parameter dependance and sensitivity. In our study, we analyze the bifurcation
structures of sinoatrial node cell models and the variabilities of pacemaker rhythm.
Although Kurata et al. also analyzed the bifurcation structures of their sinoatrial
node cell model [30-33], their analysis were limited to only several ion channels.

They performed both one- and two-parameter bifurcation analysis, however, they



did not analyze the variabilities of pacemaker rhythm in the latter case. In contrast,

our analysis does not have these limitations.

So far, various sinoatrial node cell models (most are rabbit cell models) have
been developed. In our study, we utilize two typical rabbit sinoatrial node cell mod-
els: the model by Yanagihara et al. (1980) [34] and the model by Zhang et al.
(2000) [35,36]°. The two models hereinafter are referred to as Yanagihara-Noma-
Irisawa (YNI) model and Zhang model, respectively. The YNI model is a simple but
rather classic one, and the Zhang model is a detailed one which considers the re-
gional difference of sinoatrial node (the difference between periphery and center cells
of sinoatrial node). We analyze the global bifurcation structures of the two models
where various ion channel conductances are varied as bifurcation parameters. The
bifurcation analysis is divided into two stages: varying each ion channel conductance
solely, whose results are shown in one-parameter bifurcation diagrams; varying two
ion channel conductances simultaneously, whose results are shown in two-parameter
bifurcation diagrams. Based on these bifurcation diagrams, we examine the vari-
abilities of pacemaer rhythm, and then investigate the effects of changing each ion
channel conductance on pacemaker rhythm. The pacemaker rhythm is sensitive to
some ion channel conductance changes, whereas it is insensitive to others. It is
thought that the ion channels corresponding to high sensitivities can be chosen to
adjust pacemaker rhythm by certain drugs. Based on two-parameter bifurcation
diagrams, we investigate the combined effects of changing two ion channel conduc-
tances simultaneously on pacemaker rhythm. A strong combined effect corresponds
to the case that the pacemaker rhythm is sensitive to both ion channel conductance
changes, whereas a weak one corresponds to the case that at least one ion channel
conductance change affect the pacemaker rhythm little. In the former case, with ref-
erence to the two-parameter bifurcation diagram, one ion channel can be adjusted to
correct the abnormal pacemaker rhythm caused by the other one. Since our in silico
study aims at the prediction of how pacemaker rhythm varies with the changes of
ion channels, and the suggestion of how to correct the abnormal pacemaker rhythm,

the obtained results should be confirmed experimentally before clinical application.

This thesis is organized as follows: Chapter 2 introduces the cardiac structure

and electrophysiology. The action potential generation in different cardiac cells and

5Since the model equations listed in the original paper by Zhang et al. [35] do not match the
simulation results presented in the same paper, Garny et al. [36] have corrected the equations. The

corrected model is utilized in our study.



the roles of various ion channels, ion pump, and ion exchanger in action potential
generation are explained in detail. Then the sinoatrial node cells and their pacemaker
activity are introduced. Chapter 3 first introduces the base model: the HH model
of a squid giant axon, and then lists the developed HH-type cardiac cell models of
sinoatrial node, atria, atrioventricular node, Purkinje fibers and ventricles. Next,
the YNI model and the Zhang model of sinoatrial node cells are explained and com-
pared. Chapter 4 briefly introduces the dynamical system and bifurcation analysis,
then analyzes the global bifurcation structure of the HH model. Chapters 5 and 6
analyze the global bifurcation structures of the YNI model and the Zhang model,
respectively. Based on the analysis results, the effects of conductance changes of
various ion channels, and the coupling effect on pacemaker rhythm are investigated.

Finally, Chapter 7 concludes this thesis.



Chapter 2
Cardiac Electrophysiology

The heart repeats contraction and relaxation to pump blood to the whole body.
Such a cardiac activity is caused by cardiac cells’ electrical excitations, which are
initiated from sinoatrial node (cardiac pacemaker) and then propagated to atria,
atrioventricular node, His bundle, Purkinje fibers, and ventricles. The electrical ex-
citation of a cardiac cell represents an action potential generation, which is mainly
controlled by various ion channels in cell membrane, and is also related to ion ex-
changer and ion pump in cell membrane, sarcoplasmic reticulum in cell cytoplasm.
In this chapter, we first introduce the cardiac structure, then the electrical excita-
tion (action potential generation) of various cardiac cells, and finally the pacemaker

activity of cardiac pacemaker cells.

2.1 Cardiac Structure

The heart has a complicated structure and an amazing automaticity. It is made up
of a vast amount of electrically excitable cells, whose electrical excitations cause the
heart to repeat contraction and relaxation regularly. During their electrical excita-
tions, these cardiac cells generate electrical signals (action potentials). Moreover,
the heart is divided into several parts (several kinds of muscles): sinoatrial node,
(left, right) atria, atrioventricular node, His bundle, Purkinje fibers, and (left, right)
ventricles according to their different functions. Briefly, the atria and ventricles act
as blood pumps, whereas the others (which is referred to as a cardiac conduction sys-
tem) contribute to excitation conduction through the heart [37,38]. With the help
of the cardiac conduction system, the atria and ventricles are able to get electrically-

excited to fulfill their pumping roles. Figure 2.1 shows schematic illustrations of the
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Figure 2.1: Schematic illustrations of the cardiac structure and the typical action
potentials of different cardiac cells. The excitation conduction through the heart is

denoted by arrowed dash lines.

cardiac structure and the typical action potentials of different cardiac cells. As shown

in Fig. 2.1, the excitation conduction through the heart is in an order as follows:

e Sinoatrial node
The sinoatrial node is located in the right atrium and near the entrance of the
superior vena cava. The sinoatrial node cells generate rhythmic action poten-
tials spontaneously (pacemaker activity) to initiate the excitation conduction
through the whole heart. Thus the sinoatrial node is also referred to as a
cardiac pacemaker. The pacemaker rhythm (frequency of spontaneous action

potential generation) in sinoatrial node cells decides the heart rate.

e Atria
The left and right atria are two chambers which contract/relax to let blood
out/in them. The left atrium receives oxygenated blood from the lungs via the
left and right pulmonary veins, then pumps the blood to the left ventricle. The
right atrium receives deoxygenated blood from the whole body via the superior

and inferior vena cavas, then pumps the blood to the right ventricle.

e Atrioventricular node



Table 2.1: Conduction velocities of different cardiac muscles and (intrinsic) pace-

maker rhythms of their cells [37].

. Conduction velocity Pacemaker rhythm
Cardiac muscle

[m/sec] [min~?]
Sinoatrial node < 0.01 60-100
Atria 1.0-1.2 None
Atrioventricular node 0.02-0.05 40-55*
His bundle 1.2-2.0 40-55*
Purkinje fibers 2.0-4.0 25-40%*
Ventricles 0.3-1.0 None

* In isolated cells.

The atrioventricular node is located in the area between the atria and the
ventricles, and is a bridge for excitation conduction from the atria to the ven-
tricles. Moreover, the atrioventricular node has a very slow conduction velocity
(Table 2.1), to provide sufficient time for completing atrial contraction prior
to ventricular contraction. It is shown that, the isolated atrioventricular node
cells are able to generate rhythmic action potentials spontaneously, that is,
the atrioventricular node cells generate an intrinsic pacemaker activity. How-
ever, their intrinsic pacemaker rhythm is slower than that of sinoatrial node
cells (Table 2.1). Thus the atrioventricular node cells in the heart follow the

pacemaker rhythm of sinoatrial node cells and show no pacemaker activity.

e His bundle and Purkinje fibers
The His bundle (which is also referred to as atrioventricular bundle) and Purk-
inje fibers are located in the inner ventricular walls, and have very high con-
duction velocities (Table 2.1). Thus they can propagate the electrical signals
to the whole ventricles quite quickly. It is shown that, similar to the atrioven-
tricular node cells, the cells of His bundle and Purkinje fibers also generate
intrinsic pacemaker activity. However, their intrinsic pacemaker rhythms are
also slower than that of sinoatrial node cells (Table 2.1). Thus the His bundle

and Purkinje fibers in the heart show no pacemaker activity.

e Ventricles



The left and right ventricles are also two chambers. The left atrium pumps
oxygenated blood (which is from the left atrium) to the whole body via the
aorta, whereas the right atrium pumps deoxygenated blood (which is from
the right atrium) to the lungs via the pulmonary arteries. Compared to the
atria, the ventricles have thick walls, which are usually divided into three lay-
ers: endocardium, midmyocardium (whose cells are referred to as M cells),

epicardium.

Table 2.1 compares the conduction velocities of these cardiac muscles and (in-

trinsic) pacemaker rhythms of their cells.

2.2 Electrical Excitation of Cardiac Cells

The cardiac cells are the fundamental components of the heart, and their electrical
excitations (i.e., action potential generations) are essential to the cardiac activity.
The action potential generation is a complicated dynamic process, which is mainly
controlled by various ion channels in the cell membrane. Here we explain the mech-
anism of action potential generation in cardiac cells, and the roles of different ion

channels and also some other cellular structures on the action potential generation.

2.2.1 Action Potential

In a biological cell (e.g., a cardiac cell), between the inside and the outside of cell
membrane, a difference of ion concentrations generates an electrical potential differ-
ence, which is called a membrane potential (MP). In the cell membrane, there are
various ion channels (pore-forming proteins) which open (activate) and close (inacti-
vate) dynamically. When the ion channels open, specific ions (e.g., Nat, K*, Ca?*,
and Cl7) flow through them passively. Thus the ion concentrations in the two sides
of cell membrane vary. As a result, the membrane potential increases and decreases
dynamically, to generate a spike-like action potential (Fig. 2.1).

In the heart, the sinoatrial node cells can generate rhythmic action potentials
spontaneously, whereas the other cardiac cells cannot generate any action poten-
tials until they are electrically stimulated (by their coupled cells which have already
become electrically-excited) [39,40]. That is, the cardiac cells except for sinoatrial
node cells stay in their resting states until electrically stimulated. When a cardiac

cell (except for a sinoatrial node cell) in its resting state, the total inflow and the total



outflow of ions via the opened ion channels reach a dynamic equilibrium. Thus the
membrane potential keeps as a constant value, which is called a resting membrane
potential (RMP).

For simplicity, let’s first consider the dynamic equilibrium as for a certain ion.
For example, when Na™ flow through the opened sodium channels, they receive two
forces: one is due to Nat concentration gradient, and the other is due to electrical
potential gradient (i.e., membrane potential) between the two sides of cell membrane.
The former force makes Na™ flow following the concentration gradient, and the latter
force makes Na™ flow following the electrical potential gradient. As a result, Na* flow
following their electrochemical gradient (related to both concentration and electrical
potential gradients). If the force due to membrane potential just counterbalances
the force due to Na™ concentration gradient (that is, if the electrochemical gradient
is just 0), the inflow and outflow of Na* through the cell membrane reach a dynamic
equilibrium. Such a value of membrane potential is called an equilibrium potential
or a reversal potential of Nat. Therefore, if the membrane potential is smaller than
the equilibrium potential of Na™, the electrochemical potential at the inside of cell
membrane is smaller than that at the outside, as a result Na*t flow in cell membrane.

The following Nernst equation calculates the equilibrium potential of “ion” as for
its concentration gradient between the two sides of cell membrane:
LES In [i.on]o
zionF [ion);

Fion = (21)
where Ej,, [mV] (ion = Na®, K*, Ca®", or Cl7) is the equilibrium potential of
“ion”, R (= 8.314 J/(K-mol)) is the gas constant, T [K] is the absolute temperature,
Zion 1S the valence of “ion”, F (= 96,485 J/(V-mol)) is the Faraday constant, [ion],
and [ion]; [mM] are the extracellular and intracellular concentrations, respectively.
Table 2.2 shows the typical values of ion concentrations and equilibrium potentials
of Nat, K*, Ca?t, and Cl™ in cardiac cells [19]. For Na™, Ca?", and Cl™, their
extracellular concentrations are higher than intracellular concentrations, whereas for
K, its extracellular concentration is lower than intracellular concentration.

Next, let’s consider the dynamic equilibrium as for various ions. In general, when
a cardiac cell (except for a sinoatrial node cell) in its resting state, only sodium,
potassium and chlorine channels are open, then the total inflow and the total out-
flow of Nat, K*, and Cl~ through the cell membrane reach a dynamic equilibrium.
Moreover, the cell membrane permeates Nat, K*, and C1~ with very different perme-

ability, which is determined by their channels. The following Goldman-Hodgkin-Katz
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Table 2.2: Typical values of ion concentrations and equilibrium potentials of Nat,
K*, Ca?*, and Cl™ in cardiac cells [19)].

Intracellular  Extracellular Equilibrium

lon concentration concentration  potential*
Na* 12 mM 135-145 mM +66 mV
K™ 140 mM 3.5-5 mM —-93 mV
CaZt 107* mM 2.25-252mM 4135 mV
Cl- 2.5-50 mM 115 mM —42 mV

* The equilibrium potentials are calculated for

intermediate concentration values under 310 K.

(GHK) equation considers such a resting state of a cell and calculates the correspond-

ing resting membrane potential:

B _ ﬁ In PK[K+]O + PNa[Naﬂo + P@[Clh]i
" F 7 Px[K*]i + Pna[Nat]; + Po[Cl-],

(2.2)

where E;, [mV] is the resting membrane potential, P, are the permeabilities of cell
membrane to different ions. In general, the permeability to K is quite higher than
that to Na®™ or C1=. Thus the resting membrane potential appears to be near the
equilibrium potential of Kt (~ —90 mV).

The resting state of a cardiac cell (except for a sinoatrial node cell) represents a
constant resting membrane potential, whereas the electrical excitation of a cardiac
cell represents a dynamic action potential. The morphology of action potential varies
with cardiac cells. Figure 2.2 compares the cardiac cell action potentials of different
cardiac muscles [37]. In each panel, the abscissa denotes the time, and the ordinate
denotes the membrane potential. The increase of membrane potential is referred to
as a depolarization, whereas the decrease of membrane potential is referred to as a
repolarization. According to its generation mechanism, an action potential is usually
divided into 5 phases: phase O-phase 4 (please note that not all action potentials
have 5 phases fully). Each phase is related to certain ion channels, whose details
will be explained in subsection 2.2.2. At first, let’s see the action potentials with 5

phases, such as those of atria, Purkinje fibers, and ventricles (Fig. 2.2(b), (d), and

(e))-
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Figure 2.2: Comparison of the cardiac cell action potentials of different cardiac

muscles [37].

e Phase 0

An electrical stimulus (from its coupled cells) makes the cardiac cell increase
membrane potential from the resting membrane potential. If the membrane
potential reaches a threshold value (—70 to —60 mV), sodium channels begin
to open to let Na* flow through them. Following their electrochemical gradi-
ent, Na® flow rapidly in cell membrane. As a result, the membrane potential
increase rapidly to a positive value (a rapid depolarization). The sodium chan-

nels have a very fast inactivation, so they get closed quickly.

Phase 1

Potassium channels have several types. Here transient outward potassium
channels begin to open to let K* flow through them. Following their elec-
trochemical gradient, K* flow out cell membrane. As a result, the membrane

potential decrease (an early repolarization). Then the transient outward potas-
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sium channels get closed.

e Phase 2
Here (outward) delayed rectifier potassium channels begin to open to let Kt
flow out cell membrane. Meanwhile, calcium channels also begin to open to let
Ca?* flow through them. Following their electrochemical gradient, Ca?* flow
in cell membrane. The Ca?" inflow balances the Kt outflow thereby preventing
the decrease of membrane potential until the calcium channels get closed. Thus

the phase 2 appears to be a plateau.

e Phase 3
The (outward) delayed rectifier potassium channels still keep open to let K*
flow out cell membrane. As a result, the membrane potential decrease to the

resting membrane potential (a rapid repolarization).

e Phase 4
The cardiac cell stays at its resting state, and its membrane potential retains

resting membrane potential.

For the sinoatrial node and atrioventricular node, their action potentials only
have phase 0, 3, and 4 (Fig. 2.2(a), (c¢)). It is mainly due to the lack or absent of
sodium channels in their cells. For the action potential of sinoatrial node cells, its 3

phases are as follows:

e Phase 0
Calcium channels begin to open to let Ca?* flow in cell membrane. As a result,
the membrane potential increases to a positive value (depolarization). Then
the calcium channels get closed. Due to the lack or absent of sodium channels
in a sinoatrial node cell, a rapid depolarization does not appear in its action

potential.

e Phase 3
Potassium channels begin to open to let KT flow out cell membrane. As a result,
the membrane potential decrease to the most negative membrane potential,
which is called a maximum diastolic potential (MDP). Then the potassium

channels get closed.

e Phase 4

The sinoatrial node cell has no resting state. Thus its membrane potential has
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no resting membrane potential. The sinoatrial node cell increases its mem-
brane potential spontaneously from the maximum diastolic potential to reach
the threshold value for action potential generation. Such a (slow) depolariza-
tion is referred to as a diastolic depolarization, and the phase 4 is referred to
as a diastolic depolarization phase. The phase 4 is also referred to as a pace-
maker potential, since it makes the sinoatrial node cell able to generate action
potential spontaneously. The details of pacemaker potential will be explained

in subsection 2.3.1.

The action potential of atrioventricular node cells has similar phases as that of
sinoatrial node cells, except that its phase 4 corresponds to a resting membrane

potential.

2.2.2 Ion Channels, Ion Exchanger, and Ion Pump

The action potential generation of a cardiac cell is mainly controlled by various ion
channels, and is also related to ion exchanger and ion pump in the cell membrane.
These ion chanels, ion exchanger, and ion pump (all of them are transmembrane
proteins) make the cell membrane able to permeate ions selectively since they only
pass or transport specific ions (e.g., Nat, KT, and Ca®"). The inflows of these ions
generate inward currents, which cause the depolarization of membrane potential,
whereas the outflows of these ions generate outward currents, which cause the repo-
larization of membrane potential. All of these inward/outward currents through the
cell membrane are called membrane currents, which directly affect the membrane

potential.

It is known that various ion channels contribute to the action potential generation.
Each ion channel usually only passes a specific type of ion, but different ion channels
may pass a same type of ion. In an ion channel, there exist several gates whose
open and close are determined by membrane potential or some other factors (e.g.,
ligand). The ion channels whose gates are controlled by membrane potential are
called voltage-gated or voltage-dependent ion channels. Most ion channels in cardiac

cells are voltage-gated ones.

The following ion channels are the typical ones in cardiac cells.
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Table 2.3: Comparison of characteristics of the T- and L-type calcium channels [37].

Characteristic T-type calcium channel L-type calcium channel
Activation potential Low (~ =70 mV) High (~ —40 mV)
Duration of activation Short Long

Channel conductance Small (7-9 pS) Large (15-25 pS)
Related phase Phase 4 (SA node) Phase 0 (SA node, AV node)
of action potential Phase 0 (others) Phase 2 (others)

SA node: sinoatrial node; AV node: atrioventricular node.

Sodium Channel

The sodium channels in cardiac cells are voltage-gated channels (Na, channels) and
have a high voltage sensitivity. Their activation potentials are nearly between —70
and —60 mV. Namely, when the membrane potential reaches the activation potential,
the sodium channels begin to open (activate). As aresult, Na* flow in cell membrane
rapidly, to generate an large inward current Iy,. The sodium channels have a fast
inactivation, then they get closed quickly.

In the cells of atria, ventricles, and Purkinje fibers, there exist lots of sodium
channels. These sodium channels contribute to the phase 0 (a rapid depolarization)
of action potential since their large inward current Iy, makes the membrane potential
increase quickly. In contrast to the above three types of cells, the sinoatrial node and
atrioventricular node cells appear to be have little/no sodium channels. Therefore,

there exist no rapid depolarizations in their action potentials.

Calcium Channel

The calcium channels in cardiac cells are voltage-gated channels (Ca, channels) and
have two types (T- and L-type). The T-type calcium channels correspond to a
“TI”ransient activation, whereas the L-type calcium channels correspond to a “L” ong-
lasting activation. The characteristics of the T- and L-type calcium channels are
compared in Table 2.3.

Both the T- and L-type calcium channels generate inward currents (Ic,.1, IcaL),
which cause the membrane potential to increase. However, due to their different
characteristics, the two types of calcium channels contribute to different phases of

action potential. The T-type calcium channels have a low activation potential. Thus
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they can activate at an early stage of action potential generation. In sinoatrial node
cells, the T-type calcium channels contribute to the phase 4 of action potential (i.e.,
pacemaker potential). And in other cardiac cells, they contribute to the phase 0
of action potential, although their contribution appears to be small (compared to
the sodium channels). The L-type calcium channels have a relative high activation
potential and last for a long time of activation. Thus they contribute to the phase
0 of action potential in sinoatrial node and atrioventricular node cells, or phase 2 of

action potential in other cardiac cells.

Potassium Channel

There are several types of potassium channels in cardiac cells. They are mainly
classified into outward potassium channels and inward rectifier potassium channels
(Ki channels). The outward potassium channels are voltage-gated channels (K,
channels) and activate at a positive membrane potential after depolarization. They
generate outward currents to cause the repolarization of membrane potential. The
K- channels are voltage-independent ones, and are present in the cardiac cells except
for sinoatrial node and atrioventricular node cells. Different form other ion channels,
the K;, channels remain open at very negative membrane potentials (e.g., the resting
membrane potential or the equilibrium potential Ex of KT). As a result, the Kj
channels play a role in stabilizing the resting membrane potential near Ex: via these
opened Kj, channels, K* flow out/in the cell membrane if the membrane potential
is bigger/smaller than FEy, thereby generating outward/inward current to return
the membrane potential to Fx. It is found that, the K;, channels generate inward
current more than outward current. Thus they are called “inward” rectifier potassium
channels. Table 2.4 lists these potassium channels and their contributions to action

potential generation of cardiac cells.

Hyperpolarization-activated Cyclic Nucleotide-gated Channel

In sinoatrial node cells, there exists a special type of ion channel: hyperpolarization-
activated cyclic nucleotide-gated (HCN) channel. The HCN channels are able to
activate at a low negative membrane potential and are permeable to both Na®™ and
K* (a high permeability to Na™, whereas a low permeability to K*). The correspond-
ing “h”yperpolarization-activated current [, which is also referred to as a “f’unny

current ¢, appears to be an inward current in most time. It is known that the HON
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Table 2.4: Various types of potassium channels and their contributed phases of

cardiac cell action potential [37].

Potassium channel Current  Action potential
Transient outward potassium channel L, Phase 1
Rapid (outward) delayed rectifier potassium channel Ik, Phase 2
Slow (outward) delayed rectifier potassium channel Ixs Phase 3
Inward rectifier potassium channel Ix1 Phase 4

channels contribute to the phase 4 of action potential (pacemaker potential), which
is essential to spontaneous action potential generation in sinoatrial node cells [42].
Via various ion channels, specific ions are able to flow in/out cell membrane. In
general, Nat and Ca?* flow in cell membrane, whereas K™ flow out cell membrane. If
such ion fluxes continue, the intracellular and extracellular ion concentrations would
be destroyed, and finally no action potential can be generated. In order to generate
rhythmic action potentials successfully, the maintenance of ion concentrations in the
two sides of cell membrane becomes necessary. Such a maintenance is carried out by
sodium-potassium pumps and sodium-calcium exchangers, which transport specific

ions in/out cell membrane.

Sodium-potassium Pump

The sodium-potassium pumps transport 3 Nat to outside and 2 KT to inside of
cell membrane at once. Thus the corresponding current I, appears to be an out-
ward current. Since both Na™ and K* are transported against their electrochemical

gradients, the chemical energy from ATP hydrolysis is necessary.

Sodium-calcium Exchanger

The sodium-calcium exchangers are bidirectional exchangers, and they exchange 3
Nat with 1 Ca?* at once. When the membrane potential is very negative (e.g., near
the resting membrane potential), the exchangers transport 1 Ca?* to outside and 3
Na* to inside of cell membrane. When the membrane potential is positive, these
exchangers work in the opposite direction, that is, 3 Nat leaves and 1 Ca?' enters
the cell membrane. It is known that the sodium-calcium exchangers contribute to

the phase 4 of action potential in sinoatrial node cells, since they generate an inward
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current In,ca during that phase.

During the action potential generation, various ion channels, sodium-potassium
pump, and sodium-calcium exchanger in the cell membrane generate inward /outward
membrane currents, to cause the depolarization/repolarization of membrane poten-
tial. All these transmembrane proteins contribute to the action potential generation
directly. Meanwhile, there exists a sarcoplasmic reticulum (SR) (a store of Ca®") in
the cell cytoplasm. The SR releases/uptakes Ca?* to/from the cell cytoplasm. As a
result, the intracellular Ca?* concentration and then the membrane potential varies.

Thus, the SR has an indirect contribution to the action potential generation.

2.3 Pacemaker Activity of Sinoatrial Node Cells

In the heart, the sinoatrial node cells generate rhythmic action potentials spon-
taneously (pacemaker activity) to fulfill the role of cardiac pacemaker. They are
surround by atrial cells, although there exists no distinct border between the two
kinds of cells. From the center to the periphery of sinoatrial node, the sinoatrial
node cells show a gradual increase in cell size and amount of cellular element, and
are becoming more and more like atrial cells. The center cells (also referred to as
typical sinoatrial node cells) are small and nearly empty, whereas the periphery cells
are large and contains many more myofilaments. Table 2.5 shows the sizes of typical
sinoatrial node cells as for various animals. These cell sizes are much smaller than
those of atrial cells (15-20 ym in diameter and ~ 100 pm in length).

Figure 2.3 shows a schematic illustration of a sinoatrial node cell. In the cell mem-
brane, there are various ion channels of Na®, K+, Ca?", sodium-potassium pump,
and sodium-calcium exchanger, through which ions flow in and out the cell mem-
brane. As a result, various inward and outward membrane currents are generated.

The explanations of these membrane currents are shown in Table 2.6. In the cyto-

Table 2.5: Sizes of typical sinoatrial node cells (sinoatrial node center cells) as for

various animals [41].

Size Human Rabbit Dog Cat Monkey Pig Guinea pig
Diameter [pm] 5-10 <8 5-10 < 10 ~ 7 4-8 <8
Length [pm] — 25-30 — — — 40 20-30




18

ion channel

INa Icar  Icar Ik Ixs  Indp
J C;!:* c!3+ J K+ NJ K* ion exchanger
(Ca?h
3CN; INaCa
S.R (3Nah)
network SR = junctional SR
Lyp ca* __E.: e — I 3Na*
= e = ek
ion pump

Gire Na* K*
L
I'l |]| Il' cell membrane

Iy ca Ty Na Iy

Figure 2.3: Schematic illustration of a sinoatrial node cell. There are various ion
channels, ion exchange, ion pump in cell membrane, and a sarcoplasmic reticulum

(SR) in cell cytoplasm.

plasm, there is a sarcoplasmic reticulum (SR), which has two domains: junctional
SR and network SR. The junctional SR releases Ca?t to the cell cytoplasm via a

channel, whereas the network SR uptakes Ca®" from the cell cytoplasm via a pump.

2.3.1 Pacemaker Potential

As described in subsection 2.2.1, due to the pacemaker potential in phase 4, the
sinoatrial node cells are able to generate rhythmic action potentials spontaneously.
Thus, the pacemaker potential is the key factor of the pacemaker activity of sinoatrial
node cells.

Different from the atrial cells and ventricular cells, the sinoatrial node cells have
no Kj channels. Therefore, their membrane potentials would not fall into a very
negative value (near the equilibrium potential of K™). Their most negative membrane
potentials (i.e., maximum diastolic potentials) are larger than those (i.e., resting
membrane potentials) of atrial and ventricular cells. For the sinoatrial node cells,
such a not very negative membrane potential makes the depolarization start easily.

The absent of Kj, channels provides a favorable condition for pacemaker potential

generation. Next, specific membrane currents contribute to the pacemaker potential
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Table 2.6: Typical membrane currents in sinoatrial node cells.

Membrane . . .

current Ion Direction Explanation

Ina Na™t Inward Sodium current

Ical Ca2t Inward L-type calcium current

IcaT Ca?t Inward T-type calcium current

Ix r K* Outward Rapid delayed rectifier potassium current
Ix s K+ Outward Slow delayed rectifier potassium current
Iy (Iy) Na*t, K* Inward/outward  Hyperpolarization-activated current

Iy Na Na*t Inward Background sodium current

Iy ca Ca?*t Inward Background calcium current

Iy K* Outward Background potassium current

I, Nat, Kt Outward Sodium-potassium pump current

INaCa NaT, Ca?t Inward/outward Sodium-calcium exchanger current

generation directly. It is found that several inward membrane currents contribute to
the pacemaker potential generation. The most important one is thought to be the
hyperpolarization-activated current Iy, (I) which corresponds to the hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels. The I, is a small inward current
which increases the membrane potential from the maximum diastolic potential slowly.
Therefore, Iy, is also called a pacemaker current [42]. The sodium-calcium exchanger
current In,ca and the T-type calcium current Ic, t also contribute to the pacemaker
potential generation. Moreover, during the pacemaker potential generation, the SR
releases Ca*t to the cell cytoplasm, to increase the intercellular Ca?* concentration,

and then the membrane potential.

2.3.2 Pacemaker Rhythm

The sinoatrial node cells generate rhythmic action potentials spontaneously to ini-
tiate the excitation conduction through the heart. One cycle of the excitation con-
duction from the sinoatrial node to the ventricles corresponds to one heart beat.
Therefore, the pacemaker rhythm (frequency of spontaneous action potential gener-
ation) in sinoatrial node cells decides the heart rate. Since the ion channels mainly
control the action potential generation, their abnormalities disturb the pacemaker

rhythm and then the heart rate. As a result, sinus arrhythmia such as sinus tachy-
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cardia may be caused [17,18]. The arrhythmias are usually treated by applying drugs
which have effects on certain ion channels. Thus, the study on how the abnormal-
ities of ion channels affect the pacemaker rhythm is necessary for the arrhythmia
treatment. Here we utilize HH-type sinoatrial node cell models (which describe the

dynamic process of action potential generation in sinoatrial node cells) for the study.



Chapter 3

Hodgkin-Huxley-type Cardiac Cell
Models

So far, the action potentials and ion channels of various cardiac cells have been
well studied by performing plenty of physiological experiments. Especially, the volt-
age clamp technique! and the patch clamp technique? make us able to understand
the action potential generation mechanism and the roles of various ion channels
deeply. Based on the experimental data, cardiac cell models (which describe the
dynamic processes of action potential generation in different cardiac cells) have been
developed. Most of these cardiac cell models are Hodgkin-Huxley-type (HH-type)
models which are based on the famous Hodgkin-Huxley (HH) model of a squid giant
axon [23]. In this chapter, we first introduce the HH model, and then list the de-
veloped cardiac cell models of sinoatrial node, atria, atrioventricular node, Purkinje
fibers, and ventricles, respectively. Then the YNI model and the Zhang model of

sinoatrial node cells are introduced and compared.

3.1 Base Model: Hodgkin-Huxley (HH) Model

The HH model describes the action potential generation of a squid giant axon [23]. It
considers an equivalent circuit of the squid giant axon as shown in Fig. 3.1. The cell
membrane corresponds to a capacitor, and the Na* channel, K* channel, leak channel

correspond to three resistors. The coupling current from coupled cells corresponds to

LA technique for recording the total ion currents across the cell membrane under a controlled

membrane potential [23,43].
2A technique for recording the ion current of a single channel dynamically [44].

21
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Figure 3.1: Equivalent circuit of a squid giant axon considered in the HH model.

an external current /.. The HH model is described by nonlinear ordinary differential
equations (ODEs) with four variables: V, m,n, and h.
The follows show the detailed equations of the HH model:

dVv 1 1
E = "E(Itotal - Iext) = "E(INa + ]K + Il - Iext)
1
= C [Gnam®h(V — Exa) + gxn*(V — Ex) + a(V — Ey) — L), (3.1)
de z2(V) -1z

az (V) + B (V) (V) + Bo(V)’
0.1(25 — V)

V
exp[(25 — V) /10] — 1’ Bm(V) = 4exp <_E);
0.01(10 — V) B ~
an(V) = exp (10— V) /10] = 1 Ba(V) = 0.125exp (_gﬁ)’
1

1%
ah(V) = 0.07 exp (—%)7 5h(v) = exp [(30 — V) /10] + 1;

gna =120, gk =36, § = 0.3mS/cm?;
En. =115, Ex = —12, E = 10.599mV:

an(V) =

where the explanations of these notations are as follows:
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V [mV]: membrane potential.

t [msec|: time.

C (=1 pF/cm?): membrane capacitance per unit area.

® lioa [tA/cm?]: total membrane current per unit area.

o I [tA/cm?]: external current (coupling current) per unit area.

e [, (ion = Na, K, and 1) [#A/cm?]: ion channel currents per unit area.
® Gion |mS/cm?|: maximum conductances of ion channels per unit area.
e Ei,, [mV]: equilibrium potentials of ions.

e r (=m, n, and h): gating variables (dimensionless, ranging between 0 and 1)
denoting the states of ion channels’ gates. 0 corresponds to a fully closed state,

whereas 1 corresponds to a fully opened state.

® gna (= Gnam3h), gk (= gkn?) [mS/cm?]: dynamic variable conductances of ion

channels per unit area.
e £°(V): steady-state values of gating variables.
e 7,(V) [msec]: time constants of gating variables.

o o, (V), B,(V) [msec™!]: rate constants of the transition between opened and

closed states of gates.

3.2 Various Cardiac Cell Models

Based on the HH model, various HH-type cardiac cell models have been developed.
With the development of measurement technique and accumulation of experimental
data, these cardiac cell models become detailed and complicated [1,45]. In general,
a new model is developed by incorporating new experimental findings into existing
models or by correcting some improper formulations of existing models. Such an
existing model is called a parent model of the new model. Tables 3.1-3.5 list the
developed cardiac cell models of sinoatrial node, atria, atrioventricular node, Purkinje

fibers, and ventricles, respectively [45-47].
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Table 3.1: Sinoatrial node cell models

Animal Model NV NCC WPEC WSR
(parent model if any)

Rabbit Yanagihara et al. (1980) (YNI) [34] 7 5 1no 1no
Irisawa and Noma (1982) [48] ? ? ?
(YNI [34])
Bristow and Clark (1982) [49] 7 5 no no
(McAllister et al. (1975) [72])
Noble and Noble (1984) [50] 15 8 yes no
(DiFrancesco and Noble (1985) [73])
Noble et al. (1989) [51] 14 7 yes no
(Noble and Noble (1984) [50])
Wilders et al. (1991) [52] 15 8 yes yes
(Noble and Noble (1984) [50])
Demir et al. (1994) [53] 27 6 yes yes
Dokos et al. (1996) [54] 18 7 ves yes
(Wilders et al. (1991) [52])
Zhang et al. (2000) [35] 12 (center) 11 yes no

15 (periphery)
Kurata et al. (2002) [30] 27 (center) 11 yes yes
30 (periphery)

Sarai et al. (2003) [55] 50 11 ves yes
Lovell et al. (2004) [56]* 29 11 yes yes
Maltsev and Lakatta (2009) [57] 29 5 yes yes
(Kurata et al. (2002) [30])

Bullfrog Rasmusson et al. (1990) [58] 14 6 ves yes

Mouse Mangoni et al. (2006) [59] 22 13 yes no
(Zhang et al. (2000) [35])
Kharche et al. (2011) [60] 38 15 yes yes

NV: number of variables; NCC: number of channel currents;

WPEC: whether the model considers the pump and exchanger currents;

WSR: whether the model considers the sarcoplasmic reticulum (SR);

* The model considers the opening and closing of ion channels as Markov processes.
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Animal Model NV NCC WPEC WSR
(parent model if any)
Rabbit Hilgemann and Noble (1987) [61] 15 6 yes yes
(DiFrancesco and Noble (1985) [73])
Earm and Noble (1990) [62] 16 7 ves yes
(Hilgemann and Noble (1987) [61])
Lindblad et al. (1996) [63] 28 11 ves ves
Human Nygren et al. (1998) [64] 29 9 yes ves
(Lindblad et al. (1996) [63])
Courtemanche et al. (1998) [65] 21 9 yes yes
(Luo and Rudy (1994) [80])
Simitev and Biktashev (2006) [66] 3 1 no no
Bullfrog Rasmusson et al. (1990) [67] 16 8 yes yes
(Rasmusson et al. (1990) [58])
Canine Ramirez et al. (2000) [68] 26 10 yes yes
(Courtemanche et al. (1998) [65])
Cherry et al. {2007) [69) 4 3 no no
(Fenton and Karma (1998) [77])
Table 3.3: Atrioventricular node cell models
Animal Model NV WPEC WSR
(parent model if any)
Rabbit Liu et al. (1993) [70] 7 no no
(YNI [34))
Table 3.4: Purkinje fiber cell models
Animal Model NV NCC WPEC WSR
(parent model if any)
General Noble (1962) {71} 4 3 no no
McAllister et al. (1975) (MNT) [72] 10 9 no no
(Noble (1962) [71])
DiFrancesco and Noble (1985) [73] 16 8 yes yes
( MNT [72))
Canine Stewart et al. (2009) [74] 21 10 yes yes
Human Sampson et al. (2010) [75] 82 11 yes yes
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Table 3.5: Ventricular cell models

Animal Model NV NCC WPEC WSR
(parent model if any)
General Beeler and Reuter (1977) [76] 8 4 no no
(MNT [72])
Fenton and Karma (1998) [77] 3 3 no no
Guinea Luo and Rudy (1991) (LR1) [78] 8 6 no no
pig (Beeler et al. (1977) [76])
Nordin (1993) [79] 14 9 yes yes
Luo and Rudy (1994) (LRd) [80] 21 13 yes yes
(LR1 [78])
Jafri et al. (1998) [81] 30 10 yes yes
(LRd [80])
Matsuoka et al. (2003) [82] 45 11 ves yes
Human Priebe and Beuckelmann (1998) [83] 17 8 yes yes
(LRd [80])
Bernus et al. (2002) [84]7 6 7 ves no
(Priebe et al. (1998) [83])
Ten Tusscher et al. (2004) (TNNP) [85] 17 7 yes yes
(LR1 [78))
Ten Tusscher and Panfilov (2006) [86] 19 9 yes ves
(TNNP [85))
Ten Tusscher and Panfilov (2006) [87) 9 9 yes no
(TNNP [85])
Iyer et al. (2004) [88]*T 67 8 yes yes
Bueno et al. (2008) [89] 4 3 no 1no
(Fenton et al. (1998) [77])
Canine Winslow et al. (1999) [90] 33 9 yes yes
(Jafri et al. (1998) [81])
Fox et al. (2002) [91] 13 10 yes yes
(Winslow et al. (1999) [90])
Cabo and Boyden (2003) [92] 16 13 yes yes
(LRd [80])
Hund and Rudy (2004) [93] 29 13 yes yes
(LRd [80})
Greenstein and Winslow (2002) [94] 42 9 yes yes
(Winslow et al. (1999) [90])
Rabbit Puglisi and Bers (2001) [95] 20 11 yes yes
(LRd [80])
Shannon et al. (2004) [96]* 45 9 yes yes
(Puglisi and Bers (2001) [95])
Mahajan et al. (2008) [97] 27 7 yes yes
(Shannon et al. (2004) [96])
bullfrog Pandit et al. (2001) [98]f 26 6 yes yes
(Demir et al. (1994) [53])
Mouse Bondarenko et al. (2004) [99]* 44 12 yes yes

* The model considers the opening and closing of ion channels as Markov processes.
! The model considers the difference of epicardial cell, midmyocardial cell (M cell),

endocardia cell of ventricular muscle.
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3.3 Two Typical Sinoatrial Node Cell Models: YNI
Model and Zhang Model

As listed in Table 3.1, starting with the YNI model [34], various sinoatrial node cell
models have been developed. Most of them are rabbit cell models. Among these
rabbit cell models, Irisawa and Noma [48] made an extension of the YNI model
by incorporating some new experimental data. Noble and Noble [50] developed
a new sinoatrial node cell model from a Purkinje fiber model [73], which firstly
incorporated the sodium-calcium exchanger and sodium-potassium pump. Then the
model of Noble and Noble [51] was extended by Wilders et al. [52], and the model
of Wilders et al. [52] was again extended by Dokos et al. [54]. Zhang et al. [35]
considered the regional difference of sinoatrial node and proposed two types of cell
models (peripheral and central cell models). The recent models have become very
complicated such as those proposed by Kurata et al. [30], by Sarai et al. [55], by
Lovell et al. [56], and by Maltsec and Lakatta [57].

In our study, we utilize the YNI model and the Zhang model of rabbit sinoatrial
node cells. The YNI model is a rather classical model, which is able to represent the
essential features of action potential generation in spite of its simplicity. The Zhang
model is a detailed model which considers regional difference of the sinoatrial node.
That is, its parameter values vary between periphery cell and center cell of sinoatrial
node. The Zhang model is able to represent the essential features of action potential
for both periphery and center cells.

Both the YNI model and Zhang model are HH-type models. They describe the
dynamic process of action potential generation by nonlinear ODEs, similar as those
shown in Egs. (3.1) and (3.2). However, the membrane currents vary with models.
Figure 3.2 shows the schematic illustrations of the two models. The explanation of

their membrane currents are listed in Table 3.6.
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Figure 3.2: Schematic illustrations of sinoatrial node cells considered in (a) YNI
model, (b) Zhang model.

The YNI model and the Zhang model have the same sodium current Ix, and
hyperpolarization-activated current I, (I). For other membrane currents, they have
the following relations [45, 50, 101]:

Iy = Icay + Icat + INaca, (3.3)
[K = IK,r + IK,Sa (34)

where the left-hand side corresponds to the YNI model, and the right-hand side
corresponds to the Zhang model. Moreover, both the two models do not consider
the Ca?*t cycle of SR. The equations of the two models will be explained in Chapter
5 and Chapter 6, respectively.
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Table 3.6: Membrane currents considered in the YNI model and the Zhang model.

Model Membrane current
Ina Sodium current
I Slow inward current
YNI model Ik Potassium current
Iy Hyperpolarization-activated current
I Leak current
Ing Sodium current
Ica L L-type calcium current
Icar T-type calcium current
I Rapid delayed rectifier potassium current
Ik s Slow delayed rectifier potassium current
Iio Transient 4-aminopyridine-sensitive current
Zhang model Lus Sustained 4-aminopyridine-sensitive current
I; Hyperpolarization-activated current
Iy Na Background sodium current
Ivca Background calcium current
Ihx Background potassium current
I, Sodium-potassium pump current

I NaCa

Sodium-calcium exchanger current







Chapter 4

Dynamical System and Bifurcation

Analysis

Dynamical systems describe dynamic processes in mathematics, e.g., the HH
model describes the action potential generations by nonlinear ODEs. In general,
the dynamical systems are classified into two types: discrete- and continuous-time
ones. The discrete-time dynamical systems are usually descried by difference equa-
tions, and the continuous-time dynamical systems are usually described by differen-
tial equations. In this chapter, we briefly introduce the dynamical systems, and then
introduce a powerful nonlinear analysis - bifurcation analysis for such systems. Com-
pared to numerical simulations, the bifurcation analysis has a quite high efficiency in
investigating dynamical systems’ behaviors. Here we perform the bifurcation analy-
sis of the HH model, which represents a typical dynamical system. The bifurcation

structure of the HH model help us in understanding the HH-type cardiac cell models.

4.1 Dynamical System

Each dynamical system considers two basic elements: one is states of the system at
certain time, another is a law of state transition with time. The dynamical systems
are classified into discrete- and continuous-time ones, which are commonly described
by difference equations and differential equations, respectively. Hereinafter we only
consider the continuous-time dynamical systems, as which the HH model and the
HH-type cardiac cell models are developed.

A continuous-time dynamical system can be described by differential equations

31
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such as

d
%a:(t) =f(z(t), z(t) e RN, t € R, (4.1)
where the N-dimensional real vector x(t) is referred to as a state point which denotes
the state of system at time ¢, and the vector-valued function f is referred to as a
vector field since it assigns a vector f(x(t)) to each x(t). The law of state transition
with time is determined implicitly by the function f.

The follows are some important definitions about dynamical systems.
e A state space or a phase space: a set of all state points.
e An initial state point: a state point x(0) at ¢ = 0.

e An orbit or a trajectory: an ordered set of state points determined by Eq. (4.1)

as for a x(0).

e A periodic orbit: for an orbit, if there exists a T' > 0 such that x(t) = x(t+7T)
for any t, the orbit is referred to as a periodic orbit. The minimal T is referred

to as the periodic orbit’s period.
e An equilibrium point or a fixed point: a state point * such that f(x*) = 0.

e Stability (stable or unstable): for an equilibrium point or a periodic orbit, if
its nearby orbits approach it as time increase, it is referred to as a stable one,

otherwise, it is referred to as an unstable one.

4.2 Bifurcation Analysis

A dynamical system may show several behaviors. When the dynamical system reach
its steady state after a long time, it may stay at a stable equilibrium point, may
repeat a stable periodic orbit, also may fall into a complicated behavior. Moreover,
a dynamical system usually incorporates various parameters in its equations. Thus,
its behavior depends on these parameters (parameter dependance). When these
parameters are varied, the behavior may change qualitatively, namely, the number
or stability of equilibrium points or periodic orbits may change. Such a qualitative
change of behavior is called a bifurcation [24, 25].

The follows are some typical bifurcations and the behavior changes at these bi-

furcations.
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e Hopf bifurcation: stability of an equilibrium point changes, and a (stable or
unstable) periodic orbit is bifurcated. If the bifurcated periodic orbit is sta-
ble, the Hopf bifurcation is referred to as a supercritical one, whereas if the
bifurcated periodic orbit is unstable, the Hopf bifurcation is referred to as a

subecritical one.

e Saddle-node bifurcation: a pair of equilibrium points are generated or disap-

pear.

e Double-cycle bifurcation: it is the saddle-node bifurcation of periodic orbits.

A pair of periodic orbits are generated or disappear.

e Period-doubling bifurcation: stability of a periodic orbit changes, and another

periodic orbit with a double period is generated.

e Homoclinic bifurcation: a periodic orbit collides with an equilibrium point.
Near the homoclinic bifurcation, the period of periodic orbit becomes very

long.

A nonlinear analysis which analyzes the bifurcation structures of dynamical sys-
tems is referred to as a bifurcation analysis [24]. When performing bifurcation anal-
ysis of a dynamical system, we vary certain parameters (which is referred to as bi-
furcation parameters), then examine whether bifurcations occur or not (i.e., whether
the number and stability of equilibrium point, periodic orbit change or not). Based
on the obtained bifurcation structures, we investigate the parameter dependence and
sensitivity of the dynamical system’s behavior. The bifurcation analysis has a high
efficiency since it tracks equilibrium points or periodic orbits one by one algebraically.
However, the numerical simulation only can show the system’s behavior as for spe-
cific initial conditions and specific parameter values. Thus, it should be executed
plenty of times to investigate the parameter dependence and sensitivity.

In our study, a bifurcation analysis software AUTO [100] is used for analysis. We
perform the bifurcation analysis in two stages: one-parameter bifurcation analysis
which varies one bifurcation parameter solely, and two parameter bifurcation anal-
ysis which varies two bifurcation parameters simultaneously. Their analysis results
are presented as one- and two-parameter bifurcation diagrams, respectively. In the

following section, we perform the bifurcation analysis of the HH model.
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4.3 Global Bifurcation Structure of the HH Model

The HH model represents a continuous-time dynamical system, which is described by
nonlinear ODEs with four variables and various parameters (please refer to section
3.1 for details). Here we use the bifurcation analysis software AUTO to analyze
the global bifurcation structure of the HH model, and investigate the parameter

dependance and sensitivity of the HH model’s behavior.

4.3.1 One-parameter Bifurcation Analysis

In this subsection, we vary the external current I, as a bifurcation parameter to
analyze the global bifurcation structure of the HH model. Figure 4.1 shows the one-
parameter bifurcation diagram of the HH model as for I.;. The abscissas denote the
bifurcation parameter /., and the ordinates denote the membrane potential V. The
solid and broken curves show the values of V' of stable and unstable equilibrium points
for each value of I, respectively. The e and o circles show the maximum values of
V of stable and unstable periodic orbits for each value of I, respectively. A stable
periodic orbit means that the membrane potential repeats a variation (increase,
decrease) periodically. Thus it corresponds to the case of rhythmic action potentials
can be generated. A stable equilibrium point means that the membrane potential
asymptotically converges to the stable equilibrium point. Thus it corresponds to
the case of no rhythmic action potential can be generated. Moreover, the maximum
values of stable periodic orbits correspond to the amplitudes of action potentials.
The bifurcation points of Hopf, double-cycle, and period-doubling bifurcations are
denoted by HB, DC, and PD (with a number), respectively.

The one-parameter bifurcation diagram of Fig. 4.1(a) can be divided into two
parts: one is curves which correspond to equilibrium points, and the other is circles
which correspond to periodic orbits. These equilibrium points or periodic orbits are
tracked one by one when [l is varied slightly. Here let’s start from I = 0, which
corresponds to a stable equilibrium point (solid curve). We increase I.,; and track the
equilibrium point. Then a Hopf bifurcation point HB1 appears, where the stability
of equilibrium point changes form stable to unstable, and an unstable periodic orbit
is bifurcated. We continue to increase Iy and track the equilibrium point form HBI.
Then another Hopf bifurcation HB2 appears, where the stability of equilibrium point
returns to stable again, and a stable periodic orbit is bifurcated. Similarly, let’s

start form the Hopf bifurcation point HBI to track these periodic orbits. After
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Figure 4.1: (a) One-parameter bifurcation diagram of the HH model as for the
external current I, (b) magnification of (a). The solid and broken curves show
the values of V of stable and unstable equilibrium points for each value of Iy,
respectively. The e and o circles show the maximum values of V' of stable and
unstable periodic orbits for each value of I, respectively. The bifurcation points of
Hopf, double-cycle, and period-doubling bifurcations are denoted by HB, DC, and
PD (with a number), respectively.

three double-cycle bifurcation points DC1-DC3 and two period-doubling bifurcation
points PD1, PD2, the stability of periodic orbit changes to stable. At last, the stable

periodic orbit connects to the one bifurcated from the Hopf bifurcation point HB2.

Based on the one-parameter bifurcation diagram of Fig. 4.1, the effect of changing
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I+ on action potential generation can be obtained directly. For each value of oy
between HB1 and HB2, since there exists a stable periodic orbit, rhythmic action
potentials can be generated. For each value of I in the left side of DC3 or in the
right side of HB2, since there exists a stable equilibrium point, no rhythmic action
potentials can be generated. For each value of I, between DC3 and HB1, since there
exist both a stable equilibrium point and a stable periodic orbit, whether rhythmic
action potentials can be generated or not depends on the initial conditions. The above
results show that rhythmic action potentials can be generated under proper values
of Iy (not too small and not too large), which means a proper external stimulus is
necessary for action potential generation, although the amplitude of action potential

decreases with the increase of I.y.

4.3.2 Two-parameter Bifurcation Analysis

In the above subsection, we only varied one bifurcation parameter I.,; and computed
the corresponding one-parameter bifurcation diagram, in which various bifurcation
points appeared. Here we vary another bifurcation parameter to examine how these
bifurcation points will move. We introduce new parameters V,; and Vo (z = m, n,
and h) to shift the voltage dependency of z°(V) and 7,(V), respectively. That is,
we rewrite °(V), 7,(V') as 2®°(V = V1), 7.(V — V,2), respectively. We vary V,;
or Vo as another bifurcation parameter to analyze the bifurcation structure of the
HH model. The analysis results are shown in two-parameter bifurcation diagrams,
in which the loci of various bifurcations (bifurcation curves) are plotted. Figure 4.2
shows these two-parameter bifurcation diagrams.

At first, let’s compare the two-parameter bifurcation diagrams in panels (a) and
(b), whose ordinates V;,; and V,,, correspond to a same gating variable m. Panel
(a) shows the two-parameter bifurcation diagram as for I and V,,;. The line of
Vin1 = 0 (broken line) corresponds to the case of one-parameter bifurcation diagram
as for I in Fig. 4.1. That is, when V,,; is fixed to 0 and only I is varied, the
“one-parameter” bifurcation diagram as for I of Fig. 4.1 is obtained. The values
of I.x at the intersection points between the line V},; = 0 and the Hopf bifurcation
curve HB1, 2 in Fig. 4.2(a) are the same as those at the Hopf bifurcation points
HB1, HB2 in Fig. 4.1(a). Here we focus on the area where the line V;,; = 0 across
the Hopf bifurcation curve HB1, 2: the top edge of the curve HBI1, 2. Therefore, if
Vi1 is increased from 0 a little, such as V,,;; = 2 (a very small increase compared to

the membrane potential’s variation range during action potential generation), there
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Figure 4.2: Two-parameter bifurcation diagrams of the HH model. Abscissas denote
the bifurcation parameter I, for all panels, ordinates denote the other bifurcation
parameters: (a) Viu1, (b) Vinz, (¢) Va1, (d) Vag, () Vi, and (f) Vi, The bifurca-
tion curves of Hopf, saddle-node, double-cycle, and period-doubling bifurcations are
denoted by HB, SN, DC, and PD (with a number), respectively.

exists no intersection point between the line of V,,; = 2 and the Hopf bifurcation

curve HB1, 2. Thus, in the case of V,;; = 2, no matter how I is varied, Hopf
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bifurcation point never appears, and no periodic orbit would be bifurcated. Such a
result shows that the HH model’s behavior is sensitive to the change of parameter
Vin1-

Panel (b) shows the two-parameter bifurcation diagram as for Iy, and V,,,. Here
we also focus on the area where the line V3 = 0 across the Hopf bifurcation curves
HBI1, HB2: near the middle part of the curves HB1, HB2. Therefore, if V,,; is
increased from 0 a little, such as V,,, = 2, intersection points between the line of
V2 = 2 and the Hopf bifurcation curves HB1, HB2 vary little. Thus, in the case of
Vine = 2, when Iy is varied, there exist Hopf bifurcation points, from which periodic
orbits are bifurcated. Such a result shows that the HH model’s behavior is insensitive
to the change of parameter V. Comparing the parameter sensitivities in panels (a)
and (b), although V,,,; and V;,5 correspond to a same gating variable m, their changes
have different effects on the HH model’s behavior: V;,; corresponds to a strong one,
whereas V5 corresponds to a weak one. Such different effects also exist between V,,;
and Vyo, Vi and Viy. Therefore, we can say that the HH model’s behavior has high
sensitivities to shifting the voltage dependance of z>°(V') (x = m, n, and h), whereas

it has low sensitivities to shifting the voltage dependance of 7,.(V).

Next, let’s see the other bifurcation (e.g., period-doubling and double-cycle bi-
furcations) curves besides the Hopf bifurcation curves. Figure 4.3(a) and (b) shows
the period-doubling and double-cycle bifurcation curves of Fig. 4.2(d), respectively.
Figure 4.3(c) shows the magnification of Fig. 4.2(d) near V,, = 0, in which PD1 and
PD2 locate very near DC1 and DC2, respectively. However, as shown in Fig. 4.3(a)
and (b), when V,5 is increased or decreased much more, such as 100 or —40, PD1 and
PD2 leave far from DC1 and DC2, respectively. But for other two-parameter bifur-
cation diagrams in Fig. 4.2, PD1 and PD2 would not leave DC1 and DC2 much. For
example, Figure 4.4(a) shows a magnification of Fig. 4.2(f), in which PD1 and PD2
always locate near DC1 and DC2, respectively, although there exist small differences
between PD1, 2 and DC1, 2 as shown in Fig. 4.4(b) and (c).

Here we investigate the period-doubling bifurcation curve PD1, 2 in Fig. 4.2(d)
in detail. When V,; = 0, the period-doubling bifurcation points PD1, PD2 and
Hopt bifurcation point HB1 locate in a small range of I (which is also shown in
the one-parameter bifurcation diagram of Fig. 4.1). However, when V,, is varied,
PD1 and PD2 leave far from HBI, and go to the right side of HB1. Thus, the
positional relation of period-doubling bifurcation point and Hopf bifurcation point

changes. Figrue 4.5 shows the one-parameter bifurcation diagram as for I.,, when
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Figure 4.4: Magnifications of period-doubling bifurcation curves PD1, 2 and double-
cycle bifurcation curves DC1, 2 of Fig. 4.2(f) with different scales.

V2 = —40. The label TR denotes a torus bifurcation point, at which the stability
of periodic orbit changes. Different from Fig. 4.1, DC2 and DC3 disappear and PD2
moves to the right side of HB1. As a result, for the values of /. between HB1 and
PD2, there exist no stable equilibrium point or stable periodic orbit, which suggests
some complicated behaviors of the HH model. Thus, we investigate the HH model’s
behavior as for the value of I between HB1 and PD2 by numerical simulations.
Figure 4.6 shows the corresponding one-parameter bifurcation diagram. For each
value of I between 15 and 35, we apply the fourth-order Runge-Kutta method to
solve the ODEs, and then plot the local maximum and minimum values of V in the
steady states after a long time. It shows that, for the values of I between PD2
and HB1, complicated variations of membrane potential appear. Figure 4.7 shows
two waveforms of membrane potential when I, = 21 and 30, both of which show

abnormal action potential generation.
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Figure 4.6: One-parameter bifurcation diagram of the HH model as for I.., when

Va2 = —40 obtained by numerical simulations.

We analyzed the global bifurcation structure of the HH model, and investigated
the parameter dependence and sensitivity of the HH model’s behavior. The behavior
was sensitive to the change of V,; (x = m, n, and h), whereas it was insensitive to
the change of V,5. Moreover, very complicated behaviors appeared as for certain pa-
rameter values. These results clearly show the effects of changing external current or

gating variables’ voltage dependencies on action potential generation. It was shown
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Figure 4.7: Examples of complicated behaviors of the HH model. (a) V2 = —40,
Ixy = 21, (b) Vpa = —40, I = 30.

that the bifurcation analysis has a high efficiency in investigating the parameter de-
pendance and sensitivity of the HH model. In the next two chapters, we utilize this

efficient bifurcation analysis to analyze the HH-type sinoatrial node cell models.






Chapter 5

Analysis of the YNI Model

The YNI model of rabbit sinoatrial node cells is described by the HH-type equa-
tions with seven variables: membrane potential V' [mV], dimensionless gating vari-
ables m, h, d, f, p, and q. The temporal variation of membrane potential V is
described by

dV 1
E = _6(Itotal - Iext)
1

where C (=1 pF/cm?) and I [#A/cm?] denote the membrane capacitance and the
external current per unit area, respectively. Iiora [tA/ cm?] is the total membrane
current per unit area, which contains five ion channel currents In,, Is, Ik, Iy, and I
[#A/cm?]. The five ion channel currents are described as follows:

e Sodium current
Ina = cNagnam>h(V — 30), gna = 0.5; (5.2)

e Slow inward current
vV —-30
15

Iy = ¢535(0.95d + 0.05)(0.95f + 0.05) {exp ( ) - 1} , 0s = 12.5;  (5.3)

e Potassium current

exp [0.0277 (V + 90)] — 1

Iy = ckg gk = 0.7; 5.4
e Hyperpolarization-activated current
Iy = cpgng(V +45), gn = 0.4; (5.5)

43
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e Leak current

_ V +60 _
I =ag [1 — exp (— 20 )J ; 1 =0.8; (5.6)

where Gio, (ion = Na, s, K, h, and 1) [mS/cm?] are the maximum conductances of
ion channels per unit area. The parameters ¢, are newly introduced dimensionless
coefficients for denoting conductance changes of ion channels, and their standard
values are 1.0. The gating variables m, h, d, f, p, and ¢ (dimensionless, ranging
between 0 and 1) denote the states of ion channels’ gates.
Temporal variations of the gating variables are described as follows:
dr (V) -z

dt (V) s (=m, h,d, f, p, q), (5.7)

where (V) and 7,(V') [msec] are the steady-state values and time constants of

gating variables. The details are as follows:

1 a, (V)

A PN 7 M (7w
am (V) = Tppe [‘j :{/31 37) 10" Bm(V) = 40 exp (—‘2?862) ;

an(V) =1.209 x 10 3 exp (— 2';310) V) =1 p— (1/ +30)/10]°

1.045 x 1072(V + 35) 3.125 x 107V

V) = T p = (V + 38) /28] | T —exp (<V/4.8)’

A= =g

JURE: T
V)= e s ea X0 B = o 0 13
(V) = 1 jx; [1?/_:( ‘1/03) 1/(4)104)1] +4.95 %1075

B,(V) = — WV +40) | gus 1075,

1 —exp[— (V +40) /6]

Figure 5.1(a) and (b) shows temporal variations of membrane potential and var-
ious membrane currents in normal condition (I = 0.0 pA/cm?, ¢, = 1.0), respec-
tively. The normal period of action potential generation is about 380 msec in the YNI
model. Since the sinoatrial node plays the role of cardiac pacemaker, its cells gen-

erate rhythmic action potentials spontaneously without electrical stimuli (Ioxy = 0.0
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pA/cm?). In Fig. 5.1(b), the inward and outward currents are denoted by negative
and positive values, respectively. The inward currents cause the membrane potential
to increase (depolarization) and the ourward currents cause the membrane potential
to decrease (repolarization), respectively. In the five membrane currents, the slow
inward current I has the largest amplitude, whereas the hyperpolarization-activated

current I, has the least one in the normal action potential generation process.

a
(a) 50
25 L
0 +
> s |
E 25
=S
50 L
75 L
-100 L . . !
2000 2200 2400 2600 2800 3000
t [msec)
(b)
1
0

Iion/ C (HA/uF]
[ ]

I AR i
-4 ; R
Iy -—--
5 . . . L
2000 2200 2400 2600 2800 3000

t [msec]

Figure 5.1: Temporal variations of (a) membrane potential V' and (b) membrane
currents I, (ion=Na, s, h, K, and 1) in normal condition (Ioxx = 0.0 pA/cm?,
Cion = 1.0). In the panel (b), the inward currents and outward currents are denoted

by negative and positive values, respectively.
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5.1 Effects of Changing Ion Channel Conductances
on Pacemaker Rhythm

In this section, we analyze the YNI model without the external current (I, = 0.0
1A /em?), which corresponds to the case of a single sinoatrial node cell. The global
structure of the YNI model is analyzed by using the bifurcation analysis software
AUTO, where the conductance coefficients ¢, are varied as bifurcation parameters!.
Based on these analysis results, the effects of changing ion channel conductances on

pacemaker rhythm in a single cell are investigated.

5.1.1 One-parameter Bifurcation Analysis
Sodium Current Iy,

Figure 5.2(a) shows the one-parameter bifurcation diagram of the YNI model as
for the sodium current Iy,. The abscissa denotes the bifurcation parameter cya,
and the ordinate denotes the membrane potential V. The solid and broken curves
show the values of V' of stable and unstable equilibrium points as for each value of
CNa, respectively. The e and o circles show the maximum values of V' of stable and
unstable periodic orbits as for each value of cy,, respectively. The bifurcation points
of Hopf, saddle-node, double-cycle, period-doubling, and homoclinic bifurcations are
denoted by HB, SN, DC, PD, and HC (with a number), respectively.

For each value of ¢y, between the two Hopf bifurcation points HB1 and HB2, a
(stable or unstable) periodic orbit exists. Periods of several periodic orbits are also
shown in the one-parameter bifurcation diagram. In normal condition (cx, = 1.0),
a stable periodic orbit whose period is about 380 msec exists, whose corresponding
waveform of action potential is shown in Fig. 5.2(e). The period of periodic orbit
decreases when cy, is increased. Figure 5.2(d) and (f) shows two typical waveforms
of action potentials, whose periods are long and short, respectively. When changing
CNa, although the period of periodic orbit varies much, the amplitude varies little. It
shows that, the conductance change has a strong effect on the pacemaker rhythm,
but it has a weak effect on the intensity of action potential generation.

Figure 5.2(b) shows the periods of periodic orbits appeared in (a). The period

'Under physiological conditions, the conductances of ion channels would not be negative or too
large. However, in order to show the global bifurcation structure of the model, we compute for

negative or very large conductance coefficients if necessary.
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varies little when ¢y, is increased from 1.0 (normal value), whereas it is big when
cna 18 decreased from 1.0. Especially when cy, takes a value near 0.25, the period
changes very sensitively to cn,. This sensitivity is mainly caused by the homoclinic
bifurcation HC1 (and also the two saddle-node bifurcations SN1 and SN2). These
results show that the parameter sensitivity of pacemaker rhythm in the case of a
small value of ¢y, is stronger than that in the case of a large value of cns,.

In both the left side of HB2 and the right side of HB1, only stable equilibrium
points exist. Since cn, is too small or too large, it is difficult to generate rhythmic
action potentials continuously. The typical waveforms of action potentials in the
two cases are shown in Fig. 5.2(c) and (g), respectively. Both of the membrane
potentials asymptotically converge to the stable equilibrium points, where the values
of equilibrium points are different in the two cases.

Since only unstable periodic orbits and unstable equilibrium points were detected
by AUTO for the values of cy, between PD2 and DC1 in Fig. 5.2(a), we also computed
the one-parameter bifurcation diagram by numerical simulations for 3.6 < cn, < 4.0
(Fig. 5.3(a)). In this diagram, both the local maximum and minimum values of
the membrane potential V for each value of cy, were plotted. When cy, is increased
from the period-doubling bifurcation point PD2 to the double-cycle bifurcation point
DC1, many complicated variations of membrane potential are generated sensitively
to cna. The waveforms of action potentials when ¢y, = 3.7 and 3.8 are shown
in Fig. 5.3(b) and (c), respectively. Both waveforms show abnormalities in action

potential generation.
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(a) One-parameter bifurcation diagram of the YNI model as for the

sodium current Iy, obtained by AUTO. The bifurcation points of Hopf, saddle-

node, double-cycle, period-doubling, and homoclinic bifurcations are denoted by HB,
SN, DC, PD, and HC (with a number), respectively. (b) Periods of periodic orbits

appeared in (a). (¢)-(g) Typical waveforms of action potentials for various values of

CNa-
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Figure 5.3: (a) One-parameter bifurcation diagram of the YNI model as for the

sodium current Iy, obtained by numerical simulations, in which both the local max-

imum and minimum values of the membrane potential V' for each value of cy, are

plotted. (b) and (¢) Abnormal waveforms of action potentials for two values of cxa.
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ward current /5 obtained by numerical simulations. (b) and (c¢) Abnormal waveforms

of action potentials for two values of c;.
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The one-parameter bifurcation diagram of the YNI model as for the slow inward
current I is shown in Fig. 5.4. In this diagram, there exist two (subcritical) Hopf
bifurcation points HB1 and HB2, from which (unstable) period orbits are bifurcated.
For each value of ¢; between HB1 and HB2, a (stable or unstable) periodic orbit
exists, and for the normal value (¢ = 1.0), a stable periodic orbit with a period of
380 msec exists. Similar to the case of cn,, when ¢ is increased, the period of periodic
orbit decreases, whereas the amplitude of periodic orbit varies little. It shows that
the conductance change mainly affects the pacemaker rhythm, but not the intensity
of action potential generation. Moreover, the period of periodic orbit changes more
sensitively to ¢ when ¢ is increased from 1.0 (normal value) than when ¢ is decreased
from 1.0. It shows that the parameter sensitivities of pacemaker rhythm are different
between long period and short period.

Moreover, for each value of ¢, between the Hopf bifurcation point HB1 and the
period-doubling bifurcation point PD2, there exists no stable equilibrium point or
stable periodic orbit. Therefore, we computed the corresponding one-parameter bi-
furcation diagram by numerical simulations, which is shown in Fig. 5.5(a). Also the
two typical waveforms of action potentials of (b), (c¢) show abnormal action potential

generation.

Potassium Current g

Figure 5.6 shows the one-parameter bifurcation diagram of the YNI model as for the
potassium current Ix. For the values of ck between the two Hopf bifurcation points
HB1 and HB2, there exist stable periodic orbits with different periods. Different from
the cases of ¢y, and cg, the period of periodic orbit increases when ck is increased.
This is due to the fact that Ik is an outward current, whereas Iy, and I are inward
currents. Moreover, the variation of period is big when ck is increased from 1.0
(normal value), whereas it is little when ck is decreased from 1.0. Although the
variations (increase or decrease) of pacemaker rhythm are opposite between the case
of increasing ck and the case of increasing cn, or cs, the parameter sensitivities of
pacemaker rhythm in some ways are similar: a high parameter sensitivity in the case

of long periods and a low one in the case of short periods.

Hyperpolarization-activated Current [,

The one-parameter bifurcation diagram of the YNI model as for the hyperpolarization-

activated current I, is computed. There also exist two Hopf bifurcation points HB1
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Figure 5.7: (a) One-parameter bifurcation diagram of the YNI model as for the
hyperpolarization-activated current I,. (b) and (c) Waveforms of action potential

with the normal period (380 msec).

and HB2, where HB2 corresponds to a very negative value of ¢;, = —71.0. Thus, HB2

does not appear in the one-parameter bifurcation diagram of Fig. 5.7(a). For the
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value of ¢, in the left side of HB1, various periodic orbits exist. In the cases of I,
I, and Ik, the period of periodic orbit increases or decreases monotonically when
increasing their conductance coefficients. However, in the case of I, the period of
periodic orbit decreases and then increases when ¢y, is increased. Such a variation
is related to the fact that I is a bidirectional current (Fig. 5.1). Figure 5.7(b) and
(c) shows two waveforms of action potentials which have the normal period (380
msec), but have different amplitudes. Except for the value of ¢, near PD, the period
changes insensitively to the variation of ¢, which shows a low parameter sensitivity

of pacemaker rhythm.

Leak Current I;
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Figure 5.8: One-parameter bifurcation diagram of the YNI model as for the leak

current 1.

Figure 5.8 shows the one-parameter bifurcation diagram of the YNI model as for
the leak current I;. The diagram shows that the period of periodic orbit increases
when increasing ¢), and also shows a strong parameter sensitivity especially for the
values of ¢ near the period-doubling point PD3. Although it is a leak current, 1)
seems to be important in maintaining the pacemaker rhythm.

So far, we have analyzed the effects of conductance changes on pacemaker rhythm
for I,on (ion = Na, s, K, h, and 1). Here we compare their effects. Figure 5.9 plots

the periods of stable periodic orbits when each ¢, is varied near the normal value
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Figure 5.9: The periods of stable periodic orbits are plotted when each conductance
coefficient cjoy (ion = Na, s, h, K, and 1) is varied, for comparison of the variabilities

of pacemaker rhythm for different membrane currents.

1.0. As for I, the variation of ¢, does not change the period much, which means
the conductance change has a weak effect on pacemaker rhythm. For other four
ion currents, the period changes with the variation of each conductance coefficient,
particularly in the range of long periods. Moreover, for the inward currents Iy, and
I, the period decreases when cn, or ¢ is increased. For the outward currents Ik
and [, the period increases when ck or ¢ is increased. These results show that the
conductance changes of the above four currents have strong effects on pacemaker
rhythm.
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5.1.2 Two-parameter Bifurcation Analysis

In the above subsection, we have analyzed the parameter sensitivity of pacemaker
rhythm as for each ion channel current solely. In this subsection, we analyze the
parameter sensitivity as for two ion channel currents simultaneously. The bifurcation
curves and contour lines of various periods when two conductance coefficients are
varied, are plotted in two-parameter bifurcation diagram to examine the pacemaker
rhythm.

Sodium Current [y, and Potassium Current [

The two-parameter bifurcation diagram as for the sodium current Iy, and the potas-
sium current Ik is shown in Fig. 5.10(a). The abscissa and ordinate denote the two
bifurcation parameters ¢y, and ck, respectively. The curve labeled with “normal”
denotes the contour line of the normal period (380 msec), and the point labeled
with “BT” denotes the Bogdanov-Takens bifurcation point, where three bifurcation
curves of HB, SN and HC meet together. The double-cycle bifurcation curve DC3
meets the Hopf bifurcation curve HB1 at the nHB point which is called a neutral
or degenerate Hopf bifurcation point. When cxk is fixed to 1.0 and cn, is varied, the
result corresponds to the “one-parameter” bifurcation diagram of Fig. 5.2(a).

The Hopf bifurcation curves HB1 and HB2 separate Fig. 5.10(a) into three areas.
In area 2, various periodic orbits exist, where rhythmic action potentials can be
generated. The period becomes short when cy, is increased, and it becomes long
when ck is increased. The density of contour line of long period is high, and that
of short period is low (Note that near the Hopf bifurcation curve HB2, the contour
lines with long period and other bifurcation curves such as HC1 and HC2 gather
together). This difference shows that the parameter sensitivity in the case of long
periods is stronger than that of short periods. Figure 5.10(c) and (e) shows two
abnormal (too-long and too-short periods) waveforms of action potentials when cn,
takes a small and a large values (ck is fixed to 1.0), respectively. If we want to get
the normal period 380 msec in such abnormal cases of cna, the value of ck should be
adjusted as shown in Fig. 5.10(d) and (f), respectively. Namely, when the two ion
channel currents have a strong interrelation, we can correct the pacemaker rhythm
caused by one abnormal ion channel, by adjusting the other one according to the
“normal” contour line.

In area 1 and area 3, rhythmic action potentials cannot be generated successfully.
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Figure 5.10(g) and (h) shows the typical waveforms of action potentials in area 1 and
area 3, respectively. Both of the membrane potentials converge to the equilibrium
points eventually and cannot generate rhythmic action potentials.

Moreover, Figure 5.10(b) shows the periods of (stable or unstable) periodic orbits
as a function of cy, along the Hopf bifurcation curves HB1 and HB2 of Fig. 5.10(a).
The solid and broken curves correspond to stable and unstable periodic orbits (will
be bifurcated from the Hopf bifurcation), respectively, and the stability changes at
the neutral (degenerate) Hopf bifurcation point nHB. It shows that the period of
periodic orbit varies drastically near the Bogdanov-Takens bifurcation point BT,

and the parameter sensitivity of pacemaker rhythm becomes very high.
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Figure 5.10: (a) Two-parameter bifurcation diagram as for the sodium current I,
and the potassium current k. (b) Periods of periodic orbits along the Hopf bifurca-
tion curves HB1 and HB2 of (a). (¢)-(h) Typical waveforms of membrane potentials

for various values of ¢y, and ck.
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Figure 5.11: (a) Two-parameter bifurcation diagram as for the slow inward current
I; and the potassium current Ix. (b) Periods of periodic orbits along the Hopf
bifurcation curves HB1 and HB2 of (a).

The two-parameter bifurcation diagram as for the slow inward current I, and
the potassium current Ik is shown in Fig. 5.11(a). The result of Fig. 5.11(a) is
very similar to that of Fig. 5.10(a). That is, the rhythmic action potentials can be
generated in area 2 (which is surrounded by the Hopf bifurcation curves HB1 and
HB2), whereas those cannot be generated in area 1 or area 3. For periodic orbits

(pacemaker activities) in area 2, the adjustment of ck (c;) can recover the abnormal
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periods caused by ¢ (ck) to the normal period referring to the “normal” contour
line.

The variation of period along the Hopf bifurcation curves HB1 and HB2 of
Fig. 5.11(a) is shown in (b). Between the neutral Hopf bifurcation points nHB1
and nHB2, stable periodic orbits are bifurcated from the Hopf bifurcation. It is ob-
vious that for small values of both ¢; and ck, the period of periodic orbit at Hopf
bifurcation varies drastically, and the parameter sensitivities of pacemaker rhythm
are very high (please compare the loci of two points nHB1 and nHB2 between panels
(a) and (b)).

Slow Inward Current I, and Sodium Current Iy,
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Figure 5.12: Two-parameter bifurcation diagram as for the slow inward current Ig

and the sodium current Iy,.

The two-parameter bifurcation diagram as for the slow inward current I and
the sodium current Iy, is shown in Fig. 5.12. This diagram also is separated into
three areas by the Hopf bifurcation curves HB1 and HB2. In area 2, the period
of periodic orbit becomes short when increasing either ¢s or cna, since both I and
Ina are inward currents. In other words, the two inward currents complement each
other to maintain the pacemaker rhythm. An abnormal pacemaker rhythm caused
by a large cs can be adjusted by using a small cna. Moreover, it is shown that the
pacemaker rhythm changes more sensitively to ¢; than to cn,, since these bifurcation

curves and contour lines of periods are nearly vertical.
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Sodium Current Iy, and Hyperpolarization-activated Current I,
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Figure 5.13: (a) Two-parameter bifurcation diagram as for the sodium current Iy,
and the hyperpolarization-activated current I,. (b)—(d) Typical waveforms of mem-

brane potentials for various values of ¢y, and c,.

Figure 5.13(a) is the two-parameter bifurcation diagram where cy, and ¢, are
bifurcation parameters. Both the bifurcation curves and contour lines are almost
vertical, which means that the change of ¢, affects the pacemaker rhythm little
whereas the change of cx, affects it much, although the effect of ¢, becomes relatively
larger when cy, is large. From the waveforms shown in Fig. 5.13(b), (c), and (d),
we can also see that the pacemaker rhythm changes greatly when cy, is varied, but
it changes little when ¢y, is varied. We have also examined other two-parameter
bifurcation diagrams as for the parameters: ¢, and ¢, ¢, and ck, ¢, and ¢, which
are not shown in this thesis. All results are similar to Fig. 5.13: I, has little effect on
the period of periodic orbit (pacemaker rhythm), and the corresponding ion channel

plays a minor role in rhythmic action potential generation.
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5.2 Effect of Changing External Current on Pace-
maker Rhythm
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Figure 5.14: One-parameter bifurcation diagram of the YNI model as for the external

current ..

In above section, we have only investigated the pacemaker rhythm of a single
cell (without the external current o). Here we vary the external current ley to
investigate the coupling effect on pacemaker rhythm approximately.

At first, we examine the one-parameter bifurcation diagram as for the external
current I, (Fig. 5.14). The bifurcation structure of the YNI model shown in Fig. 5.14
is very similar to that shown in Fig. 5.2(a), since the positive current Io; can be
thought to be an inward current, which plays a similar role to Iy, in action potential
generation. The period of periodic orbit between HB1 and HB2 decreases when lex;
is increased. It shows that the external stimuli (positive currents) accelerate action
potential generation in cardiac pacemaker cells.

Next, the relations between each ion channel current and the external current are
illustrated in the two-parameter bifurcation diagrams in Figs. 5.15 and 5.16. There
are strong interrelations between I, and ley, Is and lex, Ik and le, whereas there
is a weak interrelation between [, and I.. For the inward currents Iy, and I,
the Hopf bifurcation points HB1 and HB2 shift to left when I is increased, which

means that a small Iy, or I; can generate rhythmic action potentials successfully
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Figure 5.15: Two-parameter bifurcation diagram as for the the ion channel current

Iion (ion = Na and s) and the external current Ioy.

with the help of I, in these cases. However, the effects of I, on pacemaker rhythm
are different for the above two inward currents. When I, takes a value near 1.0
pA/cm?, rhythmic action potentials can be generated by adjusting cna, whereas it

cannot be done by adjusting c;.

For the outward current Ik, when I is increased, the Hopf bifurcation points
HBI1 and HB2 shift to right (the opposite direction to those of the inward currents),
and the two points HB1 and HB2 deviate each other. For I, both the bifurcation

curves and contour lines are almost horizontal, which shows that the conductance
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Figure 5.16: Two-parameter bifurcation diagram as for the ion channel current [,

(ion = K and h) and the external current Io.

change of I, has little effect on pacemaker rhythm. From the above results, we
know that the ion channels of Ina,, Is and Ik play important roles in action potential
generation, whereas the ion channel of I, plays a minor role in the action potential

generation for both a single cell and coupled cells.

So far, we have analyzed the bifurcation structure of the YNI model, and have
investigated the variabilities of pacemaker rhythm. However, there are several limi-
tations on the YNI model since it is an early and simple model. The YNI model does

not consider some cellular structures such as sodium-potassium pump and sodium-
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calcium exchanger. The sodium current Iy,, which corresponds to the sodium chan-
nel, changes with the region of sinoatrial node largely. The sodium channel is only
present in the periphery cells of sinoatrial node [35,36]. Thus, it is necessary to
analyze the effect of regional difference on pacemaker rhythm [32]. The slow inward
current /g plays an important role in action potential generation, but it is a sum of the
calcium current I, and the sodium-calcium exchange current In,c, [73]. Moreover,
Ica can be divided into two types of currents: L-type and T-type calcium currents
(Icar and Ic,t). The potassium current Ik can also be divided into rapid and slow
delayed rectifying potassium currents (Ix, and Ixg) [101]. Therefore, in the next
chapter, we analyze a detailed sinoatrial node cell model of the Zhang model, and

compare the results of the two models.



Chapter 6

Analysis of the Zhang Model

The Zhang model of rabbit sinoatrial node cells is described by the HH-type
equations with fifteen variables: membrane potential V' [mV], dimensionless gating
variables m, hy, ho, dy,, fr, dr, fT, Pafs Pass Pi» Ts, ¢, 7, and y. The temporal variation

of membrane potential V' is described by

av 1

% = _E(Itotal - Iext)
1
= _‘C,_(INa + ]Ca,L + ICa,T + ]K,r + IK,S + [to + Isus + If
+[b,Na+Ib,Ca+[b,K +]NaCa+Ip - ]ext)a (61)

where C [pF| and I [pA] denote the membrane capacitance and the external cur-
rent, respectively. i [PA] is the total membrane current, which contains eleven
ion channel currents: Ina, Icar, IcaT, Ik, IKs Ttos Tsuss Ity To,Nas Ib,ca, and Ik, one
ion exchanger current Iy,ca, and one ion pump current I,. The thirteen membrane
currents are described as follows:

e Sodium current

F2 exp[((V — Ena) F) /RT]

]Na = cNagNam?’h[NaJ”]oﬁ exp (VF/RT) V, (62)
e L-type calcium current
0.006
Icat1, = ccaLrcar {d V — Ecal); 6.3
Ca,L = CCa,LJCa L |dLfL + exp [ (V + 14.1) /6 ( Cal) (6.3)
e T-type calcium current
Icat = ccargcardrfr (V — Ecar); (6.4)

65
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e Rapid delayed rectifier potassium current
Ixr = ckrGx Papi (V — Ek);
e Slow delayed rectifier potassium current
Ixs = cksgxste (V — Fxs);
e Transient 4-aminopyridine-sensitive current
Iio = ctoGroqr (V — Ex);
e Sustained 4-aminopyridine-sensitive current
Lsus = CsusGsus™ (V — Ex) ;
e Hyperpolarization-activated current
Iy = Itna + Itk = g1y [(V — Ena) + (V — Ex)];
e Background sodium current
IbNa = o NaGbNa (V — Ena) ;
e Background calcium current
Ibca = hcadbca (V — Eca);
e Background potassium current
Ik =cbxdox (V — Ex);

e Sodium-potassium pump current

=1 (Km[N f[]fVa*]i) | (Km[K+ ]fi<+10)21-5+exp [_1(3%0) /40]

e Sodium-calcium exchanger current

[Na*]3[Ca®*], exp (0.0374V Yxaca)

[NaCa = kNaCa l:

1+ dyaca ([Ca>Ji[Na ]2 + [Ca?"],[Na'}f)

1 + daca ([Ca2+]i[Na+]§ + [Ca2+]o[Na+]?)
[Na*]3[Ca®*]; exp [0.0374V (naca — 1)] } .

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

(6.12)

; (6.13)

(6.14)
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RT . [Na']
o 1. — _ o,
[Na®], = 140, [Na™); =8 mM, En, = T In Nat),
RT  [Ca2t]
247 _ 241 _ _ o,
[Ca’T], =2, [Ca’T], =0.0001 mM, E¢, = S b Ca '],
RT  [K']
K*], = 5.4, [K*]o =140 mM, Ey = — In —2°

9

5 _ BT, ([K*o+0.03[Na*],
Ks—F [K+]; + 0.03[Nat];
dNaCa = 00001a YNaCa = 057

Km,Na = 564, Km,K = 0621,

where gion (ion = Na, Ca,L, Ca, T, K1, K s, to, sus, f, b,Na, b,Ca, and b,K) [mS] are
the maximum conductances of ion channels. The parameters c¢;,, are newly intro-
duced dimensionless coefficients for denoting conductance changes of ion channels,
and their standard values are 1.0. The gating variables m, hy, ha, di,, fu. dt, fr, Dat,
Pas: Pis Ts, G, 7, and y (dimensionless, ranging between 0 and 1) denote the states of
ion channels’ gates.

Temporal variations of these gating variables are described by

dr _z=(V)-=
dt (V)
(l‘ =m, hh h?a dLa fL7 dTa fTa Pat, Pas: Diy Ts, 4, T, y)7 (615)

where (V) and 7,(V) [msec| are the steady-state values and time constants of
gating variables. The details are as follows:

_ 0.6247 x 1073
 0.832exp [—0.335 (V + 56.7)] + 0.627 exp [0.082 (V + 65.01)]
1 1/3
|1 +exp[-(V+30.32)/5.46]|
h=(1—-Fxa(V)) h1 + Frna(V)ha,
9.52 x 1072 x exp [6.3 x 1072 (V + 34.4)]

Tm(V) +4x107%,

m>=(V)

Fra(V) = 8.69 x 1072
Na(V) 1 + 1.66exp[—0.225 (V + 63.7)] * x ’
3.717 x 1078 x exp [-0.2815 (V + 17.11)] 4
V) = 5.977 x 10
7 (V) 1 +3.732 x 10-3 exp [-0.3426 (V + 37.36)] * % ’
1 -8 —0.6219 (V + 18.8
g (V) = 186 x 10 X exp[-0.6219(V +188)] o oo 14-3,

~ 1+ 7.189 x 105 exp [—0.6683 (V + 34.07)]

(V) =h(V) = 5 +exp[(V +66.1) /6.4]
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) = —~14.19 (V + 35) —42.45V
Ca ) xp = (V 1 35) /25 — 1 exp(=0.208V) — 1’

_ 571(V =5)
Bar (V) = exp[0.4(V —5)] -

1 N 1 .

T4, (V) = T GETNCa) (V) =17 exp[— (V +23.1) /6]

_ 3.75(V +28) _ 30
V= pwrma-r VS v mar
T (V) = 2 DR ey 1

V) + 5 (V) L+exp[(V +45) /5]
@4r (V) = 1,068 exp (w) s Barp (V) = 1,068 exp (—M) ’

30 30
1 ot 1 .
A o (g M e S G )
ap (V) = 15.3exp (—%) y B (V) =153 exp (V;g'?) ;
1 N 1 )
K 5wy 76 ML Ml e [(V+71) /9]

Pa = 0.6pa7f + O.4pa,87
1

Tpas (V) = 37.2exp [(V — 9) /15.9] + 0.96 exp [— (V — 9) /22.5]’
1

Tpas (V) = 4.2exp[(V —9)/17) + 0.15exp [— (V - 9) /21.6]"

1
3] =p® (V) = ;
pa,f(V) pavs( ) 1+ exp [— (V -+ 142) /].06]7

1
= 0.002, = '
7p = 0002, pP(V) = 1 exp [(V + 18.6) /10.1]’

14 1%
x = , V)= -— ),
(V) = e v —an oy =) eXp( 45)
1 az, (V)
V ZL’?O V = s ;
R o a7 A M oy s w7
(V) = o 5686 exp [~0.08161 (V + 39 + 10FC611)]
72(V) = 0.7174 exp [(0.2719 — 0.1719Feepy) (V + 40.93 + 10Fey)] ,
65.17 x 103 1
=10.103 x 1073 L gV = ;
V) = - " T (V) + (V)" 7 V) =1 +exp [(V + 59.37) /13.1]
19.595 x 1073

(V) = 29775 x 1073 +

1.037 exp [0.09012 (V' 4 30.61)] + 0.369 exp [-0.119 (V + 23.84)]’
1

1+ exp|— (V — 10.93) /19.7]"

V +78.91 V+75.13
V) <o (55 ) = (S5,
I S L
N G EE R CAMAMERW G RN o}

reV) =

Ty(V) =



1.07(3dcen — 0.1)

}Qe = 3
17 31 + 0.7745 exp [ (3dcen — 2.05) /0.295]]
deenn = 1 (periphery cell),

0 (center cell).
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The Zhang model considers the regional difference of sinoatrial node, and the

parameter values vary between periphery and center cells. Table 6.1 compares these

parameter values of the two types of cells.

Table 6.1: Comparison of the parameter values between periphery and center cells

of sinoatrial node.

Parameter

Periphery cell

Center cell

C
gNa
gca,L
9ca,T
JKr
JK s
Jto
Jsus
gt

gb Na
Jb,Ca

Jb,K

kNaCa

65 pF
1.20 x107% uS
6.59x 102 uS
1.39%x 102 uS
1.60x 102 xS
1.04x 1072 xS
3.65x10~2 uS
1.14%x 1072 uS
6.88x 1073 1S
1.89x 1074 uS
4.30x 107 uS
8.19x 1075 uS
155 pA

8.84x107% pA

20 pF

0 uS

5.79% 1073 1S
4.28x1073 uS
7.97x 1074 uS
3.45% 1074 uS
4.91x10°% 1S
6.65x 1075 uS
5.47x10~% uS
5.82x107° uS
1.32x 1075 uS
2.52% 107 1S
47.8 pA
2.72x1073 pA
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Figure 6.1: Temporal variations of (a) (b) membrane potential and (c) (d) membrane
currents in normal condition (Iex; = 0.0 pA, ¢jon = 1.0). In the panel (c) and (d), the
inward currents and outward currents are denoted by negative and positive values,

respectively.

Figure 6.1(a) and (b) shows temporal variations of membrane potential V in the
normal condition (I = 0.0 pA, ¢jo, = 1.0) of periphery and center cells, respectively.
As a cardiac pacemaker, the sinoatrial node generates rhythmic action potentials
spontaneously in both periphery and center cells without electrical stimuli (Zog = 0.0
pA). However, the frequency and intensity of action potential generation vary with
the region of sinoatrial node. The normal periods of periphery and center cells are
about 161 msec and 325 msec, respectively, and the amplitude of the periphery
cell is larger than that of the center cell. Figure 6.1(c) and (d) shows temporal
variations of membrane currents which correspond to (a) and (b), respectively (only
large membrane currents are labeled). The inward currents (lowing from the outside
into the inside of cell membrane) and outward currents are denoted by negative

and positive values, respectively. The inward currents cause membrane potential to
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increase (depolarization), whereas the outward currents cause membrane potential
to decrease (repolarization). It shows that, the very large sodium current I, is only
present in the periphery cell, and the other currents in the periphery cell are quite
larger than those in the center cell. Since Iy, is a fast inward current, the membrane
potential depolarizes quickly in the periphery cell, whereas it depolarizes slowly in

the center cell.

6.1 Effects of Changing Ion Channel Conductances
on Pacemaker Rhythm

In this section, we analyze the Zhang model without the external current (/e = 0.0
pA), which corresponds to the case of a single periphery/center cell. The global
structure of the Zhang model is analyzed by using the bifurcation analysis software
AUTO, where the conductance coefficients c;o, are varied as bifurcation parameters?.
Based on the analysis results, the effects of changing ion channel conductances on

pacemaker rhythm in the two types of cells are investigated.

6.1.1 Omne-parameter Bifurcation Analysis
Sodium Current Iy,

In the Zhang model, the major difference between the periphery and center cells
is the presence or absence of the (very large) sodium current Iy, (which is only
present in the periphery cell). At first, the one-parameter bifurcation diagram of the
periphery cell model as for the sodium current Iy, is shown in Fig. 6.2(a), where cna
is varied as bifurcation parameter. The solid and broken curves show the values of
V of stable and unstable equilibrium points, respectively. The e and o circles show
the maximum values of V of stable and unstable periodic orbits, respectively. The
bifurcation points of Hopf, double-cycle bifurcations are denoted by HB, DC (with
a number), respectively. Periods of several periodic orbits are also shown in the
one-parameter diagram. Figure 6.2(b) shows the period of periodic orbits appeared

in (a).

'Under physiological conditions, the conductance of each ion channel would not be negative or
too large. However, in order to show the global bifurcation structure of the model, we compute for

negative or very large conductance coefficients if necessary.



72

(a) periphery
75
143
50 | ..........".Bé;..o
300 vee o
250 o..‘.. /g
250 Leeee” DCs %
— . -normal (161 msec) R
> [ ’\200 p . 209°°°° pee
E 0 & pe3 " oo
N ° o0o0?
s | 5/DC2 oe0
O/DCI Qi’/,_’/_/_’—_—-_(
] e
-50 L
HBI1 HB2
" 47 l ‘ f T T T T T

-0 00 10 20 30 40 50 60 70 80

®Na
(b) periphery
400
DC3
350 - &l
8350
4 oe
300 23300
g 250 4 S w250
E °© % 200
= 200 o\../ p-normal DC5._ DCé6
£ §pca*eel., 143\%/
a 150 CO)DCI '.'"'.00000.--...¢no-c.00}§\
o
100 4 000027 DC4
HBI B29000000000000000000000°
50 HB2
0 T T T T T T T T

-1.0 00 1.0 2.0 30 40 50 6.0 70 8.0
CNa

Figure 6.2: (a) One-parameter bifurcation diagram of the Zhang model as for the
sodium current Iy, in the periphery cell, (b) periods of periodic orbits appeared in
(a). The bifurcation points of Hopf and double-cycle bifurcations are denoted by HB
and DC (with a number), respectively.

In the normal condition (cn, = 1.0), a stable periodic orbit whose period is about
161 msec (labeled with “p-normal”), coexists with a stable equilibrium point. Since
the membrane potential V' may converge to the stable equilibrium point for specific
initial conditions, such a result is improper for a cardiac pacemaker cell model, and

1t is considered to be one limitation of the Zhang model [30].

For each value of cy, between the double-cycle bifurcation points DC3 and DCA4,
a stable periodic orbit exists and rhythmic action potentials can be generated. When
CNa 18 increased, the periods decreases and the amplitude increases, which means that

the action potential generation become more frequent and intensive. The variation
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of period is large when cy, is decreased from 1.0 (normal value), whereas that is
small when cp, is increased from 1.0. Thus, the parameter sensitivity of pacemaker
rhythm of long period is higher than that of short period. In the left side of DC3
and in the right side of DC4, since only stable equilibrium points exist, the sinoatrial
node (periphery) cell cannot generate rhythmic action potentials continuously and
cannot fulfill the role of cardiac pacemaker.

The similar parameter sensitivity has also been found in the YNI model. That is,
the pacemaker rhythm varies sensitively to the conductance change of In,, and the
sodium channel plays an important role in the action potential generation. However,
the variation range of period in the YNI model is larger than that in the Zhang
model.

Next, Let’s see the effect of the absence of Iy, on action potential generation in
the periphery cell. Compared to the normal condition (¢n, = 1.0), the case of the
absence of In, (cna = 0.0) generates rhythmic action potentials with a longer period
and a smaller amplitude. Such a difference is also shown between the center and
periphery cells (Fig. 6.1). However, the center cell (without Iy,) has a longer period
than the case of Iy, = 0.0 in the periphery cell (325 msec vs. 198 msec). Thus, not
only the (presence or absence of) Ina, but also the other currents are important in

causing the regional difference.

L-type Calcium Current /¢,

Next, we vary the conductance coefficient of the L-type calcium current Ic, 1, (a large
current in both periphery and center cells) as the bifurcation parameter. The one-
parameter bifurcation diagrams are shown in Fig. 6.3 (a) (periphery cell) and (b)
(center cell), and the period of periodic orbits are shown in (c) (periphery cell) and
(d) (center cell).

Similar as the periphery cell, the center cell also has a stable periodic orbit
whose period is about 325 msec (labeled with “c-normal”), and a coexisting stable
equilibrium point in the normal condition (cca 1, = 1.0).

The periphery cell generates rhythmic action potentials (which correspond to sta-
ble periodic orbits) for the values of cca1, between double-cycle bifurcation points
DC1 and DC2, DC3 and DC4. And the center cell generates rhythmic action poten-
tials for the values of cc, 1, between DCI and DC2. The range of the value of ccay in
which periodic action potentials can be generated is very different between the two
cells (please note the different scale of abscissas between (a) (c¢) and (b) (d)). For
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Figure 6.3: (a) (b) One-parameter bifurcation diagram of the Zhang model as for

the L-type calcium current Ic,y, (c) (d) periods of periodic orbits appeared in (a)
and (b).

both the periphery and center cells, the period decreases when CCa,L 18 decreased from
1.0, whereas the period increases and decreases alternately when Cca,L 1S increased
from 1.0. It shows that the pacemaker rhythm is sensitive to the conductance change
of Ic, 1 in both periphery and center cells.

Between the double-cycle bifurcation points DC2 and DC3 in Fig. 6.3(a) and (c),
since no stable equilibrium points and no stable periodic orbits were detected by
AUTO, we also computed the one-parameter bifurcation diagram by numerical sim-
ulations for 9.7 < ¢c,1, < 10.7 (Fig. 6.4). In this diagram, both the local maximum
and minimum values of V for each value of cc, 1 were plotted. Many complicated
variations of membrane potentials are generated between DC2 and DC3. The wave-
forms of membrane potential when cc, 1, = 10.0 and 10.3 show abnormalities in action
potential generation.

The L-type calcium current /¢, 1, is one component of the slow inward current I of
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Figure 6.4: One-parameter bifurcation diagram of the Zhang model as for the L-type
calcium current Ic, 1, by numerical simulations. (b) and (c¢) Abnormal waveforms of

action potentials for two values of cc, 1.

the YNI model (Eq. (3.3)). In the YNI model, the pacemaker rhythm also is sensitive
to the conductance change of I,. However, the period decreases monotonically with

the increase of ¢;. The abnormal action potentials have also been found in the YNI

model.
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6.1.2 Two-parameter Bifurcation Analysis

In the above subsection, we have analyzed the parameter sensitivity of pacemaker
rhythm for each ion channel current solely. In this subsection, we analyze the param-
eter sensitivity on two ion channel currents simultaneously. The bifurcation curves
and contour lines of various periods when two conductance coefficients are varied are

plotted in the diagram to examine the pacemaker rhythm.

L-type Calcium Current Ic,; and Rapid Delayed Rectifying Potassium
Current [k,
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Figure 6.5: (a) (b) Two-parameter bifurcation diagram of the Zhang model as for the
L-type calcium current /¢, 1, and the rapid delayed rectifying potassium current Ix .,

(¢) (d) magnifications of (a) and (b) near the normal value ¢, = 1.0, respectively.

At first, the conductance coefficients of the L-type calcium current Icay, and
the rapid delayed rectifying potassium current Ik, are varied simultaneously. Fig-

ure 6.5(a) and (b) shows the two-parameter bifurcation diagrams of periphery and
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center cell models, respectively. When ck; is fixed to 1.0 and cc,y, is varied, the
results correspond to the “one-parameter” bifurcation diagrams of Fig. 6.3(a) and
(b), respectively. In each two-parameter bifurcation diagram, various periodic orbits
exist in area 1 (surrounded by the Hopf bifurcation curve HB1, 2), which shows
rhythmic action potentials can be generated in the area. However, the rhythmic ac-
tion potentials cannot be generated in area 2, where no stable periodic orbit exists.
In the case of small cc, 1, the change of ¢k, affects the contour lines of periods little,
which corresponds to a weak effect of changing ck, on pacemaker rhythm, whereas
the effect is strong in the case of big cca 1. It shows that, there exists a strong inter-
relation between Ic,1, and Ik ; in the case of big values of cc, 1. In the case of strong
interrelation, we can adjust one ion channel (by referring to the “normal” contour

line) to correct the abnormal pacemaker rhythm caused by another ion channel.

L-type Calcium Current Ic,1, and T-type Calcium Current Ic,t

Next, the two-parameter bifurcation diagrams as for the L- and T-type calcium
currents Ic,1, and o, 1 are shown in Fig. 6.6. In the periphery cell, the bifurcation
curves and contour lines of periods are almost vertical, which mean the conductance
change of Ic, 1 affects the pacemaker rhythm little, and the parameter sensitivity is
low. In the center cell, the conductance change of Ic, 1 affects the pacemaker rhythm
much, and the parameter sensitivity is high. For another calcium current Ic, 1, its
conductance change has a strong effect on pacemaker rhythm in both periphery and
center cells. It shows that, the interrelation between Ic,;, and Ic, 1 is weak in the
periphery cell (because of the weak effect of Ic,r on pacemaker rhythm), whereas it

is strong in the center cell.
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L-type Calcium Current I, and Slow Delayed Rectifying Potassium Cur-

rent [k,
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Figure 6.7: (a) (b) Two-parameter bifurcation diagram of the Zhang model as for the
L-type calcium current Ic,1, and the slow delayed rectifying potassium current /g,

(¢) (d) magnifications of (a) and (b) near the normal value cjon = 1.0, respectively.

Figure 6.7 shows the two-parameter bifurcation diagrams as for the L-type cal-
cium currents Ic,1 and the slow delayed rectifying potassium current Ixs. With
respect to the conductance change of I g, the variation of pacemaker rhythm is little
in the periphery cell, whereas that is large in the center cell. The sensitivities of
the pacemaker rhythm to conductance change are quite different in the two types of
cells.

Moreover, the two-parameter bifurcation diagrams as for I,y and Ixaca (which
are not shown in this thesis) show that the effect of Inaca on pacemaker rhythm is
very weak in both periphery and center cells.

The above results show that the sensitivities of pacemaker rhythm on conductance
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changes of Ic,1, and Ik, are high, whereas those of Icar, Ixs, and Inaca are low.
The above five currents are the components of I; or Ik of the YNI model (Egs. (3.3),
(3.4)). The analysis of the YNI model has shown that I, and Ix have strong effects
on pacemaker rhythm. Moreover, the analysis of the Zhang model shows detailed

information: the /¢, 1 and Ik play major roles in I, and Iy, respectively.

L-type Calcium Current I¢,;, and Hyperpolarization-activated Current I;
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Figure 6.8: (a) (b)Two-parameter bifurcation diagram of the Zhang model as for the
L-type calcium current ¢,y and the hyperpolarization-activated current I, (c) (d)

magnifications of (a) and (b) near the normal value ¢, = 1.0, respectively.

The two-parameter bifurcation diagrams (Fig. 6.8) as for the L-type calcium cur-
rent Ic,1, and the hyperpolarization-activated current J; show that, the bifurcation
curves and contour lines of periods are almost vertical in both periphery and center
cells. It means that the conductance change of I; has a very weak effect on pacemaker

rhythm. The similar results have also been found in the YNI model.
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L-type Calcium Current /¢, and Background Currents

The two-parameter bifurcation diagrams as for the L-type calcium current I¢, 1, and
each background current are analyzed. Figures 6.9, 6.10, and 6.11 show the two-
parameter bifurcation diagrams as for Ic, 1, and Iy na, Icar and Iy ca, Icar and Ik,
respectively. Based on these two-parameter bifurcation diagrams, we can see that the
conductance changes of the three background currents have different effects between
the periphery and center cells: there exist strong effects in the periphery cell, whereas
there exist weak ones in the center cell. Especially for I, na, the effects in center cell
is very strong, it is due to that the Iy, N, is very related to the depolarization in action

potential generation [54].
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Figure 6.9: (a) (b)Two-parameter bifurcation diagram of the Zhang model as for
the L-type calcium current Ic,y, and the background sodium current Iy na, (c) (d)

magnifications of (a) and (b) near the normal value cjo, = 1.0, respectively.
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6.2 Effect of Changing External Current on Pace-
maker Rhythm

In above section, we have only examined the pacemaker rhythm of a single periph-
ery/center cell. Here we consider the case of coupled cells, that is, the external current

Iext is varied to investigate the coupling effect on pacemaker rhythm approximately.

At first, we analyze the relations between the sodium current I Na and the external
current le in periphery cell. The two-parameter bifurcation diagram is shown in
Fig. 6.12. The bifurcation curves and contour lines of periods are almost vertical,
which means the coupling effect on pacemaker rhythm is weak. N amely, whether
in the case of a single cell or coupled cells, the parameter sensitivity of pacemaker
rhythm to the conductance change of sodium channel is similar (a strong parameter

sensitivity). Especially for the values of ¢y, near 0, the parameter sensitivity is very
strong.

Next, the relation between the L-type calcium current Ica 1 and the external cur-
rent Iex: in periphery and center cells are investigated. Figure 6.13(a) and (b) shows
the two-parameter bifurcation diagrams of periphery and center cells, respectively.
As shown in Table 6.1 and Fig. 6.1, the membrane capacitance and the membrane
currents are very different between the periphery and center cells. Thus, the scale

of the ordinate in Fig. 6.13(a) and (b) are adjusted. In the periphery cell, the bifur-
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Figure 6.13: Two-parameter bifurcation diagram of the Zhang model as for the L-
type calcium current Ic,1 and the external current loy.

cation curves and contour lines are almost vertical, which mean that the pacemaker
rhythm is insensitive to the change of I. In the center cell, when I is increased,
the two Hopf bifurcation curves get close to each other, which means the range of
Cca,p of rhythmic action potential generation becomes small. These results show that

the coupling effect on pacemaker rhythm is weak in the periphery cell, whereas it is
strong in the center cell.

85






Chapter 7
Conclusions

The sinoatrial node (cardiac pacemaker) cells generate rhythmic action potentials
spontaneously to initiate the excitation conduction through the heart, and then to
cause the cardiac activity regularly. The pacemaker rhythm in sinoatrial node cells
decides the heart rate. Since the ion channels mainly control the action potential
generation, their abnormalities disturb the pacemaker rhythm, and then the heart
rate. As a result, sinus arrhythmias may be caused. The arrhythmias are usually
treated by applying drugs which have effects on ion channels. Thus, the study on
the relation between ion channels and pacemaker rhythm is necessary for arrhythmia
treatment. In our study, we utilized two typical sinoatrial node cell models: the YNI
model and the Zhang model to investigate the effects of conductance changes of
various ion channels on pacemaker rhythm.

Both the YNI model and the Zhang model are HH-type models which are de-
scribed by nonlinear ODEs with various parameters. We varied ion channel conduc-
tances as bifurcation parameters to analyze the global bifurcation structures of the
two models and then investigated the variabilities of the pacemaker rhythm.

The YNI model is a simple but rather classic model. It considers five ion channel
currents (which correspond to five different ion channels): sodium current Iy,, slow
inward current I, potassium current Ik, hyperpolarization-activated current Iy, and
leak current I;. At first, we varied each ion channel conductance solely to inves-
tigate the one-parameter bifurcation structures and the variabilities of pacemaker
rhythm. For Iy, and I, the increase of channel conductance accelerated the pace-
maker rhythm, whereas for Ik and I, the increase of channel conductance decelerated
the pacemaker rhythm. It was due to the fact that Iy, and I are inward currents,

whereas Ik and I are outward currents. For the above four currents, the high pa-
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rameter sensitivities showed that the conductance changes affected the pacemaker
rhythm strongly. However, for I, the pacemaker rhythm changed little when vary-
ing its channel conductance (a low parameter sensitivity). Thus, the conductance

change of I, had a weak effect on pacemaker rhythm.

Next, we varied two ion channel conductances simultaneously to investigate the
two-parameter bifurcation structures. Based on these analysis results, we examined
the combined effects of changing two ion channel conductance on pacemaker rhythm.
A strong combined effect corresponds to a strong interrelation between the two cur-
rents. It was found that, there were strong interrelations between Iy, and Ik, I, and
I, and a weak one between Iy, and I, (since the conductance change of I, affected
the pacemaker rhythm little). When the two ion channels have a strong interrelation,
we can adjust one ion channel to correct the abnormal pacemaker rhythm caused by

the other one with reference to the two-parameter bifurcation structure.

Moreover, we varied the constant external current Iext of the YNI model to an-
alyze the coupling effect on pacemaker rhythm approximately. The one-parameter
bifurcation diagram as for I, showed that, the pacemaker rhythm was sensitive
to the change of /., and was accelerated by a positive I.. In the two-parameter
bifurcation diagrams as for each ion channel current Iion and I., it was shown that
Ina and Io, I and I, Ix and I, had strong interrelations, whereas Iy, and I
had a weak one. These results meant that the pacemaker rhythm varied sensitively
to the conductance changes of Iy,, I, Ix, and varied insensitively to the conductance

change of I in both a single cell and coupled cells.

The Zhang model is a detailed model. It considers eleven ion channel cur-
rents: sodium current Iy,, L- and T-type calcium currents Icay and I, T, rapid
and slow delayed rectifying potassium current Ik, and Ik g, transient and sustained
4-aminopyridine-sensitive currents I, and Iy, hyperpolarization-activated current
It, and background currents Iy Na, I cas and Iy k; one sodium-potassium pump cur-
rent [,; and one sodium-calcium exchanger curretn Iy,c,. Since the Zhang model
considers the regional difference of sinoatrial node (the difference between the pe-
riphery and center cells of sinoatrial node), we analyzed the bifurcation structure of
the Zhang model for periphery and center cells, respectively. The major difference
between the periphery and center cells is the presence or absence of the (very large)
Ixa, which is only present in the periphery cell. The sodium channel conductance
of periphery cell was varied to investigate the parameter sensitivity of pacemaker

rhythm. When the conductance was increased, the pacemaker rhythm accelerated
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sensitively, which showed a strong effect. For the L-type calcium current /¢, 1, which
is a large current present in both periphery and center cells, the pacemaker rhythm
was also sensitive to the conductance change. However, the ranges of channel conduc-
tance in which rhythmic action potentials can be generated were different between
the periphery and center cells. The periphery cell has a wider range than the center
cell. In both the two types of cells, the L-type calcium conductance changes had
strong effects on the pacemaker rhythm.

Next, we varied two ion channel conductances simultaneously to analyze the two-
parameter bifurcation structures, then to investigate the interrelations between two
channel currents. In both periphery and center cells, Ic,1 and Ik, had a strong
interrelation, whereas Ic, 1, and Iy had a weak one (since the conductance change of
It affected the pacemaker rhythm little). For Ica1, and Icat, Icar and Ik, Ica L and
Iy Nay Icar and Iy ca, Icar and Iyk, the interrelations were weak in the periphery
cell, whereas those were strong in the center cell. For the other membrane currents
of the Zhang model, since I, and I, are not consistently found in experiments [45],
INaca, I, are not ion channel currents, their results are not analyzed in this thesis.

Moreover, we varied the constant external current Ioy of the Zhang model to an-
alyze the coupling effect on pacemaker rhythm approximately. The two-parameter
bifurcation diagrams as for Ina and I (periphery cell), as for Icay and e (pe-
riphery and center cells) showed that the coupling effect on pacemaker rhythm was
small in the periphery cell, whereas that was big in the center cell.

The results on the two models were compared. For the two models, the pacemaker
rhythm was sensitive to the conductance change of In, (although the Zhang model
had a smaller variation of pacemaker rhythm than the YNI model), whereas it was
insensitive to the conductance change of I, or I;. From the simple YNI model, it
was shown that the conductance changes of I, and Ik had strong effects on the
pacemaker rhythm. Moreover, from the detailed Zhang model, it was shown that
Ica1 (one component of I;) and Ik, (one component of Ix) played the major roles
in I and Ik, respectively.

In conclusion, we analyzed the global bifurcation structures of two typical cardiac
sinoatrial node cell models and investigated the effects of changing ion channel con-
ductances and coupling effects on pacemaker rhythm. These results provided helpful
suggestion on arrhythmia treatment, e.g., how to adjust a suitable ion channel to
correct the abnormal pacemaker rhythm caused by another ion channel, although

these suggestion should be confirmed experimentally before clinical application.
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