

Title	Studies on Global Bifurcation Structures and Effects of Changing Ion Channel Conductances on Pacemaker Rhythm in Cardiac Sinoatrial Node Cell Models
Author(s)	Pan, Zhenxing
Citation	大阪大学, 2012, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/26868
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

氏 名	潘 振興 (PAN ZHENXING)
博士の専攻分野の名称	博士 (工学)
学 位 記 番 号	第 25520 号
学 位 授 与 年 月 日	平成 24 年 3 月 22 日
学 位 授 与 の 要 件	学位規則第 4 条第 1 項該当 工学研究科電気電子情報工学専攻
学 位 論 文 名	Studies on Global Bifurcation Structures and Effects of Changing Ion Channel Conductances on Pacemaker Rhythm in Cardiac Sinoatrial Node Cell Models (心臓洞房結節細胞モデルにおける大域的分岐構造とイオンチャネルコン ダクタンス変化のペースメーカー周期に及ぼす影響に関する研究)
論 文 審 査 委 員	(主査) 教授 高井 重昌 (副査) 教授 伊瀬 敏史 教授 舟木 剛 教授 谷野 哲三 教授 白神 宏之 京都大学大学院工学研究科電気工学専攻教授 土肥 伸二 准教授 宮本 俊幸

論 文 内 容 の 要 旨

The sinoatrial node (cardiac pacemaker) cells generate rhythmic action potentials spontaneously to cause the cardiac activity, and the pacemaker rhythm (frequency of spontaneous action potential generation) in sinoatrial node cells decides the heart rate. Since ion channels in cell membranes mainly control the action potential generation, their abnormalities disturb the pacemaker rhythm, and then the heart rate. As a result, a cardiac disease called a sinus arrhythmia may be caused. Thus, the study on the relation between ion channels and pacemaker rhythm is necessary for arrhythmia treatment. Besides physiological experiments (in vivo and in vitro experiments), numerical simulations and analyses (in silico experiments) of mathematical models are also useful for the study.

In this thesis, we utilized Hodgkin-Huxley-type (HH-type) cardiac cell models, which describe the dynamic processes of action potential generation in cardiac cells. We selected two typical sinoatrial node

cell models: the YNI model (Yanagihara et al., 1980), which is a simple but rather classic one, and the Zhang model (Zhang et al., 2000), which is a detailed one and considers the difference between periphery and center cells of sinoatrial node. We analyzed the bifurcation structures of the two models and the variabilities of pacemaker rhythm, and then investigated the effects of changing ion channel conductances on pacemaker rhythm.

This thesis was organized as follows: Chapter 1 introduced the background and purpose of this study. Chapter 2 introduced the cardiac structure and electrophysiology. The action potential generation in different cardiac cells and the roles of various ion channels in action potential generation were explained in detail. Then the sinoatrial node cells and their pacemaker activity were introduced. Chapter 3 first introduced the base model: the Hodgkin-Huxley (HH) model of a squid giant axon, and then listed the developed HH-type cardiac cell models. Next, the YNI model and the Zhang model were explained and compared. Chapter 4 briefly introduced the dynamical system and bifurcation analysis, then analyzed the global bifurcation structure of the HH model. Chapters 5 and 6 analyzed the global bifurcation structures of the YNI model and the Zhang model, respectively. Based on these analysis results, the effects of conductance changes of various ion channels, and coupling effects on pacemaker rhythm were investigated. And also the results of the two models were compared. Finally, Chapter 7 concluded this thesis.

論文審査の結果の要旨

計算機を用いた大規模シミュレーションなど、インシリコ (in silico、計算機上での) 研究が盛んであるが、インシリコ医工学はその代表的研究分野の一つである。本論文は、心臓洞房結節 (ペースメーカー) 細胞の数理モデルを用いることにより、細胞が生み出すリズムやそのパラメータ依存性を、非線形力学系の分岐理論を主たる理論的基盤として、網羅的に解明している。数理モデルや計算機を用いる利点は、生理学実験においては相当な困難や時間を要する実験環境や細胞に関する種々の条件の変更を容易に行なうことができるだけではない。生体は複雑な「システム」であり、それらの諸特性を解明するためには、数理モデルを用いたシステム論的研究が本質的に重要である。心臓は、莫大な数の心筋細胞から構成されている複雑なシステムであり、その動特性を解明するのは容易なことではない。本論文では、心臓リズムの歩調取りを行う細胞、心臓ペースメーカー細胞の電気生理に焦点を当てることで、心臓リズムを乱す因子、乱れたリズムを治療するための種々の医学的知見を得ている。その主要な成果は以下の通りである。

- 1) 心臓洞房結節細胞の古典的かつ代表的なモデルである Yanagihara-Noma-Irisawa (YNI) モデルの動特性、特にリズム調節機序を解析している。このモデルは 7 次元であり、分岐理論の適用対象としては高次元であるが、その様々なパラメータに対する分岐解析に成功している。その結果、細胞の遺伝的・環境的な変異により、ペースメーカー周期がどのように変化し得るかを定量的・網羅的に明らかにしている。特に、これまで定性的にしか理解されていなかったペースメーカー電流の機能的役割を定量的に明らかにしたことの意義は大きい。
- 2) 最近の生理学実験結果を考慮に入れた詳細モデルの中で代表的な Zhang らのモデルの分岐解析を更に多くのパラメータに対して行っている。このモデルは 15 次元であり、上記 YNI モデルとは比較にならないほどの数理的複雑さを持っている。このモデルに対しても、その分岐解析に成功し、YNI モデルでは得られなかつた詳細な知見を得ている。特に、ペースメーカー周期に大きな影響を及ぼすカリウム・カルシウム電流の主要成分がどの電流であるかを解明している。
- 3) 本論文では、既存のソフトウェアを用いて分岐解析を行っているとは言え、非線形力学系における分岐理論の確なしに、このような解析を行うことはできず、また、分岐解析をこのように複雑なモデルに適用した例はほとんどない。したがって、医学的見地のみならず非線形システム論の立場からも重要な結果が得られていると言える。

以上のように、本論文は、心臓ペースメーカー細胞の数理モデルに対して分岐解析を行うことで、そのリズム調節に及ぼす種々の因子の影響を明らかにしており、インシリコ医工学の発展に重要な寄与をする成果を得ている。よって本論文は博士論文として価値あるものと認める。