

Title	粘土の流動機構に関する基礎的及び応用的研究									
Author(s)	s) 松井, 保									
Citation	大阪大学, 1975, 博士論文									
Version Type	VoR									
URL	https://hdl.handle.net/11094/2688									
rights										
Note										

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

粘土の流動機構に関する基礎的および応用的研究

昭和50年4月

松 井 保

目

次

序 論	1
第1編 粘土の流動機構に関する基礎的研究	4
第1章 総 論	5
第2章 粘土の流動機構	8
第1節 概 説	8
第2節 既往の研究	- 10
第3節 Rate process としての粘土の流動	15
第4節 粘土の流動実験および結果	- 19
4.1 実験の目的	
4.2 実験試料	19
4.3 粘度試験	21
4.3.1 実験装置および方法	21
4.3.2 実験結果	21
4.4 ベーン試験	28
4.4.1 実験装置および方法	28
4.4.2 実験結果	31
4.5 三軸クリープ試験	38
4.5.1 実験装置および方法	38
4.5.2 活性化エネルギーおよび結合数の決定法	40
4.5.3 実験結果	43
第5節 粘土の流動機構の検討および考察	47
5.1 粘土サスペンジョンの流動機構	47
5.2 粘土ペーストの流動機構	- 51
5.3 正規圧密粘土の流動機構	- 55
5.4 粘土・水系の流動機構	- 60

5.5 粘土粒子接合点の構造	63
5.6 流動単位の結合力	67
第3章 粘土・水系の流動機構モデル	69
第1節 粘土・水系の統一的な流動機構	
第2節 Heterogeneous processの流動機構	70
第4章 Heterogeneous processの流動機構の検証	73
第1節 目 的	73
第2節 試料 実験装置および方法	73
第3 節 実験結果	76
第4節 考 察	78
4.1 活性化エネルギーと含水比の関係	78
4.2 結合数およびせん断強さと含水比の関係	80
4.3 結合数の分布	
第5章 Heterogeneous process としての統一的な流動機構。	
第1節 統一的な流動機構	
第2節 粘土・水系の結合数とせん断強さの関係	
第6章 粘土の粒子間結合	
第1節 流動単位に作用するせん断力	91
第2節 結合と有効応力	96
第7章 結 論	100
参考文献	102
第2編 軟弱地盤における塑性流動現象に関する応用的研究	105
第1章 軟弱粘土の流動特性の研究	106

第1節 総 説 106

	2節	流動方程式の解析法
	2. 1	概 説
	2.2	パイプフロー試験に対する解析法
	2.2.1	パイプフロー試験における流速分布
	2.2.2	微分法
	2.2.3	積分法
	2.3	ベーン試験に対する解析法
第	3節	軟弱粘土の流動特性
	3.1	パイプフロー試験による軟弱粘土の流動特性
	3.1.1	試料,実験装置および方法
	3.1.2	実験結果および考察
	3.2	ベーン試験による軟弱粘土の流動特性
第	4節	結 論
	参考文	献
第2	章 軟	弱地盤の側方流動による沈下に関する研究
第	1節	総 説
第	2節	軟弱粘土層の塑性流動による沈下の挙動
第	3節	側方流動による沈下量の算定
	3.1	理論解析
	3.2	理論式の検討
第	4節	模型実験による検証 ₋
	4.1	試料,実験装置および方法
	4.2	実験結果および考察
第	5節	結 論
	发艺立	献

第2節 ブラインドシールドの推進力の理論解析	151
2.1 概 説	151
2.2 塑性流動理論による解析	152
2.2.1 周面摩擦力の算定	152
2.2.2 先端抵抗力の算定 ······	153
2.3 塑性変形理論による解析	156
2.3.1 周面摩擦力の算定	156
2.3. 2 先端抵抗力の算定	157
2. 4 限界先端抵抗力	158
第3節 模型実験	159
3.1 目 的	160
3.2 実験装置および試料	160
3.3 実験方法	163
第4節 実験結果および考察	165
4.1 シールド周辺地盤の挙動	165
4.2 ブラインドシールドの推進力	172
第5節 結 論	180
参考文献	182
第4章 軟弱地盤の塑性変形に対する杭のすべり防止効果に関する研究	183
第1節 総 説	183
第2節 塑性変形地盤中の杭に作用する外力の算定理論	184
2.1 概 説	184
2.2 既往の算定法	186
2.3 杭に作用する外力の理論解析	188
2.3.1 塑性変形理論	189
2.3.2 塑性流動理論	195
第3節 算定理論の検討	200
3.1 理論式の特性	200

(4)

		3.2		実	則結	果との比較	· · · · · ·
	第	4 餌	đ	杭	を含	む斜面の安定解析法の検討	
	第	5 貿	đ	斜	面安	定における杭のすべり防止効果	
	第	6 貿	đ	結	論		
		参考	ぎ文	擜			
第	5	章	軟	弱步	也盤。	中の杭に作用するネガティブフリクションに関する研9	Ъ С
	第	1 筤	đ	総	説		
	第	2 筤	đ	既征	主の	研究	
	第	3 貿	đ	杭。	の沈	下によるネガティブフリクションの 減少	
		3.1		理	論的	検討	
		3.2	2	模	型実	験	
		3. 2	2.1	Ģ	実験	装置および方法	
		3.2	2. 2	t,	実験	結果および考察	
		3. 3	3	実i	則例	との対比	
		3, 3	3.1		実測	結果	
		3, 3	3.2	I	βと	k/Sの関係	•
		3.4	ł	単植	犺の	ネガティブフリクションの近似的算定法	
	第	4 貿	ជ	群	抗効	果によるネガティブフリクションの減少	
		4.1		模	型実	験	
		4.2	2	実	験結	果および考察	
		4.2	2.1	1	抗周	面からの排水効果	
		4.2	2. 2	ļ,	芯力	緩和現象と局部せん断破壊現象	
		4.2	2. 3		λε	L/d の関係	
	第	5 徑	ñ	有	很要	素法によるネガティブフリクションの解析 ―	
		5.1		解	玩法		
		5.2	2	計	算例		
		5.3	}	計	算結	果および 考察	

第6節 新	吉 論	 257
参考文商	试	 260
結語・謝辞		 262

序 論

土質力学は応用力学の一分野であるが、本来 material science となり得る学問 である。しかし、土質力学の学問としての体系が整い出したのは Terzaghi が 1925年に Erdbaumechanikを著して以来である。したがって、土質力学は非常に 若い学問であり、現状では未完成の部分も少なくない。また、その体系には多く の不統一点が認められる。たとえば、土質力学で取扱う材料である土は千差万別 で非常に複雑であり、その力学的挙動も非常に複雑となり、これらを統一的に取 扱うことには困難な点が多い。少なくとも、土自身およびその力学的挙動の複雑 性を包括した統一的な学問体系が確立されてはじめて、土質力学がmaterial science として完成する基盤ができることになると思われる。

土質力学の現状を以上のように認識し位置づけることによって,土質力学の今後の進むべき方向性が得られる。すなわち,その方向性の一つは,多種多様な材料を包含した基礎的・統一的・理想的な理念・概念の開発であり,他の一つは応用的・工学的・現象的な手法・データの集積である,

前者の方向性に対しては、非常に基礎的な見地からの研究あるいは他の体系立った学問分野の成果の吸収などが必要となるであろう。このためのアプローチの 一つに微視的な立場からのアプローチがある。最近、この立場から土の力学的挙 動を解明しようとする研究が多く行なわれている。これは、その本質的な機構を 追求することによって、統一的な概念を得ようとする努力である。この意味にお いて、前者の方向性はミクロな方向性ということができる。

一方,後者の方向性に対しては、土に関する諸問題を工学的に解明し、あるい は複雑な現象に対してはそれを現象論的に把握することが必要となるであろう。 この方向性は前者のそれに対応してマクロな方向性ということができる。

以上のミクロおよびマクロな方向性において得られた成果を互に対応させ、あ るいは互にフィードバックさせることにより、土質力学が次第に発展して行く、 そして、これら2種の方向性が一体化し統一的な体系にまとめ上げられたとき、 土質力学は応用力学の一分野として完成し、material science としての基盤が確 立するものと著者は信ずる.

しかし、現状において、2種の方向性に対して多くの成果を得、かつそれらを

- 1 -

ただちに関連づけることには多くの困難が伴う。したがって、まず第1歩として 2種の方向性を別個に追求することから始め、それらを関連づけ一体化すること は将来の問題として残されることもやむを得ないと考える。

この研究は、以上の観点に立脚して土質力学を進展させるための第1歩ともい うべきものである。ここでは、主なテーマとして軟弱地盤の塑性流動現象が取上 げられている。なぜならこの現象の中に現在の土質力学の不備・不統一点が数多く内 在しあるいは露見しているからである。たとえば、この現象の一般的な特徴は変 形が比較的大きく、応力の極限値が明確でないことおよび時間の効果が比較的顕 著に影響することである。しかし、Terzaghi 以来の土質力学における応力的・ 極限的な取扱いのみでは、自ら限界があると言わねばならない。また、土・水系 として軟弱地盤を見たとき、この力学的挙動は流体的なサスペンジョンと固体的 な土の中間的な挙動を示す。これらの広範なコンシステンシー状態の土・水系の 力学的挙動が統一的に取扱われていない現在、軟弱土の力学的挙動、言い換えれ はその流動機構の解明は土・水系の統一的な流動機構解明のキーボイントになる と思われる。

本研究の主目的は、ミクロな方向性として、粘土・水系の多様な流動現象の微 視的機構を統一的に解明すること、およびマクロな方向性として、軟弱地盤にお ける塑性流動現象に関する工学的な諸問題を現象的に解明することにある.

第1編では、ミクロレオロジーの立場から粘土の流動機構に関する基礎的研究 を行なう、まず、Eyring らによって提案された rate process 理論で仮定される 微視的機構を粘土粒子間の微視的構造と対応させる。そして、代表的な粘土。水 系の流動機構を明確にするとともに、広範なコンシステンシーをもつ粘土・水系 の多様な流動現象の本質的な機構を解明し、これらの現象を統一的に取扱う。さ らには、rate process 理論にもとづいた微視的機構が粘土。水系の一般的な変形 時における粘土粒子間の物理化学的な相互作用に関する一般的な概念となる可能 性について検討する。また、以上に得られた粘土・水系の微視的機構から、圧密 粘土の一般的な巨視的挙動を検討することによって、ミクロな方向性から得られ た成果をマクロな方向性のそれと関連づけることを試みる。

第2編では、軟弱地盤における塑性流動現象に関する応用的研究を行なう。第 1章においては、第1編のミクロレオロジーの立場とは異なりマクロレオロジー

- 2 -

の立場から,軟弱粘土の流動特性を明らかにする.第2章においては,軟弱地盤 の塑性流動の機構および側方流動による沈下量の算定法についてマクロレオロジ ーの立場から検討を加える.第3章においては,ブラインドシールドの推進力発 生のメカニズムおよびシールド周辺地盤の挙動を解明するとともに,シールド推 進力の算定法を確立する.第4章においては,地盤の塑性変形に対する杭のすべ り防止効果のメカニズムを明らかにし,塑性地盤中の杭に作用する外力の算定法 および杭を含む斜面の安定解析法を提案する.第5章においては,杭に作用する ネガティブフリクションの発生機構およびその算定法について理論的実験的に検 討し,また有限要素法によるネガティブフリクションの解析法を示す.

.

第 1 編

粘土の流動機構に関する基礎的研究

第1章 総 論

ある定まった含水量での土の物理的状態はコンシステンシーと呼ばれる.コン システンシーとは土の流動に対する抵抗であり、したがって土のレオロジー的挙 動の指標である.明らかに、コンシステンシーは個々の粒子間のまたはそのアグ リゲート間の相互作用に関係している.粘土のレオロジー的挙動はコンシステン シーの変化とともに変化する.すなわち、高含水量では粘土。水系(clay-water system)はサスペンジョン(懸濁液)であり、液体としての流動性をもつ.含水 量が次第に減少するにつれて、非ニュートン流動の粘非弾性的挙動からビンガム 流動のような塑性的な挙動を示し、粘土・水系はペースト状となる.含水量がさ らに減少すると、非ビンガム流動のような塑性的な、あるいは粘弾性的な複雑な 挙動を示し、ついには弾性的な固体としての性質を示すようになる.

一般に、材料の変形流動を応力-ひずみ-時間の関係について系統的に分類すれば、図-1.1.1のごとくである¹⁾ ここで、7はせん断ひずみ、1は時間、

図ー1.1.1 変形流動の分類

dγ/dt はひずみ速度であり、実線は応力を加えた状態である.とくに上段の図に

おいて,実線は応力一定の場合,点線は応力を除去した後の経過を示す.

以上のように、粘土・水系は広範なコンシステンシー状態において種々の流動 現象が見られる.現在、これらの多様な流動現象を系統的に取扱うアプローチの 一つに力学モデルがある.ある現象を現象論的に把握する場合、力学モデルは非 常に有力な手法である.いままでこのような立場から多くの研究が行なわれ、す でに多数の成果が得られている.しかし、本来力学モデルは現象そのものの本質 的な機構を追求するものではない.したがって、力学モデル的な研究のみからは 広範なコンシステンシー状態の粘土・水系の流動機構に関する統一された概念は 得られない.このことは、液体状から固体状に至る広範なコンシステンシー状態 の粘土・水系全体が数個の力学モデルで表現されねばならない²⁾ ことからも証明 される.

Lambe³⁾, Mitchell⁴⁾, Tan⁵⁾, Rosenqvist⁶⁾ らの研究によって粘土構造の実在性が 確認されて以来,粘土の微視的構造に基づいた概念によって土の本質的な力学的 挙動を説明しようとする努力がなされている.土の微視的な研究は,ある一つの 普遍的概念を抽出しうる可能性を内蔵していると考えられる.なぜなら,ある領 域内の土に外部から巨視的に応力の系が作用したとき,その応答を土の微視的な 状態から理解し,またその微視的な粒子間相互作用を統計的に処理できるからで ある.

粘土の微視的な研究のなかで、粘土粒子の幾何学的な構造に関する研究は、電子顕微鏡の発達にともなって近年急速に進展している.⁷⁾しかし、粘土粒子間の構造、すなわち粘土・水系の粒子干渉のメカニズムは現在十分解明されたとは言いがたい。コロイド科学に基礎をもつ拡散2重層の概念は粘土の膨潤、塑性あるいは水分の保持特性などを定性的に説明するのに有用である。しかし、埋論的な表現としての陽イオンの分布(Gouy-Chapman 理論)の誘導においてなされた仮定には、粘土・水系に適合しない点が多い.⁸⁾とくに、せん断応力下における粘土粒子間の相互作用を定量的に表現することは不可能であると考えられる。

第1編においては、粘土の粒子間構造に着目した微視的立場からのアプローチ として、Eyring ら⁹⁾ によって提案された rate process 理論を塑性流動状態におけ る粘土粒子間の相互作用のメカニズムに適用する。その際、この理論で仮定され る微視的流動機構を粘土粒子間の微視的構造と対応させる。そして、代表的な粘

- 6 -

土・水系の流動機構を明確にするとともに、広範なコンシステンシーをもつ粘土・ 水系の多様な流動現象の本質的な機構を解明し、これらの現象を統一的に取扱う ことを目的としている.

さらには、rate process 理論にもとづいた微視的機構が、粘土・水系の一般的 な概念となる可能性について検討する。また、以上に得られた粘土・水系の微視 的機構から、圧密粘土の一般的な巨視的挙動をも検討しようとするものである。

第 2 章 粘土の流動機構

第1節 概説

粘土。水系の流動現象は非常に多様である.この多様な流動現象を統一的に取扱い,その本質的な機構を解明することが第1編のおもな目的である.この目的を遂行するための理論的根拠として,Eyringら⁹⁾により提唱された rate process 理論が用いられる.この理論で仮定される微視的機構と粘土粒子間の微視的構造 を対応させるという立場から出発する.したがって,粒子間の相互作用を定量的 に評価するために流動に関与する最小単位として流動単位(flow unit)を仮定 する.rate process理論においては,本来,流動単位として原子・分子を考えて いる.著者の立場が rate process理論と実際の機構を対応させることを前提にし ているかぎり,粘土粒子間の微視的な構造を表現する流動単位もまた,当然,原 子・分子のオーダーであると考えねばならない.

さらに、rate process 理論は熱活性化過程の理論であるので、厳密には当然 定常状態の現象を取扱っていることになる。したがって、粘土・水系の流動現象 にrate process 理論を適用する場合には、出来るかぎり定常的な流動現象を取扱 うように努める必要がある。なぜなら、rate process 理論に課せられた条件を出 来るかぎり実際の現象において保持することによって、理論と実際の機構が互に 円滑に対応し、比較し得ると考えられるからである。

一般に、粘土のせん断抵抗力は、巨視的には、3個の成分に分けて考えること ができる.すなわち、粘着成分、摩擦成分およびダイラタント成分である.Lambe¹⁰⁾ によれば、せん断抵抗力の各成分とひずみの関係は図一1.2.1に示すようになる. 粘土のせん断において、ダイラタント成分は他の2成分と比較して無視できるも のではない.しかし、粘土・水系の定常的な流動現象においては、このダイラタ ント成分は比較的小さく無視してもよいのではないかと考えられる.なぜなら、 ひずみが増大するにしたがってダイラタント成分が小さくなり(図-1.2.1参照)、 また前述のように定常的な流動現象のみを取扱っているかぎりにおいてはその間 の土の構造における変化が少ない¹¹⁾ と考えられるからである.

図ー1.2.1 せん断抵抗力の成分

ダイラタント成分が無視できる状態を取扱うことが好都合である。ダイラタント 以外のせん断成分を微視的にみたとき,これを粘着成分と摩擦成分に分ける理由 はなく,両成分とも粘土粒子の吸着水,カチオンの拡散層および粘土粒子間の直 接接触によって生ずると考えられる。

第1編第2章¹²⁾は、粘土・水系の本質的な流動機構が粘土・水系全体としての 種々の流動現象の機構となりうる特性を具備すべきであるという考えに立脚して いる。そこで、代表的な粘土・水系の流動現象として、粘土サスペンジョンのニ ュートン流動および正規圧密粘土の定常クリープのみならず、それらの中間的な コンシステンシー状態をもつ粘土ペーストの定常流動も取り上げる。それぞれの 流動現象に対応して、粘度試験、三軸クリープ試験およびベーン試験を行なう。 前述の基本姿勢に基づき、以上の結果に rate process 理論を適用し、これらの代 表的な粘土・水系の流動機構を明確にする。さらに、広範なコンシステンシー状 態の粘土・水系の流動機構について検討を加える。

第2節 既往の研究

rate process 理論が村山。柴田¹³⁾ によりはじめて粘土のレオロジー的特性の 研究に適用されて以来,多くの研究者により種々の現象への適用を試みられ多く の成果をおさめている、以下にこれらの研究の概要を述べる.

村山・柴田¹³⁾ は粘土のレオロジー的特性を力学モデルで表現することを基本 としている.力学モデルを用いたレオロジー的研究は,従来,バネ,ダッシュポ ットおよびスライダーの3種の単純な要素を組合せた力学モデルで記述する方法 がとられており,粘土の複雑な挙動を多要素模型でおきかえることは数学的取扱 いに複雑さを増すのみで,粘土物性の本質を知る上には必ずしも有利でない.そ こで,粘土の粒子構造に基づく微視的立場からの埋論の展開の必要性を強調し, 粘土の粘性に対して rate process 理論より導かれる構造粘性を導入した.この粘 性をもつダッシュポット,弾性をあらわすバネおよび下限降伏値に相当するスラ イダーを組合せた図-1.2.2のような力学モデルを提案し,この力学モデルを用 いて粘土の種々の挙動を明らかにした.

したがって、村山・柴田の研究は、現象論的にのみ取扱われてきた従来の粘土 のレオロジー的研究に微視的な立場からの粘土物性の本質的な要素を組入れよう とした点に特徴があり、これが評価されるべき点である。しかし、力学モデルの ダッシュポットの粘性にのみ微視的な立場から見た粘土物性の本質的な要素を組 入れても、全体の力学モデルとしてバネとスライダーとが組合されると力学モデ ル全体における微視的機構と粘土物性の本質的な機構との対応が不明確になる。 したがって、粘土のレオロジー特性の現象論的記述の域から完全に脱皮すること ができず、粘土物性の本質的な機構の追求が不可能になっている。

Christensen · Wu¹⁴⁾ は、粘土構造のモデルを仮定し、せん断応力下のクリープ が粘土粒子接合点のスリップの結果であると考え、このスリップの過程がrate process 理論に従うと考えた. すなわち、図ー1.2.3の断面A – A で示される潜 在的破壊面に作用するせん断応力は流動単位間の接合点での結合によって抵抗さ れる.この結合の強さは流動単位が相対的に変位するために必要な力と定義され、 個々の接合点での結合の強さは広範囲に変化すると考えられた.そこで、あるせ ん断応力の下では最初に結合力の弱い接合点に変位が生じ、その接合点に伝えら れていた応力の一部あるいは全部が結合 力の強い接合点へと移動する.全接合点 が負荷に抵抗できるように,全せん断応 力が再配分されると,もはや変位は生じ ない.以上のように,結合の弱い接合点 にスリップが生じ,結合の弱い接合点か ら結合の強い接合点に応力が移動する過 程がクリープであると考えた.

以上の考察に基づいて、結合の降伏強 度の分布関数という概念を導入し、図ー 1.2.4 に示すような力学モデルを用い、 粘土のクリープ挙動を解析した。図中、 $\kappa_1, \kappa_2, \beta$ は力学モデルのパラメーター、 τ_g および τ_f はそれぞれ流動に寄与しな い応力すなわち降伏値以下の応力、およ び流動に寄与する応力すなわち降伏値以 上の応力を表わす。また、rate process 理論は村山・柴田と同様ダッシュポット の粘性に対して適用されている。

この研究においては,流動単位として 分子あるいは粘土粒子を考え,どちらか 一方に限定していない.また,活性化エ ネルギーには粘着成分,摩擦成分ととも にダイラタント成分による寄与も含まれ ていると考えている.したがって,活性 化エネルギー 4F および流動単位平衡位 置間の距離λは粘土固有の値ではなく広 範囲の分布を示すと考えている.以上の ような概念は,第1編第2章第1節で述

図-1.2.2 力学モデル(村山・柴田)

図-1.2.3 すべり面に沿う粒子 接合点の模式図

図-1.2.4 力学モデル (Christensen・Wu)

べた理由によって微視的な機構を検討するための必要条件を満足していない.

Christensen・Wuの力学モデルは、流動単位の個々の接触点において別個の降 伏値が存在するという点で、一つの下限降伏値のみが存在するとした村山・柴田 の力学モデルと異なるだけで、他は本質的にほぼ同じ立場に立っている。したが って、この研究は力学モデルのパラメーターと変形機構の対応においてより微視 的な立場からの追求を意図したにもかかわらず、本質的には村山・柴田の研究と 同様力学モデルによる微視的機構と粘土物性の本質的な機構との対応が不明確に なっている。なぜなら、rate process 理論に基づくダッシュポットの粘性に全体 の力学 モデルとして バネおよび降伏値の概念が組合されているからである。し たがって、厳密に考えれば考えるほど力学モデルがより複雑になり、結局その意 図に反して現象論的記述から脱皮し得ないもどかしさが感じられる。

Andersland・Akili¹⁵⁾ は凍結した粘土のクリープ変形速度への応力の影響を研究した.一定温度で,圧縮強度の2/3以上の応力に対して,軸ひずみ速度の対数 をと軸応力のの間の直線関係を実験的に確認した.したがって,ひずみ速度は高 応力のもとで(exp Bo)の関数として表示でき,一般的には(sinh Bo)の関数 として表示できる.さらに,実験結果より,温度の逆数の対数と応力の間にも直 線関係があるところから,凍結した粘土のクリープもまた rate process 理論に 従うと考えた.実験結果から得られた凍結粘土の活性化エネルギーは,応力が 600 ~ 800 lb/sq. in.,温度が-12 ~ -18 Cの範囲においてほぼ一定で,93.6 kcal/mol であった.したがって,この研究は,凍結粘土のクリープにおいてひず み速度と応力および温度の間の実験的関係が rate process 理論の必要条件を満足 していることを確認していることになる.

Mitchell · Singh · Campanella^{16) 17)} は、強度、圧縮性、変形速度のような測定 可能な量と有効応力、粒子間結合の構造と強度、吸着水の構造と特性、真の粘着 力、真の摩擦力のような簡単に決定できないより基礎的なファクターとの関係が まだ十分に解明されていないという見地に立って、土のクリープ挙動に rate process 理論を適用し、土の粒子間結合の性質とその有効応力および強度との関 係に対して一つの仮説を提案した。

飽和粘土,乾燥粘土および乾燥砂に対するクリープ試験の結果から得られた活 性化エネルギーおよび結合数に関する特徴的な知見は以下に要約される.

(1) 土のクリープの活性化エネルギーは約30~45 kcal/mol である. この値

は他の材料の活性化エネルギーに比して高い値である.

- (2) 活性化エネルギーは飽和粘土に対してほぼ同じ値であり, 圧密圧力, 間げ き比の影響を受けない.
- (3) 粘土と砂の活性化エネルギーがほぼ同じである。
- (4) 正規圧密粘土においては,単位面積当りの結合数と有効圧密圧力とは線形 関係にある.
- (5) 乱さない粘土をリモールドすると単位面積当りの結合数と有効応力はとも に減ずるが、両者の関係は乱さない粘土と同様である.
- (6) 圧縮強度は単位面積当りの結合数に比例する.
- (7) 乾燥粘土のクリープ挙動は飽和粘土のそれと似ている.
- (8) 含水比と単位面積当りの結合数の対数との関係は乾燥粘土から飽和粘土まで全体にわたって線形関係にある.
- (9) 乾燥粘土の単位面積当りの結合数は飽和粘土の約100倍である.
- (10) 過圧密粘土の結合数は同じ有効応力の正規圧密粘土のそれより大きい。
- (11) 粘土の強度は結合数に比例する.この関係は乱した試料,乱さない試料, 正規圧密,過圧密にかかわらず完全に成立する.
- (12) 乾燥砂も粘土と同様な挙動をし、ある有効応力下の結合数もほぼ同様な値である。
- (13) 実験したすべての土に対して強度と結合数の比例関係が近似的に成立する.

以上の結果を検討し、結合、有効応力および強度に対する仮説を提案した.す なわち、1個の流動単位が変位することによって1個の原子あるいは分子間の結 合が破壊することを前提とすれば、結合は土粒子接合点の固体原子間の結合であ る.クリープ挙動は本質的には粒子接合点付近の酸素イオンの緩速拡散過程であ るとするRosenqvistの概念を採用し、流動単位として酸素イオンを考える.した がって、通常の形の水はクリープ挙動には関係せず、土粒子接点は多数の強さの 等しい固体原子間の結合からなり、結合の数は各接点に伝達される圧縮力に依存 する.Terzaghi - Bowden と Tabor による摩擦の凝着理論を土粒子接合点の状態に 適用し、各接合点における結合の数が接触面積に比例すると仮定すると、各土粒 子接点の強さは結合数により広範囲にわたり変化し、ある面に沿う全せん断強さ はその面の結合数に比例することになる.

Andersland · Douglas¹⁸⁾ は粘土サスペンジョンの粘性流動と正規圧密粘土のク リープ挙動に rate process 理論を適用し,活性化エネルギーと流動体積を決定 した、その際,粘土試料としては,吸着イオンをリチウム,ナトリウムおよびカ リウムの3種類に変化させた試料と四塩化炭素により無極性化した試料を用いた. 粘土サスペンジョンの粘性流動については, Brookfield 型粘度計を用い, リチウ ム,ナトリウム,カリウムのイオンを吸着させた種々の濃度の粘土試科について, 温度が 25℃, 35℃, 45℃で粘度を測定した。その結果, 粘土サスペンジョンの 粘度は濃度と吸着イオンの関数であり,リチウムイオンがその有効径が大きいた めにより急速な粘度増加を示す.また,粘土サスペンジョンの活性化エネルギー は,ニュートン流動の範囲では,濃度や吸着イオンに関係なく純水の活性化エネ ルギーと等しい、したがって、粘土サスペンジョンの流動機構は純水のそれであ り,個々の粘土粒子は活性化エネルギーに寄与しないと結論した。一方,正規圧 密粘土の定常クリープについては,リチウム,ナトリウム, カリウムイオンを吸 着させた粘土試料および四塩化炭素と無極性にした粘土試料を3種の圧力で圧密 し、一定温度でクリープ試験を行なった。その結果、活性化エネルギーは約28 kcal/mol で吸着イオンの性質や圧密圧力に関して変化がなかった. また,流動 体積の計算値が1.7 cu Aであった。したがって,結合の機構は吸着水層に関係せ ず、土粒子接合点でイオン結合を形成する粘土鉱物と粘土鉱物の直接結合である と考えた.

Mitchell · Singh · Campanella¹⁶⁾¹⁷⁾ およびAndersland · Douglas¹⁸⁾の研究はと もに定常クリープや粘性流動といった流動現象の本質的な機構を解明しようとし ているのであり、その際、ほぼ同じアプローチによってrate process 埋論を適 用している.すなわち、本来 rate process 埋論で仮定される微視的な流動機構 と土の流動機構との対応において流動時の土粒子接合点付近の機構を推測し、明 確にしようとするものである.このアプローチは、第1編第1章第1節で述べた ように粘土物性の本質的な機構の追求に対して原則的に正しいアプローチである と考えられる.

クリープ挙動における土粒子間結合の機構については、両研究とも、土粒子周辺の水には関係せず土粒子接合点での1次結合であり、固体間の直接接触であると推論している.しかし、現状においてこの推論を断定するに十分な証拠が整っ

ておらず、とくに粘土・水系の本質的な機構を検討しているにもかかわらず、粘土・水系の広範なコンシステンシー状態に対して統一的に扱われていない。わずかに Andersland ・ Douglas によって粘土サスペンジョンの粘性流動について別個に検討されているにすぎない。

第3節 Rate process としての粘土の流動

rate process 理論⁹⁾ により,粘土粒子間の微視的な流動単位の挙動を統計力 学的に評価するため,図ー1.2.5 に示すようなエネルギー障壁を仮定する.応 力の作用していない状態では各エネルギー障壁の高さは等しく,流動単位はエネ ルギー的に平衡状態にある.微視的にみた粘土の流動は,エネルギー的に平衡状 態にある流動単位が隣のエネルギー平衡位置へ移動することとする.このために は,流動単位はエネルギー障壁を乗越えるに要するエネルギーを与えられねばな らない.このような流動単位のエネルギー状態を活性化状態(activated state) という.この時

流動単位はエネ ルギー障壁の最 高点に位置する.

図ー1.2.5 エネルギー障壁

RTに等しく、この熱エネルギーにより流動単位は振動数 kT/h で振動している. したがって、ある瞬間における流動単位のもつ熱エネルギーの値は連続的に変化 していることになる.いま、すべての流動単位のエネルギー分布が Maxwell -Boltzmann の方程式によって決定されるとするならば、ある活性化エネルギー、 すなわちあるエネルギー障壁の高さ以上のエネルギーの分布確率は次式で与えら れる.

$$p \quad (\Delta F) = A \cdot \exp\left(-\frac{\Delta F}{RT}\right) \tag{1.2.1}$$

ここに、 p (AF): AF以上のエネルギーの分布確率
 AF :活性化エネルギー
 R :ガス定数 (1.987 cal/deg·mol)
 T :絶対温度
 A :定数

Glasstone ・ Laidler ・ Eyring⁹⁾ によれば式(1.2.1)の定数 Aはほぼ1 に近い 値であることが示されている。また,流動単位の平均振動数は kT/h であるから 単位時間に流動単位が高さ AFのエネルギー障壁を乗越えるのに必要な熱エネル ギーの分布確率,すなわち活性化確率 ν は次式で表わされる。

$$\nu = -\frac{kT}{h} \exp\left(-\frac{\Delta F}{RT}\right) \qquad (1.2.2)$$

ここに、 k: ボルツマン定数 (1.3805×10^{-16} erg/deg·mol)

h : プランク定数 (6.624×10^{-27} erg · sec)

応力の作用していない状態では,図ー1.2.5 Curve Aのようにエネルギー障壁 はすべての方向に同一の高さであるので,ある方向への活性化確率とその逆方向 への活性化確率が等しい.したがって,流動単位が移動する確率は0となる.結 局,流動単位はたえず熱運動をしてはいるが,全体としては流動・変形を起さな いことになる.

一方, せん断力のような応力が作用する状態では, 図一1.2.5 Curve Bのよう に変形すると考える. すなわち, 流動単位に作用するせん断力をf, 流動単位の

平衡位置間の距離を λ とすると、せん断力の作用方向のエネルギー障壁の高さが ($f\lambda/2$)だけ減少し、反対方向のエネルギー障壁は逆に同一量だけ増加する. したがって、せん断力作用方向のエネルギー障壁の高さは($4F - f\lambda/2$)、反対 方向のそれは($4F + f\lambda/2$)となり、それぞれの方向の活性化確率は次式で表わ される.

$$\overrightarrow{\nu} = \frac{kT}{h} \exp \left[-\frac{(\Delta F - \frac{f\lambda}{2})}{RT} \right]$$
(1.2.3)

$$\overleftarrow{\nu} = \frac{kT}{h} \exp\left[-\frac{(\Delta F + \frac{f\lambda}{2})}{RT}\right]$$
(1.2.4)

したがって, せん断力作用方向の実質的な活性化確率^レ, すなわち流動単位が せん断力作用方向に移動する確率は次式で表わされる.

$$\vec{\nu} = \vec{\nu} - \vec{\nu} = 2 \frac{kT}{h} \exp\left(-\frac{\Delta F}{RT}\right) \sinh\left(\frac{f\lambda}{2kT}\right) \qquad (1.2.5)$$

結局, せん断力が作用することにより流動単位の移動が起こり, 全体として流動 変形が生ずることになる.

以上のように、rate process 理論を適用するにあたっては、流動に関与する 基本機構として流動単位およびエネルギー障壁を仮定し、流動現象をせん断応力 による微視的な流動単位の位置交換の過程と定義している。すなわち、流動単位 の1回の運動距離は粘土の変形の最小量と考えることができる。また、活性化エ ネルギーは流動現象が生ずるために必要なエネルギーであり、流動単位のもつ結 合力の表現である。

つぎに、粘土の変形挙動を巨視的に表現するために、式(1.2.5)で表わされるせん断力作用方向への実質的な活性化確率としての微視的な量と巨視的な粘土のせん断パラメーターとの接続を考える。いま、活性化確率 $\overline{\nu}$ とひずみ速度 \dot{r} を関係づけるパラメーターを frequency factor と呼び、Xとすれば、

$$\dot{\gamma} = X \,\overline{\nu} = 2 \, X \,\frac{kT}{h} \, \exp\left(-\frac{\Delta F}{RT}\right) \, \sinh\left(\frac{f\lambda}{2\,kT}\right) \qquad (1.2.6)$$

て:粘土に作用するせん断応力

S: 微視的すべり面単位面積当りの流動単位数(結合数)

式(1.2.6)は定常流動時の粘土のひずみ速度とせん断応力を関連づける最も基本的な方程式である.

做視的すべり面に垂直な方向の流動単位の平衡位置間の距離を λ_1 とすれば, frequency factor Xは λ/λ_1 となる. Herrin と Jones¹⁹⁾ はアスファルトの挙動に rate process 理論を適用し、 $\lambda < \lambda_1$ はともに流動単位の大きさとほぼ同じオー ダーであるとしている. したがって、Xは1に近い値であるということになる. 定性的に議論すれば、流動単位の微視的な変形挙動を対象にする場合には、 $X \simeq 1$ の近似は成立すると考えられる. しかし、粘土の巨視的な変形挙動を対象とする 場合にも、 $X \simeq 1$ の近似が成立するという保証はない.

この frequeny factor は、Mitchell ら^{16) 17} によれば、変形方向の流動単位数 とエネルギー障壁を乗り越えることによって生ずる平均変位成分の関数で、応力 と時間の関数と考えられている。また、Andersland と Akili¹⁵⁾ によれば、応力、 温度および粘土構造の関数と考えられている。いずれにしても、frequeny factor Xは複雑でその関数関係を明確にできない現状である。そこで、実際に式(1.2. 6)を用いる場合には、 $X \simeq 1$ として近似されることが多い。しかし、これは重 要な factor であるので、この点に関してのちに再び検討を加える。

せん断力の作用によって供給されるエネルギーが熱エネルギーに比して小さい とき、 sinh $(f\lambda/2kT) \simeq f\lambda/2kT$ なる近似が可能であるので,式(1.2.6)より

$$\dot{\gamma} = \tau \frac{X \cdot \lambda}{h \cdot S} \exp\left(-\frac{\Delta F}{RT}\right)$$
(1.2.7)

式(1.2.7)はひずみ速度とせん断応力の比例関係を与えているので, ニュートン流動であり, 粘性係数7は次式で与えられる.

$$\eta = \frac{h \cdot S}{X \cdot \lambda} \exp\left(\frac{\Delta F}{RT}\right)$$
(1.2.8)

一方,粘土の流動に対しては,一般にせん断力の作用によって供給されるエネ ルギーが熱エネルギーよりも大きいと考えられる.したがって, $\sinh(f\lambda/2kT)$ $\simeq (1/2) \exp(f\lambda/2kT)$ なる近似が可能であるので,式(1.2.6)より

$$\dot{\tau} = X \cdot \frac{kT}{h} \exp\left(-\frac{\Delta F}{RT}\right) \exp\left(\frac{\lambda \tau}{2 \, k \, S \, T}\right) \qquad (1.2.9)$$

 λ/S は体積と同じ次元をもつことから流動体積(flow volume) V_f と呼ばれることがある。しかし、その定義から明らかなように、流動単位の体積を表現するものではない。ただし、 $\lambda \simeq \lambda_1$ の場合には近似的に流動単位の占める体積を表現することになる。

第4節 粘土の流動実験および結果

4.1 実験の目的

粘土・水系の流動現象は多様である. この多様な流動現象のうち定常的な流動 現象の代表的なものとして、粘土サスペンジョンのニュートン流動、粘土ペー ストの定常流動および圧密粘土の定常クリープが挙げられる. これらのうち粘土 サスペンジョンのニュートン流動および圧密粘土の定常クリープについては、第 1編第2章第2節で略述したように、rate process 理論を基礎にして取扱われ、 その流動機構がある程度検討されている. しかし、粘土・水系の本質的な流動機 構は、粘土・水系全体としての種々の流動現象の機構となりうる特性を具備すべ きである. 言い換えれば、粘土・水系全体の流動現象を統一的に取扱い、その結 果として粘土・水系の本質的な流動機構が検討されるべきである.

この意味において、粘土サスペンジョン、圧密粘土およびその中間的なコンシ ステンシー状態をもつ粘土ペーストの定常流動の実験を行ない、それぞれの流動 機構を明確にすることが必要となる。実験の内容は、粘土サスペンジョンに対す る粘度試験、粘土ペーストに対するベーン試験および圧密粘土に対する三軸クリ プ試験の3実験である。

4.2 実験試料

実験に用いられた粘土試料は5種類であり、それぞれの試験に対してこのなか から適宜用いる。これらの粘土の名称およびその物性は表一1.2.1 に示す通りで ある。名称には採取地名あるいは粘土鉱物名を用いており、梅田粘土は大阪梅田 付近で採取した貝がらまじりの沖積粘土、千里粘土は大阪千里丘陵付近で採取し

名物性	称	カオリン	梅田粘土	千里粘土A	千里粘土B	ベンナイト
liquid limit	(%)	52.8	57.2	92.6	118.5	325.0
finess number	(%)	52.1		76.9	98.0	274.5
plastic limit	(%)	32.7	29.3	37.7	32.4	29.0
plasticity index	(%)	20.1	27.9	54.9	86 - 1	296.0
specific gravity	(%)	2.69	2.68	2.68	2.68	2.68
clay fraction ($< 2 \mu$)	(%)	60.0	4 .6	43.0	56.9	73.0

表一1.2.1 粘土試料の物性

た洪積粘土で,ともに自然粘土である.カオリン(福島県産)およびベントナイト(群馬県産)はともに市販の粘土である.これらの粘土の塑性指数 Ip は約20~300%の範囲にあり,低塑性の粘土から相当高塑性の粘土まで含まれている.

すべての粘土試料は、水道水を加えミキサーで一度スラリー状態にしてから用いられる.千里粘土Aと千里粘土Bは同一地点で採取された粘土であるが、前者 は後者の状態に乾燥過程が加わる点で異なっている.なお、梅田粘土は貝がらが 混入しているので、840μフルイを通過させたものを用いる.図ー1.2.6 にそれ ぞれの粘土の粒径加積曲線を示す.

4.3 粘度試験

4.3.1 実験装置および方法

粘度試験では粘土サスペンジョンを対象としている. この試験は,粘土・水系のサスペンジョン状態における流動特性を明らかにし, rate process 理論を適用してその活性化エネルギーおよび結合数を決定するために行なわれる.

実験装置としては Brook field 型粘度計(同軸円筒回転型粘度計の一種)を用いる.

粘度の測定は、まず試料を攪拌機で1分間攪拌し、粘度計のローターを浸した 状態で数分間静置する。これは粘度計による温度変化の影響を避けることと粘度 測定中の粗大粒子の沈降に伴う濃度変化を出来るだけ少なくするためである。そ ののち、粘度の測定を開始する。粘度の測定時間は、土粒子の沈降の影響を少な くするためできるだけ短かくする。粘度計の示度が安定するのに、カオリンでは 30 秒以内であるが、その他の粘土では1~2分間必要である。濃度測定は試料 を約100 g とり、これから水分を蒸発させて行なう。

実験はつぎの2ケースについて行なう.

- 実験 I 種々の濃度をもつカオリン,千里粘土Aおよびベントナイトの粘土サス ペンジョンに対して,一定温度(約15℃)のもとで,粘度とせん断速 度の関係を得るための実験。この実験の目的は,粘土サスペンジョンの ニュートン流動を示す限界濃度を求めることにある。
- 実験 I 種々の濃度をもつ千里粘土Bおよびベントナイトの粘土サスペンジョン に対して、一定せん断速度(内筒表面で2.1×10³ sec⁻¹)のもとで、粘 度と温度の関係を得るための実験.ただし、温度は約15℃~50℃の範 囲で変化させる.この実験の目的は粘土サスペンジョンの活性化エネル ギーおよび結合数の決定にある.

4.3.2 実験結果

同軸円筒回転型粘度計における粘性率変数*P*,*V* および粘性係数7 は次式により 表わされる.²⁰⁾

$$P = \frac{M}{2\pi H R_i^2}$$

$$V = \frac{2 Q}{(1 - \frac{R_i^2}{R_o^2})}$$

$$\eta = \frac{P}{V} = \frac{M}{4\pi H Q} \left(\frac{1}{R_i^2} - \frac{1}{R_o^2}\right)$$

$$\left(1.2.10\right)$$

ここに、 R_i および R_o はそれぞれ内筒と外筒の半径、Hは内筒の長さ、Mは内筒 に作用するトルク、Qは内筒の回転角速度である。

実験 I の結果より, 濃度をパラメーターとして P – V 曲線を描けば, 図 – 1.2.7 a), b), c) に示すようになる.もし, 粘土サスペンジョンがニュートン流動を示す ならば、 P – V 曲線は直線で原点を通らなければならない.図-1.2.7 からも分

-22 -

図-1.2.7b) 千里粘土A

かるように、粘土サスペンジョンは、厳密には、相当低濃度までニュートン流動 を示さない.また、この図からニュートン流動と非ニュートン流動の境界を厳密 に決めることは困難である.

しかるに、ニュートン粘性をもつ溶媒(粘性係数 7。)に相互作用のない剛体 粒子が分散したサスペンジョンの粘性係数 7 は理論的に Einstein の式によって表 わされる.²¹⁾ すなわち

 $\eta = \eta_o \left(1 + a^* \phi \right) \tag{1.2.11}$

ここに ϕ は容積濃度, a^* は粒子形状に関する定数で非対称性粒子ほど大きな値を もつ。とくに、粒子が完全な球の場合には a^* は 2.5 となる。式(1.2.11)を変形 して比粘度 $\eta_{sp} = (\eta/\eta_o - 1)$ とおけば、

図-1.2.7 °) ベントナイト 図-1.2.7 P-V 曲線

 $\eta_{sp} = a^* \phi$

(1.2.12)

式(1.2.12)は、粒子間の相互作用のない場合には、 η_{sp} と ϕ が比例関係にある ことを意味する。

図ー1.2.8a)は、実験Iの結果として、 γ_{sp} と ϕ の関係を示す。また、図ー1. 2.8b)は、 γ_{sp} と ϕ の比例限界を求めるため、両対数紙に γ_{sp} と ϕ の関係をプロットしたものである。比例関係は両対数紙では 45°の傾きをもつ直線となる。図ー 1.2.8b)より γ_{sp} と ϕ の比例関係が成立する限界濃度 ϕ_{cr} は、カオリン、千里粘 土Aおよびベントナイトの粘土サスベンジョンに対して、それぞれ $\phi_{cr} = 0.025$ 、 0.029および 0.015 程度であることが分かる。通常、この限界濃度は 0.02 程度²¹⁾ であるといわれているので、これらの値はほぼ妥当な値と思われる。また、それ

- 24 -

図-1.2.8 a)

ぞれの比例定数 a^{*}は約 45,25 および 110 である.Taylor によれば,²¹⁾粘土に対して, a^{*}は 22.5 であるが,粘土の種類によってはそれ以上の値をとることもあることが分かる.

以上のようにして得られた限界濃度 Ø_{er}は、溶媒中に分散した剛体粒子の相互 作用がない限界を意味する。したがって、この濃度が厳密な意味でのニュートン 流動を示す濃度の限界と考えてもよいと思われる。

粘土サスペンジョンのニュートン流動については、式(1.2.8)の両辺の対数 をとれば、次式が成立する.

式(1.2.13)は、粘土サスペンジョンの流動を rate process と仮定すれば、粘度の対数 $\ln 7$ と絶対温度の逆数 1/T の間に線形関係が存在することを意味する.

図ー1.2.9 a) および b) は,実験 I の結果として得られた粘土サスペンジョンの粘度と絶対温度の関係を半対数紙に図示したものである。それぞれ千里粘土 B およびベントナイトの粘土サスペンジョンに対する関係を示している。

千里粘土Bのニュートン流動の限界濃度は千里粘土Aのそれと大きく違わない と思われるので、0.029前後の値をとると思われる.一方、ベントナイトのニュ トン流動の限界濃度は0.015であるが、図一1.2.7 c)から分かるようにゆが 0.025付近になってもP-V関係が近似的に比例関係にあり、その流動がニュー トン流動に近似しているとして取扱うことができると思われる.

以上の観点から図ー1.2.9 を見れば、 log η と 1/T の線形関係が、近似的にニ ュートン流動を示す濃度の範囲において成立することが分かる。結局、巨視的に は、ニュートン流動を示す濃度の粘土サスペンジョンの流動を rate process と判断して もよいと考えられる。また、粘土サスペンジョンの粘度は濃度の増加とともに増加している。

実験結果に式(1.2.13)を適用すれば、活性化エネルギー 4Fと結合数Sを求めることができる.すなわち、 $\log 7 \sim 1/T$ 関係の直線の傾きおよび切片から、

図-1.2.9 a) 千里粘土B

図-1.2.9 b) ベントナイト

図-1.2.9 粘土サスペンジョンの粘度と絶対温度の関係

それぞれ活性化エネルギー *4F* および結合数*S* を求めることができる.粘土サスペンジョンおよび純水に対して,活性化エネルギーおよび結合数と濃度の関係を **表一 1. 2. 2** に示す. この際. えとして 2.7 Å を用いているが,この点に関して はのちに議論される.

4.4 ベーン試験

4.4.1 実験装置および方法
	容積濃度	活性化エネルギー	結合数	
粘土試料	試料 ϕ ΔF (kcal/mol)		$S (cm^{-2})$	
	0.022	3.24	3.46×10 ¹⁴	
千田をトトゥ	0.017	3.33	2.43×10^{14}	
十 Ξ 稻 工 Β	0.012	3.37	1.86×10 ¹⁴	
	0.007	3.27	1.90×10 ¹⁴	
	0.026	3.55	6.69×10 ¹⁴	
	0.016	3.54	3.42×10 ¹⁴	
ヘントナイト	0.012	3.72	1.55×10 ¹⁴	
	0.005	3.72	1.01×1014	
純 水		4.02 0.40×10		

表-1.2.2 粘土サスペンジョンの実験結果

ベーン試験では粘土ペーストを対象としている. ここで,粘土ペーストとは液 性限界付近あるいはそれ以上の含水比を有する練り返された粘土のことを指して いる. ベーン試験には,他のせん断試験と比較して,非常に軟弱な土のせん断お よび大変形のせん断が可能であるという利点がある.したがって,この試験は, 粘土ペーストの定常流動に対して適した試験法であると考えられる.この試験は, 粘土ペーストの流動特性を明らかにし,その特性がrate processとして説明しう ることを示し,その活性化エネルギーおよび結合数を決定するために行なわれる.

実験装置としては室内ベーン試験機が用いられる(写真1.2.1参照). この試 験機は試料置台が回転する型式のもので,モーター,変速機およびギアの組合せ により1.5 deg/sec~0.002 deg/sec の範囲の回転角速度が得られる.トルクの計測 は,ベーン回転軸に固定されたアーム(アーム長可変)とUゲージ(非接着型ひ ずみゲージ,容量1kg,最大変位量0.4 mm)によって行ない,ペンレコーダーに より連続的に記録される.Uゲージの変位量が非常に小さいので,ベーン羽根の 回転変位がほとんど無視できる状態でトルクを計測することができる.また,ア ーム長を変えることによりトルクの最大値が約4~24 kg・cmの範囲に変えること ができる.したがって,試験中常に一定の回転角速度を試料に加えることができ る.ベーン軸は軸受によって支持される構造になっているので,その微小回転に よる摩擦力が働きトル ク測定の誤差の原因と なることが考えられる. この実験に関しては, 予備実験によれば,こ の摩擦力はたかが0.05 g/cdt程度で非常に小さ いことが確認されてい る.ベーン寸法は $D \times$ H(直径×高さ) = 20 × 40 mmで4枚羽根 のベーンを使用した.

粘土試料は梅田粘土, 千里粘土A, 千里粘土 Bおよびベントナイト の4種類を使用する. これらの粘土試料は一 定の含水比を保持する ために密閉容器中に保 存され, チキソトロピ 一による強度増加の影 響を除くために実験毎 に練り返される.この 練り返し時間はあらか

写真 1.2.1 室内ベーン試験機

じめ予備実験で求められるものである.

実験の手順は,試料にベーンを挿入し,そののちベーン挿入による乱れの影響 を除いて試料の均一性を高めるために一定時間(約30分)放置し養生する.そ して,一定回転角速度でベーン試験を行なう.含水比測定は試験の前後で2回行 なう.なお,実験は20℃の恒温室で行なう.

4.4.2 実験結果

せん断応力の算定には次式で表わされるCadlingの式²²⁾を用いる。

$$\tau = \frac{M}{\pi D^2 \left(\frac{H}{2} + \frac{D}{6}\right)}$$
(1.2.14)

ててに

て:円筒面に作用するせん断応力

M: $h \mu \phi$ D:ベーンの直径 H:ベーンの高さ

式(1.2.14)において、ベーン上下端面のせん断応力分布は矩形分布とし、円 筒側面および上下端面に作用する応力はほぼ等しいと考えている。また、式(1. 2.14)は本来最大トルクの算定に用いられるものであるが、ここでは便宜上せん 断全般にわたって式(1.2.14)によってせん断力の算定を行なっている。

図-1.2.10 ベーン回転角とせん断応力の関係

図-1.2.11 a) 梅田粘土

図ー1.2.10 は梅田粘土のベーン回転角 θ とせん断応力τの関係をベーン回転角 速度のをパラメーターとして例示したものである.この図から判断すれば、一定の 回転角速度に対応するせん断応力は厳密には必ずしも一定にならない.しかし、 軟弱な粘土は当然塑性的な性質が強く、せん断応力のピークは非常にゆるやかな ので、近似的にピーク値をこれに対応させてもほとんど誤差を伴わないと考えら れる.

図-1.2.11 b) 千里粘土A

図-1.2.11 a), b), c) および d) は, それぞれ梅田粘土, 千里粘土A, 千里粘土B およびベントナイトの粘土ペーストに対して, 含水比をパラメーターとして回転角速度とせん断応力(ピーク値)の関係を示している. これらの図から明らかなように, 回転角速度とせん断応力の間には半対数紙上で直線関係が存在していることが分かる. Karlsson²³⁾は, 種々の粘土に対して1~1×10² deg/secの回転角速度の範囲で, 同様の直線性を確認している. したがって, 粘土ペースト

図-1.2.11c) 千里粘土B

の流動特性, すなわち回転角速度とせん断応力の関係が次式で表現できる.

 $\log \omega = a \tau - b \tag{1.2.15}$

ここに、 *a* および *b* は定数である.式(1.2.15)は、ベーン回転角速度の対数 とせん断応力の間に直線関係があること、言い換えれば粘土ペーストの流動特性 を2個の定数(流動パラメーター)により決定できることを意味している.

図-1.2.11 d) ベントナイト 図-1.2.11 回転角速度とせん断応力の関係

図ー1.2.12 a), b), c) および d) は, それぞれ梅田粘土, 千里粘土A, 千里粘 土B, ベントナイトに対して, これらの流動パラメーター a および b と含水比の 関係を図示したものである.

式(1.2.9)において、せん断パラメーターとしてひずみ速度方の代りに回転 角速度のをとると、次式が得られる.

$$\omega = X' - \frac{kT}{h} \exp\left(-\frac{\Delta F}{RT}\right) \exp\left(-\frac{\lambda \tau}{2 k S T}\right)$$
(1.2.16)

図-1.2.12 a) 梅田粘土

ここに、X'はせん断パラメーターとして回転角速度をとる場合の frequency factor である。X'はXからの類推よりほぼ1 と仮定されるが、重要な factcor であるのでのちにさらに検討を加える。式(1.2.16)の両辺の対数をとり、常用対数に変換すると、次式が得られる。

$$\log \omega = \left(\frac{\lambda}{4.606 \ kST}\right) \tau - \left[\frac{\Delta F}{2.303 \ RT} - \log \left(X' - \frac{kT}{h}\right)\right]$$
(1.2.17)

式(1.2.15) および式(1.2.17)を比較すると、両式は同一の形で表現されている。これは粘土ペーストの流動が式(1.2.17)で表現できることを示している。したがって、粘土ペーストの流動が rate process であると解釈してもよいことになる。式(1.2.17)は式(1.2.15)の流動パラメーター a および bの内容を具体的に表現している、すなわち、

- 36 -

図-1.2.12 b) 千里粘土A

$$a = \frac{\lambda}{4.606 \, k \, S \, T} \tag{1.2.18}$$

$$b = \left[\frac{\Delta F}{2.303 R T} - \log \left(X' - \frac{kT}{h}\right)\right]$$
(1.2.19)

したがって, 流動パラメーター a は λ の値が既知とすれば, 微視的すべり面単位 面積当りの結合数 S を表現し, 流動パラメーター b は活性化エネルギー dF を表 現していると考えられる.

表-1.2.3 は、式(1.2.18) および式(1.2.19) を用いて得られた含水比と 活性化エネルギー dF,結合数Sおよびせん断強さ τ_f の関係を表示したものであ る.この際、 λ としては 2.8 Åを用いているが、このことについてはのちに議論 される.得られた活性化エネルギーは 23 ~ 36 kcal/mol の範囲にある。この値 は今までに種々の粘土について求められた活性化エネルギーの値(23 ~ 45 kcal /mol)の範囲にあり、その妥当性がうかがえる。

- 37 -

図-1.2.12 c) 千里粘土B

4.5 三軸クリープ試験

4.5.1 実験装置および方法

三軸クリープ試験では非排水状態の正規圧密粘土を対象としている。非排水三 軸クリープ試験を行ない, rate process 理論を適用して正規圧密粘土の活性化エ ネルギーや結合数を決定するために行なわれる。

実験装置としては Geonor 社製の N.G.I.型三軸試験機を用いる.

実験試料はカオリンおよび千里粘土Aを用い,液性限界以上の含水比で十分練返され,供試体作製用大型圧密装置により圧密圧力約0.7kg/cmで再圧密される. そののち,膨潤させたものを保存容器中で乾燥しないように保存する.この試料から直径3.85 cm,高さ8 cmの円柱形供試体を成型し,三軸セルにセットし,一

定温度(約20℃)で圧密非排水三軸クリープ試験を行なう. 圧密圧力は 1,2 お よび 3 kg/cmで圧密時間はいずれも 24 時間である.

クリープ試験の方法はAndersland ら¹⁸⁾ が行なったと同様の方法で行なう.すな わち,初期クリープ荷重を載荷し,ほぼ定常クリープに移行したのち一定増分荷 重を付加する.荷重増分は約30分の間隔で載荷される.実験は2種類で,一つ は初期クリープ荷重を載荷し,そののち1段階の荷重増分を載荷する実験である. 他は,応力レベルによる影響を検討するため,応力レベルの小さい初期クリープ 荷重を載荷し,そののち何段階にもわたって荷重増分を載荷する実験である.前 者は圧密終了後2回荷重増加させるのでDouble Increment 試験(DI-Test), 後者は圧密終了後数回荷重増加させるのでMulti-Increment 試験(MI-Test)と 称する.クリープ終了後含水比を測定する.

千里粘土Aに対して、等方圧密圧1,2,3kg/cmのDI-Test およびMI-Test の両

	含水比		活性化エネルギー	結合数	せん断強さ
粘土試料	w (%)	w / F	ΔF (kcal/mol)	$S (cm^{-2})$	τ _f (9∕cnt)
	67	1.17	28. 3	2. 88×10^8	1. 42×10^{1}
梅田粘土	74	1.29	30.6	1. 42×10^8	8. $66 \times 10^{\circ}$
	83	1. 45	29.6	0. 75×10^{8}	4. $38 \times 10^{\circ}$
千里粘土A	115	1.50	27.5	0. 71×10^{8}	3. $25 \times 10^{\circ}$
	129	1. 68	24.9	0. 56×10^{8}	1. $80 \times 10^{\circ}$
	166	2, 16	23. 3	0. 18×10^{8}	4. $25 \times 1\overline{0}^{1}$
千里粘土B	119	1. 21	28. 2	2. 04×10^{8}	9. $88 \times 10^{\circ}$
	129	1. 31	29.0	1. 48×10^8	7. $80 \times 10^{\circ}$
	142	1. 44	27.7	0. 96 \times 10 ⁸	4. $43 \times 10^{\circ}$
	147	1. 49	30.0	0. 63×10^8	3. $60 \times 10^{\circ}$
	165	1. 68	24.6	0. 60×10^{8}	1. $82 \times 10^{\circ}$
ベントナイト	254	0.93	36.0	3. 79×10^8	3. 35×10^{1}
	305	1.11	33. 2	2. 73×10^8	2. 02×10^{1}
	382	1. 39	30.5	1. 54×10^8	9. $50 \times 10^{\circ}$
	460	1. 67	24. 1	0. 64×10^{8}	1. $75 \times 10^{\circ}$

表-1.2.3 粘土ペーストの実験結果

方の試験を行ない,カオリンに対して,等方圧密圧?,3kg/cfdのDI-Testのみを 行なう.

4.5.2 活性化エネルギーおよび結合数の決定法

三軸クリープ試験により活性化エネルギーおよび結合数を決定する方法として は、Andersland らの方法¹⁸⁾のほかに、Dorn の方法¹⁷⁾やMitchell らの方法¹⁷⁾が一 般に用いられている.

Dorn の方法と Mitchell らの方法には本質的な相違はなく、いずれも一定の軸 差応力 D_1 ,一定温度 T_1 で定常クリープさせ、軸差応力を一定に保ったままで温 度を瞬間的に T_2 に上昇させる。この温度変化の前後におけるクリープひずみ速 度 *ɛ*₁ および *ɛ*₂ を測定し,活性化エネルギーを決定するのである.

すなわち、Mitchellらの方法では、式(1.2.9)を以下のように変形する. Nをアボガドロ数(6.02×10²³)とすると、k = R/Nで表わされることに注目し、実験的活性化エネルギー(experimental activation energy)Eを次式で定義した.

$$E = \varDelta F - \frac{f \lambda N}{2} \qquad (1.2.20)$$

式(1.2.20)を式(1.2.9)に代入すると、

$$\dot{\gamma} = X \frac{kT}{h} \exp\left(-\frac{E}{RT}\right)$$
(1.2.21)

もし, XおよびEが温度に無関係ならば, 式(1.2.21)は次式のように変形さ れる.

$$\frac{\partial \ln\left(\frac{\dot{\epsilon}}{T}\right)}{\partial\left(\frac{1}{T}\right)} = -\frac{E}{R}$$
(1.2.22)

したがって、もし同じ供試体に一定応力で温度の異なるクリープ試験を行なうと、 ln(ϵ/T)と1/Tの関係が直線になり、その傾きからEが求められることになる。 一方、Dornの方法では、式(1.2.9)より温度変化の前後で次式が成立する。

$$\dot{r}_1 = X \frac{k T_1}{h} \exp\left(-\frac{\Delta F}{R T_1}\right) \exp\left(-\frac{\lambda D_1}{4 k S T_1}\right)$$
 (1.2.23)

$$\dot{\gamma}_2 = X \frac{kT_2}{h} \exp\left(-\frac{\Delta F}{RT_2}\right) \exp\left(-\frac{\lambda D_2}{4 k S T_2}\right) \qquad (1.2.24)$$

式(1.2.23)および式(1.2.24)より $D_1 = D_2$ だから、

$$E = \Delta F - \frac{\lambda R D_1}{4 k S} = \frac{2.303 R T_1 T_2}{T_2 - T_1} \log \frac{\dot{\gamma}_2 T_1}{\dot{\gamma}_1 T_2} \quad (1.2.25)$$

式(1.2.25)より Eを決定する.

これらの方法で得られる Eの値は,式(1.2.20)からも分かるように,活性 化エネルギー AFとは異なり応力に依存する量である。したがって,2つ以上の 軸差応力で実験を行ない,外挿によって軸差応力D=0すなわちf=0のときの Eの値として活性化エネルギー AFが決定されることになる。 **つぎに**, Mitchell らによる結合数の決定法については,式(1.2.9)を変形す れば,次式が得られる.

$$\dot{\gamma} = K(t) \exp(\alpha D) \qquad (1.2.26)$$

 $\zeta \subset i\zeta, \quad K(t) = X - \frac{kT}{h} \exp\left(-\frac{\Delta F}{RT}\right)$ $\alpha = \lambda/4S kT$

ある応力レベルの範囲で $\log \dot{r} \ge D$ の間に直線関係があるので、その直線の勾配 として α が得られる.さらに、 λ が与えられれば式(1.2.26)より結合数が得 られることになる.

一方, Andersland らの方法は, Dorn や Mitchell らの方法のように温度を変化 させるのではなく,温度一定で軸差応力を変化させる方法である.すなわち,あ る軸差応力下で定常クリープに達したとき軸差応力を増加するようなクリープ試 験を行なう.式(1.2.9)において,両辺の対数をとれば次式が成立する.

$$\ln \dot{r} = \ln \left(X \cdot \frac{kT}{h} \right) - \frac{\Delta F}{RT} + \frac{\lambda \tau}{2 \, k \, S \, T} \qquad (1.2.27)$$

ひずみ速度が応力増加により変化するならば,式(1.2.27)より応力増加前後 において次式が得られる.

$$\ln \dot{\tau}_{1} = \ln \left(X \cdot \frac{kT}{h} \right) - \frac{\Delta F}{RT} + \frac{\lambda \tau_{1}}{2 k S T}$$
(1.2.28)

$$\ln \dot{\tau}_2 = \ln \left(X \cdot \frac{kT}{h} \right) - \frac{\Delta F}{RT} + \frac{\lambda \tau_2}{2 k S T} \qquad (1.2.29)$$

ここに、 τ_1 および τ_2 はそれぞれ応力増加前後のせん断応力、 \dot{r}_1 および \dot{r}_2 はそれぞれ応力増加前後のひずみ速度である。式(1.2.28)および式(1.2.29)より

$$\ln\left(\frac{\dot{r}_{1}}{\dot{r}_{2}}\right) = (\tau_{1} - \tau_{2}) \frac{\lambda}{2 \, k \, S \, T} \qquad (1.2.30)$$

式(1.2.30)によって($\lambda/2 kST$)を決定し、この値を式(1.2.28)あるい は式(1.2.29)に代入して、活性化エネルギー ΔF を決定することができる、 また、結合数Sは λ が与えられれば同時に得られる。 Dorn の方法および Mitchell らの方法ではともに 瞬間的に 試料 温度を 所定の 値 に変化させる必要がある.しかし,実際の実験では 変化した 温度が 所定の 値に 落 着くまでにある時間が必要であり,瞬間的に 温度を変化させるのは 不可能である. この 点を補うためには,クリープひずみ 速度を外挿によって決定しなければなら ない.さらに,これらの方法で問題となるのは 温度上昇に伴う粘土の構造変化で ある.活性化エネルギー *AF*の決定においては,温度変化の前後で粘土構造が変 化しないものと 仮定されている.この 仮定は,金属やプラスティックにおいては 極端な 温度差の 場合を除いて 満足されるが,粘土・水系のような 2相系では 温度 上昇に伴う間げき水圧の上昇が生じ,粘土構造を乱すおそれがある.

一方, Andersland らの方法では瞬間的に軸差応力を増加させるので実験的に可能 である.しかし、この方法では応力増分載荷によって生ずるひずみの初期の部分 には弾性ひずみ成分が伴うので、クリープひずみ速度の決定にはやはり外挿法に よらなければならない.また,粘土構造についても応力増分載荷による間げき水 圧の上昇による乱れが考えられる.

したがって、いずれの方法によるにしても瞬間的に変化させる温度増分あるい は軸差応力増分をある程度小さくすることによって、その変化前後の試料の状態 が近似的に同じであるとして扱うことになる.第1編第2章においては,Andersland らの方法が1個の試料による試験から活性化エネルギーおよび結合数が得られる こと、および応力を変化させる方法の方が温度を変化させる方法より実験的に取 扱い易いという理由でAndersland らの方法を採用する.

4.5.3 実験結果

流動速度方程式 式(1.2.6)における sinh($f\lambda/2kT$)を exp($f\lambda/2kT$)で近 似するためには, ($f\lambda/2kT$)>1.0であることが必要である.すなわち, ($f\lambda/2kT$)> 2kT)> 1.0の条件のもとに式 (1.2.9)が成立する.前項4.5.2に述べた活性化エネ ルギーおよび結合数の決定法はすべて式(1.2.9)を基本としているので、これらの決定 法に従うかぎり, この条件を満足しておらねばならない. Mitchell ら¹⁷⁾によれ ば,応力レベルが強度の25%以上の場合にはこの条件が満足され, sinhを exp で近似できる.すなわち,式(1.2.9)が成立する.一方,応力レベルが強度の 80 %を越えると破壊に近くなりひずみ速度が急速に加速されるので、式(1.2.9)で示 される log $\dot{\gamma} \sim \tau$ の直線関係が成立しなくなることが実験的に確認されている、¹⁷⁾

図ー1.2.13はMI – Test のひずみと時間の関係を一例として示したものであ る.図ー1.2.14はこの場合のひずみ速度の対数と応力レベルの関係である.こ の図より応力レベルの25~80%の範囲ではほぼ直線関係が成立していることが 分かる.図ー1.2.15は、図ー1.2.13のMI – Test に対して、ひずみ速度の対数 とひずみの関係を図示したものであり、明らかに両者の関係に直線性が認められ る.この直線性は、応力増分載荷前後のひずみ速度を外挿するために利用される. 応力増分載荷前後のひずみ速度 \dot{r}_1 および \dot{r}_2 が得られると式(1.2.30)を用いて 結合数Sが決定される.また、式(1.2.28)あるいは式(1.2.29)により活性 化エネルギー ΔF が決定される.

図- 1.2.13 Multi - Increment 試験における軸ひずみの経時変化

MI-Test およびDI-Test に対して,以上のように得られた活性化エネルギ -,結合数およびせん断強さをそれぞれ表-1.2.4に示す. この際, ^入としては 2.8 Åを用いているが,このことについてはのちに議論される.

図-1.2.14 ひずみ速度と応力レベルの関係

_			11	1. 2.		·		*		
		圧密 圧力 σ _c (kg/cm²)	含水比 w(%)	w⁄F	せん断強さ Tf(kg/cm ²)	クリープ応力 (平均値) てc(kg /tm ²)	クリープ応力 レベル てc /Tf	活性化 エネルギー ΔF (kcal/mol)	結 合 数 <i>S</i> (cm ⁻²)	結合数 レベル S/S _m
м	Ŧ	1	62.9	0.82	0.485	$\begin{array}{r} 0.139 \\ 0.203 \\ 0.260 \\ 0.297 \\ 0.321 \\ 0.338 \\ \tau_c / \tau_{f} 0.25 \\ 0.292 \\ 0.390 \end{array}$	0.29 0.42 0.54 0.61 0.66 0.70 -0.800 -0.34 0.45	$ \begin{array}{r} 28 \cdot 2 \\ 29 \cdot 9 \\ 31 \cdot 2 \\ 34 \cdot 9 \\ 33 \cdot 1 \\ 34 \cdot 2 \\ 4F_{\overline{m}} 31 \cdot 9 \\ 29 \cdot 0 \\ 31 \cdot 3 \end{array} $	3.34×10^{9} 4.12×10^{9} 4.49×10^{9} 3.91×10^{9} 4.74×10^{9} 4.63×10^{9} $S_{m} = 4.21 \times 10^{9}$ 6.69×10^{9} 6.90×10^{9}	0.79 0.98 1.07 0.93 1.13 1.10 0.84 0.86
I 試 験	里 粘 土 A	2	56.1	0.73	0.869	$ \begin{array}{r} 0.473 \\ 0.560 \\ 0.648 \\ 0.708 \\ 0.735 \\ 0.748 \\ \hline{\tau_c} / \tau 0.25 \\ \end{array} $	0.54 0.64 0.75 0.81 0.85 0.86 -0.80の译写	31.3 31.7 33.5 34.7 35.2 35.9 4F _m =31.4	8.21×10^{9} 9.15×10^{9} 9.03×10^{9} 9.09×10^{9} 9.17×10^{9} 8.96×10^{9} $S_{m} = 8.00 \times 10^{9}$ 10	1.03 1.14 1.13 1.14 1.15 1.12
		3	52.5	0.68	1.290	$\begin{array}{r} 0.401 \\ 0.521 \\ 0.655 \\ 0.780 \\ 0.879 \\ 0.961 \\ 1.019 \\ 1.068 \\ 1.108 \\ 1.140 \\ 1.167 \\ \overline{\tau_c} / \tau/0.25 \end{array}$	0.31 0.40 0.51 0.60 0.68 0.74 0.79 0.83 0.86 0.88 0.90 -0.800 45	$ \begin{array}{r} 27.2 \\ 28.6 \\ 29.1 \\ 29.7 \\ 32.0 \\ 33.1 \\ 35.1 \\ 36.4 \\ 34.8 \\ 35.9 \\ 32.5 \\ 4F_{m} = 30.7 \\ \end{array} $	$\frac{1 \cdot 26 \times 10^{10}}{1 \cdot 26 \times 10^{10}}$ $\frac{1 \cdot 41 \times 10^{10}}{1 \cdot 58 \times 10^{10}}$ $\frac{1 \cdot 42 \times 10^{10}}{1 \cdot 43 \times 10^{10}}$ $\frac{1 \cdot 43 \times 10^{10}}{1 \cdot 31 \times 10^{10}}$ $\frac{1 \cdot 25 \times 10^{10}}{1 \cdot 45 \times 10^{10}}$ $\frac{1 \cdot 39 \times 10^{10}}{1 \cdot 80 \times 10^{10}}$ $\frac{1 \cdot 38 \times 10^{10}}{5m^{2} 1 \cdot 38 \times 10^{10}}$	0.91 0.91 1.02 1.14 1.03 1.04 0.95 0.91 1.05 1.01 1.30
	千甲	1	61•3 63•9	0.80 0.83	0.485	0.249 0.289	0.51	31.2 28.8	4.32×10 ⁹ 6.27×10 ⁹	
D I	粘	2	55.6 55.9	0.72	0.869	0.308 0.647	0.35	29.6 33.2	$\frac{6.72 \times 10^9}{9.28 \times 10^9}$	
試	A	3	51.8 52.9	0.67	1.290	0.441	0.34	29.0 28.3	$\frac{1.01 \times 10^{10}}{1.77 \times 10^{10}}$	
阙	カオ	2	39.1	0.75	0.919	0.338	0.37	32.4	4.99×10 ⁹	
	オリン	3	38.1 37.4	0.73	1.150	0.509	$\frac{0.44}{0.45}$	29.5 29.2	9.16×10^{9} 9.64×10^{9}	

表-1.2.4 正規圧密粘土の実験結果

図-1.2.15 ひずみ速度とひずみの関係

第5節 粘土の流動機構の検討および考察

5.1 粘土サスペンジョンの流動機構

ニュートン流動領域の濃度をもつ粘土サスペンジョンおよび純水に対して得ら れた活性化エネルギーと容積濃度の関係を図―1.2.16 に示す. この図から分か るように、活性化エネルギーはニュートン流動領域においてほぼ一定で、濃度に 関係しないようである.また、この値は、純水の活性化エネルギーの値(4.02 kcal/mol)と較べると、やゝ小さいがほぼ同じ値と考えてもよいと思われる.こ のことは、ニュートン流動領域における粘土サスペンジョンの流動機構が純水 (自由水)の流動機構とほぼ同一であることを明確に示している.すなわち、個 々の粘土粒子は活性化エネルギーには関与しないと考えられる.これは、

図-1.2.16 粘土サスペンジョンの活性化エネルギーと容積濃度の関係 Andersland · Douglas¹³⁾によって得られた結果とも一致している。以上の結果から、ニュートン流動領域における粘土サスペンジョンの流動の基本機構として自由水と同様水素結合を考えてもよいと思われる。

図ー1.2.9 a)およびb)に示される粘土サスペンジョンの粘度と温度の関係において、 とくに千里粘土Aに顕著に見られる現象であるが、温度が高くなるとプロットが 直線からはずれてくる。これは本質的に自由水のような極性を有する液体のもつ 性質が粘土サスペンジョンに見られることは、その流動機構が自由水の流動機構 と同一であることをさらに示唆していると思われる。また、この傾向がベントナ イトと千里粘土Aでは若干異っているようである。

水のような極性を有する液体では、 log 7 と 1/T の間の関係は直線ではなくわ ずかに曲がることについて考える.液体の活性化エネルギーは2種の成分からな っている.すなわち,液体中に空所を形成するためのエネルギーと分子が空所へ 移動するためのエネルギーである.前者については,液体中にすでに空所が存在 しているから,その空所を分子サイズに拡大するためのエネルギーのみが必要で あり,後者に比し比較的小さい. 水分子は図ー1.2.17 に示す ように水素結合をしている。 水分子が空所へ移動するため にはこの結合を破壊しなけれ ばならない。温度が高くなれ

0.

しかるに,第1編第2章第 4節4.3 で述べたように,活 性化エネルギーおよび結合数 は,それぞれ粘度の対数 ln 7 と絶対温度の逆数 1/Tの線形 関係の勾配および切片から, 次式を用いて求められた.

 $\ln \tau = \ln \frac{h \cdot S}{X \cdot A} + \frac{\Delta F}{R} \left(\frac{1}{T}\right)$

(1.2.13 bis)

表 – 1.2.5 自由水の活性化エネルギー

温度	粘度	活性化エネルギー	
(°C)	(centipoise)	(kcal/mol)	
0	1.795	5.06	
_ 50	0.549	3.42	
100	0.284	2.80	
150	0.184	2.11	

この際, frequency factor Xは1 とおかれた.しかし.第1編第2章第3節で指摘したように、粘土サスペンジョンではXは1 に近い値であろうがその保証はない.

そこで、frequency factor Xの活性化エネルギー ΔF および結合数S への影響 について検討する、活性化エネルギー ΔF は、 $\ln \eta \gtrsim (1/T)$ の線形関係の勾配 から求められたので、式(1.2.13 bis)を参照すれば、Xの影響を全く受けてい ないと考えられる、したがって、上述の活性化エネルギーに関する議論はXの不 明確さにかかわらず成立する、一方、結合数S は、 $\ln \eta \gtrsim 1/T$ の線形関係の切

片から求められたので,式(1.2.13 bis)を参照すれば,Xと比例関係にあることが分かる.したがって,X<1の場合にX=1とおくことによりSは1/Xに大きく見積られることになる.第二編第2章第4節4.3 で述べたように,ニュートン流動を示す限界濃度は粘土粒子の相互作用のない濃度の限界である.また,純水では土粒子の影響が全くないので,X=1としてもよいと考えられる.以上のことから,ニュートン流動領域の粘土サスペンジョンのXは1とオーダー的に異なることはないと推察される.

つぎに、粘土サスペンジョンの結合数と容積濃度の関係を図ー1.2.18に示す. この図から分かるように結合数は容積濃度が高くなるにつれて増加している.前述のごとく、frequency factor Xが1より小さいがオーダー的には違わない場合にX=1とおけば、結合数Sは全体的に数倍程度に大きく見積られていることになる.したがって、ここに得られた結合数の値は少し大きく見積られている可能性はある、

図-1.2.18 粘土サスペンジョンの結合数と容積濃度の関係

また、粘土サスペンジョンの粘度は濃度が高くなるにつれて増加する. 前述の ごとく、活性化エネルギーは濃度によらず一定であるので、粘度の違いは結合数 が異なることに起因すると考えられる. 図-1.2.19は粘土サスペンジョンの粘 度と結合数の関係を示す. 千里粘土Bおよびベントナイトのサスペンジョンに対 して、粘度と結合数の間に比例関係が認められる. しかし、両粘土間では差異が ある. この理由としては、前述の frequency factor Xの値が粘土の種類や吸着イ オンによって多少異なり、結合数の粘度への影響の程度が多少異なることが考え られる.

5.2 粘土ペーストの流動機構

粘土ペーストの活性 化エネルギームFと含 6 h 水比の関係を図ー1.2. viscosity (centipoise) Senri Clay B 5 20 に図示する. ただ Bentonite し、含水比はファイネ 4 スナンバーFで除した 3 値 w/Fで示されている (ただし、梅田粘土に 2 ついては F 値を液性限 1 t=30°C 界で代用している). 図から分かるように, 3 1 2 4 5 6 7 0 8 梅田粘土,千里粘土A number of bonds $x10^{14}$ (cm⁻²) および千里粘土Bの活 性化エネルギーは, w 図- 1.2.19 粘土サスペンジョンの粘度と結合数 /Fが1.15~1.5の範 の関係

囲で,約30 kcal/mol 前後とほぼ一定値をとる. w/F がさらに大きくなると, 活性化エネルギーが次第に減少する傾向が認められる. 一方, ベントナイトの活 性化エネルギーは含水比の増加に伴ってほぼ直線的に減少している. これについ ては, ベントナイトの流動機構が他の粘土のそれと w/F が1 付近で若干異なって

図-1.2.20 粘土ペーストの活性化エネルギーと含水比の関係

いる可能性のあることを示唆しているように思われる. しかし, この差異は重大 なものではないと思われるので, 粘土ペーストの活性化エネルギーは w/F=1.4 付近を境として変化していると考えることができる. 活性化エネルギーは流動単 位の結合力を表現するものである. したがって, w/F = 1.4 以上になると粘土ペ ーストの流動機構に変化が生じ, 流動単位の結合力に何らかの変化が生ずると推 察される.

一方,結合数 S と w/F の関係は 図一 1.2.21 に図示されている. この図より. 結合数 S の対数と w/F の関係は、 w/F が 1 ~ 2 の範囲で,直線関係であること が認められる. これは,状態量のパラメーターとして w/F を選ぶことにより,粘 土ペーストの log S ~ w/F 関係を粘土の種類にかかわらず一義的に表現できるこ とを意味する. ただし,この一義性は、粘土の応力履歴,結合数を求める際の試 験のひずみ速度などが同一の場合に限られると思われる. 粘土ペーストの結合数 が粘土サスペンジョンの結合数より数オーダー低い値が得られている(図一 1.2 18 参照)のは、おもにペーン試験と粘度試験のひずみ速度が大巾に異なること に起因すると思われる.

図-1.2.21 粘土ペーストの結合数と含水比の関係

また、図ー1.2.21 から分かるように、一般に、粘土ペーストの含水比が F 値のときすなわち w/F = 1 のときの結合数は約4×10⁸ cm⁻²、活性化エネルギーの値の変化から粘土ペーストの流動機構の変化が予想される w/F = 1.4 のときの結合数は約1.2×10⁸ cm⁻² であるということができる.

つぎに、frequency factor X'の活性化エネルギーおよび結合数への影響について検討する。結合数および活性化エネルギーはそれぞれ式(1.2.18)および式(1.2.19)を用いて行なわれた。したがって、式(1.2.18)より分かるように、結合数SはX'の影響は受けない。一方、式(1.2.19)より分かるように、活性化エネルギー ΔF は、X' < 1の場合にX' = 1とすることにより、2.303 RT

log X' だけ大きく見積られる可能性がある. しかし, 温度が 20 ℃のとき, もし X' が 1 ではなく $10^{-1} \sim 10^{-2}$ 程度にオーダーが異なる場合でも, *4F* は 1.3 ~ 2.6 kcal/mol 程度大きく見積られているにすぎない. したがって, 粘土ペーストの活性 化エネルギーは図ー 1.2.20 に示された値より幾分小さな値をとることになるが, その量は小さい.

一方、X'はせん断パラメーターとして回転角速度のをとる場合の frequency factor である. このX'とせん断パラメーターとしてひずみ速度 \dot{r} をとる場合の frequency factor X との相違について検討する. 用いたベーン試験機のベーン羽根の寸法

図-1.2.22 粘土ペーストのせん断強さと含水比の関係

図ー1.2.22はせん断強さの対数 $\log \tau_f \ge w/F$ の関係を示す. ここで、せん断 強さは、ベーン試験に用いた回転角速度(約10⁻²~10⁰ deg/sec)の平均的な値 として、 $\omega = 10^{-1}$ deg/sec 時の値を用いている. この図から、一般に圧密粘土 において認められていると同様、 $\log \tau_f \ge w/F$ の直線関係が存在することが分 かり、状態量のパラメーターとして w/Fを選ぶことによる一義性が再び確認 できる. この直線関係と図ー1.2.21 において $\log S \ge w/F$ の間に直線関係が存在する ことを考え合せると、S $\ge \tau_f$ の間に比例関係 が存在することが推察される. また、式(1.2.17)において、AFおよび ω を一定とすれば、S $\ge \tau_f$ の間に比 例関係が存在するはずである。図ー1.2.23は、ベーン試験により得られた粘土 ペーストのせん断強さと結合数の関係を図示したものである. ベントナイトにつ いてはややはずれるが、種々の粘土ペーストに対して S $\ge \tau_f$ の間の比例関係が 確認できる.

5.3 正規圧密粘土の流動機構

活性化エネルギーおよび結合数への応力レベルの影響を検討する. 図一1.2.24 および図ー1.2.25 は、三軸クリープ試験のMI-Test の結果から得られた応力レ ベルと活性化エネルギーおよび結合数の関係をそれぞれ図示したものである. こ の場合の応力レベルは圧縮強さとクリープ荷重の比で表わし、結合数は、応力レ ベルが強度の 25 ~ 80 %間のときの平均の結合数 S_m で除して、結合数レベルS $/S_m$ として示している.

図-1.2.23 粘土ペーストのせん断強さと結合数の関係

これらの図から、活性化エネルギーおよび結合数がどちらも応力レベルの増加とともに やや増加する傾向が認められる。しかし、この増加は急激なものではない、前述のように、 応力レベルの小さい領域および大きい領域では rate process 理論による基本式、 すなわち式(1.2.9)が成立しない。そこで、応力レベルが圧縮強さの25~80 %の領域についてみると活性化エネルギーは $\Delta F = 28 ~ 35 \text{ kcal/mol}$,結合数は $S/S_m = 0.79 ~ 1.14$ である。前者は平均値の±10%、後者は±20%程度の 範囲にあり、それぞれ近似的に一定と見なすことができる。また、応力レベルが 高い場合、とくに応力レベルが90%程度になっても活性化エネルギーや結合数

図-1.2.24 正規圧密粘土の活性化エネルギーと応力レベルの関係

が大きく変化しないことは興味深い.

活性化エネルギーおよび結合数が応力レベルによりあまり影響を受けないこと が近似的に確認された。そこで、以下の議論はMI-Testの応力レベル25~80 %の平均値およびDI-Testの結果として得られた活性化エネルギーおよび結合 数に対して行なう。表一1.2.4から分かるように、2種類の正規圧密粘土に対し て、活性化エネルギーAFは圧密圧力によらず約28~33kcal/molの範囲でほぼ 一定(平均値30.6kcal/mol)である。

Mitchell ら⁸⁾ および Andersland ら⁹⁾ も種々の圧密粘土の活性化エネルギーとして 30 kcal/mol 前後の値を得ているので、一般に圧密粘土の活性化エネルギーは圧 密圧力および粘土の種類にかかわらずほぼ一定であると考えられる。

図-1.2.25 正規圧密粘土の結合数と応力レベルの関係

結合数Sと含水比wの関係は図-1.2.26に図示されている. ただし、含水比 はファイネスナンバーFで除した値(w/F)で示されている. 図から分かるよ うに、結合数の対数 $\log S \ge w/F$ の間にほぼ直線関係が認められる. また、粘土 の種類は少ないが、状態量のパラメーターとしてw/Fを選ぶことにより、圧密 粘土の $\log S \sim w/F$ 関係を一義的に表現することができると思われる. この正規 圧密粘土の $\log S \sim w/F$ 関係は、当然のことながら粘土ペーストのそれと定量的 に接続しない. なぜなら、三軸クリープ試験とペーン試験のひずみ速度は極端に は違わないが、両者の粘土の応力履歴が異なるからである.

図ー1.2.27 は結合数およびせん断強さと圧密圧力の関係を示す. ともにほぼ 直線関係にあり, Mitchell ら¹⁷⁾によって得られた結果がさらに裏づけられている.

図-1.2.26 正規圧密粘土の結合数と含水比の関係

図ー 1.2.28 は結合数とせん断強さの関係を図示したものであるが、 $S \sim \tau_f$ の比例関係が近似的に確認される.

つぎに、frequency factor Xの活性化エネルギーおよび結合数への影響につい て検討する. これは、前項5.2 で検討したベーン試験の frequency factor X' と 同様、結合数Sには全くXの影響はない. また、活性化エネルギー ΔF について は、X=1 ではなく、 $10^{-1} \sim 10^{-2}$ 程度にオーダーが異なる場合でも、 ΔF は 1.3 ~ 2.6kcal / mol 程度大きく見積られているにすぎず、 ΔF の絶対値に比して大きな 誤差を生じない. したがって、すでに行なわれた正規圧密粘土の活性化エネルギ ーおよび結合数に関する議論は frequency factor Xの不明確さによって覆えされ ることはないと考えられる.

図 - 1.2.27 正規圧密粘土の結合数およびせん断強さと圧密圧力の関係

5.4 粘土・水系の流動機構

第1編第2章第5節ですでに得られた結果より,粘土・水系の流動機構を総合的に検討する.正規圧密粘土および w/F が 1.4 より小さい粘土ペーストの活性化 エネルギーは, frequency factor およびせん断パラメーターの相違による誤差を 考慮しても,ともに 30 kcal/mol 前後の値をとりほぼ一定と考えることができる. したがって,両者の活性化エネルギー,すなわち流動単位の結合力はほぼ同じ値 であると考えることができる.

いままでに得られた結合数Sとせん断強さ τ_f の関係を, Mitchell G^{17} のデーターも含めて, 図ー 1. 2. 29 に示す. Mitchell らのデーターには過圧密粘土や乾燥砂 に対する結果も含まれている. 図中の実線は両対数紙上で 45[°]の傾きをもつ直線

図-1.2.28 正規圧密粘土のせん断強さと結合数の関係

であるので、 $S \sim \tau_f$ の間に近似的に比例関係が存在することが確認される.これ は、せん断強さと結合数の比 τ_f / S ,すなわち破壊時に流動単位1個当りに作用 するせん断力 f_f が一定であることを意味する.言い換えれば、せん断強さの発 生機構が同一であることを意味する.このことに関してはのちにさらに詳細に議 論する.

っぎに、この比例関係の妥当性について検討する. 図ー 1.2.21 より、w/F=1すなわち含水比が F 値に等しいときの結合数は約4×10⁸ cm⁻² である. このとき のせん断強さは、図ー 1.2.29 より約20 g/cm² である. しかるに、Karlsson²⁴⁾ に よれば、w = F すなわち w/F = 1 におけるせん断強さは、粘土の種類にかかわ らず、15 ~ 21 g/cm² でほぼ一定であることがすでに確められている. したがっ て、図ー 1.2.29 における直線の妥当性が定量的にも裏づけられたことになる. 以上の事実より、正規圧密粘土および w/Fが1.4 程度より小さい粘土ペーストの 流動機構の類似性が指摘される.

図-1.2.29 種々の土のせん断強さと結合数の関係

一方, ニュートン流動を示す粘土サスペンジョンの活性化エネルギーは純水 (自由水)のそれに等しく(約4kcal/mol), 圧密粘土および粘土ペーストに比 し小さい値である.また,粘土ペーストの活性化エネルギーは, w/Fが1.4より 大になるにつれて小さくなる傾向を示す.これらの事実を考え合せると,粘土ペ ーストと粘土サスペンジョンの間に過渡領域が存在し,その領域では複数の流動 機構が関与している可能性がある.すなわち,粘土・水系の流動機構は本質的に は homogeneous process ではなく heterogeneous process であると考えることによ って統一的に取扱いうることを示唆しているように思われる.

5.5 粘土粒子接合点の構造

粘土・水系においては、粘土粒子は一般に水分子の層によって取り囲まれてい る.乾燥した状態の土でも高温または高い真空状態を除いて吸着水を有している. 吸着水が粘土のコンシステンシーに関与していることは明らかな事実であって、 つぎのような実験事実からも簡単に理解できる.すなわち、吸着水を完全に取り 除いた粘土に四塩化炭素(CCl₄)を加えると、粘土は塑性的挙動を示さず単なる 摩擦材料となる.これは、四塩化炭素は極性をもたず、吸着層を形成しないため に生ずるのである.

吸着水の存在は確かなものであるが、その正確な構造は物理化学的にいまだよ く理解されていない.ましてや、吸着水が粘土の巨視的な力学的挙動にどの程度 関与しているかは不明である.現在まで、吸着水の構造を結晶構造で説明するも の、吸着水と自由水の相違を密度で説明するもの、粘性と滑動性で説明するもの などが挙げられるが、いずれも十分な確証が得られていない状態である²⁵

著者¹², Mitchell ら¹⁷ および Andersland ら¹⁸ によって正規圧密粘土の活性化エ ネルギーが 30 kcal/mol 前後の値で, ほぼ一定であることが確認された. さらに, 著者は w/Fが 1.4 程度より小さい粘土ペーストに対して, Mitchell らは過圧密粘 土, 乾燥粘土および乾燥砂に対して, Andersland らは吸着イオンを種々に変化さ せた場合および吸着水を取り除いて四塩化炭素を加え無極性化した場合の正規圧 密粘土に対して, それぞれ活性化エネルギーを求めた. その結果, いずれも 30 kcal/mol 前後の値でほぼ一定であることが確認されている. これらの実験結果 は, 吸着水の有無, 吸着層の厚さあるいは吸着水の性質が活性化エネルギーの値 に関係しないことを示している. すなわち, せん断応力下における粘土粒子間の 結合力には水分子が関与している様子は見られない.

そこで,著者は,これらの土の粒子接合点の構造として吸着水は関与せず,お もに土粒子固体間の直接接触によって生ずると考える.このような考えはMitchell らおよび Andersland らによっても推論されている.また,Rosenqvist によって提 案されたクリープ挙動の説明,すなわち粘土のクリープ現象は微視的には土粒子 接合点の酸素イオンの緩慢な拡散過程であるという説明と一致する.¹⁷⁾ シリカ鉱 物中の酸素イオンの拡散において測定される活性化エネルギーが30 ~ 40 kcal/ mol であることは, Rosenqvist の考え方を支持するものである.

したがって、rate process 理論の立場から粘土粒子接合点の構造を推察すれ ばつぎのようになると思われる。一般に粘土鉱物の構造には2種の基本的な型が ある。図-1.2.30に示すごとく、シリカシートと八面体シートである。これら はSi,Al,Fe,Mgなどの化合物であり、それぞれの原子が酸素原子(0)あるい は水酸基(OH)に取り囲こまれている。粘土粒子の表面にはこのような酸素イ オンが露出している。これらのイオンは他の粘土粒子表面の原子と結合したり、 吸着層を形成している水分子と結合すると考えられる。しかし、ここで考えてい るような状態の粘土、すなわちw/Fが1.4 程度より小さい粘土では、前述のよう

a) silica tetrahedral sheet

図-1.2.30 粘土鉱物の構造
に水分子はせん断応力下の流動単位の結合力(巨視的にはせん断抵抗力)に関与 しないと考えられる。すなわち、粘土粒子接合点の結合力は、Si,Al,Fe,Mgな どの原子に拘束されている酸素イオンによる結合によって生ずると考えられる。

厳密には、粘土粒子接合点の結合力に関与するこれ以外の要素として、ファン デルワールス力あるいは粘土粒子表面の凹凸による微視的なインターロッキング などが考えられる。しかし、粘土サスペンジョンおよび高含水比の粘土ペースト 以外の種々の粘土。水系に対して、ほぼ一定の活性化エネルギー(30 kcal/mol 前後)が得られているので、これらの要素による影響は比較的小さいと思われる。 少なくとも、ファンデルワールス力による結合エネルギー(0.5~5 kcal/mol) は酸素による1次結合エネルギーより相当小さく、また水素結合より一般に小さ いので、この影響は比較的小さいと思われる。

以上の考察より、この場合の流動の基本機構として酸素による1次結合が考え られることになる。この場合、水分子がせん断応力下の結合力に関与しないこと に関しては、以下の説明が可能であるかもしれない。すなわち、Martin²⁶⁾によれ ば、吸着水は2次元的な液体であって、水分子は粘土粒子表面に平行な方向へは 容易に移動するが、垂直な方向にはほとんど移動しない。

つぎに、流動単位の平衡位置間の距離 λ について検討する.シリカ鉱物表面の 酸素原子の分布は図—1.2.31に示すごとくである.また、酸素イオンの直径は 2.8 Åである.酸素による1次結合によって結合力が生ずる場合には、流動単位 の平衡位置間の距離 λ_0 は近似的に粘土鉱物表面の酸素原子の平衡位置間の距離 と仮定してもよいと考えられる.したがって $\lambda_0 = 2.8$ Åとおくことができる.

一方,粘土サスペンジョンのように水素結合によって結合力が生ずる場合を考 える.水素結合を模式的に示せば,図ー1.2.32 a)のようになる.²⁷⁾また,水分 子による水素結合を分子の大きさを考慮して図示すれば,図ー1.2.32 b)のよう になる.すなわち,一つの水分子の水素原子と他の水分子の酸素原子とが結合す る.しかるに,流動単位は互にその位置を交換し合えるものでなければならない. 図ー1.2.32 b)から明らかなように,流動単位の平衡位置として酸素原子の位置 が考えられる.この場合の酸素原子間の距離は2.7 Åである.したがって,水素 結合により結合力が生ずる場合の流動単位の平衡位置間の距離 λ_Hとして2.7 Åを 仮定してもよいと考えられる.

図ー1.2.31 シリカ鉱物表面の酸素原子の分布

b) 水分子の水素結合

図-1.2.32 水素結合

したがって、いままでに圧密粘土および粘土ペーストに対して $\lambda_0 = 2.8$ Å,粘 土サスペンジョンに対して $\lambda_H = 2.7$ Åとして結合数を計算した根拠はこれらの理 由によるのである.

5.6 流動単位の結合力

流動単位の結合力は活性化エネルギーで表現される. このエネルギーは流動単位1 mole 当りのエネルギー量で表わされ,通常単一結合のエネルギー量と考えられている. しかし,実際には活性化過程において複数の結合が同時に破壊する現象を含んでいる可能性,つまり活性化エネルギー *dF* が単一結合のエネルギー量を 見積っていない可能性がある.

この点に関しては, Ripple とDay²⁸⁾ はモンモリロナイトー水系のせん断によっ て生ずる活性化過程は単一結合の破壊であると報告している.また, Low²⁹⁾は,水 の粘性流動において各々の水分子は温度によって隣接する分子と4 個までの水素 結合をもっているにもかかわらず, 流動単位の活性化エネルギーは1 個の水素結 合の破壊のエネルギー量に近い値であると述べている.

一方,第1編第2章第5節5.4で議論されたように,せん断強さと結合数の間 に比例関係が存在する。すなわち,実験で得られた結合(流動単位)1個当りに 作用するせん断力が一定である。この関係が,粘土ペースト,圧密粘土のみなら ず乾燥粘土,乾燥砂も含めた広範な状態の土に対して成り立つ。もし実験で得ら れた結合が複数の結合の同時破壊を含んでいるものとすれば,上記の広範な土の すべてに対して,同時に破壊する結合の個数が同程度でなければならない。しか し,粘土ペーストから乾燥砂に至るまで,同時に破壊する個数が複数でかつ同程 度であるとは考えがたい。

以上の結果から推察して,流動単位の活性化が単一結合の破壊であると仮定で きるなら,結合数Sは微視的すべり面単位面積当りの結合数を表わすことになる. 本研究においては終始一貫して上記の仮定を設けていることになる.

流動単位を原子・分子と考えると、流動単位は化学結合していることになり、 その結合力は化学結合の強さで表わされる.化学結合のおもなものを分類すると つぎのようになる.²⁵⁾

- (1) 1次結合,または高エネルギー結合
 - (i) イオン結合:不完全な外側の電子殻をもった2原子間で電子の授受があり、
 正または負の電荷をもったイオンとなり、その間に静電気的な力が働くことによって生ずる結合.
 - (ii) 共有結合: 2 原子が最外電子殻中に1 つまたはそれ以上の電子を欠いている時,その殻中の電子を互に共有することによって生ずる結合.
- (2) 水素結合:1次結合と2次結合の中間的なもので,酸素原子や窒素原子に に結合している水素原子がもう一つの酸素原子や窒素原子と結 合する力によって生ずる結合.
- (3) 2次結合: Van der Waals力による結合がこれに属し、2つの双極子分子 間のけん引力によって生ずる.また、無極性の分子間にも生ず

る.

それぞれの結合のおおよその結合エネルギーを表一1.2.6 に示す. これまでの 実験によって,粘土の流動の活性化エネルギー *AF* は約30 kcal/mol 前後の値と して得られており,この値は1次結合の範囲内にある.したがって,粘土粒子間 の結合は1次結合(イオン結合または共有結合)と考えることができ,流動単位 を酸素イオンと考えることによる矛盾は生じない.

	結合エネルギー	距離
結合の種類	kcal/mol	(Å)
1次結合	20 ~ 200	1~2
水素結合	5~ 10	2~3
2次結合	0.5 ~ 5	> 5

表-1.2.6 化学結合の結合エネルギー

(after Lambe)

第3章 粘土・水系の流動機構モデル^{30) 31) 32) 33)}

第1節 粘土・水系の統一的な流動機構

第1編においては、粘土・水系の広範なコンシステンシー状態における多様な 流動現象を統一的に取扱い、その本質的な機構を解明することをおもな目的とし ているが、ここでは、今までに得られた成果を総合して、粘土・水系の流動を統 一的に取扱いうる粘土・水系の流動機構モデルを以下に提案する.

第1編第2章第5節5.5ですでに考察したように、乾燥砂、乾燥粘土および種々の圧密粘土から w/Fが1.4 程度より小さい軟弱な粘土ペーストまでの広範な状態の土、あるいは吸着イオンを種々に変化させた場合および吸着水を取り除いて四塩化炭素を加え無極性化した場合の圧密粘土、これらすべての土の流動現象における土粒子接合点の構造としては、吸着水はほとんど関与せず、おもに土粒子固体間の直接接触によっていると考えられる。したがって、これらの土においては流動の基本機構が同じと考えられる。また、結合数とせん断強さの間にほぼ同じ比例関係が存在することから、これらの多様な粘土の流動機構の類似性が指摘された。したがって、これらの流動現象を1 個の流動単位系が他に卓越して流動に関与している homogeneous process として表現することができると考えられる。

一方,ニュートン流動領域における粘土サスペンジョンに対しては,第1編第 2章第5節5.1ですでに考察したように,純水(自由水)と同じ流動機構をもつ と考えられる。したがって,粘土サスペンジョンの流動も前述の流動単位系とは 異なった別の流動単位系が卓越した homogeneous process で表わすことができる と考えられる。

これらの2種の homogeneous process の流動に関与する基本機構としては、す でに考察したように、前者では粘土粒子固体間の直接接触による結合と考えて酸 素による1次結合、後者では水素結合を想定しても現状ではとくに不都合な点は 見当らない。

しかるに、粘土・水系の流動現象を統一的に取扱う立場に立つかぎり、2種の 流動単位系による異なる homogeneous process の間にそれらを結ぶ過渡的な heterogeneous process の存在を予想するのは当然である. この heterogeneous process の存在の可能性は, w/Fが約1.4より大になると,活性化エネルギーが急に減少する傾向があること,および含水量が非常に大きい粘土サスペンジョン の活性化エネルギーが非常に小さい(約4 kcal/mol)ことから,ある程度裏付けられる. したがって,この heterogeneous process の領域においては複数の流動単位系が関与することになる.

以上のように、粘土・水系の流動機構は、高含水量および低含水量の粘土・水 系においてそれぞれ別個の homogeneous process が存在するとして表現すること ができる。そして、その間に heterogeneous process として表現できる過渡領域 が存在すると考えることにより、広範なコンシステンシー状態の粘土・水系の流 動現象が統一的に取扱うことができると考えられる。

第2節 Heterogeneous process の流動機構

heterogeneous process において2種の流動単位系のみが存在すると考える. これまでの homogeneous process における検討から, この2種の流動単位系とし て酸素による1次結合および水素結合を想定する. これら2種の流動単位系にお いて, ひずみ速度および流動単位の平衡位置間の距離は等しいと仮定する. これ らの仮定の妥当性については, 酸素による1次結合においても水素結合において も粘土粒子表面にある酸素原子が重要な役割をはたしており, これが2種の流動 単位系のどちらにもなりうる可能性があることおよび粘土粒子表面に広くほぼ一 様に分布していることから推測して認め得ないものではないと考えられる. とく に, 流動単位の平衡位置間の距離については, 第1編第2章第5節5.5において 検討したように, 2.7 ~ 2.8 Å程度でほぼ等しいと考えられる.

homogeneous process における2種の流動単位系の活性化エネルギー,単位面 積当りの結合数およびせん断応力は,それぞれの流動単位系において, *AFo*, *So*, *To* および*AF*_H,*S*_H,*T*_H,で表わされる.サフィックスOおよび*H* はそれぞれ 酸素による1次結合および水素結合に対応させる.2種の流動単位系におけるひ ずみ速度および流動単位の平衡位置間の距離がそれぞれ等しいと仮定されるので, $\dot{r} = \dot{r}_o = \dot{r}_H, \lambda = \lambda_o = \lambda_H$ と置くことができる。したがって、式(1.2.9)より、 2種の流動単位系に対してそれぞれ式(1.3.1)および式(1.3.2)が成立する。

$$\frac{\lambda}{2 k T} \cdot \frac{\tau_o}{S_o} = \ln \dot{\tau} + \left\{ \frac{\Delta F_o}{RT} - \ln \left(X - \frac{k T}{h} \right) \right\}$$
(1.3.1)

$$\frac{\lambda}{2 kT} \cdot \frac{\tau_H}{S_H} = \ln \dot{\tau} + \left\{ \frac{\Delta F_H}{RT} - \ln \left(X \frac{kT}{h} \right) \right\}$$
(1.3.2)

2種の流動単位系におけるせん断応力と結合数はそれぞれ重ね合せが可能と考 えて、 $\tau = \tau_0 + \tau_H$, $S = S_0 + S_H$ とおく、式(1.3.1)および式(1.3.2)を加え 合せると、heterogeneous processにおいて次式が成立する.

$$\frac{\lambda}{2\,k\,T} \cdot \frac{\tau}{S} = \ln \dot{\tau} + \left\{ \frac{\left(\frac{So\,\Delta Fo+S_H\,\Delta F_H}{S}\right)}{R\,T} - \ln\left(X \cdot \frac{k\,T}{h}\right) \right\} \quad (1.3.3)$$

式(1.2.9)の両辺の対数をとり、式(1.3.3)と対比すれば、 heterogeneous processの見かけの活性化エネルギー ΔF_a は次式で表わされることが分かる.

$$\Delta F_a = \frac{S_o \Delta F_o + S_H \Delta F_H}{S} = \frac{\Delta F_o + \alpha \Delta F_H}{1 + \alpha}$$
(1.3.4)

 $\zeta \subset \mathcal{K}, \ \alpha = S_H / S_o$

式(1.3.4)より、 $\alpha = 0$ すなわち $S_H = 0$ のとき AFa = AFo, $\alpha \rightarrow \infty$ すなわち So = 0 のとき $AFa = AF_H$ となり、それぞれ酸素による1次結合あるいは水素結合 のみによる homogeneous process となることが分かる。それぞれの活性化エネル ギーを $AFo = 30 \text{ kcal/mol}, AF_H = 4 \text{ kcal/mol} として <math>AFa$ と α の関係を図示すれば、 **図**-1.3.1のようになる。この図から、heterogeneous process において含水量の 増加とともに活性化エネルギーが減少する傾向が定性的に説明される。

しかし、 *AFa*が土の状態量(たとえば含水比)の関数として表現されなければ、 この傾向を定量的に議論することはできない. なぜなら、 *So* と*SH*の分布状態が 未知であるからである. このために、 *AFa* と含水比 *w*の関係を次式で仮定する.

$$\Delta F_a = -m \ln \left(\frac{w}{F}\right) + n \qquad (1.3.5)$$

- 71 -

図-1.3.1 heterogeneous processの活性化エネルギーとαの関係

ここに、 mおよびnは係数であり、含水比wはF値(ファイネスナンバー)で除 した値(w/F)で表現されている.式(1.3.5)はある含水比で4Faが30kcal/ mol となり、含水比が増大するとともに4Faが減少し、ついには4kcal/mol とな る定性的な必要条件は備えている.式(1.3.5)の妥当性はのちに検討される. 式(1.3.4)および式(1.3.5)より次式が導かれる.

$$\alpha = \frac{-\Delta F_o - m \log (w/F) + n}{\Delta F_H + m \log (w/F) - n}$$
(1.3.6)

式(1.3.6)により、 α がw/Fの関係として表示されるので、 S_0 および S_H の分 布状態が明らかになる.

第4章 Heterogeneous process の流動機構の検証

第1節 目 的

第1編第3章で提案した粘土・水系の統一的な流動機構モデルにおいて、2種の相異なる homogeneous process に対しては、すでに数多くの実験が行なわれており、かなりの証拠も得られている。しかし、heterogeneous processの存在については、十分な証拠が得られておらず、推測の域を出ていない。すなわち、非常に高含水量をもつ粘土ペーストの流動現象を対象とした検証は行なわれていない。粘土・水系の流動を統一的に表現しうる本質的な機構は heterogeneous process であるとするモデルの妥当性を裏づけるためには、この heterogeneous process の流動機構を検証することが最も重要で不可欠であると考えられる。

第1編第4章では、以上の目的のために新しく作製したベーン型プラストメー ター(高精度のベーン試験機)を用い、高含水量の粘土ペーストを対象とした定 常流動の実験を行なうことによって、heterogeneous processの存在を確認し、 その流動機構を検証する。その結果により、第1編第3章で提案した粘土・水系 の流動機構の妥当性を裏づけようとするものである。

第2節 試料,実験装置および方法

実験に用いられる粘土試料は2種類で、カオリンおよび千里粘土Aである.こ れらの粘土は第1編第2章第4節の実験に用いられた粘土試料と同じものである. 再び、これらの粘土の物性を表-1.4.1に示す.

実験装置としては、ベーン型プラストメーターを使用する. この装置は写真1. 4.1 に示すような装置で、高含水量の粘土ペーストの定常流動を対象としている. 一般に、ベーン試験機は非常に軟弱な粘土に対する大変形のせん断試験に適して いると考えられる. しかし、ここで対象としている粘土ペーストは液性限界の数 倍ものコンシステンシー状態の粘土ペーストまでも含めて考えられている. した がって,第1編第2章第 4節で用いたような通常 のベーン試験機では,精 度の点でとうてい高含水 量の粘土ペーストの定常 流動の実験を行なうこと ができない.このような 観点から,高精度のベー ン試験機ともいえるベー ン型プラストメーターを 新たに作製した.

このベーン型プラスト メーターの機構は前述の ベーン試験機とほぼ同様 である. すなわち, 試料 置台が定速度で回転する 形式のもので、モーター および減速機の組合せに \pm b 3 \times 10 deg/sec ~ 1 ×10⁻³ deg/sec の範囲の 回転角速度が得られる. トルクの計測は、 ベーン 回転軸に固定されたアー ム(アーム長は可変)と 容量29および1009の Uゲージ (非接着型ひず みゲージ,最大変位量 0.4 mm)によって行なう. この方法はベーン羽根の 回転変位がほとんど無視

表-1.4.1 粘土試料の物性

粘土物 性	:試料	千里粘土A	カオリン
liquid limit	(%)	92.6	52.8
finess number	(%)	76.9	52.1
plastic limit	(%)	37.7	32.7
plasticity index	(%)	54.9	20.1
specific gravity		2.68	2.69
clay fraction ($<2\mu$	u) (%)	43.0	60.0

写真1.4.1 ベーン型プラストメーター

できることおよび大きなトルクから微小なトルクまでほぼ同じ精度で測定できる 利点を有する.

ベーン軸は軸受によって支持される構造になっているので、ベーン軸の微小回転による摩擦力が作用し計測されるトルクに誤差を与える.予備実験により得られたベーン軸の摩擦によるトルクの損失量とベーン軸の回転角の関係を図ー1.4. 1に示す.ベーン軸の

微小回転角の最大は, Uゲージの最大変位量 が0.4 mmだからアーム 長を6 cmとすると,約 0.007 ラジァンである. したがって,容量29 のUゲージを使用した 場合でも,摩擦により 計測トルクの3.5 % 程度であり,十分無 視しうる程度の大きさ と考えられる.

ベーン羽根寸法はD

図-1.4.1 ベーン軸の摩擦によるトルクの損失量

×H(直径×高さ)=20×40mmで、4枚羽根および8枚羽根のベーンを使用す る.2種のベーン羽根を用いる理由は、せん断応力の算定に用いられる式(1.2. 14)のCadlingの式の前提として、せん断面が円筒形になっているかどうかを検 討するためである。この点に関しては、予備実験としてベーン羽根を3/4程度試 料に貫入してせん断を行ない、上部せん断面を観察した。その結果、高含水量の 粘土ペーストでも4枚および8枚羽根の両方のベーンで円形のせん断面が観察さ れた。さらに、4枚および8枚羽根のベーンによるせん断力の差に関しては、カ オリンでは8枚羽根を用いた方が4枚羽根を用いたときより約10%程度大きな 値が得られるが、千里粘土Aではほとんどその差異は認められなかった。したが って、結果の解析には、カオリンでは8枚羽根のみの結果を、千里粘土Aでは4 枚および8枚羽根の両方の結果を用いる.

実験方法は第1編第2章第4節のベーン試験で行なった方法とほぼ同じ手順で 行なう.すなわち,粘土試料は一定の含水比を保持するために密閉容器中に保存 され,チキソトロピーによる強度増加の影響を除くために実験毎に練り返される. 実験は,ベーン挿入後1~2分間放置後,一定回転角速度でせん断試験を行ない, 含水比は試験の前後で2回測定する.なお,室温は約20℃で一定である.

第3節 実験結果

実験結果の整理方法については、第1編第2章第4節に示された方法と同じ方法を用いる.すなわち、せん断応力の算定には式(1.2.14)で表わされるCadlingの式を用い、定常状態におけるせん断応力として、ベーン回転角 θ とせん断応力での関係におけるせん断応力のピーク値をとる.これは $\theta - \tau$ 関係のせん断応力のピーク値付近は非常にゆるやかなので、近似的にピーク値を定常状態におけるせん断応力に対応させてもほとんど誤差を伴わないと考えられるからである.

図ー1.4.2 a) および b) はそれぞれカオリンおよび千里粘土Aの粘土ペースト に対する結果であり、含水比をパラメーターとして回転角速度のとせん断応力で の関係を示している.これらの図から明らかなように、logのとての間に直線関係 があり、第1編第2章第4節でベーン試験によって得られた結果と同様である. このことから、非常に高含水比の粘土ペーストにおいても、このlogのとての直線 関係が成立するものと思われる.したがって、この直線関係の傾き a および切片 b から式(1.2.18) および式(1.2.19)を用いて、微視的すべり面単位面積当 りの結合数 S と活性化エネルギー 4F が求められる.

表一1.4.2 は以上の方法で得られたS, ΔF およびせん断強さ τ_f と含水比の関係を表示したものである。この際、 λ としては2.8 Åを用いているが、これは第1編第2章第5節5.5 に述べた理由による。得られた活性化エネルギーは17~28 kcal/mol の範囲にある。これは、いままでに種々の圧密粘土および粘土ペーストについて求められた活性化エネルギーの値よりも小さい値が得られている。この結果より、粘土・水系の活性化エネルギーは、高含水量になるにしたがって

小さくなる傾向を示すと考えられる.

b)千里粘土 A

図-1.4.2 回転角速度とせん断応力の関係

	含水比	w/F	活性化エネルギー	結合数	せん断強さ
粘土試料	w (%)	w/ 1	ΔF (kcal/mol)	$S (cm^{-2})$	τ_f (g/cm ²)
千里粘土A	131	1.71	24.8	6.52×10^{7}	$3.03 \times 10^{\circ}$
	195	2.54	21.3	2.94 \times 10 ⁶	8. 27×10^{-2}
	217	2.82	21.3	2. 41×10^{6}	6.89 \times 10 ⁻²
	220	2.86	21.4	1.51×10^{6}	4. 42×10^{-2}
	238	3.09	23.4	8.07 \times 10 ⁵	3. 25×10^{-2}
	262	3.40	20.8	9.27 \times 10 ⁵	2. 50×10^{-2}
	340	4.43	18.2	1.54 \times 10 ⁶	1.82×10^{-2}
	340	4.43	20.2	7.23 \times 10 ⁵	1.57×10^{-2}
	355	4.62	17.9	1.52 \times 10 ⁶	1.62 \times 10 ⁻²
	355	4.62	17.2	1.93 \times 10 ⁶	1. 57 \times 10 ⁻²
カオリン	94	1.81	22.8	5.70 \times 10 ⁷	$2.03 \times 10^{\circ}$
	132	2.54	24.3	4.63 \times 10 ⁶	2.06 \times 10 ⁻¹
	159	3.06	21.0	4. 11×10^{6}	1. 15×10^{-1}
	195	3.73	19.3	3. 06×10^{6}	6.08 \times 10 ⁻²
	229	4.40	20.6	1.53 $ imes$ 10 ⁶	3.86 \times 10 ⁻²
	267	5.13	20.8	9.64 \times 10 ⁵	2.61 \times 10 ⁻²
	300	5.75	17.7	1.73 \times 10 ⁶	1.63 \times 10 ⁻²
	370	7.10	17.9	1.30 \times 10 ⁶	1. 27×10^{-2}

表-1.4.2 高含水比粘土ペーストの実験結果

第4節 考 察

4.1 活性化エネルギーと含水比の関係

活性化エネルギーと含水比の関係を図―1.4.3 に示す. ただし、含水比はファ イネスナンバーFで除した値 w/Fで示されている. この図には、第1編第2章第 5節5.2 において、ベーン試験によりすでに得られた結果(図―1.2.20参照)も プロットしてある. この図より, w/Fが1.4程度より大きくなると,活性化エネ ルギーは30 kcal/molより次第に減少する傾向が明らかに認められる. 第1編第 2章第5節5.2 においてすでに検討したように,粘土ペーストの活性化エネルギ ーは, $w/F = 1.4 を 境としてやや減少し, <math>w/F \leq 1.4$ では約30 kcal/mol 前後で ほぼ一定値であった. したがって,ベーン型プラストメーターによる高含水量の 粘土ペーストを対象とした今回の実験によって,w/F > 1.4における活性化エネ ルギーがw/Fの増加とともに減少する傾向が明確にされ,heterogeneous process の存在が確認されたことになる. この活性化エネルギー減少の傾向は, $w/F \leq$ 1.4の含水比では粘土粒子間の結合は酸素による1次結合のみであるが,w/F >

さらに、図ー1.4.3より、粘土の種類によって多少差があるが、活性化エネル ギームFと log(w/F)の関係が近似的に直線関係にあると考えられる、図中の実 線および破線の直線はそれぞれカオリンおよび千里粘土A に対応している、カオ

図-1.4.3 活性化エネルギーと含水比の関係

- 79 -

リン(実線)に対しては、($\Delta Fa = 30 \text{ kcal/mol}, w/F = 1.4$)の点と($\Delta Fa = 4 \text{ kcal/mol}, w/F = 27$)の点、千里粘土A(破線)に対しては、($\Delta Fa = 30 \text{ kcal/mol}, w/F = 1.4$)の点と($\Delta Fa = 4 \text{ kcal/mol}, w/F = 16$)の点を結んだものである.

それぞれの前者の点は、前述のように、粘土ペーストの活性化エネルギーが w/F = 1.4 付近を境として変化することが認められていることから決定した.ま た、それぞれの後者の点は、粘土サスペンジョンの活性化エネルギーがニュート ン流動領域においてほぼ一定で約4 kcal/mol である(第1編第2章第5節5.1 参照)ことから決定した.その際、ニュートン流動領域の限界の含水比について は、粘度試験によりすでに得られているように、カオリンおよび千里粘土Aの粘 土サスペンジョンのニュートン流動を示す限界容積濃度 ϕ_{cr} がそれぞれ 0.025 お よび 0.029 であり(第1編第2章第4節4.3.2 参照)、含水比に換算してそれぞ れw/F = 27 および 16 として得られた値を用いている.以上のようにして得られ た図-1.4.3の実線および破線がそれぞれの実測値、すなわち図中の〇印および △印とほぼ対応しているように思われる.

この AF と log(w/F) の間の直線関係は第1編第3章第2節の式(1.3.5)で 仮定された関係と一致するものである.したがって、heterogeneous process に おける活性化エネルギー AFa と含水比wの関係として式(1.3.5)を仮定するこ とに対する妥当性が裏づけられたことになる.ただし、式(1.3.5)における係 数mおよび n は、粘土の種類によって多少変化するものと思われる.

4.2 結合数およびせん断強さと含水比の関係

図ー1.4.4は、結合数と含水比の関係を示す. ただし含水比はファイネスナン バーFで除した値(w/F)で示されている. この図には、第1編第2章第5節5. 2においてベーン試験によってすでに得られた結果(図ー1.2.21参照)も同時に プロットしてある. この図から分かるように、w/Fが1~2の範囲では logSと w/Fの間に直線関係が存在するが、w/Fが2程度以上(データに多少ばらつき があるので明確に断定できないが)においてはその直線関係は認められなくなる. 言い換えれば、含水比の増加とともに結合数Sが減少する傾向には変りがないが、 含水比の増加に比して結合数の減少の割合いが少ない. この定性的な傾向は、カ オリンおよび千里粘土Aにおいてともに同じであるが,定量的にはやや異なるように思われる.

以上の事実はつぎのことを意味する。すなわち、 $w/F \leq 2$ においては、w/Fを状態量の指標に選ぶことによって種々の粘土ペーストに対する結合数と含水比の関係を一義的に表現することができる。しかし、w/F > 2においては、w/Fが種々の粘土ペーストに対して一義的に表現できる状態量の指標にはなり得ない。

図ー1.4.5 はせん断強さ $\tau_f \ge w/F$ の関係を示している.ここで、せん断強さ は、ベーン型プラストメーターの試験に用いた回転角速度のの平均的な値として、 $\omega = 10 \text{ deg/sec}$ における値を用いている.w/F > 2におけるせん断強さとw/Fの関係が、結合数とw/Fの関係と同様、粘土の種類によって異なってくる.こ

図-1.4.4 結合数と含水比の関係

図-1.4.5 せん断強さと含水比の関係

れは、w/F>2において、w/Fが種々の粘土に対して一義的に表現できる状態 $量の指標とはなりえないことをさらに裏づけている。また、圧密粘土に対して一般に確認されている <math>\log \tau_f$ と含水比wの直線関係が、 $w/F \leq 2$ の粘土ペーストで は成立するが、w/Fがそれ以上大きくなると成立しなくなるのは注目に値する。

以上のように、 $w/Fが1 \sim 2$ の間において log S あるいは log $\tau_f \ge w/F$ の間に 直線関係があることと、すでに検討してきたように流動機構の本質がw/F = 1.4付近において変化するということは一見矛盾するように思われる.しかし、これ は、 $1.4 \le w/F \le 2$ の heterogeneous process においては、酸素による1次結合 数に比し水素結合数も少なく、とくに結合数あるいはせん断強さに及ぼすその影響が小さいと考えれば矛盾しない. $(w/F) \leq 1.4$ の homogeneous process にお ける結合数あるいはせん断強さの特性が、 $1.4 \leq (w/F) \leq 2$ の heterogeneous process においても成立つことは十分理解できる. したがって、結合数およびせん断強さからみれば、(w/F)が2程度までの heterogeneous processを homogeneous process として近似的に取扱いうると思われる.

4.3 結合数の分布

結合数の分布, すなわち酸素の1次結合数 So および水素結合数 SH と含水比の

- 83 -

関係について検討する. 実験的に得られた活性化エネルギー *AFa* と log(*w/F*)の 直線関係(図一1.4.3)から式(1.3.5)の係数*m* および*n* を決定し,式(1.3. 4)および式(1.3.6)を用いて *So* および *SH* を求める. カオリンおよび千里粘 土Aに対するそれぞれの結合数*S*, *So*, *SH* と含水比 *w/F*の関係を,それぞれ図一 1.4.6 および図一1.4.7 に示す.

これらの図から含水比の増加に伴って S, So, SH がともに減少する傾向が認め られる.また, So と SH の分布状態としては,含水比の減少とともに So と SH の差 が広がり So は S に近づく.逆に,含水比の増加とともに So と SH の差が小さくな

- 84 -

第5章 Heterogeneous process としての 統一的な流動機構

第1節 統一的な流動機構

いままでに検討してきた homogeneous および heterogeneous process の流動機 構を総合して、広範なコンシステンシー状態の粘土・水系における活性化エネル ギーおよび微視的すべり面単位面積当りの結合数を統一的に図示すれば、図ー1.5.1 およ び図ー1.5.2 のようになる. すなわち、 $(w/F)_1 \sim (w/F)_2$ の間に2種の流動単位系に支 配される heterogeneous process が存在し、その両側ではそれぞれ異なる単一の 流動単位系に支配される homogeneous process が存在する. 図一1.5.1 および図

図-1.5.1 活性化エネルギーと含水比の関係の統一的表示

- 85 -

- 1.5.2 において、 $(w/F)_1$ および $(w/F)_2$ は、これらの homogeneous process と heterogeneous processの境界の含水状態を表わしていることになる.

図ー 1.5.1 において、 $(w/F) < (w/F)_1$ および $(w/F) > (w/F)_2$ の homogeneous process における活性化エネルギーは、それぞれ約30 kcal/mol および約4 kcal/mol でほぼ一定値をとる。そして、その間の heterogeneous process における活性化エネルギーは log (w/F) と直線関係にあって、両 homogeneous process に接続する.

一方, 図 – 1.5.2において, 全結合数Sは homogeneous および heterogeneous process 全体を通して (w/F)の増加とともに減少していく. この傾向は, 粘土 の種類, 応力履歴, ひずみ速度など種々の条件が同じであればつねに満足される. しかし, 含水比以外の種々の条件が異なれば, 当然全結合数と含水比の関係が異

図-1.5.2 結合数と含水比の関係の統一的表示

なる関係になるので,この傾向が必ずしも満足されるとは限らないと思われる. ただし, (w/F)1付近およびそれより小さいw/Fにおける全結合数は,状態量 をw/Fによって表わすことにより,粘土の種類にかかわらず一義的に表現するこ とができる.

heterogeneous process における全結合数Sは $So \ S_H$ の和となる. $So \ S_H$ の 分布状態もまた図ー1.5.2 に示されている. Soは, $(w/F)_1$ においてSと等しく (w/F)の増加とともに減少し, $(w/F)_2$ において0となる. S_H は, $(w/F)_1$ に おいて近似的に0で, (w/F)が増加するとあるピーク値から徐々に減少し, $(w/F)_2$ においてSと等しくなる.

つぎに、homogeneous process と heterogeneous processの境界の含水比 $(w/F)_1$ および $(w/F)_2$ のもつ意味について検討する. $(w/F)_1$ は、粘土ペースト状態 の粘土・水系に対して、粘土の種類にかかわらず 1.4 程度である。このとき粘土 粒子接合点の微視的構造に変化が生ずることを意味している点で重要である。こ の含水比以下では、粘土粒子間の結合は酸素による 1 次結合のみであるが、この 含水比以上では、土粒子間の結合に水素結合も加わるようになる。しかし、結合 数およびせん断強さの点からみれば (w/F) が2 程度までは水素結合の影響は少 ない.

(w/F)2 は粘土サスペンジョン状態の粘土・水系に対して10~30 程度で, 粘土の種類によって異なる. これは粘土サスペンジョンのニュートン流動を示す 限界の含水比(濃度)を意味する. この含水比以上では,粘土粒子間の直接の結 合はなく,水分子を介する水素結合のみである. この含水比以下では,酸素によ る1次結合が加わり,粘土粒子固体間の結合がみられるようになる.

第2節 粘土・水系の結合数とせん断強さの関係

rate process 理論によれば,活性化エネルギーおよびひずみ速度が一定の場合,結合数 S とせん断強さ Tf の間に比例関係が存在する. これは式(1.2.9)からも明らかである. この関係は,第1編第2章第5節5.3 で検討したように,乾燥砂,種々の圧密粘土,軟弱な粘土ペーストなどかなり広範なコンシステンシー

状態の土に対して成立することがすでに認められている(図一1.2.29 参照). 図一1.5.3 はベーン型プラストメーターにより得られた高含水量の粘土ペースト の結合数とせん断強さの関係を図示したものである。同時に,著者およびMitchell らによってすでに得られている図一1.2.29 の値もあわせてプロットしてある。 多種多様な土に対して,全体を通してほぼ比例関係が認められる。

図ー 1.5.3 における実線は、 S が 10⁸ 程度以上のプロットに対して得られる S

図-1.5.3 広範なコンシステンシー状態の土のせん断強さと結合数の関係

と τ_f の比例関係を示している. $S i 10^8$ 程度のとき w/Fは 1.4 程度であること はすでに確認されているので、実線は homogeneous process における $S \ge \tau_f$ の比 例関係を示すことになる。そこで、この実線と $S i 10^8$ 程度以下の heterogeneous process の τ_{1-y} トと比較すると、これらの τ_{1-y} トはほとんど実線の右下方に 位置する。これは、 $w/F \ge \log S$ および $\log \tau_f$ の線形関係が成立しない場合、すな わち w/F $i \ge 2$ 程度以上の 場合において(図 - 1.4.4 および 2 - 1.4.5 参照)、w/FFの増加に対する $\log S$ の減少の割合いが $\log \tau_f$ のそれより小さいことを意味する.

この原因としては、heterogeneous process における全結合数は酸素による1次 結合と水素結合の和であり、含水比が増加するにしたがって結合エネルギーの低 い水素結合数が相対的に多くなることが考えられる. これは、図一1.4.6 および 図一1.4.7 において含水比の増加とともに So と SH の差が小さくなること、およ びカオリンでは w/Fが約 6.5 付近で SH が So より大きくなることから確認できる. その結果、含水比の増加にともなう $\log S$ の減少の割合いが $\log T_f$ のそれより相対 的に小さくなると考えられる.

そこで,流動単位1個の結合力を見かけ上等しくするために,水素結合数 S_H を酸素による1次結合数 S_o に換算する.水素結合と酸素による1次結合の結合力の比,すなわち活性化エネルギーの比は約4:30であるので,換算された全結合数を \overline{S} とすると、次式が成立する.

$$\overline{S} = S_o + (4/30) S_H$$
 (1.5.1)

図ー1.5.4 は、heterogeneous processの粘土ペーストに対して、式(1.5.1) を用いて換算された全結合数 \overline{s} とせん断強さ τ_f の関係を示したものである。同時 に、比較のため、 $S \ge \tau_f$ の関係もプロットしてある。 $S \ge \overline{s}$ に換算することによ り、 $\overline{s} \ge \tau_f$ の関係が図中の実線すなわち homogeneous process における $S \ge \tau_f$ の 比例関係に近づき、見かけ上 heterogeneous processを酸素による1 次結合の homogeneous process とみなすことができる。

要するに、以上の考察は heterogeneous process における結合数とせん断強さの 関係を検討したものである。その結果、 heterogeneous process における結合数 を、第1編第3章で提案した統一的な流動機構モデルの基本機構にもとづいて換 算すれば、この換算された結合数 \overline{s} とせん断強さ 5の間に、 homogeneous process

図-1.5.4 高含水比粘土ペーストのせん断強さと換算結合数の関係

におけると同様な比例関係が存在することが実験的に確認されたことになる。したがって、このことは、第1編第3章で提案した粘土・水系の統一的な流動機構 モデルの妥当性を結合数とせん断強さの関係から逆に裏づけることになると考えられる。

第6章 粘土の粒子間結合

第1節 流動単位に作用するせん断力

粘土の粒子間結合の基本単位,すなわち粘土のせん断抵抗力発生の基本単位と して,流動単位に作用するせん断力が考えられる。そこで,この流動単位に作用 するせん断力がせん断力発生の基本単位となるに足るだけの特性を保持している か否かについて以下に検討する。

酸素による1次結合の homogeneous processで表わしうる広範なコンシステン シー状態の粘土・水系において、その結合数(流動単位数) Sとせん断強さ τ_f の関係がほぼ同一の比例関係にあることがすでに明らかにされた。これは、せん 強さ τ_f と結合数Sの比 τ_f /S、すなわち破壊時の流動単位1 個当りに作用するせ ん断力 f_f がほぼ一定であることを意味する。言い換えれば、せん断強さの発生機 構が同一であることを意味する。しかし、その際に粘土ペーストの結合数は破壊 時における測定値から算定されたが、正規圧密粘土の結合数は破壊に至らない三 軸クリープ試験の測定値から算定されている。したがって、図ー1.5.3 において 著者が得た正規圧密粘土のプロットは異なったせん断状態において得られた値を 比較していることになり、若干の不統一点がみられる。まず、この点について検 討する。

第1編第2章第4節4.5 において,正規圧密粘土に対して行なった Multi -Increment 試験,すなわち荷重増分を数段階にわたって行なうクリープ試験によって得られた結果から,活性化エネルギーおよび結合数レベルとせん断ひずみの 関係をそれぞれ図ー1.6.1 および図ー1.6.2 に示す.活性化エネルギー *dF* およ び結合数レベル *S*/*Sm* はともにせん断ひずみの増大とともにやや増加するが,せ ん断ひずみが2%以上になるとその変化は比較的小さくなる傾向が認められる. したがって,破壊時の結合数は破壊に至らないクリープ試験で得られた結合数に 近似しており,一般に前者は後者より少し大さい値をとると思われる.結局,も し破壊時の結合数とせん断強さを用いれば,図ー1.5.3 の著者が得た正規圧密粘 土のプロットは少し右に移動することになり,図中の直線に近づくようになる.

図-1.6.1 活性化エネルギーとせん断ひずみの関係

以上の考察から、さきに指摘した不統一点にかかわらず、図ー1.5.3 における 結合数とせん断強さの比例関係が成立すると考えても大きな誤りはないと考えら れる.したがって、破壊時の流動単位1 個当りに作用するせん断力 ffは、酸素 の1 次結合の homogeneous process で表わされる粘土・水系において、ほぼ一定 でその大きさは 10⁻⁷ ~ 10⁻⁸g(平均5×10⁻⁸g)程度であると結論することができ る.これは、微視的な機構の結合力が一定であり、その集合によって巨視的な粘 土・水系のせん断強さが発揮されるという概念を明確に証明していることになる。 つぎに、流動単位に作用するせん断力 f とせん断ひずみ r の関係について検討 する.図ー1.6.3 は Multi-Increment 試験による f ~ r 関係を示す.f はせん断 ひずみの増加とともに増加するが、その増加の割合いは徐々に減少する.この図

図-1.6.2 結合数とせん断ひずみの関係

から, せん断ひずみの増加とともに, 流動単位に作用するせん断力が次第にモビ ライズされる様子が確認できる.

図ー1.6.4は $\Gamma/f \sim r$ 関係を示しているが、近似的に直線関係があることが分かる。したがって、 $f \geq r$ の間に次式で表わされる双曲線関係があることになる。

$$f = \frac{\gamma}{A + B \gamma} \tag{1.6.1}$$

ここに、 *A*および *B*は定数で、それぞれ図一1.6.4 の直線の切片および勾配をあ らわす.また、この関係は圧密圧力にほとんど関係せずにほぼ同じ双曲線関係が 成立することが分かる.言い換えれば、粘土の状態量にかかわらず,式(1.6.1) の定数 *A*および *B*は一定であることが確認できる.

図-1.6.3 流動単位に作用するせん断力とせん断ひずみの関係

しかるに、Kondner³⁴⁾によれば、土の応力ーひずみ関係は双曲線で表示できる. Multi-Increment 試験の結果より、 $r/\tau \sim r$ 関係を図示すれば、図ー1.6.5 のようになる、 $r/\tau \sim r$ 関係が直線で表わされるので、Kondner のいう応力–ひずみの双曲線関係が満足されている。しかし、この場合、圧密圧力すなわち粘土の状態量の相異によって応力–ひずみの双曲線関係が異なる。

したがって、微視的な流動単位に作用するせん断力fおよび巨視的なせん断応 力ではともにひずみと双曲線関係にあるが、粘土の状態量が変化した場合に、f のみがひずみと同一の双曲線関係にあることになる。これは、流動単位に作用す るせん断力fがより本質的な基本単位であり、粘土・水系のダイラタンシーに起 因しないせん断抵抗力の本質的な発生機構となりうることを意味している。した

図-1.6.4 $\gamma/f \geq \gamma$ の関係

がって,流動単位が微視的な基本機構であり,その集合として巨視的な挙動が表 現されるという概念が粘土粒子間の物理化学的な相互作用に関する一般的な概念 となりうることを示唆していると考えられる.

結局, rate process 理論にもとずいた微視的機構が,粘土・水系の定常的な 流動状態における粘土粒子接合点の微視的機構のみならず,粘土・水系の一般的 な変形時における粘土粒子間の物理化学的な相互作用に関する一般的な概念とな りうることを示唆していると考えられる.

図-1.6.5 γ/τ と γ の関係

第2節 結合と有効応力

いままで、代表的な粘土・水系の巨視的な挙動から微視的な機構を検討してきた。すなわち、粘土・水系の巨視的な流動現象をrate process と仮定したとき、 同時に理論で仮定される微視的機構に対しても物理化学的な立場から粘土粒子接 合点の流動機構として物理的意味を与えうることを明らかにしてきた。

ここでは、逆に、いままでに得られた粘土・水系の微視的な機構にもとずいて、

圧密粘土の一般的な巨視的挙動を検討する.

図ー 1.6.6a) に示すように,等方的な圧力で圧密された粘土の要素を考える. 巨視的には、有効応力(圧密圧力) $\sigma'(=\sigma_c)$ が作用している。この粘土要素を 微視的にみて,図―1.6.6b)に示すように,単位面積当りの粘土粒子接点数を Ss. 1接点に $\sigma'(=\sigma_c)$ σ' 作用する垂直 力を P, 1接 $\sigma'(=\sigma_c)$ $\sigma'(=\sigma_c)$ 点の粘土粒子 1 Ρ 間の接触面積 を Ac,粘土 粒子の降伏応 $\sigma'(=\sigma_c)$ clay particle 力をの,とする. Ss Bowden & Tabor³⁵⁾ a) 巨視的状態 b) 微視的状態 による摩擦の凝 図 - 1.6.6 粘土要素 着理論を粘土粒 子接合点に適用すれば,次式が成立する。 $P = \sigma_v \cdot A_c$ (1, 6, 2)しかるに、各接点に垂直応力が等しく分配されていると仮定すると、 $P = \sigma' / S_s$ (1.6.3)式(1.6.2)および式(1.6.3)より、次式が得られる。 $\sigma' = \sigma_v \cdot S_s \cdot A_c$ (1, 6, 4)単位面積当りの結合数(流動単位数) S は接触面積に比例すると仮定する。こ の仮定の妥当性は、粘土粒子接合点の結合は酸素による1次結合であり、粘土粒 子表面には酸素原子が図ー1.2.31のように6角形の頂点に位置してかなり一様

に分布していることを考えると,近似的に認めえないものではない.したがって, 次式が成立する.

$$S = \chi \cdot S_s \cdot A_c$$
 (1.6.5)
ここに、 X は比例係数である。
式 (1.6.4) および式 (1.6.5) より、次式が得られる。
 $\sigma' = \frac{1}{\chi} \sigma_y \cdot S$ (1.6.6)

- 97 -

式(1.6.6)は等方圧密状態において導かれたが,異方圧密状態あるいは軸差応 力の作用する状態においても,各応力面でそれぞれ式(1.6.6)が成立すると考 えられる.

式(1.6.6)は、 χ および σ_y が σ' に関係しないならば、結合数Sが有効応力 σ' に比例することを意味する。この比例関係は、すでに第1編第2章第5節5.3図 - 1.2.27 において、正規圧密粘土に対して近似的に確認されている。また、第 1編第5章第2節および第6章第1節で実験的に明らかにされたように、せん断 強さ τ_f と結合数Sは比例関係にある。すなわち、次式が成立する。

 $\tau_f = f_f \cdot S$ (1.6.7) ここに、 f_f は破壊時の流動単位に作用するせん断力である。式(1.6.6)および 式(1.6.7)より、次式が得られる。

$$\tau_f = \frac{\chi \cdot f_f}{\sigma_y} \sigma' \tag{1.6.8}$$

式(1.6.8)はせん断強さと有効応力の比例関係を表わしており、正規圧密粘 土に対して得られる両者の比例関係を説明している.すなわち、正規圧密粘土に おいて、 $\tau_f = \sigma' \cdot \tan \varphi'$ が成立するので、有効応力にもとづく摩擦角 φ' の内容が 微視的に次式で表現できることを意味している.

$$\varphi' = \tan^{-1} \left(\frac{\chi \cdot f_f}{\sigma_y} \right) \tag{1.6.9}$$

以上の議論は,過圧密状態の粘土あるいは粘土粒子間にのに起因しない物理化 学的な力が相当に作用する場合には,成立しない. これらの場合,外的に作用す る応力がないときでも,粘土粒子間に相互作用があり,接触面積があると考えれ ば,式(1.6.2)の代りに次式が成立する.

 $P = \sigma_y (A_c - A_o)$ (1.6.10)

ここに、 Ao は外的な応力がないときの粘土粒子間の接触面積である.式(1.6. 3)、式(1.6.5)および式(1.6.10)より、次式が得られる.

$$\sigma' = \frac{1}{\chi} \sigma_y \cdot S - \sigma_y \cdot S_s \cdot A_o \qquad (1.6.11)$$

さらに,式(1.6.7)および式(1.6.11)より,次式が得られる.

$$\tau_f = \frac{\chi f_f}{\sigma_y} \sigma' + \chi f_f S_s A_o \qquad (1.6.12)$$

式(1.6.12)は、一般に知られている粘土のせん断強さと有効応力の関係、 すなわち

$$\tau_f = \sigma' \tan \varphi' + c' \tag{1.6.13}$$

と同形である.式(1.6.12)および式(1.6.13)を比較すれば,次式が成立する.

$$\varphi' = \tan^{-1} \left(\frac{\chi f_f}{\sigma_y} \right)$$

$$c' = \chi \cdot f_f \cdot S_s \cdot A_o$$

$$\left. \left\{ \begin{array}{c} 1.6.14 \end{array} \right\} \right\}$$

結局, 有効応力にもとづく摩擦角 φ' および粘着力 c' の意味が, 微視的立場か 6, 式(1.6.14)のように明らかにされる.

第7章 結 論

第1編においては、微視的な立場から、広範なコンシステンシーをもつ粘土・ 水系の多様な流動現象の本質的な機構を解明し、これらの現象を統一的に取扱う ことを目的としてきた。そのため、まず、粘土・水系の本質的な流動機構は粘土・ 水系全体としての種々の流動現象の機構となりうる特性を具備すべきであるとい う考えのもとに、代表的な粘土・水系の流動現象として粘土サスペンジョンのニ ュートン流動、粘土ペーストの定常流動、正規圧密粘土の定常クリープを取り上 げた。それぞれの流動現象に対して、粘度試験、ベーン試験および三軸クリープ 試験を行なった結果、これらの流動現象が現象的にrate process 理論によって 説明できることを裏づけた。

さらに、この理論で仮定される微視的な流動機構を粘土粒子間の微視的構造と 対応させることによって、粘土粒子接合点の物理化学的な機構を検討し、代表的 な粘土・水系の流動機構を明確にした。以上の結果から、粘土・水系全体として の流動機構は、本質的には homogeneous process ではなく、heterogeneous process であると考えることによって、統一的に取扱うることが示唆された。この heterogeneous process としての粘土・水系の流動に関与する基本機構として、水素結合 および酸素による1次結合が考えられた。

上記に得られたように、粘土・水系の本質的な流動機構は2種の基本機構をも つheterogeneous process として表現できるという考えに立脚して、粘土・水系 の統一的な流動機構モデルを提案した。つぎに、このモデルの妥当性を裏づける ため、とくに高含水量の粘土ベーストの流動現象を対象として、ベーン型プラス トメーターによる定常流動実験を行なった。その結果、heterogeneous process の存在が確認され、また、その流動機構が明らかにされた。以上の結果を総合的 に検討することによって、heterogeneous process としての統一的な流動機構が 明確になり、提案した粘土・水系の統一的な流動機構モデルの妥当性がほぼ裏づ けられた。

さらに、このモデルの 微視的な基本 (後構である流動単位に作用するせん断力に ついて検討した、その結果、流動単位に作用するせん断力が粘土・水系のダイラ
タンシーに起因しないせん断応力の本質的な発生機構となりうることが示唆された.したがって, rate process 理論に基づいた微視的機構が,粘土・水系の定常的な流動状態における粘土粒子接合点の微視的機構のみならず,粘土・水系の一般的な変形時における粘土粒子間の物理化学的な相互作用に関する一般的な概念となりうることが示唆された.

最後に、rate process 理論にもとづいて得られた粘土・水系の微視的な機構 から、圧密粘土の一般的な巨視的挙動を検討した。その結果、微視的な機構に基 づいて導かれたせん断強さと有効応力の関係が一般に認められている関係と同じ 形で表現できた。したがって、圧密粘土の有効応力によるせん断特性を表わす摩 擦角 φ' および粘着力 c'の意味が微視的立場から明らかにされた。

参 考 文 献

- 1) 森 芳郎:レオロジー,共立出版, pp.2~5, 1957.
- 2) 須藤・東山・山崎:土のレオロジカルな構造,土と基礎, Vol.13,9, pp, 29 ~ 37, 1965、
- 3) Lambe T. W. : The structure of inorganic soil, Proc. ASCE,
 Vol. 79, No. 315, pp. 1~49, 1953.
- 4) Mitchell J.K.: The fabric of natural clays and its relation to engineering properties, Proc. HRB, Vol. 35, pp. 693 \sim 713, 1956.
- 5) Tan T.K. : Discussion on "Soil properties and their measurement", Proc. 4 th ICSMFE, Vol. 3, pp. $87 \sim 89$, 1957.
- 6) Rosenquist I. Th. : Physico-chemical properties of soils : soilwater systems, Proc. ASCE, Vol. 85, No. SM 2, pp. 31 ~ 53, 1959.
- 7) たとえば, Proc. Intern. Sympo. on Soil Structure, Swedish Geotech. Society, Gothenburg, Sweden, 1973.
- 8) Yong R.N. and Warkentin B.P.: Introduction to soil behavior, Macmillan, New York, 1966. (山崎・山内訳)
- 9) Glasstone S., Laidler K. and Eyring H. : The theory of rate process, Mc Graw-Hill, New York, 1941.
- Lambe T. W. : A mechanistic picture of shear strength in clay, Res. Conf. on Shear Strength of Cohesive Soils, ASCE, pp. 555 ~ 580, June 1960.
- 11) Mitchell J. K. : Shearing resistance of soils as a rate process, Proc. ASCE, Vol. 90, No. SM1, pp. $29 \sim 61$, 1964.
- 伊藤富雄・松井 保:粘土の流動機構に関する研究,土木学会論文報告集, 第236号, pp. 71~85, 1974.
- 13) 村山朔郎・柴田 徹:粘土のレオロジー的特性について,土木学会論文集,

第40号, pp.1~31, 1956.

- 14) Christensen R. W. and Wu P. L. : Analysis of clay deformation as a rate process, Proc. ASCE, Vol. 90, No. SM 6, pp. 125 \sim 157, 1964.
- 15) Andersland O. B. and Akili W. Stress effect on creep rates of a frozen clay soil, Geotechnique, Vol. 17, pp. 27 ~ 39, 1967.
- 16) Mitchell J. K., Campanella R. G. and Singh A. : Soil creep as a rate process, Proc. ASCE, Vol. 94, No. SM1, pp. 231 ~ 253, 1968.
- Mitchell J. K., Singh A. and Campanella R. G. : Bonding, effective stresses and strength of soils, Proc. ASCE, Vol. 95, No.
 SM5, pp. 1219 ~ 1246, 1969.
- Andersland O. B. and Douglas A. G. : Soil deformation rates and activation energies, Geotechnique, Vol. 20, No. 1, pp. 1~16, 1970.
- 19) Herrin M. and Jones G. E. : The behavior of bituminous materials from the viewpoint of the absolute rate theory, Proc. Ass. Asph. Pav. Technol., Vol. 32, pp. 82 ~ 105, 1963.
- 20) 中川鶴太郎・神戸博太郎:レオロジー,みすず書房, pp. 265 ~ 354, 1959.
- 21) 後藤・平井・花井:レオロジーとその応用,共立出版, pp. 207 ~ 221, 1962.
- 22) Cadling L. and Odenstad S. : The vane borer, an apparatus for determining the shear strength of clay soils directly in the grourd, Proc. R. S. G. I., No. 2, 1950.
- 23) Karlsson R. : On cohesive soil and their flow properties, S. G. I. Reports, No. 5, pp. $25 \sim 49$, 1963.
- 24) Karlsson R. : Suggested improvements in the liquid limit test with reference to flow properties of remoulded clays, Proc. 5th ICSMFE, Vol. I, pp. $171 \sim 184$, 1961.
- 25) 山内豊聡:土の物理化学的性質,土質力学(最上武雄編),技報堂, pp.

 $1 \sim 88$, 1969.

- 26) Martin R. T. : Absorbed water on clay, a review, Proc. 9 th National Conf. Clays and Clay Minerals, London, Pergmon Press, 1960.
- 27) Barrow G. M. : Physical chemistry, McGraw Hill, New York, 1966. (藤代訳)
- 28) Ripple C. D. and Day P. R. : Suction responce due to homogeneous shear of dilute montmorillonite-water pastes, Clay and Clay Minerals, Proc. 4th National Conf. pp. 307 ~ 316, 1966.
- 29) Low P. F. Physical chemistry of clay water interaction,
 Advances in Agronomy, Vol. 13, pp. 219 ~ 228, 1961.
- 30) 伊藤・松井・阿倍:粘土の流動機構に関する考察,土木学会第27回年次
 学術講演概要集 II, pp. 139 ~ 140, 1972.
- 31) 伊藤・松井・長頼:粘土の流動機構に関する研究,土木学会第28回年次
 学術講演概要集 II, pp. 20 ~ 22, 1973.
- 32) 伊藤富雄・松井 保:系統的な粘土・水系の流動機構について、土木学会
 第29回年次学術講演会概要集 Ⅲ、 pp. 71 ~ 72, 1974.
- 33) 松井 保・伊藤冨雄:粘土・水系の統一的な流動機構に関する基礎的研究, 土木学会論文報告集(投稿中)
- 34) Kondner R. L. : Hyperbolic stress-strain responce : cohesive soils, Proc. ASCE, Vol. 89, No. SM1, pp. 115 ~ 143, 1963,
- 35) Bowden F. P. and Tabor O.: The friction and lubrication of solids, Oxford, Clarendon Press, 1954.(曽田訳)

第 2 編

軟弱地盤における塑性流動現象に関する応用的研究

第 2 編

軟弱地盤における塑性流動現象に関する応用的研究

第1章 軟弱粘土の流動特性の研究¹⁾

第1節 総 説

沖積層および埋立地などの軟弱地盤において、軟弱粘土のせん断変形にともな う塑性流動現象がみられ、この現象にともなって種々の工学的諸問題が生じてい る.たとえば、部分載荷による軟弱地盤の側方流動、杭などの基礎周辺地盤の塑 性流動、ブラインドシールド周辺地盤の塑性流動、地すべりなどである。

一般に、粘土に一定応力を加えると、時間の経過とともにせん断変形が増加し て行く現象が見られる。この現象は、作用応力の大きさによって、図-2.1.1 に示すような型に大別される、すなわち、

I. ほぼ瞬間的に弾性変形が生じた後,変形速度は0となる.

 I.変形量は時間の経過とともに増加するが、変形速度は徐々に減少しつい には0となる。

time 図 – 2.1.1 一定応力下におけるひずみと時間の関係

- 106 -

 Ⅲ.変形量は時間の経過とともに増加し変形速度がほぼ一定値になった後、 変形速度が増加し破壊に至る。

軟弱粘土の力学的挙動についても、当然上述のⅠ, Ⅱ, Ⅲの過程が考えられる が、とくにⅡ, Ⅲの過程が多く見られると思われる. Ⅱの過程においては、変形 速度が一定になることはないが、ある程度変形が進行すると擬似定常的な挙動を 示す. Ⅲの過程においては、ある程度変形が進行すると定常的な挙動を示す、そ の後、Ⅱの過程では変形が停止し、Ⅲの過程ではさらに急激に変形が進行する点 で両者は非常に異なる.

前述したような軟弱粘土の塑性流動に関連する工学的諸問題を取扱う際に、図 -2.1.1 におけるII, IIの過程に相当する軟弱粘土の定常的挙動にしばしば遭 遇するので、これらの過程の挙動を明らかにし、その流動特性を知ることが必要 になる。

そこで,第2編第1章においては,第1編のミクロレオロジーの立場とは異な り,マクロレオロジーの立場から,軟弱粘土の流動特性を明らかにする.まず. パイプフロー試験により軟弱粘土の流動特性を決定する.この試験は,液性限界 付近あるいはそれ以上の軟弱粘土の試験法としては適している.また境界条件が 明確であるという長所を有する.さらに境界条件がやや不明確になるが,軟弱粘土の 試験法として適し,原位置試験が可能であるという長所を有するベーン試験によっても 軟弱粘土の流動特性を求める.これらの両試験の結果から軟弱粘土の流動特性を検討し, 明確にしようとするものである.

第2節 流動方程式の解析法

2.1 概 説

一般に、実験にもとづいて流動方程式を決定するには、つぎの2方法が考えら れる、一つは、流動方程式にあらかじめ仮定を設けず流動曲線を任意関数として 表示しておき、その曲線の形を決定する微分法(differential method)である。他 は、流動方程式をあらかじめ仮定し、その式中の定数を決定する積分法(integral method)である。この節では、パイプフロー試験およびベーン試験に対して、こ れらの2方法による流動方程式の解析法を示す。 2.2 パイプフロー試験に対する解析法

2.2.1 パイプフロー試験における流速分布

パイプフロー試験により軟弱粘土の流動方程式を得るために,管壁における境 界条件および管内の流速分布の形状を知る必要がある.しかし,円形パイプ中の 境界条件および流速分布を直接測定することはほとんど不可能である.そこで, 長さ50 cm,高さ5 cm,幅3 cmの矩形パイプ(側壁はガラス張りで,上下壁面は十 分粗にしてある)を用い,ガラス面を通して2次元的に流速分布を測定し,円形 パイプ中の流速分布の定性的な参考資料とした.典型的な測定結果の一例を写真 21.1に示す.この写真中の白点は粘土の流速分布を示している.この写真より,

上下壁面で流速がほとんどな く、中央部で栓流が生じてい ることが確認できる。したが って、壁面が十分粗であれば 壁面におけるすべりがなく、 また粘土は降伏値をもつ塑性 流動を示すと考えられる。

2.2.2 微分法

微分法においては、流動方 程式が仮定されないので、ひ ずみ速度 du/drはせん断応力 τ の関数として次式で与えら れる.

 $-\frac{\mathrm{d}\boldsymbol{u}}{\mathrm{d}\boldsymbol{r}}=\boldsymbol{g}(\boldsymbol{\tau})\quad(2.1.1)$

図-2.1.2 に示すように,軟 弱粘土が管長L,管径2Rの

 $t = 4 \min$

 $v_m = 0.8 \text{ cm/min}$

写真 – 2.1.1 矩形パイプ中の軟弱粘土の流速分布

パイプ中を定常的に流動しているとき、釣台条件より次式が成立する.

$$\frac{r}{R} = \frac{\tau}{\tau_w} \quad , \quad \tau_w = \frac{Rp}{2L} \tag{2.1.2}$$

ここに、 τ_w は管壁におけるせん断応力、 τ は任意半径rにおけるせん断応力、pは管長L間の損失圧力である。

流動方程式はKrieger · Maron の方法²によって得られる。すなわち、管壁ですべりが生じないと仮定すれば、流量Qは次式で表わされる。

$$Q = \int_{0}^{R} 2\pi r u du = \pi \int_{0}^{R} u d(r^{2})$$

= $\pi \{ [ur^{2}]_{0}^{R} - \int_{0}^{R} r^{2} du \} = -\pi \int_{0}^{R} r^{2} du$ (2.1.3)

式(2.1.1)および(2.1.2)より、次式が得られる。

$$r = \frac{R}{\tau_{w}} \cdot \tau$$

$$du = -g(\tau) dr = -g(\tau) \frac{R}{\tau_{w}} d\tau$$

$$(2.1.4)$$

式(2.1.3)に式(2.1.4)を代入すれば、次式が得られる。

$$Q = \pi \left(\frac{R}{\tau_{w}}\right)^{3} \int_{0}^{\tau_{w}} \tau^{2} g(\tau) d\tau \qquad (2.1.5)$$

したがって、平均流速 いは次式のように表わされる.

$$\mathbf{u}_{a} = \frac{Q}{\pi R^{2}} = \frac{R}{\tau_{w}^{3}} \int_{0}^{\tau_{w}} \tau^{2} g(\tau) d\tau \qquad (2.1.6)$$

式(2.1.6)をなについて微分すると、次式が得られる.

$$g(\tau_w) = \frac{1}{R} \left(3u_a + \tau_w \frac{\mathrm{d}u_a}{\mathrm{d}\tau_w} \right)$$
 (2.1.7)

したがって、管長L間の損失圧力 pおよび平均流速 u_a を測定し、 $u_a - \tau_w$ 関係 を図式微分し式(2.1.7)を用いれば、 $g(\tau_w) - \tau_w$ 関係が決定できる、このよう にして得られる $g(\tau_w) - \tau_w$ 関係は、一般の $g(\tau) - \tau$ 関係を表現していると考えら れるから、軟弱粘土の流動曲線が求まり、流動方程式が決定される。

図-2.1.2 管内流動における流速およびせん断応力の分布

2.2.3 積分法

積分法では、あらかじめ流動方程式が仮定される。すでに、第2編第1章第2 節2.2.1 において、写真2.1.1 により確認されたように、軟弱粘土は塑性流動を 示し、降伏値をもつと考えられるので、軟弱粘土を一般に非ビンガム体と仮定す る、非ビンガム体は、たとえば次式のHerschel – Bulkleyの式³⁾で表わされる。

$$-\frac{\mathrm{d}u}{\mathrm{d}r} = k(\tau - \tau_y)^n \qquad (2.1.8)$$

ここに、ては降伏応力、 k および n は定数である。

式(2.1.8)には3個の未知定数があるので、実測値からこれらの定数を同時 に決定することは困難である。しかし、これらの未知数の一つ、たとえばてがあ らかじめ他の方法により決定されておれば、他の未知数は得られる。て、を求める 方法としては、微分法により得られる流動曲線を外挿するか、他の試験によりあ らかじめ求めておくことが考えられる。

つぎに, 軟弱粘土をより簡単にビンガム体と仮定する. ビンガム体は, 式(2. 1.8)においてn=1の場合であり, 次式で表わされる.

- 110 -

$$-\frac{\mathrm{d}u}{\mathrm{d}r} = \frac{1}{\eta_p} \left(\tau - \tau_y \right) \tag{2.1.9}$$

ここに、 η_{p} は塑性粘度である、式(2.1.9)を式(2.1.6)に代入し、 $\tau_{w} = \tau_{y}$ のとき $u_{a} = 0$ の境界条件で積分すると、次式が得られる.

$$\frac{u_a}{\tau_w} = \frac{R}{4 \eta_p} \left\{ 1 - \frac{4}{3} \left(\frac{\tau_y}{\tau_w} \right) + \frac{1}{3} \left(\frac{\tau_y}{\tau_w} \right)^4 \right\}$$
(2.1.10)

式(2.1.10)はBuckingham – Reinerの式と呼ばれる.式(2.1.10)を用い,定数 *Ty*および η,が試行法あるいは最小自乗法により決定される.

2.3 ベーン試験に対する解析法

図-2.1.3 a)に示すように、半径 r_i のベーンが回転角速度 ω_i で回転する場合を考える、ベーンの外周面 $(r=r_i)$ に作用するせん断応力 τ_i 、中心から任意半径rの位置における回転角速度およびせん断応力をそれぞれのおよび τ 、 $\tau = \tau_y$ に対する中心からの半径を r_y とする、ここに、 τ_y は粘土の降伏応力である。

a)流速およびせん断応力の分布

b) 要素の変形状態

ひずみ速度がせん断応力の関数で表わされるものとすると、ベーン試験の場合 図-2.1.3 b)を参照すれば、次式が成立する.

$$-r \frac{\mathrm{d}\omega}{\mathrm{d}r} = g(\tau) \tag{2.1,11}$$

ベーン側面に作用するせん断応力による回転モーメントをMとすると、次式が成 立する.

$$\tau = \frac{M}{2\pi H r^2}$$
 (2.1.12)

ここに, Hはベーンの高さである. 式(2.1.12)より,次式が導びかれる.

$$\frac{dr}{r} = -\frac{1}{2} \frac{d\tau}{\tau}$$
 (2.1.13)

式(2.1.11)および式(2.1.13)より、次式が得られる。

$$d\omega = \frac{1}{2} g(\tau) \frac{d\tau}{\tau}$$
 (2.1.14)

 $\tau = \tau_y \tau \omega = 0$, $\tau = \tau_i \tau \omega = \omega_i$ という境界条件により,式(2.1.14)を積分 すると,次式が導びかれる.

$$\omega_{i} = \int_{0}^{\omega_{i}} d\omega = \frac{1}{2} \int_{\tau_{y}}^{\tau_{i}} g(\tau) \frac{d\tau}{\tau}$$
 (2.1.15)

式(2.1.15)をひで微分すると、次式になる。

$$g(\tau_i) = 2\tau_i \frac{\mathrm{d}\omega_i}{\mathrm{d}\tau_i} \qquad (2.1.16)$$

微分法を用いて流動曲線を決定する場合には、 $\omega_i = \tau_i$ 曲線を図式微分し、式(2. 1.16)を用いることにより $\tau = g(\tau)$ 曲線が得られる.

一方,積分法を用いて流動曲線を決定する場合には,流動方程式としてビンガム 流動を仮定すると,次式が成立する。

$$g(\tau) = \frac{1}{\eta_p} (\tau - \tau_y)$$
 (2.1.17)

式(2.1.17)を式(2.1.15)に代入すると、次式が得られる。

$$\omega_{i} = \frac{1}{2\eta_{p}} \int_{\tau_{y}}^{\tau_{i}} (1 - \frac{\tau_{y}}{\tau}) d\tau$$
$$= \frac{1}{2\eta_{p}} \left\{ (\tau_{i} - \tau_{y}) - \tau_{y} \ln \frac{\tau_{i}}{\tau_{y}} \right\}$$
(2.1.18)

式(2.1.18)を用い, 定数 5, および 7, が試行法あるいは最小自乗法により決定 される.

第3節 軟弱粘土の流動特性

3.1 パイプフロー試験による軟弱粘土の流動特性

3.1.1 試料,実験装置および方法

パイプフロー試験により軟弱粘土の流動特性を決定する. 試験に用いられる試料は. 液性限界 w_{ι} = 72%, 塑性限界 w_{p} = 31%, 塑性指数 I_{p} = 41%, 土粒子の比重 G_{s} = 2.65, 粘土分(<2 μ)9.5%である.

実験装置の概略は図-2.1.4 に示される. すなわち, 内径 11 cm, 長さ 43 cmのァ []

cylinder

図-2.1.4 実験装置の概略図

クリル樹脂製円筒容器の一端にコン プレッサーおよびマノメーターを接 続し,加圧および圧力測定を行なう. 他端には表-2.1.1に示す3種の内

表一	2.	1.	1	パイプの寸法
	_		-	

		L cm	R cm	$\frac{L}{R}$
Pipe	Ι	5.20	0.35	14.9
Pipe	Π	7.30	0.51	14.4
Pipe	Ш	15.12	0.51	29.8

面粗なパイプのいずれかを取りつけ、パイプの先端にマシンオイルを満した容器 を接続する・

実験方法は,液性限界付近の数種の含水比をもつ軟弱粘土を練返して,パイプ および円筒容器につめ,約1時間放置後コンプレッサーにより一定圧力を加え, ほぼ定常状態においてマシンオイルの表面変位を上部細管によって読み取ること により流量を測定する.その後,順次圧力を変化させて同様の試験を繰り返す.室 温は約12°Cに保って温度変化による影響をできるだけ避ける.

3.1.2 実験結果および考察

第2編第1章第2節2.2.2の微分法により,式(2.1.7)を用いて流動曲線を 求めると,図2.1.5 a),b)および c)に示すようになる. これらの曲線は,とく

- 114 -

🖾 – 2.1.5 b) pipe 👖

に含水比が低い場合およびひずみ速度が小さい場合に必ずしも直線ではなく,また横軸上の切片すなわち降伏値を有すると考えられる.したがって,軟弱粘土は 厳密には非ビンガム体と考えられ,近似的に式(2.1.8)により表現できる.

しかし、これらの曲線から降伏値を外挿することは困難であるので、便宜上軟 弱粘土中の板の引抜き試験によって得られたせん断応力を降伏値とみなして、他 の定数 k および n を決定した. この際、比較的小さいひずみ速度のデータまで揃 った Pipe Ⅲの3 種の含水比(86.0%, 89.4%, 104.4%)をもつ粘土に対する結 果を対象とした(図-2.1.5 c)参照). その結果を図示すると、図2.1.6 およ

図-2.1.5 c) pipe Ⅲ 図-2.1.5 g(τ_w)とτ_wの関係

して表現することは工学的な意義を有する.

図ー2.1.8 および図ー2.1.9 は、第2編第1章第2節2.2.3 の式(2.1.10)を用いて得られた流動特性 τ_y および η_r と含水比の関係を、3種のパイプについて比較して、図示したものである、式(2.1.10)は、積分法により軟弱粘土をビンガム体と仮定して得られたものである。その際、平均流速 u_a が 4 × 10⁻⁴~3×10⁻³ cm/sec の範囲のデータを用いた。

図-2.1.8 は、同じ L/Rであるが管径が異なる pipe I と pipe I を用いて得られた 流動特性の比較を示している. この場合 ひおよび η。はそれぞれ 2 種のパイプに対し

び図-2。1.7のようにな る、データの数が少ない ので明確ではないが、降 伏値で、と1/kは含水比の 増加とともに指数関数的 に減少し、nは含水比の 増加とともに直線的に減 少する傾向があると思わ れる・

一方,あるひずみ速度 の範囲において,軟弱粘 土をビンガム体と仮定す ることは可能であると考 えられる。実際の塑性流 動み速度られたひ すと考えられるの範囲で生ずる と考えられることも多く、 またま示が複雑で実用計算 には面によって、軟弱粘土 を近似的にビンガム体と

てともにほとんど 同じ値を示してい る. 一方, 図-2. 1.9 は同じ管径で あるがL/Rが約1 :2で異なる pipe ∎とpipe Ⅲを用い て得られた流動特 性の比較を示して いる. より大きい L/Rをもつ pipe Ⅲにより得られた τyおよびη,は, pipe ∏のそれらの 値よりも少し小さ い値を示すことが

図-2.1.8 pipe [と pipe] による流動特性の比較

認められる. この差異は,おもにL/R の関数として表わされるパイプの入口損 失に起因するものである. しかし,その差異はわずかであるので, pipe Ⅲ 程度 のL/R のパイプを用いれば,入口損失の影響はほとんどないと思われる.

そこで, pipe Ⅲの結果から流動特性と含水比の関係を検討する. 含水比の増加とともに, ひおよび かはともに指数関数的に減少する傾向が認められる. 一般に,粘土のせん断強さは含水比と指数関数の関係にあることが認められているが,パイプフロー試験によって得られた て,に関しても含水比との間に同様の関係

- 118 -

図-2.1.9 pipe []とpipe []による流動特性の比較

があり矛盾はない.

3.2 ベーン試験による軟弱粘土の流動特性

前項3.1のパイプフロー試験により得られたように、軟弱粘土は非ビンガム体である。一方、軟弱粘土をビンガム体として近似することには工学的意義を有する。ベーン試験は、実用的な試験法として適しており、また原位置試験が可能で

ある.そこで、ベーン試験においては、軟弱粘土をビンガム体として近似した場合の流動特性について検討する.したがって、積分法を用いることになる.実験はすでに第1編第2章第4節4.4で行なわれているので、そこで得られた結果について検討する.実験装置および実験方法については、前述されているので省略する.粘土試料は梅田粘土、千里粘土A,千里粘土Bおよびベントナイトの4種を使用している.これらの物性は第1編第2章第4節4.2に示されている.

図-2.1.10 a) 梅田粘土

-120 -

実験結果から得られた回転角速度ωとせん断応力での関係が図2.1.10 a), b), c)およびd)にプロット(〇印)されている. これらの結果に式(2. 1.18)を適用し,最小自乗法により降伏応力で,および塑性粘度η,を決定する. 式(2.1.18)を用いて得られたω~で曲線を図-2.1.10 a), b), c),およびd)に 破線で示す. これらの曲線がそれぞれ各プロットと近似的に一致することから, 軟弱粘土の流動特性が,ある限られたひずみ速度の範囲(この場合回転角速度が

約10°~10⁻² deg/sec)内で,近似的に式(2.1.17)のビンガム流動として表現 できることが確認される.

以上のようにして得られたちおよびなと含水比の関係が図-2.1.11a)および b)に示される. この際, 含水比wはファイネスナンバーFで除した値(w/F) で表わされる. この図より, ちおよびなはともに含水比の増加にともない指数関

- 122 -

数的に減少する傾向をもつことが分かる.また,状態量を表わすパラメーターとしてw/Fを用いることにより,種々の粘土に対するこれらの関係をほぼ一義的に 表現できると思われる.

つぎにベーン試験によって得られた流動特性をパイプフロー試験によるものと 比較する.そのため、前項3.1においてパイプフロー試験によって得られた結果 のうち、pipe Ⅲの ひおよび η,と含水比の関係を図-2.1.11 a)および b) にプロ

図-2.1.10 d) ベントナイト 図-2.1.10 回転角速度とせん断応力の関係

ットする(●印). この際,パイプフロー試験に用いられた粘土試料のファイネス ナンバー F が得られないので液性限界(この場合, $w_L = 72\%$)で代用した. こ れらの図より両試験により得られた流動特性は定性的には近似している. しかし, 定量的には,パイプフロー試験による τ_y がベーン試験によるものより少し小さく, パイプフロー試験による η_v がベーン試験によるものより少し大きい.

この原因としては、 ちおよび かを求めるときのひずみ速度の範囲として、パイ プフロー試験の方がベーン試験より少し小さいひずみ速度の範囲を選んでいるの ではないかと推測される。なぜなら、一般に軟弱粘土のような非ビンガム体をビ

図 – 2.1.11 a) $\tau_y \ge w/F$ の関係

図 – 2.1.11 b) η,と w/F の関係 図 – 2.1.11 流動特性と含水比の関係

ンガム体で近似する場合,より小さいひずみ速度の範囲では, ではより小さくなるがのはより大きくなるからである。しかし,いずれにしてもこれらの差異はあまり大きくなく,ベーン試験により得られた軟弱粘土の流動特性が工学的に十分利用されうると考えられる.

第4節 結 論

マクロレオロジーの立場から,軟弱粘土の流動特性を明らかにするため,パイ プフロー試験およびベーン試験を行なった。前者は境界条件が明確であり,後者は 原位置試験が可能であるという長所を有する.また,ともに軟弱粘土の試験法と しては適している。それぞれの試験に対する流動方程式の解析法を示し,両試験 結果から軟弱粘土の流動特性を決定した。また,両試験法の適用性についても言 及した。

第1編第1章で得られたおもな結論を以下に列挙する.

- (1) 軟弱粘土の流動特性は厳密には非ビンガム流動であるが、ひずみ速度に制限 を設けることによってビンガム流動であると仮定することができる。また、軟 弱粘土を近似的にビンガム体として表現することは工学的意義を有する。
- (2) 軟弱粘土を非ビンガム体として表現する場合、その流動特性、すなわち降伏値でなど1/kは含水比の増加とともに指数関数的に減少し、nは含水比の増加とともに直線的に減少する傾向がある。
- (3) 軟弱粘土をビンガム体として表現する場合、その流動特性すなわち降伏応力 *ty*および塑性粘度 η,は、ともに含水比の増加にともない指数関数的に減少する 傾向をもつ、また、状態量を表わすパラメーターとして、含水比wとファイネス ナンバー Fの比(w/F)を用いることにより、種々の粘土に対するこれらの関 係を一義的に表現できる。
- (4) パイプフロー試験により軟弱粘土の流動特性を決定する場合、パイプの入口 損失の影響を除くために、管長Lと管の半径Rの比(L/R)が約30程度以上の パイプを用いる必要がある。
- (5) ベーン試験により、工学的に十分有用な軟弱粘土の流動特性を得ることがで きる.

参考文献

- Matsui T., Ito T. and Fujii K.: Plastic flow of soft clays by pipe flow tests, Technol. Repts. Osaka Univ., Vol. 20, No.970, pp.797 ~ 808, 1970.
- 2) Krieger I.M. and Maron S.M., Journal Applied Physics, 25-2, p.149, 1954.
- 3) 中川鶴太郎・神戸博太郎:レオロジー, みすず書房, pp.340 ~ 354, 1959.
- 4) Reiner M.: Deformation, strain and flow, Lewis and Co. Ltd., London, 1960.
- 5) 荒井定吉:フロテスター,レオロジー測定法5,高分子学会レオロジー委員 会 pp.90~110,1965.

第2章 軟弱地盤の側方流動に

よる沈下に関する研究」

第1節 総 説

沖積層,埋立地などの軟弱地盤上に部分載荷された場合,全沈下量Sは,一般 に,初期沈下(瞬間沈下)S_i,1次圧密沈下S_P,2次圧密沈下S_s,および側方流 動による沈下S_fに大別される.すなわち,次式のように表現される.

 $S = S_i + S_p + S_s + S_f$ (2.1.1) しかし、これらの4種の沈下をすべて考慮した全沈下量の算定法はなく、少なく

とも2次圧密沈下 S。は他の沈下と切りはなして別途考慮されるのが通例である。

Terzaghi により1次元圧密理論が提唱されて以来,粘土地盤の沈下はほとんど 1次圧密沈下 S_p のみであると考えられてきた。しかし,地表面に部分的に載荷さ れる場合には,載荷初期に生ずる圧密によらない沈下が比較的大きく,全沈下量 Sは地盤のせん断変形による初期沈下 S_i と1次圧密沈下 S_p の和であると考えら れるようになってきた。この場合,側方流動による沈下は無視されるか初期沈下 に含めて考えられる。

たとえば、三笠²⁾は、粘土の骨組構造の変形は弾性的であると仮定して得られ るせん断変形による沈下を初期沈下とし、この沈下と1次元圧密沈下の和として 全沈下量の算定法を示した。Skempton・Bjerrum³⁾は、弾性理論により得られる 初期沈下とTerzaghiの圧密理論の考え方を3次元的に修正して得られる圧密沈下 の和として全沈下量の算定法を示した。最上・清水⁴⁾は、載荷部直下の圧密沈下 と側方への変形による沈下に分け、後者を瞬間沈下と側方への圧密による沈下に 分けて考えている。Lambe⁵⁾は、基本的にはSkempton・Bjerrumと同様全沈下量 を初期沈下と圧密沈下に分けて考えているが、有効応力径路法を用い3次元的な 圧密をできるだけ実験的に評価しようとしている。

以上の方法においては、いずれも圧密沈下のみが長時間にわたって継続し、せん断変形による初期沈下は瞬間的に生ずるものと考えている。この考え方は、比較的せん断変形の小さい場合、たとえば載荷重が比較的広範囲に分布している場

合あるいは載荷重が比較的小さい場合などにおいては,近似的に認めうるものと 思われる。しかし,軟弱地盤上の盛土やタンクの沈下の実測^{6)の}から判断して, 比較的せん断変形の大きい場合には上記の考え方に問題が残り,またいままでに もせん断変形が瞬間的に停止しないことがしばしば指摘されている。

網干・門田⁸⁾は、せん断変形による沈下は瞬間的に生ずるものではなく、圧密 沈下と同様な時間的経過をたどって起こるという考えのもとに、これらの沈下を 分けずに実験的に定数を定める方法を提案した。Davis・Poulos⁹⁾は、全沈下量 が基本的には初期沈下と圧密沈下の和として表わされるという立場に立っている が、種々の定数は三軸試験の結果から実験的に求めることを提案している。これ は、網干・門田と同様、せん断変形の時間依存性による影響を考慮するため、種 々の定数を実験的に定めることを提案していると考えられる。

Burland¹⁰⁾は、軟弱地盤上に部分載荷された場合に生ずる有効応力径路が一般の圧密試験や三軸試験と著しく異なっていることを指摘し、その有効応力径路に似たSingle - Increment 三軸試験を行ない、Roscoe ・ Burland の応力 - ひずみ理論にもとずいて地盤の変形量の算定法を示した。この場合、全沈下量は基本的に非排水状態で生ずるせん断変形、排水状態で生ずる体積変形およびせん断変形による沈下の合計であると考えられており、それぞれ式(2.1.1)における初期沈下 S_i ,1次圧密沈下 S_p および側方流動による沈下 S_f に対応すると考えられる。とくに、Single - Increment 三軸試験によって、排水状態で粘土要素に生ずるせん断変形が圧密とほぼ同様な時間的経過をたどって生ずることが確認されている。

有限要素法(FEM)を用いる方法¹¹⁾は、材料的な非線形性、地盤の不均一性、 境界条件の複雑性などに対処することができ、また、非排水状態におけるせん断 変形および3次元圧密として圧密時におけるせん断変形がともに考慮することが できる.現在、この方法の実地盤への適用性が十分検討されていないが、今後こ の方法は軟弱地盤の沈下解析に対して有力な手法の一つになるであろう.

以上のように、軟弱地盤上に部分載荷された場合の沈下量の算定には、とくに 側方流動による沈下を考慮することが重要になってくる.とくに、地盤が非常に 軟弱であり、地盤中に塑性流動が生ずるような場合には、側方流動による沈下が 他の沈下より卓越して生ずると考えられる.第2編第2章においては、この側方 流動による沈下に着目し、これが非常に卓越して生ずるような場合を取扱ってい る.まず,側方流動による沈下が長時間継続するか否かを模型実験により定性的 に検討する.つぎに,側方流動が比較的卓越するような場合の全沈下量の算定法 が,載荷幅に比し粘土層厚が小さい場合に対して示される.この際,軟弱粘土は 塑性流動体と仮定され,平行平板プラストメーターの理論が適用される.さらに, この算定法の妥当性を模型実験により検討する.

第2節 軟弱粘土層の塑性流動による沈下の挙動

軟弱地盤に部分載荷した場合,全沈下量を圧密によるものと側方流動によるものに分離して直接測定することは困難である。そこで,これらの量を間接的に分離することを試みる。載荷重下の軟弱粘土層を2次元的,模式的に図-2.2.1のように表わす。任意時刻 t_1 および t_2 間の 4t 時間に,図-2.2.1 a)の状態から図-2.2.1 b)の状態に変化すると考える。図中の記号は以下の通りである。

- w : 載荷重下の軟弱粘土層の平均含水比
- H :載荷重下の軟弱粘土層厚
- H_w:載荷重下の軟弱粘土層中の水の換算層厚
- H_s:載荷重下の軟弱粘土層中の土粒子の換算層厚
- ΔH_{wc} : Δt 時間に圧密により載荷重下から流出する水の換算層厚

AHwf : At 時間に塑性流動により載荷重下から流出する水の換算層厚

 $4H_{st}$: 4t時間に塑性流動により載荷重下から流出する土粒子の換算層厚また,図中のサフィックス ι_1 および ι_2 はそれぞれ時刻 ι_1 および ι_2 における値を示している.

そこで、 4t時間に生ずる載荷板下の平均含水比の変化はすべて圧密により生ずるものと仮定すると、 4t時間に生ずる側方流動による沈下 4S_fおよび圧密による 沈下 4S_cは次式で表わされる.

$$\Delta S_{f} = \Delta H_{wf} + \Delta H_{sf} = H_{t_{1}} - H_{t_{2}} (1 + G w_{t_{2}}) / (1 + G w_{t_{1}})$$

$$\Delta S_{c} = \Delta H_{wc} = (H_{t_{1}} - H_{t_{2}}) - \Delta S_{f}$$

$$\left. \right\} (2.2.2)$$

ここに、 G は土粒子の 比重である.もし沈下 量および平均含水比の 経時変化が得られるな らば、 4t 時間に生ず る沈下量を、式(2.2. 2)を用いて、 側方流 動によるものと圧密に よるものに分離するこ とができる.

模型実験は,のちに 第2編第2章第4節で 示される模型実験とは は同じ装置,方法およ び粘土試料を用いて行 なわれる.粘土層厚は 20 mm,載荷幅は 20 cm. 粘土層の初期含水比は 約 80 %,載荷重は 75

図-2.2.1 載荷重下の軟弱粘土層の模式図

9/cmである、任意時刻における粘土層の平均含水比は、その時刻において実験を 中止し、載荷重下の20点において含水比を測定することによって得られる。し たがって、一実験毎に新しい模型粘土地盤を用いることになる。

図ー2.2.2 は粘土層厚および載荷重下の粘土層の平均含水比の実測値の経時変 化を示す.粘土層厚の経時変化は,全実験の平均値として得られた値をプロット (〇印)している.また,平均含水比の経時変化を表わすプロット(●印)には 多少バラツキが見られるので,この結果を用いて得られる沈下速度がスムーズに 変化するように(図ー2.2.3 参照),図ー2.2.2 の実線のごとく描いた.これらの 曲線と式(2.2.2)を用いて,側方流動による沈下速度 *dS_f*/*dt* および圧密によ る沈下速度 *dS_c*/*dt* の経時変化が図ー2.2.3 に示すように得られる.この場合, *dt* は 4 時間とした.図ー2.2.3 より,側方流動による沈下速度(①印)は,初

図-2.2.2 粘土層厚および平均含水比の経時変化

期の段階では比較的大きく, その後急速に減少したのち, 圧密による沈下速度(〇印) と同様に,時間とともに指 数関数的に減少する様子が 分かる.

この模型実験においては, 側方流動は載荷後約34時 間継続していると思われる. この模型地盤の圧密による 強度増加は,層厚が20mm で非常に小さいので実際の

地盤のそれよりも急速に行なわれると考えられる。したがって、本模型実験にお ける側方流動は比較的早期に終了したものと考えられる。以上のことから、実際 の地盤における側方流動による沈下はかなり長期間にわたって継続し、その速度 は圧密による場合と全く同様指数関数的に減少すると思われる。このことは、 Burlandⁱⁱ⁾が粘土要素に対する三軸試験から得た結果と定性的に一致するもので ある。

第3節 側方流動による沈下量の算定

3.1 理論解析

載荷幅に比し層厚の小さい粘土層を平面ひずみ問題として2次元的に取扱い, 平行平板プラトメーターの理論¹²⁾を適用する。その際,以下に示すような仮定が 設けられる。

- (1) 軟弱粘土層は飽和である.
- (2) 載荷重下の軟弱粘土は塑性流動状態にあり、側方へ流動する.
- (3) 塑性流動は水平方向にのみ生ずる.
- (4) 軟弱粘土の流動特性および鉛直応力分布は深さ方向に一様である。
- (5) 軟弱粘土は降伏応力をもつ塑性流動体として表わされる。
- (6) 軟弱粘土層の上下両境界面においてすべりがない。

図ー 2.2.4 に示すように、粘土層の初期層厚を 2 h_o 、載荷幅を 2l、単位長さ当 りの載荷重をWとする、図中の微小要素 (2_z , d_x)に着目して、 x 方向の力の 釣合いから、次式が成立する.

$$\tau = -z \frac{\mathrm{d}\sigma}{\mathrm{d}x} \tag{2.2.3}$$

ここに、 τ および σ はそれぞれ τ と 断応力および 垂直応力である。 τ_{yi} を載荷重下の粘土の降伏応力とする。粘土は $\tau \leq \tau_{yi}$ の応力状態では塑性流動を生じないので、 $z_0 > z > -z_0$ の範囲では塑性流動しない。言い換えれば、 $z_0 > z > -z_0$ の範囲に栓流 (plug flow)が生ずる。ここに、 z_0 は次式で表わされる。

図-2.2.4 軟弱粘土層の応力状態

$$z_o = -\frac{\tau_{yi}}{\frac{\mathrm{d}\sigma}{\mathrm{d}x}} \tag{2.2.4}$$

x = lにおいて $z_0 = h$ になるとき、粘土層に塑性流動が生じない。すなわち、 側方流動による沈下が起らない。 $z_0 = h$ を式(2.2.4)に代入し、x = lのとき $\sigma = \sigma_l$ の境界条件のもとで積分すると、次式が導かれる。

$$\sigma = \frac{\tau_{yi}}{h} (l-x) + \sigma_l \qquad (2.2.5)$$

したがって、単位長さ当りの載荷重Ψは次式のようになる.

$$W = 2 \int_{0}^{l} \sigma \, \mathrm{d}x = -\frac{\tau_{yi}}{h} l^{2} + 2 \sigma_{l} \cdot l \qquad (2.2.6)$$

式 (2.2.6)は, 塑性流動が生じない最終段階における平衡状態を表わしており, Jürgenson¹³⁾ やStroganov¹⁴⁾の理論を拡張することによっても式 (2.2.6)と同 様な表現が得られる.

そこで, の が平均的な受働土圧として得られ, 側方粘土層の平均盛上り高さを 沈下量に等しいと仮定すると, 次式が成立する.

$$\sigma_l = \gamma_o \left(4 h_o - 3 h \right) + 2 \tau_{yo} \tag{2.2.7}$$

ここに、 T_o および T_{yo} はそれぞれ側方粘土層の単位重量および降伏応力である. 式(2.2.7)を式(2.2.6)に代入すれば、塑性流動が終了する状態における沈 下量Sは次式のように求まる.

$$S = 2(h_{o} - h) = \frac{4l(\gamma_{o}h_{o} - \tau_{yo}) + W - \sqrt{\{4l(2\gamma_{o}h_{o} + \tau_{yo}) - W\}^{2} + 24\gamma_{o}\tau_{yi}l^{3}}}{6\gamma_{o}l}$$

(2.2.8)

つぎに、
沈下量と時間の関係について考える。
軟弱粘土は次式で表わされるビンガム流動体と仮定される。
¹⁵⁾

$$-\frac{dv}{dz} = \frac{1}{\eta_p} (\tau - \tau_{yi})$$
 (2.2.9)

ここに、 dv/dzはひずみ速度、 η_p は塑性粘度を表わす. また、 η_p および τ_{yi} は時間に関して一定であると仮定する. 式(2.2.3)および(2.2.4)を式(2.2. 9)に代入し、 z = hにおいて v = 0の境界条件のもとで積分すると、 x で鉛直 平面を通過する単位時間当りの流出量Qは次式のように得られる.

$$Q = 2 z_o v_o + 2 \int_{z_o}^{h} v \, dz = -\frac{1}{3 \eta_p} \left(z_o^3 - 3 z_o h^2 + 2 h^3 \right) \frac{d\sigma}{dx} \quad (2.2.10)$$

ここに、 v_0 は $z = z_0$ における速度である。xにおいて微小要素(2h, dx)を考えると、単位時間にその要素から流出する体積(dQ/dx)・dxは、要素の体積の減少量 $-2(dh/dt) \cdot dx$ に等しい。x = 0でQ = 0であるので、

$$Q = -2(dh/dt) \cdot x$$
 (2.2.11)

式(2.2.10)を式(2.2.11)に代入すると、次式が得られる.

$$-\frac{6\eta_p}{\tau_{y_i}h^2} \cdot \frac{dh}{dt} \cdot x = \left\{\frac{1}{\left(\frac{h}{\tau_{y_i}} \cdot \frac{d\sigma}{dx}\right)^2} - 3 - \frac{2h}{\tau_{y_i}} \cdot \frac{d\sigma}{dx}\right\} \quad (2.2.12)$$

式(2.2.12)を一般的に解くことは非常に困難であるので、 (h/τ_{yi}) ・ $(d\sigma/dx)$ が十分大きく、式(2.2.12)の右辺第1項が省略できるような特別な場合を以下に取扱う、このとき、式(2.2.12)は次式になる.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x} = \frac{3\eta_p}{h^3} \cdot \frac{\mathrm{d}h}{\mathrm{d}t} \cdot x - \frac{3}{2} \cdot \frac{\tau_{yi}}{h} \qquad (2.2.13)$$

式 (2.2.13) を x = l において $\sigma = \sigma_l$ の境界条件のもとで積分すれば、単位長 - 135 -
さ当りの載荷重Wは次式のように得られる.

$$W = 2 \int_{0}^{l} \sigma \, \mathrm{d}x = \frac{3}{2} - \frac{\tau_{yi} \, l^{2}}{h} + 2 \, \sigma_{l} \cdot l - 2 \, \frac{\gamma_{l} \, p \, l^{3}}{h^{3}} \cdot \frac{\mathrm{d} \, h}{\mathrm{d} \, t}$$
(2.2.14)

式(2.2.14)よりdh/dtを求め、t=0のとき $h=h_0$ の境界条件のもとに積分すると、hと時間 tの関係は次式のように得られる.

$$t = \frac{8 \, \eta_p}{9 \, \tau_{y_l}^2 \, l} \left\{ \frac{3}{2} \, \tau_{y_l} \, l^2 \left(\frac{1}{h_0} - \frac{1}{h} \right) + (W - 2 \, \sigma_l \, l) \right\}$$

$$\log \left| \frac{h\{(W - 2\sigma_{l} \cdot l) h_{0} - \frac{3}{2} \tau_{yi} l^{2}\}}{h_{0}\{(W - 2\sigma_{l} \cdot l) h - \frac{3}{2} \tau_{yi} l^{2}\}} \right| \}$$
(2.2.15)

ここでのは一定としている.

もし、 σ_l が式(2.2.7)により時間の関数として与えられても、 $h \ge l$ の関係は式(2.2.15)と同様にして得ることができるが、非常に複雑になるのでこ こには示されない.式(2.2.15)において、hの代りに($h_o - S/2$)を用いる ことにより沈下量-時間関係が得られる.式(2.2.6)と式(2.2.14)を比較 すると、塑性流動が停止する最終段階において、式(2.2.14)を用いて得られ る沈下量が式(2.2.6)を用いて得られるものより小さく見積ることになる.こ れは、式(2.2.13)を誘導するときに設けられた仮定により生ずるものである. したがって、式(2.2.15)により得られる沈下量-時間関係は、少なくとも流 動が停止する最終段階において沈下量を小さく見積ることになる.

3.2 理論式の検討

前項3.1 において得られた最終沈下量および沈下量-時間関係の理論式の特性 について検討する.まず,式(2.2.8)で表わされる最終沈下量について,種々 のパラメーターを変化させて図示したものが図ー2.2.5 a),b)である.種々の パラメーターの値はのちに行なう模型実験を想定して適宜選択している.すなわ ち,載荷幅21を20 cm,粘土の単位体積重量 r_0 を2 g/cm^3 とし,初期粘土層厚と 載荷幅の比 h_0/l ,粘土層の降伏応力 r_y ,平均載荷圧と粘土層の降伏応力の比

 α (= $W/2l \cdot \tau_y$)をパラメーターとして変化させている。ただし、粘土層の降伏 応力は載荷板直下および側方とも同じ値、すなわち $\tau_y = \tau_{yi} = \tau_{yo}$ としている。

図ー2.2.5 a) より、最終沈下量Sは、 α が一定の場合、 h_o/l すなわち層厚の 増加とともに直線的に増加し、また h_o/l が一定の場合、 α すなわち載荷圧の増 加とともに増加する傾向をもつことが分かる。図ー2.2.5 b) より、 α が一定の 場合 τ_y の増加とともにSは漸増する傾向が認められる。これは、粘土層の降伏 応力(せん断強さ)の増大とともに沈下量が増加することを意味し一見矛盾を感 じるが、 α を一定としているので τ_y の増加に応じて載荷重Wも増大していること を考えれば矛盾はない。

一方,式(2.2.15)で表わされる沈下量の経時変化について図示したものが 図ー2.2.6である。この図において、粘土層の降伏応力 τ_y をパラメーターとして 変化させ、そのほかの値はのちに行なう模型実験を想定して、載荷幅2*l*を20*cm* 初期粘土層厚2*h*₀を2*cm*、粘土の単位体積重量*T*₀を2*9/cm*³、粘土の塑性粘度 η_p = $6 \times 10^3 g \cdot \sec/cm$, $\alpha \approx 12.5$ としている。図ー2.2.6より、側方流動による沈下 の経時変化が圧密による沈下の経時変化と同様な傾向をもつことが確認でき、前 節の結果とも定性的に一致している。また、*τ*_yのみを変化させた場合、*τ*_yの増 加とともに沈下量および沈下速度がやや増大する傾向がある。これも、前述のよ うに、 $\alpha \approx -$ 定としているので、*τ*_yの増加とともに載荷重*W*が増大していること を考えれば矛盾しない。

つぎに、図ー2.2.6 において、式(2.2.15)を用いて得られた最終沈下量と 図ー2.2.5 b) におけるα = 12.5 の場合の最終沈下量を比較すると、前者は後者 の約 1/2 程度になっている.すなわち、この場合式(2.2.15)により得られた 最終沈下量はその誘導過程における仮定のため、約半分程度に小さく見積られて いることになる.したがって、式(2.2.15)による沈下量の経時変化の定量的 な議論は困難である.しかし近似的に式(2.2.8)および式(2.2.15)により得 られる最終沈下量の比を式(2.2.15)により得られる沈下量の経時変化曲線に 乗じて最終沈下量を一致させることにより、ごく概略的な沈下量の経時変化は得 られよう.

以上の検討は、 $\tau_y = \tau_{yi} = \tau_{yo}$ としてなされてきた。すなわち、載荷による載荷重直下の粘土層の強度増加がないとして取扱ってきた。しかし、実際には圧密

図 – 2.2.6 沈下量の経時変化の理論的特性

による強度増加があり、一般に $\tau_{yi} > \tau_{y0}$ となるので、さらに問題は複雑になって くる.

第4節 模型実験による検証

4.1 試料,実験装置および方法

第2編第2章第3節で導かれた側方流動による沈下に関する理論式を検証する ために、模型実験を行なう、実験に用いられる試料は、液性限界 $w_L = 72\%$ 、塑 性限界 $w_P = 31\%$ 、塑性指数 $I_P = 41\%$ 、土粒子の比重 $G_s = 2.65$ 、粘土分(<2 μ) 9.5%である.

実験装置としては、図ー2.2.7 に示すような装置を使用する. この装置は、側面がガラスで粗な底面をもつ土槽(120 cm×10 cm×10 cm),粗な底面をもつ剛な

載荷板(載荷幅 20 cm)および載荷板の偏心防止用のカウンターバランスからなっている.

図-2.2.7 実験装置の概略図

実験方法としては、乱した試料によって所定の層厚の粘土層を造り、約1日静 置した後、上下方向には非排水の状態で、粘土層に部分載荷する.実験は、粘土 層の初期層厚が一定で、粘土層の初期含水比を4種に変化させた実験、および粘 土層の初期含水比がほぼ一定で、粘土層の初期層厚を5種に変化させた実験を行 なう.それぞれの実験における初期層厚、初期含水比および載荷重は表-2.2.1 に示される.ここで、載荷重は、平均載荷圧力が初期状態における粘土の降伏応 力の約13.5倍になるように決められている.

載荷板の沈下量の経時変化および載荷板側方の粘土層の最終盛り上り量は、そ れぞれ図-2.2.7 に示されているダイアルゲージ(最小目盛 1/1000 mm)によって 測定される.また、実験終了時における載荷板直下の粘土層の含水比は粘土層の 12 点で測定される.なお、実験中は室温を約20℃に保ち、また粘土層表面に流 動パラフィンをうすく塗布し、水分の蒸発を防止する.

4.2 実験結果および考察

沈下量の経時変化は図-2.2.8 a) およびb) に示される. これらの結果は粘土 層の側方流動のみならず圧密の効果も含まれた結果であり、また式 (2.2.15)で

表一2.2.1

載荷重および載荷前後の地盤の状態

層厚	h_0	初期含水比	含水比 載 荷 重 最終		流出土量(cm³)		
2 h ₀ (cm)		w ₀ (%)	W (g)	w _e (%)	測 定 値	計 算 値 (式(2.2.2)による)	
2.1	0.105 (≒1∕10)	82.17	1587.4	69.95	3.536	3.264	
		90-14	1004.1	75.80	3.054	3.816	
		100.19	594.4	87.36	2.458	3.596	
		113.03	291.1	97.85	1.010	1.202	
3.5	0.175 (≒1∕6)	82.73	1585.6	70.03			
5.0	0.250 (=1/4)	82.72	1584.7	73.08			
6.7	0.335 (≒1∕3)	79.68	1993.2	69.43			
8.0	0.400 (=1/2.5)	84.03	1473.8	75.44			

あらわされる理論式にも若干問題があるので,定量的な比較検討はできない. そ こで,定性的な検討として,第2編第2章第3節3.2の図-2.2.6の理論値と図 -2.2.8a)の実測値を比較する.両図はともに粘土層の降伏応力(あるいは含水 比)をパラメーターとしており,また図-2.2.6を得る際に用いた種々のパラメ ーターが本模型実験における初期状態のものとほぼ近似した値を用いている.図 -2.2.8a)の実測値において,粘土の降伏応力が大きい(含水比が小さい)場合 に大きい沈下量が得られ,沈下速度が大きくなる傾向が認められる.この傾向は, 図-2.2.6の理論値の傾向と定性的に近似している.

表-2.2.1には、実験終了時における載荷板直下の粘土層の平均含水比weが示さ れている.また、同時に載荷板側方の粘土層の盛上り量の測定結果から得られる 単位長さ当りの粘土の側方流動量も、式(2.2.2)から得られる計算結果と比較 して、示されている.この流出土量の測定値と計算値は近似的にほぼ一致してい ると見なすことができる、図-2.2.9は、一例として、ガラス面を通して標点の 移動を測定することにより得られた粘土層(層厚21 mmの場合)の側方への流動状

time (min)

b) 初期層厚を変化させた場合

図-2.2.8 全沈下量の経時変化

- 142 -

態を示している.載荷板中央の1/3ではほとんど側方変位はないが,載荷板端に 近づくにしたがって,側方変位が増大する様子が確認できる.

図-2.2.9 軟弱粘土層の側方流動状態

本模型実験においては、圧密のため粘土の流動特性が常に一定という仮定が満 足されず、沈下量の経時変化を定量的に検討することは不可能であると思われる. そこで、式(2.2.8)によって表わされる最終沈下量についてのみ定量的に検討 する.

式(2.2.8)において、載荷幅21、初期粘土層厚2h。および載荷重Wは通常 既知量である.載荷板側方の粘土の単位体積重量 r_o と降伏応力 r_{yo} および載荷板 直下の粘土の降伏応力 r_{yi} はそれぞれ載荷板側方および直下の粘土の含水比から 得られる.なぜなら、一般に粘土の降伏応力の対数と含水比の間に線形関係が存 在するからである.したがって、 r_o および r_{yo} は、載荷板側方の粘土層において は、初期含水比が保持されると考え、 r_{yi} は本模型実験において直接測定して得 られた載荷板直下の含水比を用いて算定した。図-2.2.10 は用いた粘土に対す る log $r_y - w$ 関係を示している.かくして、側方流動が終了する状態における沈 下量が式(2.2.8)を用いて得るこ

図ー2.2.11 および図ー2.2.12 は最終沈下量の計算値と実測値の比較を示して いる.図ー2.2.11 は、粘土層の初期層厚が一定($h_0/l = 0.105$)の場合であり、 載荷後2日における値を用いて比較している.なぜなら、第2編第2章第2節に おいて得られたように、このような場合に粘土層の塑性流動は2日程度で終了し ていると考えられるからである.載荷2日後における載荷板直下の平均含水比は

載荷2日以後は圧密のみ によって含水比が変化し 沈下が生ずると仮定して 得られたものを用いた. 一方, 図-2.2.12 は, 粘土層の初期含水比が一 定 (w₀ ≒ 82 %)の場合 である. この場合,粘土 層厚が大になるので、塑 性流動は載荷後2日から 実験終了時の間で停止し ていると考えられる. し たがって、図中の計算値 および実測値はこの期間 における値として斜線部 分により示して いる。

図-2.2.11よ り、 h₀/l=0.1 05 の場合、種々 の初期含水比に 対して計算値と 実測値が近似的 に一致している ことが分かる. また、図-2.2. 12より、h₀/l が約1/6(0.1 67)より大き い場合に、実測

図 - 2.2.11 最終沈下量の計算値と実測値の比較 (*τ*_{vi}が既知とした場合)

値は計算値より 相当小さくなっ ている.以上の ことを総合する と. 式(2.2.8) $l h_0 / l < 1 / 6$ の場合に近似的 に適用できると 結論される。こ の限界は, Jürgenson¹³⁾ O 理論における条 件すなわち ho/l $<1/\pi$ よりもさ らにきびしくな っている. この 理由としては, ho/l が大きくな ると鉛直方向の応 力分布が一様では なく,水平方向に 一様に流動すると いう仮定が成立し なくなることが考 えられる.

以上の検討は、 塑性流動終了状態 における載荷板直 下の粘土層の降伏 応力*てyi*を実測値

- 145 -

から求めて行なわ れた. しかし, 実 際には、この値は 実測で得られない 値である. そこで, この T_{vi}の値をあ らかじめ予想する ために, 平均のTvi と平均載荷圧アの 比 $\beta(=\tau_{vi}/\overline{p}, \mathbb{E})$ 規圧密状態では非 排水せん断強さ cu と圧密圧力pの比 *c*, / *p*に相当する と思われる)を考 える. この β の 値 を変化させて得ら れた計算値と実測 値を比較すると,

図 - 2.2.14 最終沈下量の計算値と実測値の比較 (*Tyi*が未知の場合)

図ー 2.1.13 および図ー 2.2.14 のようになる. ただし、図ー 2.2.14 では、 h_0/l が約 1/6 より小さい場合の実測値のみプロットしている.

図ー2.2.13 および図ー2.2.14 において、実測値が、 β を一定とした計算値の 傾向とほぼ近似しているように思われる。そして、これらの場合の β の値は0.12 ~ 0.15 程度の値をとるように思われる。これは、載荷重による圧密が終了する 以前に塑性流動が終了したことを意味していると思われる。なぜなら、一般に本 模型実験に用いられたような粘土(塑性指数 $I_p = 41$)の c_u / p は 0.3 程度¹⁶⁾ で あるからである。

以上のように、 βの値がほぼ一定な値としてあらかじめ与えられるならば、 側 方流動による沈下量が算定しうることになる. しかし、本研究においては、比較 的寸法の小さい模型実験を用いて検討されているので. 第2編第2章において示 された側方流動による沈下の算定法を実際に適用する際には, 寸法効果の影響も含めてさらに検討する必要があろう.

第5節結論

軟弱地盤において、側方流動による沈下が非常に卓越して生ずる場合を取扱い、 載荷幅に比し粘土層厚が小さい軟弱地盤の塑性流動の機構および側方流動による 沈下量の算定法について、レオロジーの立場から検討を加えた.

第2編第2章において得られた結論を以下に要約する。

(1) 圧密による軟弱地盤の強度増加が徐々に行なわれる場合,塑性流動による沈 下は比較的長期間にわたって継続する.

(2) 塑性流動が終了する状態における沈下量は、層厚と載荷幅の比 h_0/l が1/6より小さい場合に、式(2.2.8)によって近似的に算定される.

(3) 塑性流動が終了する状態における載荷重直下の粘土の平均降伏応力 τ_{yi} は,平 均載荷圧 \overline{P} との比 $\beta(=\tau_{yi}/\overline{P})$ から得られる.本模型実験によれば、この β の値 は 0.12 ~ 0.15 である.しかし、実際の適用に当っては寸法効果の影響も含めて さらに検討する必要があろう.

(4) 側方流動による沈下量の経時変化を表わす式(2.2.15)は定性的には実測値の傾向と近似する。しかし、定量的には、さらに検討する必要がある。

参考文献

- Ito T. and Matsui T.: Settlement caused by plastic flow of soft clay layer, Proc. 4th Asian Regional Conf. Soil Mech. Found. Eng., Bangkok, Vol. 1, pp. 25~30, 1971.
- 2) Mikasa M.: Discussion on the settlement of clay, Proc. 3 th ICSMFE, Suisse, Vol. 3, pp. 163~166, 1953.
- 3) Skempton A. W. and Bjerrum L. : A contribution to the settlement analysis of foundation on clay, Géotechnique, Vol. 7, pp. 168 ~ 178, 1957.
- Mogami T. and Shimizu E. : Research on three-dimensional consolidation of clay, Proc. 2nd Asian Regional Conf. Soil Mech. Found. Eng., Takyo, Vol. 1, pp. 11 ~ 15, 1963.
- Lambe T. W. Method of estimating settlement, Proc. ASCE,
 Vol. 90, No. SM 5, pp. 43 ~ 67, 1964.
- Darragh R. D. : Controlled water tests to preload tank foundations,
 Proc. ASCE, Vol. 90, No. SM 5, pp. 303 ~ 329, 1964.
- 7) Bourges F., Carissan M., Chiappa J., Legrand J. and Paute J.
 L. : Etude du tassement des vases supportant des remblais, Proc.
 7 th ICSMFE, Mexico, Vol. 2, pp. 35 ~ 43, 1969.
- 8) Aboshi H. and Monden H. : Three-dimensional consolidation of saturated clay, Proc. 5th ICSMFE, Paris, Vol. 1, pp. 559 ~ 562, 1961.
- 9) Davis E. H. and Poulos H. G. : Triaxial testing and three dimensional settlement analysis, Proc. 4th Aust. - N. Z. Conf. Soil Mech., pp. 233 ~ 243, 1963.
- Burland, J. B. : Deformation of soft clay beneath loaded areas, Proc. 7 th ICSMFE, Mexico, Vol. 1, pp. 55 ~ 63, 1969.
- 11) たとえば, Christian J. T. : Undrained stress distribution by

numerical methods, Proc. ASCE, Vol. 94, No. SM 6, pp. 1333 ~ 1345, 1968.

- 12) 中川鶴太郎, 神戸博太郎: レオロジー, みすず書房, pp. 340 ~ 354, 1959.
- 13) Jürgenson L. : The application of theories of elasticity and plasticity to foundation problemes, J. Boston Soc. Civ. Eng., pp. $206 \sim 241$, 1934.
- 14) Stroganov A. S. : Visco-plastic flow of soils, Proc. 5 th ICSMFE, Paris, Vol. 2, pp. $721 \sim 726$, 1961.
- 15) Matsui T., Ito T. and Fujii K. Plastic flow of soft clays by pipe flow tests, Technol. Repts. Osaka Univ., Vol. 20, No. 970, pp. 797 ~ 808, 1970.
- 16) Bjerrum L. and Simons N. E. Comparison of shear strength characteristics of normally consolidated clays, Res. Conf. on Shear Strength of Cohesive Soils, ASCE, pp. 555 ~ 580, 1960.

第3章 軟弱地盤におけるブラインドシールド の推進力に関する研究¹⁾

第1節 総 説

近年,都市部にトンネルを掘削する必要性が高くなるにしたがって,シールド 工法が盛んに用いられるようになった。元来,シールド工法は河底や軟弱な地盤 にトンネルを安全に施工するための特殊工法で,オープンカット工法など一般の 工法に比べ建設費が高く通常用いられる工法ではなかった。しかし,路面交通の 阻害,騒音。振動などの公害,トンネル深度の増大などに対処するためにシール ド工法による都市トンネルが見なおされてきた。

通常のシールド工法を比較的軟弱な地盤に適用する場合, 圧気により湧水を止 め切羽を自立させることができるが, 極めて軟弱な粘土層では切羽の崩壊, 地表 面の沈下等種々の困難が伴う. これらの問題を解決するためには, 切羽を密閉し 部分的に開口部を設けたブラインドシールドが最適であると考えられる.²⁾³⁾しか し, このブラインドシールド工法では, 開口部を小さくすれば切羽の崩壊を防ぐ ことができるが, 小さくしすぎると推進力の増大, 地表面の隆起などの障害が生 ずる. したがって, この工法の適用にあたっては, 適用地盤の土質, 必要推進力 および周辺地盤の挙動に関して十分検討しておく必要がある. しかし, これらの 点についてはほとんど理論的に検討されていない現状である.

第2編第3章においては、前述の問題点のうち、おもに必要推進力について取扱っている。まず、シールド推進時の周辺地盤を塑性流動体と仮定した塑性流動 理論および周辺地盤がMohr-Coulombの破壊条件式を満足する塑性状態にあると 仮定した塑性変形理論を適用することによって、ブラインドシールドの推進力を 理論的に解析する。両理論においてなされた仮定より、塑性流動理論では周辺地 盤の粘性効果すなわち時間の効果を考慮しており、塑性変形理論ではそれを無視 することになる。

さらに、模型実験により、ブラインドシールド周辺地盤の挙動を確認すること によって、ブラインドシールドにおける推進力発生のメカニズムを解明し、地表 面への影響を検討するとともに,提案したブラインドシールド推進力の理論式の 妥当性を検証する.

第2節 ブラインドシールドの推進力の理論解析

2.1 概 説

ブラインドシールド工法においては、シールド推進時に開口部から粘土を取り 出し地表面に変位を与えないこと、および推進力を所定の値以下にコントロール することが最も重要な点である。したがって、地盤の性質および土かぶり厚に対 応する適正な開口径と必要推進力の算定が必要となる。

図ー2.3.1は、貫入長L、外径D₁、開口径D₂なる円形ブラインドシールドの 断面を示す. この図において、BC、B'C'がブラインド部で、CC'が開口部であ る. 通常、AC、A'C'には鋼板が設けられるが、簡易型のものではこの鋼板はな くBC、B'C'のみである. この場合でも、 $\triangle ABC, \triangle A'B'C'$ の部分の土は、クル ジュモフ効果のような現象により実際上変形しないと考えられる. したがって、 以下の理論解析においては、AC、A'C'にせん断面が存在するものと考える. こ

のブラインドシールドを 一定速度で推進させる場 合,シールドの全推進力 Pは次式で表わされる.

 $P = P_f + P_e$ (2.3.1)

ここに、 P_f はシールドの 周面摩擦力、 P_e はシール ドの先端貫入力である。

一般に, ブラインドシ ールド工法が適用される 地盤はその内部摩擦角が

図-2.3.1 ブラインドシールドの断面

- 151 -

無視できるような粘性土地盤である.また、この地盤がブラインドシールドによってかなり早い速度でせん断されることになる.したがって、シールドの周辺地 盤には、通常塑性変形および粘性変形がともに生ずる.そこで、著者は両者の変 形を考慮して全推進力の理論式を誘導する.そのために、シールド推進時の地盤 を塑性流動体と仮定して、塑性流動理論を適用する.また、塑性変形に比し粘性 変形の影響が無視できる場合には、塑性変形のみを考慮する塑性変形理論の適用 が可能となる.この場合は、地盤が比較的硬い場合に対応すると考えられる.

2.2 塑性流動理論による解析

塑性流動理論をブラインドシールド推進力の理論式の誘導に適用する際に、つ ぎの仮定を設ける。すなわち、シールドを一定速度で推進させたとき、シールド 外周辺および先端部の軟弱粘土は塑性流動状態にあり、 Bingham 流動体として表 示できるものとする.⁴⁾

2.2.1 周面摩擦力の算定

図ー2.3.2に示すように、長さL、外径 D_1 のシールドが一定速度 v_1 で推進する場合、シールド周面に作用する摩擦力 P_f を求める.⁵⁾ この図において、 τ_1 および τ はそれぞれシールド外周面および任意の径 Dをもつ円筒面に作用するせん断応力、 τ_y は径 D_y をもつ円筒面に作用する粘土の降伏応力である。粘土の自重による影響は無視する、水平方向の釣合いより、次式が得られる。

$$P_f = \pi \ D \ L \cdot \tau \tag{2.3.2}$$

式(2.3.2)より、次式が導かれる.

$$dD = -(P_f / \pi L \tau^2) d\tau$$
 (2.3.3)

粘土を Bingham 流動体として表わすと,次式が成立する

$$-2 \frac{\mathrm{d} v}{\mathrm{d} D} = \frac{1}{\eta_p} \left(\tau - \tau_y \right) \tag{2.3.4}$$

ここに、vは速度、 η_{p} は塑性粘度である、式(2.3.3)を式(2.3.4)に代入し、境界条件 $v = v_{1}$ のとき $\tau = \tau_{1}$ を用いて式(2.3.4)を積分すれば、次式の

図-2.3.2 シールド周面付近のせん断応力

ようになる.

$$v_1 = \frac{P_f}{2 \pi L \eta_p} \left(\ln \frac{D_y}{D_1} + \frac{D_1}{D_y} - 1 \right)$$
 (2.3.5)

式 (2.3.2)より $D_y = P_f / \pi L \tau_y$ だから、これを式 (2.3.5) に代入すれば、 次式が得られる.

$$v_{1} = \frac{P_{f}}{2 \pi L \eta_{p}} \left(\ln \frac{P_{f}}{\pi L \tau_{y} D_{1}} + \frac{\pi L \tau_{y} D_{1}}{P_{f}} - 1 \right)$$
 (2.3.6)

式(2.3.6)は、粘土の流動特性 η_p 、 τ_y およびシールドの外径 D_1 が既知とすれば、 $v_1 \ge P_f / L$ の関係を与えることになる、したがって、 P_f がシールドの推進度 $v_1 \ge v_1 + v_1$ にの関数として表わされることになる。

2.2.2 先端抵抗力の算定

先端抵抗力 *P*_e を算定するためにつぎの仮定を設ける. a) 図ー2.3.3 において,シールド先端部の粘土ACCA,すなわち外半径 r₁,内半 径 r₂ をもつ厚肉中空球 の一部(中心角2α) がシールド推進時に塑 性流動状態になる。 b) シールドが一定速

b) シールドが一定速
 度で推進しているとき,
 粘土ACC'A' は定常流
 動状態にあり,その流
 動方向は常に中心0に
 向う.

c)粘土ACC'A'はシ
 ールド推進に伴って完
 全に開口部CC'に流入
 するものとする。

d) ブラインドシールド

先端部AC, A'C' に作用する外力は,壁面に沿って作用する粘性力および土圧として壁面に作用する外力の和として表わされる.

e)粘土の微小要素 EFF E'の求心的な流動は、円孤 EE'を直径とするパイプ内の管内流動と相似である。

最初に、シールド先端部に作用する粘性力を求める。そのため、まず図ー2.3. 3における任意半径 r の微小部分 EE'F'F によって壁面 EF, E'F'に作用する粘 性力 d P'_{ev} を求める。仮定(e)より、直径 $\widehat{EE'}$ (= 2r α),長さ \widehat{EF} (= dr)の仮想 的なパイプの管内流動を考える。管内にビンガム流動が生ずるとき、管壁に作用 する粘性力は次式で表わされる。

$$d P'_{ev} = 2 \pi dr \{ \eta_p v_p + r \alpha \tau_y + \sqrt{(\eta_p \tau_y)^2 + 2 \eta_p v_p r \alpha \tau_y} \}$$
(2.3.7)

ここに, v, は栓の速度である.

つぎに、栓速度 v_p を求める式を近似的に導くため、ブラインドシールドを速度 v_1 で推進する代りに、図ー2.3.4のように、粘土がAA'に速度 v_1 で一様に流入すると考える。また、EE'面における平均流速を v_r とする。連続条件より、

図 - 2.3.3 ブラインドシールド先端部の粘土の 塑性流動状態

$$v_r$$
 は次式のようになる.
 $v_r = \frac{D_1^2}{8r^2(1-\cos\alpha)} \cdot v_1$
(2.3.8)
以上のようにして得ら
れた v_r が近似的に栓の
速度 v_p であると仮定す
る. すなわち, $v_r = v_p$
として, 式 (2.3.8)を
式 (2.3.7) に代入し,

図-2.3.4 ブラインドシールド先端部の粘土の 塑性流動速度

A

B'

$$P_{ev} = \int_{r_2 = D_2/2\sin\alpha}^{r_1 = D_1/2\sin\alpha} 2\pi \cos\alpha \left(\alpha \tau_y r + \frac{m}{r^2} + \sqrt{\frac{2\alpha \tau_y m}{r} + \frac{m^2}{r^4}}\right) dr$$

$$r_2 = D_2/2\sin\alpha \qquad (2.3.9)$$

$$\eta_b v_b D_1^2$$

$$\zeta \zeta \mathcal{I}\zeta, \qquad m = \frac{\eta_p v_p D_1^2}{8 (1 - \cos \alpha)}$$

式(2.3.7)に代入し,

シールド先端部に作用す

る水平方向の全粘性力 Pev は次式のように得られる.

積分する.その結果,

式(2.3.9)の右辺第3項は、2項定理により次式のように近似的に展開される.

$$\sqrt{\frac{2\alpha\,\tau_{y}\,m}{r} + \frac{m^{2}}{r^{4}}} = \sqrt{\frac{2\,\alpha\,\tau_{y}\,m}{r}} \left\{ 1 + \frac{m}{4\,\alpha\,\tau_{y}} \cdot \frac{1}{r^{3}} \right\}$$
(2.3.10)

式(2.3.10)を式(2.3.9)に代入し積分すると、次式が得られる.

$$P_{ev} = \pi \cos \alpha \left\{ \frac{\alpha \tau_y}{4 \sin^2 \alpha} \left(D_1^2 - D_2^2 \right) + 4 \sqrt{\frac{\alpha \tau_y m}{\sin \alpha}} \left(D_1^{\frac{1}{2}} - D_2^{\frac{1}{2}} \right) - 4 m \sin \alpha \left(D_1^{-1} - D_2^{-1} \right) - \frac{8}{5} \sqrt{\frac{m^3 \sin^5 \alpha}{\alpha \tau_y}} \left(D_1^{-\frac{5}{2}} - D_2^{-\frac{5}{2}} \right) \right\}$$

$$(2.3.11)$$

-155 -

つぎに、土圧によりシールド先端部に作用する外力 Pee は静止土圧に近似した 土圧によるものと考えられる.なぜなら、仮定 c)より、シールド先端部付近の ACCA'のみが塑性流動状態にあり、その外側の粘土は静止状態にあると考えら れるからである.したがって、土圧による外力 Pee は次式で与えられる.

$$P_{ee} = \frac{\pi}{4} \gamma H_0 \left(D_1^2 - D_2^2 \right)$$
 (2.3.12)

ここに、 γ は粘土の単位体積重量、 H_0 はシールド中心における土かぶり厚、 D_1 および D_2 はそれぞれシールド外径および開口径である。

したがって、仮定d)により、シールドの先端抵抗力 P_e は式(2.3.11)およ び式(2.3.12)を加え合せることにより得られる、すなわち、

$$P_{e} = \pi \cos \alpha \left\{ \frac{\alpha \tau_{y}}{4 \sin^{2} \alpha} \left(D_{1}^{2} - D_{2}^{2} \right) + 4 \sqrt{\frac{\alpha \tau_{y} m}{\sin \alpha}} \left(D_{1}^{\frac{1}{2}} - D_{2}^{\frac{1}{2}} \right) \right.$$

+ 4 m s in $\alpha \left(D_{1}^{-1} - D_{2}^{-1} \right) - \frac{8}{5} \sqrt{\frac{m^{3} \sin^{5} \alpha}{\alpha \tau_{y}}} \left(\overline{D_{1}^{5}} - \overline{D_{2}^{5}} \right) \right\} + \frac{\pi}{4} \gamma H_{0} \left(D_{1}^{2} - D_{2}^{2} \right)$
(2.3.13)

式(2.3.13)の誘導の際に、シールド先端において塑性流動する粘土はすべて 開口部に流入するという仮定^c)を用いているので、式(2.3.13)は完全ブライ ンドシールドの場合、すなわちD₂=0の場合には適用できないのは明らかである。

2.3 塑性変形理論による解析

粘性効果が微小な場合,塑性変形理論の適用が可能となる.この場合,ブラインドシールドの推進力は,周辺地盤が塑性状態になる極限において算定され,その際 Mohr-Coulomb の破壊条件式が適用される.したがって,時間の項を省略したことになり,当然推進速度に関係なく推進力が決定されることになる.この解析において,地盤は粘性土とし,内部摩擦角9はなく粘着力。のみとする.

2.3.1 周面摩擦力の算定

円筒面に作用する周面摩擦力は一般に式(2.3.2)で表わされる. この場合,

粘性効果を無視しているので、粘土の粘着力を c とすれば $\tau = c$ となる、したが σ て、シールド周面に作用する摩擦力 P_i は、 $D = D_1$ として次式のように表わさ れる。

$$P_f = \pi \ D_1 \ L \cdot c \tag{2.3.14}$$

2.3.2 先端抵抗力の算定

塑性変形理論によりシールドの先端抵抗力 P_eを算定するために,円柱ダイに よる金属の押し出し理論を応用する.^(4) 7) 図一 2.3.5 a) はシールド先端部の粘土 の微小要素に作用する応力を示している.

水平方向の釣合いより,次式が成立する.

$$-\frac{\pi}{4} (D_r + dD_r)^2 (\sigma_x + d\sigma_x) + \frac{\pi}{4} D_r^2 \sigma_x + \pi D_r \sigma_\alpha ds \cdot \sin\alpha$$
$$+\pi c D_r ds \cdot \cos\alpha = 0 \qquad (2.3.15)$$

図-2.3.5 b)において,幾何学的条件より次式が成立する.

$$ds \cdot \sin \alpha = dx \cdot \tan \alpha = d(D_r/2)$$

$$(2.3.16)$$

a) 応力状態

b) 幾何学的関係

図-2.3.5 ブラインドシールド先端部の粘土の微小要素

粘土が塑性変形を起す条件は、主応力 σ_x に対応する主応力を σ_a とすると、 Mohr - Coulombの破壊条件式より次式のように与えられる.

$$\sigma_{\alpha} = \sigma_{x} + 2c \qquad (2.3.17)$$

式(2.3.16)および(2.3.17)を式(2.3.15)に代入し, 高次の微小項を無 視すると, 次式を得る.

$$D_r \,\mathrm{d}\,\sigma_x = 2c\,(\cot\alpha + 2\,)\,\mathrm{d}\,D_r \tag{2.3.18}$$

しかるに, 先端抵抗力 Pe は次式で表わされる.

$$P_{e} = \frac{\pi}{4} D_{1}^{2} \{ \sigma_{x} \}_{D_{r}} = D_{1}$$
 (2.3.19)

境界条件 $D = D_2$ のとき $\sigma_x = 0$ により式(2.3.18)を積分し、式(2.3.19)に 代入すると、次式が得られる.

$$P_e = \frac{\pi}{2} c \; (\cot \alpha + 2) \; D_1^2 \; \ln \frac{D_1}{D_2} \; (2.3.20)$$

式(2.3.20)は、完全ブラインドシールドすなわち $D_2 = 0$ の場合、 $P_e \rightarrow \infty$ となるので適用できない.

2.4 限界先端抵抗力

実際には、ブラインドシールドの先端抵抗力には限界が存在する.なぜなら、 地盤は無限ではなく、地表面という境界が存在するからである. この限界値は完 全ブラインドシールド、すなわち D₂ = 0 の場合の推進力に相当すると考えられる. このような場合に、式(2.3.13)あるいは式(2.3.20)が適用できないのはす でに述べた通りである.

塑性流動理論による式(2.3.13)は、一般に、図ー2.3.6における実曲線およ び点線で示されるような傾向をもつ.すなわち、先端抵抗力 P_e は、 D_2/D_1 が0 に近づくと急激に増加する.言い換えれば、このときに軟弱粘土が開口部に流入 することが非常に困難になると考えられる.したがって、塑性流動理論における 極限の先端抵抗力 P_{ec} を、図ー2.3.6の $P_e \sim D_2/D_1$ 曲線における最大曲率を示す 点Kにおける P_e として近似的に定義する.

図-2.3。6 先端抵抗力の理論曲線

一方, 塑性変形理論による式(2.3.20)も, 一般に, 図ー2.3.6 における破曲線および点線で示す傾向をもつ. すなわち, D_2/D_1 が0に近づくにつれて先端抵抗力 P_e も無限に増大する. そこで, この場合の限界先端抵抗力 P_{ec} は, 基礎地盤の破壊と同様な機構によって生ずると考えると, 次式で表わされる.

$$P_{ec} = \frac{\pi D_1^2}{4} (\gamma H_0 + n c) \qquad (2.3.21)$$

ここに、nは粘土中に生ずるすべり面の形状による係数である。この係数は、 Broms · Bennermark⁸⁾によると6~8, Terzaghi⁹⁾によると7.4である。

結局、両理論による $P_e \sim D_2 / D_1$ 関係は、一般に、図ー2.3.6 の実線および破線のような定性的な傾向をもつことになる.

第3節 模型実験

3.1 目 的

第2編第3章第2節の理論解析により、ブラインドシールドの全推進力Pは周面摩擦力 P_f と先端抵抗力 P_e の和である。塑性流動理論において、シールドの形状および周辺地盤の条件により決定される定数 D_1 、 D_2 、 α 、 H_0 およびrが与えられると、式(2.3.6)および式(2.3.13)より、Pは次式で表わされる。

$$P = f(\eta_{p}, \tau_{y}, v_{0}) + g(\eta_{p}, \tau_{y}, v_{0}) \cdot L$$
(2.3.22)

ここに、 $f(\eta_p, \tau_y, v_0) = P_e, g(\eta_p, \tau_y, v_0) = P_f / L$ である。一方、塑性変形 理論において、シールド形状により決定される定数 D_1, D_2 および α が与えられる と、式(2.3.14)および式(2.3.20)より、Pは次式で表わされる。

$$P = f(c) + g(c) \cdot L$$
 (2.3.23)

 $C \subset \mathcal{K}, \quad f(c) = P_e, \quad g(c) = \pi c D_1 = P_f / L \ \mathcal{C} \ \mathfrak{s} \ \mathfrak{d}.$

模型実験により、シールドの全推進力Pおよびシールド貫入長Lを測定し、式 (2.3.22)あるいは式(2.3.23)を用いれば、第2編第3章第2節で提案した 理論式の検証が行なえることになる。すなわち、実験により得られるP~L関係 が線形関係にあれば、この直線関係の勾配およびP軸切片が、それぞれ式(2.3. 22)あるいは式(2.3.23)における関数gおよびfの値を与える。これらの関 数gおよびfはそれぞれシールドの周面摩擦力および先端抵抗力を表わしている ので、それぞれの実測値と理論値を比較することにより、第2編第3章第2節で 提案した両理論式の検証ができる。

また、シールド推進時の周辺地盤の挙動を定性的に調べ、シールド推進力の発 生のメカニズムおよびシールド推進による地表面への影響を検討するため、半円 形模型シールドによる実験を行ない、土槽側壁のガラス面を通して周辺地盤の挙 動を観察する.本来、シールド周辺地盤は3次元的な挙動をするので、上述のよ うにシールド中央断面における2次元的な周辺地盤の挙動のみからは当然定量的 な議論には結びつかない.しかし、定性的な議論に限れば、多くの有用な資料が 得られると考えられる.

3.2 実験装置および試料

実験装置の形状および寸法は図-2.3.7 および写真2.3.1 に示される. すなわち, 50×30×42 cmの木製の土槽の一側面からシールドが貫入するような装置で, 土槽の一側面をガラス張りにすることにより円形および半円形シールドの模型実 験をともに行なうことができる.

シールドの模型はすべてアクリル樹脂製であり、**写真 2.3.2**a)に示すように、 シールド模型本体は外径10 cm,長さ40 cmの円筒形である。シールド先端部のア タッチメント 50

42

は写真 2.3.2 b) に示され る. 表一2.3. drivina proving equipment ring 1に示すよう clay sample に,開口部の 直径は8種類 ω に変化させる ことができ, (unit : cm) 40 シールド先端 部中心角もそ 図-2.3.7 実験装置の概略図 れぞれ5種類 に変化させる ことができる. また、半円形 シールド模型 の本体および 先端部アタッ チメントは写 **真 2.3.2** c) に示されてい る. シールド の全推進力は プルービング 写直 2.3.1 実験装置

-161 -

リング(容量30kg)を用い,シールドの貫入量はダイアルゲージを用いて測定する.

a) 円形シールド本体

b) 円形シールド先端部 のアタッチメント

b)

c) 半円形シールド模型

写真 2.3.2 ブラインドシール ドの模型

実験に用いた粘土 表一 2.3.1 シールド模型の開口比および中心角

実験に用いた粘土 試料は**表**-2.3.2 に 示す3種の粘土のな かから適宜使用した.

開口比 D₂/D₁		中	心 a	角	Ĵ
0					
0.1			45°	56°	67°
0.2			45°	56°	
0.3			45°	56°	67°
0.4		33°	45°	56°	
0.5		33°	45°		
0.6	23°	33°	45°		
0.7	23°	33°	45°		

表一 2.3.2 粘土試料

物性		名称	sample A	sample B	sample C
liquid	limit	(%)	57.2	72.0	116.8
plastic	limit	(%)	29.3	31.0	33.8
plasticity	index	(%)	27.9	41.0	83.0
specific g	ravity		2.68	2.65	2.68
clay fraction $(< 2 \mu)$ (%)			4.6	9.5	55.0

3.3 実験方法

模型実験としては,前述のように,ブラインドシールド周辺地盤の挙動を調べるための実験およびブラインドシールドの推進力を検証するための実験を行なう. 以下では,前者を実験 [,後者を実験]と称する.

実験1については、ブラインドシールド推進にともなう周辺地盤の水平変位お よび鉛直変位を得るため、ガラス面を通して粘土地盤中の白線の変動を写真によ り観察する.

水平変位については、含水比約92%をもつ粘土試料Aを用い、厚さ33cmの模

型地盤を造る。開口比 D_2/D_1 が0.6 および0.3 の2種の半円形模型シールド(ただし中心角2αはともに90°)を約3cm模型地盤に貫入させ、約1時間程度静置後推進速度 $v_0 = 1/60$ cm/sec で推進させる。ガラス面に5 cm間隔で鉛直に引かれた 白線の挙動を観察し、変位を測定する。

一方,鉛直変位については、含水比 120 % および 150 %の粘土試料 Cを用い、 2 種類の模型地盤を造る. この場合、シールド上端面からの土かぶり厚さを5 cm、 10 cm、15 cmおよび 20 cm、すなわちシールド外径を D_1 (= 10 cm)とすると、0.5 $D_1 \sim 2 D_1$ の4種に変化させる.開口比 D_2/D_1 が0,0.2,0.4 および 0.6 の4種の 半円形模型シールド (ただし中心角 2 α はともに 90°)を用い、水平変位の場合と ほぼ同様にして、ガラス面に 3 cm間隔で水平に引かれた白線の挙動を観察し、変 位を測定する.

実験 I については、一定含水比の粘土試料を土槽に入れ、厚さ33 cmの模型地 盤を造る. この地盤中に、所定の開口比および中心角をもつ模型シールドを約3 cm 貫入させ、そのまま約1時間程度静置する. そののち、シールドを一定速度で 推進させ、5 mm 毎にシールド推進力を測定する. この実験に用いられた粘土試料 は試料A および試料 B の2 種類である. それぞれの粘土に対する含水比、パイプ フロー試験⁴⁾ から得られる流動特性、模型シールドの形状およびシールドの推進 速度を表-2.3.3 にまとめて示す. ただし、試料A に対して用いたシールドの形 状は1 種類の開口比 D₂/D₁ あたり 2~3 種類のαをもつものを適宜使用した.

名称物性	s	ample		A	Sam	ple	В
water content (%)	97.0	94.5	91.0	82.5	86.8	80.0	77.6
<u>water content</u> liguid limit	1.70	1.65	1.59	1.44	1.21	1.11	1.08
yield stress (9/cm ²)	3.60	3.88	4.24	5.44	5.84	8.51	9.73
plastic viscosity (g·sec)	10.0	12.9	18.2	41.7	27.4	53.7	67.6
driving speed (cm/sec)	1/60			1/60 1/600	1/60		
$D_2 \swarrow D_1$	0,0.1,0.2,0.3,0.4,0.5,0.6,0.7				0, 0.3, 0.5, 0.7		
α (deg)	23, 3	3, 45,	56, 67	,		45	

表一 2.3.3 実験に用いられた粘土および模型シールドの仕様

第4節 実験結果および考察

4.1 シールド周辺地盤の挙動

写真 2.3.3 および写真 2.3.4 は,それぞれ開口比 D₂/D₁ が0.3 および 0.6を もつシールド模型推進時の水平変位の挙動を例示したものである. 両写真の a), b) および c) はそれぞれシールド貫入長 L = 0 cm, 15 cmおよび 20 cmにおける 状態を示している. これらの写真から,開口比が小さい場合ブラインドシールド 推進に伴う進行方向への地盤の変形が相当前方にまで及ぶが,開口比が大きくな るとこの変形は比較的小さくなることが分かる.

一方、写真 2.3.5 、写真 2.3.6 および写真 2.3.7 は、それぞれ含水比 120 % で、土かぶり厚さ H が 5 cm、15 cm および 20 cm の場合の鉛直変位の挙動を例示したものである(含水比 150 %の場合も同様な挙動を示す). いずれの写真も a) は完全ブラインドシールド(開口比 $D_2/D_1 = 0$)であり、b) および c) はそれぞれ開口比 $D_2/D_1 = 0.2$ および 0.6 の開口部をもつブラインドシールドの例である. これらの写真から、開口比 D_2/D_1 が大きくなり、あるいは土かぶり厚が大きくなるにつれて、地盤の鉛直方向の変位が小さくなり、地表面の盛り上がり量が小さくなることが分かる.

つぎに、これらの写真をもとにして、シールド先端部の粘土の開口部への流入 状況について検討する。この検討は、第2編第3章第2節のシールド推進力の理 論解析においてなされた種々の仮定のうち、シールド先端地盤の挙動に関連する 仮定の妥当性について検討することによって行なう。

まず、シールド先端部の粘土は明らかに塑性流動状態にあり、厚肉中空球の一部(図ー2.3.1における粘土ACC'A')の外面(AA'面)付近からシールド開口部に粘土が流入している様子が確認できる。すなわち、写真2.3.3 b)および c)において、AA'面の少し外側では粘土の流入が生じていない。写真2.3.4 b)および c)において、AA'面内では粘土の流入が生じるが、AA'面外ではまだ粘土の流入が生じていない。写真2.3.5~写真2.3.7 のb)および c)において、AA'面付近で粘土の流入が生じている。したがって、第2編第3章第2節2.2.2の仮定a)はほぼ満足されると考えられる。

a) $D_2/D_1 = 0.3$ L = 0 cm

b) $D_2/D_1 = 0.3$ L = 15 cm

写真 2.3.3 周辺地盤の水平変 位の挙動 (D₂ / D₁ = **0.3**)

a)
$$D_2/D_1 = 0.6$$

 $L = 0 \text{ cm}$

b)
$$D_2/D_1 = 0.6$$

 $L = 15 \text{ cm}$

c)
$$D_2/D_1 = 0.6$$

 $L = 20 \text{ cm}$

写真2.3.4 周辺地盤の水平 変位の挙動 (D₂ / D₁ = 0.6)

a) $D_2 / D_1 = 0$ L = 15 cm

b) $D_2/D_1 = 0.2$ L = 15 cm

c) $D_2/D_1 = 0.6$ L = 15 cm

写真2.3.5 周辺地盤の鉛直 変位の挙動 (*H*=5cm)

a) $D_2 / D_1 = 0$ $L = 15 \, \mathrm{cm}$

b)
$$D_2/D_1 = 0.2$$

 $L = 15 \text{ cm}$

c)
$$D_2/D_1 = 0.6$$

 $L = 15 \text{ cm}$

写真 2.3.6 周辺地盤の鉛直 変位の挙動 (*H* = 15 cm)

a) $D_2/D_1 = 0$ L = 15 cm

b)
$$D_2 / D_1 = 0.2$$

 $L = 15 \text{ cm}$

c)
$$D_2/D_1 = 0.6$$

 $L = 15$ cm

写真 2.3.7 周辺地盤の鉛直 変位の挙動 (*H* = 20 cm) さらに、写真2.3.3 および2.3.4 から、シールドの定速度の推進に対して、粘土の流動は定常的に行なわれ、写真2.3.5~写真2.3.7のb)およびc)より、その流動方向は求心的であることが確認できる.したがって、第2編第3章第2節2.2.2の仮定b)はほぼ満足されると考えられる.

また,シールド先端部のクルジュモフ効果(図ー2.3.1 における△ABC,△A' B'C')については,写真2.3.3 b)および c)から判断すると,粘土の流動部分 が少し内側に入り込むようであるが,写真2.3.5~写真2.3.7のb)および c)の 求心的な流線から判断して近似的に満足されると思われる.

さらに、前述のように、シールド推進にともなって地盤が進行方向および上方 へ変形するけれども、写真2.3.6 c)および写真2.3.7 b)および c)のように、 開口比および土かぶり厚が比較的大きい場合には地盤の変形が小さく、シールド 先端の粘土ACC'A'(図-2.3.1参照)はほとんど開口部CC'に流入するものと 思われる.したがって、開口比および土かぶり厚が比較的大きい場合には、第2 編第3章第2節2.2.2の仮定 c)はほぼ満足されると考えられる.

つぎに、シールド推 進にともなう地表面へ の影響を検討するため、 鉛直変位の実験結果を もとにして得られた地 表面最大盛上り高さを, 開口比および土かぶり 厚との関係において、 図-2.3.8 および図-2.3.9 に示す. 図-2. 3.8は含水比120%の 場合, 図-2.3.9 は含 水比150%の場合であ る. ともに, 開口比は 開口部とシールド断面 の面積比で表わされてい る.

w = 120 %, $v_0 = 1 \text{ cm/min}$

- 171 -
これらの図から、開 口比および土かぶり厚 が大きくなる場合、す なわち開口比および土 かぶり厚の関係が図の 右上方に移動するとと もに、地表面最大盛上 り高さが小さくなるこ とが分かる. ただし, 地盤の含水比によって 定量的な傾向が多少異。 なるが、定性的にはほ ば同様と考えられる. また、開口比および土 かぶり厚がさらに大き くなると, 地表面最大

盛上り高さは、図にお

ける等高線の傾向から判断して、負になることもあることが推察される。これは、 ある土かぶり厚に対して開口比をあまり大きくすると地表面に沈下を生ずるとを 意味し,実際の現象から考えて矛盾しない.

以上のことは、粘土のコンシステンシー状態および土かぶり厚さに応じて、ブ ラインドシールドの推進速度および開口比を適当に選択することによって、地表 面への影響を無くすることができることを意味している点で重要であると思われ る.

4.2 ブラインドシールドの推進力

実験Ⅱの結果より、ブラインドシールドの推進力Pと貫入長Lの関係を,一例として,図ー2. 3.10 に示す. この図より, PとLの間に直線関係が存在することが確認される. した がって, 第2編第3章第3節3.1 で述べたように, 推進力Pをシールドの周面摩

図-2.3.10 ブラインドシールドの推進力と貫入長の関係

擦力 P_f とシールドの先端抵抗力 P_e に分けて,それぞれ別個に理論値と実測値の 比較検討を行なうことができる。ただし、塑性変形理論に対しては、 $P \sim L$ 関係 の直線の勾配から、式(2.3.14)を用いて粘着力 c が得られるので、この値を 用いて得られる先端抵抗力の理論値と実測値の比較のみを行なう。

図ー2.3.11 は、 $P \sim L$ の直線関係の勾配から得られた P_f / L の実測値と塑性流動理論の式(2.3.6)から得られた P_f / L の理論値を比較したものである、理論値の方がわずかに大きい傾向があるが、はぼよい一致を示すと考えられる.

図ー2.3.12 a) ~ d) および図ー2.3.13 a) ~ c) は、それぞれ種々の含水比をもつ粘土試料A および粘土試料B に対して得られた結果である。P ~ Lの直線関係のP軸切片として得られた先端抵抗力 P_e が、開口比 D_2/D_1 に対してプロットされている。

粘土試料Aにおいては、図ー2.3.12 a) ~ d) に示すように、 $D_2/D_1 \ge \alpha$ の種 々の組合せについて模型実験を行なったので、まず α の影響について検討する。 一定の D_2/D_1 の値に対して α を2~3種に変化させて得られた先端抵抗力 P_e の 値には α に関する有意な傾向が認められない、しかるに、粘土の塑性状態におけ

るすべり線は一般に最 0.4 小主応力方向と45°の measured value of P_f/L (kg/cm) Ť 傾きをなす。もし, 0.3 $\alpha \neq 45^{\circ}$ の場合,図一 2.3.1 に示すようなシ ールド先端部の△AB 0.2 C, △A'B'C'の部分 にクルジュモフ効果が **⋠**ӯ Ӯ あらわれるならば,せ 0.1 sample A ん断面AC, A'C'はす sample B べり線と一致しないこ とになる、そこで、 α 0.3 0 0.1 0.2 0.4+ 45[°]の場合実際には theoretical value of P_f/L (kg/cm) クルジュモフ効果は< 図 – 2.3.11 P_f / L の理論値と実験値の比較 ABC, △A'B'C'の部 (塑性流動理論) 分に生ずるのではなく,

ように生ずると考えれば、先端抵抗力 P_e は種々のαの値により大きな影響を受けないという実験事実が説明できることになる。したがって、以下の議論では実 測値はすべてα = 45°の場合に相当すると考える。

あたかも $\alpha = 45^{\circ}$ になる

図ー2.3.12 a) ~ d) および図ー2.3.13 a) ~ c) において、 $\alpha = 45^{\circ}$ とする 塑性流動理論および塑性変形理論 (n = 7) による先端抵抗力の理論曲線がそれ ぞれ実線および破線で示されている. これらの図における理論値と実測値を比較 すると、塑性流動理論による理論曲線 (実線)の方が、 D_2/D_1 の減少とともに、 P_e がやや上に凸に増加する傾向を定性的によりよく表現していることが確認で きる.

さらに、定量的に検討すると、図ー2.3.12 a)~d)において、4種の含水比 ($w/w_L > 1.4$)をもつ粘土試料Aに対しては、 $D_2/D_1 < 0.2$ の部分でやや過大 な実測値を与える以外、塑性流動理論による理論値と実測値はよく一致している. しかし、図ー2.3.13 a)~c)において、3種の含水比($w/w_L < 1.3$)をもつ

a) w = 97.0 %

b) w = 94.5 %

c) w = 91.0 %

d) w = 82.5 %

図-1.2.12 先端抵抗力の理論値と実験値の比較 (sampleA)

a) w = 86.8 %

b) w = 80.0 %

c) w = 77.6 %
 図 - 2.3.13 先端抵抗力の理論値と実験値の比較(sample B)

粘土試料 B に対しては、w = 86.8%, $v_0 = 1/600$ cm/sec, $D_2/D_1 > 0.5$ の場合に おいてのみ、塑性流動理論による理論値と実測値は一致しているが、他はすべて 実測値の方が過大になっている.

また,シールドの推進速度の効果は図ー2.3.13 a)より分かる. すなわち,模型実験において用いられた程度の推進速度による粘性力の差はあまり大きいものではない.

以上総合して考えると、粘土のコンシステンシー、開口比および推進速度の組 合せにより、ブラインドシールド推進にともなって粘土が開口部に流入しにくく なる場合に、実測値が理論値より過大になると結論される。なぜなら、一般に、 含水比が低くなり、開口比が小さくなり、あるいは推進速度が速くなればなるほ ど、粘土がシールド開口部に流入しにくくなると考えられるからである。これは、 第1編第3章第4節4.1で得られたシールド周辺地盤の挙動の結果と一致するも のである。したがって、粘土が開口部に流入しにくくなると、周辺地盤がシール ド推進にともなってシールド進行方向あるいは上方に大きく変位するようになる。 そこで、第1編第3章第2節2.2.2 において誘導した理論式にもどって考える と、シールドの先端抵抗力のうち、土圧による外力 P_{ee} は、シールド先端部を除 く周辺地盤が静止状態にあると仮定して得られている.しかし、前述のように粘 土のコンシステンシー、開口比、推進速度あるいは土かぶり厚によっては、シー ルド先端部の周辺地盤がシールド進行方向に大きく変位するようになる.この場 合、土圧による外力 P_{ee} は静止土圧ではなく、受働土圧に近づいて行くことが予 想される.したがって、この場合、式(2.3.12)の代りに次式が与えられるこ とになる.

$$P_{ee} = \frac{\pi}{4} (\gamma H_0 + 2c) (D_1^2 - D_2^2)$$
 (2.3.24)

~d)およ 8 び図-2.3. 7 $13 a) \sim c$ において点 measured value of critical end resistance (kg) 6 Ο ſ 線で示され 0 ている. こ 5 れらの点線 で示される 4 理論曲線は、 前述の実線 3 より大きな 値をとる実 2 theory of visco-plastic flow 測値とほぼ theory of plastic deform. n=4 1 一致するよ theory of plastic deform. n=7 うになる. 図-2.3. 7 3 4 5 6 8 0 1 2 14は,限 theoretical value of critical end resistance (kg) 界先端抵抗 力 Pec すな

Pee として式(2.3.24)を用いて得られた Peの理論曲線が、図-2.3.12 a)

わち $D_2 = 0$ の場合の先端抵抗力の理論値と実験値の比較を示している. この図に おいて、塑性流動理論に対しては、受働状態に対して得られた値をプロットし、 塑性変形理論に対しては式(2.3.21)における係数 n が7 および4の2ケース について得られた値をプロットしている. 図より、塑性流動理論およびn = 4の ときの塑性変形理論による理論値はともに実測値と一致している. しかし、n = 7のときの塑性変形理論による理論値は実測値より大きい値を与えている.

しかるに、Broms らおよび Terzaghi によれば、係数 n は 7 前後の値をとると考 えられる.また、模型実験によるシールド先端部の粘土の挙動が塑性流動理論の 仮定に近似している.以上のことから、塑性変形理論においては、粘土が非常に 軟弱な場合には係数 n の値を小さくすることによって、見かけ上限界先端抵抗力 を表わしうることを意味していると思われる.

第5節 結論

ブラインドシールドの推進力発生のメカニズムおよびその算定法について研究 した.まず,塑性流動理論および塑性変形理論を適用し,ブラインドシールドの 推進力を理論的に解析した.つぎに,模型実験により,シールド周辺地盤の挙動 およびシールドの推進力発生のメカニズムを解明するとともに,シールドの推進 力の理論式の妥当性を検証し,その算定法を確立した.

第2編第3章で得られたおもな結論を以下に列挙する.

(1) 軟弱な粘土地盤において、ブラインドシールドが一定速度で推進する際に、 シールド先端部の粘土は定常的な塑性流動状態にある.また、それは球の表面か ら中心に向うような求心的な流動をすると考えられる.

(2) シールド先端部のクルジュモフ効果(図ー 2.3.1 の $\triangle ABC$, $\triangle A'B'C'$)は 近似的に三角形と考えてもよい. したがって, せん断面(\overline{AC} , $\overline{A'C'}$)は常に水平 と 45°をなす, すなわち $\alpha = 45°$ として推進力が算定できる.

(3) 粘土のコンシステンシー状態および土かぶり厚に応じて、ブラインドシール ドの推進速度および開口比を適当に選択することによって、地表面への影響を無 くすることができる. (4) 一般に、粘土がかたくなり、土かぶり厚および開口比が小さくなり、あるいは推進速度が速くなるとともに、粘土がブラインドシールド開口部に流入しにくくなる。このとき、周辺地盤はブラインドシールド推進とともに、シールド進行方向および上方に変位する。

(5) 軟弱な粘土地盤におけるブラインドシールドの推進力の算定については,塑 性流動理論の方が塑性変形理論より定性的および定量的によい近似値を与える. これは,理論においてなされた仮定が実験により確認された周辺地盤の挙動とほ は一致することからも確認できる.

(6) ブラインドシールド先端部の粘土がシールド開口部に流入しにくくなる場合 には、シールド推進力のうちの土圧による項が静的な圧力から受働的な圧力に変 化し大きくなると考えられる.この考えに基づき、塑性流動理論による推進力算 定式が導かれ、理論値と実測値のよい一致が得られた.

(7) 限界先端抵抗力は、塑性流動理論において、理論曲線が急激に増加する値、 すなわち理論曲線が最大曲率をもつ値によってよい近似値を与える。一方、塑性 変形理論においては、見かけ上式(2.3.21)における係数nを4とすることによ ってよい近似値が与えられる。

参考文献

- Ito T. and Matsui T. : Driving force of blind type shield in soft grounds, Technol. Repts. Osaka Univ., Vol. 22, No. 1086, pp. 769 ~ 784, 1972.
- 2) Richardson H. W. and Mayo R. S. : Practical tunnel driving, McGraw -Hill Co., New York and London, p. 259, 1941.
- 3) Széchy K.: The art of tunnelling, Akadémiai Kiadó, Budapest,
 p. 714, 1966.
- Matsui T., Ito T. and Fujii K. Plastic flow of soft clays by pipe flow tests, Technol. Repts. Osaka Univ., Vol. 20, No. 970, pp. 797 ~ 808, 1970.
- 5) 中川鶴太郎,神戸博太郎:レオロジー,みすず書房, pp. 340 ~ 354, 1959.
- 6) Tomsen E. G., Yang C. T. and Kobayashi S. : Mechanics of plastic deformation in metal processing, The Macmillan Co., New York, 1965. (工藤訳)
- 7) 斉藤,内藤,鈴木:ブラインド式シールド工法に関する考察,大林組技術 研究所報, No. 2, pp. 197 ~ 203, 1968.
- 8) Broms B. B. and Bennermark H. : Stability of clay at vertical opening, Proc. ASCE, Vol. 93, No. SM1, pp. 71 ~ 94, 1967.
- Terzaghi K. : Theoretical soil mechanics, John Wiley and Sons, New York, 1943.

第4章 軟弱地盤の塑性変形に対する杭のすべり 防止効果に関する研究¹⁾²⁾³⁾

第1節 総 説

軟弱地盤においては,地盤が塑性状態になることが多く見られる.たとえば斜面の崩壊,地すべり,盛土などによる地盤の側方流動などである.このような塑性状態の地盤中に杭が含まれている場合,杭と周辺地盤の相互作用により,杭が地盤の塑性変形に対するすべり防止効果をもつと考えられる.とくに,杭が間隔をおいて一列に並んでいる場合には,このすべり防止効果の存在は確実であり,かなりの効果が生ずるものと思われる.

このような例としては、最近盛んに用いられている地すべり防止杭がある、これは、杭のすべり防止効果を積極的に利用して地すべり土塊の安定をはかろうと するものである。

あるいは、港湾における斜面安定問題において、桟橋などの基礎としての杭列 がすべり面を貫くことが多く見られる.この場合の斜面安定に対しても、杭列に よるすべり防止効果が期待される.これは、本来構造物を支持する目的をもつ杭 列が斜面安定に対する効果を合せもつ例である.したがって、この場合は、地す べり防止杭におけるほど積極的に杭のすべり防止効果を利用することを意図した ものではなく、実際には、杭のすべり防止効果を無視して設計されるのがほとん どである.しかし、この効果を考慮することにより斜面の勾配をより急にするこ とができるので、桟橋においては、所定の水深を得るために必要な桟橋の幅を 小さくすることができる.したがって、この杭のすべり防止効果を考慮すること は重要な意義を有すると思われる.

さらに、上述のような斜面安定に関するもの以外にも、杭のすべり防止効果が 問題となる場合がある。たとえば、軟弱地盤上に盛土等の部分載荷をする際に、 地盤が側方に流動することが多い。このとき、杭基礎をもつ構造物が隣接してい るならば、この杭基礎が地盤の塑性変形により影響を受ける。すなわち、すでに 完成している構造物が隣接施工により影響を受ける。この影響の程度について検 討する際に,杭のすべり防止効果,言い換えれば杭に生ずる抵抗力が問題となる.

あるいはまた,地盤が側方流動する場合,あらかじめこれを防止する目的で部 分載荷の両端に杭列を施工する工法が当然考えられる.この工法は杭のすべり防 止効果を積極的に利用していることになる.

以上述べた現象は、いずれも塑性変形地盤中の杭に作用する外力に関係すると いう点で共通である。しかし、この外力は塑性状態の地盤と杭の相互作用によっ て生ずるものであり、その発生機構は非常に複雑であるので、ほとんど解明され ていない現状である。そのため、杭のすべり防止効果を十分発揮させるような有 効な設計を行なうことができない。したがって、杭のこの効果に疑問をもたれる ことも多く、あるいはこの効果を無視して設計することも少なくない。

第2編第4章においては、地盤の塑性変形に対する杭のすべり防止効果の機構 を明確にし、この効果を伴う種々の現象に対する設計法の確立を目的としている。 まず、塑性変形地盤中の杭に作用する外力の発生機構を究明するため、杭間隔を 考慮して、この外力の算定理論式を誘導する。この際、杭周辺地盤がMohr – Coulombの破壊条件式を満足する塑性状態にあると仮定した塑性変形理論、およ び杭周辺地盤を塑性流動体と仮定した塑性流動理論を適用する。これらの算定 理論を地すべり防止杭の実測結果と比較し、その妥当性を検討する。

さらに、杭を含む斜面の安定問題をとり上げ、その安定解析法を検討する。そ して、塑性変形地盤中の杭に作用する外力の算定式を用いた斜面安定の一解析法 を示す。この解析法を実例に適用し、斜面安定における杭のすべり防止効果を明 らかにする。

第2節 塑性変形地盤中の杭に作用する外力の算定理論

2.1 概 説

地すべり防止杭を例にとって考える.いま,地すべり防止杭が図-2.4.1 a) のように設置されている.すなわち,ABをすべり面とし,その上部の土塊が矢 印の方向に移動する.このとき,杭は塑性変形地盤中に置かれていることになる. したがって,杭には、図-2.4.1 b)に示すように、地すべり土塊による外力P が作用する. 図2.4.1 b) において, すべり面ABを地表面と考えれば, 地表に 突出している杭に地すべり土塊による外力が水平に作用する状態と考えられる.

もしこの場合,この杭に作用する外力が既知とすれば,杭の設計は水平力を受ける杭の解析法を応用することにより可能となる。したがって,杭の設計において最も重要な問題点は,地すべり土塊により杭に作用する外力の算定であると考えられる、しかし、この外力の発生機構は複雑であり、次項2.2で示すようにすでに提案された外力の算定式にはいずれも問題点が含まれているので、実際の

図-2.4.1 塑性変形地盤中の杭に作用する外力

適用に当っては困難な点が多い.とくに,杭間隔を考慮することは非常に重要で ある.なぜなら,杭のすべり防止効果が期待される場合,ほとんど杭列が対象と なっているにもかかわらず,従来の算定法ではほとんどの場合杭間隔を考慮してい ないからである.また,単杭によるすべり防止効果と杭列によるすべり防止効果 の発生機構は,基本的に,当然異なると考えられるからである.

そこで,第2編第4章第2節においては,杭は単杭ではなく杭列として取扱い, 杭間隔を考慮して,杭周辺地盤のみが塑性状態になったとき,杭に作用する外力 を算定する理論式を誘導する。その際,杭周辺地盤の土質条件を考慮して,地盤 がMohr – Coulombの破壊条件を満足する塑性状態,および塑性流動体と考えら れる塑性状態にあるという2通りの仮定をする。以下では,前者を塑性変形理論, 後者を塑性流動理論と称する。

2.2 既往の算定法

塑性変形地盤中の杭に作用する外力の発生機構は,地盤を構成している土質に 大きく左右されると思われる。したがって,塑性状態の地盤を粘性流体あるいは 塑性体等と考えることによって,杭に作用する外力の算定法が種々提案されてい る。

以下、これらの方法のうちおもなものを列挙する。

1) Lamb の方法⁴⁾

杭周辺地盤を粘性流体と仮定する。単杭に作用する外力Pは実験的に次式によって表わされる。

$$P = \frac{5.46 H \eta v}{\log(7.4\eta/\rho v d)}$$
(2.4.1)

ここに、 η :粘性係数、v:流速、 ρ :粘性流体の密度、d:杭の直径、

H:杭の有効長

2) White の方法4)

Lambの方法と同様,杭周辺地盤を粘性流体と仮定する.列杭として,杭間隔 Dを考慮して得られた杭に作用する外力Pの実験式が,次式によって表わされる.

$$P = \frac{5.46H\eta v}{\log(0.43D/d)}$$
(2.4.2)

3) Hennes の方法4)

杭周辺地盤を塑性体と仮定する。杭に作用する外力は杭周面に作用する摩擦力の合力と考え,地盤を粘性土と考える。この際、杭は地すべり方向に平行に置かれた厚きのない平板として扱われる。杭に作用する外力Pは次式によって表わされる。

$$P=2 \ cHd$$

(2.4.3)

)

模型実験により、図2.4. 2に示すように杭前面で地 盤に受動破壊が生ずること を確めた。そして、杭前面 の土塊の状態を受動ランキ ン状態と考えて、杭に作用 する外力の算定理論式を導 いた。地表面より z の位置 において、杭に作用する水 平土圧 p(z)は次式で表わさ れる.

図-2.4.2 杭による地盤のせん断破壊

$$p(z) = \left\{ N_{\varphi} \, \Upsilon \, z + 2 \, \sqrt{N_{\varphi}} \, c \right\} \times \left\{ d + 2 \, (2H - z) \cot \delta \cdot \sin \alpha \cdot \frac{\pi \alpha}{180} \right\}$$

$$(2.4.4)$$

ここに、 φ :土の内部摩擦角、c:土の粘着力、 γ :土の単位体積重量、H:杭 の有効長、d:杭の直径、 $N_{\varphi} = (1 + \sin \varphi)/(1 - \sin \varphi)$ 、 $\alpha = 45^{\circ} + \varphi/2$ 、 $\delta = 45^{\circ} - \varphi/2$ ・したがって、杭に作用する土圧合力Pは、式(2.4.4)を積分すること によって得られ、次式で表わされる。

$$P = 2H^{2} \cot \delta \cdot \sin \alpha \cdot \frac{\pi \alpha}{180} \left(\frac{1}{3} N_{\varphi} \gamma H + \sqrt{N_{\varphi}} c \right) + d \cdot H \left(\frac{1}{2} N_{\varphi} \gamma H + 2 \sqrt{N_{\varphi}} c \right)$$
(2.4.5)

5) 斜面安定解析による方法⁶⁾

分割法による斜面の安定解析法を用いて,斜面安定に必要な杭の抵抗力を求め る方法である.杭に作用する外力Pは次式によって表わされる.

 $P = \{ F_s \Sigma T - \tan \varphi \Sigma (N - ul) - c \Sigma l \} \times D \qquad (2.4.6)$

ここに、 F_s :安全率、 φ :土の内部摩擦角、c:土の粘着力、T:各細片のせん

断力, N:各細片の垂直力, l:各細片のすべり線長, u:すべり面における間 げき水圧, D:杭間隔.

以上の方法のうち,Lamb およびWhite の方法は,いずれも地盤状態を粘性流体と仮定している。したがって,泥流状の地すべり以外には適用できず,一般性がない。

Hennes の方法は、杭を厚さのない平板として扱っているので、杭間の土の圧 縮およびせん断変形を考慮していない、したがって、当然実際より小さな値を算 定することになろう、また、杭周辺地盤が粘性土である場合にしか適用できない。

土研の方法は,杭前面地盤の受動破壊を仮定しているので,地すべり運動の極限状態における値を算定していることになる.しかし,設計に必要な値はこのような極限状態の値ではなく,地すべりの進行しはじめる状態の値である.したがって,この方法は実際より過大な値を算定することになろう.また,列杭の場合の杭間隔の考慮の仕方が不明瞭である.

斜面安定解析による方法においては、斜面安定において不足する抵抗力から、 杭に作用する外力を逆算している。したがって、このように単純に得られた杭に 作用する外力が、地すべりの進行しはじめる状態において、杭列に必ず作用する 保証はない。なぜなら、杭列と周辺地盤の相互作用という立場から、杭に作用す る外力の発生機構が検討されていないからである。この点に関しては、第2編第 4章第4節でさらに検討を加える。

以上のように,いずれの方法にも問題点が含まれている.すなわち,杭間隔を 考慮する方法,あるいは周辺地盤の土質条件や塑性状態の仮定に重大な問題点が あると考えられる.したがって,これらの点に重点を置いて,塑性変形地盤中の 杭に作用する外力の算定理論式を以下に誘導する.

2.3 杭に作用する外力の理論解析

図-2.4.3 に示すように,直径 d の円形杭が,中心間隔 D₁で一列に地盤中に打 込まれている。一方, 層厚Hの地盤が杭列と直角方向に塑性変形を生ずる。この 場合,塑性変形地盤により杭に作用する外力の算定理論を誘導する。その際,図 -2.4.3 に斜線で示すように, 杭列の2本の杭中心間における地盤の挙動を対象 とすれば十分である.

また,すでに述べたよう に, 杭周辺地盤の塑性 状態は地盤の土質条件 によっても相当変化すると 考えられるので,塑性変形 理論および塑性流動理論に よる典型的な2通りの理論 解析を行なう.前者は, Mohr – Coulombの破壊条 件を仮定するので,比較的 硬い地盤における塑性的な

d

 $\left(\frac{\Pi}{4}\right)$

Ā

0

Ŕ

pile

E

Έ

pile

 $\left(\frac{\pi}{8}\right)$

ů,

中心間における土塊ACDFF'D'C'A'を考える. この土塊により杭に作用する外力の算定に際して,つぎの仮定を設ける.

- a) 地盤が変形すると、折線AEBおよびA'E'B'にすべり面が生ずる。ただし、 \overline{EB} および \overline{EB} はx方向と($\pi/4 - \varphi/2$)の角をなす。
- b) 杭周辺地盤は、土塊AEBB'E'A' においてのみ塑性状態になり、Mohr Coulombの破壊条件を満足する、したがって、この地盤は内部摩擦角Øおよび粘着力cにより表わされる。
- c) 地盤は深さ方向に平面ひずみ状態とする.
- d)杭は剛体とする.

まず、図-2.4.4における土塊EB'B'Eにおいて、図-2.4。5 に示すその微小要素 に作用する x 方向の釣合いから、次式が得られる.

$$-D d\sigma_x - \sigma_x dD + 2dx \left\{ \sigma_\alpha \tan\left(\frac{\pi}{4} - \frac{\varphi}{2}\right) + \sigma_\alpha \tan\varphi + c \right\} = 0$$

$$(2.4.7)$$

主応力 σ_{α} に対応する主応力を σ_{α} と仮定すると、 仮定 b) によって、土が塑性変形を起す条件 として次式が与えられる、

$$\sigma_{\alpha} = \sigma_x N_{\varphi} + 2c\sqrt{N_{\varphi}} \qquad (2.4.8)$$

 $\zeta \subset \mathcal{K}, \ N_{\varphi} = \tan^2\left(\frac{\pi}{4} + \frac{\varphi}{2}\right).$

一方,幾何学的条件より,次式が成立する.

d
$$x = \frac{d(\frac{D}{2})}{tan(\frac{\pi}{4} - \frac{\varphi}{2})}$$
 (2.4.9)

式(2.4.8)および式(2.4.9)を式(2.4. 7)に代入すれば,次式が導かれる.

図 – 2.4.5 塑性変形地盤の微 小要素(土塊 EBB′ E[′])

$$Dd \sigma_x = dD \times \left\{ \left(N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1 \right) \sigma_x + c \left(2N_{\varphi} \tan \varphi + 3N_{\varphi}^{\frac{1}{2}} \right) \right\}$$

$$(2.4.10)$$

$$\therefore \frac{\mathrm{d}D}{D} = \frac{\mathrm{d}\sigma_x}{\left\{ \left(N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1 \right) \sigma_x + c \left(2N_{\varphi} \tan \varphi + 3N_{\varphi}^{\frac{1}{2}} \right) \right\}}$$
(2.4.11)

式(2.4.11)を積分すれば、次式になる。

$$\log D + C_1' = \frac{\ln\left\{\left(N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1\right) a_x + c(2N_{\varphi} \tan \varphi + 3N_{\varphi}^{\frac{1}{2}}\right\}}{N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1}$$
(2.4.12)

$$\therefore \quad \sigma_x = \frac{(C_1 D)^{(N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1)} - c (2N_{\varphi} \tan \varphi + 3N_{\varphi}^{\frac{1}{2}})}{N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1} \quad (2, 4, 13)$$

ここに, C' およびC1は定数である.

図-2.4.4 における土塊AEE'A'においても同様に,図-2.4.6 に示すその微 小要素に作用する x 方向の釣合いから,次式が得られる.

(2.4.14)

 $D_2 \, \mathrm{d}\, \sigma_x = 2 \, (\, \sigma_{\alpha} \cdot \, \mathrm{tan} \, \varphi + \, c \,) \, \mathrm{d} \, x$

式(2.4.8)を式(2.4.14)に代入して変数分 離形にすると、次式が導かれる.

$$\frac{d \sigma_x}{N_{\varphi} \tan \varphi \ \sigma_x + c \left(2N_{\varphi}^{\frac{1}{2}} \tan \varphi + 1\right)} = \frac{2}{D_2} \ d x$$
(2.4.15)
式(2.4.15)を積分すると、次式になる.

$$\frac{\log \{N_{\varphi} \tan \varphi \ \sigma_x + c (2N_{\varphi}^{\frac{1}{2}} \tan \varphi + 1)\}}{N_{\varphi} \tan \varphi} = \frac{2}{D_2} x + C_2'$$
(2.4.16)

$$\therefore \quad \sigma_x = \frac{C_2 \exp\left(\frac{2N_{\varphi} \tan\varphi}{D_2} x\right) - c\left(2N_{\varphi}^{\frac{1}{2}} \tan\varphi + 1\right)}{N_{\varphi} \tan\varphi} \quad (2.4.17)$$

図 – 2.4₃6 塑性変形地盤の 微小要素(土塊AE E′A′) ここにC₂ およびC₂は定数である.

っぎに、AA'面に主働土圧が作用すると仮定すれば、x = 0のとき次式が成立 する.

$$|\sigma_{x}|_{x=0} = \gamma z \tan^{2} \left(\frac{\pi}{4} - \frac{\varphi}{2} \right) - 2c \tan \left(\frac{\pi}{4} - \frac{\varphi}{2} \right)$$
$$= \gamma \cdot z N_{\varphi}^{-1} - 2c N_{\varphi}^{-\frac{1}{2}} \qquad (2.4.18)$$

ここに、 z は 地表からの 保さ, γ は 土の 単位体 債 重量 で ある. 式(2.4.18)を 境界 柔件 として,式(2.4.17)の 定 数 C₂を 求めると,次式が 得 られる.

 $C_2 = \gamma z \tan \varphi + c$ (2.4.19) 式(2.4.17)および式(2.4.19)より EE'面に作用する応力は次式のようになる.

$$\left| \left| d_{x} \right|_{x} = \frac{D_{1} - D_{2}}{2} \tan\left(\frac{\pi}{8} - \frac{\varphi}{4}\right) = \frac{1}{N_{\varphi} \tan\varphi} \left\{ \left(\gamma z \tan\varphi + c \right) \cdot \exp\left(\frac{D_{1} - D_{2}}{D_{2}}\right) + N_{\varphi} \tan\varphi \tan\left(\frac{\pi}{8} - \frac{\varphi}{4}\right) \right\} - c \left(2N_{\varphi}^{\frac{1}{2}} \tan\varphi + 1 \right) \right\} \quad (2.4.20)$$

さらに、土塊EBB'E'に関して、EE'面すなわちD=D₂のとき σ_xは式(2.4. 20)で表わされる. これを境界条件として、式(2.4.13)の定数C₁を求めると、 次式が得られる.

$$(C_{1} \cdot D_{2})^{\left(N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1\right)} = \frac{(N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1)}{N_{\varphi} \tan \varphi} \left\{ (\gamma_{z} \tan \varphi + c) \exp\left(\frac{D_{1} - D_{2}}{D_{2}}\right) \right\}$$

$$\times N_{\varphi} \tan \varphi \tan \left(\frac{\pi}{8} - \frac{\varphi}{4}\right) - c \left(2N_{\varphi}^{\frac{1}{2}} \tan \varphi + 1\right) + c \left(2N_{\varphi} \tan \varphi + 3N_{\varphi}^{\frac{1}{2}}\right)$$

$$(2.4.21)$$

式(2.4.13)および式(2.4.21)を用いれば, BB'面に作用する単位層厚当りの x方向の全合力 p_{BB} は次式で表わされる.

$$p_{BB'} = D_1 \left\{ \sigma_x \right\}_{D=D_1} = D_1 \left(\frac{D_1}{D_2} \right)^{\left(\frac{N_{\varphi}^3}{N_{\varphi}^2} \tan \varphi + N_{\varphi} - 1 \right)} \left[\frac{1}{N_{\varphi} \tan \varphi} - 192 - \right]$$

$$\times \left\{ (\gamma z \tan \varphi + c) \cdot \exp \left(\frac{D_1 - D_2}{D_2} N_{\varphi} \tan \varphi \tan \left(\frac{\pi}{8} - \frac{\varphi}{4} \right) \right) - c (2N_{\varphi}^{\frac{1}{2}} \tan \varphi + 1) \right\}$$

$$+ c \frac{2N_{\varphi} \tan \varphi + 3N_{\varphi}^{\frac{1}{2}}}{N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1} \bigg] - c \cdot D_{1} \frac{2N_{\varphi} \tan \varphi + 3N_{\varphi}^{\frac{1}{2}}}{N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1}$$
(2.4.22)

単位層厚当りの杭に作用する x 方向の外力 p は, BB' 面およびAA' 面に作用するそれぞれの合力の差であるから,式(2.4.18)および式(2.4.22)より次式のように得られる.

$$p = p_{BB'} - D_2 \{ \sigma_x \}_{x = 0}$$

$$= c D_1 \left(\frac{D_1}{D_2}\right)^{\left(N_{\varphi}^{\frac{3}{2}} \tan + N_{\varphi} - 1\right)} \left[\frac{1}{N_{\varphi} \tan \varphi} \{ \exp\left(\frac{D_1 - D_2}{D_2} N_{\varphi} \tan \varphi \tan\left(\frac{\pi}{8} - \frac{\varphi}{4}\right) \right) \right]$$

$$-2N_{\varphi}^{\frac{1}{2}}\tan\varphi - 1\} + \frac{2N_{\varphi}\tan\varphi + 3N_{\varphi}^{\frac{1}{2}}}{N_{\varphi}^{\frac{3}{2}}\tan\varphi + N_{\varphi} - 1} - c \left\{ D_{1}\frac{2N_{\varphi}\tan\varphi + 3N_{\varphi}^{\frac{1}{2}}}{N_{\varphi}^{\frac{3}{2}}\tan\varphi + N_{\varphi} - 1} \right\}$$

.

+
$$2 D_2 N_{\varphi}^{-\frac{1}{2}} \} + \frac{\gamma z}{N_{\varphi}} \{ D_1 (\frac{D_1}{D_2})^{(N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1)} \cdot \exp (-\frac{D_1 - D_2}{D_2} N_{\varphi} \}$$

$$\times \tan \varphi \tan \left(\frac{\pi}{8} - \frac{\varphi}{4} \right) - D_2 \} \qquad (2.4.23)$$

式(2.4.23)を層厚方向に積分すれば、地盤の塑性変形により杭に作用する外力 の全合力が得られる。

_ 砂質土の場合 (c = 0の場合)

式(2.4.23)においてc = 0とすれば、砂質土の場合の外力pが次式で与えられる.

$$p = \frac{\gamma_{z}}{N_{\varphi}} \left\{ D_{1} \left(\frac{D_{1}}{D_{2}} \right)^{\left(N_{\varphi}^{\frac{3}{2}} \tan \varphi + N_{\varphi} - 1 \right)} \cdot \exp \left(\frac{D_{1} - D_{2}}{D_{2}} N_{\varphi} \tan \varphi \tan \left(\frac{\pi}{8} - \frac{\varphi}{4} \right) \right) - D_{2} \right\}$$

$$(2.4.23)'$$

粘性土の場合($\varphi = 0$ の場合)

式(2.4.7),式(2.4.8),式(2.4.9)および(2.4.14)において、 $\varphi=0$ として前述と同様にすればよい、すなわち、式(2.4.11)において $\varphi=0$ とすれば、次式が得られる.

$$\frac{\mathrm{d}D}{D} = \frac{\mathrm{d}\sigma_x}{3c} \tag{2.4.24}$$

式(2.4.24)を積分すれば、次式になる.

 $\sigma_x = 3 c \log D + C_3 \tag{2.4.25}$

ここに, C₃は積分定数である.

つぎに、式(2.4.15)において $\varphi = 0$ とすれば、次式が得られる.

$$\frac{\mathrm{d}\,\sigma_x}{c} = \frac{2}{D_2} \,\mathrm{d}\,x \qquad (2.4.26)$$

式(2.4.26)を積分すれば、次式になる.

$$\sigma_x = \frac{2c}{D_2} x + C_4 \qquad (2.4.27)$$

ここに、C4は積分定数である.

つぎに、AA'面に主働土圧が作用すると仮定すれば、式(2.4.18)を参照して、 x = 0のとき $\sigma_x = \gamma_z - 2c$ となる、これを境界条件として、式(2.4.27)に適用 すれば、EE'面に作用する応力は次式のように得られる、

$$\left| \sigma_{x} \right|_{x = \frac{D_{1} - D_{2}}{2} \tan \frac{\pi}{8}} = c \left(\frac{D_{1} - D_{2}}{D_{2}} \tan \frac{\pi}{8} - 2 \right) + \gamma z \quad (2.4.28)$$

さらに、土塊EBB'E'に関して、EE'面すなわち $D = D_2$ のとき、 σ_x は式(2. 4.28)で表わされる、これを境界条件として、式(2.4.25)の定数 C_3 を求めると、 次式が得られる、

$$C_3 = c \left(\frac{D_1 - D_2}{D_2} \tan \frac{\pi}{8} - 3 \log D_2 - 2 \right) + \gamma z \qquad (2.4.29)$$

式(2.4.25)および式(2.4.29)を用いれば、粘土の場合のBB'面に作用する単 位層厚当りの x 方向の全合力 p_{BB} は次式で表わされる.

$$p_{nB'} = D_1 \left\{ d_x \right\}_{D = D_1}$$

$$= D_1 \left\{ c \left(3 \log \frac{D_1}{D_2} + \frac{D_1 - D_2}{D_2} \tan \frac{\pi}{8} - 2 \right) + \gamma z \right\}$$
 (2.4.30)

したがって、粘土の場合、単位層厚当りの杭に作用する x 方向の外力 p は次式 のように得られる.

$$p = p_{BB'} - D_2 \left\{ \sigma_x \right\}_{x=0}$$

= $c \left\{ D_1 \left(3 \log \frac{D_1}{D_2} + \frac{D_1 - D_2}{D_2} \tan \frac{\pi}{8} \right) - 2 \left(D_1 - D_2 \right) \right\} + \gamma z \left(D_1 - D_2 \right)$
(2.4.31)

2.3.2 塑性流動埋論

前項の塑性流動理論と同様, 図-2.4.7に示すように, 2本の杭の中心間にお ける土塊ACDFF'D' **d**

C'A' を考える. この 土塊が杭間で一定速 度 v1の塑性流動を生 じているとき,杭に 作用する外力を算定 する. その際,つぎ の仮定を設ける. a)土塊AEBB'E' A'において,塑 性流動が生じる. また,EBB'E' 部分における流動 方向は常に求心的 に0点に向う. た

だし、 \overline{EB} および $\overline{E'B'}$ はx方向と

π/4の角をなす。
 b)杭周辺地盤は定

常流動状態にあり。 Bingham 流動体として、降伏応力 τ_y および塑性粘度 η_v により表わされる.

- c) 地盤は深さ方向に一様に流動する.
- d) 半径rにおける微少部分GHH'G'によってGH およびGH'に生ずる応力は, 土圧と粘性力の合力である. この粘性力は,幅GG'の底面滑らかなチャンネル に塑性流動が生ずると考えて,求めることができる.

e) 杭は剛体とする.

まず,図-2.4.8 に示すよう に,幅B,長さL,単位深さの チャンネルを考え,底面は滑ら かでフリクションが作用しない ものとする.このようなチャン ネル内における Bingham 流動体 の定常流動を取扱う.⁷

いま, 圧力 4p' が加えられた とき, チャンネル中心軸より b/2 の位置におけるせん断 応力 τ は力の釣合により, 次式 のように得られる.

図-2.4.8 底面滑らかなチャンネル内 の塑性流動

(2.4.32)

$$\tau = \frac{b \cdot \Delta p'}{2L}$$

側壁におけるせん断応力 Tuは,次式で表わされる.

$$\tau_w = \frac{B \cdot \Delta p'}{2L} \tag{2.4.33}$$

式(2.4.32)より、次式が成立する.

$$\mathrm{d} b = \frac{2L}{\Delta p'} \,\mathrm{d} \tau \qquad (2.4.34)$$

チャンネル中心軸より b/2の位置における流速を v とすれば, Bingham 流動だから, 次式が与えられる.

$$-2 \frac{\mathrm{d}v}{\mathrm{d}b} = \frac{1}{\eta_p} (\tau - \tau_y)$$
 (2.4.35)

式(2.4.35)を積分し,式(2.4.34)により変数変換する.また,側壁において $\tau = \tau_w$, v = 0 と仮定すれば,次式が導かれる.

$$v = \frac{L}{\eta_{p} \cdot \Delta p'} \int_{\tau}^{\tau_{x}} (\tau - \tau_{y}) d\tau \qquad (2.4.36)$$

図 - 2.4.8 に示すように、栓の速度を b_b とすれば、 $b/2 = b_b/2$ において $\tau = \tau_y$ だから、次式が成立する.

$$v_{0} = \frac{L}{\eta_{p} \cdot \Delta p'} \int_{\tau_{y}}^{\tau_{w}} (\tau - \tau_{y}) d\tau = \frac{L}{2\eta_{p} \cdot \Delta p'} (\tau_{w} - \tau_{y})^{2}$$
(2.4.37)

式(2.4.33)より、4p'を求めて式(2.4.37)に代入すれば、次式が得られる。

$$v_{0} = \frac{B}{4 \eta_{p} \tau_{w}} (\tau_{w} - \tau_{y})^{2}$$
 (2.4.38)

式(2.4.38)より、 Tw は次式で表わされる。

$$\tau_{w} = \frac{1}{B} \left\{ 2\eta_{p} v_{0} + B\tau_{y} \pm \sqrt{(2\eta_{p} v_{0} + B\tau_{y})^{2} - B^{2} \tau_{y}^{2}} \right\}$$
(2.4.39)

式(2.4.39)における複号は正をとる. なぜなら, もし複合が負ならば, tyが0 に近づくとき必ずtwも0に近づき不合理となるからである.

結局, 側壁に作用する全せん断力 po は次式で表わされる.

 $p_0 = 2L\tau_w$

$$= \frac{2L}{B} \left\{ 2\eta_{p} v_{0} + B\tau_{y} + \sqrt{(2\eta_{p} v_{0} + B\tau_{y})^{2} - B^{2} \tau_{y}^{2}} \right\}$$
(2.4.40)

そこで、図2.4.7における流動する土塊EBB' E'において、仮定d)のもとに 式(2.4.40)を利用すれば、微小部分GHH' G'により面GH およびG'H'に生ず る粘性力が求められる.この微小部分の栓速度を v_p ,面GH およびG'H' に作用 するせん断力の x 方向成分を dp_1 とする.式(2.4.40)において、 $p_0 = \sqrt{2} dp_1$, $B = \pi r/2$, L = dr, $v_0 = v_p$ の記号の置換えができるので、次式が得られる.

$$d p_{1} = \frac{\sqrt{2}}{\pi r} dr \left\{ 4 \eta_{p} v_{p} + \pi r \tau_{y} + \sqrt{(4 \eta_{p} v_{p} + \pi r \tau_{y})^{2} - (\pi r \tau_{y})^{2}} \right\} (2.4.41)$$

つぎに、栓速度 v_p を求める式を誘導する. 図 – 2.4.9 に示すように、土塊が BB' 面に平均速度 v_1 で流入する. また、GG' 面および EE' 面における平均速度を

図-2.4.9 杭周辺地盤の塑性流動速度

それぞれいおよび v2 とする、 連続条件より、 次式が成立する.

$$D_1 v_1 = \frac{\pi r}{2} v_r = D_2 v_2 \qquad (2.4.42)$$

したがって,

$$v_r = \frac{2D_1}{\pi r} v_1$$
 (2.4.43)

$$v_2 = \frac{D_1}{D_2} v_1$$
 (2.4.44)

式(2.4.41)において, 栓速度 v, を式(2.4.43)の v, で近似すれば, 次式が得 られる.

$$dp_{1} = \sqrt{2} \left[\frac{8 \eta_{p} v_{1} D_{1}}{(\pi r)^{2}} + \tau_{y} + \sqrt{\left\{ \frac{8 \eta_{p} v_{1} D_{1}}{(\pi r)^{2}} + \tau_{y} \right\}^{2} - \tau_{y}^{2}} \right] dr \quad (2.4.45)$$

したがって、面 \overline{EB} および $\overline{E'B'}$ に作用する粘性力(せん断力)のx方向成分 p_1 は、式(2.4.45)を積分することにより、以下のように得られる.

$$p_{1} = \int_{\frac{D_{2}}{\sqrt{2}}}^{\frac{D_{1}}{\sqrt{2}}} \frac{1}{\sqrt{2}} \left\{ m \cdot \frac{1}{r^{2}} + 2\tau_{y} + 2\sqrt{m\tau_{y}} \cdot \frac{\sqrt{r^{2} + \frac{m}{4\tau_{y}}}}{r^{2}} \right\} dr \qquad (2.4.46)$$

ここに、 $m = \frac{16}{\pi^2} \eta_p v_1 D_1$ しかるに、一般に、次式の不定積分が成立する.⁸⁾

$$\int \frac{\sqrt{r^2 + A}}{r^2} \, \mathrm{d} r = -\frac{\sqrt{r^2 + A}}{r} + \log \left(r + \sqrt{r^2 + A} \right) + C \qquad (2.4.47)$$

したがって,式(2.4.47)を参照して,式(2.4.46)の積分を実行すれば,次式 が得られる.

$$p_{1} = \tau_{y} (D_{1} - D_{2}) - m (\bar{D_{1}} - \bar{D_{2}}) + \sqrt{2m\tau_{y}} \left\{ \sqrt{1 + \frac{m}{2\tau_{y}D_{2}^{2}}} - \sqrt{1 + \frac{m}{2\tau_{y}D_{1}^{2}}} \right\}$$

$$+ \log \frac{D_{1}(1 + \sqrt{1 + \frac{m}{2\tau_{y}D_{1}^{2}}})}{D_{2}(1 + \sqrt{1 + \frac{m}{2\tau_{y}D_{1}^{2}}})} \}$$
 (2.4.48)

また、面 \overline{EB} および $\overline{E'B'}$ に作用する土圧合力の x 方向成分を h_2 とする。土圧は 主働土圧であると考えると、次式が成立する。

$$p_{a} = (\gamma z - 2 c) (D_{1} - D_{2}) \qquad (2.4.49)$$

ここに、 z は地表からの深さ、 γ は土の単位体積重量、 c は土の粘着力である. ただし、この場合粘着力 c は降伏応力 τy に近似的に等しいと考えてもよいと思われる.

つぎに、面AE およびA'E' に作用するせん断力 p_3 を求める。式(2.4.40)に おいて、 $p_0 = p_3$ 、 $B = D_2$ 、 $L = \{(D_1 - D_2)/2\}$ ・ $tan(\pi/8)$ 、 $v_0 = v_2$ と記号を 置換え、式(2.4.44)を用いると、次式が得られる。

$$p_{3} = (\sqrt{2} - 1) (D_{1} - D_{2}) \left\{ \frac{\pi^{2} m}{8 D_{2}^{2}} + \tau_{y} + \sqrt{\left(\frac{\pi^{2} m}{8 D_{2}^{2}}\right)^{2} + \frac{\pi^{2} m \tau_{y}}{4 D_{2}^{2}}} \right\} (2.4.50)$$

したがって、単位層厚当りの杭に作用する x 方向の外力 p は p_1 , p_2 および p_3 の和として得られる。すなわち、

$$p = p_1 + p_2 + p_3$$

$$= \sqrt{2 m \tau_y} \left\{ \sqrt{1 + \frac{m}{2 \tau_y D_2^2}} - \sqrt{1 + \frac{m}{2 \tau_y D_2^2}} + \log \frac{D_1 (1 + \sqrt{1 + \frac{m}{2 \tau_y D_1^2}})}{D_2 (1 + \sqrt{1 + \frac{m}{2 \tau_y D_2^2}})} \right\}$$
$$+ (D_1 - D_2) \left\{ \frac{(\sqrt{2} - 1) \pi^2 m}{8 D_2^2} + (\sqrt{2} - 1) \sqrt{\left(\frac{\pi^2 m}{8 D_2^2}\right)^2 + \frac{\pi^2 m \tau_y}{4 D_2^2}} + \frac{m}{D_1 D_2} \right\}$$

 $+\sqrt{2} \tau_{y} - 2 c + \gamma z \}$ (2.4.51)

式(2.4.51)を層厚方向に積分すれば、地盤の塑性流動により杭に作用する外力 の全合力が得られる。

第3節 算定理論の検討

3.1 理論式の特性

第2編第4章第2節において誘導された,塑性変形地盤中の杭に作用する単位 層厚当りの外力pをまとめて表-2.4.1に示す,塑性変形理論および塑性流動理論の両理

- 200 -

	$\varphi \neq 0$	$c D_{1}\left(\frac{D_{1}}{D_{2}}\right)^{\left(\frac{N_{\varphi}^{\frac{3}{2}}\tan + N_{\varphi} - 1}{D_{2}}\right)} \left[\frac{1}{N_{\varphi}\tan\varphi} \left\{\exp\left(\frac{D_{1} - D_{2}}{D_{2}} N_{\varphi} \tan\varphi \tan\left(\frac{\pi}{8} - \frac{\varphi}{4}\right)\right) - 2N_{\varphi}^{\frac{1}{2}}\tan\varphi - 1\right\} + \frac{2N_{\varphi}\tan\varphi + 3N_{\varphi}^{\frac{1}{2}}}{N_{\varphi}^{\frac{3}{2}}\tan\varphi + N_{\varphi} - 1}\right]$
塑	$c \neq 0$	
性変形		$-c\left\{D_{1}\frac{2N_{\varphi}\tan\varphi+3N_{\varphi}^{\frac{1}{2}}}{N_{\varphi}^{\frac{3}{2}}\tan\varphi+N_{\varphi}-1}-2D_{2}N_{\varphi}^{-\frac{1}{2}}\right\}+\frac{\gamma z}{N_{\varphi}}\left\{D_{1}\left(\frac{D_{1}}{D_{2}}\right)^{\left(\frac{N_{\varphi}^{\frac{1}{2}}\tan\varphi+N_{\varphi}-1\right)}{N_{\varphi}}}\cdot\exp\left(\frac{D_{1}-D_{2}}{D_{2}}N_{\varphi}\tan\varphi\tan\left(\frac{\pi}{8}-\frac{\varphi}{4}\right)\right)-D_{2}\right\}$
理	$\varphi \neq 0$	3
論	c = 0	$\frac{\gamma z}{N} \left\{ D_1 \left(\frac{D_1}{D_2} \right)^{\left(N_{\varphi}^2 \tan \varphi + N_{\varphi} - 1 \right)} \cdot \exp \left(\frac{D_1 - D_2}{D_2} N_{\varphi} \tan \varphi \tan \left(\frac{\pi}{8} - \frac{\varphi}{A} \right) \right) - D_2 \right\}$
	(砂質土)	$\Gamma_{\varphi} = D_2$
	$\varphi = 0$	
	$c \neq 0$	$c \left\{ D_1 \left(3 \log \frac{D_1}{D_2} + \frac{D_1 - D_2}{D_2} \tan \frac{\pi}{8} \right) - 2 \left(D_1 - D_2 \right) \right\} + \gamma z \left(D_1 - D_2 \right)$
	(粘性土)	
塑性流動理論		$\sqrt{2m\tau_{y}}\left\{\sqrt{1+\frac{m}{2\tau_{y}D_{2}^{2}}}-\sqrt{1+\frac{m}{2\tau_{y}D_{1}^{2}}}+\log\frac{D_{1}(1+\sqrt{1+\frac{m}{2\tau_{y}D_{1}^{2}}})}{D_{2}(1+\sqrt{1+\frac{m}{2\tau_{y}D_{2}^{2}}})}\right\}+(D_{1}-D_{2})\left\{\frac{(\sqrt{2}-1)\pi^{2}m}{8D_{2}^{2}}-\frac{1}{2\pi}\right\}$
		$+(\sqrt{2}-1)\sqrt{\left(\frac{\pi^{2}m}{8D_{2}^{2}}\right)^{2}+\frac{\pi^{2}m\tau_{y}}{4D_{2}^{2}}}+\frac{m}{D_{1}D_{2}}+\sqrt{2}\tau_{y}-2c+\gamma z\}$ $m=16 \eta_{p} v_{1} D_{1}/\pi^{2}$

表 - 2.4.1 塑性変形地盤中の杭に作用する外力の算定理論

- 201 -

論式とも多くのパラメーターを含む複雑な式になっている。そこで、個々のパラメーター による影響を調べ、理論式の特性を検討する。両理論式に含まれるパラメーターのうち共通 のパラメーターは、土の単位体積重量 γ 、地表面からの深さz、杭間隔 D_1 、杭間 隔と杭径の差 D_2 である。そのほか、地盤の力学特性を表わすパラメーターとして、 塑性変形理論では内部摩擦角 φ および粘着力 c がある。また、塑性流動理論では 降伏応力 τ_v (=c)、塑性粘度 η および地盤の流動速度 v_1 がある。

これらのパラメータのうちγおよびzに対しては、いずれの理論式もγあるい はzに関する1次式になっている。したがって、外力ρは、γあるいはzの増加 に対して線形関係で増加する。一方、D1およびD2による影響、および地盤の力 学特性による影響は複雑であり、また非常に重要である。そこで、これらの点に 着目して理論式の特性を検討する。

その際、 D_1 および D_2 による影響の検討に対するパラメーターとして、 D_2/D_1 および杭径($D_1 - D_2$)を選ぶ、また、地盤の力学特性による影響の検討に対 するパラメーターとして、塑性変形理論では φ および c を選び、塑性流動理論 では τ_y および($v_1 \cdot \eta_p$)を選ぶ、 $(v_1 \cdot \eta_p)$ をパラメーターに選んだ埋由は、塑 性流動理論の式中では、 v_1 および η_p が必ず積の形で含まれていることによる。

まず, 塑性変形理論による理論式の特性を図-2.4.10 a), b), 図-2.4. 11 a), b)および図-2.4.12 に示す. これらの図は, すべて杭に作用する単 位層厚当りの外力 p と D₂ / D₁ の関係として示されている.

一般に、杭径を一定とすると、 $p \ i D_2 / D_1$ の減少とともに増加し、 D_2 / D_1 が小 さくなると飛躍的に増大することがこれらの図から分かる. すなわち、相対的に 杭間隔が狭くなるとともに、 pが増大する. 図 – 2.4.10 a) およびb) は粘着 力 cを一定にして内部摩擦角 φ の影響を示し、図 – 2.4.11 a) およびb) は φ を一定にして c の影響を示したものである. pが φ あるいは c の増加とともに増 大する様子が分かる. 杭径および杭間隔が一定の場合、 φ あるいは c の増加とと もに $p \ i$ 増大する. この場合、 c の増加に対しては $p \ i$ 線形的に増大するが、 φ の増加に対する p の増加の割合いはより大である. 図 – 2.4.12 は杭径 $(D_1 - D_2)$ の影響を示したものである. $p \ i$ 杭径の増大とともに増加する. この関係は、 D_2 / D_1 が一定の場合線形的である.

つぎに, 塑性流動理論による理論式の特性を図-2,4,13, 図-2.4.14, およ

D₂ / D₁

b) $c = 0.1 \ kg / cm^2$ 図 - 2.4.10 塑性変形理論式の特性(内部摩擦角 φ の影響)

a)
$$\varphi = \mathbf{0}^{\circ}$$

b) $\varphi = 10^{\circ}$

図-2.4.11 塑性変形理論式の特性(粘着力 c の影響)

図 - 2.4.13 塑性流動理論式の特性(流動速度と塑性粘度の積 (v₁・η)の影響)

図-2.4.14 塑性流動理論式の特性(降伏応力 フyの影響)

び図-2.4.15 に示す. これらの図もまた, すべて杭に作用する単位層厚当りの 外力 p と D₂ / D₁ の関係として示されている.

塑性変形理論と同様に、一般に、杭径を一定とするとpは D_2/D_1 の減少とともに 増加し、 D_2/D_1 が小さくなると飛躍的に増大することがこれらの図から分かる. 図-2.4.13 は降伏応力 τ_y を一定にして地盤の流動速度と塑性粘度の積($v_1 \cdot \eta_p$) の影響を示し、図-2.4.14 は($v_1 \cdot \eta_p$)を一定にして τ_y の影響を示したもので ある、これらの図から、pは($v_1 \cdot \eta_p$)の増加とともに増大するが、 τ_y の変化 に対してほとんど変化しないことが分かる、 τ_y の影響をさらに詳細に見れば、 τ_y の増加に対して、 D_2/D_1 が小さいときはpは増加する、しかし、 D_2/D_1 が大 きくなると、 τ_y の増加に対して p は減少する. これは、塑性流動理論では粘性力 と土圧の合力として杭に作用する外力を求めていることに起因する. なぜなら、 τ_y (あるいは c)が増加すると粘性力は増加するが、土圧力は減少するからであ る. 結局、 D_2/D_1 が小さいときには粘性力による増加が土圧力の減少よりも上ま わり、 D_2/D_1 が大きいときには土圧力の減少の方がきいてくる. いずれにしても、 塑性流動理論においては p は τ_y の影響をほとんど受けず、 $(v_1 \cdot \eta_p)$ のみによって 大きく影響される. 図-2.4.15 は杭径 $(D_1 - D_2)$ の影響を示したものである. pは杭径の増大とともに増加する. この関係は D_2/D_1 が一定の場合線形的である.

図一 2.4.15 塑性流動理論式の特性(杭径($D_1 - D_2$)の影響)
3.2 実測結果との比較

地すべり防止杭において得られた杭に作用する外力の測定値と理論値を比較す ることによって,塑性変形地盤中の杭に作用する外力の算定理論の妥当性を検討 する.

実測値としては,新潟県の典型的な第3紀層地すべり地において得られた実測 結果⁹⁾¹⁰⁾を利用する.実測地は,新潟県牧村片町地すべり地,同清里村東戸野地 すべり地および同安塚町上山地すべり地である.これらの地すべりは,地表から 数mにおける泥岩片の混入した粘土層をすべり土塊とする緩慢なクリープ性の地 すべりである.使用された杭は,片町地すべり地では長さ13m,外径300mm, 厚さ60mmのRC杭,その他の地すべり地では外径318.5mm,肉厚6.9mmの鋼管 杭である.ともに4m間隔で2列に千鳥打ちされ,前後列間隔は2mである.向 い合って杭に貼付されたひずみゲージにより杭に生ずるひずみが測定され,その 結果から杭に作用する外力が解析されている.ここで,実測結果と理論値の比較 検討の対象とする杭は,片町地すべり地B杭,東戸野地すべり地No.2杭,同No. 3杭,上山地すべり地No.1杭および同No.2杭の計5本の杭である.これらの杭 の周辺地盤の状態および実測された杭に作用する外力の分布を図-2.4.16a)~e) に点線で示す.

一方,理論値を求める際に用いる土の定数を表-2.4.2に示す.これらのうち,塑 性変形理論に用いる地盤の定数 c および φ は, 片町地すべり地のみ土質試験から 求められた.その他の地すべり地では, これらの定数は直接測定されていないの で, φ は 0 とし, c は標準貫入試験より求められた N 値から次式を用いて算出し た.¹¹⁾

$$c = \frac{N}{1.6}$$
 (t/m²) (2.4.52)

また, 塑性流動理論に用いる地盤の定数 *Ty* および η, はともに実測されていない. そこで, これらの値を推測するため, 次式で表わされる駒村の式¹²⁾ を利用した.

$$\tau_{y} = c + \sigma \tan \varphi$$

$$v_{1} \cdot \eta_{p} = \gamma (H_{0}^{2} - H^{2})(\tan \varphi - \tan \theta) \cos^{3} \theta + 2c(H_{0} - H) \cos \theta$$

$$\left. \left(2.4.53 \right) \right.$$

- 208 -

杭名	片町地すべり地	上山地	しすべり地	東戸野地 すべり地			
地盤定数	B 杭	No.1 杭	No. 2 杭	No.2 杭	No.3 杭		
単位体積重量	1. 9	1. 9	1. 9	1. 9	1. 9		
内部摩擦角 φ ^{degree}	2	0	0	0	0		
粘 着 力 c kg/cm [*]	0. 25	0. 41	0. 41	0.44	0. 51		
降伏応力 τ_y ^{kg/cm}	0.17~0.29	$0.17 \sim 0.41$	0.17~0.41	0.17~0.44	0.17~0.51		
塑性粘度と 流動速度の積 v ₁ ・η _p ^k g/cm	$\begin{array}{c} 3.8 \times 10^{-7} \sim \\ 6.1 \times 10^{-1} \end{array}$	$3.8 \times 10^{-7} \sim 2.6 \times 10^{1}$	$3.8 \times 10^{-7} \sim 2.6 \times 10^{1}$	$3.8 \times 10^{-7} \sim 6.0 \times 10^{1}$	$3.8 \times 10^{-7} \sim 5.5 \times 10^{1}$		

表 - 2.4.2 地盤定数

ここに、 σ は垂直応力、Ha は鉛直方向の地すべり土層厚、Hは鉛直方向の地表からの深さ、 θ は斜面の傾斜である、式(2.4.53)の誘導過程において種々仮定を設けており問題点もあるので、この式から適格な地盤の定数が得られるとは限らない。そこで、計算に用いる τ_y および η_p は、式(2.4.53)から得られる値を最大値とし、最小値として仲野¹³により第3紀層の地すべり土に対するベーン試験から実験的に得られた最小の値を用いて、表-2.4。2に表示されている。

しかるに,前項3.1において明らかになったように,塑性流動理論による理論 値はとくに(v₁・η)の値により大きな影響を受ける.したがって,上記で推定 された地盤定数を用いて得られた理論値の信頼性が低いことが予想され,塑性流 動理論による理論値と実測値の比較はオーダー的な検討に限られると思われる.

以上のように得られた土の定数を用いて算定された杭に作用する外力の理論 が、実測値とともに図-2.4.16 a)~e)に示されている、塑性変形理論は実 線、塑性流動理論は斜線部分で示されている。また、比較のため、Hennes 式お よび土研式による結果もそれぞれ一点鎖線および二点鎖線により同時に示されている。

図-2.4。16 a) ~ e) から分るように, 杭に作用する実測値の杭頭付近に病束 反力が働く場合, あるいはすべり面上1~2m付近に外力が集中し三角形 の外力分布になる場合が見られる. これは杭の変形の影響および地すべり 土塊が深さ方向に一様に移動しないことの影響が現われていると考え

図-2.4.16a) 片町地すべり地B杭

- 210 -

図-2.4.16 b) 上山地すべり地No.1 杭

図-2.4.16 c)上山地すべり地No.2杭

- 212 -

図-2.4.16 d) 東戸野地すべり地No.2 杭

- 213 -

e)東戸野地すべり地No.3杭

図-2.4.16 杭周辺地盤の状態および杭に作用する外力分布の実測値と理論値の比較

られる。一方,理論値はすべて台形分布になっている。これは,理論式において 杭が完全に剛と仮定されているからである。

っきに、理論値と実測値を定量的に比較する。実測値に比して、Hennes 式で は小さい値、土研式では過大な値をとる。塑性変形理論および塑性流動理論によ る値は、いずれもHennes式と土研式の間の値をとり、実測値とほぼ同じオーダー の値が得られている。このことは、Hennes 式では杭間の土の圧縮およびせん断 変形が考慮されていないこと、土研式では極限の値を求めていることから推察し て、当然の結果であると思われる。前述のように塑性流動理論における定数は概 略値しか得られなかったので、これ以上塑性流動理論による理論値を定量的に検 討してもあまり意味がないと考えられる。ただし、この理論値の範囲内に実測値 が含まれているので、土の定数がある程度精確に得られる場合には、塑性流動理 論の妥当性がさらに詳細に検討され、その有用性があらわれる可能性は残されて いる。

つぎに、それぞれの杭について検討する。図-2.4.17は、塑性地盤中の杭に 作用する全合力の実測値と理論値を比較したものである。理論値としては、塑性 変形理論、Hennes 式および土研式を対象としている。一般に、土研式はオーダ ー的に過大な値を与えている。

片町B杭では、杭に作用する全合力の実測値はHennes 式に最も近似している. しかし、図-2.4.16 a)の分布形から分かるように実測値の最大値はHennes 式 による値より相当大きい.また、理論値は杭が変形しないと仮定して得られてい るが、実測値には杭の変形の影響があり、とくにすべり面付近および杭に拘束反 力が働く位置に近い部分では非常に小さい値になっている.さらに、この杭はRC 杭で曲げ強さが小さい(実測に用いられた鋼管杭の約1 / 2.5)ので、杭周辺地 盤が鋼管杭と同様な塑性状態になる以前に杭に曲げ破壊が生じ杭に作用する外力 が小さくなっていることが考えられる.以上の理由により、片町B杭に作用する 全合力はHennes 式による値に見かけ上近似したものと推測される.したがって、 この場合においても、Hennes 式は基本的に過小な値を算定していると思われる.

上山No.2 杭および東戸野No.2 杭では,図2.4.16 c), d)および図-2.4. 17から分かるように,塑性変形理論による全合力および分布形においてともに実 測値で近似しており, Hennes 式による値は小さく見積られている.

図-2.4.17 塑性地盤中の杭に作用する全合力の実測値と理論値の比較

上山No.1 杭および東戸野No.3 杭では,図-2。4.16 b), e) および図-2. 4.17 から分かるように,全合力の実測値は塑性変形理論およびHennes 式による 値の間にあり,ともにある程度近似している。しかし,分布形の実測値と理論値 はかなり異なっている.この差異は,これらの杭の実測値では杭頭付近の拘束力 が作用しておらず,杭の変形の影響が大きくあらわれていること。および理論値 では杭は剛なものと仮定しその変形を考慮していないことに起因するものと思わ れる.

以上の議論を総合すると、以下のように考えられる. 塑性変形理論は杭が剛な ものとし、杭周辺にのみ塑性状態があらわれるという仮定に立脚している. これ らの仮定が成立せず、杭の変形の影響が大きく、仮定した塑性状態が生ずる以前 に杭に曲げ破壊が生ずる場合には、実測値は塑性変形理論値より小さくなり、見かけ上 Hennes 式に近似することがある(片町B杭の場合). また、杭頭付近に拘束力 が生じない場合には、杭の変形の影響が大きく、とくに杭に作用する外力の分布 形が理論値と異なる(上山No.1杭および東戸野No.3 杭の場合). しかし、杭 頭付近に拘束力が生じ理論の仮定に近づくと、杭に作用する全合力の大きさおよ び外力の分布形がともに塑性変形理論による値に近似する(上山No.2杭および 東戸野No.2 杭の場合)ように思われる. 結局。杭頭が拘束されているという条 件のもとに、塑性変形地盤中の杭に作用する外力が塑性変形理論によって近似的 に算定できるものと考えられる.

第4節 杭を含む斜面の安定解析法の検討

一般に, 杭を含む斜面安定問題においては, 図-2.4.18 a) およびb) に示 すように, 斜面の安定と杭の安定に関する2種の検討を行なわなければならない. 斜面の安定に関しては, すべりモーメントと低抗モーメントの比較により, その 安定が検討される. その際, 抵抗モーメントはすべり面に沿うせん断力および杭 反力によるモーメントの和と考えられる. 一方, 杭の安定に関しては, すべり面 上の土塊により杭に作用する外力が杭に水平に作用すると考え, すべり面を地表 面と仮定して, 水平力を受ける杭の解析法(たとえば, Y.L.Changの式)を適 用することによって, その安定が検討される.

一方,以上のように斜面と杭の安定解析を別個に行なわず,杭に作用する外力 を未知数として斜面の安定解析を行ない,得られた杭に作用する外力に対して杭 の安定を検討する方法が考えられる。この方法は一見非常に巧妙な方法であると 考えられる。しかし,すでに第2編第4章第2節2.2でふれたように,この方法 においては、斜面の安定解析で不足する抵抗力から杭に作用する外力を単純に逆

- 217 -

算している.したがって,杭列 と周辺地盤の相互作用という立 場から,杭に作用する外力の発 生機構が検討されていない.こ のような場合,斜面の平衡が保 てなくなりはじめる状態におい て,必ずしも杭に所要の反力が 発生するとは限らず,また杭に 所要の反力が生ずるときにはす でに斜面の平衡が破れ,地すべ りが相当進行しているようなこ とになる可能性がある.以上の 理由により,この方法は十分信 頼に足る方法とは思われない。

したがって,以下では,塑性 地盤中の杭に作用する外力を既 知として,斜面の安定および杭 の安定を別個に解析する方法に ついて検討する.まず,斜面の 安定に関する解析法については, 以下に示すように種々の考え方 がある.

I)図-2.4.18a)において、
 土塊ABCAに作用するモ
 ーメントの釣合いにより、
 斜面の安定解析を行なう。
 a)AB面には杭反力のみ

作用すると考える. b) A B 面には杭反力およ び杭背面に作用する受働

図-2.4.18 杭を含む斜面の安定解析

土圧を考える.

□)図 - 2.4.18 a) において, 土塊DBCADに作用するモーメントの釣合いにより, 斜面の安定解析を行なう.

a) A 点において杭のせん断抵抗力を考える.

b) A B 面に作用する杭反力を考慮する.

I − a)の方法は, A B 面に杭反力のみ作用すると考えているので, A B 面の 抵抗力を過小に見積ることになる. なぜなら,杭背面の土圧を無視しているから である.

Ⅰ-b)の方法は、AB面に杭反力および杭背面の受働土圧を考慮しているが、 杭背面土圧の発生機構は複雑であり、正確に予想しがたい.また、この土圧とし てランキンの受働土圧を用いると過大に見積る恐れがある.

Ⅱ - a)の方法は、すべり面DACを境にして上下の土塊が剛体あるいはそれ に近い状態の場合に適用できると思われる、したがって、岩盤地帯の杭を含む斜 面安定問題に対してのみ、この方法が適用可能と思われる。

I-b)の方法は、抵抗モーメントとして、すべり面DACに沿うせん断抵抗 力およびAB面の杭反力によるモーメントの和をとることになる.このとき、A 点からD点までのすべり面として杭がない場合のすべり面を用いることに対する 妥当性が問題になる.以下、この点に関して検討する.杭列は矢板などと違い間 隔をあけて設置されるので、杭列前後の土塊の変形の連続性が完全に断たれるこ とはないと考えられる.また、斜面が杭のすべり防止効果によって安定する場合 には、杭周辺の土塊だけが塑性状態になったとき、杭に発生する反力の効果によ って斜面が安定すればよい.したがって、杭と周辺地盤はほぼ一体として挙動し、 杭背面土塊のせん断抵抗力が期待できる.以上の理由によって、杭背面土塊中の ある面に沿うせん断抵抗力を考慮してもよいと考えられる.この面として、杭が ない場合のすべり面、言い換えれば杭前面のすべり面CAの延長のAD面をとっ ても、大きな誤差を伴なわず大局的に認めうると考えられる.したがって、斜面 の安定を検討する方法としてこのI-b)の方法が最も実用に適した方法である と考える.

つぎに、杭の安定に関する解析法については、通常Y.L. Changの式が適用 される。その際、杭頭の固定条件をどのようにするかが重要な問題である。なぜ なら,第2編第4章第3節3.2の実測結果から分かるように,地盤条件によりす べり土塊中の杭の頭部に拘束反力が作用する場合と作用しない場合があるからで ある.一般に,杭頭を拘束する方が拘束しない場合よりより大きな外力に抵抗す ることができる.したがって,杭により大きなすべり防止効果を発揮させるため には,杭頭固定の条件の方が望ましいことになる.この杭頭固定の条件を確実に するためには,たとえば杭列の頭部を連結工により連絡し,この連結工をテンシ ョンアンカーで固定する工法などが考えられる.

以上の検討から明らかなように、斜面および杭の安定解析において、ともに塑 性変形地盤中の杭に作用する外力の算定がキーポイントであり、この外力を正確 に予測することが重要である。なぜなら、斜面の安定と杭の安定に関するこの外 力の効果は相反するものであるからである、すなわち、もしこの外力を実際より 大きく見積った場合、杭の安定に関しては安全側であるけれども、斜面の安定に 関しては危険側になる。反対に、この外力を実際より小さく見積った場合、斜 面の安定に関しては安全側であるけれども、杭の安定に関しては危険側になる。 このことが、杭を含む斜面安定の問題を複雑にし、取扱い難くしている要因であ る。結局、杭を含む斜面の安定解析においては、斜面の安定および杭の安定がと もに満足されてはじめて、斜面全体としての安定を保つことが出来るということ を肝に銘じておくことが肝要である。

第5節 斜面安定における杭のすべり防止効果

第2編第4章第5節では、斜面安定における杭のすべり防止効果を実例により 検討する、実例としては、大阪港第1号岸壁横桟橋¹⁴¹を取り上げる、この横桟橋 の構造および地盤の断面は図-2.4.19 に示す通りである、また同時に、地盤の 土質定数も図中に示されている。

横桟橋の基礎として,図示された以外の杭列が多く設置されているが,図示の ように配置されたNo.1 およびNo.2 の杭列を対象として杭のすべり防止効果を検 討する. これらの杭は径 21 cmの生松丸太杭で,摩擦杭として用いられている. No.1 杭列は,杭中心間隔 83 cmで一列に配置されている. また, No.2 杭列は,生松丸

図-2.4.19 大阪港第1号岸壁横桟橋および地盤の断面図

太杭を8本1組で直径2mの円形に配置され、これらの杭群が中心間隔4.55m で配置されている。したがって、№.2杭列では、8本1組の杭群を直径2mの 1本の杭として取扱うことにする。

まず, 杭を無視した場合の斜面の安定を円孤すべりとして検討すると, 図-2. 4.19 に示すようにO点を中心とした円孤すべり面(半径18.31 m)に対して最小の安全率が得られる. この場合の安全率は次式で表わされ. 不安定となる.

$$F_{s} = \frac{M_{r}}{M_{d}} = \frac{1967 \ t \cdot m}{2478 \ t \cdot m} = 0. \ 79 < 1. \ 0 \qquad (2.4.54)$$

っぎに、同じ円弧すべりに対して、杭のすべり防止効果を考慮した場合を考え る. この場合、杭頭は固定され、すべり面下の杭長も十分長いので、すべり面上 の土塊により杭に作用する外力を前述の塑性変形理論により求める. その結果と して得られた単位幅当りの杭の反力分布は図-2.4.20 に示される。したがって、 この反力による0点まわりの抵抗モーメントは、No.1 杭列およびNo.2 杭列に 対して、それぞれつぎのように求められる.

No.1 杭列に対して $M_{rp} = 314t \cdot m$

No.2 杭列に対して $M_{rp} = 642t \cdot m$

第2編第4章第4節で述べたII-b)の方法により,杭のすべり防止効果を考慮 して斜面の安定を検討し,安全率を求めると,以下のようになる.

i) No.1 杭列のみを考慮した場合

$$F_s = \frac{M_r}{M_d} = \frac{1967 + 314}{2478} = 0.92 < 1.0$$
 (2.4.55)

ⅱ) No.2 杭列のみを考慮した場合

$$F_s = \frac{M_r}{M_d} = \frac{1967 + 642}{2478} = 1.05 > 1.0$$
 (2.4.56)

■)No.1 およびNo.2 杭列を同時に考慮した場合

$$F_{\rm s} = \frac{M_{\rm r}}{M_{\rm d}} = \frac{1967 + 314 + 642}{2478} = 1.18 > 1.0 \qquad (2.4.57)$$

結局, No. 1およびNo.2 杭列によるすべり防止効果は, この例の場合, 安全率 にしてそれぞれ 0.13 および 0.26 となる。また, 両方の杭列による効果の重ね合 せが可能とすれば。安全率として 0.39 増加することになる. しかし, 杭を考慮 することにより最小安全率のすべり面位置は変化するので, 杭のすべり防止効果 としてはこれらの値より幾分小さくなることが予想される. いずれにしても, 斜 面安定における杭のすべり防止効果が相当大きく, 無視しえない大きさであるこ とは確認できるであろう.

第6節 結論

a) piles No.1

b) piles No.2

図-2.4.20 杭の反力分布の理論値

地盤の塑性変形に対する杭のすべり防止効果のメカニズム,塑性地盤中の杭に 作用する外力の算定法および杭を含む斜面の安定解析法について研究した.まず, 塑性変形理論および塑性流動理論を適用し,塑性地盤中の杭に作用する外力を理 論的に解析した.これらの杭に作用する外力の理論式による計算値と実測結果と を対比し。理論式の妥当性を検討した.さらに,杭を含む斜面安定問題を取り上 げ,塑性地盤中の杭に作用する外力の算定理論式を用いた斜面安定解析法を提案 し、実例に適用し,斜面安定における杭のすべり防止効果を明らかにした.

第2編第4章で得られたおもな結論を以下に列挙する。

(1) 杭間隔および周辺地盤の塑性状態を考慮して,塑性変形地盤により杭に作

用する外力の算定理論を誘導した。その際, Mohr-Coulombの破壊条件を仮定する塑性変形理論,および地盤をBingham流動体と仮定する塑性流動理論による典型的な2通りの理論解析を行なった。

(2) 塑性変形理論および塑性流動理論においてともに、杭径を一定とすると、 杭に作用する単位層厚当りの外力pは D_2 / D_1 の減少とともに増加し、 D_2 / D_1 が小さくなると飛躍的に増大する.

(3) 塑性変形理論において, 杭に作用する単位層厚当りの外力pは周辺地盤の 内部摩擦角 φ ,粘着力cあるいは杭径($D_1 - D_2$)の増大とともに増加する. 一 方,塑性流動理論において, pは周辺地盤の降伏応力 τ_y の影響をほとんど受けず, 周辺地盤の流動速度と塑性粘度の積($v_1 \cdot \eta_p$)あるいは杭径($D_1 - D_2$)の増大 とともに増加する.

(4) 塑性変形地盤により杭に作用する外力の理論値を地すべり防止杭の実 測値と比較した結果, 塑性変形理論および塑性流動理論による値は実測値と ほぼ同じオーダーの値が得られた.一方, Hennes 式はやや過小な値をとり, 土 研式は過大な値をとる.

(5) 塑性変形地盤により杭に作用する外力の大きさおよび分布は,杭頭が拘束 されているという条件のもとに,塑性変形理論によって近似的に算定できる.

(6) 杭を含む斜面安定問題においては,杭に作用する外力を既知として,斜面の安定と杭の安定に関する2種の検討を別個に行なわねばならない。斜面の安定 を検討する方法としては,第2編第4章第4節に示したⅡ-b)の方法が適当と 考えられる.また,杭の安定を検討する方法としては,水平力を受ける杭の解析 法が適用できる.

(7) 斜面安定における杭のすべり防止効果について,港湾における横桟橋背後の斜面の実例に対して検討した結果,この効果は相当大きく無視しえない大きさであることが確認された.

参考文献

- 1) 伊藤冨雄,松井保:地すべり防止杭に作用する外力の算定について,第8回 土質工学研究会発表会講演集。 pp. 543 ~ 546,1973.
- 2) 伊藤冨雄,松井保:斜面安定における杭のすべり防止効果について,第9回 上質工学研究発表会講演集, pp. 613 ~ 616, 1974.
- 3) I to T. and Matsui T.: Lateral force acting on stabilizing piles, paper submitted to Soils and Foundations, 1975.
- 4)山田剛二,渡正亮,小橋澄治:地すべり斜面崩の実態と対策,山海堂 pp. 167~183,1971.
- 5)渡正亮,中村浩之:地すべり抑止工法の設計について,地すべり、Vol.5, No.1, pp. 25 ~ 31, 1968.
- 6)谷口敏雄,藤原明敏:地すべり調査と解析,理工図書, PP,134~138, 1970
- 7) 中川鶴太郎, 神戸博太郎: レオロジー, みすず書房。 pp. 340 ~ 354, 1959
- 8) 森口繁一, 宇田川銈久。一松信: 数学公式, 岩波全書, 1956.
- 9) 福本安正:地すべり防止杭の挙動に関する研究,土質工学会論文報告集, Vol. 12, No. 2, pp. 61 ~ 73, 1972.
- 10) 福本安正:地すべり防止杭の破壊状態と反力分布について,第8回土質工学 研究発表会講演集, pp. 459 ~ 462, 1973.
- 11) たとえば、山内豊聰:土質工学,理工図書, 1970.
- 12) 駒村富士弥:地すべり粘土の可塑粘性係数について,地すべり, Vol.3, No.2, pp.1 ~ 2, 1967。
- 13) 仲野良紀:第3紀層地すべり粘土のレオロジー的性質について,土と基礎, Vol.11, No.12, pp.9~17, 1963.
- 14) 大阪市港湾局:大阪港構造物図集, 1971.

第5章 軟弱地盤中の杭に作用するネガティブフリク ションに関する研究¹⁾

第1節 総 説

近年,産業の発展に伴い,沖積層あるいは埋立地などの軟弱地盤が頻繁に利用 されている.これらの軟弱地盤が地下水汲み上げ等による地下水面低下あるいは 盛土等の重量構築物の建設などの原因により地盤沈下を生じた場合,この圧縮層 を貫いて先端が支持層に達する杭の周面には,通常下向きの摩擦力,すなわちネ ガティブフリクションが作用する.その結果,杭体の圧縮応力および杭先端伝達 荷重が増大し,杭の支持機構に多大の影響を及ぼす.最近のように,軟弱地盤地 域に長大杭が打たれる機会が多くなると,このネガティブフリクションによる被 害例も多くなってきている.

杭が軟弱層を貫いて堅い地盤に支持されている場合,杭が打設された当初は, 図ー2.5.1 a) に示すように,杭の沈下量に比して軟弱層の沈下量は小さくほと んど0 に等しい.杭と軟弱層の沈下量の差 δ は杭全長にわたって正であり,杭周 面には上向きの摩擦力,すなわちポジティブフリクション f_p が作用する.しか し,杭周辺地盤の沈下が進行するに従って,図ー2.5.1 b) に示すように,杭の 沈下量に比して軟弱層の沈下量が大きくなって,杭と軟弱層の沈下量の差 δ が部 分的に負になり,杭周面の一部には下向きの摩擦力,すなわちネガティブフリク ション f_n が作用するようになる.このネガティブフリクションは杭に対して荷 重として作用するので,杭はさらに沈下し,杭下部の周面の一部にはポジティブ フリクションが作用する.

ネガティブフリクションがポジティブフリクションに変化する点は中立点 (neutral point)と呼ばれる.この中立点は杭と地盤の相対変位がない点と考 えられる.もし、杭先端地盤および杭の剛性が非常に大きく、その上軟弱層の地 盤沈下が十分に大きい場合には、杭のほとんど全周面にネガティブフリクション が作用することになる.

一般に、杭に作用する全ネガティブフリクションの最大値 F_{nmax} は Terzaghi・ Peck の概念²⁾に基づいて次式で表現できる.

図-2.5.1 杭に作用する摩擦力

$$F_{nmax} = \psi \int_{0}^{l} f_{nmax} \, \mathrm{d}z \qquad (2.5.1)$$

ここに、ψは杭の周長、 l は圧縮層厚、 fnmax は最大杭周面摩擦力である.しか し、実際には式(2.5.1)で表わされる最大値が杭に作用する例は少ないと考え られる.このネガティブフリクション減少の主原因としては、(1)杭周辺地盤の沈 下量の不足、(2)杭の沈下、(3)杭の表面状態、(4)粘土の応力緩和、(5)群杭効果など が挙げられる.

(1)については,最大摩擦力が発生するのに必要な周辺地盤の沈下量はたかだか 1~2cmのオーダーと思われる.したがって,ネガティブフリクションを考慮する 必要があると考えられる地盤では,この(1)によって,ネガティブフリクションが その最大値に達しない場合は少ないと考えられる.

(2)については,杭先端地盤の変形によるものと杭体自身のものがあり,非常に 大きな影響を及ぼすものと思われる.

(3)については、杭材と土との間の摩擦係数が土と土とのそれより減少するため

であり, Potyondy³⁾によれば, 表-2.5.1 に示すように表面の粗な鋼杭ではせい ぜい2~3 割程度の摩擦力の减少と考えられる.また,ネガティブフリクション の低減法として,杭周面にアスファルト等をコーティングするのは, この効果を 最大限に利用しようとしているのである.

	周辺地盤	密な乾燥砂	密な湿潤砂	粘土
杭材		$\delta \nearrow \varphi$	δ/φ	c _a / c
<u>Anzi</u>	なめらか	0.54	0.64	0.50
如	粗い	0.76	0.80	0.80
	なめらか	0.76	0.80	1.00
コングリート	粗い	0.98	0.90	1.00

表-2.5.1 杭材と土との摩擦力³⁾

 δ :土と材料のせん断抵抗角, φ :土の内部摩擦角,

ca:土と材料との付着力, c:土の粘着力,

(4)については、ネガティブフリクションの経時変化における最大値のみを議論 する場合には、比較的影響が少ないと思われる。しかし、将来精度の高い算定を 行なう場合には考慮すべきものであろう。

(5)については、現在杭基礎はほとんど群杭として用いられているので、この原因は重要なものの一つと考えられる.

上記以外にも種々の原因があるが、一般的でないか比較的影響が小さいと思われる、したがって、ネガティブフリクションの発生機構を解明しその算定法を確立するためには、上記原因のうち(2)杭の沈下および(5)群杭効果によるネガティブフリクションの減少がとくに大きな要因となるので、これらについて検討することが非常に重要になってくる.

第2編第5章においては、杭の沈下および群杭効果によるネガティブフリクションの減少について、理論的実験的に検討するとともに、ネガティブフリクションの発生機構を考察し、単杭に作用するネガティブフリクションの近似的算定法を提案する.さらに、有限要素法によるネガティブフリクションの解析法を示し、その適用性について検討を加える.

第2節 既往の研究

支持杭の周辺地盤が沈下することにより杭にネガティブフリクションが作用す る現象の存在は古くから指摘²⁾され,現在まで数多くの研究^{4)~17)}が行なわれて きた結果,ネガティブフリクションの発生機構を解明するための多数の示唆的な 成果が得られている.

とくに、Terzaghi · Peck²⁾は、ネガティブフリクションの最大値は杭周面積と 平均せん断強さの積として表わされるという基本的な概念を与えた。Ahu⁴⁾は、 Terzaghi による中立点の概念にもとずいて、杭の沈下を考慮して中立点位置を求 めることによってネガティブフリクションを検討することを提案した。Bjerrum ら ^{5) 6)}は、杭と周辺地盤の相対沈下量が大きくなった状態に対して、有効応力で表 示した粘土のせん断特性によって杭周面摩擦力を求めることを提案した。すなわ ち、杭と粘土間の付着力 τ_a は杭に作用する水平方向の有効応力 σ'_h および有効応 力表示の杭周面摩擦角 φ'_a によって支配されるものとし、 σ'_h は鉛直方向の有効応 力の"に比例すると仮定して、次式を提案した。

$$\tau_a = \sigma_h \tan \varphi_a = \sigma_v \cdot K \cdot \tan \varphi_a \tag{2.5.2}$$

ここに、Kは比例定数であり、実験結果より α (= $K \cdot \tan \varphi'_a$)はほぼ一定で、 0.18~0.26の値をとる.

また、針生⁷⁾、白石⁷⁾、Habib⁸⁾、別所⁹⁾、山肩ら¹⁰⁾および渡辺ら¹¹⁾は、そ れぞれの立場から、弾性理論あるいは粘弾性理論に基づいて、杭周辺地盤のせん 断変形の釣合いにより、単杭に作用するネガティブフリクションの推定法を提案 した.しかし、いずれの場合も少なくとも杭先端の沈下を考慮していない.そこ で、沢口¹²⁾は、Ahuの考察に基づいて、杭先端の沈下を考慮した近似計算法を提 案している.この方法は杭の微小部分に作用する力の釣合いから導かれたもので あるが、実際の適用に当って数式中の定数の選び方に問題を残している.

一方,土質工学会鋼ぐい研究委員会¹³⁾¹⁴⁾は実大実験を行なった。その結果, 中立点は圧縮層厚 lに対し,上部より $0.73l \sim 0.78l$ の間でほぼ一定の位置にあ ること,およびBjerrumらによる杭周面摩擦力の算定法,すなわち式(2.5.2) が妥当であるという結論(ただし, α の値は $0.2 \sim 0.35$)から,以下のような 単杭に作用するネガティブフリクションの算定法を提案した. すなわち,中立点 位置における軸力 F_{nm} および杭先端軸力 F_{np} は次式で示される.

$$F_{nm} = \eta \cdot \psi \int_{0}^{\beta l} f_{n} dz$$

$$F_{np} = \eta \cdot \psi \int_{0}^{\delta l} f_{n} dz$$

$$f_{n} = \alpha \sigma_{v}'$$

$$(2.5.3)$$

ここに, η:先端形状による係数

- ψ:杭の周長
 β: l_a/l (≒0.8)
 δ: (2 l_a l)/l (≒0.6)
 l_a: 中立点までの深さ
- 1: 圧縮層厚
- α : K tan φ_a' (= 0.3)

しかし,その後,国鉄¹⁵⁾(武蔵野操車場)において行なわれた実大実験によると, 中立点は必ずしも一定とはならず(0.73*l*~0.9*l*以上),杭先端の地盤強度 および杭周辺地盤の沈下状況などにより著しく異なることが報告されている.

群杭に作用するネガティブフリクションの算定法は、Habibの方法⁴⁾, Terzaghi・ Peckの概念に基づいた建築学会の式¹⁶⁾, 山肩らの方法¹⁷⁾, 遠藤の方法¹⁴⁾として, それぞれ提案されている.しかし、Habibの方法および建築学会の式においては, 群杭のネガティブフリクションが単杭のそれより大きくなる場合があり、山肩ら の方法においては、単杭と群杭の接続が不明りょうで、基本的な条件を満足して いない.遠藤の方法においては、以下に示すように、これらの基本的条件は少な くとも満足されている.すなわち、等価重量負担半径 *re* は次式で表わされる.

$$r_e = \sqrt{\frac{d \cdot \overline{f_n}}{\overline{r}} + \frac{d^2}{4}}$$
(2.5.4)

ここに, d:杭の直径

*f*_n:中立点深さまでの杭周面摩擦力の平均値

?:中立点深さまでの土の平均単位体積重量

この r_e により図ー2.5.2に示すように、図式的に各杭を中心として各杭の負担 範囲と円との面積比

入を求め、この入 (≤1)を低減係数 として単杭の場合に 乗じて、各杭のネガ ティブフリクション の負担分を算出する.

以上のように,現 在杭のネガティブフ リクションの発生機 構は十分解明された とはいえず,またそ の算定法も十分解明 されたとは言いがたい.

図-2.5.2 群杭における杭の負担範囲

第3節 杭の沈下によるネガティブフリクションの減少

3.1 理論的検討

図ー2.5.3 a) に示すように、杭径をd、 圧縮層厚をl、杭先端沈下量を y_0 と するとき、杭の沈下によって生ずるネガティブフリクションの減少について理論 的に検討する.地表面から任意深さこの杭の微小部分dzを考える(図ー2.5.3 b)). 微小部分dzの周面に作用する単位面積当りのネガティブフリクションを f_{nz} , dzの沈下量をyとする.そこで、dzの周面に作用する単位面積当りのネガ ティブフリクションの減少量は、沈下量yに比例すると仮定する.これは、杭の

図-2.5.3 杭に作用するネガティブフリクション

沈下によるネガティブフリクション減少の機構において,周面摩擦力と変位の比 例関係を仮定することを意味する.この仮定の妥当性については,一般のせん断 応力-変位の関係から類推して,近似的に考えれば,容認されうると思われる. したがって,次式が成立する.

$$\psi \cdot f_{nz} \, \mathrm{d}z = \psi (f_{nzmax} - m \cdot y) \, \mathrm{d}z \tag{2.5.5}$$

ここに、 f_{nzmax} は杭が沈下しない場合の f_{nz} 、mは比例係数である.

つぎに、杭先端軸力を F_{np} 、杭が沈下しない場合のそれを F_{npmax} として、式(2.5.5)を積分すると、次式になる.

$$F_{np} = F_{npmax} - \psi \int_{0}^{l} m \cdot y \, \mathrm{d}z \qquad (2.5.6)$$

yは杭先端沈下量に杭体の圧縮量を加えたものだから,次式で与えられる.

$$y = y_0 + \frac{\psi}{EA} \int_{z}^{l} \int_{0}^{s} f_{ns} \, ds \, ds \qquad (2.5.7)$$

-232 -

ここに、Eは杭材のヤング係数、Aは杭の純断面積である。また、mは土質、土のせん断強さあるいは杭の表面状態などにより変化すると思われる。したがって、 一般にyおよびmはともにzの関数である。式(2.5.7)を式(2.5.6)に代入 すると、次式が得られる。

$$F_{np} = F_{npmax} - \psi \, y_0 \, \int_0^l m \, dz - \frac{\psi^2}{E A} \int_0^l \int_z^l \int_0^s m \cdot f_{ns} \, ds \, ds \, dz \qquad (2.5.8)$$

式(2.5.8)は相当複雑であるので取扱いがたい。そこで、簡単化のために、 mについては、圧縮層全体の平均のmをmとして一定値と考える。yについては、 杭体の圧縮量を無視して杭を剛体と考え、杭全体にわたって yo だけ沈下すると考 える。一方、杭先端地盤の支持状態は弾性支持と仮定すると、次式が成立する。

$$y_0 = F_{np} / k$$
 (2.5.9)

ここに、 k は支持地盤のばね定数である. したがって、以上の仮定を考慮すると、 式(2.5.8)は次式になる.

$$F_{np} = F_{npmax} - \overline{m} \cdot \psi \cdot l \cdot F_{np} / k \qquad (2.5.10)$$

杭の沈下による杭先端軸力の減少率をβとおくと,次式が得られる.

$$\beta = \frac{F_{np}}{F_{npmax}} = \frac{1}{1 + \overline{m} \cdot (S/k)}$$
(2.5.11)

 $\zeta \zeta \kappa, S = \psi \cdot l$.

式(2.5.11)の持つ意味を考えると、杭の沈下による杭先端軸力の減少率 β において、地盤の支持状態を表現する指標として、地盤のばね定数kと杭周面積 Sの比すなわちk/Sを用いればよいことを示している。k/Sには、地盤のばね 定数、杭径および圧縮層厚が含まれていることが特徴であり、単位はたとえば 〔kg/cd〕である。 mはネガティブフリクションの減少の程度を表わす係数である。 式(2.5.11)の誘導過程において、種々仮定を設け簡単化を行なったので、その 性質を明確にすることは出来ない。しかし、mは土質、土の平均せん断強さ、杭 の表面状態などにより影響を受けるのではないかと推察される。

図ー2.5.4 は β を縦軸, k/Sを横軸にとり, \overline{m} をパラメーターとして, 式(2.

5.11)を図示したものである. $k/S \rightarrow \infty \sigma \beta = 1$,すなわち支持地盤が剛で杭の 先端沈下が生じないときにはβが1となり、最大のネガティブフリクションが生 じる.支持地盤の圧縮性が増し、杭の先端沈下量が大になるにしたがって、 $\beta < 1$,すなわちネガティブフリクションはその最大値から減少する. 究極的に、 $k/S = 0 \sigma \beta = 0$ となり、ネガティブフリクションが発生しない. しかし、実際 には、摩擦杭においても幾分先端が支持された状態になるので、厳密には、 $\beta = 0$ の状態は存在しないと考えられる.

図 – 2.5.4 $\beta \geq k/S$ の関係

3.2 模型実験

3.2.1 実験装置および方法

図-2.5.5 に示すような装置を使用する. すなわち, 50×50×60 cmの木製

土槽(内面は摩擦軽減のためビニールを貼付)の底面にロードセルおよびカンティレバー式荷重計が取付けられ,側面には排水孔が設けられている.

実験方法は、図ー2.5.5のように、あらかじめ模型杭を実験土槽底面を貫いて

設置する。この際、各模 型杭が単杭として扱える ように, Bierbaumerの式 により杭間隔を決めた. その後,層厚5㎝の砂層 と層厚20 cmの粘土層の 互層を造り,粘土層を自 重圧密に近い状態で圧密 させ、杭にネガティブフ リクションを発生させる。 この際、砂層と粘土層の 間に口紙を敷き、粘土粒 子の砂層への混入を防ぐ. また、砂層から模型杭に 摩擦が作用しないように, 杭径より少し太い径のパ イプを用い、杭と砂が直 接触れないようにする. 模型杭は,長さ710 mm, 径16,21 および29 mm の3種の鋼管を使用する.

発生したネガティブフ リクションは,実験土槽 底面に取付けられたロー ドセルおよび剛性の異な る鋼製カンティレバー式 荷重計で測定される.ロ

ードセルの垂直変位量は約0.03 m/kgで,非常にわずかであるので,模型杭を近 似的に剛であると考えてもよいと思われる.模型地盤の表面沈下量は,実験土槽 の中央付近の4点を選んでダイアルゲージによりその経時変化を測定する.

使用した粘土試料および杭の表面状態は**表一 2.5.2** および図一 2.5.6 に示され た通りで、4 ケースについて実験を行なった.

	*	古		t K	ł		
	液性限界	塑性指数	土粒子比重	初期含水比	粒径分布	表面状態	
Case	w _L %	I _p %	G _s	w _i %			
I	50.0	23.5	2.60	95	В	さびなし	
П	48.8	22.1	2.61	95	А	さびあり	
Ш	50.0	23.5	2.60	95	В	標準砂貼付	
IV	72.0	41.0	2.65	115	С	さびあり	

表-2.5.2 粘土試料および杭の表面状態

図-2.5.6 粘土試料の粒径加積曲線

3.2.2 実験結果および考察

前項に述べたように実験を行なうと、実験開始後2週間の表面沈下量はいずれ も約4.5~6㎝に達し、杭には十分ネガティブフリクションが発生していると思 われる. 杭先端の軸力および表面沈下量の一例を図一2.5.7 に示す. したがって 2週間後の測定結果をまとめると、表一2.5.3 に示すようになる. 表一2.5.3 に おいて、 β の値は、ロードセルがほとんど変形しないと考えられるので、この場 合の杭先端軸力が F_{npmax} すなわち $k = \infty$ の場合に相当すると考えて得られたもの である. また、mは式(2.5.11)に β およびk/Sの値を代入して得られた値で ある.

図ー2.5.8 は、縦軸に β 、横軸にk/Sをとり、実験値をプロットしたもので ある。それぞれのケースについてみれば、k/Sの減少とともに β も減少する傾 向があり、理論式の傾向とほぼ一致することが分かる。Case I、II、II および IVの mの平均値はそれぞれ 0.9、1.0、1.4、および 3.2×10⁻² kg/cmである。Case

図 - 2.5.7 杭先端軸力および表面沈下量の経時変化 (Case IV)

表一2.5.3

実験結果

	くい径	荷重計	ばね定数	k / S	くい先端	くい先端	$\beta =$	m
				$\times 10^{-2}$	沈下量	軸力	F _{np}	$\times 10^{-2}$
Case	d (mm)		k(kg∕cm)	kg∕ <i>c</i> nੈ	<i>у</i> ₀ (тт)	$F_{np}(\mathbf{kg})$	F _{npmax}	kg∕ <i>cn</i> ł
	21	canti-lever	7.07	2.69	2.21	1.430	0.72	1.0
	21	load-cell	∞	∞	0	1.980	1.00	
_	16	canti-lever	6.70	3.33	1.72	1.152	0.79	0.9
		"	8.78	4.37	1.48	1.300	0.89	0.5
	"	"	13.8	6.87	0.88	1.240	0.85	1.2
	16	load-cell	~~~~	∞	0	1.460	1.00	
	29	canti-lever	8.8	2.42	1.10	0.964	0.69	1.1
	"	"	13.5	3.70	0.79	1.065	0.77	1.1
	"	"	17.5	4.81	0.67	1.170	0.85	0.9
_	"	"	20.6	5.52	0.62	1.120	0.81	1.3
П	"	"	27.8	7.63	0.46	1.286	0.93	0.6
	29	load-cell	8	∞	0	1.384	1.00	
	21	cant i-lever	20.6	8.06	0.43	0.883	0.88	1.1
	21	load-cell	~~	∞	0	0.946	1.00	
	29	cant i-l ever	10.4	2.86	1.29	1.346	0.72	1.1
	"	"	16.3	4.49	0.88	1.440	0.77	1.3
	"	"	21.4	5.87	0.69	1.478	0.79	1.4
_	"	load-cell	∞	∞	0	1.870	1.00	
Ш	16	canti-lever	6.42	3.19	1.14	0.731	0.63	1.9
	"	"	8.67	4.31	0.93	0.847	0.73	1.6
	"	"	13.3	6.60	0.73	0.975	0.84	1.3
	"	load-cell	∞	ŵ	0	1.160	1.00	
	16	cant i-lever	8.8	4.38	0.91	0.765	0.48	4.7
	"	"	13.5	6.71	0.78	1.022	0.64	3.8
	"	"	17.5	8.70	0.69	1.210	0.76	2.7
IV		"	27.8	13.83	0.55	1.430	0.90	1.5
	"	load-cell	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	1.590	1.00	

図-2.5.8 $\beta \geq k/S$ の関係

I, ⅡおよびⅢの主な相違は杭の表面状態であり、Case I, Ⅱ, Ⅲの順にスムーズか らラフになっている.したがって、杭の表面状態がラフになるとともに、 πが増 加しているということができる.一方、Case ⅡおよびⅣの相違は用いた粘土試料 であり、 πは塑性指数の大きいCase Ⅳの方が大きい.以上のことを総合すると、 杭と粘土の付着性が増すにつれて、 πが増加する傾向があると考えられる.

一般に、中立点は杭と周辺地盤の沈下量が等しい点であり、この点より上方で はネガティブフリクション、下方ではポジティブフリクションが杭に作用すると 考えられている.

しかるに、本模型実験においては、杭先端沈下量は最大2mm程度であるが、表面沈下量は4.5~6cmにも達している。また、本模型実験とほぼ同様な模型実験 において、実験土槽の一側面を強化ガラス張りにし、粘土層に標点をつけ粘土層 内部の沈下量を測定した結果¹⁸⁾を図-2.5.9 に示す。この場合に使用された粘 土は表-2.5.2 の Case W と同じ粘土である. この図より, 圧密初期では, おもに 粘土層各層の下部の方から圧密が進み, 中央部の圧密が遅れ, 時間の経過ととも に粘土層各層の上部および中央部の圧密が完了して行くのが分かる. ここで, と くに下層の粘土層の下部の沈下量に注目すれば, 表面沈下量が5 cm以下の場合で も, 最下部の層厚5 cmの粘土層に1 cm以上の圧縮量があることが分かる. したが って, 地盤沈下量が2 mm程度の位置は下層の粘土層のほぼ最下面に近いところに あると考えられる.

以上の実験結果から推察すれば、本実験における中立点すなわち地盤沈下量と

settlement (cm)

図-2.5.9 粘土層内部の沈下量

杭の沈下量の等しい点の位置は、粘土層のほぼ最下端にあると考えられる.しか し、表-2.5.3 の実測された杭先端軸力は2 mm 程度の杭の沈下によってその最大 値より約 30 %も減少している.これらの事実は、地盤と杭の沈下量の等しい点 が中立点であり、その点において摩擦力がネガティブからポジティブに変化する という中立点の概念が単純に認められないことを意味している.このことに対し て、2種の原因が考えられる.一つは、杭にネガティブフリクションが作用する ため杭のごく近傍の周辺地盤においては圧密圧力が小さく、これによる沈下量も また外周部より小さくなることである.もう一つは、写真 2.5.1 (第2編第5章 第3節に示す)からも分かるように、地盤の沈下量が大きくなると、杭周面にお いて杭と粘土の間にすべりが生じ、杭と周辺地盤の間の実質的な相対沈下量が減 少することである.

結局,中立点は,杭に作用する摩擦力がネガティブからポジティブに変化する 点,すなわち摩擦力が0の点と定義する.そして,その点においては,上述の2 原因を考慮した杭と周辺地盤の実質的な相対沈下量がないと考えることにより, 従来考えられてきた中立点の概念に一般性を持たすことができると考えられる.

本模型実験においては、周辺地盤がほぼ一様で、杭自体の圧縮性も無視できる と考えられるので、理論の仮定をほぼ満足している。しかし、実際には、周辺地 盤が複雑で、杭自体の圧縮性も無視できないと思われる。さらに、原型と模型の 相似律には触れていない。以上の点を補う意味で、つぎに、実測例について検討 する。

3.3 実測例との対比

3.3.1 実測結果

実測例として, 土質工学会鋼ぐい研究委員会¹³⁾¹⁴⁾(以下鋼ぐい委という), 国 鉄¹⁵⁾(武蔵野操車場)および Bjerrum ら⁶⁾によって行なわれた実大実験を取り上 げる. 鋼ぐい委および国鉄の実験は東京の地盤, Bjerrum らの実験はオスロの地 盤で行なわれたものである.実験に使用された杭はすべて鋼管杭であり, 鋼管杭 の仕様および最終的な実測結果は**表一 2.5.4**の上半分に示されている.また,ネガ ティブフリクションの軸力分布は**図一 2.5.10**, 図**一 2.5.11**および図**一 2.5.12**に示す.

実験者			鋼ぐい研究委員会			国鉄 (武蔵野操車場)				Bjerrum 6	
		~	い記号	0 E 43	c E 43	_c F 31	No. 1	No. 2	No. 3	No. 5	Α
<	い 長	l	<i>(m)</i>	43	43	31	39.4	43-2	40.7	21.5	30
断	面寸法等		(mm)	<u>外径 60</u> 9 先端開口).6, 肉 无端	<u>厚9.5</u> 閉口	外径 60	9.6, 肉厚	12.7 先	端閉口	外径 300, 先端閉口
地	盤沈下量		(<i>Cm</i>)	11.8	11.8	11.8	80	80	10	80	20
< 1	い頭沈下量		(CM)	4.8	5.4	7.6	18.6	6.8	6.1	39.4	3.3
く相	い頭地盤の 対 沈 下量		(<i>cm</i>)	7.0	6-4	4.2	61.4	73.2	3.9	40.6	16.7
先	端貫入量		(<i>cm</i>)	2.7	3.0	3.7	8.9	5.6	3.7	8.4	2.5
最	大軸力	F _{nm}	(t)	176	302	162	355	534	<i>2</i> 70	137	117
<	い先端軸力	Fnp	(t)	71	149	64	85	250	110	35	76
最位	大軸力測定置(上端から)	lm/l		0.74	0.73	0.78	0.79	0.80	0.78	0.79	0-83
中(立 点 位 置 上端から)	la/l		0.71	0.68	0.78	0-89	>0.9	0.77	0.73	
	先端ばね 定 数	$k \times 10^{-1}$	⁴ (kg∕cm)	2.6	5.0	1.7	1.0	4.5	3.0	0-4	2.8
い	k/S	×10	⁻² (kg∕cm)	3.2	6-0	2.9	1.3	5.4	3.8	1.0	10.8
光端	Fnpmax		(t)	490	490	250	710	820	360	245	138
置	$\beta = F_{n_{f}}$	Fnpm	ax	0.15	0.31	. 0.26	0-12	0.30	0.31	0.14	0.55
	m	× 10	⁻² (kg∕cm³)	18-1	13.4	8.3	9.5	12.6	8.5	6.1	8.8
最	(k / S)	m × 10	⁻² (kg∕cm ³)	8.9	13.8	7.7	5.4	13.8	10.5	2.8	17.7
軸力	F _{nmmax}		(t)	270	270	170	420	534	210	165	98
測定	$\beta_m = F_n$	m/F _{nmn}	nax	0.65	> 1	0.95	0-85	1	> 1	0.83	> 1
位置	(<i>m</i>) _m	×10	⁻² (kg∕cm)	4.8		0.4	1.0	0	_	0.6	

表 - 2.5.4 実測結果 (5) (13) (14) (15) および β と k/S の関係

鋼ぐい委および国鉄において、 $_{c}F_{31}$ 杭およびNo.2 杭は摩擦杭と考えられてお り杭長が短かいが、他は杭長が約40 mで支持層(砂層)に達している。Bjerrum らのA杭は岩盤に支持されているが、A杭先端付近の岩盤が平担でないので、杭 先端での沈下が生じた。また、鋼ぐい委 $_{c}E_{43}$ のみが先端開口杭で、他はすべて 先端閉口杭である。地盤沈下量は、鋼ぐい委 $_{0}E_{43}$ 、 $_{c}F_{31}$ および国鉄No.3 の場合自然沈下のみで10 ~ 12 cmである。それに比較して、国鉄No.1, No.2 お よびNo.5 の場合4 mの盛土による地盤沈下が加わり、80 cmと非常に大きくなっ

図ー 2.5.11 軸力分布 (国鉄 ¹⁵⁾)

- 243 -
ている. Bjerrum A の場 合,海底に8 m の盛土が 施工されているが,杭打 設時にはすでに相当圧密 が進行していたので,地 盤沈下量は比較的小さく 約20 cmである.

鋼ぐい委と国鉄の実測
 値のおもな相違点は、中
 立点の分布範囲が異なる
 ことである。また,鋼ぐい
 委₀E₄₃, cE₄₃, cF₃₁ お
 よび国鉄No.3 において
 は、測定された杭周面摩
 擦力と土の一軸圧縮強さ
 の半分すなわち qu/2 を

軸力分布 (Bjerrum ら⁶⁾)

比較すると、局部的には相当異なった値が認められるが、全般的に平均した値は かなりより一致を示している.しかし、国鉄No.1, No.2 およびNo.5 では杭周 面摩擦力は qu/2 よりかなり大きいことが報告されている(図一2.5.10 および 図一2.5.11 参照). これは、これらの杭の周辺地盤の沈下量が非常に大きいので、 圧密による地盤の強度増加に起因するものと思われる.Bjerrum らは、第2編第 5 章第2節で述べたように、杭周面摩擦力が、鉛直方向の有効応力に比例すると して求めうることを提案している.

3.3.2 βと k/Sの関係

実測結果から、 $\beta \geq k/S$ の関係を求めた結果を表一 2.5.4 の下半分に示す. ここで、杭の沈下がない場合の最大の杭先端軸力 F_{npmax} は、鋼ぐい委 $_{0}E_{43}$ 、 $_{c}E_{43}$ 、 $_{c}F_{31}$ 、および国鉄 No. 3 については、平均の $q_{u}/2$ を用いて求めた。国鉄 No. 1, No. 2 および No. 5 については、No. 2 杭の支持地盤が比較的剛であるので、No. 2 杭で発生した値を F_{npmax} の代用とした. ただし,最大軸力測定位置より下方に ついては,測定されたポジティブフリクションと同じ大きさのネガティブフリク ションが作用するものとして得た. Bjerrum A については,式(2.5.2)より F_{npmax} を算定した. ただし,この場合 $\alpha = 0.26$ を採用すると,図-2.5.12の 破線のようになり,とくに20 m 以深の実測値との不一致が大きく不合理である. そこで, $\alpha = 0.35$ (この値は鋼ぐい委 $_{c}E_{43}$ において得られた値である¹³⁾)として, 図-2.5.12の太い実線の値を用いた.この場合,20 m 以深の実測値とほぼ妥当 な関係にあると思われる.

また、ネガティブフリクションを検討する際に注目すべき点は杭先端軸力と最大軸力であるので、杭先端位置と同様にして、最大軸力測定位置においても軸力を求めている.この場合には、サフィックスとしてmを用いている. mおよび mm は式(2.5.11)より得られたものである.

図ー2.5.13 は以上の結果をプロットしたものである. ここで、 β_m が1より大なるものについては、 $\beta_m \approx 1$ とした.実測例のk/Sのオーダーが $10^{-2} \sim 10^{-1}$ kg/cmで、模型実験の場合とほぼ同じオーダーである. これは、支持地盤の圧縮性をあらわす指標としてk/Sを用いることによって、杭長、杭径などのサイズの影響をある程度取除き得ることを意味している. $\beta \geq k/S$ の関係は、鋼ぐい委 $_0E_{43}$ を除けば、杭先端位置および最大軸力位置において、ともにほぼ理論式の傾向を満足している。鋼ぐい委 $_0E_{43}$ 以外の杭先端位置および最大軸力位置にお ける mおよび mm の平均値は、それぞれ 9.6 × 10⁻² および 0.3 × 10⁻² kg/cm である.

鋼ぐい委₀E₄₃の \overline{m} のみが他の杭より大きく,理論的傾向を満足しない理由としては,₀E₄₃のみが開端杭で深さ約15 m以深の杭の内部に土がつまっており,内部の土によるポジティブフリクションの影響が考えられる.いま,試みに,内部の土の平均の一軸圧縮強さを 0.3 kg/cm¹⁴⁾として鋼杭の内面にポジティブフリクシションが最大に発生していると考える.この考えに基づき, β および β_m の値を補正すると, 図一 2.5.13 の矢印の位置にきて,近似的に理論的傾向を満足するようになる.したがって,開端杭においては,内部の土の影響により,ネガティブフリクションが見かけ上減少しているものと推察される.

図 – 2.5.13 β , $\beta_m \geq k/S$ の関係

3.4 単杭のネガティブフリクションの近似的算定法

杭先端軸力 F_{np} および最大軸力 F_{nm} は式 (2.5.11) に基づいて, 次式であらわ される.

$$F_{np} = \beta F_{npmax} = \frac{(k/S)}{(k/S) + \overline{m}} F_{npmax}$$

$$F_{nm} = \beta_m F_{nmmax} = \frac{(k/S)_m}{(k/S)_m + \overline{m}_m} F_{nmmax}$$

$$\left. \right\}$$

$$(2.5.12)$$

*m*および*m*_mについては,前項3.3.2 で得られたように,近似的に一定と考え

てもよい. 図-2.5.13 から安全側に判断して、実際地盤における通常の支持杭 において、 $\overline{m} = 6 \times 10^{-2} \text{ kg/cm}, \overline{m}_m = 0 \text{ kg/cm}$ とおくことができると考えられ る. したがって、 $\beta_m = 1$ となり、式(2.5.12)は次式のようになる.

$$F_{np} = \beta \ F_{npmax} = \frac{(k/S)}{(k/S) + 0.06} \ F_{npmax}$$

$$F_{nm} = F_{nmmax}$$

$$\left. \left. \left. \left(2.5.13 \right) \right. \right. \right\}$$

ただし、 (k/S) の単位は kg/cmを用いる.

上式において、最大軸力位置すなわち厳密な意味での中立点の位置、最大杭周面 摩擦力すなわち F_{nmax} 、および支持地盤の圧縮性すなわち k/S が分かれば、 F_{np} お よび F_{nm} が算定できることになる.

最大軸力位置については、この位置が実測例の最大軸力測定位置に相当すると 考えれば、表-2.5.4 より分かるように、杭上端より(0.73~0.83) lの間に 位置している.したがって、通常の支持杭では最大軸力位置が杭上端より約0.8 lの位置にあると近似的に考えられる.

最大杭周面摩擦力については、地盤沈下による強度増加が少ない場合には、一 軸圧縮強さの 1/2 すなわち qu/2 を用いてもよい.しかし、地盤沈下量が大きく 地盤の強度増加が大きい場合には、Bjerrum らによって提案された式(2.5.2) を用いて算定するのがよいと考えられる.

k/S については、これは支持地盤の圧縮性を表現する指標であるが、同一支持 地盤に対しても、杭径および圧縮層厚によって異なった値をとる。そこで、実際 の支持地盤の k/S を深層載荷試験¹⁹⁾および杭の鉛直載荷試験²⁰⁾²¹⁾から計算する と、表-2.5.5 のようになる。この際、圧縮層厚はすべて 40 mとしている。ま た、鉛直載荷試験の場合、載荷重は杭周面の摩擦力によっても支持されるので、 杭先端への伝達荷重は全載荷重の 1/4 とした。

この表において、深層載荷試験の ϕ 30 cmの場合の k/S が約5×10⁻² kg/cd となっている. これは前項3.3.2 のネガティブフリクションの実測例から得られた 通常の支持杭の k/S とほぼ一致している (図一 2.5.13 参照). これは、深層載 荷試験により、ネガティブフリクション算定に必要な k/S の値をあらかじめ求 め得ることを示唆している.また、杭の鉛直載荷試験の結果から得られた k/S

表一 2.5.5 k/S 值

は $(2.1 \sim 13.2)$ × 10^{-2} kg/cmの範囲に あり, この試験によ っても, k/Sの値を 近似的に推定するこ とが可能であると考 えられる.

以上の方法により, 式(2.5.13)を用 いて,杭先端軸力お よび最大軸力を算定 できる.

	杭径	載荷重	沈下量	k/S
試験方法	(<i>c</i> m)	(ton)	(<i>cm</i>)	(kg∕cπl)
深層載荷試験	9	1.1	0.40	2.4 × 10 ⁻²
	30	10.6	0.60	4.7 \times 10 ⁻²
	50.8	300	2.96	4.0×10^{-2}
	30	45	0.40	7.5 \times 10 ⁻²
杭の鉛直	60	314	3.01	3.5×10^{-2}
載荷試験	60	247	2.11	3.9×10^{-2}
	45	190	3.76	2.1 × 10 ⁻²
	60	250	0.63	13.2×10^{-2}

さらに概略的に検討すれば、前項3.3.2の実測例における鋼ぐい委_cE₄₃およ び国鉄No.2, No.3 は通常一般に用いられている支持杭と考えてもよいと思われ る. これらの3本の杭についてのみ考えれば、図一2.5.12より、(k/S)およ び(k/S)mは(4~6)×10⁻²および(10~14)×10⁻²kg/cm程度である。す なわち、βおよびβmはそれぞれ約0.3および1でほぼ一定である。したがって、 実測例のような支持地盤および圧縮層をもつ地盤に打込まれた、杭径約60 cm, 杭長約40 mの支持杭においては、杭先端軸力はその最大値の1/3 程度になり、 最大軸力位置ではその最大値にほぼ等しいということができる。この杭先端位置 でのβの値が、ネガティブフリクションはその最大値の1/2~1/3であろうと する説¹⁶⁾に近いことは興味深い。

第4節 群杭効果によるネガティブフリクションの減少

4.1 模型実験

図-2.5.14 に示すような装置を用い, 第2編第5章第3節3.2の模型実験と ほぼ同様な方法で実験を行なう. 模型鋼管杭は長さ *l* = 760 mm, 径 *d* = 38 mm であ る. 群杭は5本で1組を形成 し,中央の杭をロードセルで 支持してネガティブフリクシ ョンを測定する. 杭中心間隔 Lを4通りに変化させ,同時 に,単杭についても測定する. これらのうち半分は,砂層付 近の杭周面にグリースを塗布 することによって杭周面から の排水を防ぎ,その排水効果 を検討する. 用いた粘土試料 は,粘土分 67%,シルト分 33%,液性限界 $w_L = 117$ %, 塑性指数 $I_p = 50$ %,初期含 水比 $w_i = 171$ %である.

4.2 実験結果および考察

4.21 杭周面からの排水効果

表面沈下量は最終的には10 cm に達した. 図ー2.5.15 はネガ ティブフリクションの経時変 化を示し, 図ー2.5.16 は群杭 と単杭のネガティブフリクショ ンの比 λ_t (= F_{ng}/F_{ns})の経時 変化(ただし, SP IIの値は95 日以後 SP I の値で代用した) を示す.まず, 図ー2.5.15 の 単杭 SP I と単杭 SP II のネガ ティブフリクションを比較すれ

⊠ — 2.5.14

模型実験装置

図-2.5.15 ネガティブフリクションの経時変化

ば、約95日まではSPIの方が大である。また、図ー2.5.16より、初期において、杭周面排水の場合に $\lambda_i > 1$ 、杭周面非排水の場合に多少変動があるが $\lambda_i = 1$ となっている。しかし、いずれの場合も、時間の経過とともに $\lambda_i < 1$ となる。

以上の現象から判断すれば、杭周面からの排水効果が認められる.すなわち, 杭周面排水の場合に、初期において、杭周地盤の強度増加が促進され、この強度 増加がとくに単杭より群杭周辺で顕著になる.その結果、群杭のネガティブフリ クションがより大となる.しかし、最終的には、単杭のネガティブフリクション の方が大となる.

図 - 2.5.16 λ_t の経時変化

4.2.2 応力緩和現象と局部せん断破壊現象

図ー2.5.15の群杭PGIおよびPGIにおいて、一度ピークに達したネガティ ブフリクションが徐々に減少し、ある値に落着くような現象が見られる. これは 応力緩和現象と考えられる. ネガティブフリクションにおけるこの現象の存在は 以前から指摘されているが、現在まで実測されていない. 本模型実験では、高塑 性の粘土 (*I*_p = 50%)を用いたので、比較的顕著にこの現象があらわれたものと 思われる.

また, SP□およびPG□において, ネガティブフリクションが急激に減少し, その後漸増する現象が見られる. この現象は局部せん断破壊現象ではないかと考 えられる. 写真 2.5.1 は断面模型を用い(写真の格子は5 cm×5 cm), ガラス面 を通して杭周辺地盤の挙動を調べたものである.

写真 2·5·1 杭周辺地盤の挙動

- 252 -

この写真において、地盤の沈下をあらわす白線は7日後では連続しているが、 次第に杭周面から斜め上方45°方向に小さなクラックが生じる。60日後になると 白線が不連続となり、沈下の大きい粘土層上部では、局部的に大きなクラックも 見られる。このことから、ネガティブフリクションにおける局部せん断破壊現象 の存在の可能性が認められる。しかし、この現象は必ず生ずるものではなく、そ の誘因としては微小な振動などが考えられるであろう。したがって、実際の杭に おいて地震などの振動によりネガティブフリクションが減少する可能性はあると 推論される。

4.23 $\lambda \geq L/d$ の関係

図ー2.5.17 は、群杭と単杭のネガティブフリクションの最大値の比、すなわち群杭効果による減少率 $\lambda \ge L/d$ の関係を示す。単杭と群杭の境界は断面模型による実測より L = 16 cm と考えられ、この値もプロットしてある。L/d = 3.0の場合は、前述のように局部せん断破壊を起しているので除外すると、図示のように、杭間隔が減少するにつれて杭1本当りのネガティブフリクションが単調に減少することが分かる。

図ー2.5.17 $\lambda \geq L/d$ の関係

- 253 -

図ー2.5.17 には、遠藤の方法¹⁴⁾による理論値を実線で示した、定量的には理 論値が少し大きいが、定性的にはその傾向が似ている。一方、他の理論では、 んが1より大になる場合があり⁸⁾¹⁶⁾、あるいは単杭と群杭の接続が不明瞭¹⁷⁾で基本 的な条件を満足していない、したがって、模型実験によるかぎり、遠藤による検 討法が最も妥当であると考えられる。しかし、相似律などの問題があるので、厳 密には群杭の実大実験によってさらに検討する必要があろう。

第5節 有限要素法によるネガティブフリクションの解析

5.1 解析法

正規圧密終了状態の地盤中の単杭に作用するネガティブフリクションを算定す る.一般に、実際の地盤は一様ではなく、またすでに明らかなように、支持地盤 および杭体の圧縮性がネガティブフリクションに大きな影響を与える.これらの 条件を考慮してネガティブフリクションを解析するため、杭軸を対称軸とする軸 対称問題として、有限要素法(F.E.M.)を適用する²²⁾.

この際,つぎの仮定を設ける.

- (1) 杭周辺の圧縮層は等方性とする.
- (3) 圧縮層のせん断強さおよび弾性係 数は深さの関数で与えられるもの とする。
- (4) 圧縮層のポアソン比は、正規圧密
 終了状態では K₀ ≒ 1/2となることを考慮して ν = 1/3とする.
- (5) 圧縮層の圧密量は既知とし、杭周 面の表面沈下量は楕円曲線で近似 できるものとする(写真 2.5.1 参 照).

- (6) 杭に影響を及ぼす圧縮層の
 範囲は, Bierbaumer の考
 え方に基づき、半径R =
 l・tanαの円柱部分とする.
 ただし、α=30°とする.
- (7) 杭先端は弾性ばねで支持され、圧縮層底面で鉛直変位がなく、圧縮層側方端部および地表面で水平変位がないとする。
- (8) 杭は棒要素とし、鉛直方向の圧縮性のみを考慮する。
- (9) 杭周面と圧縮層間のすべり は、杭の応力のが最大周面 摩擦力により杭に生ずる応 力 σ_{max} を越えないように、 杭の変形を緩和することに よって考慮する.すなわち、 $\sigma > \sigma_{max}$ の場合に、 $\sigma =$ σ_{max} として $\epsilon' = (\sigma - \sigma_{max})$ Eのひずみ量を各棒要素に ついて緩和する.

以上の仮定のもとに,軸対称 問題として直接反復法によって 杭に作用するネガティブフリク ションの算定を行なう.

5.2 計算例

計算例として、鋼ぐい委 cE43 を対象とした。要素分割は図ー2.5.19のように

行ない, 圧縮層の影響半径は仮定(6) より24.8 mとした.実験が行なわれ た地点における土層断面を図-2.5. 20 に示す. ここで,最大の杭周面 摩擦力は $q_u/2$ とし, q_u は,仮定(3) を満足するように,図中の実線のご とく深さの1次関数で近似した.ま た,圧縮層の弾性係数 E_s は一般にせ ん断強さ c に比例する.Janbu²³⁾に よれば $E_s = 300 \sim 400 c$,竹中によ れば $E_s = 210 c$,中瀬ら²⁵⁾によれば K_0 状態の室内試験から $E_s = 300 \sim$ 350 c である.本計算例では, $E_s =$ 300 c を採用した.その他の諸元は 表-2.5.4 に示されている.

5.3 計算結果および考察

図ー 2.5.21 は、鋼ぐい委 _eE₄₃ の 軸力分布の計算値および実測値を比 較したものである。この図より、軸 力分布に関して両者はほぼ一致し、 中立点(最大軸力位置)も0.771

(杭上端より33mの位置)付近で

図-2.5.20 土層断面

ほぼ一致していることが分かる。一方,杭頭および杭先端沈下量の計算値はそれ ぞれ3.8 cmおよび1.3 cmであり,実測値(それぞれ5.4 cmおよび3.0 cm)より小 さい.また,圧縮層表面の杭周面でのすべり量は1.0 cmである。

つぎに、支持地盤の影響を検討するために、k/Sのみが種々変化すると仮想して計算 した結果が図ー2.5.21の点線で示されている、中立点(最大軸力位置)は、k/Sが大にな るにつれて下方に移動するが、k/Sが $2 \times 10^{-2} \sim 1.4 \times 10^{-1}$ kg/cmの範囲では(0.73~0.8) *l*の範囲にあり,ほぼ
 一定と考えられる。
 このことは、実大
 実験における最大
 軸力測定位置の実
 測結果と一致する
 ものである(表一
 2.5.4 参照)。

また, 杭先端軸 力の k/S による変 化は比較的小さい が, とくに先端軸 力にたで検討する場 合, 態が復知行がの 取り方や杭 支持条件などの影

図-2.5.21

軸力分布の計算値および実測値の比較

響を受けると考えられるので、さらに検討する必要があろう。つぎに、地盤が非常に剛な場合を想定して $k/S = 1.1 \times 10^{-3} \text{ kg/cm}$ とすると、軸力分布は図ー 2.5. 21 のようにほとんど最大値に近くなり、中立点はほとんど杭先端に近づくことが分かる。

第6節 結 論

第2編第5章は、杭に作用するネガティブフリクションの発生機構およびその 算定法について理論的実験的に検討し、また有限要素法によりネガティブフリク ションを解析した。その結論を要約すれば、つぎのようである。 (1) 杭の沈下による先端軸力の減少については、地盤の支持状態を表現する指 標として地盤のばね定数 k と杭周面積 S の比, すなわち k/S を用いればよく, 減 少率 β は式 (2.5.11) で表現できる.

(2) 中立点は、杭に作用する摩擦力がネガティブからポジティブに変化する点 すなわち摩擦力が0の点と定義される。そして、その点においてた近傍の地盤の 応力変化および杭周面でのすべりを考慮した杭と周辺地盤の実質的な相対沈下量 がないと考えることにより、従来の中立点の概念に一般性を持たすことができる。

(3) ネガティブフリクションの減少の程度を表わす係数πは k/S の変化に対し てほぼ一定とみなせることが、模型実験および実大実験により検証された.また、 πは杭の表面状態および土質条件により影響を受け、杭と粘土の付着性が増すに つれて増大する傾向がある.実大実験の結果、πは(6~13)×10⁻² kg/cmであ る.

(4) 最大軸力位置においても、杭先端位置と同様の取扱いが可能である。

(5) 開端杭においては、杭内部の土の影響により、ネガティブフリクションが さらに減少することが推論される.

(6) 単杭の杭先端軸力および最大軸力は,式(2.5.13)により近似的に算定で きる.また,実測例のような地盤に打込まれた支持杭のネガティブフリクション は,杭先端位置ではその最大値の 1/3 程度,最大軸力位置ではその最大値にほぼ 等しい.

(7) 杭周面の排水効果は、圧密初期の群杭において顕著で、群杭のネガティブフリクションがより大となるが、最終的には単杭の方が大となる.

(8) ネガティブフリクションにおいて,応力緩和現象および局部せん断破壊現象の存在が認められる。そして,地震時などにおいて,ネガティブフリクションが減少する可能性が考えられる。

(9) 群杭において,杭間隔が減少するにつれてネガティブフリクションが単調 に減少し,遠藤による理論値と近似する。しかし,相似律などの問題のため,厳 密には,実大実験によりさらに検討する必要があろう。

(10) 有限要素法によるネガティブフリクションの解析は、軸力分布に関してかなり良好な結果が得られ、その適用性はあると考えられる。また、中立点(最大軸力位置)は、 k/S が 2×10⁻²~1.4×10⁻¹ kg/cmの範囲では(0.73~0.8)

の範囲にあり,ほぼ一定と考えられる.これは,実大実験の最大軸力測定位置の 実測結果を裏付けるものである.

以上のように、軟弱地盤中の杭に作用するネガティブフリクションの発生機構 が解明し、その一算定法も提案した。そして、模型実験あるいは実大実験によっ て、それらを検証してきた。今後は、さらに種々の地盤および種々の杭に対する 実測データを集積し、検討を加えることによって、より精度のよい算定法へと発 展させるべきであると考えている。このように、ネガティブフリクションの発生 機構が解明され、その算定法がある程度確立されたならば、つぎに目標とされる のはネガティブフリクションを低減させる方法の確立であり、今後ともこの方面 の研究に多くの努力が向けられるであろう。

参考文献

- 伊藤冨雄・松井保:杭に作用するネガティブフリクションに関する研究, 土木学会論文報告集第221号, pp. 49~58, 1974.
- 2) Terzaghi K. and Peck R. B. : Soil Mechanics in Engineering Practice, John Wiley & Sons, New York pp. $473 \sim 474$, 1948.
- Potyondy J. G.: Skin friction between various soils and construction materials, Géotechnique, Vol. 11, 1961.
- Ahu J.: Le frottement négatif, Annales de l'institut technique du batiment et des travaux publics, No. 145, pp. 35 ~ 40, Jan., 1960.
- 5) Johannessen I. J. and Bjerrum L. : Measurement of the compression of a steel pile to rock due to settlement of the surrounding clay, Proc. 6 th I.C.S.M.F.E., Vol. II, pp. 261 ~ 264, 1965.
- 6) Bjerrum L., Johannessen I. J. and Eide O.: Reduction of negative skin friction on steel piles to rock, Proc. 7th I.C.S.M.F.E., Vol. II, pp. 27 ~ 34, 1969.
- 7) 鉄道技術研究所:杭のNegative Friction について、中間報告7~52、
 pp.1~17, 1956.
- 8) Habib P.: 2)と同じ, pp. 41 ~ 46, Jan., 1960.
- 9) 別所多喜次:粘土層の圧密沈下により杭の受ける負摩擦力について、土木 学会西部支部・土質工学会九州支部講演会テキスト、pp. 47 ~ 70、 1961.
- 10) 横尾・山肩・長岡:単ぐいに作用するNegative Skin Frictionの理論解,
 日本建築学会論文報告集第133号, pp. 31~37, 1967.
- 11) Watanabe S., Tanaka, H. and Nasu M. : Negative skin friction acting on piles, Proc. 5th Intern. Congr. on Rheology, Vol. 2, pp. 569 ~ 578, 1969.
- 12) Sawaguchi M. : Approximate calculation of negative skin friction

on a pile, Soils and Foundations, Vol. 11, No. 3, pp. $31 \sim 49$, Sept. 1971.

- 13) 土質工学会鋼ぐい研究委員会: クイに作用する負の摩擦力の研究,第2分
 科会報告書, 1968.
- 14) 遠藤正明:ネガティブフリクション,鋼グイー鋼ぐい研究委員会報告-第
 5章, 土質工学会, pp. 257 ~ 315, 1969.
- 15) 国鉄東京第三工事局:ネガティブフリクション測定ならびに載荷試験工事 報告書, Mar. 1972.
- 16) 日本建築学会:建築基礎構造設計規準・同解説, pp. 214 ~ 215, 1960.
- 17) 横尾・山肩・長岡:群ぐいに作用する Negative Skin Frictionの理論解,
 日本建築学会論文報告集第150号, pp. 51~57, 1968.
- 18) 伊藤冨雄・松井保:杭のネガティブフリクションの計算法について,第3
 回土質工学研究発表会講演集, pp. 449 ~ 452, 1968.
- 19) 森 博・曽根学:深層基礎の原位置載荷試験法について、土と基礎、 Vol. 12, No. 2, pp. 3 ~ 9, 1964.
- 20) 土質工学会:土質工学ハンドブック,クイ基礎, p.439, p.477, 1965.
- 21) 村山・大崎:基礎工学ハンドブック,クイ基礎およびピャ基礎,p.436, 1964.
- 22) Zienkiewicz O. C. and Cheung Y. K. : The Finite Element Method in Structural and Continuum Mechanics, Mc Graw-Hill, 1967.
- 23) Janbu, N. : Behaviour of clay in undrained shear produced by loading at constant total principal stress ratio, Proc. Geotech. Conf. Oslo, Vol. 1. pp. 31 ~ 34, 1967.
- 24) 竹中準之介:粘土のサンプリングとその信頼度,日本材料試験協会関西支
 部, pp. 1 ~ 22, 1970.
- 25) 中瀬・小林・兼近:粘土の非排水セン断強度と変形係数,第8回土質工学 研究発表会講演集,pp.291~294, 1973.

結 語 · 謝 辞

本文の内容を要約すればつぎのとおりである.

本文は粘土の流動機構に関する基礎的および応用的研究と題し,2編12章よ り成る.まず序論においては本研究の目的と内容について説明し,ついで第1編 では,微視的な立場から広範なコンシステンシーをもつ粘土・水系の多様な流動 現象の本質的な機構を解明し,これらの現象を統一的に取扱っている.そしてそ の第1章では,広範なコンシステンシー状態の粘土・水系の流動機構に関する統 一された概念は力学モデル的な研究のみからは得られず,微視的な立場からの研 究がある一つの普遍的概念を抽出しうる可能性を内蔵していることを力説したも のである.

第2章では、粘土・水系の本質的な流動機構は粘土・水系全体としての種々の 流動現象の機構となりうる特性を具備すべきであるという考えに立脚し、代表的 な粘土・水系の流動現象として粘土サスペンジョンのニュートン流動、粘土ペー ストの定常流動および正規圧密粘土の定常クリープが取上げられ、種々の実験が 行なわれている。その結果、これらの流動現象を現象的にrate process 理論に よって説明できることが裏づけられている。さらに、この理論で仮定される微視 的な流動機構を粘土粒子間の微視的構造と対応させることによって、粘土粒子接 合点の物理化学的な機構が検討され、代表的な粘土・水系の流動機構が明確にさ れている。以上の結果から、粘土・水系全体としての流動機構は、本質的には homogeneous process ではなくheterogeneous process であると考えることによっ て、統一的に取扱うることが示唆され、このheterogeneous processの基本機構 として水素結合および酸素による1次結合が考えられることが述べられている。

第3章では、上記に得られたように、粘土・水系の本質的な流動機構は2種の 基本機構をもつ heterogeneous process として表現できるという考えに立脚して、 粘土・水系の統一的な流動機構モデルが提案されている。

第4章では、高含水量の粘土ペーストの流動現象を対象としてベーン型プラス トメーターによる定常流動実験が行なわれ、その結果 heterogeneous process の 存在が確認され、またその流動機構が明らかにされている。 第5章では、これまでに得られた結果を総合的に検討することによって、 heterogeneous processとしての粘土・水系の統一的な流動機構が明確に示され ている.また、粘土・水系の結合数とせん断強さの関係から、提案された粘土・ 水系の統一的な流動機構モデルの妥当性も論じられている.

第6章は粘土の粒子間結合について微視的立場から論じたものである.まず, 流動機構モデルの微視的な基本機構である流動単位に作用するせん断力について 検討した結果,このせん断力が粘土・水系のダイラタンシーに起因しないせん断 応力の本質的な発生機構となりうることが示唆されている.したがって,rate process 理論に基づいた微視的機構が.粘土・水系の定常的な流動状態における 粘土粒子接合点の微視的機構のみならず,粘土・水系の一般的な変形時における 粘土粒子間の物理化学的な相互作用に関する一般的な概念となりうることが述べ られている.つぎに,rate process 理論にもとづいて得られた粘土・水系の微 視的な機構から圧密粘土の一般的な巨視的挙動を検討した結果,微視的な機構に もとづいて導かれたせん断強さと有効応力の関係が一般に認められている関係と 同じ形で表現されることが示されている.その結果,圧密粘土の有効応力によ るせん断特性を表わす摩擦角φ'および粘着力 ε'の意味が微視的立場から明らかに されている.

第7章は第1編の結論である.

第2編は軟弱地盤における塑性流動現象に関する工学的な諸問題について論じたものである.すなわちその第1章では、パイプフロー試験およびベーン試験により、マクロレオロジーの立場から軟弱粘土の流動特性を明らかにしている.その結果、軟弱粘土の流動特性は厳密には非ビンガム流動であるが、工学的にはビンガム流動として表現できることが示されている.

第2章では,載荷幅に比し粘土層厚が小さい軟弱地盤の塑性流動の機構が検討 され,側方流動による沈下量の算定式がマクロレオロジーの立場から導かれてい る.さらに,模型実験により,塑性流動による沈下は比較的長期間にわたって継 続することが明らかにされ,また側方流動による沈下量の算定式の妥当性および 適用性について論じられている.

第3章はブラインドシールドの推進力について理論的実験的に研究したもので ある.まず,塑性流動理論および塑性変形理論を適用することによりブラインド シールドの推進力を埋論的に解析している。つぎに、模型実験により、ブライン ドシールド周辺地盤の挙動およびシールド推進力発生のメカニズムが解明され、 またブラインドシールド推進力の理論式の妥当性が検討されている。その結果, ブラインドシールドの推進力としては塑性流動理論により定性的および定量的に よい近似値が与えられることが明らかにされている。

第4章は地盤の塑性変形に対する杭のすべり防止効果について理論的に研究したものである。まず、塑性変形理論および塑性流動理論を適用し、塑性地盤中の 杭に作用する外力を理論的に解析している。つぎに、種々のパラメーターを変化 させてこれらの理論式を検討し、種々の特性を明らかにしている。また、これら の杭に作用する外力の理論値と実測結果とを対比することにより、提案された理 論式の妥当性が検討されている。その結果、提案された理論式が既往の算定式よ りもはるかに近似度がよいことが確認され、また塑性変形地盤により杭に作用す る外力の大きさおよびその分布は杭頭が拘束されているという条件のもとに塑性変形 理論によって近似的に算定できることが結論づけられている。さらに、杭を含む 斜面安定問題が論じられ、前記に提案された外力の理論式を用いた斜面安定解析 法を提案している。そして、この方法を実例に適用し、斜面安定における杭のす べり防止効果を明らかにしている。

第5章は杭に作用するネガティブフリクションの発生機構およびその算定法に ついて理論的実験的に研究している.まず,杭の沈下によるネガティブフリクシ ョンの減少率が理論的に示されている.これを模型実験および実測例と対比した 結果,支持地盤の状態を表現する指標として地盤のばね定数 k と杭周面積 S の比 k/Sを用いればよく、ネガティブフリクション減少の程度を表わす係数 m は k/S の変化に対してほぼ一定となることが検証されている.この結果にもとづき、単 杭に作用するネガティブフリクションの近似的算定法が提案されている.つぎに、 群杭効果によるネガティブフリクションの減少に関する模型実験の結果にもとづ き、杭周面の排水効果、ネガティブフリクションの応力緩和現象および局部せん 断破壊現象,群杭効果による減少率について論じられている.さらに、有限要素 法によるネガティブフリクションの解析法が示され、実測例と比較した結果、そ の軸力分布に関して良好な結果が得られ、この解析法の適用性があると結論され ている. 終りに、本研究に対して終始御指導および御鞭達を賜った大阪大学 伊藤冨雄 教授に対し衷心より感謝の意を表する次第である.また、大阪大学土質研究室に おいてともに勉学に励み、本論文の実験・計算およびデータ整理に多大の協力を 頂いた多くの諸氏に対しても謝意を表したい.とくに、第1編において阿倍信晴 (現大阪大学助手)、長頼恵一郎(現建設省)および大江泰広(現兵庫県)、第2 編第1章において竹本雅俊(現建設省)、同第2章において岩谷文方(現運輸省) および三藤重剛(現清水建設)、同第3章において高本敏(現大阪府)および 金子俊六(現運輸省)、同第4章において藤原嗣哲(現富士通ファコム)および 加茂野耕太郎(現清水建設)、同第5章において石川達彦(現大成建設)、平井孝典 (現清水建設)および金井誠(現大林組)の諸氏に対して心から謝意を表する. 最後に、本論文の図面のトレースを心よく引受けて頂いた大阪大学矢田重久技官 に対しても謝意を表したい.