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   Introduction 

        Search theory is one of the oldest and important areas of operations 

   research. The initial important investigation was mode by the Koopman's 

   group in the US Navy during World War II to offer efficient methods of 

   detecting enemy submarines. This theory has developed exceedingly after 

   the war and is anticipated as a useful model in many practical applications. 

   For example, possible areas of its application include (1) exploration 

   of petroleum, (2) optimal allocation of law enforcement effort, 

   (3) searching for a criminal, (4) searching for a victim in a sea or a 

   mountain, (5) detecting a broken paxt of a machine, (6) n-kedical. exami-

   nation for cancer and (7) optimal search for research data. Here we 

   shall provide a simple survey of search theory and a guide for each 

   section of this thesis. Bibliographies and surveys on search can be 

   found in Enslow (1966) and Dobbie (1968). Main published books on 

   search are Stone (1975), Gal (1980) and Koopman (1980). 

        A search for an object is developed in a search space by a searcher. 

   In some cases a search space consists of discrete points which are usually 

   called "boxes": in others it is a continuum. If an effort expended to 

   search an object can be continuously (discretely) divisible, it is called 

   a continuous (discrete) search effort. One which plays an irrportant part 

   in search theory is a detection function. In the case of continuous 

   effort, let b(x, z) be the conditional probability that an object is 

   detected by the amount z of search effort applied in a position x given 

   it is in x. An important example of detection functions is the exponen-

   tial detection function b(x, z) = 1 - expf-?L(x)z I where X(x) is a detec-

   tion rate at a position x. In the case of discrete effort, the unit of 

   effort applied in any box is usually called a l"look". Let ~ i be the 

   conditional probability that an object is detected by one look in box i



  given that it is in box i. 

       Search theory can be divided broadly into two parts. One is one-

  sided search in which the object cannot take actions of its own free 

   will, that is, it is allowed to move but not to evade. Another is two-

   sided search in which the object is allowed to take actions of its own 

   free will. In one-sided search, a Bayesian approach is taken,, that is, 

  it is assurned that there is a priori distribution of the object's 

   location which is known to the searcher. The problem is to find an 

   allocation of search effort which is optimal under a performance cri-

   terion and therefore the main mathematical tools are calculus of vari-

   ations, dynamic programm.ing and nonlinear program-ning. Many search models 

   can be considered according to various characters of the searcher and the 

   object. If the object stays at one location and cannot move during a 

   search process, it is called a stationary object, and if it moves in 

  the search space according to a known probability law, it is called a 

  moving target. A fundamental model foi:~ a stationary object is as 

   follows: How should the given total effort be allocated in order to 

  maximize the probability of detecting the object located with a priori 

   distribution known to the searcher? This model is solved by Koopman 

   (1957) and deGuenin (1961). Dobbie (1963) laid a foundation for a 

   sequential allocation of search effort and established an important 

   relation between =.imizing the detection probability by a given total 

   effort and minimizing the expected total effort until the detection. 

   A list of papers treating a search for a stationary object includes 

  Gluss (1961), Matula (1964), Ross (1969), Kadane (1971), Sakaguchi (1973), 

  Hall (1976) and Barker (1977). Pollock (1970) considered a discrete 

   search for a target moving in two boxes according to a known Markov 

   chain. Dobbie (1974) treats a continuous-time version of the Pollock's 
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model. Stone (1979) obtains necessary and sufficient conditions for 

a policy to be optimal in a relatively general search for a moving 

target. 

     In two-sided search, a garne theoretical approach is taken mostly. 

In this area, there are three problems: (i) Hide-Search Problem. 

At the beginning of search, player I (Hider) hides in one location and 

cannot move to other "Locations during the search process. There are 

works of Gittins and Roberts (1979) and Suberman (1981). (ii) Evasion-

Search Problem. Player I (Evader) can evade (by his own free will) 

during the search process. There are works of Norris (1962), Sakaguchi           CD 

(1973), Washburn (1980) and Stewart (1981). (iii) Search-Search Problem. 

Two friendly players.atterfpt to find each other with lin-dtted information 

and comunications. This type is called a rendezvous problem and there 

is no paper yet. 

      he aim of this thesis is to solve (i.e. to find an optimal search 

policy) some search models and to investigate the learning process by 

the searcher. Outline of each section is given in the followings: 

    Section 1.1. A search for multi objects with the same characters, 

for example, the reward of the searcher for detection of the object and 

the prior distribution of its location, etc., has been solved in Smith 

and Kimeldorf (1975). In this section we consider a two-box model of 

searching one of two objects with different rewards and different forms 

of the prior distributions. Since search effort is 'continuous, the 

model is formlated and solved by calculus of variations. The optimal 

policy is to search only one box until a threshold time and thereafter 

to.search both boxes in the ratio of inverses of the detection rates. 

Furthermore the transition of the posterior distribution of the object's 

location is investigated. The work in this section is based on Nakai 

(1976). 
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    Section 1.2. Dobbie (1973) formulated a search model with finite 

false objects by a dynamic programming technique. In this section we 

solve a two-box model of a search for a true object against an inter-

ruption of a false object along the line of the Dobbie's formulation. 

The analysis is carried out by the same method as in Section 1.1. The 

optimal policy consists of two stages: the search before the first 

detection of an object and that for the object after the false object 

has been detected. This section is based on Nakai (1976). 

     Section 1.3. Considering a search and rescue for a lost alpinist, 

we formulate a search model for an object with a random lifetime by 

means of calculus of variations and obtain necessary and sufficient 

conditions for a policy to be optimal. In the case that the lifetime 

density function at each location is differentiable at all time, the 

optimal search policy is derived from the above conditions. Two nume-

rical examples are given which indicate that the location with the small 

expected lifetime must be searched first even if the efficiency of search 

there is bad. Furthermore we analyze a search and stop problem in which 

the searcher is permitted to stop the search at any time. This section 

is based on Nakai (1982). 

     Section 1.4. In all literatures on search theory the conditional 

detection probability was always constant in time (or period). In this 

section a search model in which it varies in time is treated by means 

of a dynamic programming approach. The objective is to maximize the 

probability of detecting the object during some periods. A search policy 

depends on the order of searches and a myopic policy (which searches at 

 each period a box maximizing the current detection probability) is not 

 necessarily optimal. The optimal policy is obtained in the two-period 

 case and in the two-box case,in which a conditional probability in one 

 box is constant in time. A numerical example of the latter case is given. 
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This section is based on Nakai (1981). 

    Section 2.1. The problem in this section is to find a policy 

minimizing the expected number of looks to detect a target which moves 

circularly among n boxes according to a known Markov chain. It is shown 

that the posterior distribution of the target's location can be repre-

sented by a point in the posterior simplex which is defined by only the 

transition matrix. In some three-box cases the optimal policies are 

derived under the assumption of perfect detection. This section is based 

on Nakai (1973). 

     Section 2.2. In the search for a moving target, it is sometimes 

reasonable to wait, i.e., to expend time without search in anticipation 

of the transition of the target to the more desirable location for the 

searcher. Th see this point, we allow the searcher to wait in the 

Polloc'kls model (1970) in ,which a target moves between two boxes according 

to a known Markov chain. 'ihe optimal policy has a property that the 

larger a waiting cost becomes, the narrower the region in which to wait 

is optimal becomes and that for a sufficiently large waiting cost, no 

waiting is optimal. We discuss the efficiency of waiting in a search 

for a moving target. This section is based on Nakai (198o). 

    Section 2.3. We consider a problem of catching timely a target which 

appears and disappears randomly. The target moves among three boxes 

according to a known ~brkov tansition matrix. 

                        1 2 3 

                           1 1-a a 0 

                         2 0 1-b b 

                   3 0 0 1 

At each period the searcher must choose one of .three actions: to wait, 

to search box 2 and to stop. The objective is to minimize the expected 

total loss until the completion of the process. The optimal policy is 
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obtained in the cases a+b > 1 and b > (~R/c-l)/a where c, R are a search 

cost and a reward of detecting respectively. So far, there appears no 

paper treating this problem. 

     Chapter III. A two-person sequential evasion-search game is con-

sidered in which player I (Evader) can move among n boxes in one direction 

and player II (Searcher) can search any box at each period knowing the 

evader's previous position. The optimal solution in a zero-sum case is 

obtained and a feedback Nash equilibrium solution is obtained in a 

nonzero-sum case. We give two numerical examples. This chapter is based 

on Nakai (in submission).
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Chapter I Optimal Search for a Stationary Object 

§1.1 Optimal Search for One of Two Stationary Objects 

     Concerning a multi-object search there are two papers. Smith and 

Kirneldorf (1975) considers the following model: N objects are hidden in 

rii boxes where m is known and N is a random variable having a priori 

distribution w = `~Wil w 2' "' >; w 
n = prob.1N = n1. Each object is located 

with a priori distribution p =<pil ...' p 
M > independently of the location 

of other objects. Associated with box i are search cost c 
i and a conditional 

detection probability V The objective is to minimize the expected total 

cost expended to find at least one object. Main results are (i) If m = 2 

and.- wl + w2 = 11 then an optimal policy prescribes searching a box maximizing 
2 

El- ~ w (1-p-~ n 1/c and (ii) If w is a possitive-Poisson distribution 
   n=l n i i 
with parameter X(> 0), then it is optimal to search a box maximizing 

El-exp(-Xp i i )J/c V KJ-meldorf and Smith (1979) considers the same problem 

with one change: the criterion is the expected total cost to find all objects. 

    In the above models they take account of only search cost. But a reward 

for detecting an object must be taken into account since each object has 

usually a respective value. In this section we shall consider a two-box, 

two-object search problem with rewards. There are two boxes which contain 

two stationary objects. Let p k (k =1, 2) be a priori probability that object 

k is in box 1. Let c i (> 0) be a search cost rate, i.e., a cost required 

to search box i per unit time (i =1, 2). Assume that if box i containing 

object k is searched during time t. the searcher can detect it with probability 

1 - exp(-X it) (Xi > 0) and receive a reward Rk(- -< Rk < -). Suppose that 

if we search a box containing two objects, the detection of an object is 

independent of the existence of each other. The objective is to ndnimize 

the expected total loss (i.e., cost minus reward) until at least one object 

is detected. 
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    A search policy can be described by a function ~(t) which represents 

a length of search time in box 1 by time t and satisfies the Condition EA]: 

(i) 0 < ~(t) < t (ii) ~(t) is piece-wise differentiable in t(> 0) 

(iii) 0 < (t) < 1 for any t > 0 (iv) ~(t) and t-~(t) converge to infinite 

as t approaches to infinite. Let Q k (t) be a probability that object k 

is not detected until time t by using a policy ~. Then we have 

.(1-1-1) Qk(t) = pkexpE-Xl~(t)] + ('-Pk)exPE-x 2 ft-~(t)J] (k =1, 2). 

Put Pk(t) = 1 - Qk(t)' Q(t) = Ql(t)Q2(t) and P(t) = 1 - Q(t)' If the 

first detection occurs at time t -, the conditional probability that it is 

made on object k is 

(1.1.2) qk(t) = Pk(t)Q3 -k(t)/P (t) (k =15 2). 

Let L(~) be the expected total loss until the first detection by using a 

policy ~. Then we have 

t (1-1-3) L(~) P (t)[cl~(t)+c2{t-~(t)'-ql(t)Rl-q2 (t)R 2 Idt. 
0 

Therefore the problem is to find a function (t) which minimizes L(~) 

subject to Condition EA]. From relations (1.1.2) and (1-1-3) we have 

(1.1.4) L(~) = 
0 1(c l-C 2Mt)+c2t-Rl1{-Ql(t)Q2(t) Idt 

             + 
0 1(c 1-c 2Mt)+c 2 t-R 2 }f-Ql(t)Q 2 (t)Jdt. 

                                00 

Integrating by parts and taking (iv) of Condition [A] into account, we obtain 

               WEW), t1dt + (tems independent of 
0 

                             00 

where 

                  c 1 (1-P 1)(1-P2 )exPE2X 2 (~-t)]+C 2plP2 exp(-2),,~) 

                  -('~ l-X 2) -1 E(cl X 2-c 2 X 1)(pl+p2-2p 
lP2 )-X 1 X 2(Rl-R2)(pl-P2)] 

(1.1.6) WE~, t] x exPE(x2-x 1)~-X2 t] if X 1 N"2 

                  c 1 (1-p l)(l-p2)exPE2X(~-t)1+c 2 p 1 p 2 exp(- ,2X~) 

                  + XE(ci-c 2)(P l+p2-2p 1P2 )-X(R 1 -R 2)(Pl-P2 )1~exp(-Xt) 

                                                          if , X, X 2 = X.
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In (1.1.6), the expression in the case of X 1 :~ X 2 does not converge to 

thatin the case of X, = X 2 as X 1 approaches to X 2* But we know that there 

is no contradiction if the terms independent of ~ in (1-1.5) are taken 

into account. It is enident that the solution is a function (t) which 

minimizes W[~(t), t] for all t(> 0), subject to Condition [A], provided 

such a function exists. Partially differentiating, we have 

       3W (1.1.7) D~ 2c 1 X 2(1-p l)(l-P2 )exp[2Y~-t) 1-2c 2 X lPlp2 exp(-2X 11 
           + Ucl A 2 -c 2 X 1)(pl+p2-2p 1P2 )-X 1 X 2(Rl-R2)(Pl-p2)]exp[( X 2-X 1 )~_X 2 t] 

           = (AU2_BU_C) exp(-2X 
10 

where A = 2c 1 X 2 (1-p 1)(l-p2) , 

        B = X 1 X 2(Rl-R2)(Pl-p2)-(clX2-c2;kl)(Pl+P2 -2Plp2) 

        C = 2c 2 X lplp2 

        .U = U(~, t) = exp[(X 1 +X 2)~-X2 t] 

if 0 < p k < 1 for k = 1, 2, then A and C are positive and therefore the 

solution of the equation DW/3~ = 0 is given by 

              a(t) :-::: (X 2t+u)/(Xl+X2) 

(1.1.9) u :-::: log[IB+(B 2 +4AC) 112 1/(2A)I. 

Since aldl~~ < 0 for 0 < ~ < ot(t) and W/D~ > 0 for a(t) < ~, WEW), t] 

is minimized at ~ = a(t) if there is no restriction on ~(t). But because 

of Condition EA], we must find the value of ~(t) which minimizes W[~(t), t] 

on an interval EO, t] for a fixed t(> 0). Hence WEW), t] is 

                  t 0 < t < U(t) 

minimized at ~(t) a(t) if 0 < ot(t) < t It is clear that their 

                 0 a(t) < 0 < t 

values of ~(t) satisfy Condition EA1. Therefore the optiml function W 

is as follows: In the case of u > 0.1 if 0 < t < U/Xl, then ~ (t) = t 

(i.e..., to search only box 1) and if u/X 1 < t., then M'= (X2 t+u)AX 1 +X 2) 

(i.e., to search box 1 and 2 in the rate X -1: X-1 ). In the case of u < 0,                                  1 2 

if 0 < t < -U/X 2. then W = 0 (i.e., to search only box 2) and if



-U/'~ 
2 < t, then (t) 2 t+U)/(X 1 +X 2 ) (i.e... to search box 1 and 2 in 

            -1 -1 
the ratio X 1 :X 2 

                    +1     D
efine t (-l)i u/X,, i.e., t. is the threshold time which indicates i 

the switching time of the optimal search method. Furthermore we put 

                                     p )I u<01, i.e., D.'(i=l, 2) is D1 '(P11 P2)1 u > 01 and D 2 I(pl> 2 1 

a region of the pair of the prior probabilities in which to search only 

box i until the threshold time t i is optimal. The boundary between two 

regions D, and D 2 is given by the straight line 

(1.1.10) (r+c)p 1- (r-c )P2 = 2c,/Xi 

where r = R, R 2 and c = C 1 /X 1 + c 2 A 2' This line separates the origin 

and the point (1, 1). (See Fig. 1.1.1.) 

Here we investigate how the posterior location probabilities vary. Let 

p k (k =1, 2) be the posterior probability that object k is in box 1 given 

that no detection occurs until time t by the optimal policy By the 

Bayes nile, we obtain 

          P e /(pke +I-pk) E= D, and t < t           k if (P11 P2) 1 

           Pk e -u /(p k e -u + I 1-p k if (P 1-1 P2 C- D 1 and t 1 < t 
    Pk 

-p )e -X2t] if (P13 p e D and t < t *           P'K/ [ Pk + (1- k 2 2 2 

          Pk/EPk +(l-pk)eul if (P151 P 6 D and t* < t.                                      2 2 2 -

If (ply P2 D 
i and t < ti, we have 

             T-1 
( -1     log(pk -1) = log Pk -1) + Xit 

which can be transformed to ., by eliminating t, 

             (PT-1 t-l -1 -1           2 -')/(Pl -1) = (P2 -')/(Pl 

Hence the pair of two posterior probabilities varies along the curve (1.1.11) 

until the threshold time and stays there (the point A or B in Fig. 1.1.1) 

afterwards. We sumnarize the above discussion in the following theorem. 

     Theorem 1.1.1. If (pl> P D.(i =1, 2) in Fig. 1.1.1, the optimal 2 

                                                       i+l 
policy is to search only box i until the threshold time t (-l) UA 

                            10



and thereaft er to search box 1 and 2 in the ratio X-1 : X-1 where the                                         1 2 

boundary between two regions D 1 and D 2 is given by (1.1.10) and u is 

defined by (1.1.9). Furthermore if the optimal policy is used, the pair 

(P11 P2) of two posterior location probabilities varies along the curve 

given by (1.1.11). 

     The following points must be noted. 

(i) The ratio with which the optimal policy searches both boxes after 

      the threshold time depends not on search cost c 
i but on the search 

     rate X i (i =15 2). 

(ii) The optimal policy depends on rewards Rk (k =1, 2),only through their 

     difference R, - R 2-

(iii) Consider the case that detecting object 2 results in receiving aia 

      enormous loss and going bank-rupt, i.e., the searcher wants to find 

      object 1 with avoiding to meet object 2. This case occurs when R 2 

     approaches to infinity. In this case, the optimal policy is to search 

     only box k if Pk > P3 -k (k =1~1 2). 

(iv')' Rewritin~-,- the equation (1.1.10), we obtain 

        (p )A (-P I          1+P2 1 1+~2)X2 (Rl-R2)(pl-p2)Y2 -
(1.1.12) c c . c c (Pi 1-pi) 

           1 2 1 2 

     When R, = R 21 Theorem 1.1.1 states that if 

          Pl+p 2 
> pl+P2.,~           2 2 2 

              c < c             1 - 2 

then the optimal policy is to search only box 1 until the equality holds                         I box 2 
in (1-1-13) and thereafter to search bok 1 and 2 in the rate X-1 : X -1                                                  1 2 

Here the left hand side of the inequality (1-1-13) represents the detection 

rate in box 1 per unit search cost for one object with the prior distribution 

<p, 1-p> where p (p 1 +p 
2 )12 1 i.e... the mean value of two location probabilities
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§1.2 Search Problem with a False Object 

    When there are false objects which cannot be distinguished from the 

true object except by a close inspection, the search takes place in two 

phases. The first phase is carried out by a sensor which can detect an 

object but not positively identify it. The second phase is to investigate 

whether the contact is true. A search problem with false objects is 

studied by Stone and Stanshine (1971). They assume that a search policy 

does not depend on the number of false objects which were found and eliminated. 

But if the number of false objects is bounded, this assumption does not 

hold in general. Dobbie ,(1973) formulates a search model with finite 

false objects by a dynamic programadng technique under the assumption that 

a policy is contingent on finding false objects. But he does not solve the 

prolb-leT.-a in general except a simple example of two-box case. 

    We consider a search problem of a Dobbie's type and obtain its 

o 'Ln  pu al policy by the calculus -of variations. There are two boxes and 

one- true object is in one of them according to a priori distribution 

<pl~- J-P 1 >. One false object hides in either box according to a priori 

distribution <P21 l-p2> . Both objects are stationary during search process. 

Asstzne that if a box containing a certain object (whether it is true or 

not) is searched for time t, it is contacted with probability 1-exp(-t). 

The contact with an object is assumed to be independent of another. If 

a contact occurs .., the search will be interrupted and time k (> 0) will be 

spent to identify the contact. If the contact is the true object, the 

search will be stopped. If the contact is the false object, we discard 

it and reopen the search for the remaining true object. The objective 

is to minimize the expected time to detect the true object. An example 

which was solved by Dobbie is the case of p 2 = 0 and Y, = 1 in our model. 

    We call the search process until the first contact the first stage 

and that after discarding the false object the second stage. In the second 
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stage, the problem is to detect one stationary object without false objects 

and therefore it can be solved by the well-known method as follows: 

Let p be a probability that the true object is in box 1 at the beginning 

of the second stage. If 0 < p < 112 (1/2 < p < 1), it is optimal to search 

only box 2 (box 1) until time Ilog(p-1 -1)1 and to search equally both 

boxes thereafter. The expected time to detect the true object by the optimal 

policy is expressed by 

(1.2.1) f 2 (P) = (3+lul+explul)/(l+explul) 

where u log(p -1 -1). 

    Now we consider the search process in the first stage. A search 

policy in the first stage can be described by a function ~(t) which represents 

search time in box 1 by time t and satisfies the Condition [A] in Section 

1.1. If t1he first contact by a pollcy ~ occurs at time IL and is false, 

a probability that the true object is in box 1 at the beginning of the 

second stage is given by 
                      p exp[-~(t)] 

(1.2.2) PlNO                 P
i exp[-~(t)] +(I-p 1)exPE-t+Vt)1 

Substituting (1.2.2) into the relation u = log1p we obtain 

(1.2-3) u = 2~(t) - t + log(Pl 1-1). 

It is evident that if p ~O the optimal solution is (t) Jfl for 
                      i t 

any t(> 0) and the refore we assume that 0 < p 1 < 1. Let Q(tl~) be a 

probability that the first contact by a policy ~ does not occur by time 

t. Then using (1.2-3), we have 
2 

(1.2.4) QW0 = R Ep i expf-~(t)l + (1-p i )expf~(t)-tjl 
                    i=l 

             = e -t Ep 
1 (1-p 2)(l+eU) + (1-pi )P2 (1+e-u)]. 

We put P(tl~) =- 1 - Q(tl~). Let q(tl~) be a conditional probability 

that the first contact is false given that it occurs at time t by a policy 

   Then 

                                       1-4 -

I

I



(1.2.5) q(tl~) EP'(tMI -1 Eplexpf-~(t)l+(l-pl)expf~(t)-tlI 

d 

                X at- El-P
2 expf-~(t)j - (1-p 2)expf~(t)-tll 

               E2P.(tIw-le'Ep1 (1-P 2 )(l-u')(l+eu)+(i-p 1)P2(1+u )(l+e 

Let f(pl ., P2 1~) be the expected time to detect the true object by using 

a policy ~ in the first stage and the optimal policy in the second stage 

given that the prior location distributions of both objects are <pl, 1-pl> 

and <p 2 -1 1-P 2 >. Then we have 

(1.2.6) f(pl.1 P21~) P'(tMEt+z+q(tIWf2(~1 (tJ~))+kIldt          J000 t                k +J'Q(tl~)dt + P (tl~)q(t 1~)'f2(-~l(tl~))+Zldt.              0 ~ coo 
Substituting (1.2.4) and (1.2-5) into (1.2.6) and noting Condition EA1, 

we obtain 
                                               00 

(1.2-7) f(P13 P2* 
0 e-tW[u(t)ldt + (terms independent of 

where 2 -u (
Z+l)u+ll if u > 0 (1. 2.8) W(u) =1 Pl(l-P 2 ){2eu-u /2-(Z+2)ul+(l-pl)p 2 fe ' + 

                Pl('--p 2 Me u_(Y.+l)U+11+(l-Pj)p 2 f 2e--U -u 2 /2+(.Y.+2)ul if u < 0. 

Furthermore Condition FAI becomes Condition EA I defined by 

                   U) U(O) = log(P-1 -1) 

                    (ii) u(t) is piece-wise differentiable in t 
    Condition [A 1 1 

                  (iii) Ju(t) log(p- -1)1 < t for t-> 0 

1 

                    Uv) -1 < u (t) < 1 - for t > 0 

Therefore the function u (t) which minimizes W[u(t)] for all t and satisfies 

Condition EA I is optimal, provided such a function exists. 

                 Pi (1-P 2 )(2eu-U-2,2) + (l-pl)p2 (-e'-u +Z+l) if u > 0 
           (u) 

Pl( I l-P2) (e u -Z-1) + (1-p 1 P2 (-2e-u -u+Y,+2) if u < 0. 

(1.2.10) W (u) pl(l-p2 )(2eu-1) + (1-p 1 )p 2 e U if u > 0 
                 Pl(l-P2) e u + (l-Pl)p2 (2e-u~-l) if u < 0. 

Since W (u) > 0 for all u, W (u) is strictly increasing in u. Furthermore 
  t t t 

W (0) = k(p2-pl W (+ oo) + ~6o and W oo) Hence the equation W (u) = 0 

has a unique root u 0 such that if p 1 > (< )p 23 u 0 > (< )0. Therefore the 
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optimal function u (t) is a function which starts at u(O) at t = 0 , goes 

to u 0 as rapidly as the constraints permit and remains unchanged thereafter. 

Hence if we put t IUO U(0)1, u (t) is given by 

                                 U(O) - t if 0 < t < t 
        U(O) > UO u (t) = 

                                 UO if t < t 

                                U(O) + t if 0 < t < t 
         U(O) < UO u (t) = 

UO if t * < t 

Since W (u) is strictly increasing in u, 

(1.2.12) u(O) u 0 4==> W [u(O)i' W EuOl = 0.    I < I < 
Substituting u(O) log(p-l -1) into (1.2.9), we have 1 

                   (1-2p )(2-p )+(p -P )~-p (1-p )100(P-1-1) > 
(1.2.13) W EUMI 1 2 2 1 1 2 1 if U(O) 

                   (1-2p 1)(l+-02)+(p2-pl )2,-(l-p 1)p 2 log(p 1 1 -1) < 

If we define 

                =j-(1-2pl)(2--p Mp -P )R-P (1-P log(p -1 -1) <                           2 2 1 1 2 1. (1.2.14) B(p,3 P2 - 
(1-2p )(l+p )+(p -P )P,-(l-p )p log(P-1-1) if p l >                       1 2 2 1 1 2 1 

then W [u(O)] = B(pl> P2) since u(O) > 0 (< 0) is equivalent to p 1 < 1/2 

(pi > 1/2). Hence by (1.2.12), we obtain 

(1.2-15) u(O) u 0 B(pl .7 P2                                      > 0-

Therefore by (1.2-3) and (1.2.11), the optimal policy can be obtained as 

follows: If B(pl .9 P2 > 0 .7 

0 
                    (to search only box 2) < 1 

(1.2.16) W t 1 -1 if t log(p, -1)-uO.4                     -f Elog(p
l -1)-u 01 > 

                    (to search equally both boxes) 

and if B(pl .7 P2 < 0.1 

t 

(1.2-17) ~*(t) (to search only box 1) if t < u -log(P-1-1).                     t 1 -1 
> 0                   + f Eu 0-log(pl -1)] 

                    (to search equally both boxes) 
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We put Pl . (Pl' P2) IB(_pl, P2) < 0 } and D 2 (P1 1 P2) 1 B(pl, P2) > 0} 

The boundary B(pl, P2 ) = 0 of two regions D, and D 2 is described in Fig. 

1.2.1. Now we shall investigate how the pair of the posterior location 

probabilities of both objects in the first stage varies. When the optimal 

policy is used, let Pi (t) (p 2 (t)) be the posterior probability that the 

true (the false) object is in box 1 given that the first contact does not 

occur until time t. Then by the Bayes' rule, we have 

(1.2.18) Ti (t) P i exp{-~ (t)J U =15, 2) 
               Pi expf-~ (t)j+(l-p i )exP4 (0-0 

which lead us to 

(1.2.19) P2 -l)AP 1 -1) = (P 2 1 -1)/(Pl 1 -1) 

by eliminating ~*(t) from (1.2.18). The pair of the posterior probabilities 

varies along the curve defined by (1.2.19). (See in Fig.1.2.1). 

We st-,Tinma-rize the above discussion in the following theorem 1.2.1.

    Theorem 1.2.1 (a) The optimal policy in the first stage is as follows: 

if (P l' P2 ) E D i (i =1> 2) in Fig. 1.2.1,, search only box i until the 
threshold time t luo - log(pi 1-1)1 and search equally both boxes thereafter 

where u 0 is the unique root of the equation W (u) = 0. (b) The optimal 

policy in the second stage is as ,follows: Let Pi be a probability that 

the true object is in box 1 at the beginning of the second stage. If 

  < (> ) 1/2, search only box 2 (box 1) until time llog(~-1-1)1 and search 

equally both boxes thereafter. 

 1 1 P2

0

  D 2 

D

1 Pi

Fig-1.2.1 Region D i (i =13, 2) and the 

transition of the pair of the posterior 
                                     I I 

location probabilities (p 1 , p 2 ) in 

Section 1.2.
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§1-3 Optimal Search for an Object with a Random Lifetime 

     In winter many alpinists are lost in a snowy mountain and the search 

for them is carried out. In such a search it is important to detect 

the alpinist alive. Since the capability of his survival depends exceed-

ingly on the geographical feature and the weather at the accident -place, 

we must search first in the place where he cannot live long even if the 

efficiency of search there is bad. Furthermore if the alpinist dies, 

his family wants to detect his dead body and therefore the search is 

continued until the detection of his body whether he lives or not. 

    The search problem in such a situation is modelled as follows: 

One stationary object is in one of n boxes with a priori distribution 

<P13 ... P
n > where p i is a priori probability that the object is in 

box i. The lifetime of the object in box i is a random variable ac-

cording to a probability distribution F i (t) which is composed of two 

probability masses a i at t = 01 ~i at t and a probability density 

function f i (t) on the time interval (0, The mass a denotes a 

probability that the object in box i dies before the beginning of the 

search and the mass denotes a probability that the object in box i 
                                                                   Co 

is alive eternally. Note that a i + f f i (t)dt + 1 for i = 1, 

n. Let c be a search cost per unit time which is assumed to be common 

to all boxes. Associated with box i is a search rate X i ( >0) which 

means that the object is detected with probability 1-exp(-X i t) if box 

i contains the object and is searched for t hours. If the searcher 

detects the alive object in box i, he can obtain a reward r i (> 0). 

But if the dead body of the object is detected, no reward is obtained. 

The problem is to find the optimal search policy, i.e., the allocation 

of search time maximizing the expected return (i.e., reward minus cost) 

until the object is detected whether it is alive or not. 
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    A search policy may be denoted by a funciton ~(t) = 1~ 1 (t), 

~n (t)l where (t) is search time in box i until time t and satisfies 

n that (t) = tu and (t) > 0 (i = 1, ...' n) for any t ( >0). First 

we define some quantities. 

gi (t) the expected return of detecting the object in box i at time t 

       r i El-F i (t)] - ct. 

Pi(tl~) the probability of detecting the object by time t given that 

         it is in box i and that a policy ~ is used 

        1 - exp{-X ?i (t)1. 

      the expected return by using a policy 

          n 00 

      Y p. f g.(t) P'(tl~)dt 
       i=l 1 0 1 i 

where P'(tl~) is the derivative by t. Integrating by parts, 

i 

                    n n CO 

              p i r i + I Pi f gi (t)expf-X ?i (t)ldt. 
                               i=l 0 

Since the first term of the equation (1-3-1) is independent of the policy 

  the problem is formulated as follows: 

                       n CO 
(1-3.2) R[~] pi f gl(t)expf-Xi~ 1 (t)ldt :~-max 
                i=l 0 

        subject to 

n (1-3.3 (t) = t for any t (> 0), 

(1-3.4) (t) is nonnegative, continuous and nondecreasing in t (> 0) 

                                                                 for i = 1, ..., n. 

    Remark 1.3.1 The assumption that the search cost c is independent 

of the searched box is a very strong restriction, but if it is taken off, 

the above formulation cannot hold and therefore it seems to be more 

difficult to analyze the problem. On the other hand, it seems that we 

can replace the exponential detection function with the more general form. 
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    Remark 1.3.2 The following search problem can be modelled in the 

same mathematical form as the above-mentioned one. Though the object is 

alive eternally, the reward is assumed to be diminished with time. 

Namely the reward for detecting the object in box i at time t is given by 

r i~i (t) where (t) is a discounted rate in box i at time t and is supposed 

to be nonincreasing in t. For example, if (t) = 1-F i (t), our model is 

obtained. 

    In the next theorem we give necessary and sufficient conditions for a 

policy to be optimal in the Neyman-Pearson type. The necessary condition 

is proved by using the de Guenin's method (1961) with respect to time I 

instead of space. The sufficient condition is proved by considering the 

Gateaux differential. 

    Theorem 1.3.1 Necessary and sufficient conditions for a policy 

                   ~*(t)j to be optimal are~ given as follows: There is 

n a nonnegative funciton p(t) for any t (> 0) such that 

                             00 

(1-3-5) P Xi f [-g1(s)1expf-X.~.(s)Jds < I p(t) if ~~(t) 0. 
               t 1 1 - 1 

    Proof: The proof of the necessity. Suppose that the policy is 

optimal. We consider any tirne t (> 0) such that ~*(t > 0 and define                          i i 

a policy ~ for any box j (k i) and any positive constants 6, At as 

follows: 

                                  if 0 < t< t 

      (t) wt) --L (t-t if t < t < t +At                            At 1 1 - ~ 1 

                             if t                                      1+At < t < 
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          Tt) if 0 < t < t 
      M ~M) + -, (t-t if tj < t < tl+At              i At 1 

            Wt) + if t +At < t <             1 1 -

and (t) = ~*(t) for any k (Vi,j) and any t ( >0). It can be proved     k k 

that if E = 0 (At), the policy ~ satisfies constraints (1-3-3) and (1-3.4) 

for a sufficiently small At. For the policy 

t (1-3.6) R[~*] -'RE~] = Pi f gl(t)Eexpf-x.~~(t)l - expi-X,~i(t)JIdt 

t 

                                                  00 

                  + P f (t)[expf-X ~~-(t)l - exp{-X ~ (t)Jldt. 
                 i t gi i i i 

By the mean value theorem, we have 

(1.3-7) exo{-X- ~~(t)) exp{-x (t)j 

               (t-t exPE-x W(t) (t-t M if t < t < t +At                           i 1 At 1 1 1 

         '-X E exPE-x W(t) a ell if t +At < t <            i i 2 

and 

(1-3.8) exp{-x ~~(t)) - exp{-x (t)j 

                 X. E: 
           j (t - t exPE-x W(t) + (t-t M if t < t < t +At 

          At 1 i i At 1 1 1 

          x e exPE-x {Wt) + 0 if t +At < t <          i 
i 4el] 1 -

where 0 < e i < 1 for i 1, 2, 3, 4. Substituting relations (1.3-7) 

and (1.3.8) into the equation (1.3.6), 

(1-3-9) RE~*] - RE~l 

         -P xie f t 1 +At 9 1 (t)(t-t ) exPE-x (t) E: (t-t )J]dt 
          i At t i 1 i i At 1 

                                    00 

        -P ~ C f g (t) expE-~ W(t) e Oldt 
           i i t 

1 +At i i 1 2 
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              X. E t +At 0 E                                    
I . 1 3        + p f gjl (t) (t-tl)exPE-X. {~~(t) + t- (t-t 1 Idt 

t 

       + PjXjE f g,1(t)expE-X,fWt) + 046]dt > 0 
               t 1 +At i 

where the last inequality follows from the optimality of ~*. Dividing 

both sides of the inequality (1-3-9) by c (> 0) and letting At approach 

to zero, the .first and third terms converge to zero since for any 

function z(s), 1 t +At z(s)ds converges to z(t as At -* 0. Therefore 

we obtain At t 

                               Co 00 

(1-3-10) P-x- f E-g!(t)lexp{-X Wt)Idt > P-X- f E-g!(t)1exp{-X ~~(t)Jdt. 
               t 1 1 i 1 - i J t J 

t If we select boxj (k i)-such that ~~(t > 0. the discussion obtained 

by exchanging i for j in the above discussion can be developed and 

therefore the opposite inequality holds in (1.3-10). Hence-if ~*(t i 

and ~*(t are positive, the equality holds in (1-3-10). In other words, 

if ~~(t) > 0. the left hand side of (1-3-10) is independent of i . Hence 

1 there is a positive function p(t) such that 

                               Co 

(1-3-11) P-x- f E-g!(s)1expj-x.~#(s)}ds = V(t) if ~*(t) > 0. 

t On the other hand, if ~~(t 0, the opposite inequality cannot hold 

in (1.3-10). Therefore 

                            00 

(1-3.12) p.X. f E-g!(s)lexp{-x.~~(s)jds < U(t) if ~~(t) = 0. 
         i J t i i J j 

The relation (1-3-5) is derived from (1.3.11) and (1-3-12). 

    The proof of the sufficiency. Suppose that the policy ~* satisties 

the relation (1-3-5) but',is not optimal. Therefore there is a policy 

such that R[~] > RWI. We put 

                                             n n 

and consider the Gateaux differential R'W: El of the funciton RE~] 

at the point in the direction of E which is defined by 
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    R'[~*: lim 6-1 {R[~* + eCl - R[~*11. 
                                    6-~'O 

By the mean value theorem, we obtain 

6-11R[~* + 
    n CO 

  ~ p. f 9,1(t)c Eexp{-Xj~~(t) + cC,(t)II - expf-X,~~(t)jljdt 
  i=l 1 0 

    n 00 

  ~ Pi f 9iI(t)Yt)(-x i )exp{-x J~~(t) + ee~i (t))Idt 
  i=l 0 

for 0 < 6 < 1. Letting 6 approach to zero, we have 

                                n CO 

(1-3-13) R'E~*: C] P Ai f E-g!(t)lf~ (t) ~~(t)}exp{-X ~*(t)ldt 
                    i 0 

               n t 

            I f f P-X-E-gi'(t)1fWs) - ~~(s)lexp{-X,~~(t)}ds dt 
              i=l 0 0 

                       n CO 00 

            I f f p.X.E-g!(t)1f~!(s) - ~~(s)lexp{-X ~~(t)ldt ds 
               i=l 0 s 1 1 1 1 1 i 1 

                         n CO CO 

            I f Ep-x- f E-9!(t)lexp{-X ~~(t)ldtl{~!(s) - ~~(s)lds 
              i=l 0 S 

n 
          < I f P(S){Ws) ~*(s)lds (by the relation (1.3-5)) 

              i=l 0 1 i 

                       00 n n 

          f P(S){ ws) I ~~(s)Jds 
                 0 i=l i-l 

             0 (by the condition (1-3-3)) 

On the other hand, the functional RE~I is concave in since g!(-[,) < 0 

for i = 11 ... , n. Therefore 

    RE~* + cCl - RE~*j = REU-eW + c~] - RE01 

    > (1-6)RE~*] + cR[~] - -RE~*] = C'{RE~I -- RE~*]}. 

Hence 

(1-3.14) c-l ME~* + E~I - R[~*]J > RE~] - RE~*] > o 

where the last inequality follows from the assumption of the contra-

diction method. Letting E: approach to zero in (1-3.14), we obtain that 

R E~*: Cl-> 0 which contradicts to (1.3-13). Therefore the policy ~* is 

optimal. (q.e.d.) 
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In the next theorem we give optimal search rates at any time. 

    Theorem 1.3.2 If all derivatives f!(t) (i = 1, ..., n) exist at 

1 time t ., the optimal search rates at time t are given by 

                     1 1 9 1 - I (t) 1 -1               X- E!n + ( I - I X- I )( I X- ) I if i 1(t)              i q(t) i g! (t) j I (t) 
(1-3-15) ~~(t) = jei(t) E 

                0 if i I(t) 

where 

(1-3-16) I(t) =- Ulp X E-gil(t)lexpf-Xi~4(t)l = -PI(t) and- > 

    Proof: First we put K(t) =- {il~*'(t) > 01 and prove that K(t) I(t). 

i If i 6 K(t), the equality holds in (1.3-5) and therefore by differentiating 

its both sides in t, we have 

(1-3-17) p X E-gj'(t)1expj-y~(t)j W(t) 
        i i 

or 

        Wt) = X-1 {log(p X E-gil(t)]) - logE-PI(t)JI.           1 i i i 

Differentiating in t once mre, 

       I q(t) 
(1-3.18) ~* -1 11          .(t) E-               i g

,!(t) - W (t) 

Since ~t(t) > 0, we obtain that g~!(t)/g!(t) > Therefore 

i e I(t), i.e., K(t)C: I(t). On the other hand if there is a box i such 

that i CE I(t) and i e~- K(t), then the relation (1-3-17) and ~*(t) = 0 are 

satisfied. Hence by the same method as the above discussion we obtain 

that g," (t) /g l! (t) = 1, 11 (t) /11'- (t) which contradicts to i E I (t) . Therefore 

K(t)- _7:)I(t). The proof of K(t) I(t) is completed. Next substituting 
              n f 

(1.3.18) into 1, we have 

                  iEI(t) gi,(t) W(t) 

                           24 -



or 

(1-3-19) (1 X                                g
il (-G) J                      jC-I(t) jC_I(t) 

Substituting (1-3-19) into (1.3-18), we obtain (1.3-15). (q.e.d.) 

    Rem-ark 1.3.3 Since the funciton ji(t) is not known, the optimal 

T search rate ~~(t) is not explicit in Theorem 1.3.2. Later we shall 

consider the case in which the optimal search rates can be obtained 

explicitly. 

    Remark 1.3.4 Let p i (tl~) be the posterior probability that the 

object is in box i given that it is not detected until time t by a 

policy ~. By the Bayes'rule, we have 
n 

   pi(tW = Pi expf-~ i~i (t )}E X p expf-X 
                             j=1 i 

If i-E I(t), then p i (tl~*)X i [-gl(t)] is independent of i by Theorem 

1.3.2,, i.e. .,- the optimal search policy is to allocate search time to 

equalize the value of p i (tl~*)X iE-gi'(t)] for all boxes which are 

searched at time t. But we must note that the optimal policy is not 

necessarily to search all boxes maximizing p i(tl~*)Xi [_911(t)]. Later 

we shall give an example which indicates this notice. Specially in the 

case that the object is alive eternally, it is well-known that this 

property holds, i.e., the optimal policy is to search in all boxes 

maximizing the value of p i (tW)X i for all t (> 0). 

    Next for the purpose of obtainning the optimal search rates expli-

citly, we restrict our attention to the case that the lifetime density 

functions f I (t) (i=l, n) are differentiable at all t E (0, co). We 

put 
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and

(1-3

 h (tW p X E-g!(t)1expf-X.~.(t)I 
  i i i 1 1 1 

 J(t) =- {ij h i (tj~) = max h i (tj~)j 
                  1j <n 

define a search policy by 

                    9 if 
            X-l[ i + (l            i gl(t) 

.20) ~!(t) jc-j(t) 

0

(i = 1, ..., n) 

t E EO, -)

    9 T.f (t )    11 )( ~ if i 
  gil(t) jEj(t) 

                    if i

    Lemma 1.3.1 Suppose that f i (t) (i = 1, ..., n) are differentiable 

at all t E (0, -). If the policy ~ given by (1.3.20) searches box i at 

time t, then it searches box i at any time in Et, 

    Proof: Suppose that though the above policy ~ searches box i at 

time t, it does not necessarily search box i at all time t e Et, 

Hence there is a time s > t) such that i G J(s) and i (~ J (s+At) for 

any small At (> 0). Consider box j such that j G J(s+At). Therefore 

(1-3.21) h i (s + Atj~) < h i (s + Atj~). 

if j ~ i(s), then h (SW > h.(sj~) whi-ch is contradictory to the conti-
               i i 

nuity of the function h*(tj~) in t. Hence J(s), i.e., 

(1-3.22) h i (sj~) = h i (sj~). 

On the other hand, we obtain 

(1-3.23) h!(sj~) = p X expf-X WIE-g~!(S) + giI(s)XiWs)1-

Substituting (1.'.20) into (1.3.23) Enote that i E J(s)], we obtain 

(1-3.24) h!(sj~) = h (sWix Econstant in il 

i 

                = h 
i (s j ~) x Fconstant in j (by the relation (1 - 3. 22) 

              = h!(sj~) 

.Two equations (1 -3.22) and (1-3.24) lead us to the fact that 

        h i (s + Atj~) = h i (s + Atj~) 

which contradicts to (1.3.21). Therefore by the contradiction method, 

the proof is completed. (q.e.d.)
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    Theorem 1.3.3 If fi (t) (i = 1, ..., n) are differentiable at all 

t C- (0, -), the policy defined by (1-3.20) is optimal. 

    Proof: If i G J(t), then J(s) for any s (> t) by Lemma 1.3-1. 

Hence h i (sl~) > h i (sl~) (i = 1, ..., n) for any s (> t). Therefore 
                     CO 00 

        f h i (sl~)ds > f h i (sl~)ds (j = 11 ... , n) 

which denotes that the policy ~ satisfies the sufficient condition in 

Theorem 1.3.1. The proof is completed. (q.e.d.) 

    Remark 1.3.5 Since h i (tl~) depends not on (s) (s > t) but on 

  (s) (s < t), ~!(t) given by (1.3.20) can be determined by only ~ (S) 

(s < t). Therefore the optimal policy ~(t) can be obtained explicitly 

by a successive method with respect to time. 

    Remark 1.3.6 if 'the object is alive eternally or if all rewards 

r i n) are zero, then [-gl(t)] = c for any i, t. Therefore 

a policy which searches at time t all boxes maximizing 

p X expf-X in proportion to X-1 is optimal. 

     Numerical Example 1.3.1 We consider the 3-box case with the ex-

ponential lifetime distribution, i.e., F i (t) = 1-exp(-O it) (6i > 0) 

for i = 13 2, 3. We give the values of parameters as follows: 

<pl' P2-' P3 > = <0-5, 0.3, 0.2>, (XII X 21 X 3 (0.63 0.9, 1.2) 3 

(013 0 2' 0 3 ) = (0-1, 0.3, 0-5)31 c = 1 and r 2 (i = 1, 2, 3). 

We can obtain the optimal search policy ~* by Theorem 1.3.3 as follows: 

    h (tl~ p X Ir 0 exp(-e t) + clexpf-X Wt)).      i i i i 1 

                              0.36 (i = 1) 

    h i(OW) pi X i (r i 0 i + c) 0.432 (i = 2) 
                                 0.48 (i = 31) 
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Since h 3 (01~*) > h 2 (01~*) > h 1 (01~*), must search only box 3 until 

time t 1 such that h 3 (tlJ h 2( 11 i.e., t, is the unique positive 

root of the equation 

    0.24{exp(-0.5t) + llexp(-1.2t) = 0.2710.6 exp(-0.3t) + 11. 

If t < t < t 2 -$ then must search box 2 and 3. with rates given by 

(1-3.20), i.e., 

              4 _ 3 13 + 5 exp(O -3t)]-l + --~- El + exp(O-5t)1_1 (i = 2)               7 21 

             3 + I F3 + 5 exp(O .3t)]-l _ 5 El + exp(O.5t)]-l (i = 3)              7 7 - T, 

The time t 2 is given by h 2 (t 21~*) = hl (Y~*)' i.e., t2 is the unique 

positive root of the equation 

     0.2710.6 exp(-O.'3t), + 1) expf-0.9 ~*(t)} = 0.310.2 exp(-O.lt) + 1} 2 

where is given by            2 ~' L' 

    ~*(t) f t {3+5 exp(O-3s)}-' + -~- fl+exp(0.5s)}-']ds     2 t 7 21 7 

if t 2 < t < must search all boxes with rates given by 

       6 7 11+5exp (0. lt) 1-1 + 6 13+5exp(O-3t)]-l + 15 [I+exp(O-5t)]-l       T-3 7-9 13 77 

        4 4 1 9 -1 10 -1 O(t)= : + 11+5--xp(O.lt)]- 13+5exp(O-3t)] + [1+exp(O-5t)] i 13 78 13 78 
                                                        (i = 2) 

       3 + a 1-1+5exp(O.lt)1_l + a 13+5exp(O-3t)]-' _ 25 [1+exp(O.5t)]-l      13 78 13 T8 

                                                    (i = 3). 

    Remark 1.3.7 If the object is alive eternally in the above example, 

it is a well-known resutl that since pix I > P 2 X 2 > p 3 ), 33 the optimal policy 

begins to search each box in order of box 1, 2, 3. But in the above example, 

the order must be box 3, 2, 1 since the expected lifetime in each box 

is given by (0-1 .5 6_1 .9 0_1 (10, 10/3, 2), i.e., though the efficiency            1 2 3 

of search is wrong in box 3, box 3 must be searched first since the
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expected lifetime is very small there. 

    Numerical Exan~ple 1.3.2 Next we consider the case of the nondi-

fferentiable lifetime density function. Theorem 1.3.2 cannot give the 

optimal policy explicitly and Theorem 1. 3.3. cannot hold. The author made 

efforts to find an algorithm to obtain the optimal policy explicitly, 

but could not find an available algorithm. It seems that we can follow 

Theorem 1.3.3 in the general situation but must make a suitable modi-

ficatlon in the neighborhood of the nondifferentiable point of f 
i(t) 

(i = 1, ...' n). To see this point, we give a numerical exanple. 

Consider a two-box problem with uniform lifetinie distributions 

             t/a (0 < t < ai) 
    F i(t) 

1 (a i < t < (i 13 2). 

We give the values of parameters as follows: <p
l, P2 > <0.6. o.4>1 

0~15 X2) = (0-7, 0-9). (al. a 2 (6, 3), (rj, r 2) = (3, 4) and c = 1. 

We put h.(tj~*) =_ p X E-g1!(t)1expf-y~(t)}. Theorem 1.3.1 states 
that it is optimal to search at time t in boxes maximizing an area of 

a region generated under the function h i (sj~*) on the interval [t, -). 
Therefore we must construct the optimal policy such that this property 

is satisfied at any tim. After trial and error, we offer the policy 

given by Table 1.3.1 as the optimal policy (which will be proved to be 

optimal later). Table 1.3.1 denotes boxes to be searched in each 

time interval. If ~* searches both boxes, then the proportion of the 

search in box 1 is x-1 /(X-l +X-l 9/1 by Theorem 1.3.2.                1 1 2

  time interval 

boxes to be searched

(0.1 t 1 ) (t13 t 2) (t2 -' t 3 ) (t 33 t 4) (t4l t 5 ) (t 

     2 132 ....... 1. - 1 _,2 2
5-1 00) 

 1,2

Table 1.3.1 The policy ~*: t 2 < 3 < t4l t 4 < 6 < t 5 
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For this policy ~*, h i (tj~*) (i = 1, 2) can be calculated as follows: 

            0.63 if 0 < t < t 

             0.63exp[7-0.7x -2-(t-t if t < t < t                     16 1 1 
2 
           0.63exP[-0.7{ 9(t -t ) + (t-t )11 if t < t < t -                         16 2 1 2 2 - - I 

h (tj~*) 0.63exp[-0.7{ 9 (t -t ) + (t t ) + -I(t-t )11 if t < t < t  1 16- 
2 1 3- 2 16 3 3 - - 4 

            0.63exp[-0.7{ 9 t ) + -2-(t t if t < t < 6                      71(t2-tl) + (t3- 2 16 4- 3 4 -

           0.42exPE-0.7{ 9 (t -t ) + (t -t ) + 9 if 6 < t < t                       17 2 1 3 2 71(t4-t3 - - 5 
                  9 9 9             0 .42exp[-0-7{-1-6(t2-tl) + (t3- 6 2) + -16(t4-t3 + -1-6(t-t 5 M 

                                                   if t 5 < t < 

            0.94exp[-0.9t] if 0 -< t < t 

            0.94exp[-0.9{t 4 7 (t -t i fol t < t < 3                     1 16 2 1 2 -

h (tl~*) 0.36expE-0.9L't + -L(t -t )JI if 3 < t <,t 2 1 16 2 1 3 

           0.36exp[-0.9{t + 7 (t -t + 7 + (t-t )11                      1 17 2 1 71(t 4-t 3 4 

                                                     if t 4 < t < t 5 

          hi(tle) otherwise 

which are described in Fig.1-3.1. Here five threshold times t 
i (i = 1 

... 1 5) are determined as follows: The policy ~* starts at time 0 by 

searching only box 2 and therefore the function h 2 (tj~*) decreases in 

t and at last intersects the function h 1 (tj~*) [= h 
1 (01~*) = 0.631. 

Let t 1 be the first time at which h2(tj~*) = h
l(tj~*), i.e., t, is a 

unique root of the equation 

    0.94exp(-0.9t) = 0.63. 

In the time interval (til t 2 ), since both boxes are searched, h 
1 (tlo*) 

= h 
2 (tlo*). In the interval (t 21 t 3 ), only box 1 is searched and 

therefore h 1 (tjO*) decreases in t and h 2 .(tlo*) is constant except that 

it falls instantaneously at t = 3 since f 2 (t) is discontinuous at 

t = 3. See Fig.1-3-1. Let t 3 be the first time at which two functions 
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h i (tj~*) (i = 1, 2) coincide with each other again. If we fix the 
time t 23 then t 3 can be determined as a function of t 

2 by the root of 

the equation 

   0.63exp[-0.71-2-(t -t ) + (t -t M = 0 .36exp[-0.91t + -L(t t M.                16 2 1 . 3 2 1 16 2- 1 

We determine t 2 (therefore t 3 also) such that two regions A 
1 and A 2 

in Fig.1-3.1 have the same areas ., i.e., 

    f t 3Eh (tl~*) - h (tj~*)Idt = 0.      t 2 1 2 

Similarly ., we deternane t. and t 5 such that two regions B 1 and B 2 

in Fig.1.3-1 have the same areas. Thus we obtain the following values: 

   ti = 10 4           log 0.32) t = 3 --~ log 7 2 .395)       9 2 7 3 

   t = 3 + -~ log 7 (:--. 3.605) t = 6 - ]:-0 log 0- 5.176)    3 7 3 4 9 10 

      = 6 + 10 log 21 (---. 6. 824).          9 io 

Finally we prove that the above policy ~* is optimal . Let p(t) be a 

function which is defined by 

          h 1(tl~*) if t E (t
13 t 4 ), (t 53 00) 

          h2(tj~*) otherwise. 

The function p(t) is expressed by the area of the region which is formed 

below the function -ijl(t) on the interval Et, -). See Fig.1-3-1-

Taking the way of constructing functions h 
i (tj~*) (i = 1, 2) and p(t) 

into account, it is evident that ~* satisfies the sufficient condition 

of Theorem 1.3.1. Therefore ~* is optimal . 

                                                                                co 

    Remark 1.3.8 Though p(t) = max f h 
i (sj~*)ds, it is not satisfied 

                          i t 
that -pl(t) = max h 

i (tj~*), for example, see the graphs on the intervals 
i [t 2-5 31 and Et4, 61 in Fig.1-3-1. Hence Theorem 1.3.3 does not hold in 

this case. See Remark 1.3.4. 
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     In the model treated until now, we supposed that the search is 

continued until the detection of the object because tha family of the 

alpinist wants to find him though he is deceased. But if a search 

cost c is positive, it is reasonable in general to stop the search at 

a certain time because the expected search cost becomes larger than 

the reward. Hence we face a stopping problem with permitting to stop a 

search at any time. We modify the above model about the following 

points: 

1. The searcher is allowed to stop a search at any time. 

2. The objective is to maximize the expected return until the termination 

    of the search .., i.e., detection of the object or stop the search. 

A policy in the modified model can be denoted by (~, T) where ~ is a 

search rule and-cis a stop ing time. Let be the expected return                             PP 

by a policy T) and therefore we obtain 

                 n T n 

           P f g,(t)P!(tJ~)dt + fl p P (Tl~)J (-CT). 
            i=l i 0 1 i i 

Integrating by parts, we have 

                                     .n n 

(1-3.25) p.r.(l-a.) + X p. f g!(t)expJ-x.q(t)}dt 
                                      i=l 1 0 

n 

                    p r [1-F (T)Iexp{-x i~i (-0). 

     Theorem 1.3.4 For a fixed stopping time T, necessary and 

sufficient conditions for a search rule ~* to be optimal are given 

as follows: There is a nonnegative function p(t) for any t >0) such 

I that if ~~-(t) 1>1 0. 

(1-3.26) p X, f '(s)lexpl-A ~`,.'-(s)}ds          i t 91 

               + P r [1-F.(T)Iexpf-x W-1)) -)Ij(t). 

< 
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     Proof: We can prove this theorem by following the similar proof 

to that of Theorem 1.3.1. (q .e.d.) 

We can prove that Theorem 1.3.2 and Lenm 1.3.1 hold with no modification . 

But Theorem 1.3.3 cannot hold since maxirrdzing h 
i (tj~) does not guarantee 

the sufficient condition in Theorem 1.3.4. 

     Theorem 1.3.5 If f i (t) (i = 1, ..., n) are differentia ble at all 

t e EO, -), then we have 

(i) For-a fixed stopping time T, a search rule4,which searches at 

     tine t in all boxes maximizing h i (tj~) with rates given by (1-3.20) 

      is optimal if ~!(T) > 0 for i = 1, .... n. 

(-Ji) If the optimal stopping time T* Ifor the search rule ~ given in (i) 

     satisfies that ~!(T*) > 0 for all i, then it is a root of the 

      equation 
n 

(1-3.27 p.f~.r-El-F (T)1~!(-c)-c}exp{-X (T)l = 0. 

    Proof: (i) If an optimal search rule satisfies that WT) > 0 

for all i, we obtain by Theorem 1.3.4 that 

    p X r [1-F (T)Iexpf-x WT)l = P(t) (i = 1, n).     i i i i i I 

Therefore the relation (1.3.26) becomes 
                'r 

f > 

  P Xi f E-g,!(s)lexpf-Xi~~(s)lds f I P(t)- P(T) if Wt) {-I 0    i < t 

which has the same form as the relation (1-3.5) except that the integral 
               00 T 

region f is replaced by r . Hence Lema, 1.3.1 and Theorem 1.3.3 can 
      t t 

hold with a slight modification and therefore ~ is optimal. 

(ii) d 0 leads us to the equation (1.3.27). (q.e.d.)     dT 
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§1.4 Discrete Search with Time-Dependent Conditional Detection Probabilities 

    Various types of allocation problems of search effort to detect a. 

stationary object are analyzed in many literatures, but the conditional 

detection probability is always constant in time (or period). In this 

section we consider a fundamental search model with time-dependent conditional 

detection probabilities and obtain an optimal search policy in some special 

cases. 

    There is a stationary object in one of n boxes with a priori distribution 

p '~ <Pl.%***.l Pn >. Let .6 i'm be a conditional probability that the object 

is detected by one look in box i at the m-th period given that it is in 

box i and is not detected until the (m-l)st period. The objective is to 

find a search policy which maximizes the probability of detecting the 

object by the M-th period. When we are in the m th period and have the 

prior location distribution p = <pl.1-31 Pn > of the object, we express 

that the search process is in state (p, m). Starting from state (p, m) 

(m < M), let f W be a probability of detecting the object by the M-th 

m period by an optimal policy. By the principle of optimality in dynamic 

progrwn'ning, we have 

                 max 
(1.4.1) f (p) = I Ep + (1-p )f          m i i

.,)M i i'm m+,(T M'ip)] 

                 (m = 1.1 21 ... I M ; fM+l(p) 0) 

where T 
m1i p is the posterior location distribution of the object given 

that the search in box i at the m-th period is unsuccessful. By the 

Bayes' rule, 
I P 

(1.4.2) (T ip) Kronecker's delta).            M
> 1-P i ~i 

In the time-independent case, i.e., the case that ~i
'm for any m, 

it is well-known that a search policy can be described by only the number 

of looks in each box and that the myopic policy (which searches at each 

period in a box maximizing the current detection probability) is optimal. 
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    Kadane (1968) deals with the case that a conditional detection 

probability in any box does not vary in time so long as the box is not 

searched. Let Yi
,k be a conditional probability of detecting.the object 

by the k-th look in box i given that it is in box i and is not detected 
                                               k-1 

until the (k-l)st look in box i. When p H (1-Y is decreasing                                      i
'k p iX=l i'Y' )y i'k 

in k for any i, Kadane proves that there is a nuirber r (0 < r < -) such 

that if p i
,k > (<)r,, the k-th look in box i is (is not) involved in the 

optimal policy. This result asserts that the myopic policy is optimal. 

In our model, a search policy depends on the order of looks and the myopic 

policy is not necessarily optimal. The following example (2-box, 2-period 

case) points out these facts. Let ~ 2/3, ~ -*~ 7/12, ~ = 1/23                             11 12 21 

M ~
22 = 116 and p = <112, 112>. The myopic policy is a = U.,l), namely, 

searching only box 1. On the other hand, since detection probabilities by 

four policies (1, 1), (1, 2), (2, 1) and (2, 2) are 31/72, 30/723 39/72 

and 21/72 respectively, the optimal policy is a (2, 1), namely, searching 

box 2 at the first period and 1 at the second. 

    A search policy can be denoted by (613 6 2 6 M ) where 6 m indicates 

a box to be searched at the m-th period. First we obtain an optimal 

search policy for the two-period case. 

     Theorem 1.4.1 The solution of the two-period case is given as follows: 

Suppose that p 1 11 > p Al > p i~ii for any i OF1, 2) and that . 
            > p for any j( k k, Z). If k k 1, then the policy PA2 > pt k2 i j2 

a (1, k) is optimal and f 1 (p) = pl~l 311 + p A.92* If k = 1., then 
                pl~li + Pl('-kl)~12 a 

                 max p + p (1.4-3) fl(P) = miax 1~11 OU a (1.9 

                 phl + p 1~12 a (217 1). 

I 

    Proof: Since f2(P) = nl~x(Pi~i2). 
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        max [ max )      (P) = i P1 ~il + (1-pi ~il) j t J 1-P 1J 11 ~i2 
                           i ki J 

       = max piil+,. 'i) pj'j2 ~'                        pi(l-~ il )~ i21 

               max (
p             i(,-k) i~il ' PA2 

            PAl + [pk(!-'kl) k2j V(PZ~~2) 

where av b = maxi a,'bJ. If k 

            p + Pk k2 
     f- (P) = max 1 

      L V 
            P-k + 'Pk(I 'kl) k2] 1pZN,21-

Since p,~ ~>       - 11 - 111k~,, and p Ok2 -~> [Pk(l-'kl)a -k2JV(p0P,2)1 
fl(p) = pl~ll and the optimal policy js a = ~_            -L + Pkk- 2 t1, k). if k 

    fl(p) = max P2~21 + p 1 ~12 
             p + ~ I V(p                       LP, (1- a 2 Z~ 2,2) 

                     e -US which leads -us to th =ncl ion of 'his theorem . (q.e.d.)

and

Remar~k 

(1, Z)

 1.4 

are

.1 in the above theorem, , oDtimal 

Myopic. But the optimal policy a

policies 

= (2 , 1)

(13 

is

k), 

not myopic.

     Since it is difficult to analyze the n-box 1, M-period model in -enerall, 

we shall restrict our attention to the 2-box , M-period case in which a 

conditional detection probability in box 2 is constant in time . Let 

<p, 1-p> be the prior location distribution of the object . Let a (~) 

m be a conditional detection probability in box 1 (box 2) at the m-th period 

where ~ is constant in period. See Table 1.4 .1.

 p
p)

m = 1 = 2 = M

box

box

1

2

Ot 2 Olm

Table 1.4.1
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9he optimality equation is 

              D pa + (1-pa (P m 
    If (p) = max 1 M m M+l~ 1-pam 

M 

              D (1-p)~ + fl-(l-p)~Jf P                 2 m+l(-1-Ti---pT~ ) 
                                       (M = 1.1 21 ... I M; f, (p) = 0)                                                    IVI+1 

where D. denotes a look in box i. Without loss of generality of the 
       1 -

problem we can sup ose that a > Ot > ... > aM. Let be the set of                            1 - 2 - - Sk 

Do!-!ci=-s which are comoosed of k looks in box 1 and (M-k) looks in box 2. 

                    k . k- k -Ivl-l,- )
, --'L.e., cy k searches only box 1 until De:'=.e a policy a DY G I:f 

the k-L-.h Deriod and only box 2 afteni,-,--d. Let f- I(P; 6) be a detection 

probability by using a policy 6. 

     Len= 1.4.1 For any p (0 < p < 1) and any k ( =0, 1, ..., M), 

f~(P; a') , f (P; 6).             6ES' 1 

k      Proo 'L: -,",or the policy a ana any policy 6 = (61 1 6 M )6-S k' vie 

                     'ollowing expressions in which 11 1 for a null can easily oblaLn the 

                                               ie~ 
s et (P 

                         k M-k (1
.4.4) f 1 (p; p[l- H (1-a + (1-p)[1-(1-~) 

                                 i=l 

(1.4-5) fl(p; 6) P11- H (1--ai)] + (1-P)El-(l-~) M-k I 
                    iEI 

where I H U16i = 1 .1 1 < i < M.7 integerl. Comparing (1.4.4) with (1.4-5), 

k the conclusion of this lemm is clear by the construction of the policy a . 

                                                                       (q.e.d.) 

    (k) k-1) f k, Let p be the unique root of the equation f-(p; CF (P; a ). i.e., 1 

(1.4.6) p (k) (k =1, ..., N) 

               ak k H 1 (1--ai) +~(1-0) M-k 
                      i=1 

which is nondecreasing in k. We put p(O) = 0 and p (M+l) 1. 
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     Theorem 1.4.2 If k is an integer such that p (k) < p < P(k+l) 
, then 

 the policy a k = (lk ~V 2M-k) is optimal and the detection probability by 

 crk is given by (1.4.4). 

     Proof: By Lemma 1.4.1, we obtain 

     fl(p) _ max 
. a k)                k=0 .1 1'.. 5 M fl(p; 

which denotes that f (p) is the minimum convex function over (M+l) 

    4- k surai,phtlines since f 1 (p; a ) is linear in D. Noting that the coefficient 

Of p in f' (p; 'on of this theorem          'i a ) Ls nondecreasing Ln. k , the conclusl. 

is clear. (q .e.d.) 

     Remark 1.4.2 We consider the case that a 
m = a for any m. Since 

fl(p; a k f,(p: 6) for any p and any 6 c= S we obtain that 
k 

                                                                                                   T-)      0 < < 

 T D < P < 
2                (M) the decision D, ancl D is optimal at the first 

    p (M) < D < D 1 

period. On the other hand, the myopic policy is to search box 1 (2) if 

  > Since 

     (1) - ~(1-8) IM-1 (M)      p 
M M-1                         L-1 - U+~ 

a(l-a) 

the m-yopic policy is optimal . This is a well-known result. 

    Remark 1.4.3 (i) When = 0, the policy 1 M (to search only box 1 

in all periods) is optimal for any p . (ii) When 15 

    0 < 1) < p(M) lk-l M-k                                                     3 2, 1 if 
(M) the policy is optimal     P < 

P M 

where k is an integer such that a 
                            k i 'i' 

    Numerical Example 1.4.1 We consider a 2-box , 5-period case where
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detection probabilities 

we can obtain that 

    (1) = 16/78 0 .09 p 

    (3) = 8/11 0 .73 p 

   p (5) = 20/21 0.95

are given

, 

,

by Table 

p (2) 

p (4)

1.4.2. Calculating by (1.4

16/43 z-.-- 0.37 

8/9 :--. o.89

m = 1 m = 2 m = 3 m = 4 = 5

box 1 1/3 1/5 1/2 2/3 1/4  P box 1 1/3 1/5 1/2 2/3 1/4 

 1-P box 2 /,:z 1/3 V3 1/3 1/3 

                              Table 1. 4. 2 

By using Theorem 1.L.2, th.e optL-nal Policy can be obtained. (See Tlable

Condition Optin,02, Policy Condition ( -imal PolicyDiDt

0 < <

(i) (2)p < < p

p (2) < p < p

(2, 23 21 24 2)

(23 23 2~1 11* 2)

(22; 21 l-, 1, 2)

P(3)

p (4)

p (5)

< 1D <

< p <

< p <

U (4)

p ( 151)

1

21 i, L!, 2)

(1.1 21 11 li 1)

(1, 1, 1, i, 1)

                               Iable 1. 4.3 

     Finally we consider a 2-box, IM-period case where the conditional 

detection probability -1r- box 1 (2) at the m-tuh period is a 
m (~ m ) which is 

assumed to be nonincreasinc- (nondecreasing) in m. We can carry the analysis 

in this case by the same method as the above discussion and obtain tL11-Le 

following theorem. 

                                   (k) (k+l)     Theorem 1 .4.3 If k is an integer such that p < p < p then 

a policy a (k) = (l k 31 2 M-k ) is optimal, where 
                        M i-l 

                ~k fl- I ~- 11 (1-MI k =11 ... I M 
    p (k) k-l i=k+l j=k+l M i-1 

p (0) =01 p (-M+l) = 1            ak H ('--ai)+~k {1-. ~ H (1-a -) I ( 
              i=l i=k+l j=k+l j
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Furthermore 

   fi(p)

the detection probability 

   k i-1 

p ~ a i H (1-a-) + U-P) 
 i=l j=l j

by the optimal 

 m i-l 

 I ~i . H (1-~ 
i=k+l J =k+l

policy is 

i ) .

given by
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Chapter II Optimal Search for a Moving Tartet 

§2.1 Discrete Search for a Circularly Moving Target 

     In this section we consider a search for a target moving circularly 

among n boxes according to a Markov transition matrix Q a [q
,,] where 

q,j denotes a probability that the target being inbox i at some period 

moves to box j at next period. We assume that 

                b if j = i - 1 

               1 a b if j = i 
(2. 1. 1) qij 

a if j = i + 1 (i 5 j n) 

                0 otherwise 

where subscripts 0 and n +1 mean box n and box 1 respectively. Let 

p = <p 1 p n > be a priori distribution of the target at the start of 

search. Associated with box i (i n) is a conditional probability 

  that the t-arget is detected by one look in box i given that it is in 

box i. The objective is to find a policy minimizing the expected number 

of looks to detect the target. 

    Let V(P) be the minimum expected number of looks until detection 

given that the prior distribution is p. By the principle of optimality, 

the basic equation is given by 

(2.1.2) V(p) min El +(l-P ~.)V(T.p)]                     i=l
,..,n i 1 1 

where T Ip is the posterior location distribution of the target after a 

look in box i has failed to detect it located with the prior distribution 

p and after a new movement of the target has occurred. By the Baye's rule, 

we obtain 

    T.p = <(T.p) (T.p) > 
                            1 n 

                                   +p.(l-6.j~ L)(l-a.-b )+P (1-6 (2-1-3) (T.p). pj-!- (1-6 iIj-l i )a i-1 J J i j+l i1j+A 
            i J                                        1 - p 

                i, j 1, n ; 6 
ij is the Kronecker's delta. 
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     Pollock (1970) considers the two-box case of the above model where 

a target moves between two boxes according to a Markov transition matrix 

                      1 2  (2.1.4) 1 - a a 
bl                  2 b 1 -

His min results are the followings: (i) In the perfect detection case 

(~ I = ~2 = 1), there exists a threshold probability p such that it is 

optimal to search box 1 (2) if p > p where p is given by 
1 

               (a + b + !)--L if b (a + b + 1) > 1 and b > a (a + b) 

              a(a +b)-i if a < b(a +b) and b < a(a +b) 
(2-1-5) p = -1 - -             (

b + 1) (a + b + 2) if b(a+b+l) < 1 and a(a + b + 1) < 1 

              (a + b) (a + b + 1) -1 if a > b(a +b) and a(a+b+!) > 1. 

(ii) In the null information case (a +b = 1), it is optimal to search box 

(2) if p > (<) p 0 = ~-l /(~ -1 + ~ -1 ).                 1 1 2 

     If we Dut E = <U1 O>, then p can be regarded as a 

point in a sin-plex S which is defined by a convex hull of the set 

                                --'L                  n 
L, uh            ~! J. The next theorem sho~,is that t e posterior distr ibution 

T,p can be regarded as a point of the posterior sirriplex T .S which is 

defined by a convex hull of the set {Q Q n I where Q is the i -th 

row of the transition matrix Q . 

    Theorem 2.1.1 The posterior distribution T 
ip can be represented by 

a linear convex conbination of n points Q Q n i .e., 

n 

             (j) (2.1.6) Tip ~L 
ijQ ere ~ ij              j=l 1-p

i~ i 
0     Proof : Let T
ip be the posterior distribution of the target after a 

look in box i fails to detect it located with the prior distribution p , 

i.e., 
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          0 p (1-6ijY 
           (T U, j = 1., n)            ip 

1-P i~i 

                                 T 0 n T 0 p) Qj and therefore  Hence by the definition of Tip, Tip 1p)-Q 

                0 j=l  if 
we put ;~,j = (Ti-p)j,, the relation (2.1.4) is clear. (q.e.d.) 

 The next corollary is clear without proof. 

      Corollary 2.1.1 In the perfect detection case (i.e., 1 for all 

                                                                                                     4 r)-L I        e iDoster-or sL-nlex T. S becomes a convex hall of ,-he set        th 

     -I
, ~4  Q- - I a-rid the weig,,t X,, kJ T i) is in proportion to p j, 

     Lemma 2.1.1 lihe function V(p) is concave in p. 

     Proof: For any policy a, let V a (p) be the expected number of looks 
.1 

 to detect thee -Lar,;~et by the policy (a given that the prior distribution 

 is P. Put p Xp i + (1-X)p for any p p E S. 
                             n r               ir-f- (p) -nf i inf - - 1 2      V(p) V 

p.V (E +(l-~,)p4TV (E-)j 

                  n n             Lr-f -J)] 2-nfrXV (
pl)+ 2)-1                   IIa(E1)+(l-X) p~i E U-X~v -(p                 p-

          > X Lrif 1 inf. 2 XIAP 1 )+(l-X)V(p 2 (q.e.d.)          - a Vp )+('-X) , V2(P 

     Lemma 2.1.2 In the perfect detection case, the function V(p; i) E 

 1 + (1-p i )V(Tp) is linear in p on any line segnent which has the vertex 

 E as an end point. 

     Proof: Let W be a point at which the above line segment intersects 

         ex hull of 'he set fE 1 E i-l E1+11 ...3 E~I. TT-ien W  the conv 

     I ..., wi-13 01 W. ... , w >. Any point p on the above line segment  *'-Wl 1+11 n 

 can be denoted by p = <kw I kw i -l' 1-k.1 kw i+l kw n > (0 < k < 1). 

 By the relation (2.1-3), we obtain 

     (T ip) w j -1 (1-6 i ,j-1 )a 1 -1 +W 1 (1-6 ii )(1-a i -b i )+W j+l (1-6 iIj+l )b j+l 
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which is independent of k. Hence T.p is constant in p on the above line 
1 

segment. The proof is completed. (q.e.d.) 

     Definition: A set A is star-convex with respect .to a point p 0 C- A 
0 if and only if p,-- A implies that Xp + (11-X)p Ei A (Q,:< A < 1). 

We, define the , wt:Lmal decision regions D. (i =1, n) by D~* 
~{p Ito search box'i is optimal for pl. 

    Theorem 2.1.2 In the perfect detection case ., the optimal decision 

regions D (i= 1, n) are star-convex with respect to the vertex E 

    Proof: It is clear that E D i* For any p r= D and 0 < X < 13 

V[Xp+(l-X)Ell < V[Xp+(l-X)El; il 

            = XV(p; i) + (1-X)V(E i i) (by Lema 2 .1.2) 

           = XV(p) + (1-X)V(El) 

            < V[Xp+(l-X)El] (by Lemma 2.1-1) 

Hence VEXP+(l-X)El] V[Xp+(l-X)El; il which implies that Xp + D. 

                                                                         (q.e.d.) 

     In the followings, we consider some examples of the three-box case 

under the assumption of perfect detection. In dealing with the three-

box case,- it is helpfull to regard <pl ., p2' P3 > as the barycentric 

coordinate of the point p and to visualize it in the equilateral triangle 

of height unity where the distance between the point p and the opposite 

side of the vertex E i is p i* In the next corollary we restate the contents 

of Corollary 2.1.1 to utilize it in the three-box case. 

     Corollary 2.1.2 In the three-box case with perfect detection ., the 

posterior distribution T i p is plotted in the triangular chart as a point 
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                                  i-l i+l 
which partitions the line segment Q Q by the ratio p i+1 : p i -l where 

Q 1 = <l-al-bl, a,, bl>., Q 2 <b 25' 1-a 2 -b 21 a,,> and Q3 = <a 3-1 b 3-1 1-a 3 -b 3~-

    Example 2.1.1 We consider the case of a b a (i = 1, 2, 3). 

In this case the situation is symmetric between any two boxes in all respects 

and therefore the optimal decision regions are given by D {p1pi = max I                                                  i Pj 

(i = 1, 2, 3). Using Corollary 2.1.2 -repeatedly on the triangular chart 

                        1 2 3 in which D (i = 1, 2, 3) and AQ Q Q are described, we can obtain the 

optimal policy as follows but the detail of the proof is omitted by reason 

of its complication. If 0 < a < 1/3 and p i > p J > p k, then the policy 

(i, j, k)m is optimal which means to se I arch box i, j, k and to repeat the 

search in this order periodically until the detection of the target. If 

1/3 < a < 1/2 and p E D then the policy 1170 is optimal and V(p) = 1+(l-p i )/a. 

               'CO 

where i means to search only box i until the detection. This result 

coincides with our common sense, i.e., if the transition probability is 

small., we search in the order of the magnitude of the location probability. 

This optimal policy is the same as in the case of a stationary object. 

If the transition probability is large, we search only a box having the 

maximum prior location probability in anticipation of the transition of 

the target to the box. Note that the above optimal policy is myopic, i.e., 

it prescribes to search a box having the maximum current location probability 

at each period. 

     Example 2.1.2 We consider the case that a, = b 1 = a and ar b 2 = a 3 

b 3 = 0. Because of the symmetry between box 2 and 3, the boundary between 

D * and D * is given by p = p . Hence T2p (Tp) cannot be contained in  2 3 2 3 
3 D * (D since Ql = <

.1-2a.5 a, a>, Q 2 = E2 and Q3 = E (i) The case of  2 3 

1/3 < a < 1/2. If a 1/2, then T 2pE D 3 and T 3 p E D2 since the decision 
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D 1 is not optimal for p 1 = 0. By the continuity of V(p) , this property 

(T2p(~-: D 3 and T3p,5- D 2 for any P) is seems to be still valid when a is 

slightly smaller than 1/2. For such a a. by repetitive applications of 

Corollary 2.1.2. we have 

    V(P; 1 V[p; (1, 25 3)] =3 - 2p, - P2 
if p               VIP; (1, 3, 2)] =3 - 2p 1 - p 3 2 P3 

    V(p; 2) = V[p; (2, 3).] = 2 + p 
1 (1-a)/(2a) - p 2 for any p 

    v(P; 3) = VLP; (3, 2)00] = 2 + p,(l-a)/(2a) - p for any p. 3 
The equations V(p; 1) = V(p; i) leads us to the boundary p

, = 2a/(,1+3a) 
between D, and D, (i =2, 3). To guarantee the above property , the point 

Ql must be below the line pi = 2a/(1+3a) and therefore we obtain that 

1/3 < a. The solution is given as follows: If p 
2 > P 3 and p 1 > 2a/(1+3a), 

then the policy (1, 2, 3) is optimal and V(p) = 3 - 2p 
1 - P2* If P 2 -> P3 

and p- < 2a/(1-"3a), then the policy (2, 3)m is optimal and V(p) 

2 + p 1 (1-a)/(2a) - p 2* if p 
2 < P 3' then the solution can be obtained by 

exchp-n-ging P2 for p 3 ir the above solution because of the symietry between 

box 2 and 3. 

(Li) The case that a < a < 1/3 where a 0.267) is a unique root of the 

equation 12a3 _ 6a 2 _ 3a + 1 = 0 on [0, 1/31 . We consider the case that 

the point Q 1 is above the line p
i = 2a/(1+3a) and that the point T 3 T 2P 

(for any p) is below the line, i.e., (1-2a)2/(l-a) < 2a/(1+3a) or a* < a . 

In this case the region D * is divided into two regions B =- 1pjpc-D* and 
                   2 2 

T 2P C--Dll and C H {plpGD 2 and T
2PE D 3 1. We put A =- (p I p E Dl and P2 >P3 

By repetitive applications of Corollary 2.1.2. policies (1,2,3), (2)1.3,2) 

and (2,3)00 are optimal in regions A, B and C respectively. Furthermore 

we have 

             3 - 2p 1 - P2 if p (-~ A 

    V(P) 3 - (1-3a)p 1 - 2p 2 if p E B 

           2 + p 1 (1-a)/(2a) - p 2 if p C- C. 
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                   A and B . p 2 = (1+3a)p 1 

The boundary between B and C is given by (1-a-6a, 2 )pl = 2ap, 3 

                  C and A P, 2a/(1+3a). 

The solution in the case Of P2 < P3 is clear by the symmetry between box 

2 and 3. 

(iii) The case that 0 < a < a* where a is given in the case of (ii). 

'~~,-nce the point T T p is above the line p
,               3 2- 2a/(1+3a), T 3 T 2 p D 1 

Hence the solution is given as follows: We put 

A        fDIP2 < (1+3a)-ol, 3(1-a)(1+2a)p- > 1,                                              p2 > P3 

    B = {PIP2 > (1+3a)pl, (1-6a 2 )pl > p 3 

    C = fpl(1-6a 2 )p < p 3(1-a)(1+2a'p < 1 > -Q 
                         1 - 3" ) i - .1 P2 - - 3 

Policies (1,2,3), (21153,2) and (2,3,1,2,3) are optimal in regions A, B 

and C respectively. Furthermore we have 

             3 - 2T) 1 - P2 if p C- A 

    V(p) 3 - (1-3a)p 1 - 2P2 if p<-= B 

              2 + (1-1.3a,-6a, 2 )pl - P2 if P E C 

     Example 2.1.3 We consider the case that ai = 1/2 and bi = 0 (i =1.1 

2, 3). By means of the symmetry of the problem we obtain that D 

{p1pi T p Hence by repetitive applications of Corollary 2.1.2, 
we can obtain the optimal policy: It is optimal to search first a box 

having the maximum location probability and to search circularly in the 

opposite direction of that of the target motion until the detection. 

Furthermore we consider the case that a = 1 and b = 0 (i =1.1 2, 3). 

The optimal policy can, be easily obtained. If p i > p i+l > p i+21 then 

the policy (i, i+2, i+l) is optimal and if p i > p i+2 > Pi+11 then the 

policy i3 is optimal.
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 §2.2 Efficiency of Wait in an Optimal Search for a Moving Target 

     In the search for a stationary object , to wait, i.e., to expend 

time without search is not profitable since the searcher can obtain no 

information about the target location by waiting . But in the search 

for a moving target it is sometimes reasonable to wait in anticipation 

of the transition of the target to the more desirable location for the 

searcher. in this section we give an example of such a model . Consider 

a target which moves between two boxes according to a Markov transition 

-----x 

                1 2         1 [ 1-a a 
                  2 b -b 

Let <p, 1-p> be a priori distribution of the target at the start of 

search. We suDpose the perfec'c detection , -!.e..,, one look in a box 

containing the target succeeds necessarily in the detection of the target . 

At each period the searcher must choose one of three decisions D 
i (i = 1, 2) 

and W where D. means to search box i and W means to wait without search . 

Ass,Lz,-Ie that a search cost J-s unity for both boxes and let w (>O) be a 

wait. cost. The objective is to minimize the expected total cost until 

the target is detected. If searching box 1 fails to detect the target , 

the posterior distribution becomes <0, 1> because of the perfect detection 

azsumption. Hence the prior distribution at the next period is <b , 1-b> 

since after the failure the target moves according to the matrix Q. 

Similarly after the failure of the search in box 2 , the prior distribution 

at the next period is <1-a, a>. If the decision W is chosen , the prior 

distribution at the next period becomes <(l-a-b)p+b , 1-b-(l-a-b)p>. Let 

C(p) be the expected total cost until the detection by the optimal policy 

given that the prior distribution is p. By the principle of optimality , 
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we obtain 

                 C(p: D 1 + (1-p)C(b) 

(2.2.2) C(p) = min C(p: D 2 1 + PC(l-a) 

                  ~C(p: W) w + CE(l-a-b)p + b] 

where C(p: 6) (S = D13 D 21 W) denotes the expected total cost in the case 

that the searcher chooses the decision 6 first and afterwards follows 

the optimal policy. 

    Pollock (1970). which is denoted in detail Ln. Section 2.1, considers 

t L;he above mode! under the assLu7-iotion that aL, each z:)eriod the searcher 

mi_Lst choose one of two decisions D, 1, 2) and cannot choose the 
                                                                                                _L 

decision W. Our model is an extension of the Pollock's model. 

     Lemma 2.2.1 The funciton C(p) is concave in p. 

     Proof: This lemma can be oroved by the same method as the proof 

of Lc-=,.,a 2.2.1. (q.e.d.) 

                                                       for P) De~ine the ontimal decision recr~ons by Di {pjD is outimal 

and W JpJW is optimal for pl. it is clear that p 0 G D and 

2 p = 1 D 1* 

     Lemma 2.2.2 D4 (i = 1, 2) and W are convex sets. 

     Proof: C(p: D 1 ) is linearly decreasing in p and C(l: D 1 

C(p: D 2 ) is linearly increasing in p and C(O: D 2 ) = 1. Since C(p) > 1 

for any p, C(p: W) > w +1 > 1. Furtll-iermore C(p: W) is concave in p by 

Lemma 2.2.1. If we describe three curves C(p: 6) (6 = D1.1 D 2 and W) in 

a plane, the result is clear. (q.e.d.) 

    Lerma 2.2.3 p = b/(a+b) ~ W 
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    Proof: If b/(a+b) C W then CEb/(a+b)] which is a contra-

diction and hence the proof is completed. (q.e.d.) 

By Lerma 2.2.2, when the set W is empty, there is a threshold proba-

bility p such that the optimal decision is D 1 (D 2) if p > ( <)p. When 

the set W is not empty, there are two threshold probabilities 

                                          D 2 0 < p < p** 
P* and P*-" such tl~at the oiDt:L-mal decision is W P** < p < P" 

                                          D P* < p < 

in the -~Ollowing we consider only the case of a+b < 1, i.e.5, 

b < b/(a+b) < 1-a since the case of a+b > 1 can be analyzed similarly . 

in this case there are ten possible cases of the optimal decision 

    "-L 3 recr~ons by Lemma 2.2.2 and 2.2. . But taking the symmetric property 

into account, it. is sufficient to consider only five cases given in 

Fig.2.2.11. Hereaftei, we determine the threshold probabilities for eac'_h 

case in Fig.2.2.1 and obt-ain the conditions under which each case 

Occ.LLrs. Put -f, -a-b)p+b.                                          ,p 

     [A'. In the case [A] of Fig.2.2.1, b C-_ D 1 and !-a 6 D 1* Hence 

C(b) 1+(l-b)c(b) and C(l-a) =.l+aC(b), i.e., C(b) = b-1 and C(l-a) 

l+ab From the equation C(p: D 1 C\1p: D 2 ), we obtain p = (1+a+b) 
                                                                 -1 The conditions under which this case occurs are p < b < b(a+b) < 1-a 

and C(~: D 1 ) < C(p: W). Hence we obtain a+b < 15 b(!+a+b) > 1 and 

1- (a+b)/Eb(l+a+b)] < w. 

    [B]. In the case EBI of Fig.2.2.1, C(b) = b-1 and C(l-a) = l+ab-1. 

Since T * E D C(P*: W) = C(P*: WD w+bEl-(l-a-b)p*l -1      14P 

From the equation C(p*: W) = C(p*: D we obtain p* = b(l-w)(a+b)-

Similarly since Tjp** E Dl. we obtain P** = 1-b(l-w). From conditions 
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where f(n) =-. 

The relation 

P*x < b < P* 

    [D]. In 

C(l-a) = (1+a

that P** < P* < b < b/(a+b) < 1-a, we obtain a+b < 1, b(l+a+b) > 1 and 

1-a-b < w < 1-(a+b)[b(l+a+b)] -1 . 

     EC]. In the case EC] of Fig.2.2.1, we assume that 

0 (2.2-3) T~-lb < P* < T-wnb (n > 1: integer; '21,~b =- b) 

W 

                             n+11 . Since b E W* and 1-aG D where TWnb = b(a+b)-'E!-(l-a-b) 

                                                  n+1,7-1   C(b) = C(b: WnD (a+b)( i7+nw)Eb{--1-(l-a-b) 

  C(l-a) = 1+a(a-'.b)(l+nw)Eb{l-(!-a-b)'l 11-1. 

From the equation C(p*: W) = C(p*: D 1 ), we obtain 

(2.2.4) P* = b(a-Hb)-l -ow{!-(l-a-o) n+l I/ (a+b) 2 (1+nw)l. 

By the assump-11-lion (2.2-3), either of the following two cases occurs: 

           n+k-1 *, n* n+k ** (2.2-5 7~ p < L-1 < Iw P Ok = 0, 1) 

v where k is determined uniquely if a,b and w are gilven. Hence 

      C( -""*: LT                  \~p 

                                                                                                                    + 1-K 
                                 )n+k **+b(a+b) (1-a-b~r'       (n+k)w+!+C(b)[a(a+b) (-1-a-b p 

                                                                 --aln F---or-, tne e(,,ua4u--!on C(-*': W) D ), we ol.                                                 ~ z-, 2 

(2.2.6) P** = (n+k)-wb[!-(!-a-b) n+l I+ (14%riw) [a+b (1-a-b) r,+-k I 
             b[l-(!-a-b )n+!,+( a+b)(l+rw)[a+(l-a-b)r-+kl 

Substituting (2.2.4) into (2.2.3), we have 

(2.2-7) f(n+l) < w < f(n) 

                   (a+b)(1-a-b )n

    1-(l-a-b ) n 

   (2.2-7) is 

   < b(a+b)-i 

    the case 

1    )(1 -ab)-

-(n-1)(a+b)(1-a-b )n 

well-defined i--1L" 0 < w < 

 < 1-a, we h ave a+b < 1 

[D] of Fig.2.2.1, C(b) 

 From the equation C(ID: 
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 1-a-b. Since 

and b(l+a+b) > 1. 

 (l+b)(l-ab)-l and 

D 1 C(p: D 2 ), we get



p = (1+b)(2+a+b) Since b < p < b(a+b) -1 < 1-a and C(p: D 1) < C(P: W)3 

1 we obtain a+b < 1, b (1+a+b' )< 1., a < b and w > (1+b) (b-a) [ (1-ab) (2+a+b) 

     [E]. In the case EEI of Fig.2.2.1. C(b) (1+b)(l-p-b)-i and 

C(l-a) = (1+a)(1-ab)-l. Since * EE D * 3                         TWP 1 

     C(p*: W) = w+l+('L+b')[l-(l-a~-b),p*-blj(l-a:o)-

From C(p*: W) = C(p * : D ) , we obtain 

(2.2.8') p., b(a+b)- - (1-ab)wl- (1+b) (a-Hb) 

""~Zzcse t"--'rat 

(12.2.9) < p* TP~D** (M > 1: integer; Tp**          ~W Wi 

where Tl-"qo** (l-a-b)7p**+b(a-f:b)-l El-(l-a-b)ml. Hence 
       V7 

     C(P**: W) C(P**: 'W~-b Mw+,L+(i-llpw--O**)C'b) 

M 

                                                                             TIP            T" '-
p**                                  --(1--b) -b(a+b) --(,-a-b)'~-J. 

From the eQuation C (P*-" D 2 C(P**: W), we obtain 

m (2.2.10) 
(a-Hb){--'+a+(l+b)(l-a-b)m1 

Sulbst'it"-Itilrlj2: (,:::.2.8) and (2.2.10) into (2.2.9), we have 

(2.2.11) g(m) < w < g,(m-l) 

-where g(m) (1+b)(b-a)(1-a-b)m 

             (1-a:c)[l+a+(\'-+b){l-+m(a+b)1(1-a-b)mI 

The relation (2.2.11) is well-defined if a < b and 0 < w < 

(l+b)(b-a)C(l-ab)(2+a+b)j -1 . Since b < p** < p* < b(a+b)-i < 1-a, , 

we obtain a+b < 1 and b(l+a+b) < 1. 

    Rearranging the above resutls, we can obtain the solutions in 

regions A 1 and A 2 in Fig.2.2.2 as follows: 

(i) In the case that (a, b) G A, 1(a ., b)la+b < 1, b(l+a+b) > 1}, the 

solution is given in Table 2.2.1. In the table , p* and p** are given 
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by (2.2.4) and (2.2.6) respectively. D 1 denotes an infinite repetition 

                     (i) * (i) = of D 
1 until the detection. p is defined by TWIP P* (1 < i < n+k-1) 

and p (0) = P*, p (n-k) = p**. (a), (b) (c) are given as follows: 

              ~(a+b)(l+nw){l -(l-a-b) n+l }1 (a) 1 + p[l+ab 

(b) iw + 1 + (a-.b)(l+nw) a + ( b _ p)(1-a-b).;} 
              b[!-(l-a-b )n+i -E+-b a+b 

(c) 1 + (a-HD 1+r-w) ( 1--o 
         b[l-( 1_a_b)n+l

Cond- it ions Optiml Policy C (p)

0 <w< -I -a - b

0 < -Q < P** D 2 D I (Wn D 1 )w (a)

p < p

2,. .. n+-k

(Wn:W'D- 1) (b)

< < D (c)

-L-a - b<w<

1-(a+b)[b(!+a+b)]-l

0 < p < 1 - b(!-w)
CO

D 2 D 1

-I

1 + (1+ab--L)p

1 - b(l-w) .~_ p
<- b (1-w) (a+b'jl -1

w-b- "I -p(l-a-b)b-l

b(l-w)(a+b)-'<,c,<l D

!-(a+b')'Fb(l+a-Po)] 

         < W

-7 10 < -r, < (1+a+b)-l

(!+a+b)-i -~P-<l

       co 

D 2 D~ 1 + (!+ab-i )p

    cc 

D 1 I - -1   + (1--Q)b -L
I

Tab le 2. 2. 1
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(ii) In the base that (a, b) i~: A (a, b) I a+b < 1, b (1+a+b) < 1, 

2 a < bl ., the solution is given in Table 2.2.2. In the table, p* and p** 

are given by (2.2.8) and (2.2.10) respectively. p (i) is defined by

i Condition Optimal Policy C (p)

(I +b) (b-a)

0 < p < (D 2 D 1)w 1 + p(l+a)(1-ab)-i

p w i (DI D 2 ) - I (d)O<w <(1 -ab)(2+a+b)

P* < -0 < (D lD2) - 1 + (l-p)(l+b)(1-ab)-l

(1+b) (b-a)
0 < p <

1+b

< w

- 2+a+b (D 2 D i)"O 1 + p(l+a)(1-ab)-l

(-1-ab)(2+a+b)
 1+b 

 nL+a+b (D 1 D 2)w 1 + (1-p)(l+b)(1-ab)-l

                             Tab le 2. 2. 2 

        P* (l < i < n-1) and p(O) = P*, (n) P**. (d) is given by p 

             1+b a b n (d) iw + 1 + -f- - (1-a-b)l 
                 ab {-~j+--b + -g-~b (1-a-b) p 

    The optimal decision regions in the case of (i) are described in 

Fig.2.2-3. In the figure, we observe that the larger w becomes, the 

narrower W becomes and that if w > 1, then W is empty, i.e., to wait 

is not optimal for any a, b and p. Hence our resutl in the case of w > 1 

coincides with the Pollock's result (1970). Furthermore the value of C(p) 

in our model is not larger than that in the Pollock's model since no 

waiting is one policy for our model. The difference between the value 

of C(p) in our model and that in the Pollock's model emphasizes the 

efficiency of waiting in the search for a moving target. In connection 

with the matter, it is interesting that the optimal policy does 

not contain (WkD. i D 
j r (k k 0, i ~ j) as its subsequence. In other words, 

since we choose the decision W in anticipation of the large transition 
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of the target to only one box, it is meaningless to search both boxes 

successively after waiting. This fact teaches us the meaning of 

the wait. 

    For other regions in Fig.2.2.2, we can obtain the solutions by the 

san'A-- Mthod, but their derivation is omitted because of its corplication. 

Since the solution is synrL-tric about the straight line a = b, the 

solution in the case of a > b car, be obtained by exchanging a for b 

and P fc.- 2--- -4 the lo-n 11-1- < b. Sq~ecia b.,                            .,,, -n I-

i.e., the mvement of the target is symietric, then the o-p-i-I-irral policy 

is an infinite repetition of searching box 1 and 2 alternately (See 

Table 2.2.2) and therefore to wait is not optimal even if w is very 

small. Furthermre if a+b = 1 e., no info=--ation case, then the 
D 

repetitive part of the optimal policy is if a f < 1 1/2 
                                                                                 CO > 

(See Table 2.2.1). 2
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§2-3 Optimal Wait, Search and Stop for a Passing Target 

    When we stay in a certain place, it occurs sometimes that we should 

take an optimal decision to catch a target which comes from another region 

to our place and goes away to other region. For example, a search for a 

shoal of fishes which swim in an ocea-n,, and a catching problem for a good 

chance which occurs and vanishes randomly in time, etc.. In this model 

it seems that we must wait without search at first, search our 'clace 

if the possib-1-1-ity of its existence in our place becomes high- and stop the 

Process i --5r' it, is seemed to have gone away. in this section we consider 

• model of such a type. 

    Pollock (1967) considers a problem of catching as fast as possible 

• target which appears randomly but does not vanish. One target, which 

has a priori location distribution <p, 1-p> at the beginning of search, 

moves in two . boxes accordiniz to a Markov transition matrix 

                             ~-a a 
                              (0 < a < 1). 

                  0 1 

r7he sea2:~clher must choose at each per-L - Lod either action: S (to sea:,?ch box 

2) and W (to wait). Ass=-- that a search in box 2 is perfect detection. 

If the target is (is not) in box 2, then the loss of the action S is 

zero (C s ) and the loss of the action W is C 
w (zero). The objective is 

to'minimize the expected loss until the detection. He proves that if n 

 is the smallest integer such that (1-a) n < {1+a(n+C 
s /C w )1 -1 , then an 

optimal policy prescibes action W(S) if p > (<) p E 1 - [1-(l-a) n I/ 

Ea(n +C s /C W)I. 

     Our model is described as follows: There is a moving target which 

is in one of three boxes with the prior distribution p = <pl3 P2 -1 p 3 > 

at the start of the process and moves according to a Markov transition 

matrix

- 58 -



                           1-a a 0 

                 Q 0 1-b b 

                         0 0 1 Ij 

At each period the searcher must one of three decisions: W (to wait), 

D (to search box 2) and S (to stop). Note that box 1 and 3 are unsearchable. 

The process continues until the detection of the target or the first adoption 

of decision S. Let w and c be a waiting cost and a searching cost per 

one period respectively and assume that 0 < w < c < -. Associated with 

box 2 is a conditional probability ~ that the target is detected by a 

search in box 2 given it is in box 2. Let R (> 0) be a reward of the searcher 

for detecting the -target. The problem is to find a policy minimizing the 

expected total loss (cost minus reward) until the completion of the process, 

i.e., the detection or the stop. Let f(p) be the minimum expected total 

loss until the completion given that the prior distribution is p. By the 

principle of optimality, we have 

                   S: 0 

(2-3 - 1) f (p) =min W: w + f (TWO 

                 D: c - p 2 ~R + (1-p 2a)f(TDP) 

(2-3.2) TWp = <(l-a)pl, ap 1+('-b)P2 , bp2+p3> 

              (1-a)pl ap 1 +(l-b)(l-~)p 2 b(l-~)P2+P3 (2-3-3) TDP = ~ '-P2~ .1 '-P2~ - .1 1-P 2 a 
By the same method as the proof of Lemma 2.1.1, we can prove the following 

lemma. 

     Lemma 2.3.1 The function f(p) is concave in p. 

Let D (or W , S be the set of p for which the decision D (or W, S) is 

optimal. Put E 1 E <1, 0, O>, E 2 = <0 .1 1, O> and E3 = <01 0, 1>. 
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    LeTim 2.3.2 The optimal stopping region S is a convex set which 
3 contains the point E 

    Proof: It is clear that E3 C-- S*. Suppose that f(p 1 f(p 2) = 0 

and p = Xp 1 + (1-)L)p 2 (0 < X < 1). By the definition of f, f(p) < 0. 

By Lemma 2.3-1, f(p) > f(P 1 + (1-X)f(P 2 0. Hence f(p) 0, i.e., 

p C- S (q.e.d.) 

Let Q' be the i-th row of the transition matrix Q (i= 1, 2, 3). 

    Lemma 2.3.3 For any p, TWp and TI)p are contained in the triangle 

AQ 1 Q 2 Q3. 

    Proof: By definitions of TWp and TDP' TWp ~ p-Q and 

      / I P, P2 p 3 Q which indicate the result of this lemma . TIP          P
2~ ' '-P2~ -P2~1 

                                                                           (q.e.d.) 

The triangle AQ~Q2Q3 is called the posterior triangle and is denoted by 

T(a, b) since it depends on only the transition probabilities a and b. 

In the next lemma, we give another geometric expression of TWp. For any 

P = <pV P2 -1 p 3 > " define A, H <0, 1-p 3> p 3 > and A 2 <P11 03, 1-p 2 >. Let 

B 1 and B 2 be the inner partition points of the se&Tnent PA 1 and PA 2 with 

the rate of a: 1-a and b: 1-b respectively, i.e., 

B 1 = <(l-a)pl,, 1-(l-a)p 1-p 33 p 3 > and B 2 = <PV, (1-b)p 2-1 1-p i-(l-b)p 2 >. 

     Lemma 2.3.4 For any p, TWP can be expressed by the remainning vertex 

of the parallelogram which has three points P, B, and B 2 as its vertices 

     Proof: The remainning vertex is given by <(l-a)pl, ap 1 +(l-b)p 2' 

1-p 1- (1-b)p 2 > which coincides with T V (q.e.d.) 

If c > ~R., then the decision S is optimal for any p since the immediate 
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 loss of continuing (yait or search) is nonegative for any p . Hence in 

 the following discussion we assume that c < ~R. We define So 

 iplo < C-P 2 ~Rl and A E {(a, b)JO < a < c/(~R) and (~R/c-l) a < b < 11. 

     Lemm 2.3.5 Suppose that (a ,, b)<.- A. If p G S then so and                                                03 TWp C 

TDp C- SO' 

    Proof: If we put S, = 1p1(T̀ V1p)2 < C/(~R)l and S2 =- {PI(TDP)2 -< C/(~R)11 
then Lin the tri-, angulf ar chart we !mow that the relation S

o!~~S is satisfied 
    and only i f a ooint R E C , n -Tz C,-~n+-aL- /C -I                                                              ined 

 < b. S-Lmila--ly the relation So S 
2 is satisfied if and only iff R E S, and 

 <13 0, 0>(=S 
1 and hence we obtain a < c/(~R). Therefore the result is proved. 

                                                                           (q.e.d.) 

     Llerr,a- 2.3.6 if (a, b)E- A, then S S 0* 

     Proof: DefLre a seauence of functions {f (p)l"O by 
                                              n n--O 

                       S: 0 

           f (p) = min W: w + f 
n--1(T~p) 

                       D: c - p 2 ~R + (1-p 2 ~),f 

and f 0 (p) :-::: 0. We can prove that if 0 < w < c < co., then the function 
f n (p) converges to f(p) as n approaches to infinite. Hence if we prove 
that f n (p) = 0 for p r= SO.% then f(p) = 0 for p C- S 0* It follows trivially 
for n = 0. so suppose it for n -1 . By Lenma 2.3.5 we obtain that f 

n (p) = 
min[O. w, c-p 2 ~R] = 0 for p C- S 

0' Therefore f(p) = 0 for p E S 0 . On the 
other hand if P(~- SO., by considering the expected total loss by the policy 

DS, we obtain f(p) < c-p ~R < 0 . The proof is completed. (q .e.d.) 2 

Let f(p; 6) (6 =W, D, S) be the expected total loss by a policy which 

takes the decision 6 first and follows optimally afterward . We consider 

p = ~pl` P23 p 3 > and p <pli P23 p 3 
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    Lemma 2.3.7 If P, > P 1 and p 2 > p 23 then f(p: a) < f(p a) for 

any policy a. 

    Proof: Under the assumption of this lemma,, by the definitions (2-3.2) 

and (2-3-3), it is clear that (TWp)i > (TWp and (TDP)
-J > (TDP )i (' =1' 

2). Hence the assLunotion of this lemma holds in any period until the 

te--nL-ation, I.e., thle Lmrme~dia~te loss in each period for the initial state 

p is not larger than that for the initial state p The proof is completed. 

                                                                            (q.e.d.) 

    aqecrem. 2.3-~..' If (a. b) C A, then the optimal decision is D (S) if 

P2 > (<) c/(~R). 

    Proof: If p 2 > c/(~R), either W or D is optimal by Lemma 2.3.6. 

Moreover if P~, > c/(~R), it is clear that                                     %P) 1 < Pl and (TWP'2 < P2 ar'd 
therefore by Le=,, 2.-':zj.7 -'L~(%.P: a) > f(p: a) for any policy a. Hence 

f (p: W, a) = w + ('Z I L'                   vp: a) > w + f (p: a) > f (p: a ) 'wtfich denotes that 
the decision W is not. optimai. Th.ereforee if po > c/(~R), then D is opt:i:,-a-7. 

   p < c/(~,R) , -L--,he result is clear by Lee=ma 2.3.6 (c.e.d.) 

    Lerim 2.3.8 (') (TWp)2 < p2 for any p E T(a, b) if and only if 

a +b > 1. for any p 6- T(a, b) if and only if a +b > 1.         (i') (TDP)2 < P2 

    Proof: (i) If a +b > 1 and p E' T(a, b), then ap, < (1-a)p 2 < bp 2 

and therefore ( TWP)2 < P2- Conversely if (TWP)2 < p 2 for any p C- T(a, b), 

then fpjapl (1-a)p 2 1!;:-: T(a, b) ~~ {P1(%P)2 < P21 = {pjap 1 < bp 2 1 and 

hence 1 -a < b. (ii) if a +b > 1 and p E T(a, b), then 

            (1-a)p 2 +(l-b)(!-~)p 2 {1-a+(l-b)(l-Wp 2 
    (TDp)2 ' -P2~ 1-a~ 2* 

Conversely if (TDP)2 < P2 for any p E T(a, b), then ( TDQ )2 < Q23 i.e., 

I a +b > 1 since Q = <1-a ., a, O> E T(a_, b). (q.e.d.) 
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     Theorem 2.3.2 When a +b > 1 and p E T(a , b), the optimal decision 

is D (S) if p 2 > (<) c/(~R). 

     Proof: If p E T(a, b), then f(TWp: a) > f(p:-a) ,for any policy a 

by Lemma 2.3.7 and 2.3.8. Therefore f(p: W, a) = w + f(T
Wp: a) > w + 

f(p: a) > f(p: a) and hence to wait is not optimal in T(a , b). 

Moreove.- since TDp 6- T(a, b) for any p , the optimal policy does not take 

decision W until the termination. Therefore by excluding decision W., we 

obtain, for p E T(a, b), 

                S: 0 
    f(p) = ran 

                    D: C - p + (1--Q                       2 1 2~) 'TDP)' 

Here we consider the OLA policy (one-stlage-look-ahead policy) which takes 

the decision at next period by comparLng the expected loss for stopping 
                                                                            C) -

inmediately with that for stopping aft.er one perlod . The stopping region 

of the OLA policy is given by S :H- {p1O < c -p 
2 ~R, p G T(a, b)J which has 

A a property that p 6 S Lrnolies -iy E S, i.e., S is closed with respect to 

the operator TD. Therefore- the OLA policy is optimal by the well-know-n 

r-e s u 11 and hence Uhe proof is corm~-le,~ed. (q.e.d.) 

    Corollary 2.3.1 if 1 -a < b < 1 and a > c/(~R) , then to stop is not 

optimal at any p such that p 2 > c/(~R). 

     Proof: The result is clear by Le-mma 2.3.2 and Theorem 2.3.2. 

                                                                           (q.e.d.) 

We divide the set T(a, b) into a sequence of subsets 

   Do ipip E T(a, b) and P2 < c/(~R)J 

    D {p1p E T(a, b) and (T~--lpl > c/(~R) > (T~-' (n =1 ., 2, 3,      n D /2 - bp 2 

By Theorem 2.3.2, a policy DnS is optimal in region D 
n . 

    Lemma 2.3.9 The expected total loss by the policy DnS is given by 
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                             n-l i i-1 k 

    f(p: EPS) = c - p ~R + fc-(TDp) 2 ~Rj H {'-(TDP)2B' (n =1, 2, 
                        2 k --O 

    Proof: Because of f(p: EPS c - P2 SR + (1-p 2~)f(TDP : Dn-1S), 

f(p: D'+'S:) - f(p: DS) = {c - (*2 ~RJ H {1 1~ 2 ~J. 
                                           k--O 

                      n-1 
if we take a sxmation of both sides, the -result ca-n be obta,.Ined. 

                                                                          (q.e.d.') 

                                                            -C. . ma ~ no, f cy car be cbtaLne       lilheore,,, 2.q.q Tf' a4-b > 1 en tne _a 

by the f01--l-wing method. Check utLich subset D contains T,,p and -                                                                  n -LDP 

resQecL,Lvel (ii) Calcu-laL-.e the values of f(V) and f(TI)p) by Le=a 

2.3-9. (iii) Substitute their -values into the basic equation (2-3-1) 

and solve it. 

     Proof: 'Irhe result is clear by Theorem 2.3.2. (q.e.d.) 

     N=ye-ricP] ExamDle 2.3.11 We considel, the case that a = 1/21 b = 15 

                                                              MY ; o-- -r, ~)     -1/2. w = 1/2 c a:nd IR = 1-~. - --he -e- 2.3-3, -we can obtain t-ne 

op-L,Lmal policy which is described in Fig.2.3.1. Note that D and W are 

not co'nvex 

The case that b < 1 -a and b < (~F,/c - 1) a rerrains yet unsolved. In this 

case the optimal policy seems to be more con-plicated since a is larger and 

b is smaller relatively. SpecipIly when 1 and b = P3 = 0' this model 

is similar to the model treated in Pollock (1967). Therefore if w + c < aR, 

then by noting that decision S is not optimal at any p, we can prove that 

there is a threshold probability y such that the decision D(W) is optimal 

if p 2 > (<) Y. 

                                         - 64



E1

  I I 
P2=TF - -4p-l

p 2 2

              D3 s 
    P 2-3-c-    2= 

p =2-5-o 2 
               DS

WD 2 s 

    WDS

pl~~

s

3 
5pi-

p ~-~ - I' 
 2 1 1- 1

5

E 2 

 F-L,o,-. 2.3.1

1 P
2~ 5

The o ' L  p u 1 mal solution of the

- P
, 3 

rumnerical exa=.-Le.

- 65 -



Chapter III Sequential Evasion-Search Game 

     In this chapter we consider the following two-person zero-sum m-stage 

sequential evasion-search game : There are n-boxes (box 1, 2,---, n). Player 

I (Evader) is in box n in the beginning of the game and can move at each 

period to any box in the "nonincreasing direction" i.e., if he is in box k 

at some -ceriod he ca.-i move to anyone of box -1, 2, k in nexit period 

and cannot go 'F-a-ye-r j_T (sea-r-c-her) can Search any '_--;ox at each 

peri-od _'raiowing the evader's -,)revious position. 11--ssociated will-11h box _J(=1,2. 

   n) is a conditional orobabiilf y U                                 !t _j (0 < ai < 1) that the evader. is not 

detected by a search in box _1 given it is in box i. To avoid the compli-

cat-ion, vie assume that a, > 0 2, -In), but this limi'[1-ation can be 

excluded easily. if the evader is in box -i a:.7.Ld not detected during one 

period, he can obtain a reviard r,(>O). Let R(>O) be a reward to the evader 

wrien he is not detected during m periods. TI-he nayoj+'J- is the expected total 

-ewp      rd of ,-ie evader du_=-.,1_g 7n -cer4 ods. 

      Lhere are not so many 1_terat,,--es rec-a-rdir h --wo- i       7 - n:- S di"d search                                                              C_ _ _e 

problem and most of them treat a one-stage gam or the case that player I                                                   = __ e - t -

        cannot move dur=g a search process once he hides in some box. 

,Anong them, I the work of Stewart (1981) is related wil t1h our model. There 

are box 4, 3, 2 .1 1 and a goal. Player I (Evader) is in box 4 first a.-Ild 

must go to goal via box 3, 2, 1 by the m-th period without going backward 

unde~r the assmption that he can stay in each of box 3 and 1 during a 

single period. The payoff is a probability that the evader arrives at 

the goal without being detected. For this two-person zero-sum game, Stewart 

obtains the optimal search strategy in the "monotone" strategy class. The 

optimal evade strategy in his model is to run into the goal as fast as 

possible in order to get out of danger, but in our model the evader must 

expose himself to danger during m perods against his will and hence he does 
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not go forward so much fast since going forward results -in the limitation of 

the range of his actions. Furthermore Stewart's model is a one-stage 

allocation game mathematically since the searcher has no information about 

the evader's position except through learning by search , but essentially 

our model is a sequenti. a! one sl-.-Me in any period the searcher is informed 

of t1rie evaderIs previoas position. 

    vl~_shburn (1980) is one of papers which treat a sequent~ 1 search game.                                                                                   La 

Bo-uh ~clayers can move freely to aiTy box in each period . Perfect detection 

c t  ost, aund travellLng cost for the searcher are introduced and an m-period 

L,rimcated *crob-lem is considered. The payoff of this zero-sum , game is the 

ex-cecLted tlotal cost -for the searcher until - the search terminates. Wash)burn 

discusses about the solution of the lir.Litting problem, as m approaches to 

infLnifty. 

     In our model, the state in each period can be described by a pair 

CIC, z) khere k is a nu-,riber of rerrairTdng periods and z is the evader 1 s 

 =e_-_,-,. n. 7 
                 '~~o 

_11he cure s-' !n' ec.`=s o-7 zla~verS T a --r: I -I f e (7,                                                                  s a 

a-,--= desc-ribed by i (i.e., to hide himself in box i i=l ) ... n) and j (i.e., 

to search box j : j=!,*,*,n) re-spectively and therefore the mixed strategies 

are x= <xl -. ~x n > (xi=probabJ_L_                              1-Ity that player i hides in box if) and y= <y, 3 
... ,y n > (y,=probabJ1i11_y that, player I! searches box j) respecuively. Let 

                      1) 

G(m,n) = [g(i,j : m,n)] (i _,j = 1,.--,m) be the sequential matrix game 

starting from state (m,n). The (ij)-element g(i ,j : m,n) is the expected 

total reward for player i when player I and II choose pure strategies i and 

j in the first period respectively and play optimally afterwards. Also let 

v(m,n) be the value of the game G(m,n). Therefore we easily obtain the 

following relations:
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(3-0.

(3-0. 

(1.2)

                   a 1 {r 1 +v (M-1 .1 1) :- r 1 +v(m-i.,i) ... 

1) V(M.,n)--val r 2 +v (M-1.1 2) 2 jr 2 +v (M-1 3 2) 

                   r n +V(M-l,n) r 
n +-v(m-l,n') ... a 

n 

                           fr,+v(m-l,-i) Ix, {1-(l-a.;)Y~ 11             x y 

2) 

   a Uvc- nsional recurrence relation VV-Luh a boundar.v 

   Specially the case of n=1 can be easilY calculated, 

         a r (1-a M)(1-a + a m R                                         (m=0 1 ef           1 1 1 - 1 1 ,

r 1 +v(m-l,i) 

 r 2 +V(M-1~12) 

n jr +v (m-l . n' )

(m,,-,=1,2, - - -)

condition 

.e.,

     Theorelin 3-0-11 (i) IIP the reward. R is not-, smaller (larger) than v(l,n), 

the value v(7m,n) is nonincreasing (nondecreasing) in m for any n. 

(-Ii) 'J-.'-h.e value vCm,n) is nondecreasing in n for any m. 

     Proojf: We prove the assertion in only the case of R > v(!,n) by 

=uc.-I-on m Since the 'L,'-- ca-s-e- of FL < iS sii,-L11a:~,. 

v(o,n)= R > Suppose that v(Tp-l,n) > V(TrIn) for m=', .,2.,'*"k and any 

n. n 

    v(k,n) = max min i r ,+v(k-ll-i)! x )Yil I                 x y 1=1 

n 
                         tr +v (k,i)lx {l-(1-a )y               = max- =, -.11 = v"!-,+l,n).                x y 

     Consider a nx(n+l) iratrix game GI Eg!.] defined by 
                                              ij

Since 

that

g!  ii

the 

val

 (n+l) -st 

Gl=v(m,n)

g(i,j : m,n)l 

r i +v(M-l'i) 

     column of 

      Or the

G' is 

other

n 

  if i=l,---,n j--n+l. 

dominated by the n-th column, 

hand, since the game G(m,n+l)

it 

is

is clear 

formed
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 by adding the (n+l)-st row to G , player I in the game G(m,n+l) can obtain 

 the expected payoff being not smaller than val GI by taking his optimal 

 strategy for G'. Therefore v(m ,n+l) > val G' and hence v(m,n) < -v(m.,n+l). 

                                                                              (q.e.d.) 

     In order to solve the sequential game G(m,n), we shall slove first a 

 one-stage matrix game G given by 

                        Q61 b 1 bi bi 

 (3-0-3) G = [gj] b 2 cc 2 b 2 b 2 

                                                      0 < b, 
                              b n b n ... anb n 

Define a function J-' on integers 112,,*..,n by 

(3.0.4) f(k) _= , (1-, 1-                 Y i)-- 11 1 
. {b i (1-OC i)}                        i-=k / 

and let z be an integer which attains a maximtzn of the functio n f(k), i.e., 

(3. 0. 5) f W f(k). 

     Leinina 3.0.1 If we put b
o Z: 0, then b Z-1 < f(z) < b 

     Proof: By a simple calculation , we can prove that 

(3-0-06) f(k) < I f(-k+!) if and only if b ki < I f(k) 

Since f(k) > f(z-1) and f(z+l) , we have b < -Pt                                            ~Z-l - J-kz-!) and b > f(k) by 

the relation (3.0.6). Hence b 
Z-1 < f(k) < b k . (qe.d.) 

     Theorem 3.0.2 If b 
1 < b 2 < ... < b 'n , then the solution of the one-stage 

game G given by (3-0.3) is given by 

0 

(3-0-7) xi* n 
               Eb i (1-a i)]-'/ Eb (1-a 

i )j_l 
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(3-0.8) yj* = 
               Eb i -fWI/Eb i Cl-- O~j 1n) 

C3.0-21 Val G 

n 

                                                                            X. =1. F'rom      Proof: It is clear that x > 0 (i=l,---,,n) a-rid 

the definition of -L-Ck) and Lemma 3.0.1                                      we can obtain that y > 0 (i=l
'            n j -

    ,n) a Y. 1. Let '!(X3          nd J) j) be the e.-m-ected oayoff when players I 

a. n d I I - onoose a mixed strategy x and a pure sl -ategy respectively. 

                   n n 
C3.C:),--!C)) G(-Xli) g,-x., G(i,y) g                        _j 1 j =l C)ij y j, 

If the fol1mvLr,- reiation is proved , the proof is completed. 

(3-0.1i) G(i,y") < f'(Z) < G(x j) for i ,j=l,---,n. 

Subst, i Uut-ing 0.0-7) and (3-0.8) into (3 -0-10)" we have 

               n n 

             I b i x i =f(_Q)+ [ I f 
                               j=z 

n 

                     b ,x                        i J 

   G(_J,y 

               )y            b i 

O-Y Lema 3.0.1 and the assumption that b
i < b 2 < ... < b n Thus the 

relation (3.0-11) is proved. (q .e.d.) 

Sakaguchi C1973) considers a one-stage game 

                 c 1- (1--a 1 )R 1 c 
2 ... c n 

(3.0.12) M c 1 c 2- (1-a 2 )R 2 c 

                     c 1 c 2 ... c 
n- (1-a n )R n 
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and obtains a similar result to Theorem 3.0.2. In the following theorem ,, 

we state the solution of the sequential game G(m,n) without proof. 

     Theorem 3.0.3 If we put b i =r i +v(m-l ,i) inTheorem 3.0.2, the solution 

of the game G can be regarded as the solution in the first stage of the 

sequential game Gf1m,n). The solution of the m-stage game G(m,n) is related 

with the values of the (m-l)-stage games(-3(m-l,i)(i=i,---,n) and therefore 

the solution of~G(m,n) can be obtained recurrently by the dynamic programming 

technique. 

     Specially we shall consider the case where r
i=0 (i=l,---,n) and R=l, 

i.e., the payoff is a probability that the evader is not detected during 

m periods. The following is an immediate result of Theorem 3 .0.1 and 

3.0.2. 

     Corollary 3.0.1 When r 
i =0(,i=l,---,n) and R=l, let k be an integer 

maximizing a function f(k) given by 

                    n 1 n -1 (3-0,13) f(k) -= Y (1-a i)- -1 x         i-k ~ /i=k 
The value of the sequential game G(m,n) is given by f(k) which is 

nonincreasing in m and nondecreasing in n . Furthermore optimal strategies 

of players I and II in the first stage of G(mn) are as follows: 

0 

(3-0.14) x 
1 n 

(3-0-15) y 

                fv(m-llj)-f (jQj/E( -l-aj)v(m-l'j)] 
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By Corollary 3.0.1, the solution of one-stage case can be easily obtained, 

                      1 n (3.0.16) x yi (1-a (1-Ow (i=l,---,n) 
                              j=l 

n (3-0-17)- v(l, n) = 1 -

which.coincides with the well-known result concerning a one-stage search 

game. (Forexample, if we put that c R 1 in the game M given by 

(.3.0.12), this,case can be obtained.) In the following corollary, we 

investigate the aspect of the effort allocation by optimal strategies 

in the multi-stage game as compared with the result (3.0.14) in one-stage 

c as e . 

    Corollary 3.0.2 Suppose thar r 0 (i=l,---,n) and R=l. 

U). If ai is nonincreasing in i, then x i (i> k) is nonincreasing in i. 

(ii) If a i is nondecreasing in i, then yi (i > Z) is nondecreasing in i 

and yi yi xi (i >_t) is nondecreasing in i. 

    Proof: (i) Since v(m-1. i) is nondecreasing in i by Corollary 3.0.1, 

the result is clear by (3.0.14). (ii) Since yj (1-a j)-i [1-fW1V(m_l 1j)31 

y is nondecreaaing in j. Furthermore we obtain j 

                  -1 n _1 n 
    Yi Cl-a 1-. Y (1-a fv(M-l'i) I E(l-a-)v(M-l3j)1 

                       j=k j=y 

                                                                             (q.e.d.) 

which gives the result. 

    NLperical Example 3.0-1. We consider the case that ai= 1/2, r i = 0 

(,3*-=l,---,n) and R=l. Table 3.0.1 gives optimal strategies in the first period 

of the games G(m,n) and values v(mn) (m.1n = 1312,3)-
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F 
m\n 1 2 3

I
X y <1>

v(1,1)= -1/2

x y <112, 1/2>

v(1,2)= 3/4

x y <1/3, 1/3, 1/3>

v(1,3)= 5/6 I

x y <!> X = <3/5, 2/5>

y = <1/5, 4/5>

v(2,2)= 9/20

X = <03 10/193 9/19>

y = <03 8/19, ii/ig>

v(2,31,= 45/76

x y < )/44 -g ./4L>4, 5/i4> x <0. 2

3

v(3,--,)= 1/8

I

y <1/14, 13/14> 

v(-3,2)= 27/112
I

y <0, 13/4L, 31/-,!L> 

v(3,3)= 135/352

        TLC--, 3.0.1 Q I - r) i C)                     ~O_Utl_ns of the zero-sLurn sequential o-ames. 

     Finally, we consider a two person nonzero-sum sequential game which 

is in"Juced by introaucing a reward ZC>O) of the searcher for detect-ing 

the evader Lin the above zero-sum sequential- game. The iDayoff for each 

          -s a -ea p a,.-- I r cY h_ls e-,mected rewar,, -Lz the -tlerTn:Lnation of -11-1, -a-me. 

I As a solution of' a nonzero-sumn sequential Q~arne, there a-re two types: ore 

is an open-loop solut'ii On which choose the entire sequence of stra~tegies 

lor each player at the start of the ga-me. Another is a feedback solution 

in -which both players choose strategies at each period by taking account 

not of the past history but of the current state. Therefore the feedback 

solution can be obtained by a dynarnic programing technique. It is well-

                                     0-I I known that, the feedback s 1-tilOn is not always better than the open-loop 

solution in a nonzero-sum sequential game. But since it is difficult to 

find the open-loop solution, we try to find the feedback Nash solution 

by the dynamic programing approach. In the sequential game starting 

from state (m,n), let Mk(-' m,n) be the expected payoff for player 
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k(=1,2) when player I and II use pure strategies i and j respectively in 

the first period and follow feedback Nash equilibrium strategies afterwards. 

Let Cx y be a feedback Nash equilibrium solution in the first period 

of this nonzero-sum seauential game. RL-thermore let vk(m,n) be the 

expected payoff for player k by using the feedback Nash solution. 

                     a, r-r,+vl(m_l,i)i 
    MI Ci,j m,n) r + v 1 (m -1 i) 

                        (1--a Z + V~)(rri-l'i) i=j 

                                v 2 ~Irr-_L rj 

                   n n 
    !vIk(.x,y: m,n Xiy Mk(_J,j m,n) (k--132)          I x j 
                    i=l j=l 

      V,~M'.'n) = me~L_x Ml(x'y m,n) v (O,n) = R 

      v 2 (-ni,n) = ma-x M 2(x 'y M,,n) V2(0,n) = 0. 
y 

By a sLrple calculation, we have 

n 
L~.O.-18) M (x,y x I -IV (r4-1                         Y 1 ~_ a , )yi r i 1 

                          n n 

                                       01 + X. v (m-l' i (3.0-19) ~~Cx,y m,n) xiyi - ai) {Z-V 2 (M-1.5- 2 

We can discuss the problem by the same method as the former model. 

Define a function g on integers 1,2,---, n by 

       I n n (3.0.20) g(k) E X (1-a i )-1-1 1 [(l-a i )j r i +V 1 (M-1.1i)II-1          ~ i=-K I/ i=k 
and let s be an integer maximizing g(k). By the same method as 

LeMM 3.0-1. we have 

(3.0.21) r S-1 + v 1 (Tn-l,s-l) < g(s) < r s + v 1 (M-1,S). 

Without loss of generality, we can suppose that 

(3,0..221 r CM_l,l) < r + v (M-1 .12) < ... < r + v (m-l,n).                         2 1 n 1 
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    Theorem 3.0.4 Under the assumption (3.0.22), a strategy pair 

(x y * ) given by (3.0.23) and (3.0.24) is a feedback Nash equilibrium 

solution in the first period of the nonzero-sum sequential game starting 

f Lrom state (m,n). 

                      0 (i=i,...,s-l) 

(3.0.23) xi n 
                  (.1-ot i )iZ-v 2 (in-1, -J 11 1 [(l-a.)iz-v 2 (m-!,i)}I-l                   /i=S 

                    0 Q =1 3,*"S-l) 

(3.0.24) y 
                  Er i +V i(T!-,:-!,i )-=-(S)]/R1-a -,Lr i +V, 

                                                                       (j=s,,*-,n). 

Furthermore we obtaLn 

(3.0.25) v, (m,n) = g(_s) 

                            n v 2 (mm-l I i) (3.0.26) v 2 Cm,n) = + Y -7-A                   11 1 =s U--ai )iZ-v 2 (M-11i)l i=S(J--a i )JZ-v 2 (m-l.) 
    Proof: Subs[1-ituting (3.0.24) into (3.0.18) we have 

                         S-1 n 
    M Cx, y zmn,n) 7 ir + V (M-Ili)l + g(s) X. 

      1 L Xi i -1 1 
                                                           i=s 

which is =imized at x=x because of (3.0.21) and (3.0.22). Substitating 

(3.0.23) into (3.0.19), we have 

                   n n v (M-15j) n          N r 7 V 2 1 / r, In 

M2(x ly : m,,n) = 
.7        ll=S 

which is maximized at 

at the fd--st period.

n 

 =s

rel

Yi

TV 

The

   (1-a )iz-v I, -=S i 2 

  Hence (x y is a 

relations (3-0.25) and

n 

   i=S 

Nash 

(3-0.

I 
(1-a i )fz-v 2(m-l'i)l 

equilibrim solution 

26) are clear. 

               (q.e.d.)
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    Numerical Example 3.0.2 We consider the case that a 
i = 1/2.1 

r. = i-l (-1=1,...,n) and R = Z 4. Tabie 3.0.2 gives the feedback Nash 

I solution in the first period of the nonzero-sum sequential game.

1 2 3

1

X y <1>

v 1 (1 .4 1) 2

v 2 (1, 1) 2

x < 2

1 2y >

vi (1, 2) 103

v 2 (.1, 2) 1

x <0 2

y <0 4 7 >

v U,3) 451 if

v 2 (1,3) 1

2

X y <]>

v (2.1)

v 2 (2 -1 1) 3

X <0,1>

y <0,1>

v (212) = 13

v C2 2) =2 1 2

x <0 1

y <0~, 85 259. ~44 34-4>

v (2,3) = 26131
- 7-6

7V
2(2,3) = T-

X y <1>

vl(3 .,-I) 2

v (3 Z
2 2

x <0 .1 1>

y <0,1>

19v (3
,2) =1 12

v (3,2) = 132 &-

3 2x <0
1 5 -, -9>

y <0 1105 17398>1-750-3 ' 1~503
227373 -v 

1(3,3) 7To-i2

v (3,3) 532 'ff _0

Tlable 3.0.2 The feedback Nash solution of the nonzero-sum sequential

game.
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