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Introduction

Search theory is one of the oldest and important areas of operations
research. The initial important investigation was mode by the Koopman's
group in the US Navy during World War IT to offer efficient methods of
detecting enemy submarines. This theory has developed exceedingly after
the war and is anticipated as a useful model in many practical applications.
For example, possible éreas of its application include (1) exploration
of petroleum, (2) optimal allocation of law enforcement effort,
(3) searching for a criminal, (4) searching for a victim in a sea or a
mountain, (5) detecting a broken part of a machine, (6) medical exami—
nation for cancer and (7) optimal search for research data. Here we
shall provide a simple survey of search theory énd a guide for each
section of this thesis. Bibliographies and surveys on search can be
found in Enslow (1966) and Dobbie (1968). Main published books on
search are Stone (1975), Gal (1980) and Koopman (1980).

A search for an object 1s developed in a search space by a searcher.
In some cases a search space consists of discrete points which are usually
called "oboxes": 1in others it is a continuum. If an effort expended to
search an object can be continuously (discretely) divisible, it is called
a continuous (discrete) search effort. One which plays an important part
in search'theory is a detection function. In the case of continuous
effort, let b(x, z) be the conditional probability that an object is
detected-by the amount z Qf search effort applied in a poéition X given
it is in x. An important example of detection functions is the exponen-
tial detection function b(x, z) = 1 - exp{-A(x) z } where A(x) is a detec~
tion rate at a position x. In the'case of discrete effort, the\unit of
effort applied in any box is usually called a "look". ILet Bi be the

conditional probability that an object is detected by one look in box i



given that it is in box i.

Search theory can.be divided broadly into two parts. One is one-
sided search in which the object cannot take actions of its own free
will, that is, it is allowed to move but not to evade. Another is two-
sided search in which the object is allowed to take actions of its own
free will. In one-sided Seérch, a Bayesian.appfoach'is taken, that is,
it is assumed that there is a priori distribution of the object's
location which is known to the searcher. The problem is to find an
allocation of search effort which is optimal under a performance cri-
terion and therefore the main mathematical todls are calculus of vari-
ations, dynamic programming and nonlinear programming.  Many search models
can be considered according to various characters of the searcher and the
object. If the object stays at one location and carmot move during a
search process, it is called a stationary object, and if it moves in
the search space according to a known probability law, it is called a
moving target. A fundamental model for a étationary object is as
follows: How should the given total effort be allocated in order to
maximize the probability of detecting the object located with a priori
distribution known to the searcher? This model is solved by Koopman
(1957) and deGuenin (1961). Dobbie (1963) laid a foundation for a
- sequential allocation of search effort and established an important
relation between maximizing the detection probability by a given total
effort and minimizing the expected ﬁotal effort until the detection.

A 1ist of papers treating a search for a stationary object includes
‘Gluss (1961), Matula (1964), Ross (1969), Kadane (1971), Sakaguchi (1973),
Hall (1976) and Barker (1977). Pollock (1970) considered a discrete
search for a target moving in two boxes according to a known Mérkov

chéin, Dobbie (1974) treats a continuous-time version of the Pollock's



model. Stone (1979) obtains necessary and sufficient conditions for
a policy to be optimal in a relatively general search for a moving
target.

In two-sided search, a game theoretical approacn is taken mostly.
In this area, there are three problems: (1) Hide—Search Problem.

At the beginning of search, player 1 (Hider) hides in one location and
carnot move to other locations during the search process. Theré are
works of Gittins and Roberts (1979) and Suberman (1981). (ii) Evasion-
Search Problem. Player I (Evader) can evade (by his own free will)

during the search process. There are works of Norris (1962), Sakaguchi
(1973), Washburn (1980) and Stewart (1981). (iii) Search-Search Problem.
Two friendly players. attempt to find each other with limitted information
and communications. This type is called a rendezvous problem and there

is no paper yet.

The aim of this thesis is to solve (i.e. to find an optimal search
policy) some search modeis and to investigate the learning process by
the searcher. Outline of each section is given in the followings:

Section 1.1. A search for multi objects with the same characters,
for example, the reward of the searcher for detection of the object and
the prior distribution of its location, etec., has been solved in Smith
and Kimeldorf (1975). In this section we consider a two-box model of
searching one of two objects with different rewards and different forms
of the prior distributions. Since search effort is continuous, the
model is formulated and solved by calculus of variations. The optimal
policy is to search only one box until a threshold time and thereafter
to search both boxes in the ratio of inverses of the detection rates.
Furthermore the transition of the posteriof distribution of the object's

location is investigated. The_work in this section is based on Nakai

(1976).



Section 1.2. Dobbie (1973) formulated a search model with finite
false objects by a dynamic prpgramming techniqué. In this section we
solve a two-box model of a search for a true object against an inter-
ruption of a false objéct along the line of the Dobbie's formulation.
The analysis is carried out by the same method as in Section 1.1. The
optimal policy consists of two stages: the search before the first
detection of an object and that for the object after the false object
has been detected. This section is based on Nakai (1976).

Section 1.3. Considering a search and reséue for a lost alpinist,
we formulate a search model for an object with a random lifetime by
means of calculus of Variations and obtain necessary and sufficient
conditions for a policy to be optimal. In the case that the lifetime
density function at each location is differentiable at all time, the
optimal search policy is derived from the above conditions. Two nume-
rical exanples are given which indicate that the location with the small
expected lifetime must be searched first even if the efficiency of search
there is bad. Furthermore we analyze a search and stop problem in which
the searcher is permitted to stop the search at any time. This section
is based on Nakai (1982).

Section 1.4. In all literatures on search theory the conditional
detection probabiiity was always constant in time (or period). In this
section a search model in which it varies in time is treated by means
of a dynamic programming approach. The objective is to maximize the
probability of detecting the object during some periods._ A search policy
‘depends on the order of searches and a myopic policy (which searches at
each period a box maximizing the current detection probability) is not
necessarily optimal. The optimal policy is obtained in the two-period
case and in the two-box case in which a conditional probability in one

box is constant in time. A numerical example of the latter case 1s given.
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This section is based on Nakai (1981).

Section 2.1. The problem in this section is to find a policy
minimizing the expected number of looks to detect a target which moves
circularly among n boxes according to a known Markov chain. Tt is shown
that the posterior distribution of the target's location can be repre-
sented by a point in the posterior simplex which is defined by only the
transition matrix. In some three-box cases the'optimal policies are
derived under the assumption of perfect detection. This section is based
on Nakai (1973). |

Section 2.2. 1In the search for a moving target, it is sometimes
reasonable to wait, i.e., to expend time without search in anticipation
of the transition of the target to the more desirable location for the
‘searcher. To see this point, we allow the searcher to wait in the
Pollock's model (1970) in which a target moves between two boxes according
to a known Markovvshain. The optimal policy has a property that the
larger a waiting cost becomes, the narrower the region in whiqh to wait
is optimal becomes and that for a sufficiently large waiting cost, no
walting is optimal. We discuss the efficiency of waiting in a search
for a moving target. This section is based on Nakai (1980).

Section‘2.3. We consider a pfoblem of catching timely a target which
appears and disappears randomly. The target moves among three boxes

according to a known Markov tansition matrix.

. 1 2 3
1jl-a a O
21 0 1-b b
310 0 1

At each period the searcher must choose one of three actions: to wait,
to search box 2 and to stop. The objective is to minimize the expected

total loss until the completion of the process. The optimal policy is

...5_



obtained in the cases atb > 1 and b > (BR/c-1)/a where c, R are a search
cost and a reward of detecting respectively. So far, there appears no
paper treating this problem.

Chapter IIII. A two-person sequential evasion-search game is con-
sidered in which player I (Evader) can move among n boxes in one direction
and player II (Searcher) can search any box at each period knowing the
evader's previous position. The optimal solution in a zero-sum case is
obtained and a feedback Nash equilibrium solution is obtained in a
nonzero-sum case. We give two numerical examples. This chapter is based

on Nakai (in submission).



Chapter I Optimal Search for a Stationary Object

§1.1 Optimal Search for One of Two Stationary Objects
Concerning a multi-object search there are two papers. Smith and
Kimeldorf (1975) considers the following model: N objects are hidden in
m boxes where m is known and N is a random variable having a priori
distribution w = <Wi’ w2, e > W = prob.{N = n}. Each object is located
with a priori distribution p==<pl, cees pm> Independently of the location
of other objects. Associated with box i are search cost ci and a conditional
detection probability Bi. The objective 1s to minimize the expected total
cost expended to find at least one object. Main results are (1) If m = 2
and . wl + Wy = 1, then an optimal policy prescribes searching a box maximizing
[1- il wn(l—piBi)n]/ci énd (ii) If w is a possitive-Poisson distribution
witg—parameter A(> 0), then it is_optimal to search a box maximizing
{l—exp(—kpiﬁi)]/ci. Kimeldorf and Smith (1979) considers the same problem
with one ehange: the criterion is the expected total cost to find all objects.
In the above models they take account of only search cost. But a reward
for detecting an object must be taken into account since each object has
usually a respective value. In this section we shall consLder a two-box,
two-object search problem with rewards. There are two boxes which contain
two stationary objects. Let pk(k==l, 2) be a priori probability that object
k is in box 1. Let ci(> 0) be a search cost rate, i.e., a cost required
to search box i per unit time (i=1, 2). Assume that if box i containing
object k is searched during time t, the searcher can detect it with probability
1- exp(—xit) (ki > 0) and receive a reward Rk(—C°< R, < ). Suppose that
if we search a box containing two objects, the detection of an object is
independent of the existence of each other. The objective is to minimize

the expected total loss (i.e., cost minus reward) until at least one object

is detected.



A search policy can be described by a function ¢(t) which represents

| a length of search time in box 1 by time t and satisfies the Condition [A]:
(1) 0 < ¢(t) <t (i1) ¢(t) is piece-wise differentiable in t(> 0)

(iii) 0 < ¢'(t) <1l forany t >0 (iv) ¢(t) and t-¢(t) converge to infinite
as t approaches to infinite. Let Qk(t) be a probability that object k

is not detected until time t by using a policy ¢. Then we have

(1.1.1) Q%) = peexp[-A ¢(t)] + (A-pexpl-A,{t-¢(£)}] (k=1, 2).

Put Pk(t) =1 - Qk(t), Qt) = Ql(t)Qz(t) and P(t) =1 - Q(t). If the
first detection occurs at time t, the conditional probability that it is
made on object k is

(1.1.2) q(6) = P(6)Qy ()P (£)  (k=1, 2).

Let L(¢) be the expected total loss until the first detection by using a
policy ¢. Then we have

(1.1.3) L(¢) =jo

%
Therefore the problem is to find a function ¢ (t) which minimizes L(¢)

P'(t)[cl¢(t)+c2{tf¢(t)}—ql(t)Rl—qz(t)Rz]dt.

subject to Condition [A]. From relations (1.1.2) and (1.1.3) we have

(1.1.4) L(¢) =50{(cl—cz)tb(t)+02’c—Rl}{—Ql'(t)Q2(t)}dt
*‘Jb{(01—02)¢(t)+c2t—R2}{—Ql(t)Q;(t)}dt.

Integrating by parts and taking (iv) of Condition [A] into account, we obtain
(1.1.5) L(¢) = | WLe(t), t1dt + (terms indeperdent of ¢)
0

where
[ cl(l—pl)(l—p2)eXpE2K2(¢—t)]+02plpgexp(—2kl¢)
-1
—(A=25) [(clk2—c2Al)(p1+p2—2plp2)—Klk2(Rl—Rz)(pl—pz)]
(1.1.6) W[¢, t] =< x exp[()\2—}\l)¢—)\2t] if 7\1%}\2

cl(l—pl)(1—p2)eXp[2A(¢—t)]+02plpzexp(f2k¢)

+ A[(01—02)(pl+p2—2plp2)—l(Rl—R2)(pl—p2)]¢exp(—Kt)

\ if A=A, = A,

1



In (1.1.6), the expression in the case of Xl % A, does not converge to

2

that in the case of Al = lg as Al approaches to A2.

is no contradiction if the terms independent of ¢ in (1.1.5) are taken

But we know that there

%
into account. It is enident that the solution is a function ¢ (t) which
minimizes W[¢(t), t] for all t(> 0), subject to Condition [A], provided
such a function exists. Partially differentiating, we have

oW __ :
(1.1.7) 5 - 201A2(1—p1)(l—pg)exp[2k2(¢—t)J—2c2klplp2exp(—2xl¢)

i

(AU2—BU—C)eXp(—2Al¢)

I

where 201K2(l—p1)(1—p2),

|l

il

2c,M PPy

A
B
C
U = U(¢, t) = expl(A+1,)9-Ast]

If 0 < Py <1 for k=1, 2, then A and C are positive and therefore the
solution of the equation BW/aé = 0 is given by

(1.1.8) ¢(t) = a(t) = (A2t+u)/(Al+A2)

(1.1.9) u = logl (B+(B%+hac)™%1/(2m)]. o

Since W/3% < 0 for 0 < ¢ < a(t) and 9W/3¢ > 0 for a(t) < ¢, WLH(t), t]
is minimized at ¢ = a(t) if there is no restriction on ¢(t). But because

of Condition [A], we must find the value of ¢(t) which minimizes W[¢(t), t]

on an interval [0, t] for a fixed t(> 0). Hence W[¢(t), t] is

t 0 <t < at)
minimized at ¢(t) =¢ a(t) } if{ 0 <oa(t) <t \. It is clear that their
0 a(t) <0<t

: %
values of ¢(t) satisfy Condition [A]. Therefore the optimal function ¢ (t)
is as follows: In the case of u >0, if 0 <t <u/A,, then ¢ (t) =t

%
(i.e., to search only box 1) and if u/Al < t, then ¢ (t) = (12t+u)/(A1+A2)

-1
1

%
if 0<%t 5,—u/k2, then ¢ (t) = 0 (i.e., to search only box 2) and if

(i.e., to search box 1 and 2 in the rate A :»X;l). In the case of u <0,

_9_



% .
fu/Ag.i t, then ¢ (t) = (A2t+u)/(kl+k2) (i.e., to search box 1 and 2 in

. -1 .1
the ratio Al .Az ).

%
Define t.
i

[l

-1 Ny Lee, tj.i is the threshold time which indicates
the switching time of the optimal search method.‘ Furthermore we put

D; = {(py> pg)[ u > 0} and D, = {(p,, p2)[ u <0}, te., D (i=1, 2) is
a region of the pair of the prior probabilities in which to search only
box 1 until the threshold time t: is optimal. The boundary between two
regions D1 and D2 is given by the straight line

(1.1.10) (r+¢)pl—(r—c)p2 = 2(:1/}\l '

where r = Rl - R2 ard ¢ = cl/kl + 02/A2. This line separates the origin
and the point (1, 1). (See Fig. 1.1.1.)

Here we investigate how the posterior location probabilities vary. Let
Py (k=1, 2) be the posterior probability that object k is in box 1 given
that no detection occurs until time t by the optimal policy ¢*. By the

Bayes' rule, we obtain

-At -At y
pe ~/(pe T +l-p) if (p, py) €Dy and t <ty
p;{ _ pke"u/(pke'uﬂ:pk) if (p;, p,) € Dy and ti z
pk/[pk+(l-pk)e, 2] if (py» p2) €D, and t < t,
p /Lo + (l—-pk)eu] if (p;> p,) € D, and t: t.

#

Ir (pl, p2)€ Dy and t < t,, we have
= -1
log(pk -1) = 1og(pk -1) + kit
which can be transformed to, by eliminating €,
1—1 1—1 -1 -1

(1.1.11) (p, -1)/(p; -1) = (p, -1)/(p; -1).
Hence the pair of two posterior probabilities varies along the curve (1.1.11)
ﬁntil the threshold time and stays there (the point A or B in Fig. 1.1.1)

afterwards. We summarize the above discussion in the following theorem.

Theorem 1.1.1. If (pl,‘p2)<§ Di(i==1, 2) in Fig. 1.1.1, the optimal

policy is to search only box i until the threshold time ti = (—1)l+l i

- 10 -




and'thereafﬁer to search box 1 and 2 in the ratio Allz Agl where the

boundary between two regions Dl and D2 is given byr(l.l.lO) and u is

defined by (1.1.9). Furthermore if the optimal policy is used, the pair
1 ' ' :

(pl, p2) of two posterilor location probabilities varies along the curve

given by (1.1.11).

The following points must be noted.

(1) The ratio with which the optimal policy searches both boxes after
the threshold time depends not‘on search cost Ci but on the search
rate Ai (i=1, 2).

(ii) The optimal policy depends on rewards Rk (k=1, 2) only through their
difference R, - R,.

1 2
(1ii) Consider the case that detecting object 2 results in receiving an

~—r

enormous loss and going bankrupt, i.e., the searcher wants to find

object 1 with avolding to meet object 2. This case occurs when R2

approaches to infinity. In this case, the optimal policy is tb search

only box k if Py (k=1, 2).

> p3_k
(iv) Rewriting the equation (1.1.10), we obtain

5 +5.) . -
(pytpy) N i (B 0,00, & R,) (PP M A,

! o ©1%

(1.1.12) (51,El_pi)'

When Rl = R2,
BERSNPN oy P12,

1 )2 2

(1.1.13) —2—2 { - } —t 2

then the optimal policy is to search only {

Theorem 1.1.1 states that if

box 1
box 2

in (1.1.13) and thereafter to search box 1 and 2 in the rate A

& until the equality holds

-1 -1
1 Az .
Here the left hand side of the inequality (1.1.13) represents the detection

rate in box 1 per unit search cost for one object with the prior distribution

<p, 1l-p> where p = (pl+p2)/2, i.e., the mean value of two location probabilities

- 11 -



in box 1. Therefore if Rl = R2, we can regard the two-object case as the

one-object case. The last term in (1.1.12) represents a bias by the fact

that R1 = R2.
Py

1

by

0] 1
Fig.1.1.1  Regions Di (i=1, 2) and the transition of the pair of the

)] !
posterior location probabilities (pl, p2) in Section 1.1.

- 12 -



§1.2 Search Problem with a False Object

When there are false'objects which camnot be distinguished from the
true object except by a close inspection, the search takes place in two
phases. The first phase‘is carried out by a sensor which can detect an
object but not positively identify it. fhe second phase 1is to'investigate
whether the contact is true. A search problem with false objects is
studied by Stone and Stanshine (1971). They assume that a search policy
does not depénd cn the number of false objects which were found and eliminated.
But if the number of false objects is bounded, this assumption does not
hold in general. Dobbie (1973) formulates a search model with finite
false objects by a dynamic programming technique under the assumption that
a policy is contingent on finding false objects. But he does not solve the
problem in general except avsimple example of two-box case.

We consider a search problem of a Dobbie's type and obtain its
optimallpolicy by the calculus of variations. There are two boxes and
one true object is in one of them according to a priori distribution
<pl, l—pl>. One false object hides in either box according_to a priori
distribution <p2,'l-p2>. Both objects are stationary during search process.
Assume that if a box containing a certain object (whether it is true or
not) is searched for time t, it is contacted with probability l-—exp(-t).
The contact with an object is assumed to be independent of another.  If
a contact occurs, the search will be interrupted and time £ (> 0) will be
spent to identify the contact. If the contact is the true object, the
search‘will be stopped. If the contact is the false object, we discard
it and reopen the search for the remaining true object. The objective
is to minimize the expected time to detect the true object. An example
which was solved by Dobbie is the case of Py = 0 and;z = 1 in our model.

We call the search process until the first contact the first stage

and that after discarding the false object the second stage. In the second

- 1% -



stage, the problem is to detect one stationary object wiéhout'false objects
and therefore it can be solved by thé well-known method as follows:
Let p be a probability that the true object is in box 1 at the begimning '
~of the second stage. If 0 <p <1/2 (1/2 < p < 1), it is optimal to search
only box 2 (box 1) until time Ilog(p_l—l)] and to search equally both
boxes thereafter. The expected time to detect the true object by the optimal
policy is expressed by
(1.2.1) £,(p) = (3+|ul+exp|u])/(L+explul)
where u = log(p-l—l).
Now we consider the search process in the first stage. A search
policy in the first stage can be described by a function ¢(t) which represents
search time in box 1 by time t and satisfies the Condition [A] in Section
1.1. If the first contact by a policy ¢ occurs at time t and is false,
a probability that the true object is in box 1 at the beginning of the
second stage is given by

] | o expl~6()]
(1.2.2) py(t]e) =

pyexpl-¢(t) 1+ (1-p, Jexp[-t+o(t) ] -

Substituting (1.2.2) into the relation u = loglp, (t ¢)"1-1}, we obtain
_ 1

(1.2.3) u = 2¢(t) -t + log(pzl—l).

0
€

any t(> 0) and therefore we assume that 0 < p, < 1. ILet Q(t|¢) be a
Z : 1

. ‘ ) *
It is evident that if py = {21! , the optimal solution is ¢ (t) ={ \for

probability that the first contact by a policy ¢ does not occur by time

t. Then using (1.2.3), we have
2

I
i=1

(1.2.4) Qt|e) [p,exp{-¢(£)} + (1-p;)exple(t)-t}]

1t

¥ Ip, (1-p,) (14e™) + (1-p) Ip,(L4e™)1.

We put P(t|¢) =

I
]

- Q(t]s). Iet q(t|¢) be a conditional probability
that the first contact is false given that it occurs at time t by a policy

¢. Then

- 14 -




(1.2.5) a(t]9) = [P (£]9) 1 [pjexpl-o(6) HH(1-p, Jexpl(t)-t}]

x 5t [1-p,expl-4(8)} - (1-p,)explo(t)-t}]
-1 -t

= [22 (6|96 Ip) (1-p,) (1) (L) +(1p dpy (1) (1™,

Let f(pl, p2ld>) be the expected time to detect the true object by using
a policy ¢ in the first stage and the optimal policy in the second stage
given that the prior location distributions of both objects are Py l—p1>

and <p2, 1—p2>. Then we have
(1.2.6) £(p;, p,y|9) =J P (5 [9)[b++a(t [9) {,(5, (6 ]9))+2} ot
Q (e @
=2 +J Qt[¢)at +J P (t]9)alt]o){f,(B; (t]4))+e}at.
0 0

Substituting (1.2.4) and (1.2.5) into (1.2.6) and noting Condition [A],
we obtain

(1.2.7) £(py5 p2l¢) = %—5 e Wlu(t)1dt + (verms independent of ¢)

0

where _— o

58 py (1-p,) {2e”—u"/2~(2+2)ul+(1-p; Jp, {e " +(LH1)utl} if u > 0
(1.2.8) W) =

‘ pl(l—pz){eu—(2+1)u+l}+(l-p1)pé{Be_u—u2/2+(_2+2)u} if u < 0.

]
Furthermore Condition [A] becomes Condition [A ] defined by
(1) w(0) = log(p] 1)
(1i) u(t) is piece-wise differentiable in t

Condition [A'] < 1
\ (ii1)  Ju(t) - log(p;-1)| <t for t.> 0

1
\(iv) -l <u(t) <1 . for t >0
% ,
Therefore the function u (t) which minimizes W[u(t)] for all t and satisfies
Condition [A'] is optimal, provided such a function exists.
. ' pl(l—pz)(2eu-u—2—2) + (l—-pl)pz(—-e—u+2+l) ifu>0
(1.2.9) W (uw) = u , —u -
pl(l—pg)(e -2-1) + (1—p1)p2(—2e -utf+2) if u < 0.

g Py (1-p,) (2e™-1) + (1ppe™ if u >0
(1.2.10) W (u)

pl(l—p2)eu + (1—pl)p2(2e"“-1) if u < 0.

1" t
Since W (u) > 0 for all u, W (u) is strictly increasing in u. Furthermore
t ! 1 1
W (0) = E(pz—pl), W(+w) =+wand W (-w)= —o, Hence the equation W (u) = 0

has a unique root Uy such that if Py > (< )p2, uy > (< )0. Therefore the

._15_



optimal function u (t) is a function which starts at u(0) at t = 0, goes
to v, as rapidly as the constraints permit and remains unchanged thereafter.

% %
Hence if we put t = luo - u(0)|, u (%) is given by

. u(0) - ¢ iIFO<t<t
u(O)ZuO = u (t) = %
: Uy ift <¢t
(1.2.11) | %
ok u(0) + ¢t ifo<t<t
1,1(0)_<_uO => u (t) = %
u, ift <t

1
Since W (u) is strictly increasing in u,
>

i

<

1 > 1
(1.2.12) u(O){ } U, <> W [u(0)] { = 'IW [uO] = 0.
<

Substituting u(0) = log;(pzl—l) into (1.2.9), we have

-1
1 (1-2p. ) (2-p,)+(p,—p, ) &, (1-p,)log(p,-1)
(1.2.13) W [uw(0)] = 1 AR h if u(O){

A |v

o

-1
(l—2p1)(l+-p2)+(p2—pl)2—(l—pl)p210g(pl -1)
If we define ‘
-1
-(l—2p1)(2—p2)+(p2—pl)2~p1(l—p2)log(plv—1)

(1.2.14) B(pl, p2) = = if pl{
(l—2pl)(l+p2)+(p2—pl)2—(l—p1)p210g(pl -1)

v

|

v IA
R

]
then W [u(0)] = B(_pl, p2) since u(0) > 0 (< 0) is equivalent to p; < 1/2

lo.

Therefore by (1.2.3) and (1.2.11), the optimal policy can be obtained as

(pl >1/2). Hence by (1.2.12), we obtain
>

Al VvV

<

(1.2.15) u(O){ H U, & B(pl, pz){

follows: If B(pl, p2) >0,

0

| A

T x (to search only box 2)
(1.2.16) ¢ (t) = if t{

-1
log(p, —-1)-u
t 1 -1 ‘ 1 0’
55 [lOg(pl —l)—U.O] »

I v

(to search equally both boxes)
and if B(p;, p,) <0,

t

A

*
(1.2.17) o () =

(to search only box 1)
if t
>

-1
-log(p, -1).
£ 1 =] Ho™-08iP
5 + 5 [110—108(131 -1)1 }

(to search equally both boxes)
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We put D, = {(py, p,) [B(p> pé) <0} and D, = {(p;, p,) |B(p;, p,) > O}

The boundary B(p,, p,) = 0 of two regions D, and D, is described in Fig.
1 2. 1

2
_1.2.1; Now we shall investigate how the pair of the posterior location
probabilitieé of both objects in the first stage varies. When the optimal
policy is used, let 51(t) (52(t)) be the posterior probability that the
true (the false) object is in box 1 given that the first contact does not
occur until time €. Then by the Bayes' rule, we have .
b expl-0 (1)}

p,expl-0 (t) }+(1-p,)exple (£)-t)

(1.2.18) B, (t) = (i=1, 2)

which lead us to
1 -1 -1 -1
(1.2.19) (p, -1)/(p; -1) = (p,-1)/(p; " -1)
%
" by eliminating ¢ (t) from (1.2.18). The pair of the posterior probabilities
varies along the curve defined by (1.2.19). (See in Fig.l.2.1).

We summarize the above discussion in the following theorem 1.2.1.

Theorem 1.2.1 (a) The optimal policy in the first stage is as follows:
If (pl, p2) G.IE_(j.=1, 2) in Fig. 1.2.1, search only box i until the

* -
threshold time t = |u, - log(pll-l)] and search equally both boxes thereafter

0
. . !

where ug is the unique root of the equation W (u) = 0. (b) The optimal

policy in the second stage is as follows: Let 51 be a probability that

the true object is in box 1 at the beginning of the second stage. I1f

p, < (> ) 1/2, search only box 2 (box 1) until time |1og(5"1-1)l and search
1= = 1

equally both boxes thereafter.

Fig.1.2.1 Reglon D, (1=1, 2) and the

transition of the pair of the posterior
1 )

location probabilities (pl, p2) in

Section 1.2.
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§1.3 Optimal Search for an Object with a Random Lifetime

In winter many alpinists are lost in a snowy mountain and the search
for them is carried out. In such a search it is important to detect
the alpinist alive. Since the capability of his survival depends exceed-
ingly on the geographical feature and the weather at the accident place,
we must search first in the place where he cannot live long even if the
efficiency of search there is bad. Furthermore if the alpinist dies,
his family wants to detect his dead body and therefore the search is
continued until the detection of his body whether he lives or not.

Thé searéh problem in such a situation is modelled as follows:
One stationary object is in one of n boxes with a priori distribution
<p1, cees pn> where pi is a priori probability that the object is in
box i. The lifetime of the object in box i is a random variable ac-
cording to a probability distribution Fi(t) which is composed of two
probability masses ai at £t =0, Bi at € = » and a probability density
function fi(t) on the time interval (0, »). The mass ai‘denotes a
probability that the object in box i dies before the beginning of the
search and the mass Bi denotes a probability that the object in box i
is alive eternally. Note that oy +'f:fi(t)dt + 8, = 1 fori=1, ...,
n. Let ¢ be a search cost per unit time which is assumed to be common
to all boxes. Assoclated with box 1 is a search rate i, (> 0) which
means that the object is detected with probability 1—exp(—xit) if box
i contains the object and is searched for t hours. If the searcher
detects the alive object in box i, he can obtain a reward ri'(:>0).
But if the dead body of the object is detected, no reward is obtained.
The problem is to find the optimal search policy, i.e., the allocation
of search time maximizing the expected return (i.e., reward minus cost)

until the object is detected whether it is alive or not.

- 18 -



A search policy may be denoted by a funciton ¢(t) = {¢1(t), ces
¢n(t)} where ¢i(t) is search time in box i until time t and satisfies
n
that ) ¢;(t) =t and ¢,(£) 20 (1 =1, ..., n) for any t (>0). First

i=1
we define some quantities.

gi(t) = the expected return of detecting the object in box 1 at time t
= — — kot
ri[l Fi(t)] ct.
P%(t|¢) = the probability of detecting the object by time t given that
it is in box i and that a policy ¢ is used
=3 - exp{—ki¢i(t)}.
ﬁ[¢} = the expected return by using a policy ¢

n o . .
izlpi IOgi<t> P, (t]¢)dt

1
where Pi(t!¢) is the derivative by t. Integrating by parts,

n n © '
(1.3.1) Hel= ] pr.(i-a) + ] b, [ & (B)expl-2 0, (£)dt.
i=1 i=1 0

Since the first term of the equation (1.3.1) is independent of the policy

¢, the problem is formulated as follows:

n ®
(1.3.2) R[¢1= 7} p; / gi(t)exp{-ki¢i(t)}dt —> max
i=1 0 ]

subject to

n
(1.3.3) Y o,(t) =t foranyt (>0),
i=1

(1.3.4) ¢i(t) is nonnegative, continuous and nondecreasing in t (> 0)

for i =1, ..., n.

Remark 1.3.1 The assumption that the search cost c is independent
of the searched box is a very strong restriction, but if it is taken off,
the above formulation cannot hold and therefore it seems to be more
difficult to analyze the problem. On the other hand, it seems that We

can replace the exponential deteétion function with the more general form.
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Remark 1.3.2 The following search problem can be modelled in the
same mathematical form as the above-mentioned one. Though the object is
alive eternally, the reward is éssumed to be diminished with time.
Namely the reward for detecting the object in box i at time t is given by
risi(t) where Bi(t) is a discounted rate in box i at time t and is supposed
to be nonincreasing in t. For example, if Bi(t) = 1—Fi(t), our model is

obtained.

In the next theorem we give necessary and sufficient conditions for s
policy to be optimal in the Neyman-Pearson type. The necessary condition
is proved by using the de Guenin's method (1961) with respect to time
instead of space. The sufficient condition is proved by considering the

Gateaux differential.

Theorem 1.3.1 Necessary and sufficient conditions for a policy
o¥(t) = {¢§(t), ey ¢§(t)} to be optimal are given as follows: There is

a nonnegative funciton u(t) for any t (>0) such that

(1.3.5) pyhy ft[—gj'_(s)]exp{—kicpi(s)}ds (2 ue)  1r ed(e) (2} o.

<
Proof: The proof of the necessity. Suppose that the policy ¢¥* is
optimal. We consider any time ti (>0) such that ¢%(t1) > 0 and define

a policy ¢ for any box j (% i) and any positive constants e, At as

follows:
$¥(t) if 0 < t< %y
95 () = of(t) - = (t-t) If B < b 5 byt
$%(£) - ¢ If bttt < b < o,
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$3(¢) if0<t <ty

= * _€_ — !
¢J.(t) ¢j(t) + ¢ (-t)) if ) <t <t #at

¢3(0) + e if o #86 < b < o

and ¢, (t) ¢§(t) for any k (¥i,j) and any t (>0). It can be proved

that if ¢ = 0 (At), the policy ¢ satisfies constraints (1.3.3) and (1.3.4)

for a sufficiently small At. For the policy ¢,

(1.3.6) R[¢*] - R[¢] = p, ft g; (B)[expl-2,¢¥(t)} - expl-a;¢,(E)}]at
1
Sl
. o¥ - -
+p ft gﬁ(t)[exp{ xj¢j(t)} expf{ kj¢j(t)}]dt.
1
By the mean value theorem, we have

(1.3.7) exp{-ki¢§(t)} - exp{—ki¢i(t)}
Aie 618
- 75;-(t—tl) exp[—xi{¢§(t) - 7§;~(t—tl)}3 if 6y <t < b+t

- - % - i ©
Ais expl Ai{¢i(t) 625}] if tl+At <t <

and

- * - -
(1.3.8) expl kj¢j(t)} exp{ kj¢j(t)}

X.€ 0.,€
(- _ % 3tk g

_) At (t tl> expl kj{¢j(t) + 5T (t ul)}] 1f £ <t < ty#at
A€ exp[—xj{¢§(t) + eueT] if 6o+ <t < =

where 0 < 8 <1 fori=1, 2,3, 4. Substituting relations (1.3.7)

and (1.3.8) into the equation (1.3.6),

(1.3.9) R[¢*] - R[¢]

Xie t1+At . % els
= -p; 75;—ft g; (8) (8-t ) expl-, 1o, (£) - o= (b=t )}]dt
1
p.ALe g () expl-r, {o¥(t) — 6.e}]dt
i'i ftl+At i i~ 1 2
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A.e to+AC 6.,

to 2 [ (6 (bt Jexpl-a (o3(5) + 3 (6-5,)}]dt
b

+ pj)\js J gJ (t)exp[- A {¢*(t) + eue]dt >0
tl+At

where the last inequality follows from the optimality of ¢¥. Dividing
both sides of the inequality (1.3.9) by € (>0) and letting At approach
to zero, the_first and third terms converge to zero since for any

t. +AL
function z(s), At f 1 z(s)ds converges to z(tl) as At + 0. Therefore

we obtain 1

ot - * —o! - *
(.3.10) ppdy [ L-gf(8)Texm(r 9] ()18 2y [ [-gj(6) Jexpl-a;¥(6) at.
1 1
. 1
If we select box:j (¥ 1) such that'¢§(tl) > 0, the discussion obtained
by exchanging i for j in the above discussion can be developed and
1
therefore the opposite inequality holds in (1.3.10). Hence if ¢§(tl)
1
and ¢§(tl) are positive, the equality holds in (1.3.10). In other words,
' .
if ¢§(t) > 0, the left hand side of (1.3.10) is independent of i. Hence

there is a positive function u(t) such that
co } . i
! ). 0% = i 4%
(1.3.11) pyay ft[ g;(s)Jexp{-2;¢¥(s)}ds = u(t) if ¢¥(t) > O.

1
On the other hand, if ¢§(tl) = 0, the opposite inequality cannot hold
in (1.3.10). Therefore

(1.3.12) py, [ [-g}(s)Jexp{-3;4%(s))ds < u(t)  if ¢¥(t) =
t

The relation (1.3.5) is derived from (1.3.11) and (1.3.12).

The proof of the sufficiency. Suppose that the policy ¢* satisties
the relation (1.3.5) but.is not optimal. Therefore there is a policy ¢
such that R[¢] > R[¢¥]. We put

£(t) = 4(t) = ¢*(£) = {99 (8) = ¢3(t), ..., ¢_(t) - $*(£))
and consider the Gateaux differential R'[¢¥*: £] of the funciton R[¢]

at the point ¢ = ¢¥ in the direction of ¢ which is defined by
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R'[¢%: £] = 1im € “{R[6* + e£] - R[o*]}.
>0
By the mean value theorem, we obtain

eTHRIo* + c£] - R[4¥1}

lglpl f gl (t)e” [exp{—xi[¢§(t) + e, (8)1) - expl-r 0% (t)}]at

]

Z p; f g1 (£)€; (£) (=2, Jexpl-A; [4%(t) + oer, (tNat
i=1 * o
for 0 < 8 < 1. Letting e approach to zero, we have

o]

n
(1.3.13) R'[¢*: ¢] = Z p Ay f [-g (t)]{¢ (t) - ¥ (t) Jexpl-A, ;05(£)1at

-1 0 f P, A (=81 (£) 3061 (8) ~ ¢3(s)Iexpl-r,6¥(t)}ds dt
i=1 0 O

= Z f f ISP [—”’(t)]{¢ (s) - ¢*(s)}exp{ AL ¢*(t)}dt ds
i=1

Z f [p;2y f [-g; (t)Jexp{ A ¢%(8)}at el (s) - ¢*(s)}ds
i=1 O

2 J u(s){¢ (s) - ¢*(s)}ds (by the relation (1.3.5))

1=l 0
no
f u(s){ Z $J(s) = ] ¢3(s)lds
i=1 * i=1
=0 (by the condition (1.3.3))

On the other hand, the functional R[¢] is concave in ¢ since gi(t) <0
for i =1, ..., n. Therefore
R[¢* + e&] - R[¢*] = R[(1-€)¢¥ + e¢] ~ R[¢¥*]

> (1-e)R[¢*] + eR[¢] - R[¢*]

il

e{R[¢] = R[¢*]}.
Hence

(1.3.14) e M{R[¢* + e£] - R[6*]} > R[¢] - R[¢%] > O

| v

where the last inequality follows from the assumption of the contra-

diction method. Letting e approach to zero in (1.3.14), we obtain that
1 .

R [¢¥: £] > 0 which contradicts to (1.3.13). Therefore the policy ¢¥ is

optimal. (q.e.d.)

_23_



In the next theorem we give optimal search rates at any time.

Theorem 1.3.2 If all derivatives fi(t) (i=1, ..., n) exist at

time t, the optimal search rates at time t are given by

gy (t) g“(t> | -1
‘ A.l[gi(t) (1- } ;1 g ) ) Agl) ]if ie It
(1.3.15) ¢%(t) =  jerr) jeI(t)
0 if 1& I(t)
where
2O )

(1.3.16) I(%t) = {i]piki[—gi(t)]exp{—kiéi(t)} = —y’(t) and'gi(t) ey}

1
Proof: First we put K(t) = {i|¢§(t) > 0} and prove that K(t) = I(t).
If i € K(t), the equality holds in (1.3.5) and therefore by differentiating
its both sides in t, we have
_ol ( - * = _ !
(1.3.17) piki[ gi\t)]exp{ Ai¢i(t)}.. u'(t)
or
. -1 -
* - —o! - !t
9%(t) = A, {log(p; 2, [-gf(£)]) - logl-u'(t)1}.

Differentiating in t once more,

-1 81 () u(t)]
i 81(t) Tut(e)

(1.3.18) ¢*(t) = A,

Since ¢%(t) > 0, we obtain that gg(t)/gi(t) > u"(t)/p'(t). Therefore
i€ I(t), i.e., K(t)& I(t). On the other hand if there is a box i such
that i€ I(t) and i & K(t), then the relation (1.3.17) and ¢%(t) = 0 are
satisfied. Hence by the same method as the above discussion we obtain

that gg(t)/gi(t) = u"(t)/u’(t) which contradicts to i € I(t). Therefore

K(t)22I(t). The proof of K(t) = I(t) is completed. Next substituting
n o,
(1.3.18) into ) ¢¥(t) = 1, we have
i=1 *
. _1 8;( ) "(t)
1= ) ¢*(t> = e
1€1(t) * 1€I(t) "1 gi(t) ~ w'(®)
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or
'.’(t)
ATIEJ,—(—T , yThy~t
jex(e) ¢ &Y ger(e) J

(1.3.19) ‘;','g - (1-

Substituting (1.3.19) into (1.3.18), we obtain (1.3.15). . (q.e.d.)

Remark 1.3.3 Since the funciton u(t) is not known, the optimal

1 .
search rate ¢§(t) is not explicit in Theorem 1.3.2. Later we shall
consider the case in which the optimal search rates can be obtained

explicitly.

Remark 1.3.4 Let pi(t|¢) be the posterior probability that the
~object is in box 1 given that it is not detected until time t by a

policy ¢. By the Bayes'rule, we have

pi(t|¢) = p; exp{—xi¢i(t)}[j§lpj exp{—xj¢j(t)}]-l.
If 1 € I(t), then pi(t|¢*)ki[—gi(t)] is independent of i by Theorem
1.3.2, i.e., the optimal search policy i1s to allocate search time to
equalize the value of pi(tl¢*)xi[—gi(t)] for all boxes which are
searched at time t. But we must note that the optimal policy is not
necessarily to search all boxes maximizing pi(t|¢*)ki[—gi(t)]. Later
we shall give an éxample which indicates this notice. Speéially‘in thev-
case that the object is alive eternally, it is well-known that this

property holds, i.e., the optimal policy is to search in all boxes

maximizing the value of pi(tlcb*))\i for all t (>0).

Next for the purpose of obtairming the optimal search rates expli-
citly, we restrict our attention to the case that the lifetime density
functions fi(t) (i=1, ..., n) are differentiable at all t € (0, «). We

put
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hi(t!¢) z piki[—gi(t)]exp{—xi¢i(t)} | (i=1, ..., n)

Jt) = {i] hi(t|¢) =max h,(t]¢)} t € [0, =)
1<j<n *
and define a search policy ¢ by
BN _ 8l 1.
Nt - ) AT () ATl Ar 1 € J(8)
+ [gi(t) seae) 3 B sea ey

(1.3.20) §1(t) =
0 if 1 & J(t).

Lemma 1.3.1 Suppose that fi(t) (1=1, ..., n) are differentiable
at all t € (0, »). If the policy ¢ given by (1.3.20) searches box i at
time t, then it searches box i at any time in [t, «).

Proof: Suppose fhat though the above policy ¢ searches box i at
time t, it does not necessarily search box 1 at all time t € [t, =).
Hence there is a time s (>t) such that 1€ J(s) and i & J (s+at) for
any small At (>0). Consider box j such that j € J(s+at). Therefore
(1.3.21) h(s + AL] ) < hj(s + At]e).

If §j & J(s), then hi(s|¢) > hj(sl¢) which is contradictory to the conti-
nuity of the function hy(t|¢) in t. Hence j € J(s), 1.e.,

(1.3.22) h(sle) = hj(sicb).

On the other hand, we obtain

(1.3.23) hi(s]e) = by, exnl-h 6, ()}-g)(s) + gl () 01(s)].

Substituting (1.3.20) dinto (1.3.23) [note that 1€ J(s)], we obtain

(1.3.24) h:.'L(slcb) hi(s{¢)><[constant in i]

1}

hj(sl¢)x Tconstant in j] (by the relation (1.3.22))

il

h!(s
1(sle)
Two equations (1.3.22) and (1.3.24) lead us to the fact that
hi(s + At|9) = hj(s + Atl¢)
which contradicts to (1.3.21). Therefore by the contradiction method,

the proof is completed. ' : (g.e.d.)

- 26 -



Theorem 1.3.3 If fi(t) (i =1, ..., n) are differentiable at all
t € (0, »), the policy defined by (1.3.20) is optimal.
Proof: If i€ J(t), then i€ J(s) for any s (>t) by Lemma 1.3.1.

Hence hi(s|¢) z_hj(s|¢) (i=1, ..., n) for any s (f:t). Therefore
i hi(s|¢)ds > [ h.(s|¢)ds (3 =1, ..., n)
t t o

which denotes that the policy ¢ satisfies the sufficient condition in

Theorem 1.3.1. The proof is completed. (g.e.d.)

Remark 1.3.5 Since hi(t|¢) depends not on ¢i(s) (s > t) but on
¢i(s) (s <t), ¢i(t) given by (1.3.20) can be determined by only ¢i(s)
(s <t). Therefore the optimal policy ¢(t) can be obtained explicitly

by a successive method with respect to time.

Remark 1.3.6 If the object is alive eternally or if all rewards
ry (1=1, ..., n) are zero, then E—g&(t)] = ¢ for any i, t. Therefore
a policy ¢ which searches at time t all boxes maximizing

R . -1 . .
PsAy exp{—xi¢i(t)} in proportion to AT s optimal.

Numerical Example 1.3.1 We consider the 3-box case with the ex-
ponential lifetime distribution, i.e., Fi(t) = 1~exp(—6it) (6i > 0)

for i =1, 2, 3. We give the values of parameters as follows:

It

<Pq> Pps P3> = <0.5, 0.3, 0.2>, (Al, OF xg) (0.6, 0.9, 1.2),

If

(61, 62, 93) = (0.1, 0.3, 0.5), ¢ = 1 and r, 2 (1=1, 2, 3).
We can obtain the optimal search policy ¢¥ by Theorem 1.3.3 as follows:

hi(t]¢ %) = p.a,{r.o. exp(—eit) + c}exp{—hi¢§(t)}.

R T e
0.36 (i=1)
hi(0|¢*) = pixi(riei +c) =¢ 0.432 (1i=2)
0.48 (1i=3) .
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Since h3(0|¢*) > h2(0[¢*) > h1(0|¢*), ¢* must search only box 3 until

time t, such that h3(t1|¢*) = hg(tl|¢*_), i.e., t, is the unique positive

1

root of the eguation

1

0.20{exp(~0.5t) + llexp(-1.2t) = 0.27{0.6 exp(-0.3t) + 1}.
Ir tl <t §_t2, then ¢* must search box 2 and 3 with rates given by

(1.3.20), i.e.,

' [3+5 exp(0.3)T0 + 2 [1 + exp(0.56)T T (1 = 2)
o (6) =

3713 +5 exp(0.30)77F - 25—1 [1+ exp(0.50)TF (1

Il

~Jjw =
~Nw  w ..

3)
- 3 - - 1 * - * . . 3
The time t, is given by n2(t2l¢ ) hl(t2|¢ ), i.e., t, is the unique
positive root of the equation
0.27{0.6 exp(-0.3t) + 1} exp{-0.9 ¢§(t)} = 0.3{0.2 exp(-0.1t) + 1}

where ¢§(t) is given by

t | »
$5(t) = ft [g-— %-{3+5 exp(0.33))7T + é%-{1+exp(0.5s)}—ljds

1
Ir t2 <t <, ¢* must search all boxes with rates given by
% - 778 [1+5exp(0.16) 174 + -153— [3+5exp(0.36) T+ + % [1+exp(0.56) T
o (1=1)
1 —_ — —
$}(6)=4 15 + = [150x0(0.16) T — 2 [345exp(0.36) T + 75 [1+exp(0.56)17
(1=2)
13—3 ; % [145exp(0.16) 7% + % [3+5exp(0.36) T - %— [14exp(0.56) T
' (1= 3).

Remark 1.3.7 If the object is alive eternally in the above example,

it is a well-known resutl that since plx the optimal policy

17 Porp” P3tg
begins to search each box in order of box 1, 2, 3. But in the above example,

the order must be box 3, 2, 1 since the expected lifetime in each box

is given by (6~1, 651, 651) = (10, 10/3, 2), i.e., though the efficiency

of search is wrong in box 3, box 3 must be searched first since the
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expected lifetime is very small there.

Numerical Example 1.3.2 Next we consider the case of the nondi-
fferentiable lifetime density function. Theorem i.3.2 cannot give the
optimal policy explicitly and Theorem 1.3.3.cannothold. The author made
efforts to find an algorithm to obtain the optimal policy explicitly,
but could not find an available algorithm. It seems that we can follow
Theorem 1.3.3 in the general situation but must make a suitable modi-
fication in the neighborhood of the nondifferentisble point of fi(t)
(=1, ..., n). To see this point, we give a numerical example.
Consider a two-box problem with uniform lifetime distributions

t/a, (0 <t <a,)
Fi(t)={ + U

1 (ai<ti°°)

I

(i 13 2) ®

We gi&é the values of ﬁarameters as follows: <Py> Py> = <0.6, 0.4>,
(A1s 25) = (0.7, 0.9), (aq, a,) = (6, 3), (rl, r,) = (3, 4) and ¢ = 1.
We put hi(t[¢*) = pixi[—gi(t)]exp{-xi¢§(t)}.' Theorem 1.3.1 states

that it is optimal to search at time t in boxes maximizing an area of

a region generated under the function hi(s|¢*) on the interval [t, =).
Therefore we must construct the optimal policy such that this property
is satisfied at any time. After trial and error, we offer the policy ¢¥
given by Table 1.3.1 as the optimal policy (which will be proved to be
optimal later). Table 1.3.1 denotes boxes to be searched in each

time interval. If ¢¥ searches both boxes, then the proportion of the

search in box 1 is xil/(xil+ix—%) = 9/16 by Theorem 1.3.2.

time interval (0, t) (£, t,) (t,, t3) (t3, ty) (€, t5) (t5, )
boxes to be searched 2 . 1,2, .. 1,2 -2 - 1,2
Table 1.3.1 The policy ¢¥: t2 <3< tu, ty < 6 < t5
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For this policy ¢¥, hi(t[¢*) (i =1, 2) can be calculated as follows:

0.

0

0

hl(tlcb*) ={ 0.

(@

) =
h, (t] %)

63

.63exp[-0

.63exp[-0

63exp[-0

42exp[ -0

U2exp[-0.

.94exp[-0.
.Ql4expl[-0.
.36exp[-0.

. 36exp[ -0

by (t]¢%)

which are described in Fig.1.3.1. Here five threshold times ti (i

T (t-t,)]
.7{1%(1:241) + (5-5,)}]
9 9
.7{—13(1:2—1:1) + (t3—t2) + E(t'tB)}]
9 9
.63exp[—o.7{17(t2—t1) + (t3—t2) + E(tu"t_%)}]
9 9 .
T (E,-t) + (t3—t2) + Té(tu‘t3)}] if6<t<t

if0<t<t

}.._l

ift) <t <t

if t2 <t <t

ift, <t <t

3
if tu t <6

| A

5

9 - 9 9
7fi€(t2—tl> + (t3—u2) + ig(tu—t3) + ig(t_tB)}]

9t ]

7
9{tl+ T6—(t2—t1) }]
P |
9t + -—16(‘02—1:1)}]

..., 5) are determined as follows:

if t5 <t <=

iIf0<t <ty

9+ olt,mt) + oltyta) + (85,))]

if ty<tz<t

otherwise

~
13 <y

The policy ¢* starts at time O by

searching only box 2 and therefore the function hz(t[¢*) decreases in

£ and at last intersects the function hy(t{¢¥) [= h,(0]¢*) = 0.63].

Let tl be the first time at which h2(t[¢*) = hl(t|¢*), i.e., t, is a

unique root of the equation

0.94exp(~0.9t) = 0.63.

1

In the time interval (tl, t2), since both boxes are searched, hl(tl¢*)

= hz(t]¢*). In the interval (t2, t3), only box 1 is searched and

therefore h, (t|¢*) decreases in t and h,(t]4*) is constant except that

it falls instantaneously at t = 3 since f2(t) is discontinuous at

t = 3. See Fig.1l.3.1. Let t3 be the first time at which two functions
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hi(t|¢*) (1 =1, 2) coincide with each other again. If we fix the
tin@ t2, then t3 can be determined as a function of t2 by the root of

the equation
_ L g -
0.63exp[-0. 7{ (t 1) + (t3~t2)}] = 0.36exp[~0.9{t1+ l6(1:2 tl)}].

We determine t2(therefore t3 also) such that two regions A1 and A2

in Fig.1.3.1 have the same areas, i.e.,

) |
ftg[hl(th)*) - b,y (t]¢%)Jat =

1 and B2

in Fig.1.3.1 have the same areas. Thus we obtain the following values:

Similarly, we determine tu and t5 such that two regions B

10 3 (= =2.2 7 (=
6 =5 log 3 (5 0.32) , t, =3 7 log 3 (= 2.395)
= 2 T o= =y _ 10 21 .
t3 3+ 7 log 3 (% 3.605) , t) 6 - 5 log 75 (= 5.176)
tg = 6+ log 5 (= 6.820).

Finally we prove that the above policy ¢* is optimal. Let u(t) be a
function which is defined by _
hl(tl¢*) if t ¢ (tl’ tu)> (t5, )

h2(t]¢*) otherwise.

—ut(t) =4

The function u(t) is expressed by the area of the region which is formed
below the function -u'(t) on the interval [t, =). See Fig.1.3.1.

Taking the way of éonstructing functions hi(t|¢*) (i=1, 2) and u(t)
into account, itvis evident that ¢¥ satisfies the sufficient condition

of Theorem 1.3.1. Therefore ¢* is optimal.

Remark 1.3.8 Though u(t) = max [ h (s|¢*)ds, it is not satisfied
i ¢
that -u'(t) = max hi(tl¢*), for example, see the graphs on the intervals
i
[t2, 3] and [tu, 6] in Fig.1.3.1. Hence Theorem 1.3.3 does not hold in

this case. See Remark 1.3.4.
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In the model treated until now, we supposed that the search is
continued until the detection of the object because tha family of the
alpinist wants to find him though he is deceased. But if a search
cost ¢ is positive, 1t is reasonable in general to stop the search at
a certain time because the expected search cost becomes larger than
the reward. ’Hence we face a stopping problem with permitting to stop a
search at any ﬁime. We modify the above model about the following
points:

1. The searcher is allowed to stop a search at any time.

2. The objective is to maximize the expected return until the termination
of the search, i.e., detection of the object or stop the search.

A policy in the modified model can be denoted by (4, t) where ¢ is a

search rule andt is a stopping time. Let v(¢, 1) be the expected return

by a policy (¢, t) and therefore we obtain

n T n
Vo, 1) = Jp; f g (®)RI(Ele)at + {1 - ] p; Pi(x[e)} (-er).
=110 | N =1

Integrating by parts, we have

n n

: T
(1.3.25) (¢, 1) = } pyry(I-ay) + .zlpi fogi(t)exp{—ki¢i(t)}dt

i=1 i=

n
- i.z__lpirifl‘Fi(T )Jexp{-r 0, (1)},

Theorem 1.3.4 For a fixed stopping time 1, necessary and
sufficient conditions for a search rule ¢¥ to be optimal are given
as follows: There is a nonnegative function u(t) for any t (>0) such

“that if ¢%(t) 1 o.

(1.3.26) piki ft[—gi(s)]exp{—ki¢§(s)}ds

+ pixiri[l—Fi(r)]exp{—xi¢§(r)} { Yu(t).

<
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Proof: We can prove this theorem by following the similar proof

to that of Theorem 1.3.1. (g.e.d.)

We can prove that Theorem 1.3.2 and Lemma 1.3.1 hold with no modification.
But Theorem 1.3.3 cannot hold since maximizing hi(tl¢) does not guarantee

the sufficient condition in Theorem 1.3.4.

Theorem 1.3.5 If fi(t) (1=1, ..., n) are differentiable at all

t € [0, =), then we have |

(1) For.a fixed stopping time 1, a search rule ¢ which searches at
time t in all boxes maximizing h, (t|¢) with rates given by (1.3.20)
is optimal if ¢i(T) >0 fori=1, ..., n.

(i1) If the optimal stopping time t# for the search rule ¢ given in (i)

satisfles that ¢i(T*) > 0 for all i, then it is a root of the

equation
n .
(1.3.27) izlpi{xiritl-Fi(r)]¢£(r)—c}exp{—xi¢i(r)} = 0.

Proof: (i) If an optimal search rule ¢* satisfies that ¢§(T) 5 0
for all i, we obtain by Theorem 1.3.4 that
—_ - * = . ! =
pikiri[l Fi(t)]exp{ ki¢i(r)} n(t) 1 =1, ..., n).

Therefore the relation (1.3.26) becomes
T - 1
D324 ft[—gi(S)]exp{—Ai¢§(s)}ds {f} w(t)=u(r)  if ¢¥(t) 1o

which has the same form as the relation (1.3.5) except that the integral
® T

region [ 1is replaced by [ . Hence Lemma 1.3.1 and Theorem 1.3.3 can
£ t

hold with a slight modification and therefore ¢ is optimal.

(ii) é%—v(¢, 1) = 0 leads us to the equation (1.3.27). (g.e.d.)
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§1.4 Discrete Search with Time-Dependent Conditional Detection Probabilitiesv
Various types of allocation problems of search effort to detect a

stationary object are analyzed in many literatures, but the conditional
detection probability is always constant in time (or period). In this
section we consider a fundamental search model with time-dependent conditional
detection probabilities and thain.an optimal search policy in some special
cases.

, Ihere is a stationary object in one of n boxes Wiﬁh a priori distribution
p = <pl,..., pn>. Let Bi’m be a conditional probability that the object
is detected by one look in box i at the mchﬂperiod given that it is in
box 1 and is not detected until the (mel)st period. The objective is to
find a search policy which maximizes the probability of detecting the
object by the M-th period. When we are in the m th period and have.the
prior location distribution p= <pl,..., pn> of the object, we express
that the search process is in state (p, m). Starting from state (p, m)
(m < M), let f&(p) be a probability of detecting the object by the M-th
period by an optimal policy. By the principle of optimality in dynamic.
programiing, %é have
(1.4.1) £ (p) = 4 [p.B; _+ (1-p.B, JIf (T .p)]

m i"i,m i"i,m" "mtl " Tm,1
(m=1,2,.“,M;”%Hﬁp)EO) B

where ?m,ip is the posterior location distribution of the object given
that the search in box i1 at the m-th period is unsuccessful. By the
Bayes' fuie, |
g pj(l—ﬁ )

N
A2 p), = o (8
A2 (o) =~

ij: Kroqeqkér?s delta). -

In the time-independent case, i.e., the case that Bi _— Bi for any m,

. . . BRE ) " . .
it is well-known that a search policy can be described by only the nunber
of looks in each box and that the myopic policy (which searches at each

period in a box maximizing the current detection probability) is optimal.
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Kadane (1968) deals with the case that a conditional detection
probability in any box does not vary in time so long as the box is not
searched. let Yi K be a conditional probability of detecting the Object

, :

by the k-th look in box i given that it is in box 1 and is not detected

k-1
pilgl(l_yi,l)yi,k is decreasing
in k for any i, Kadane proves that there is a number r (0 < r < «) such

until the (k-1)st look in box i. When P; i
. >

that if pi,k > (<)r, the k-th look in box i is (is not) involved in the
optimal policy. This result asserts that the myopic policy is optimal.
In our model, a search policy depends on the order of looks and the myopic
policy is not necessarily optimal.: The following example (2-box, 2-period
case) points out these facts. Let Bll = 2/3, 612 = 7/12, 621 =’1/2,
B,, = 1/6 and p = <1/2, 1/2>. The myopic policy is J' = (1, 1), namely,
searching only box 1. On the other hand, since detection probabilities by
four policies (1, 1), (1, 2), (2, 1) and (2, 2) are 31/72, 30/72, 39/72
and 21/72 respectively, the optimal policy is 0* = (2, 1), namely, searching
box 2 at the first period and 1 at ﬁhe second. | |

A search policy.can be denoted by (61, 62, cees SM) where 6m indicates

a box to be searched at the m-th period. First we obtain an optimal

search policy for the two-period case.

Theorem 1.4.1 The solution of the two-period case is given as follows:
Suppose that p1511 2_p2821 z_piBil'fbr any 1 (¥1, 2) and that
pk8k2-z~p2622 2-ijj2 for any j (¥ k, ). If k ¥ 1, then the policy

%
o = (1, k) is optimal and fi(p) = p131,1 + pkBk,2' If k =1, then

*

Pifyy * Py ()b 0 = (1, 1)
*

(1.4.3) £;(p) = max{ piBj; + PeBy, o = (1, %)
*

PoByy * PyByso o =(2,1).

. _ max
Proof: Since f2(p) = i (piBiZ)’



[‘l 11 (l P4 Bll) J l—plB 832}]
max
p; (1-6;7)8;5

fl(p) =

1(Tk)(p1 11 ¥ PyBeo)
B * [P (16 ) B CHY

where a¥Vb = max{ a, b}. If k & 1,

pl 11 + p‘l %{2
max v v
Since piB; > p B, and p 8, > [pk(l—Bkl)Bkgj‘/(prge),

%
fl(p) =D B + Py B and the optimal policy is ¢ = (1, k). If k =

= max

fl(p>

Pofyy * P85

fl(p) = max . \ y
P18y + [Py (1-81108,,] Y (pyBys)

which leads us to the conclusion of this theorem. (g.e.d.)

Remark 1.4.1 In the above theorem, optimal policies (1, k), (1, 1)

and (1, %) are myopic. But the optimal policy o = (2, 1) is not myopic.

Since it is difficult to analyze the n-box, M-period model in general,
we shall restrict our attention to the 2-box, M-period case in which a
conditional detection probability in box 2 is constant in time. ILet
<p, 1l-p> be the prior location distribution of the object. Iet am(s)
be a conditional detection probability in box 1 (box 2) at the m~th period

where B is constant in period. See Table 1.4.1.

m=1 M=2 teeenenan m=M
P box 1 al Og  eeenunnnn Oy
1-p box 2 B B eeeeie.. B
Table 1.4.1
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The optimality equation is
: p(l—oc )
Dl; pa + (1~ poc )f

- - l—pa
lm(p) max

D23 (1-p)B8 + {1-(1-p)Blf _Ll(—ws)

(m=l, 2’ *e*> M; fM+1(p)

where D_ denotes a look in box 1. Wifthout loss of generality of the

= 0)

problem we can suppose that o > > az__ . i.am‘ let Sk be the set of

policies which are composed of k looks in box 1 and (M-k) looks in box 2.
o e kK ok Mk, k . . s

Define a policy ¢ ©ty ¢ = (1, 2 ), i.e., ¢ searches only box 1 until

the k-th period and only box 2 afterward. ILet f.(p; &) be a detection

probability by using a policy S.

Lemma 1.4.1 Foranyp (0 <p<1)andanyk (=0,1, ..., M),

. Ky o max
fl(p, g) OG‘Q l(o $).
Proof: For the policy o and any policybé = (875« 6NQ e.sk, we
can easily obtain the following expressions in which @I = 1 for a null
ieo
set o.
i k
(.48 1 (p; o) = pll- T (1-0;)] + (1-p)[1- (1-8)"%7
i=1
- M-k
(L.4.5) (p, §) = pll-1 (l—-oc )1+ (-p)[1-(1-8) ]

i€l
where I = {ilai =1, 1 <1i<M, integer}. Comparing (1.4.4) with (1.4.5),

k
the conclusion of this lemma is clear by the construction of the policy o.

(g.e.d.)
Let p(k) be the unique root of the equation f. (p, ke l) = fl(p; ok), i.e.,
M-k
k 1-
(1.4.6) p¥) = BU=E) k=1, ..., N)
o, T (1) +8(1-8)"*
i=1
which 1s nondecreasing in k. We put p(O> = 0 and p<M}l) = 1.
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Theorem 1.4.2 If k is an integer such that p(k) <p 5_p<k+l), then
the policy ok = (lk, ZM-k) is optimal and the detection probability by
& is given by (1.4.4).

Proof: By Lemma 1.4.1, we obtain

£8® =

25"

k
m 55 o)

which denotes that fl(p)vis the minimum convex function over (M+l)
. . . k, . . . s e e
straightlines since fl(p; o) is linear in p. Noting that the coefficient
k . . ; . A i s
of p in l(p ) is nondecreasing in k, the conclusion of this theorem

is clear. (g.e.d.)

Remark 1.4.2 We consider the case that a = a for any m. Since

f (p, G ) = f (p: 8) for any p and any § ¢ Sk’ we obtain that
A (l)

3 ‘ \
17 o) < p < pM }, the decision i D, and D
|

[ 25

is optimal at the first

1 2
(M) .
prr<psl Dy

period. On the other hand, the myopic policy is to search box 1 (2) ir
D > (2)8/(e+8). Since

L _ _sa-p"™ g B ()

P = - _<_ e b >
u+8(l—B)M;l a+8 a(l—a)M l+_B

the myopic policy is optimal. This is a well-known result.

Remark 1.4.3 (1) When B = 0, the policy 1M (to search only box 1

in all periods) is optimal for any p. (ii) When 8 = 1,

0<p< p(M) ( (lk—l 2, 1M
if , the policy is optimal
(M) <p<1 i lM
where k 1s an integer such that oy = Hgflai.

Numerical Example 1.4.1 We consider a 2-box, 5-period case where
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detection probabilities are given by Table 1.4.2.

we can obtain that

Calculating by (1.4.6),

o1 - 16718 20,09 22 =163 2 0.37
p3 =gm1z073 , o™ -89z 0.8
p(3) = 2021 = 0.95
m=1 m=2 m=3 m=1 m=5
[ D box 1 /3 1/5 1/2 2/3 /4
Klfz bex 2 1/3 1/3 1/3 1/3 1/3
Table 1.4.2
By using Theorem 1.4.2, the optimal policy can be cbtained. (See Table 1.4.3.)
Condition Optimal Policy Condition ptimal Policy
o< 2z, 2,2, o cp<o™ |, 20,1, 2
oM <o <@ 22,2, 1,2 | 0™ <o <™ |1, 2,1, 1, 1)
p P <p<p¥ e, 0P <pcr @, L,
Table 1.4.3

Finally we consider a 2-box, M-period case where the conditional

detection probabiiity ir

assumed to be nonincreasing (nondecreasing) in m.

box 1 (2) at the m-th period is o (B ) which is

We can carry the analysis

in this case by the same method as the above discussion and obtain the

following theorem.

Theorem 1.4.3 If k is an integer such that p(k) <p f_p(k+l>, then
a policy c(k) = (lk M"k) is optimal, where
M i-1
B {l- Y B, T (1-8.)} -
1) _ T b Ly k=1, ..., M
P k=1 M i1 (0) g ML) _, /.,
o T (1-e)+8{l- ) g I (1-8,)3 b > P
=1 1=k+1 Ly=k+1
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Furthermore the detection probability by the optimal policy is given by

k i-1 o M i
£ =pjo; TQ-0)+p) § B I (1-8).

i=1 “ =1 9 i=k+l Y=kt

T



Chapter ITI Optimal Search for a Moving Tartet

82.1 Discrete Search for a Circularly Moving Target

In this section we consider a search for a target moving cifcularly
among n boxes according to a Markov tran51t10n matrix Q = [q ] where
» qlJ denotes a probability that the. target being in box i1 at some period

moves to box j at next period. We assume that

( b. ifj=1i-~-1
i
1-a, -bi ifj=1 ‘
(2.1.1) Qg+ = L (1, j= 1, ..., n)
J a, ifj=1+1
i
\O otherwise

where subscripts 0 and n+1 mean box n and box 1 respectively. Let
p = <p1,. .o pn> be a priori distribution of the target at the start of
search. Associated with box i (i=1,..., n) is a conditional probability
Bi that the Target 1s detected by one look in box i given that it is in |
box i. The objective is to find a policy fnjnimizing the expected number
of looks to detect the target. | |

Let V(p) be the minimum expected number of looks until detection
given that the prior distribution is p. By the principle of optimality,
the basic equation is given by

(2.1.2) V(p) = ;™ [1+(1-p, 8)V(T;p)]

where Tip is the posterior location distribution of the target after a
look in box i has failed to detect it located with the prior distribution
p and after a new movement of the target has occurred. By the Baye's rule,
we obtain

Tip = <(Tip)l, cees (Tip)n>

. 1—5, . . . + . _6.. . l— ~b. ¥ . 1
(2.1.3) (T.p). = Py (1=8; 5_1Pp)ay 149y (1-8;58) (1-asb )tp, ) (1-6
17

J+:LB )b J+l

1-p8,
1 1

i, g=1, ..., n; aij is the Kronecker's delta.
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Pollock (1970) considers the two-box case of the above model where
a target moves between two boxes according to a Markov transition matrix

1 2

(2.1.4) 1 1-a a .
2 b l1-b

His main results are the followings: (i) In the perfect detection case
%
(Bl = 82 = 1), there exists a threshold probability p such that it is

% %
optimal to search box 1 (2) if Py > (<) p where p is given by

[ (a+b+1)7" if b(a+b+1) >1 and b > ala+b)
=1 . : \ . ,
; a(a+b if a < b(a+b) and b < a(a
( - (a+b)™" " a < ba+b b < ala+b)
2.1.5) p =< 7
(b+1)(a+b+2)"" if b(a+b+1) <1 and ala+b+1) <1
-1
| (a+b)(a+b+1)™" if a > bla+b) and ala+b+1) > 1.

(ii) In the null information case (a+b = 1), it is optimal to search box 1

(2) if p > (<) po

-1, -1, -1
B, /(8,7 + 8,7

i
i vV
T'weput EE =<0, ..., 1,

i

., 0>, then p can be regarded as a
point in a simplex S which is defined by a convex hull of the set

J’E-’-

LD 5 veey ="}, The next theorem shows that the posterior distribution
Tip can be regarded as a point of the posterior simplex IES which is
defined by a convex hull of the set {Ql, cees "} where Q" is the i-th

row of the transition matrix Q.

Theorem 2.1.1 The posterior distribution Tip can be represented by

. s . 1 n .
a linear convex conbination of n points Q 5 -eey @7, 1.e.,

, n _ A
: _ (3) :
(2.1.6) Tip = jzlkijQ where Aij

18
Proof: Iet Tgp be the posterior distribution of the target after a
look in box 1 fails to detect it located with the prior distribution p,

i.e.,



O o o . .
(T.p). = R (i, j=1, ..., n).
=4 1p.8 |
i’i
oot .0 R0
Hence by the definition of Tip, T&p = (T&p)-Q = ) (T, p)JQ and therefore
J=1

if we put Aﬁj = (Tgp)j, the relation (2.1.4) is clear. (qg.e.d.)

The next corollary is clear without proof.

Corollary 2.1.1 In the perfect detection case (i.e., B, = 1 for all

‘..J
A
-

ct

fny

[0
'3

,
osterior simplex I&S becomes a convex hull of the set {Q, ...,

i+l n- 2 s e . e L o . . L ;
s & 7, +.., Q) and the weight Aij (j ¥ 1) is in proportion to pj.

Lemma 2.1.1 The function V(p) is concave in p.

Proof: For any policy o, let V&(p) be the expected number of looks

.

to detect the ftarzet by the policy o given that the prior distribution
1
is p. Put p = Ap~ + (l—k)o for any Dl, p e S.
f(p) = I inf 1 2 il
V(p) = ° V. (p) = E Z p (b )1 =74 [.E{kpi+(l—k)pi}V5(E )]

Q

. n
- Infp, M BTV (E)+(1-1) Z PV (EN)T = TEIAY (5D +(1-MV(07)]

'P

Ay (eh+-0M, 67 = wph+-NYe?) (q.e.d.)

| v

Lemma 2.1.2 In the perfect detection case, the function V(p; i) =
1+ (1—pi)V(Tip) is linear in p on any line segment which has the vertex
Ei as an end point.

Proof: ILet W be a point at which the above line segment intersects

i-1 i+l
F) )

. 1 |
the convex hull of the set {E-, ..., E , e, E'}. Then W =

<wl, cees Wi o9 0, Weigs oo Wh>' Any point p on the above line segment
can be denoted by p = kwl, ceey kwi_l, 1-k, kwi+l’ s kwn> (0 <k <1).

By the relation (2.1.3), we obtain

(Tip)j = Wj_l(l—ai,j_l) 5- +w (1- 6 (1= a b )+, +l(1 =8, ’J._z_l)bjJrl
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which is independent’ofkk. Hence T&p is conStant in p ori the above line

segment. The proof is completed. R (g.e.d.)

. Definition: A set A is star-convex with respect to a point pocs A
if and only if p& A implies that Ap + (1-\)p° € A (0°< A < 1).
e » - % R
We define the optimal decision regions Div(i==l, ..., n) by D; =

{p | to search box i is optimal fbrkp};

Theorem 2.1.2 * In the pérféct detection case,rthe optimal decision

* .‘ . 7 . N :' N -

regions Di (1=1, ..., n) are star-convex with respect to the vertex E.
~Proof: It is clear that E'¢ D;. For any pe D; and 0 < A < 1,

VIAp+H(1-A)ET] < V[Ap+H(1-NES; i]

| A

1}

X(p; 1) + (I-MV(ET; 1) - (by Lemma 2.1;2)

H

X(p) + (1-N)V(ED)
< VDp+H1-ME] (by Lemma 2.1.1)
_ . Lo . ' : - ~ _ : *
Hence VIApH(1-ME'] = VIAp+(1-ME'; 1] which implies that Xp + (1-\E < D

1(q.e.q.)

In the fbllowings, we consider sbme'examples of the bhreé—box case

under the assumptioh of perfect detection. In'dealing with fhe three—-

3

coordinate of the point p and to visualize it in the equilateral triangle

box case, it is helpfull to regard <pl, D> P> as the baryéentric

of height unity where the distance between the pbint'p and the opposite
side of the vertex E- is pi. In the next corollary we restate the contents
of Corollary 2.1.1 to utilize it in the three-box case.

Corollary 2.1.2 - In the three-box case with‘perfect‘detection, the

posterior distribution Tip is plotted in the triangular chart as a point
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which partitions the line segment Ql—l Q1+1 by the ratio Piyq ¢ b; 3 whére

1 _ 2 _ 3
Q = <1—a1—b1, 815 bl?, Q = <b2, 1—a2—b2, az and Q <a3, b3, l—a3-b3>.

Example 2.1.1 We consider the case of ai =b,=a(i=1, 2, 3).

1
In this case the situation is symmetric between any two boxes in all respects
“and therefore the optimal decision regions are given by Di ='{p|pi = m?xpj}
(1 =1, 2, 3). Using Corollary 2.1.2 repeatedly on the triangular chart

in which Dﬁ (1 =1, 2, 3) and AQTQ°Q are described, we can obtain the
optimal policy as follows but the detail of the proof is omitted by reason
of its complication. If O.i a< 1/3 and pi.3 pj_i Dy then the policy

(i, 3, k)" is optimal which means to search box i, j, k and to repeat the
search in this order periodically until the detection of the target. If
1/3<a< 1/2 and p € Dﬁ, then the policy i is optimal and V(p) = 1+(1—pi)/a
where 1° means to search only box i until the detection. This result
coincides with our common sense, i.e., if the transition probability is
small, we search in the order of the magnitude of the location probability.
This optimal policy is the same as in the case ofba stationary object.

If the transition probability is large, we search only a box having the
maximum prior location probability in anticipation of the transition of

the target to the box. Note that the above optimal policy is myopic, i.e.,
it prescribes to search a box having the maximum current location probability

at each period.

Example 2.1.2 We consider the case that a) = bl = a and as= b2 = a3 =

b, = 0. Because of the symmetry between box 2 and 3, the boundary between

N kW

% .
D, and D3 is given by P, = P3- Hence T2p (T3p) cannot be contained in

% %
D, (D3) since Ql = <1-2a, a, a>,,Q2 = B° and Q3 = 5. (i) The case of

*

*
1/3 <a <1/2. Ifa=1/2, then T,p € D3 and T3p €D

5 since the decision
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Dl is not optimal for P, = 0. By the continuity of V(p), this property
% *
(T2p€ D3 ard T3p € D2 for any p) is seems to be still valid when a is
slightly smaller than 1/2. For such a a, by repetitive applications of
Corollary 2.1.2, we have
Vip; (1, 2, 3)1=3 - 2p, - p, >
V(p; 1) = if p p
Vlp; (1, 3, 2)1=3 - 2p 21 <173

- D
1 3 —
V(p; 2) = VIp; (2, 3)7] = 2 + p,(1-a)/(2a) - p,  forany p
V(p; 3) = Vlp; (3, 2)7]

2 + pl(l—a)/(2a) - p3 for any p.

The equations V(p; 1) = V(p; 1) leads us to the boundary p, = 2a/ (1+32)
between Di arnd D_: (i=2, 3). To guarantee the above property, the point
Ql must be below the line p; = 2a/(1+3a) and therefore we obtain that

1/3 < a. The solution is given as follows: If P, > p, and Py > 2a/(1+3a),

3
then the policy (1, 2, 3) is optimal and V(p) = 3 - 2p1 - Dy Ir Py > Py
and p; < 22/(143a), then the policy (2, 3)” is optimal and V(p) =

2 + pl(l—a)/ (2a) - Ds- If Py < p3 > then the solution can be obtained by
exchanging Dy for p3 in the above solution because of the symmetry between
box 2 and 3.

ii) The case that a* < a < 1/3 where a*(% 0.267) is a unique root of the

3. 6a‘2 -3a+1=0on [0, 1/3]. We consider the case that

equation 12a
the point Ql is above the line p, = 2a/(1+3a) and that the point T3T2p
(for any p) is below the line, i.e., (l—2a)2/(l—-a) < 2a/(1+3a) or a* < a.
In this case the region DZ is divided into two regions B = {plp GDZ and

% % % %
TppeD;} and C = {p|pe D, and 12p€—D3}. We put A = {p[peDl and p2_>_p3}.
By repetitive applications of Corollary 2.1.2, policies (1,2,3), (2,1.3,2)
and (2,3)°° are optimal in regions A, B and C respectively. Furthermore
we have
3—2pl--p‘2 ifpe A
V(p) =4 3 - (1-3a)p; - 2p, ifpeB

2 +p;,(1-a)/(2a) - p, ifpec.
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A B ‘ = (1+
and P, 1 3a)pl
The boundary between<{ B and C is given by (l—al—tSaz)p:L = Zap3
Cand A p; = 2a/(1+3a).
The solution in the case of Ps < p3 is clear by the symmetry between box

2 and 3.
> s s * *
(iii) The case that 0 < a <a where a is given in the case of (ii).

%
Since the point T.T.p is above the line p, = 2a/(1+3a), T.T.p D
1 372

T .
372 | 1
Hence the solution is given as follows: We put

A = {p|p, < (1+3a)p;, 3(1-a)(l+2a)p; > 1, p }

2203
B

{p|p2 > (l+3a)pl, (1—68.2)p1 > p3}
C

2
{p](1-6a")p; < p3, 3(1-a)(42a)p; < 1, py > ps}.
Policies (1,2,3), (2,1,3,2) and (2,3,1,2,3) are optimal in regions A, B
and C respectively. Furthermore we have
3-—2pl—p2 ifpeA
V(p) =4 3 - (1-32)p; - 2p, ifp€B

2 + (l+3a—6a2)pl - by ifpeC.

Example 2.1.3 We consider the case that a; = 1/2 and bi =0 (i=1,

#

2, 3). By means of the symmetry of the problem we obtain that Di =

max
J

we can obtain the optimal policy: It is optimal to search first a box

{plp:.L = pj}. Hence by repetitive applications of Corollary 2.1.2,
havjhg the maximum location probability and to search circularly in the
opposite direction of that of the target motion until the detection.
Furthermore we consider the case that a, = 1 and bi =0 (i=1, 2, 3).
The optimal policy can be easily obtained. If,pi > Piy > Ps 400 then
the policy (i, i+2, i+l) is optimal and if P; > Piyn 2 Piygs then the

3

policy i~ is optimal.
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§2.2 Efficiency of Wait in an Optimal Search for a Moving Target

In the search for a stationary object, to wait, i.e., to expend
time without search is not profitable since the searcher can obtain no
information about the target location by waiting. But in the search
for a moving target it is sometimes reasonable to wait in anticipation
of the transition of the target to the more desirable location for the
searcher. In this section we give an example of such a model. Consider

a target which moves between two boxes according to a Markov transition

ot

LG vd WL

1

_ 2
1 1-a a
(2.2.1) Q= .
2 b 1-b

Let <p, I1-p> be a priori distribution of the target at the start of

search. We suppose the perfect detection, i.e., one look in a box

ot

containing the target succeeds necessarily in the detection of the target.
AT each period the searcher must choose one of three decisions Di (1 =1, 2)
and W where Di means to search box 1 and W means to wait without search.

As

n

ume that a search cost is unity for both boxes and let w (50) be a

wait cost. The objective is to minimize the expected total cost until

the target is detected. If searching box 1 fails to detect the target,
the posterior distribution becomes <0, 1> because of the perfect detection
assumption. Hence the prior distribution at the next period is <b, 1-b>
since after the failure the target moves according to the matrix Q.
Similarly after the failure of the search in box 2, the prior distribution
at the next period is <l-a, a>. If the decision W is chosen, the prior |
distribution at the next period becomes <(1l-a-b)p+b, 1-b-(1l-a-b)p>. Let
C(p) be the expected total cost until the detection by the optimal policy

given that the prior distribution is p. By the principle of optimality,
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we obtain

i

C(p: D)

(2.2.2) C(p) = min { C(p: D2)

1+ (1-p)c(p)

1+ pC(l-a)
C(p: W) =w + C[(l-a-b)p + b]
where C(p: §) (§ = Dl’ D2, W) denotes the expected total cost in the case
that the searcher chooses the decision § first and afterwards follows
the optimal policy.

Pollock

~~

1970), which is dencted in detail in Section 2.1, considers
the above model under the assumption that at each period the searcher
must choose one of two decisions D, (i = 1, 2) and cannot choose the

-

decision W. Our model is an extension of the Pollock's model.

Lemma 2.2.1 The funciton C(p) is concave in p.
Proof: This lemma can be proved by the same methed as the proof

of Lemma 2.2.1. (g.e.d.)

%

Define the optimal decision regions by Dy = {p[Di is optimal for p} (i =1, 2)

* %
and W = {p|W is optimal for p}. It is clear that p =0 &€ D, and

%
p=1¢€ Dl‘
% %

Lemma 2.2.2 Di (i =1, 2) and W are convex sets.

Proof: C(p: Dl) is linearly decreasing in p and C(1: Dl) =1,
C(p: D2) is linearly increasing in p and C(0: DZ) = 1. Since C(p) > 1
for any p, C(p: W) > w +1 > 1. Furthermore C(p: W) is concave in p by
lemma 2.2.1. If we describe three curves C(p: §) (8 = Dl’ D2 and W) in

a plane, the result is clear. (g.e.d.)

Lemma 2.2.3 p = b/(atb) &; w*.
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*
Proof: If b/(atb) € W, then C[b/(a+b)] = « which is a contra-

diction and hence the proof is completed. (g.e.d.)

%
By Lemma 2.2.2, when the set W is empty, there is a threshold proba-
bility p such that the optimal decision is Dl(D2> if p > (<)p. When

%
the set W 1is not empty, there are two threshold probabilities

D5 0 <p < p*#
p* and p** such that the optimal decision is { W ift (| p¥* <p <p¥}
Dy Pcps<l |

In the following we consider ondy the case of at+b < 1, i.e.,

b < b/(atb) < 1-a since the case of a+b > 1 can be analyzed similarly.
In this case there are ten possible cases of the optimal decision
regions by Lemma 2.2.2 and 2.2.3. But taking the symmetric property

S

into account, it is suff

Fal

icient to consider only five cases given in
Fig.2.2.1. Hereafter we determine the threshold probabilities for each

ase in Fig.2.2.1 and obtain the conditions under which each case

Q

occurs. Put ”wp z (1-a-b)p+b.

% %
[A]. 1In the case [A] of Fig.2.2.1, b & Dl and l-a é-Dl. Hence

1

C(b) = 1+(1-b)c(b) and C(1-a) = 1+aC(b), i.e., C(b) =b ~ and C(l-a) =

- . - - -1
1+ab l. From the equation C(p: Dl) = C(p: Dg), we obtain p = (1+a+b) .
The conditions under which this case occurs are 5 <b 5_b(a+b)_1 < l-a
and C(8: D) < C(p: W). Hence we obtain atb < 1, b(ltath) > 1 and
1- (atb)/[b(1+a+b)] < w.

;

[B]. 1In the case [B] of Fig.2.2.1, C(b) = b T and C(1-a) = l+ab L.

% -
Since T p* € D, C(p¥: W) = C(p¥*: WDl) = wtb[1-(1-a-b)p¥*] 1-

W 1°
From the equation C(p¥: W) = C(p¥*: Dl), we obtain p¥ = b(l—w)(a+b)_l.

¥
Similarly since Twp** € Dl’ we obtain p¥*¥ = 1-b(1l-w). PFrom conditions
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that p** < p*¥ < b < b/(atb) < l-a, we obtain atb < 1, b(l+atb) > 1 and

1-a-b §_W'§_1—(a+b)[b(1+a+b)]—l.

[C]. In the case [C] of Fig.2.2.1, we assume that

(2.2.3) Tg_lb < p¥ E_Tﬁb (n > 1: integer; T%b = b)
%
where Tab = blatb)” [1 (1~ a—b)n+l . Since b e W and 1-a ¢ Do,

o(b) = C(b: WD) = (a+b)<1+nw>[b{1-<1-a-b>n+*}}‘l

C(l-a) = l+a(a—b)(1+HW)[b{1—(7—a—b)lel

From the equation C(p¥*: W) = C(p¥*: D ), we obtain

l’l’ﬂ

(2.2.4) p* = b(a+b)“1-bw{1-(1-a-b) Y/ {a+b) (1+nw)}.

By the assumption (2.2.3), either of the following two cases occurs:

k-1 yu K s
(2.2.5) T TpE < p¥ < TVPEE (k= 0, 1)

where k 1s determined uniguely if a,b and w are given. Hence

v NPV o & o/ el
C{p*#*: W) = C(p**: W "D,)

n+k

- - nts
= (nHOWHLHC(b) [a(ath) T =(1-a-0) Hp#sin (a+) " (1-a0) 7.

From the equation C(p*#: W) = C(p!

'O

#%: D)), we obtain
(2.2.6) p** = (i)l 1-(1-2-5)" 14 (14rwe) (240 (1-2-0) 7
B[ 1-(1-2-0)"" T+ (ab) (L+rw) [a+(1-a-b) ]

(k=0,1).

Substituting (2.2.4) into (2.2.3), we have
(2.2.7) f(ntl) <w < f(n)

(a+b) (1-a-b)"
1-(1-a-b)=(n-1) (a+b) (1-a~b)"*

th

where f(n)

The relation (2.2.7) is well-defined if 0 < w < l-a~b. Since

P¥¥ < b < p* < blatd) ™t < 1-a, we have atb < 1 and b(l+atb) > 1.

[D]. In the case [D] of Fig.2.2.1, C(b) = (1+b)(l—ab)

C(l-a) = (1+a)(1—ab)— . From the equation C(p: Dl) = C(é: D2), we get

- 52 -



A

p= (l+b)(2+a+b)—l. Since b < p 5_b(a+b)_l < l-a and C(p: Dl) < C(p: W),

we obtain atb < 1, b(l+atb)< 1, a <b and Wz_(1+b)(b—a)[(l—ab)(2+a+b)]—1

[E]. In the case [E] of Fig.2.2.1, C(b) = (14b)(l-ab)~t

- *
C(1-2) = (1+a)(1-ab)"t. Since T,p* € D],

C(p¥: W) = wHl+(1+0)[1-(1-a-b)p¥*-b](1-ab) "

a2 T ¥ -
From C(p¥*: W) = C(p : D7>’ we obtain

(2.2.8) p¥ = b(atd) ™" - (l-ab)wl (14b)(a+b)]™L

(2.2.9) T pxx p¥ E_qu** (m > 1: integer; T p¥¥ z p¥¥)

where T p## = (1l-a-~b)’ p*‘*b(a*o) *Ll (l—a—b) ]. Hence

«
~~
fe]

5

ES
=
p—

It

C(p*¥: WD;) = me+l+(1-T

ML *%)C(b)

= mw+1+(1+b)(1—ab>"*[1-<1-a-b)“p**—b(a+b)"‘{1-(1—a-b)“}].

From the equation C(p#%: D2) C(p¥#: W), we obtain

(2.2.10) prs = 2(1#D)#m(atd) (1-2b Ju+b(1+0) (1-5-0)"
(a+0){1+a+(1+b) (1-a-b)™}

Substituting (2.2.8) and (2.2.10) into (2.2.9), we have
(2.2.11) glm) <w < glm-1)

(140) (b-a) (1-a-b)™

where g(m) = -
(1~ab)[1+a+(1+b){1+m(a+b) }(1-a-b) ]

The relation (2.2.11) is well-Gefined if a <b and 0 < w <
(l+b)(b—a)[(1—ab)(2+a+b)]_1. Since b < p¥¥ < p¥ 5_b(a+b)—1 < l-a,

we obtain atb < 1 and b(l+atb) < 1.

Rearranging the above resutls, we can obtain the solutions in
regions Al and A2 in Fig.2.2.2 as follows:
(i) In the case that (a, b) € Ay = {(a, b)|atb < 1, b(l+at+b) > 1}, the

solution is given in Table 2.2.1. 1In the table, p¥ and p*¥* are given
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by (2.2.4) and (2.2.6) respectively. D. denotes an infinite repetition

1
of D, until the detection. p1) 45 Gefined by T&p(l) = p¥ (1 <1 <ntlel)
and p(o) = p¥, p(n+k) = p¥*¥, (a), (b) (c) are given as follows:
-]
(a) 1 + p[l+ab *(ato)(L+mw){1-(1-a-b)"*11]
. (atb) (1+w) a b i
(b) diw+ 1+ (1o oy B + (5 - P)(1-a-b)7}

(a+b) (1+w) (1-p)

(e) 1+ TR
b[1-(1-2-b)""]
Conditions Optimal Policy C(p)
0<p<p** DD, (WD;)" (2)
(1) (1-1) 5 ©
O<w<l-a-b L WJD_,(WnDl) (b)
(1=1,2,...,n+k) +
pFepsl Dy (WD) (c)
0<p<l - b(l-w) | D" 1+ (1+ad “)p
l1-a - v - - £ -] -1
t-a-bsws 1 L - o(1-w) < p_l W‘Dl wib =p(1-a-b)b "
1-(a+o)[o(1+at+b)] | £ b(1-w)(atb)
o(1-w)(a+0) F<p<l | D, 1+ (1)~
iy © -1
-1 : - L)
1-(2+b)[b(1+a+0) T+ 0 <p< (1l+a+b) D2D1 1+ (1+ab Tp
<w (l+a+b)_l§pil ch° 1+ (1—p)b_l
Table 2.2.1
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(ii) In the case that (a, b) & A, = {(a, b)latb < 1, b(l+at+b) < 1,

a < b}, the solution is given in Table 2.2.2. 1In the table, p¥ and p¥¥

are given by (2.2.8) and (2.2.10) respectively. p(i) is defined by
Condition Optimal Policy C(p)
0<p <p¥ (p,D,)” 1 + p(14a)(1-ab) "
(1+b) (b-a) p<i)< Ep(i_l) i ® ;
O<w < = — —* W—(D.D,) (@)
(1-ab) (24a+b) (i=1,2,....,n) 172
p¥<p<l (0,0,)° 1+ (1-p)(1+b)(1-ab) ™+
1+b o ~1
O<p (D,D-) 1 + p(1+a)(1-ab)
(T-ab) (2ato) =" [0 - -1
S sp<l | (DD) 1+ (1-p)(1+b)(1-ab)
Table 2.2.2
T%p<l> =p* (1 <iz<n-1)and p(o) = p¥, p(n) = p¥*%. (d) is given by
. 14 , a b n i
(@) iw+ 1+ e o (l—a—b? - (1-a-b)"pl.

The optimal decision regions in the case of (i) are described in
Fig.2.2.3. 1In the figure, we observe that the larger w becomes, the
narrower W* becomes and that if w > 1, then W* is empty, i.e., to wait
is not optimal for any a, b and p. Hence our resutl in the case of w1
coincides with the Pollock's result (1970). Furthermore the value of C(p)
in our model is not larger than that in the Pollock's model since no
waiting is one policy for our model. The difference between the value
of C(p) in our model and that in the Pollock's model emphasizes the
efficiency of waiting in the search for a moving target. In connection
with the matter, it is interesting that the optimal policy does
not contain (WKDijfa(k ¥ 0, i X j) as its subsequence. In other words,

'since we choose the decision W in anticipation of the large transition
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of the target to only one box, it is meaningless to search both boxes
successively after waiting. This fact teaches us the meaning of

the wait.

For other regions in Fig.2.2.2, we can obtain the solutions by the
same method, but their derivation 1s omitted because of its complication.
Since the solution is symmetric about the straight line a = b, the
solution in the case of a > b can be obtained by exchanging a for o
and p for 1-p in the solution of the case of a < b. Specially if a =b,
i.e., the movement of the target is symmetric, then the optimal policy
is an infinite repetition of searching box 1 and 2 alternately (See

Table 2.2.2) and therefore to wait is not optimal even if w is very

smell. Furthermore if a+b = 1, i.e., no information case, then the

repetitive part of the optimal policy is Dlw if a {-E]- 1/2
(See Table 2.2.1). %2 -
D Df
[A] 5= ‘—‘H;ﬁ L biark) A i\3 > F
p¥ w* pi
—_ — . :
s PP b e e
P D! wt oF
[c] 0 w\;“"ﬁ b \fi"/ b/arh) 1A j r F
D¥ pf
[D] 5/7 ; ://_“ ,i “\3 > f
3 b/(a+tbh) a
0w ot
[E] 0 b e ‘;*/ bjiath) 14 - f

Fig.2.2.1 Five cases of the optimal decision regions when atb < 1.
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Fig. 2.2.2 The eight regions in the (a, b) plane.
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§2.3 Optimal Wait, Search and Stop for a Passing Target

When we stay in a certain place, it occurs sometimes that we should
take an optimal decision to catch a target which comes from another region
to our place and goes away to other region. For example, a search for a
shoal of fishes which swim in an ocean, and a catching problem for a good
chance which occurs and vanishes randomly in time, etc.. In this model
it seems that we must wait without search at first, search our place
if the possibility of its existence in our place becomes high and stop the
process if 1t 1is seemed to have gone away. In this section we consider
a model of such a type.

Pollock (1967) considers a problem of catching as fast as possible
a Target which appears randomly but does not vanish. One target, which
has a priori location distribution <p, 1-p> at The begimning of search,

moves in two boxes according to a Markov transition matrix

1l-a a
{ } (0 <a<1l).
8 1

The searcher must choose at each period either action: S (to search box
2) and W (to wait). Assume that a search in box 2 is perfect detection.
If the target is (is not) in box 2, then the loss of the action S is
ZETO (CS) and the loss of the action W is CW (zero). The objective is
to minimize the expected loss until the detection. He proves that if n*
is the smallest integer such that (1-a)™ f_{1+a(n+CS/CW)}-l, then*an
optimal policy prescibes action W(S) if p > (<) p* =1 - [l—(l—a)n 1/
[a(n +C_/C,)].
Our model is described as follows: There is a moving target which

is in one of three boxes with the prior distribution p = <pl, Do p3>
at the start of the process and moves according to a Markov transition

matrix
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At each period the searcher must one of three decisions: W (to wait),
D (to search box 2) and S (to stop). Note that box 1 and 3 are unsearchable.
The process continues until the detection of the target or the first adoption
of decision S. Let wand c be a waiting cost and a searching coéf per
ohe period respectively and assume that 0 < w < ¢ < », Associated with
box 2 is a conditional probability B that the target is detected by a
search in box 2 given it is in box 2. ILet R (> 0) be a reward of the searcher
for detecting the target. The problem is to find a policy minimizing the
expected total loss (cost minus reward) until the completion of the process,
i.e., the detection or the stop. Let f(p) be the minimum expected total
loss until the completion given that the prior distribution is p. By the
principle of optimality, we have

| S: O
(2.3.1) f(p) =min{ W: w + f(Tﬁp)

D: ¢ - pyfR + (1-p,B)f(Tp)

(2.3.2) T = <(1-a)p;, ap;+(1-b)p,. bp,+ps>
(1-a)p, ap,+(1-b)(1-B)p b(1-B)p,+p
(2.3.3) Tp = <L TF T ToE o TThE :> '
2 P> | Pa

By the same method as the proof of Lemma 2.1.1, we can prove the following

lemma.
Iemma 2.3.1 The function f(p) is concave in p.

% % % '
Let D (or W, S ) be the set of p for which the decision D (or W, S) is

1
optimal. Put E = <1, 0, 0>, E° = <0, 1, 0> and E3 = <0, 0, 1>.
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_ . |
Lemma 2.3.2 The optimal stopping region S is a convex set which
contains the point E3.
R 3 * 1 2
Proof: It is clear that E°e S . Suppose that f(p7) = f(p ) =0
and p = Ao~ + (1-A)p° (0 < A < 1). By the definition of f, £(p) < O.
By Lemma 2.3.1, f(p) > f(pl) + (l—k)f(p2) = 0. Hence f(p) =0, i.e.,
%
peES . . ) . ) . . . . (q.e.d.)

Let Q- be the i-th row of the transition matrix Q (i=1, 2, 3).

TLemma 2.3.3 For any p, Tﬁp and pr are contained in the triangle

AQH7R1.

Proof: By definitions of Tﬁp and TD R Twp = p-Q and

! p,(1-8) P3 \
pP <\l—p28 ? l—pZB > 1—p28/

.Q which indicate the result of this lemma.

(g.e.d.)

The triangle AQlQZQ3 is called the posterior triangle and is denoted by
T(a, b) since it depends on only the transition probabilities a and Db.

In the next lemma, we give another geometric expression of Twp. For any
P = <pl, Dy> p3>, define Al = <0, l—p3, p3> and A2 = <Py > 0, 1—p2>. Let
B, and B

1 2
the rate of a: 1-a and b: 1-b respectively, i.e.,

be the imner partition points of the segment PAl and PA2 with

Bl = <(l_a)pl) 1—(1—3«)pl—p3> p3> and B2 = <p13 (1_b)p23 l"pl—(l"b>p2>'

Lemma 2.3.4 For any p, Twp can be expressed by the remainning vertex
of the parallelogram which has three points P, Bl and B2 as its vertices
Proof: The remainning vertex is given by <(1—a)p1, apl+(l—b)p2,

1-p ~(1-b)p > which coincides with T p. | (g.e.d.)

If ¢ > BR, then the decision S is optimal for any p since the immediate
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loss of continuing (wait or search) is nonegative for any p. Hence in
the following discussion we assume that ¢ < RR. We' define SO =
{plo < c-p,BR} and A = {(a, b)[0 <a < c/(BR) and (BR/c-1) a <b <1}

Lemma 2.3.5 Suppose that (a, b)g A. If p €S

TDp € SO'
Proof: If we put S, = {p[(Twp)2 <c/(fR)} and 8, = {pl(TDp>2 <c/(ER)},

0? then 'I‘wp ' SO and

then in the triangular chart we know that the relation SO (- S1 is satisfied

. N . . - cC ¢ . . . :

il and only if a point R :<1~ﬁ, 2R O> lg contained in Sl, i.e., (8R/c-1)a
< b. Similarly the relation S, ¢ S, is satisfied if and only if R & S, and
= ¥ 0="2 1

<1, 0, O>ESl and hence we obtain a < ¢/(BR). Therefore the result is proved.

(q.e.d.)
Lemma 2.3.6 If (a, b) € A, then S* = 8,-
Proof: Define a sequence of functions {fn(p)}:;() by
S: 0
fn(p) =min{ W: w + fn_l('I‘wp)
11’): ¢ = poFR + (1-p,B)f_ ., (Tp)
and fo(p) = 0. We can prove that if 0 < w < ¢ < «, then the function
fn(p) converges to f(p) as n approaches to infinite. Hence if we prove
that fn(p) =0 forpe SO, then f(p) = 0 for p & SO’ It follows trivially
for n = 0, so suppose it for n-1. By Lemma 2.3.5 we obtain that fn(p) =

min[0, w, c—p28R] =0 forpe SO. Therefore f(p) = 0 for p € 8 On the

0"
other hand if p é‘E SO’ by considering the expected total loss by the policy

DS, we obtain f(p) < c—p28R < 0. The proof is completed. (q.e.d.)
Let £(p; 8) (6=W, D, S) be the expected total loss by a policy which

takes the decision § first and follows optimally afterward. We consider

t 1 1 1
= > =< >
p <pl’ Pss p3 and p Pys DPos p3 .
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1

lemma 2.3.7 If Py > pl

and P, Zp;, then f(p: o) < f(p': o) for
any policy o.

Proof: Under the assumption of this lemma, by the definitions (2.3.2)
and (2.3.3), 1t is clear that (T,p); > (Tp ), and (Tp), > (Tp), (=1,
2). Hence the assumption of this lemma holds in any period until the
Termination, i.e., the irmediate loss in each period for the initial state

1
p 1s not larger than that for the initial state p . The proof is completed.

(g.e.d.)

Thecrenm 2.3.1 If (2, b) € A, then the optimal decision is D (8) if
p, > (<) c/(BR).

Proof: If Py 2 c/(BR), either W or D is optimal by Lemma 2.3.6.
Moreover if Py 2 ¢/(BR), it is clear that (Twp)l <P and (Twp}2 <P, and
therefore by Lemma 2.3.7 f(TWp: o) > £(p: o) for any policy o. Hence
f(p: W, 0) =w + f(TWp: o) >w + £(p: o) > f(p: ¢ ) which denotes that
the decision W is not optimal. Therefore if Py 2 c¢/(BR), then D is optimal.

If p < c¢/(BR), then the result is clear by Lemma 2.3.6 (g.e.d.)

lerma 2.3.8 (i) (Tw.p)2 < P, for any p € T(a, b) if and only if
a+b > 1. (ii) (TDp)2 <P, for any p € T(a, b) if and only if a+b > 1.
Proof: (i) If a+b > 1 and p € T(a, b), then ap; < (1—a)p2 < bp2
and therefore (Twp)2 < p,. Conversely if ('I‘Wp)2 <p, forany p € T(a, b),
then {p[apl = (1-a)p,} € Ta, D) Q—"_{p!(TWp)2 <p} = {plapl < bp,} and
hence 1-a <b. (ii) If a+b > 1 and p € T(a, b), then

(l—a)p2+(l—b)(l—8)p2 {l—a+(l—b)(1—r3)}p2
(Tpp), = 5,8 A 1-aB 2 Py

t 1 )
Conversely if (‘I‘Dp)2 <P, for any p € T(a, b), then (TDQ )2 < Q2, i.e.,

]
a+b > 1 since Q@ = <l-a, a, 0> € T(a, b). (q.e.d.)
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Theorem 2.3.2 When a+b > 1 and p€ T(a, b), the optimal decision
is D (8) if p, > (<) c/(BR).

Proof: If p € T(a, b), then f(Tﬁp: o) > f(p: o) for any policy o
by Lemma 2.3.7 and 2.3.8. Therefore f(p: W, o) = w + f(Twp: o) >w +
f(p: o) > f(p: o) and hence to wait is not optimal in T(a, b).
Moreover since Ibp € T(a, b) for any p, the optimal policy does not take
~decision W until the termination. Therefore by excluding decision W, we
obtain, for p € T(a, b),

'S
f(p) = min
D: ¢- PER + (l—p28>f<TDp>.

[

Here we consider the OLA policy (one-stage-look-zhead policy) which takes
the decision at next period by comparing the expected loss for stopping
immediately with that for stopping after one period. The stopping regicn
= {p|o f.C"p28R= p € T(a, b)} which has

i.e., S i1s closed with respect to

&Y
s
O
o
3
3
&
5
o
e}
m
[#2)3
|~J.
3
lGJ
o
[{)
2]
]
'JO
m
nn
“
|,.J

the operator T.. Therefore the OLA policy is optimal by the well-known
D

result and hence the proof is completed. (g.e.d.)

Corollary 2.3.1 If 1-a <b <1 anda >c/(BR), then to stop is not
optimal at any p such that P, > c/(RR).
Proof: The result is clear by Lemma 2.3.2 and Theorem 2.3.2.

(g.e.d.)

We divide the set T(a, b) into a sequence of subsets

D

o = tplp € T(a, b) and p, < ¢/(BR)}

D
n

11

{plo € Na, b) and (5 p), > ¢/(BR) > (Tp),}  (n=1, 2, 3, ...).

By Theorem 2.3.2, a policy DS is optimal in region Dn'
Lemma 2.3.9 The expected total loss by the policy DS is given by
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" n-1 i i-1 Kk
f(p: D'S) = c - pBR + ) {e-(Typ), B8R} I {1~(Tp),8} (n=1, 2, ...).
i=1 k=0

HmﬁEMwwﬁT@ﬂ%)=C_%%+Gw§m%mﬁﬂw,

. - . . i—~1
£(p: DVIS) - £(p: D'S) = {c - (T;p)2BR}lH {1- (TlDip)25}.

k=0

n-1
If we take a sumation | of both sides, the result can be obtained.
i=1

Theorem 2.3.3 If a+b > 1. then the ontimal nolicv can be chtained
by the following method. (i) Check which subset Dn contains Twp and TDp
respectively. (ii) Calculate the values of f(TWp) and f(TDp) by Lemma
2.3.9. (iii) Substitute their values into the basic equation (2.3.1)

and sclve it.

Proof: The result is clear by Theorem 2.3.2. : (g.e.d.)

Numerical Example 2.3.1 We consider the case that a = 1/2, b = 1,
3=1/2, w=1/2, ¢c =1 and R =10, By Thecrem 2.3.3, we can obtain the
. ) . > o] 3 . — 2 * *
optimal policy which is described in Fig.2.3.1. Note that D and W are

not convex.

The case that b < 1-a and b < (BR/c ~1)a remains yet unsolved. In this
case the optimal policy seems to be more complicated since a is larger and
b is smaller relatively. Speciélly when 8 =1 and b = p3 = 0, this model
is similar to the model treated in Pollock (1967). Therefore if w + ¢ < aR,
then by noting that decision S is not optimal at any p, we can prove that
there is a threshold probability y such that the decision D(W) is optimal

if p, > (<) v.
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Chapter IIT  Sequential Evasion-Search Game

In this chapter we consider the following two-person zero-sum m-stage
sequential evasion-search game : There are n-boxes (box 1, 2,--+, n). Player
I (Evader) is in box n in the beginning of the game and can move at each
period to any box in the "nonincreasing direction", i.e., if he is in box k
at some period, he can move to anyone of box 1, 2,+-+, k in next period

v
5. 4= TrronyA D7 -, T - % = oan  myinr s adE anAa
ard carmot go backwerd. Player IT (searcher) can search any box abt eac

1

»

--Je

pericd knowing the evader's previous position. Associated with box 1(=1,2,
*+-,n) is a conditional probability oy (0 < s < 1) that the evader is not
detected by a search in box 1 given it is in box 1. To avoid the compli-
cation, we assume that @y >0 (i=1,2,°**,n), but this limitation can be
excluded easily. If the evader is in box 1 and not detected during one
period, he can obtain a reward ri(zp). Let R(>0) be a reward to the evader
when he 1s not detected during m periods. The payoff is the expected total
reward of the evader during m periods.

There are not so meny literatures regerding the two-sided search
problem and most of them treat a one-stage game or the case that player I
(Hider) cannot move during a search process once he hides in some box.
Among them, the work of Stewart (1981) is related with our model. There
are box 4, 3, 2, 1 and a goal. Player I (Evader) is in box 4 first and
must go o geal via box 3, 2, 1 by the m~th period without going backward
under the assumption thét he can stay in each of box 3 and 1 during a
single period. The payoff is a probability that the evader arrives at
the goal without being detected. For this two-person zero-sum game, Stewart
obtains the optimal search strategy in the "monotone" strategy class. The
optimal evade strategy in his model is to run into the goal as fast as
possible in order to get out of danger, but in our model the evader must

expose himself to danger during m perods against his will and hence he does
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not go forward so much fast since going forward results.in the limitation. of
the range of his actions. Furthermore Stewart's model is a one-stage
allocation game mathematically since the searcher has no information about
the evader's position except through learning by search, but essentially
our model is a sequential one since in any period the searcher is informed
Oof the evader's previous position.

Washburn (1980) is one of papers which treat a sequential search game.
Both piayers can move freely to any box in each period. Perfect detection

Sawv Aon lmnanr fla canmalianm e meaavet —ea

mm et Q
Wl Tmdve wedl DTG CalTL Do TV i [

S pCSLCLCrn.

cost and travelling cost for the searcher are introduced and an m-period
truncated problem is considered. .The payoff of this zero-sum game is the
expected total cost for the searcher until the search terminates. Washburn
discusses about the solution of the limi ting problem as m approaches to
infinity.

In our model, the state in each period can be described by a pair
(k,2) where k is a number of remainning periods and & is the evader's
cwrrent position. The pure strategies of players I and II in state (m,n)
are described by i (i.e., to hide himself in box i : i=1,""",n) ard j (i.e.,
to search box j : j=1," *,n) resrectively and therefore the mixed strategles
are x= <xl>"',xn> (xi=probability that player I hides in box i) and y= RAE
R A (¥j=probability that player II searches box j) respectively. Let
G(m,n) = [g(i,j : myn)] (i,j = 1,---,m) be the sequential matrix game
starting from state (m,n). The (i,j)-element g(i,j : m,n) is the expected
total reward for player I when player I and IT choose pure strategies i and
J In the first period respectively and play optimally afterwards. Also let
v(m,n) be the value of the game G(m,n). Therefore we easily obtain the

following relations:
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al{rl+v(m—l,l)} v:_rl+v(m—l,,l) rl+v(m—l,1)

(3.0.1) v(m,n)=val r2+v(m—l,2) oc2{1"2+v(m—1,2)} r2+v(m—l,2)

+v(m- +v(m-1,n) +v(m-1,n)
r, v(m-1,n) r, v(m-1,n) ocn{rr1 v ( 1,n)})

n
= mgx min [ ) {r.+v(m-1,1) }X_.! {1-(1—a, )yﬁ }] (m,n=1,2,°"")

-1 m

+ o "R (m=0,1,2,+"*).

- — m
v (m; l ) - alrl (.l"'al ) (_1_0-1 ) l 2

Theorem 3.0.1 (i) If the reward R is not smaller (larger) than v(1,n),
the value v(m,n) is nonincreasing (nondecreasing) in m for any n.
(i1) The value v(m,n) is nondecreasing in n for any m.

Proof: (i) We prove the assertion in only the case of R > v(1,n) by

. 1 -
EES e pog T
i LT Lo +

®

. . PRI - . - = N N PRI N i) :
inquction in m gince the proo CI A < Vii,nn) is simlliar., rirsv

v(O,n)= 7 > v(1,n). Suppose that v(m-1,n) > v(m,n) for m=1,2, -,k and any

n.

n
v(k,n) = mgx min [ iZl{ r+v(k-1,1) %, 0112 )y, ]

n .
< mi 3 (] = v(k+l.n).
max mfy_n L iZ=l {ri+v(k,1)}xi{l (1 ui)yi}] v(k+1l,n)

(i1) Consider a nx(n+l) matrix game G' = [g:!LJ.] defined by

AY ~

g(l:J ¢ I,y ifr i,J=1,2,---,n

g!. =
15 =
r +v(n-1,1) if i=1,--+,n ; j=n+l.

Since the (nt+l)-st colum of G' is dominated by the n-th column, it is clear

that val G'=v(m,n). On the other hand, since the game G(m,n+l) is formed
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by adding the (n+l)-st row to G', player I in the game G(m,h+l) can obtain
the expected payoff being not smaller than val G' by taking his optimal
strategy for G'. Therefore v(m,n+l) > val G' and hence v(m,n) < v(m,n+l).
(g.e.d.)
In order to solve the sequential game G(m,n), we shall slove first a

one-stage matrix game G given by

lel bl bl
0 <a, <1
(3.0.3) G = [gij] = by 5Dy b, 1
. 0 < b,
b b a b
g n n n'n | (i = l,...,ﬁ).

Define a function f on integers 1,2,--+,n by

n -1 n -1
{ izk (l—ai) -1} ig?{bi(l—ai)} s

g

(3.0.4) (k)

1

and let g be an integer which attains a maximum of the function f(k), i.e.,

(3.0.5) f£(2) = . max k).
k=1,"--,n

Lemma 3.0.1 If we put b, =0, then b < £(2) <b,.

-1
Proof: By a simple calculation, we can prove that

> 2
< <

(3.0.6) (k) { _ } £(k+l) if and only if bl _ 3} k)  (=1,2,+--,0-1).
-1 =

the relation (3.0.6). Hence bz—l < f(2) f-bl' (q.e.d.)

Since £(&) > £(e-1) and f(s+1), we have b < f{2-1) and bz > £(g) by

Theorem 3.0.2 If bl 5-b2 < e f-bn’ then the solution of the one-stage

game G given by (3.0.3) is given by

. [0 (1=1,---,2-1)
(3.0.7) x. = n
* [b; (1~ )™/ Z

J [bj<1—aj>1‘1 (1=, ,n)

L
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' 0 (j:l’...’g'_l)
*
(3.0.8) y.

J [0~ (1) 1/[b5 (1-9;)] (i=2,+",n)
(3.0.9) wval ¢ = £(1).
0 %
Proof; It is clear that x% >0 (i=1,"'-,n) and J x; =1. From
=1t
the definition of f(k) and Lemma 3.0.1, we can obtain that yj >0 (j=1,
o x
,n)and - Yy, =1. let G(x,]) be the expected payoff when players I
j=1
and 11 choose a mixed strategy x and a pure strategy j respectively
Aan (3 7Y Ta ofwtTpam & o
YOTNT Y L e S S— g S eTe gy
n n
(3.0,10) 6(x,3) = } g::%Xs, G(i,y) = 7} 8475
i=1 Ot j=1 =

If the following relation is proved, the proof is completed.

% %
(3.0.11) G(i,y ) < £(2) < G(x ,j) for i,j=1,+-*,n.

Substituting (3.0.7) and (3.0.8) into (3.0.10), we
[ ot 1] o, eyl
< X, =i\l AL, d
' 3 i=p 4 SESE
a(x ,3) = (- . .
’L izzbixi" ~(1-a by, =)
bi < f(2)

Il

G(*“ 3y‘)

by Lemma 3.0.1 and the assumption that bl <b,y < e

relation (3.0.11) is proved.

Sakaguchi (1973) considers a one-stage game

fcl—(l_al)Rl c,
(3.0.12) ™ = cq 02—(l—a2)R2
! 2

have
1
> £(g) (j=13“
(J=2,
(i=1,
(i=2,"'
< b_. Thus the
- n
N
c
n
c
n

e

*,0~1)

“+.n)

- ;2'—1)

,n)

(g.e.d.)



and obtains a similar result to Theorem 3.0.2. In the following theorem,

we state The solution of the sequential game G(m,n) without proof.

~ Theorem 3.0.3 If we put bi=ri+v(m-l,i) in Theorem 3.0.2, the solution
of the game G can be regarded as the solution in the first stage of the
sequential game G{m,n). The solution of the m-stage game G{m,n) is related
with the values of the (m-1)-stage games(3(m—l,i)(i=l;---,n) and therefore
the solution of G(m,n) canbe obtained recurrently by the dynamic programming
technique.

Specially we shall consider the case where r.=0 (i=1,--+,n) and R=1,

i.e,, the payoff is a probability that the evader is not detected during
m periods. The following is an immediate result of Theorem 3.0.1 and

3.0.2.

Corollary 3.0.1 When r’i=0(~i=l, -++,n) and R=1, let % be an integer
maximizing a function f(k) given by

¢ -1
) {(l-oci)v(m—l,i)} .
i=k

. .
(3.0.13) £(k) = { L Qo) _13
i=k

The value of the sequential game G(m,n) is given by £(2) which is
nonincreasing in m and nondecreasing in n. Furthermore optimal strategies

of players I and IT in the first stage of G(m,n) are as follows:

0 (i=1,---,2-1)

(3.0.14) x, -
. [0 )v(m-1,1)7" /.Z

[l )v(m-1,5)T0  (i=2,---,n)
j=1 /

0 | (3=1,-++,2-1)

(3.0.15) y.*
D.U. ) Y
, J
[v(m=-1,3)-£(2)1/[ (,l—otj Wv(m-1,35)] (G=2,+-,n).
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By Corollary 3.0.1, the solution of one-stage case can be easily obtained,

6) x, =y, 1§ (ea (i=1 )
(3.0.16) X3 =Yy —ﬂﬂﬁ /%JLJ) i=1,-++,n

_ n -1 -1
(3.0.17) v@l,n)=1-{ } (l-oy) 7}
i=1

which coincides with the well-known result concerning a one-stage search
game. (For example, if we put that 4= Ri= 1 in the game M given by
(3.0.12), this case can be obtained.) In the following corollary, we
Investigate the aspect of the effort allocation by optimal strategies
in the multi-stage game as compared with the result (3.0.14) in one-stage

case.

Corollary 3.0.2 Suppose thar r.= 0 (i=1,---,n) and R=1.
(1) 1If ay Is nonincreasing in i, then X5 (1>'2) is nonincreasing in i.

%
(11) If ay 1is nondecreasing in i, then Y1 (1 > 2) is nondecreasing in i

% ® %
and v (=y; -%; ) (i >2) is nondecreasing in i.

Proof: (i) Since v(m-1, 1) is nondecreasing in i by Corollary 3.0.1,

the result is clear by (3.0.14). (ii) Since yj*= (l—aj)_1[1~f(2)/v(m—l,j)],
% ,

y: 1is nondecreasing in j. Furthermore we obtain

J

% i -1 1 - R
Yi = (.l_ai)_ 1- V-Z (l—aj) / {V(m_l,l) .Z

[(1-a, )v(m-1,] )1‘1}]
i=g i=e J

(g.e.d.)
which gives the result.

Numerical Example 3.0.1. We consider the case that ;= 1/2, ry= 0
(i=1,---,n) and R=1. Table 3.0.1 gives optimal strategies in the first period

of the games G(m,n) and values v(m,n) (m,n = 1,2,3).
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I 1 2 3
m
¥ % * = * ¥
x=y= <> x =y =<1/2, /2> x=y=<1/3, 1/3, 1/3>
1
v(1,1)= 1/2 v{l,2)= 3/4 v(1,3)= 5/6
¥ % _ * ~ *
X =y = <1> X = <3/5, 2/5> x = <0, 10/19, 9/19>
> y = <1/5, b/5> y = <0, 8/19, 11/19>
(2 = i
viz,h)= 1 v(2,2)= 9/20 v(2,3)= 45/T6
# 0 ¥ # Lo
X = y*= <1> x = <9/14, 5/14> x = <0, 25/44, 19/L4>
3 1 %z ! /1 '*z 13/14 271 /8l
y = <l/14, 13/14> y = <0, 13/44, 31/4
v(3,1)= 1/ _
v(3,2)= 27/112 v(3,3)= 135/352
Table 3.0.1 Solutions of the zero-sum seguential games.
Finally, we consider a two person rnonzero-sum seguential geme which
Is Induced by Introducing a reward Z(>0) of the searcher for detecting

the eveder in the above zero-sum sequential game. The payoff for each
player is dzfined by his expected reward until the termination of thes game.
As a solution of a nonzero-sum seguential game, there are two types: One
is an open~loop solution which choose the entire sequence of strategies
for each player at the start of the game. Another is a feedback solution
in which both players choose strategies at each period by taking account
not of the past history but of the current state. Therefore the feedback
solution can be obtained by a dynamic programming technique. It is well-
known that the feedback solution is not always better than the open-loop
solution in a nonzero-sum sequential game. But since it is difficult to
find the open-loop solution, we try to find the feedback Nash solution

by the dynamic programming approach. In the sequential game starting

from state (m,n), let Mk(i,j : m,n) be the expected payoff for player
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k(=1,2) when player I and II use pure strategies i and j respectively in
the first period and follow feedback Nash equilibrium strategies afterwards.
Iet (‘X* 5 y*) be a feedback Nash equilibrium solution in the first period

of this nonzero-sum seguential game. Furthermore let vk(m,n) be the

expected payoff for player k by using the feedback Nash solution.

o {riﬂrl (m=-1,1)] i=j]
My @3 mn) = Ly (el 1) 1%
i 1
j (1202 + o, v, (m-1,1) i=j
Mo (1,4 5 mn) =< - L e
[ vo(m-1,1) 1]
n n v
M (x,y: m,n) = .2 _E xinMk(i,j : m,n) (k=1,2)
i=1 j=1
. *
v, (m,n) = max Ml(X,y T m,n) , Vl(O,n) = R
*
v2(m,n) = max My(x ,y :mn) , VZ(O,I’I) = 0.

By a simple calculation, we have

(3.0.18) M, (x,y : m,n)

r i ]
. {1-(0~.)v. r,+v, (m=-1,1)
3 1 \ "'&l)yl} { 1 .L( 9=/

}....I

B

it
It 3
g

(3.0.19) M,y : m,n)

I
I~
'__1

, n ‘
%Y (I~ay) {Z-v,(m-1,1)} + i; X, V5 (m-1,1).

=

We can discuss the problem by the same method as the former model.

Define a function g on integers 1,2,:+-, n by

3 -1
(3.0.20) gk) = { ¥ (1-o,) _1}

& -1
|14 L D=0y ) Ly (m-1,1) 1]

i=k

and let s be an integer maximizing g(k). By the same method as
Lemma 3.0.1, we have

(3.0.21) ro 1+ Vl(_m-l,s—l) < g(s) <rgt vl(m—l,s).

Without loss of generality, we can suppose that

(3.0.22) ry + /Vl(m—l;l) <r, vl(m—l,2)_ < iy + vl(m—l,n).

- 74 -



Theorem 3.0.4 Under the assumption (3.0.22), a strategy pair
% %
(x , y) given by (3.0.23) and (3.0.24) is a feedback Nash equilibrium
solution iIn the first pericd of the nonzero-sum sequential game starting

from state (m,n).

0 (i=1,---,s-1)
) *
(3.0.23) X, =
[(l—a ){Z-v (mrl,*}] Z [(1-a, ){Z—Vg(m—753)}]
J=s (i=s,+*",n)
0 (3=1,+"+,s-1)
%*
(3.0.24) yj =
! S e Tt — fn 4z P 4Y) )
J:I’j'f'Vl(.m—J-,J) g(s) 1/ o) o4y 1,3)1]
(J=s,*",n)
Furthermore we obtain
(3.0.25) vy (m,n) = g(s)
n vo(m=1,1)
: _ 2 2 1
(3.0.26) v, (m,n) = [ Es REIL VN D) l_zm(l—a SRR

Proof: Substituting (3.0.24) into (3.0.18) we have

% s=-1 n
M G,y :om,n) = 'Zl % {ey + v m-1,1)3 + g(s) ] x,

%
which is maximized at x=x because of (3.0.21) and (3.0.22). Substituting
(3.0.23) into (3.0.19), we have

= Y v, (m-1,1) n 1
Myx Ly :mn) = 1-sy + 2 ey ){’7—v2(m—l,i)}j igs(l—aiﬂz-vz(m—l,i)}

% ¥ %
which is maximized at y=y . Hence (x , y ) is a Nash equilibrium solution

at the first period. The relations (3.0.25) and (3.0.26) are clear.

(q.e.d.)
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Numerical Example 3.0.2 We consider the case that o = 1/2,

r, =1-1 (i=l,***,n) and R = Z = 4,

1

Table 3.0.2 gives the feedback Nash

solution in the first period of the nonzero-sum sequential game.

X 1 2 3
'ri’é‘ % . X*= <!'- R => X*z <O’ 3“_. R l)
X = y.= <'l> a 2 2 2
*_—. <.].'. g> *= <0 L Z——>
1 =33 v > 1T 1
- _ 10 )
v, (1,1) =2 v,(1,2) = 3 vi(1,3) = 73
v,(1,1) = 2 v,(1,2) =1 v,(1,3) =1
# * 1
% % X = <0,1> X = <0, 5 =
X=y = <]1> % ¥ 85 259
) y = <0,1> y = <0, -g-m— , —3—m>
o _ 13 _ 2613
v, (2,1) =1 v,(2,2) = 2= Vl§2,3) = BE~
=2 _ 7
v2(2,l) =3 v2(2,2) =5 v2(2,3) =7
# #
¥ % x = <0,1> x = <0, 3—, EN
X=y = <1> % % ]5-_‘ 055 17398
3 y=<0,1 ¥y =<0 5503 » 503
- = ; (3.0) = 22 — 227373 ‘
Vl(3al) 2 Vl(3:2> - 12 vl(3;3) - 7 012
-1 _ 13 _ 53
V2(331) 2 V2(3:2) - r V2(3;3) = 5’0‘
Table 3.0.2 The feedback Nash solution of the nonzero—sum sequential
game.
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