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1. Introduction

This thesis is devoted to the study of the approximately finite dimensionality for C*-
algel;ra,s. We treat two classes of C*-algebras. One of them is the class of approximately
finite dimensional C*-algebras (in short, AF-algebras), which are defined as an inductive
limit of finite dimensional C*-algebras. AF-algebras can be characterized by their dia-
grams. We determine the structure of hereditary C*-subalgebra of AF-algebras based on

their diagrams, and that of a special class of AF-algebras which are related to Jones’ index

theory ([27]) and Powers’ binary shift ([37],[38],[39]).

The other class of C*-algebras we treat is that of nuclear C*-algebras, whose class is
wider than the class of AF-algebras and which is an important class in the theory of
operator algebras. We demonstrate that these algebras satisfy an interesting property

which is related to completely positive maps and completely bounded maps of finite rank.

A UHF-algebra is a C*-algebra defined as an inductive limit of finite-dimensional full
complex matrix algebras. Glimm ([23]) studied UHF-algebras in general, and he classi-
fied their isomorphic classes by indexing them with generalized integers, which is called

dimension group or Kp-group in recent terminology.

Bratteli ([2]) considered AF-algebras (extended version of UHF-algebras), which are
inductive limits of finite-dimensional C*-algebras. In describing their isomorphic classes,

he introduced a (Bratteli) diagram of an AF-algebra and showed that a closed two-sided



ideal of an AF-algebra is also AF. In particular, the diagram of a closed two-sided ideal
can be assigned as a part of the diagram of the original AF-algebra. These necessary

informations are supplied in section 2.

Now, a C*-subalgebra of an AF-algebra is not necessarily AF. For example, any separable
commutative C*-algebra can be embedded as the center of a suitable AF-algrbra ([3]), and
we remark that the typical commutative C*-algebra C|0,1] is not AF, where C/[0, 1] is the
set of all the continuous functions on the unit interval [0,1]. Meanwhile, any hereditary
C*-subalgebra of an AF-algebra is also AF according to Elliott ([20]). So we study relations
between the diagram of a hereditary C*-subalgebra of an AF-algebra and the diagram of

the original AF-algebra. In section 3, we will get the following result.

THEOREM. Let B be a hereditary C*-subalgebra of an AF-algebra A. Then there exists
a family F of pairwise orthogonal projections contained in {e,(-f:’k);n € N, 1<k < s(n),
1 < i < [n, k]} such that B is isomorphic to the hereditary C*-subalgebra of A generated

by E.

Accordingly, the diagram of a hereditary C*-subalgebra is obtained as a subdiagram of

the original AF-algebra.

In section 4 we treat some special AF-algebras and study their structures. Let Fy be

the finite field with 2 elements {0,1}. For a sequence {a(n);n € Z} of elements in F, and



a sequence of unitaries {u,;n =0,1,2,---}, we assume that

{ d = sup{n ;a(n) =1} is finite,

uju; = (—1)°C~NDy;u;  for any i, j.
Then the C*-algebra P, generated by {ug, u1,- - ,un} is finite-dimensional, and we can
get an inductive system {P,} of finite dimensional C*-algebras. We can make a strict

observation against this system, and see that their inclusion matrices are periodic.

In the argument of section 4, we note that F» can be replaced by F,, where F), is the

finite field with p elements, p a prime number.

In section 5 we construct interesting AF-algebras, using results in section 4. These
algebras appear as sequences of relative commutant algebras of Powers’ binary shifts.
In the earlier stage, Powers ([37]) conjectured that the sequence of relative commutant
algebras was full outer conjugacy invariant of binary shifts. Recently Bures and Yin ([7])
proved that the conjugacy classes of binary shifts with a finite support coincides with their
outer conjugacy classes. But, in general, Powers’ conjecture is false (see [22]). As a matter
of fact, we will exhibit two shifts which are not outer conjugate, whereas they have the

same sequence of relative commutant algebras in the sense of the diagram.

Some properties of complete positive maps are useful to emphasize the difference of
commutative C*-algebras and non-commutative C*-algebras ([42]). We characterize the
order structure of a commutative C*-algebra as that of a matrix ordered Banach space

of order 1 ([26]). Nuclearity of C*-algebras is characterized by the word of completely



positive maps ([10],[12],[28]), that is, a C*-algebra A is nuclear if there exists a net {¢,}

of completely positive maps of finite rank such that
lim|| ¢,(a) —al]l=0 for any a € A.
14

Nuclear C*-algebras are objects which are closely related to injective von Neumann al-
gebras. Haagerup ([25]) introduced the decomposable norm for a linear map from a C*-
algebra to a C*-algebra. He considered a property for a C*-algebra A that, for any linear
map from C” to A, its completely bounded norm is equal to its decomposable norm, and
he shows that this property characterized the injectivity of von Neumann algebras. In
section 6 we show that a wider class of C*-algebras than the class of nuclear C*-algebras

possesses this property.



2. Preliminaries and Notations

Let H be a separable Hilbert space over the complex field C and B(H) be the algebra

of all the bounded linear operators on H.

DEFINITION 2.1. A C*-algebra A is a norm closed *-subalgebra of B(H). A C*-algebra
A is called AF-algebra if, for any € > 0 and element z in A, there exist a finite-dimensional

*.subalgebra F of A and an element y in F such that ||z —y||<e.

If Ais an AF-algebra, then there exists an increasing sequence {4, } of finite-dimensional

*-subalgebras such that

) 4 isdemsein A4 ([2]).
n>1

A finite-dimensional C*-algebra is isomorphic to a direct sum of full complex matrix alge-
bras . So A,, has the form

M(n,1)® - & M(n,s(n)),

where M (n, k) is isomorphic to the full complex matrix algebra and its dimension will be

denoted by [n, k]. So M(n,k) has a system of matrix units
("M 1<, <[nk]} (k=1,2,---,5(n)).

Let u;,j(n) be the multiplicity of the inclusion from M(n,i) to M(n + 1, j) which means
that for any minimal projection pin M(n+1, j), there exist orthogonal minimal projections

q(1),9(2),- -, q(u; ;(n)) in M(n,i) such that

P> q(1) +¢(2) + - - + g(u; j(n)),



and, for any minimal projections r(1),7(2),- - ,7(u; ;(n) + 1) in M(n, 1),
pFr(1)+r(2) +---+r(uij(n) +1).
We define the inclusion matrix U(n) from A, to A,4+; by
Un) = (w,j(n)), (i=1,---,s8(n), j=1,---,s(n+1)).

Then (D, d, U) satisfies the following condition

s(n)
*) Z ug (n)d(n, k) < d(n +1,1).

The Bratteli diagram (in short, the diagram) for an AF-algebra A is the following. Nota-
tions are due to [29]. We also add the definition of a subdiagram as it will be important

1n our later studies.

DEFINITION 2.2.  We call the triple (D,d,U) the diagram for A, where D is the set
{(n,k);n € N,1 < k < s(n)}, d is a map from D to N defined by d(n,k) = [n, k] and U
is the set {U(n);n € N}. Let d' be a map from D to NU{0} such that d'(n, k) < d(n, k)
for each (n,k) € D and U'(n) be an s(n) x s(n + 1) matrix, whose entries u} ;(n) are
non-negative integers and u; ;(n) < u; ;(n). We set U' = {U'(n);n € N}. We call a triple

(D,d',U') a subdiagram of (D, d,U) if it satisfies the following four conditions,

(1) Wy (n) =0 (I=1,---,s(n+1)) if d(nk)=0,

2) d(n, k) =0 if u\,(n)=0 foranyl<I<s(n+1),
(3) jf:l)uz,mn)d'(n, k) < d'(n+1,1),

4) u,: (1) = uga(n) i wl,(n) > 0.



For a given AF-algebra A, we can construct a diagram for A. Conversely we can construct
an AF-algebra whose diagram coincides with a given diagram satisfying (*). If I is a closed
two-sided ideal of an AF-algebra A, then I is AF, and the diagram for I is a subdiagram

of the diagram for A satisfying

d'(n k) = d(n,k) or 0 ([2]).

DEFINITION 2.3. A C*-subalgebra B of a C* algebra A is called hereditary if 0 <
a<ba€Aandbec Bimplyac B. Let S be a subset of A. We denote by C*(S) (resp.
HC*(S) ) the smallest C*-subalgebra of A (resp . the smallest hereditary C*-subalgebra

of A ) containing S .

Any hereditary C*-subalgebra of an AF-algebra is also AF . In the following section, we

show that its diagram becomes a subdiagram of the diagram for the original AF-algebra, .

Let T be a bounded linear map from a C*-algebra A to a C*-algebra B. We denote T,

a linear map from A ® M,, to B ® M,, defined by

Tn([ai ;]) = [T(as,;)]

for all n €N and [a;;] € M,,(A) = A® M,, where M, is the n x n complex matrix algebra.

DEFINITION 2.4. A linear map T from A to B is called positive (resp. completely
positive) if

T(A%) is contained in BY.



(resp. T,((A® M,)*) is contained in (B® M,)* for alln.)

T is called completely bounded if sup{|| T,, ||; » € N} is finite, and we call this value

the completely bounded norm of T ( denoted by || T'||cs)-

A linear map P from a C*-algebra A to a C*-subalgebra B of A is called a projection

of norm one if P satisfies the following conditions,

1P(@)l| < llall for any a € 4,

P(b) =15 for any b € B.

A projection of norm one is automatically completely positive.
A linear map T is decomposable if it is a linear combination of completely positive
maps from A to B. In another formulation, 7' is decomposable if and only if there exist

completely positive maps Si, S; from A to B such that

r@) = (56 S

is a completely positive map from A to B ® M.

DEFINITION 2.5. If T is decomposable, then we define the decomposable norm of

T by

IT|lgec = inf{X; A > ||S;|| for some Si,S; such that

R= (‘Sfl’} gz ) is completely positive }



Following facts are known (see, [25]),

(1) Any decomposable map is completely bounded and || T ||cs<|| T' || dec -
(2) If S is a completely positive map, then || S ||=|| S |lco=[|S |ldec -
(3) If Ty,T; are decomposable, then || T2 0 T} ||dec<|| T2 |ldecll T1 lldees

where T} is a linear map from a C*-algebra A to a C*-algebra B and T3 is a linear map

from a C*-algebra B to a C*-algebra C.

In the rest of this section, we assume that C*-algebras are unital and completely positive

maps are also unital.

DEFINITION 2.6. A C*-algebra A is called nuclear if there exist a net {¢, } of completely

positive maps of finite rank such that

lim || ¢,(a¢) —a||=0 for anya€ A.

A C*-algebra A on a Hilbert space is called injective if there exists a projection of norm

one from B(H) to A.

A completely positive map T from A to B is called factorizable if there exist a matrix
algebra M,,, a completely positive map ¢ from A to M,, and a completely positive map 7
from M, to B such that T = 7o0. A C*-algebra A is nuclear if and only if the identity map

of A is point-wise approximable by factorizable completely positive maps (the factorization

property).



DEFINITION 2.7. Let A, B be C*-algebras, and A ® B be the algebraic tensor product

A and B. A norm 8 on A® B is called a C*norm on A ® B if it satisfies the conditions,

B(a®b) = ||a]||[b]] for alla € Ab € B,

B(z*z) = B(z)> forallz € A® B.

The completion of A ® B with respect to this norm 3 is called the C*tensor product

A®p B of A and B with respect to .

Let A (resp. B) is a C*-algebra on a Hilbert space H (resp. K). We can regard the
algebraic tensor product A ® B of A and B as a subalgebra of B(H®,K), where H®,K
is the completion of the algebraic tensor product of H and K as a Hilbert space. The
norm closure of A ® B in B(H®,K) is called the spatial tensor product of A and B,
and is denoted by A® B. If either A or B is nuclear, then a C*-norm on A ® B is uniquely
determined, that is, it coincides with the spatial tensor norm on A ® B. In the case that
A is finite-dimensional, A is nuclear and A ® B is already closed. So we use the notation

A ® B instead of A ® B, if either A or B is finite-dimensional.



3 Hereditary C*-subalgebras of AF-algebras and their diagrams

Let A be an AF-algebra and {A,} be an increasing sequence of finite dimensional C*-

subalgebras of A such that
U A, is dense in A with respect to the norm topology.

Let E be a family of pairwise orthogonal projections in A. If we define H(E) by the set

of elements a such that

{aEUnAn,

there exist n € N and e1,-+- ,e, € E such that a = (31 &)a(3-i-; €i),

then H(FE) is a *-subalgebra of A.

LEMMA 3.1. C*(H(E))=HC*(E).

ProoF: Clearly C*(H(E)) is contained in HC*(E). We have to show that C*(H(E))
is hereditary. We may assume that E is infinite, that is, £ = {ej,ea,---}. Suppose
0<a<b beC*(H(E)). Weseta, =3 ;€. Since C*(H(E)) is the norm closure of
H(FE), there exists a sequence {b,} in H(E) such that b, converges to b and a,b,a, = b,

for each n. Then
0= lim (1 —a,)b,(1 —a,) = lim (1 —a,)b(l —ay,).
By the assumption,

lim (a2 — a%a,)*(a? —a%a,) = lim (1 —a,)a(l — a,) =0,
n— 00 n—00

so lim, o @naa, = a. Choose a sequence {c,} in ;o An which converges to a. Then

we see that lim,_, o, ancpa, = a according to what we have just shown, and here a,c,a, €

H(E). Therefore a € C*(H(E)), that is, C*(H(E)) is hereditary. §



Example. Let A be an AF-algebra with a diagram as follows.

1 1 1

4 2 1
1
IfE= {egil), 6(222)}, then HC*(F) has a diagram as follows.

N
N

2

3 0 7 2

1

2

AN

2 1

IfE = {egil), 6%3)}, then HC*(E) has a diagram as follows.

Then the smallest closed two-sided ideal of A containing H C*({e(lfil), eg?éz)}) coincides



with that of A containing H C*({eﬁil), eg?f)}). This ideal has a diagram as follows.

Let (D,d,U) be a diagram for A. In the above example, using a subset E of
{efﬁi’k);n € N,1 <k < s(n),1 <i<|[nk]}, we constructed a hereditary C*-subalgebra

HC*(FE) whose diagram coincides with a subdiagram of (D, d, U). Conversely we will see

that any hereditary C*-subalgebra of A is isomorphic to such a hereditary C*-subalgebra.

ProrosITION 3.2. IfE ={e;i=1,2,---}and F = {f;;i =1,2,---} are families of
pairwise orthogonal projections in A and there exist partial isometries v; in A such that

viv; =¢; and v;vf = f; (i=1,2,---), then HC*(E) is isomorphic to HC*(F) .

PrROOF: Let ProjHC*(E)/ ~ be all the equivalence classes of projections of HC*(F)
by partial isometries in HC*(E). ProjHC*(E)/ ~ is a local semi-group ([19]). Since

{>>%_, e} is an approximate unit for HC*(E), for each element a € HC*(E),

v a (o)



is well-defined, and this element belongs to HC*(F). We define a map 6 from
ProjHC*(E)/ ~ to ProjHC*(F)/ ~ by
0lp] = (O _v)p (D),
i=1 i=1
where [-] denotes an equivalence class of projections. Then the map § is an isomorphism as

local semi-groups. By [29, Theorem 4.3], the map 6 induces an isomorphism from HC*(F)

to HC*(F). 1

The following lemma is proved by Glimm [23] in the case of UHF-algebras. Here we prove
this in the case of general C*-algebras by a way that contains fundamental techniques of

the K-theory in operator algebras.

LEMMA 3.3. Let A be a C*algebra acting on a Hilbert space H, B be a C*-subalgebra
of A and e and f be projections in A.

(1) Iflle— f|]| <1, then there exists a partial isometry v in A such that
vYv=e¢ and wvww* =]

(2) If there exist an element a in B and a positive number € (< 11—6) such that |le—al| <

€, then there exists a projection g in B such that ||e — g|| < 2v/e.

Proor: (1) Wesete=1-|le— f|| (> 0). We denote the polar decomposition of the
operator fe by v|fe|, that is, |fe| is the square root of the operator (fe)*(fe) and v is the

partial isometry from the initial space of fe to the final space of fe. For any vector £ in



H with e = ¢,
I fe€ll > 1l&ll — 1€ — feéll = 1€l = 1i(e — H)EI

> el[¢]-

So the initial space of fe coincides with the initial space of e. Remarking the fact ef =

fe)* = |felv* and the above calculation, we can see that the final space of fe coincides
) P

with the final space of f. Therefore v*v = e and vv* = f

For any vector ¢ in H with ef = £,

(Ifel*éle) = lIfe€ll® > *lI€ll”,

where (-|-) is the inner product of . So the spectrum Sp(|fe|) of the positive contraction
|fe| is contained in {0} U[e, 1]. If we define the continuous function F; on Sp(|fe|) by
0 fo<z<e
F = - ’
(=) {l fe<z<l,

x

then v = v|fe|F1(|fe|) = feFi(|fe]). Therefore v belongs to A.

We may assume that a is a self-adjoint element of B. Since

(2)

lla = a?|| < lla = el + |le — eal| + [lea — o*|
< lla = ell + lle — al| + [|all|le — afl
< 2lla—ell + (1 +la—el[)lla — el
<eB+e¢)

1
<4 (< Z)’

the spectrum Sp(a) of a is contained in [-2, 2)U(1, £]. If we define the continuous function

F; on Sp(a) by
0
F: =
() {1 if L<a<d,



and we set ¢ = Fy(a), then g is a projection in B and |le — g|| < 24/¢ by the inequality

la — a?|| < 4c. B

LEMMA 3.4. Let e and f be mutually orthogonal projections in an AF-algebra A. Then,
for any €(0 < € < 1), there exist n € N and mutually orthogonal projections ¢, f' € A,
such that

max{[le—e' |l f = f' Il [ (e+ f) — (' + f) ||} <e.

In particular, we havee ~ €', f ~ f' and e + f ~ €' + f' where ~ denotes an equivalent

relation by partial isometries in A.

PrROOF: Let 0 < § < ¢/14. By the fact A = [, A» and Lemma 3.3(2), there exist
n € N and projections e¢',h € A, such that || e —¢' ||< §]|| f —h ||< §. By mutual

orthogonality of e and f, we have
lle’kll = le'(h — £) + (' — e)fll < 26.
If we set h’ = (1 — ¢’')h(1 —¢€’), then A’ is a positive contraction and e’h’ = h'e’ = 0. Since

18" = A2l < [|(1 — ) {h — (1 — e)h(1 - &) }h(1 - €]
<k -
= ||e'h + he' — €' heé'||
1
| <65 (< 5),
the spectrum Sp(h’) of k' is contained in [0, 66]U[1—66, 1]. We define a continuous function

F3 on Sp(h') by
0 if z € [0, 66),

F(z)=< z ifz€[661-66,
1 ifze(l—661].



If we set f' = F3(h'), then f' is a projection in A, and is orthogonal to ¢’. By the theory

of functional calculus,
lh = )l < Ik = Rl + IR = £l
<66+ |7 — Fslloo||R]]

< 126,

where I(z) = z for any = € Sp(h') and ||+ || is the supremum norm of continuous functions
on Sp(h’). Then
I f=f U<l f=hll+1lh-f <136 <¢,
e+ =+ l<lle—e I+ f-f <146 <e.

The last part follows from Lemma 3.3(1). i

The following lemma is the most technical part in this section.

LEMMA 3.5. If{e;;i =1,2,---} is a family of pairwise orthogonal projections in an AF-
algebra A, then there exists a family {f;;i = 1,2,---} of projections in A which satisfies
fi is orthogonal to f; ifi # j,

(*){ fi~ei foreachi=1,2,---
(n,k)

and f; can be represented as a finite sum of elements ¢;;"".

PrOOF:  We shall construct inductively a subsequence {An(,)} of {A,} and a family of
projections satisfying (*) .

By Lemma 3.3(2), there exist n(1) € N and a projection hy € A1) such that || e; —
hy ||< 1 (in particular e; ~ h;). Since A,(;) is finite dimensional, we can choose a

projection fi € A1), f1 ~ h1, which is represented as a finite sum of elements ef,':(l)’k).



We now make the following inductive hypotheses
((a) n(1) <n(2) <---<n(l),

(b) {f1,---,fi} Iisa family of pairwise orthogonal projections

in Ap(;) such that f; is represented as a finite sum of elements

(**)< e;(',r:"k) (.7 = 1)' 0T )l)1

(¢) for {f1,---,fi} in (b), there exists a family {h1,--- ,hi}
of pairwise orthogonal projections in A,(;) such that h; ~ f;

| in Angy and || S0 ki — il e fI< 1.

Suppose we have done up to the I-th step. Set || 25:1 h; — 25:1 e; ||= ¢, and let 6 be
a positive number such that € + § < 1. Applying Lemma 3.4 to 21:1 e; and e;+1, we can

choose n(l + 1) (> n(l)) and projections g, k141 in A4y such that

i I+1
g 1 h1+1, h1+1 ~ €l+1, “ qg— Zeg ”< 6 and ” g+ h1+1 et Ze; ”< 5.
i=1 i=1

Then g, hy,- -+, by are contained in A,41) and || g — S ki |l< e+ 6 < 1, hence we can
choose v in A, (;41) such that v*v = g and vv* = 25:1 h;. Therefore {v*hjv,--- ,v* kv,

hi41} is a family of pairwise orthogonal projections in A,(;41). By the assumption, each

v*h;v (i =1,---,1) and h;4 is equivalent to e; and hj4q, respectively. Since {f1,---, fi}
and {v*h1v,- -+, v* kv, hi41} are contained in A,g41) and f; ~ v*hiv (i =1,--- 1), there
exists a projection fi41 such that {f1,---, fiy1} satisfies (*). Moreover
i 1+1
” Zv*h;v+h1+1 — Ze; ”< e+ 6<1.
i=1 i=1

Hence (**) is true in the case of [ + 1. J

Now we can have the theorem mentioned in the introduction.



THEOREM 3.6. Let B be a hereditary C*-subalgebra of an AF-algebra A. Then there
exists a family E of pairwise orthogonal projections contained in {eg:’k); neEN 1<k
s(n),1 < i < [n,k]} such that B is isomorphic to the hereditary C*-subalgebra of A

generated by E.

Proor: We may suppose that B is not unital. Since B is an AF-algebra, there exists
a family of {e1, ez, -} of pairwise orthogonal projections in B such that {21{:1 e;} is an
approximate unit for B. Hence B = HC*({e1,es,---}). By Lemma 3.5, there exists a
family {fi, f2,---} of pairwise orthogonal projections such that e¢; ~ f; and each f; is
represented as a finite sum of elements eg,’:-’k). Set E = {e‘(;’k);egz’k) 1s a summand of
some f;}. Then HC*({fi, f2,---}) = HC*(E). By Proposition 3.2, B is isomorphic to

HC*(E). 1

Let B be a hereditary C*-subalgebra of A and I be the smallest closed two-sided 1deal
of A containing B. A diagram for B coincides with a subdiagram (D, d’, U") of a diagram

(D,d,U) for A. Set

Sn k) = { d(n, k)  if d'(n, k) >0,
’ 0

otherwise.

Then we get a subdiagram (D,d"”,U’) which satisfies (1) and (2), and this subdiagram
corresponds to J. We consider the dimension group D(B) (resp.D(I)) corresponding to
the diagram (D, d’',U’) (resp.(D,d",U’)), where D(B) (resp. D(I)) is the Grothendieck
group of the local semi-group ProjB/ ~ (resp. ProjI/ ~). Since a dimension group is
determined by only the multiplicities (see [17],[18] and [40]), D(B) coincides with D(I).

Therefore, by [17, Theorem 2.3] , we have the following corollary of this theorem.



COROLLARY 3.7. B is stably isomorphic to I, that is, C*-algebras BQ K and I ® K
are isomorphic, where K is the C*-algebra consisting of all the compact operators on a

separable Hilbert space and a C*-tensor product ® means the spatial C*-tensor product.

This corollary can also be obtained by remarking that B is full in I, that is, B is not

contained in any proper closed two-sided ideal of I ([4, Theorem 2.8}).



4. Increasing sequences of some special AF-algebras

Let {u,;n = 0,1,2,---} be a sequence of unitary operators satisfying the following

relations,
u;‘: =1,
Up Uy = (—1)“(""m)umun
for each n,m = 0,1,2,---, where a(n) = 0 or 1 for each n = 0,£1,%2,--.. We assume

that d = sup{|n|; a(n) = 1} is finite and we consider that a(n) belongs to the finite field
F, with 2 elements {0,1}. Let P, be the C*-algebra generated by {u;;0 <i < n} and Q,

be the center.of P,, that is,
Qn ={z € Py;zy=yz for any y € P,}.

Then {P,} is an increasing sequence of finite-dimensional C*-algebras. We will determine
the structure of the algebra P, and the diagram for the AF-algebra related to {P,}. To

do this, we introduce an (n + 1) x (n + 1) matrix A(n) whose entries belong to Fy,

(E(O%) aE(l]g . (a(n)l)
Am= | 0D

)

o(=n) a(=n+1) ... a0)

i.e., the (¢, 7)-th entry of A(n) is a(j — i). We remark that a(i — j) = a(j — ¢), since

uiu‘j = (—l)a('.—j)uju'- — (—1)a(i_j)+a(j—i)u‘.uj.

LEMMA 4.1.  dimQ, = 24im(KerA(n)),



PROOF: By the definition, @, is generated by the elements of the form
ug Q™ uf™ in Qu,
and these elements are linearly independent. Then we have following equivalent statements:

ug(o)uf(l) .42 belongs to Qy;

if and only if ug(o) uf(l) - uﬁ(") commutes with u; (0 < i < n);
if and only if ) a(i —k)a(k) =0 for 0<i<nm;
k=0
z(0)
z(1)
if and only if A(n) . = 0;
z(n)

where we may regard that z(i) belongs to Fy;. Therefore the number of elements
ug(o)uf(l) o™ i Q. equals to the number of solutions X of the equation A(n)X = 0.

This fact implies that the dimension of the algebra @, equals to 24™(¥ er(4(n)) g

ProPoOSITION 4.2.  The C*-algebra P, is isomorphic to Max ® C? for some non-negative

integers k, l.

ProOF: We shall prove this by the induction on n. The algebra P, is generated by uo.

So

1+uo+C1—uo

~C?,
2 2

P0=C

We assume

P, 2 My ® C?  for some k,1>0.
Let ap4+1 be an automorphism of P, such that a,4+1 = Ad u,41 . Then

Pn+1 & Pn xa,,+1 ZZ)



and oy 4; becomes an automorphism of @, where P, x,,,, Z3 is the C*-crossed product
of P, by the group Z, of order 2. Therefor we can label minimal projections ey, es, - -,
€25-1,€25,€2541, " " ,€g1 1IN @y, so that

{ nt1(e2i) = €251, 1<:<s,
ans1(e) = ¢, 25 <i< 2.

Then

P, Xopyy Zy = (@(P (621 1+ 623) Xapg1 Z2)) EB( @ (P el Xan41 Z2))
i=2s+1

(@((MzkEBMzk) Xa Z2)) @ ( @ (Max %o Z3)),

1=2s+1

where the action o of Z5 i1s outer in the first direct summand and the action o of 75 is

mnner in the second direct summand. So

P, x Zs 2 (Mgrr ® C*) @ (Mye ® C2(2'-29)),

An41

Since Qn41 is the center of P, Xq,,, Z2, the dimension of @, +1 equals to s + 2(2' — 2s).

By Lemma 4.1, dimQ,4+1 = 2™ for some m. Therefore
s+ 2(2" — 2s) = 2™.
This implies s = 0 or s = 2, that is,

P12 Mi® c? oo Pop1 2 Mpn ® c?

LEMMA 4.3. Lett be an element in an extended field of F, satisfying the identity

"t -—D" 4. 4 2()t+1 =0,



where z(1),--- ,2(n — 1) are element of Fy. Then there exists a positive integer m such

that t™ +1=0.
Proor: We put
po(t) =t" +2(n — D" - (1)t + 1.
If one of z(7) ’s is 1, then we put ¢ = min{s; z(i) = 1} and
p1(t) =t po(t) + po(t) = " F1 2y (n — D"l 4o g (1) 11

If one of z1(i) ’s is 1, then we repeat the same procedure, that is, we put iy = min{¢; 21 (é)}

and
Pz(t) = t51+52p0(t) +p1(t) = gntiitia 32(," — l)tn+i1+52—1 IR m2(1)t51+i2+1 + 1.
If this procedure terminates after m times repetitions, then

Pr(t) = (ErH2HHm gt ) po(1)

— tn+"1+"'+$'m +1=0.

If we can repeat this procedure infinitely, then we can find two positive integers k and [
(k < 1) such that

(i) =ml) (=1 ,n—1).

Then we get pi(t) + pr(8)t' % = t'~* + 1. Therefore =% +1=0. §

By the method of the above proof, we can find a positive integer m such that ™ +1 = 0,

and we set D = min{m;t™ + 1 = 0}. We call the number D the degree of the sequence

{1,2(1),--- ,z(n - 1),1}.



For the polynomial ¢o(t) = t® + z(n — 1)}t~ ! + --- + z(1) + 1, we define a sequence

{gn(t)} of polynomials as follows,
4m(t) = gm-1(t) + am-1(m)t™qo(t) forany m=1,2,---,
where the polynomial g,,(¢) is of order less than m + n with coeflicients in F3 and we put
gm(t) = am(m + 2)t™ " fap y(m+n— )t 4o, (1) + 1
From the proof of Lemma 4.3, we see that
qp-n(t)=t? +1=0 if go(t)=0.

Then we can get the following lemma using this method.

LEMMA 4.4. Let {y(i);i = 0,--- ,D} be a sequence in F3, and satisfy the following

equations,
y(()+z(VyG+ 1)+ +z(n—-DyG+n~-1)+y(G+n)=0 (j=0,---,D~-n),

where D is the degree of {1,z(1),--- ,z(n —1),1}. Then y(0) = y(D).

We denote by @, the center of the algebra P,. For the determination of the structure
of Qn, we prepare some notations. For any vector X = ¥z(0),---,z(n)) in (F)"**! and

a positive integer k,

w(X) = u(2(0), -, 2(n)) = w5 - w5,
_ [ wX) if w(X)?2=1,
v(X) = v(@(0), -, =(n)) = { v=1u(X) otherwise,

v (X) =v(0,---,0,2(0),--- ,2(n)) in Puyx,



and
k k+1),--- m P, if >k,
v_k(X):{v(m( ha(k+1), a(n) in Pas if n2
1 if n<k.

Then v(X) is a self-adjoint unitary operator. We have seen in the above that the algebra

Q- 1s the linear span of {v(X); A(n)X = 0}.

PrOPOSITION 4.5.  Let D be the degree of the sequence
{a(d))a(d'_ 1))"' ,a(l),a(O),a(l),--- )a(d'—'l))a(d)}

and k (0 < k < D) and ! be non-negative integers. Then Qiyip is isomorphic to Q.

Moreover the isomorphism fi4ip ik of Qr+1p to Q is given by the following relation,
Br+10,k(v(X)) = v_1p(X),

where v(X) belongs to Q+ip -

PROOF: At first, we consider the case d < k < D. Let X = ¥«(0),z(1),--- ,z(k))
and Y = Y%(0),y(1), - ,y(k + ID)) be vectors in (F2)¥*! and (F3)*+'P+1 respectively.
Then v(X) belongs to Q. (i.e., A(k)X = 0) if and only if 2(0),z(1),-- - , z(k) satisfy the

following relations (R;j), for any j (—d < j <k —d),

d
(R; ) Y a(ls)z(j +d+5) =0,
s=~-d
where we put
z(—d) =z(-d+1)=---=2z(-1) =0,
ek+1)=z(k+2) =---=2(k+d)=0.



Relations (R;—d),---,(R;k — 2d) mean that variables z(d),z(d + 1),--- ,z(k) can be
represented as linear combinations of variables z(0), z(1),-- -, (d — 1), that is, there exist

linear functions {f;;d < j < k} such that
z(j) = fi(=(0),z(1),--- ,z(d — 1)) forany j (d<j<k).

Therefore we can regard that relations (R; k—2d+1),-- -, (R; k—d) are binding conditions
for variables z(0), z(1),---,2(d — 1).

In a similar way, v(Y") belongs to Qr+ip (i-e., A(k+1D)Y = 0) if and only if y(0), y(1),
-+, y(k + 1D) satisfy the following same relation (R;j), for any j (-d < j < k+1D —d),

d

(R;4) > a(lshy(G +d+s) =0,
s=—d
where we put
y(—d) =y(-d+1) =---=y(-1) =0,
yk+ID+1)=yk+ID+2)=---=y(k+1D+d)=0.

Relations (R; —d),--- ,(R; k — 2d + ID) mean that variables y(d),y(d +1),--- ,y(k +1D)
can be represented as linear combinations of variables y(0), y(1),--- , y(d—1), that is, there

exist linear functions {g;;d < j < k+ D} such that
y(4) = gi(y(0),y(1), -~ ,y(d—1)) foranyj(d<j<k+ID),

where g; and f; are the same functions for any j (d < j < k). We regard therefore that
relations (R;k + ID — 2d +1),--- ,(R; k + ID — d) are binding conditions for variables

¥(0),¥(1),--- ,y(d — 1). By Lemma 4.3, we have

y(j)=y(i+D) forany ~d<j<k+(I-1)D+d.



Then the conditions (R;k + ID — 2d + 1),---,(R;k + 1D — d) for variables y(0),
y(1),---,y(d—1) are identical to the conditions (R; k—2d+1),- - ,(R; k— d) for variables
z(0), z(1),--- ,z(d —1).

For a vector X = ¥(z(0),z(1),--- ,z(k)), we define vectors

{ {Z = (=(0),2(1),--- ,&(D - 1)),
¥ = t(m(O),z(l),"' ,z(k + D)),

by the following,

{ z(j) = gj(z(0),--- ,2(d —1)) forany k< j < D,
z(j) =z(j + D) forany 0<j<k+(I-1)D.

By the above observation, the correspondence of X and X induces a bijection from the
set {X;A(k)X = 0} to the set {Y; A(k +ID)Y = 0}. So we can construct isomorphisms

ag k+ip from Qi to Qryip and Bryip,x from Qr4ip to Qr by the following,

ok k410(¥(X)) = v(X)vp(X) - - vg_1yp(X)up (X) = v(X),

Br+1p,k(v(Y)) = v_ip(Y),

where v(X) , v(Y) belong to Q% , Qr+ip respectively.
In the case 0 < k < d, we treat relations (R; —d),--- ,(R; k — d) as Binding conditions

for variables z(0),---,z(d — 1). By the same argument as above, we can construct the

isomorphism fr4ip from Qryip to Q.

COROLLARY 4.6.  We use the same notations as in Proposition 4.5. Then,
(1) the sequence {dim Qn;n =0,1,---} has a period D,

(2) dimQ@Q,=2¢ ifn=ID—-d-1,



(3) max{dimQ,;n € N} =24
Proor: (1) This follows from Proposition 4.5 immediately.
(2) Weset 2(—d) = z(~d+1) =--- = z(—~1) = 0. For any elements z(0),z(1),---,

z(d— 1) in F,, we define z(d),z(d +1),--- ,2(ID — 1) by the following relation,
d

(R; ) Y a(ls])z(i +d+3) =0,

s=—d

for any j (—d < j < 1D —2d —1). Then we have
z(—d)=z(ID-d)=0, ---, z(-1)=z(ID-1)=0.
The vector X = ¥=z(0),z(1),---,z(ID — d — 1)) becomes a solution of the equation
A(ID — d - 1)X = 0. By the proof of Proposition 4.5,
dim Q,, < 2¢.

Therefore dim Q;p_4-1 = 2¢.

(3) This follows from the proof of (2). &

By this corollary, if we can calculate dim Q,, for n =0,1,--- , D —1, we can get dim Q,,
for any non-negative integer n. The dimension of @, is equal to the number of all solutions
of the equation A(n)X = 0. If we can get the corank of the matrix A(n), then we can get
the dimension of @,. We can calculate the corank of the (n + 1) x (n + 1) matrix A(n),
using the corank of a d x d submatrix of a matrix, a deformation of A(n). In fact, we set

a d x 2d matrix A and a 2d x 2d invertible matrix P as follows,

a(0) a(l) ... a(d-1) a(d) O
as| W@ ey e |
dd=1) oo o a(0) @)  en ... a(d)



a(d=1) ad=2) ... a0) a(l) ... a(d—1) a(d)
| 0

\ 0 a(d) )

i.e., the (i, j)-th entry of A is a(|¢ — j}), and the (i, j)-th entry P(,5) of P is given by the

following relation,

a(d-j) ifi=1,

0 otherwise.

We define a d x d matrix B(n) consisting of entries of AP~4*" from the (1,1)-th entry
to the (d, d)-th entry, that is, the (i, j)-th entry of B(n) is the (¢, j)-th entry of AP—%+"

(1 <4,j < n). Then we can see that the corank of B(n) is equal to the corank of A(n).

ProprosITION 4.7.  Corank A(n) = Corank B(n).

PrOOF:  We define infinite dimensional matrices Xy, It (c) and a d x 2d matrix Y; as

follows,

a(i—j) for |t — j| < d,
(Xa)ij = {

0 otherwise,



c if (4,5) = (K1),
(ki(e))iy =91 ifi=j,
0 otherwise,

and

(Ya)ij =(Xa)i; for1<i<d,1<j<2d,

where we denote ( );; the (¢,5)-th entry of a given matrix. Inductively we construct
sequences of infinite dimensional matrices {Xy, }m>a and d x 2d matrices {Y;; };n>a with

the following relations.

Xm+1 =Il,m+1 ((Xm)l,m+1—d)

X Iy m41((Xm)2,m+1-4d)

X Id,m+1 ((Xm)d,m+1—d)

x X

(basic deformations of X, with respect to its row vectors),
(Ym+1)ij = (Xm41)ij4m—a for all m > d.

Then the matrix X,, is of the following form,




where the zero matrix of the (1,1)-th block is a d x (m — d) matrix.

Therefore we get the next relation for entries of matrices,

(Ymg1)ij = (Ym)ij+r + Ym)ija(d—j) if1<i<d, 1<j<2n,

(Ym+1)i2a = (Ym)in ifl1<i<d.

These relations imply

Y41 =Y P form > d,

where P is a 2d x 2d matrix defined as above.

Since P is invertible and Y; = A, we can define matrices Y,,, for 1 <m <d by Y,, =
A P—d+m .

We have already defined d x d matrices B(m) by
(B(m)),-,j = (Ym),',j for 1 S i,j S d.
In the case of m > d,

Corank A(m) = Corank [(Xm)i;;1 <i,j < m]
= Corank B(m),

since the matrix [(X,,); ;] has the following form

0 |Bm

In the case of m < d, B(m) has the following form,



( O A(m)

a(d) a(d-1) --- a(m+1)

\0 G(Z(Z)l) 0

Therefore Corank A(m) = Corank B(m). 1

By the proof of the above proposition, the corank of A(n) coincides with the corank of

the following matrix,

a(d) a(d-1) --- a(1)

a(d.— 1)

O X a(d)

if n =1D —1 for any l € N. So Q;p_1 = C-1. Therefore the AF-algebra |, P, is the

UHF-algebra of type 2*° for any finitely supported sequence {a(n)}.

For an increasing sequence {i,--- , it} of non-negative integers, we define a vector X =
£ (2(0),+- , (k) in (Fy)*** by

{z(j)=1 if j=14; forsomel <<k,

z(j)=0 otherwise,

and we denote v(X) by (¢1,---,i) or (X). We decompose (X) into the difference of two

projections, and we write,

(X) = (X)+ _(X)_ (or (il"” 7ik) = (ilr"' )ik)+ - (ili"' ’ik)—),



that is,
1+ (X)

1—(X)
5= Sl et

(X)* = :

(X)™ =
We remark that the center @, of P, is a linear span of {v(X); A(n)X = 0}, and

{v(X); A(n)X = 0} is a group. If {v(X1),---,v(Xk)} (K = dim(KerA(n))) is a gen-

erator of {v(X); A(n)X = 0}, then @, is the linear span of
{(X)’ M (X2)°® - (Xg)*5; 6(1), 6(2), -+ ,6(K) = + or =},

and (X)) (X3)5() ... (X )¥X) is a minimal projection of Q.

THEOREM 4.8. Let D be the degree of the sequence
{a(d)) a(d - l)a T )a'(l)) a‘(O)’ a(l)a Tt a’(d - 1)) a(d)}

Then the inclusion matrix from P, to P,4; is equal to the inclusion matrix from P,4ip

to Ppy141p for any non-negative integers l and n.

Proor: By Propositin 4.5, there exists an isomorphism S, 4+ip » from Qn4ip to Q.
Then a minimal projection (X1)*W) ... (Xg)* %) in @Q,4p is mapped to a minimal pro-
jection (v—;p(X1))*M - (v_;p(Xk))* %) in Q, by this isomorphism B, 4+ip n, where K is
the corank of A(n).

The inclusion matrix from P, to P, is determined by the orthogonality of a minimal
projection in @, and a minimal projection in @Q,4+1. By Proposition 2, the algebra @,
contains the algebra @41 or is contained in the algebra Qny1. If @, D Qny1  (resp.

Qn C Qn41 ), then

.Bn+lD,n|Q,,+1+,D = ,Bn+1+lD,n+1 (TCSP- IBn+1+1D,n+1IQ,.+1D = ﬂn+1D,n)'



Therefore the inclusion matrix from @, to Q.41 is equal to the inclusion matrix from
Qn+ip to Qny14+1p with respect to the correpondence of a minimal projection in @,, (resp.

@n+1 ) and Qn4ip (resp. Qni141p ) by the isomorphism B, 4ipn  (resp. Br+141D,n+1)-

By this theorem, we can determine the Bratteli diagram of a sequence {Q, } of algebras

for any given finitely supported sequence {a(n)}. In the next section we will try to compute

that for some sequences.



5. Examples and Applications

By the argument in section 4, we can calculate the sequence {corankA(n);n =1,2,---},

and we can get the sequence {dim Q,;n=1,2,--- }, according to the following relation,
dim Qn — 2corank A(n).

Let d = sup{|n|;a(n) = 1}. We calculate the period of {corank A(n) } in the case of

d=1,2,3,4,5,6, as follows.

a(0) a(l) a(2) a(3) a(4) a(5) a(6) period

S
Il
[

I
X
= - N N

2,

Il

S
O O 0 0 0O 0 0 0o o0 0 00 o o o
e i e i — = = = T e S = Y — Y . S SO S
e = = e T e T = = T S — T " S o S U G W
OO R O R O e O e e e

e e e e T L e S SO
(]
o



a(2) a(3) a(4) a(5) a(6) period

a(1)

a(0)

10
18
16
24
42

34
60
28
24
40

12
30
36
12
34
30
12
22
20
30

18
60
66
36



a(4) a(5) a(6) period

a(2) a(3)

a(l)

a(0)

16
102
24
62

62
48

60

40

70

60
30

68
68

24
84
66

102
96
62
24

120
90
72

42



We get some examples in which, though sequences a; and a, are different, the algebra

P, for a, is isomorphic to the algebra P, for as, for any non-negative integer n.

Example 1. (d=4)

{ a; =(0,0,1,0,1,0,...),
ay =(0,0,1,1,1,0,...).
The period is 12. The dimension of @, is as follows,
dim(Qo) = 2, dim(Q) = 4, dim(Q2) = 2, dim(Qs) =1,
dim(Q4) = 2, dim(Qs) = 4, dim(Qs) = 8, dim(Q7) = 16,
dtm(Qg) = 8, d‘l,m(Qg) = 4, dlm(Qlo) = 2, dzm(Qu) =1.
Example 2. (d=5)
{ a; =(0,1,0,1,0,1,0,...),
ay =(0,1,1,0,1,1,0,...).
The period is 12. The dimension of @, is as follows,
dim(Qo) = 2, dim(@Q,) =1, dim(Q») = 2, dim(Qs3) = 4,
dim(Q4) =8,  dim(Qs) = 16, dim(Qg) = 32, dim(Q-) = 16,
dlm(Qs) = 8, dzm(Qg) = 4, dzm(Qlo) = 2, dzm(Qu) =1.

Example 3. (d=6)
{ a; =(0,1,0,1,0,1,1,0,...),
a2 =(0,1,1,0,1,1,1,0,...).
The period is 24. The dimension of @, is as follows,

dim(Qo) = 2, dim(Q,) =1, dim(Q;) = 2, dim(Q3) = 4,
dim(Qs) = 2, dim(Qs) =1, dim(Q10) = 2, dim(Q11) = 1,

dim(Qq2) = 2, dim(Q13) =4, dim(Q14) = 8, dim(Q1s) = 16,
dzm(le) = 32, dzm(Q17) = 64, dzm(ng) = 32, dzm(ng) = 16,
dim(on) = 8, dim(Qzl) = 4, dim(sz) = 2, dim(ng) =1.



We can also determine the Bratteli diagram of algebras {Q,} for any given finitely
supported sequence. We show the Bratteli diagrams of sequences {P,;n = 0,1,---} for

sequences {0,0,1,0,1,0,---} and {0,0,1,1,1,0,--- }. We remark that their period is 12.

1. The Bratteli diagram for {0,0,1,0,1,0,---}.
Each of algebras Qo, @1, - -, @11 has minimal projections, which are expressed by the

following form.

QO (O)i) Ql (O)i(]‘)i7
Q: (1), Qs 1,
Qs (024)*, Qs (024)*(135)%,

Qe (06)*(135)*(246)%, Q7 (06)X(17)*(246)*(357)%,
Qs (17T)*(246)*(357)%, Qo (246)*(357)%,
Qo (357)%, Qu 1

We can see the orthogonality of the above minimal projections by the following calculation,

(024)F = %{1 + (024)}
- %{1 — (06) + (06) + (06)(246)}
= (06)~ + (06)(246)*
= (06)*(246)* + (06)~ (246)".

By these calculations, we get the following formulae
(024)* = (06)%(246)* + (06)~(246)",
(024)~ = (06)%(246)~ + (06)~(246)*,
(135)r = (A7)*(357)* + (17)~(357)~,
(135)- = (17)*(357)~ + (17)~(357)*.



Therefore we get the relation of the orthogonality of minimal projections as figure 1 and

figure 2, and the Bratteli diagram as figure 4.

2. The Bratteli diagram for {0,0,1,1,1,0,---}.
Each of algebras Qo, @1, -, @11 has minimal projections, which are expressed by the

following form.

Q (0)%, Q: (0)*(1)%,
QZ (l)i’ QS ]-)
Qs (0134)%, Qs (0134)%(1245)%,

Qs (06)%(1245)*(2356)F, Q. (06)X(17)*(2457)%(3467)%,
Qs (17)%(2457)%(3467)%, Qs (2457)F(3467)%,
Qo (3467)%, Qu 1.

We can see the orthogonality of the above minimal projections by the following calculation,

(0134)+ = %{1 +(0134)}

= %{1 — (06) + (06) — (06)(1245) + (06)(1245) — (06)(1245)(2356)}
= (06)™ + (06)(1245) + (06)(1245)(2356) "
= (06)*(1245)*(2356)~ + (06)* (1245)~(2356)*

+ (06)~(1245)+(2356)* + (06) ~(1245)~ (2356)~

By these calculations, we get the following formulae



((0134)* = (06)F(1245)%(2356)~ + (06)*(1245)~(2356)*
+(06)~(1245)*(2356)* + (06)~ (1245)~ (2356)~
(0134)~ = (06)*(1245)+(2356)* + (06)*(1245)~ (2356)~
+(06)~(1245)(2356)~ + (06)~ (1245)~(2356)*
(1245)* = (17)F(2457)* + (17)~(2457)~
(1245)~ = (17)*(2457)~ + (A7)~ (2457)*
(2356)t = (2457)%(3467)~ + (2457)(3467)*
[ (2356)~ = (2457)F(3467)* + (2457)(3467)~.

.

Therefore we get the relation of the orthogonality of minimal projections as figure 1 and

figure 3, and the Bratteli diagram as figure 4.

N
0) + + - -
(1) \></
(1) ‘F\/—

Figure 1. The orthogonality of minimal projections in Qo, @1, @2, @s
for {0,0,1,0,1,0,---} and {0,0,1,1,1,0,--- }.



(024) ¥ _

PN VN

(024) + .+ - —
A N AN
(06) + - + - - + - +
(135) + + - - + + - -
(246) + - + - 4+ - /_i._
(06) + + - -+ + - - - =+ 4+ - - + 4+
(17) + -+ - -+ - + + - + - - 4+ - 4+
(246) + + - -+ + - -+ 4+ - -+ + - -
(357) + -+ -+ -+ -+ - + - + - + -
(17) + - + - -+ - +
(246) + + - - + + - -
(246) + + = —
(357) + - + -
(357) + —

Figure 2. The orthogonality of minimal projections in Q4, @5, -+, Q11
for {0,0,1,0,1,0,---}.



(0134) + —

N /N

(0134) + + - -
A N AN
(06) - + + - + - - +
(1245) + + - - + + - —
(2356) / ’\
(06) -+ + + + - -

(17) -+ + -+ - -+ - 4+ + - + - - +
(2457) -+ + - -+ + - -+ + - - + + -
(3467) + -+ -+ -+ -+ - + = + - + -
an = + s Z:+ - ;- £+
(2457) - + + - -+ b -
(2457) - + + —
(3467) + - + _
(3467) + | ~

Figure 3. The orthogonality of minimal projections in Q4, @5, -, Q11
for {0,0,1,1,1,0,---}.



(Po) 1 1

(P1) 1 1 1 1
N —— 7
(P2) 2 2
\/
(Ps) 4
(Ps) 4/\4
N /N
(Ps) 4 4 4 4
A N /1 N
(Ps) 4 4 4 4 4 4 4 4
ANAN AN AN
(Pr) 4 4 4 4 44 44 4444 44 44
(Pio) \32><32/
\/
(P11) 64

Figure 4. The Bratteli diagram of Py, Py,-- -, Py for {0,0,1,0,1,0,---} and
{0,0,1,1,1,0,---}.



THEOREM.  There exist two different sequences {a;(n)} and {a2(n)} such that the Brat-

teli diagram of |J,, P, for a; coincides with the Bratteli diagram of |J,, P, for a;.

For any finitely supported sequence a, we have already seen that the AF- algebra for
a is a UHF-algebra of type 2°°. Using the canonical tracial state, we can construct a
hyperfinite factor of type II; generated by unitaries {u1, us,---}. The correspondence u;
to uiz1 (i =0,1,2,---) induces the binary shift o, of the hyperfinite factor & of type II;.
Then P, is equal to the subalgebra of R whose element commutes with all the elements
in ¢9+1+7(R), where d = sup{|n];a(rn) = 1}. Bures and Yin showed that ¢4, and o,, are
not outer conjugate if finitely supported sequences a; and a, are different. So the above
theorem means that there exist two shifts for the hyperfinite factor of type II; such that
they are not outer conjugate, although they have the same sequence of relative commutant

algebras in the sense of the Bratteli diagram.



6. Decomposable norms and finite rank linear maps

In this section we determine the fundamental properties of completely positive maps,
completely bounded maps and decomposable maps. We treat the following two conditions
characterizing nuclear C*-algebras and some other C*-algebras belonging to a certain wider
class than the class of nuclear C*-algebras. We donote a C*-algebra by A and the algebra

consisting of all the n x n matrices by M,,.

(*) For every n € N and every linear map T from M, to A,

I T Nlaee=I T lles -

(**) For every n € N and every linear map T from C™ to A,

” T ”dec=” T ”cb .

LEMMA 6.1.  Let A, B and C be unital C*-algebras and B be a C*-subalgebra of A with

the same unit. If there exists a projection P of norm one from A onto B, then

| T ”dec=” ToP ”dec

for any decomposable linear map T from B to C.

ProoF:  Using the fact that P is a completely positive map and the fact in section 2,

| ToP aee<H T Jlgecll P laee=ll T ||gec -



Conversely we must show the inequality || 70 P ||gec>]| T ||gec- By the definition of
the decomposable norm, for any positive number €, there exist completely positive maps
S1, Sz from A to C such that

S T*o P
Il S1 Sz lI<l| To P |lgec +¢ and (TolP . )

is completely positive . We set S} = S; |p and Sy = S, |g. Since P is a projection of

norm one from A onto B, for any positive element [ b; ;] of M,(B),

(o, T b= (B 5, ) ot

This identitiy implies that
S; T
T 5

is completely positive. Since || S} ||=|| S; |,
| T llaee< maz{|| Sy || Sz I} ST 0 P llgec +e-

Since € is arbitrary, it implies that || T ||gec=|| T' 0 P ||dec -

Let T be a linear map from M, to a C*-algebra A and {e;;} be a system of matrix
units of M,,. Making correspond to a linear map T an element [T'e; ;] of M, (A), we can
identify linear maps from M, to A with M, (A). Then completely positive maps from
M, to A are identified with positive elements of M,(A) ([10]). An element of M, (A) can
be represented as a linear combination of positive elements, so T' is decomposable. By a

similar way, we see that every linear map from C™” to A is decomposable.

COROLLARY 6.2.  If a C*algebra A satisfies (*), then A satisfies (**).



ProOF:  For a linear map T from C” to A, by Lemma 6.1
” T ”dec=” ToP ”dec;

where P is a projection of norm one from M, onto C". By the assumption, it holds

| T o P |lgee=|| T o P ||cb. Since

| T Mlgee=ll T 0 P [lagec=I| T 0 P l|s<|| T lles,

this implies || T [|gec=|| T ||ct - B

For a commutative C*-algebra, we can determine many properties precisely. Some of
them is the property (**), the relation of positive maps and completely positive maps and
the relation of bounded homomorphisms and bounded *-homomorphisms (the similarity
probrem [32,33]). By the Gelfand-Naimark theorem, every commutative unital C*-algebra
1s isomorphic to a algebra C(Q) of all the complex valued continuous functions on a suitable
compact Hausdorff space §2.

We consider the following special complex Banach space. Let E' be a Banach space
with a continuous involution *. Then E ® M,, cannonically becomes a Banach space with
a continuous involution for every n € N. We call E a matrix orderéd Banach space if

{EF ® M,,, P,(E)} satisfies the following conditions,

(1) P,(E) is a closed *-invariant cone in E ® M,, for every n € N,

(2) ¥*P.(E)y is contained in P,,(E) for every v € M, ,,, m,n € N.

We remark that the dual space of matrix ordered space is also matrix ordered with respect
to the family of dual cones. We call a matrix ordered Banach space E of order 1 if P, is

the norm closure of the convex hull of {y*Pyv ;v € M} for every positive integer n.



Every C*-algebra is matrix ordered with respect to the family of natural cones consisting
of all the positive elements. Its dual space is also matrix ordered ([Choi-Effros]). By the

following lemma, we give an example of a matrix ordered Banach space of order 1.

LEMMA 6.3. A commutative C*-algebra and its dual space are of order 1.

ProoF: We consider the case that A is a commutative C*-algebra (we may assume A is
unital), that is, A = C (1) where € is a compact Hausdorff space. For a positive element
f=1fi;] € C(Q)M, = C(2, M,) and any positive number €, we can take a finite subset

{21} of Q and a finite open covering {Ux} of Q such that

(1) =z € Uk,

(2) lf(y) - fl=p)ll <&, ify€Us.

Then there exists a partition of unity {F,} subordinate to {Ux}. We take an element y,
in supp(F,), then we define an M,-valued function g, on Q by g, = f(yp)F,. By the
definition, ¢ is contained in the convex hull of {y*Piy;y € Min}. The property of a

partition of unity implies
If - ng“ <E&.
»

Therefore A is of order 1.

The dual of A is identified with the predual of a commutative von Neumann algebra,
and our arguments are reduced to these about a space L*(Q, ). The arguments in this
case become easier than those in the above, because we can use characteristic functions

instead of a partition of unity. We omit the detail. |



PROPOSITION 6.4. Let E, F be matrix ordered spaces. We assume that a cone P,(F)
is an intersection of F ® M,, and a cone P,(F") for each n € N where F" is the dual of
F'. If E or the dual of F is of order 1, then any positive, bounded linear map ¢ from E

to F' is completely positive , Ie., ¢n(Py(F)) is contained in P,(F) for each n € N.

ProoF: In the case that F is of order 1. For any v € M; , and z € P,(E), by the

positivity and the linearity of ¢,
¢ @ idn (v 27) = v p(2)7 € Pu(F).

It follows that ¢ is completely positive, since E is of order 1 and ¢ is bounded.

In the case that the dual of F' is of order 1. For any ¢ € P,(E), f € P(F') and v € My ,,

by positivity of ¢,

< e ®idy(2), v f1>=<'(7")p @ id,(z)%, f >

=< p(*(y*)z"), f >>0,

where <, > means the dual pairing of the Banach space F' and the its dual F’'. By the

assumption, ¢ is completely positive. |

The positivity of a linear map between C*-algebras naturally impliés its boundedness.
Moreover any C*-algebra satisfies the assumption of F' in Proposition 6.4. So every positive
map from a C*-algebra A to a C*-algebra B is completely positive, if one of the C*-
algebras A, B is commutative. A lot of generalization of this fact are obtained by many

mathematicians. The one in the above is the most generalized one among them.

PROPOSITION 6.5.  Let T be a linear map from C™ to C(2) and {ej,ez,--- ,e,} be a



system of orthogonal minimal projections of C*. If we define a linear map S from C" to

(7 5)

is a completely positive map from C* to My(C(f2)) and

C(Q) by S(es) = [T(es), then

[ Tlaec = IS1I-

Proor: We note that an element

a b
b ¢
of M, is positive if and only if a,c > 0 and ac > |b|%. This relation and the commutativity

of C(2) imply the complete positivity of

S T
T S§)°
We set a; = Sj(e;) and b; = Saz(e;) for given completely positive map R from C” to

M,(C(2)), where
Y
R_(T &)'
Since

R(e;) = (;:E:; @)

is a positive element of M, for any w € Q,
a;(w), b;(w) >0 and a;(w)+ b;(w) > 2|fi(w)]-



Then

1SI = ISl = Sgpz: |fi(w)]
< sup maX{Z a;’(w),z:b;(w)}
= max{sup Z a;(w), SI;p >_bi(w)}
= max{llziz;ill, ”zi:bi”}'

= max{[|S1]}, ||S2[[}-

This implies ||T||gec > ||S||- Therefore ||T]|aec = ||S]]- W

COROLLARY 6.6.  For any linear map T from C™ to C(f2),
TN = ITllee = 1ITlace-

PrROOF: ||| < [|T|les < ||Tldec is obvious. It suffices to show that ||T|| > ||T|4ec. By

the above proposition,

[Tllaee = IS1I = ISl

= ZS(e;)(w) for some w € Q.

There exist complex numbers «; (i =1,---,n ) such that |o;| =1 and

D> 5(e)(w) =T ases)(w) < 171l



By the result of Wittstock([47]) and Paulsen([35]), it is known that an injective C*-

algebra satisfies the condition (*). We will show the existence of a C*-algebra which

satisfies the condition (*) and is not injective.

LEMMA 6.7. Let A be a unital C*algebra. If T} and T3 are linear maps from M,, to

A such that ||T} — Tz|| < 1, then
”Tl - T2”dec S n2‘

Proor: We note that, for any element ¢ € A, a <1 if and only if

[+ 7)

is positive. Let {e; ;} be a system of matrix units of M,. We define a linear map S from

M, to A by S(e;;)=nb; ;1. If we show that

re( S (@-T)
T-T, S

is completely positive, then

1Ty — Tallaee < IISI = IS =] Zs(ei,i)ll =n’.

Therefore we may show that R is completely positive. By the assumption, since
| (1 — T3)(ei ;) || is less than 1, the norm of an element in Ma,(A), whose (4,7)-th

entry is

(- Bty OTH),

is less than n. The canonical isomorphism between (A ® M;) ® M,, and (A® M,)® M,

yields a canonical rearrangement of an n x n-matrix of 2 x 2 blocks as a 2 x 2-matrix of



n X n blocks, with the (i, j)-th entry of the (k,)-th block becoming the (k,{)-th entry of

the (i, j)-th block. The element of (4 ® M) ® M,,, whose the (i, j)-th entry is

(- By 7H),

becomes after this rearrangement, of the form,

0o X
X 0
with an element X of A ® M,,. Then (R(e; ;)), after the same rearrangement, is of the
nl, X*
X nl, /)"

0 X*
Ixi=1(y % )n<n

we see that the matrix [R(e; ;)] is positive. Therefore R is completely positive. |

form,

Since

We remark the following fact related to the property (*) in the above setting. If

|7y — T3|| < ¢ for a positive number ¢, then
1T — Tolles < |ITh — Tollaec < n’e.

In particular,

ITalles = T2lleel, | IT1laee — 1 T2llace] < ne.

THEOREM 6.8. (1) Let A be a nuclear C*-algebra. Then the spatial tensor product
A® B(H) of A and B('H) satisfies the condition (*), where B(H) is the algebra of all the

bounded operators on a Hilbert space H.



(2) Let {A,} be an inductive system of C*-algebras and A be the inductive limit
C*-algebra of {A,}. If A, satisfies (*) for any n € N, then A satisfies (*).
ProoF: (1) For any € > 0 and any linear map T from M, to A ® B(H), we need to
show that ||T||4ec < ||T|cs +€. We set § = g/n*. We can take a linear map T” from M, to
the algebraic tensor product A® B(H) of A and B('H) such that ||T'(e; ;)—T"(e: ;)|| < 6/3.

By the nuclearity (the factorization property), there exist a positive integer k, a completely

positive contraction ¢ from A to M} and a completely positive contraction 7 from M} to

A such that
T (e:,;) — (r® 1) (0 ® 1)T"(es ;)| < 6/3

for every ¢ and j. Then 1t follows that
IT(es,5) — (r @ 1)(e @ 1)T(ei )|l < 6.
Therefore we have ||T — (1 ® 1)(0 ® 1)T|| < n®6. The range of (¢ ® 1)T is contained in the
injective C*-algebra My ® B(H). Thus we have
“T”dec < ”(T ® 1)(0' ® 1)T"dec + n2(n26)
< (e ®1)T|lacc + €
=(c®1)T|es +¢

< ”T”cb +e.
This completes the proof of (1) .
(2) We may assume that {A,} is an increasing sequence of C*-subalgebras of A such
that the union of A,, is dense in A. For any € > 0 and any linear map T from M,, to A, there

exist a positive integer k and a linear map 7" from M,, to A such that || T —T" ||< e/n2.

Using Lemma 6.7 and the fact that Aj satisfies (*),

I Tlldec < IT"|aec + €= IT"]lcs +&-



Since ¢ is arbitrary, A satisfies (*) . I

An example of a C*-algebra not satisfying the condition (*) is the reduced group C*-
algebra C*(F(2)), where F(2) is the free group generated by two elements ([25]). We
consider what a C*-algebra satisfies the condition (*). We have already known every
injective C*-algebra satisfies (*). From (1) of Theorem 6.8, every nuclear C*-algebra
satisfies (*), too. If C*-algebras A and B satisfy (*), then it is easily shown that A ® B
satisfies (*). If A satisfies (*) and there exists a norm one projection from A onto a C*-
subalgebra B of A, then B satisfies (*). Moreover we can see the existence of a C*-algebra
satisfying (*), which is neither nuclear nor injective. For example, so is B(H) ® K(H) or
B(H) ® K( 'H), where K(H) is the algebra of all the compact operators on a separable

Hilbert space H.
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