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Abstract

In this dissertation, we discuss expressive power of some decision diagrams, which 

are representations of functions, and some quantum computation models. 

  Many kinds of representations of functions have been proposed such as truth 

tables, CNF's and various kinds of decision diagrams. It is desired that they have 

much expressive power, that is, the size of representations of functions should be 

small, or the class of functions that can be represented should be large on the 

condition that the size of representations is restricted. 

  When we discuss abilities of computation models such as finite automata and 

push down automata, we associate computation models with formal languages. 

Then abilities of computation models are evaluated in terms of to what extent 

the computation models can recognize languages. This evaluation is also based 

on the criteria of expressive power. 

  In this dissertation, we show several results concerning expressive power such 

as lower bounds on the size of a certain decision diagram and abilities to recognize 

languages of certain computation models. 

  In a practical sense, it is inconvenient if finding a small representation takes 

too much time even though the representation has a small expression. Thus 

it is also important to investigate how complex finding a small (or minimum) 
representation is. We also discuss complexity of finding a minimum representation 
of a certain decision diagram. 

  In this dissertation, we deal with two sorts of decision diagrams. One is a 
binary moment diagram, which represents a function from binary vectors to in-
tegers. The other is a Kronecker functional decision diagram, which represents 
a boolean function. Binary moment diagrams can represent several arithmetic 
functions, including multiplication, efficiently, while binary decision diagrams 
need an exponential number of nodes to represent (a particular bit of) multipli-
cation. However, some experimental results show that lower bounds on the size 

of a binary moment diagram representing division may be exponential. We give a 

theoretical proof to this result. Kronecker functional decision diagrams are gen-

eralized decision diagrams, which take any decomposition type for each variable.
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The size of a Kronecker functional decision diagram depends on a given decom-

position type list. We show that the problem of finding the best decomposition 

type list is NP-hard. 

  We deal with "quantum computation" as well as "classical computation". 

In this dissertation, we propose two quantum computation models, quantum 

branching programs and non-deterministic quantum finite automata. Branch-

ing programs are decision diagrams that are also known as (unordered) binary 
decision diagrams. We show that under a bounded-width restriction, ordered 

quantum branching programs can compute some function that ordered proba-

bilistic branching programs cannot compute. We also show that the class of 

languages recognized by non-deterministic quantum finite automata properly in-

cludes the regular languages. This result means that non-deterministic quantum 

finite automata are strictly more powerful than classical non-deterministic finite 

automata since finite automata (regardless of deterministic or not) can recognize 
exactly the regular languages.
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Chapter 1

Introduction

To discuss how powerful particular algorithms and, in addition, computers on 

which the algorithms run are, we analyze them in various kinds of criterion such 

as time complexity and space complexity. In this dissertation, we focus on the 

criteria of expressive power. 

  To manipulate functions is one of basic operations of computation. Many 

kinds of representations of functions have been proposed such as truth tables, 

CNF's and various kinds of decision diagrams. It is desired that they have much 

expressive power, that is, the size of representations of functions should be small, 

or the class of functions that can be represented should be large on the condition 

that the size of representations is restricted. 

  When we discuss abilities of computation models such as finite automata and 

push down automata, we associate computation models with formal languages. 
Then abilities of computation models are evaluated in terms of to what extent 

the computation models can recognize languages. This evaluation is also based 

on the criteria of expressive power. 

  In this dissertation, we show several results concerning expressive power such 

as lower bounds on the size of a certain representation of functions and abilities 

to recognize languages of certain computation models. 

  In a practical sense, it is inconvenient if finding a small representation takes 

too much time even though the representation has a small expression. Thus 

it is also important to investigate how complex finding a small (or minimum) 
representation is. We also discuss complexity of finding a minimum representation 

of a certain data structure. 

  We deal with several sorts of decision diagrams as representations of functions. 

Decision diagrams are directed acyclic graphs representing functions. They can 

represent some functions with relatively small space. The function is decomposed 

at each node according to the decomposition type such as Shannon expansion and
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Davio expansion, which is associated with each of the variables. The children of 

the node represent the terms of the decomposed function. As for ordered decision 

diagrams, given a variable ordering, the variables appear on any paths from the 

root to terminal nodes according to the ordering. With a fixed variable order-

ing and fixed decomposition types, a decision diagram can represent a function 

uniquely. This property of unique representation is used in the area of verifi-

cation of circuits[9, 10, 16], comparing the decision diagram that represents the 
function computed by the circuit with the decision diagram that represents the 

specification. 

  The computation time and space of manipulating a decision diagram depend 

on the size of the decision diagram. Studies on upper/lower bounds on the size 
of decision diagrams and the algorithms of finding the best ordering have been 

made[5, 8, 17, 22]. 
  In this dissertation, we deal with two sorts of decision diagrams. One is a 

binary moment diagram, which represents a function fromm binary vectors to in-
tegers. The other is a Kronecker functional decision diagram, which represents 
a boolean function. Binary moment diagrams can represent several arithmetic 
functions, including multiplication, efficiently, while binary decision diagrams 
need an exponential number of nodes to represent (a particular bit of) multi-

plication. Thus they are used in the area of verification of arithmetic circuits. 
However, some experimental results show that lower bounds on the size for divi-

sion may be exponential. In Chapter 2, we give a theoretical proof to this result, 

that is, we show that a binary moment diagram needs an exponential number 

of nodes to represent division. Kronecker functional decision diagrams are gen-

eralized decision diagrams, which take any decomposition type for each variable. 

The size of a Kronecker functional decision diagram depends on a given decom-

position type list. In Chapter 3, we show that the problem of finding the best 

decomposition type list is NP-hard. 

  The representations mentioned above are based on "classical computation". 

We deal with "quantum computation" as well as "classical computation", and 

propose several quantum computation models. Since Shor developed a polyno-

mial time factoring algorithm for quantum computers[21.j, much attention has 
focused on quantum computation, and it has been shown that quantum com-

putation models can be more powerful than classical counterparts. Quantum 
computers can exploit quantum effects, and can be in superpositions of config-

urations in their computation processes. With this feature, the computation by 

quantum computers can be regarded as a kind of parallel computation, called 
"quantum parallelism" . This quantum parallelism is the source of the power of 

quantum computation.
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  Several kinds of quantum computation models have been proposed such as 

quantum Turing machines[11], quantum circuits[24] and quantum finite automata 
[3, 4, 6, 18, 20]. It is believed that quantum Turing machines are more powerful 
than classical Turing machines. Moreover it has been shown that even restricted 

(or finite) models of quantum computation can be more powerful than classi-
cal counterparts in spite that quantum computation models must be reversible 

in order to obey quantum theory. For example, the class of languages recog-

nized by 2-way quantum finite automata properly includes the regular languages. 

However, the constraint of the reversibility makes some quantum computation 

models less powerful than classical counterparts such that 1-way quantum finite 

automata can recognize only a proper subset of the regular languages while 1-way 

(classical) finite automata can recognize exactly the regular languages. Thus it is 
unclear what kinds of quantum computation models can be more/less powerful 
than classical counterparts, and it is important to investigate quantum compu-

tation models in detail. 

  In this dissertation, we propose two quantum computation models, quantum 

branching programs and non-deterministic quantum finite automata. Branch-

ing programs are decision diagrams that are also known as (unordered) binary 
decision diagrams. We use "branching programs" rather than "binary decision di-

agrams" when we consider them as computation models, not as representations of 

functions. In Chapter 4, we show that under a bounded-width restriction, ordered 

quantum branching programs can compute some function that ordered probabilis-

tic branching programs cannot compute. In Chapter 5, we show that the class of 

languages recognized by non-deterministic quantum finite automata properly in-

cludes the regular languages. This result means that non-deterministic quantum 

finite automata are strictly more powerful than classical non-deterministic finite 

automata since finite automata (regardless of deterministic or not) can recognize 
exactly the regular languages. 

  Chapter 6 concludes this dissertation, and discusses future works.
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Chapter 2

On the Size of Binary Moment 

Diagrams Representing Division

2.1 Introduction

A binary decision diagram (BDD) [2, 7] is a directed acyclic graph representing 
a boolean function. BDD's can represent many useful boolean functions with 

relatively small space. The size of a BDD depends on a given variable ordering. 

The known lower bounds on the size of a BDD representing (a particular bit of) 
multiplication[8] or division[17] are exponential, therefore BDD's are inconvenient 
to represent arithmetic functions. Thus binary moment diagrams were introduced 

to represent arithmetic functions efficiently by Bryant et al [9]. 
  A binary moment diagram (BMD) is a directed acyclic graph representing a 

function from binary vectors to integers. A multiplicative binary moment diagram 

(*BMD) is an extension of a BMD with edge weights attached, and can represent 
some arithmetic functions, including multiplication, with the polynomial number 

of nodes in terms of the number of inputs [9]. Thus it is used widely in the area 
of verification of arithmetic circuits [9, 10, 16]. On the other hand, it had been 
thought that division could not be represented efficiently even by a BMD or a 
*BMD . Some experimental results show that lower bounds for division may be 

exponential. However, there is no theoretical proof showing lower bounds for 

division since the way of constructing BMD's or *BMD's for arithmetic functions 

is more complex than that for BDD's. Thus it is not trivial to prove exponential 

lower bounds for BMD's or *BMD's. In this chapter, we show exponential lower 

bounds on the size of a *BMD representing a quotient function or a remainder 

function. This also means that BMD's cannot represent these functions in poly-

nomial sizes since *BMD's can represent arbitrary functions more compactly than 

BMD's.

5



  In Section 2.2, we explain the notion of fooling sets, which are useful to show 

lower bounds, and show the relation between the cardinality of a fooling set and 

the number of nodes of a *BMD. In Section 2.3 and 2.4, we show that lower 

bounds on the size of a *BMD representing a quotient or a remainder function 

are 1l(2n/24)

2.2 Preliminaries

2.2.1 Multiplicative Binary Moment Diagrams 

A multiplicative binary moment diagram (*BMD) is a directed acyclic graph 
representing a function from binary vectors to integers (f : {0, 1}n -* Z), where 
Z is the set of all integers. 

  In Bryant and Chen's original definition [9], we can construct a multiplicative 
binary moment diagram uniquely by sharing isomorphic subgraphs and removing 

redundant nodes. In this chapter, however, we allow multiplicative binary mo-

ment diagrams to contain multiple isomorphic subgraphs and to have redundant 

nodes, since our purpose is to investigate a lower bound. Our results on lower 

bounds guarantee that, even if we have all isomorphic subgraphs shared with 

each other as much as possible, the size of a BMD or a *BMD representing a 

quotient or a remainder cannot be less than the lower bound. In other words, the 

lower bound is still valid for the original BMD's and *BMD described by Bryant 

and Chen. 

  A variable is attached to each internal node, and a constant integer value is 

attached to each terminal node. Each internal node has exactly two outgoing 

edges, called the 0-edge and the 1-edge respectively. Each node represents a 

function from binary vectors to integers. For an internal node v, let the function 

represented by v and the variable attached to v be f [v] and var(v) respectively, 
let the node to which the 0-edge of v points and the node to which the 1-edge of 

v points be low(v) and high(v) respectively, and let the non-zero integer weight 
attached to the 0-edge of v and that to the 1-edge of v be 0-weight(v) and 
1-weight(v) respectively. We do not allow *BMD's to have zero edge weight. 
  The relation between functions represented by the nodes of a multiplicative 

binary moment diagram is defined as follows: 

   f [low(v)] = f [v] I var(y)=0              0-weight(v)

f [high(v)] =
f [v] I var(v)=1 - f [v] I var(v)=0

1-weight(v)

6
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1-edge 

0-edge

= (x0 < xl)

Figure 2.1: An example of a *BMD.

where f (x is a function obtained by substituting a for a variable x of the function 
f. A terminal node represents the constant function, whose value is attached 
to the node. Let root-weight be the weight of the edge pointing to the root 
node. The function root-weight • f [root] denotes the function represented by the 
multiplicative binary moment diagram (See Figure 2.1). 

  We assume that a variable ordering is given, and the appearances of variables 

along any path from the root node to a terminal node obey the ordering. That 

is, given 7r = (xkl < xk2 < ... < xkn) for a set of variables {x1i x2, ... , x,}, xkz 
precedes xk, on any path from the root node to a terminal node if i < j, where 
(k1, k2, ... , kn) is a permutation of (1, 2, ... , n). Each variable can appear at 
most once on any path from the root node to a terminal node. 

  For convenience, we describe `binary moment diagram' and 'multiplicative 

binary moment diagram' as 'BMD' and `*BMD' respectively. When constructing 

a BMD or a *BMD, we can share the nodes that represent the same functions 

(See Figure 2.2). 
  We give some more definitions to describe properties of *BMD's.

2.2.2 Input Assignments and Left Terms 

Let f be a function from binary vectors to integers. Let X ={X1, x2, ... , xn} 
be the set of inputs of f. An input assignment a : X - {0, 1} is an assignment 
of boolean values to inputs. Given an input assignment a, f (a) E Z denotes the 
resulting output value, where Z is the set of all integers. 

   Given a variable ordering 7r = (xkl < xk2 < ... < xkn), where (k1, k2, • .. , kn)
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2

X 0

2

1-edge 

0-edge

x1

1

3

2 • f [root] = 12xox1 + 4xo + 6x1 + 2, ir = (xo < x1)

Figure 2.2: An example of sharing nodes of a, *BMD.

is a permutation of (1, 2.... , n), and some i (1 < i < n), we define the set of vari-
ables L (resp., R) as L = {xk1, xk2, ... , xki} (resp., R = {xk2+1, xk2+2, ... , xkn}). 
We call L (resp., R) a left (resp., a right) partition. For particular partitions L and 
R, a left (resp., a right) input assignment 1 : L {0, 1} (resp., r : R -~ {0,1}) is 
an assignment of boolean values to the inputs in L (resp., R). We define a left 
input assignment as 1 = E when L = 0. When a value a is assigned to a variable 
x in 1, we describe as 1(x) = a. The assignment 1 . r denotes the complete input 
assignment resulting from a left input assignment 1 and a right input assignment 

r. When xk1 = a1, xk2 = a2, ... , xki = ai in a left input assignment 1 for it given 

above, 1 is described as 1 = (al, a2.... , ai). Given a left input assignment 1, f (l) 
denotes the resulting function, whose set of inputs is R. For example, for the 

function f = xox2 + x1x2 + x3, the variable ordering it = (xo < xl < x2 < x3) 
and the left input assignment 1 = (10), we obtain f (l) = x2 + x3. 

  For a left input assignment 1, we define a left term f t of a function f recursively 
as follows: 
Case 1=E: f f = f 
Case 1 e: 

               fl = r fl' Ix k2 0 (a2 0) 
                        l fl' I xki=1 - ft' Ixk2=o (ai = 1), 

where 1' = (al, a2, ... , ai-1) for 1 = (al, a2.... , at), and 7f = (xk1 < xk2 < ... <

8



xk ). 

  For example, for the function f = xox2 + x1x2 + x3, the variable ordering 
7r = (xo < x1 < x2 < x3) and the left input assignment l = (10), we obtain 
fl = x2. Note that fi differs from f (l). 

  As for the relation between a *BMD representing a function f and a left term 
of f , the following lemma holds. 

Lemma 1 Let f be a function from binary vectors to integers. Given a variable 
ordering 7r, let l be a left input assignment. We consider a *BMD that is con-
structed according to ir. We follow edges starting from the root node to a node to 
which the last variable in 1 is attached as follows: . 

If the assignment to the variable on the current node is 0 in 1, then we follow the 
0-edge. 
If the assignment to the variable on the current node is 1 in 1, then we follow the 
1-edge. 

   We suppose that we arrive at a node u. Let p be the product of the weights of 
the edges on the path from the root node to u. Then the function represented by 
u is fi/p. 

(Proof) This lemma is obvious by the definitions. o 
  Let l be a left input assignment. Let l be a left input assignment such that 

if the assignment to a variable x is 1 in 1, then the assignment to x is 1 in 1. 
We describe as 1 N 1. We define as e N E. For example, when 1 = (101), then 

(101) '` 1, (100) '' 1, (001) ~`, 1 and (000) : 1. We call the number of 1's in an 
assignment 1 the weight of 1. We define a function Sgn as 

            Sgn(l) = 1 1 (the weight of 1 is even)                     l -1 (the weight of 1 is odd). 

The weight of E is 0 and Sgn(E) = 1. 
  To calculate a left term, we introduce the following lemma. 

Lemma 2 For a function f and a left input assignment 1, 

   fi = Sgn(l) . E Sgn(1) f (1)) 
             ii 

(Proof) Without loss of generality, let it = (x1 < x2 < ... < xn) be a given 
variable ordering. And let 1 = (al, a2i ... , ai) be a left input assignment for the 
set of inputs X = {x1, X2.... , xn}. Let m be the weight of 1. We prove this 
lemma by induction on m. 
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  When m = 0 (including the case that 1 = E). Since {ill ̀  l} = {l} ({lIl 
E} = {E}) and fl = f (l), Sgn(l) Eg;~l Sgn(l) f (1) = Sgn(l)2 f (l) = f (1) = fl. 
Hence the lemma holds for m = 0. 

  We suppose that the lemma holds for m = k. We consider the case that 

m=k+1. 

  We suppose that ai=l. The case that ai = 0 is described later. We consider 

the left input assignment 1' = (a1i a2, ... , ai_1), whose weight is k. Then, 

  fi

     fl' Ixi=1 - fl' Ixi=O 

       (by the definition of left terms) 

    Sgn(l') Sgn(1') f (l') - Sgn(l') E Sgn(l') f (l') 
                    i'^ l' xi=1 l'til' xi=0 

       (by the hypothesis of induction) 

   Sgn(l') - Sgn(l) f (l) - Sgn(l') Sgn(l) f (l) 
               lE{lIl(xi)=1,h1} lE{lIl(xi)=O,i4} 

   Sgn(l) Sgn(l) f (l). 
        al 

      (by -Sgn(l') = Sgn(l)) 

  We now consider the case that ai = 0. Let jmax be the maximum of j such 
that j < i and a. = 1. For the left input assignment 1" = (a,, a2, ... , ajmax ), we 
can apply the same method as in the case that ai = 1, identifying 1" with 1. Thus 

the following equation is obtained. 

   fly, = Sgn(l") Sgn(l) f (l) 
               f;Sl" 

By the definition of left terms, the following equation is also obtained. 

       fl = fl" I xjmax+1=O,xjmax+2=0,... xi=o 

Thus, 

                     fl = fl" Ixjmax+1=O,xjmax+2=0,....xi=O 

                  [Sgn(l") E Sgn(1) f (l)] Ixjmax+1=O,... ,xi=O 
                          i;~l" 

             Sgn(l) Sgn(l) f (l). 
                   hl 

Hence, the lemma is proved. 0 
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2.2.3 Fooling Sets 

Given a function f and a variable ordering it, a set A of left input assignments 

with the same length is a fooling set if and only if the following condition holds 

for any two distinct left input assignments 1, 1' E A.

or 

or

3r fi (r) = 0, fl, (r) 0 

3r fi (r) 0, ft' (r) = 0 

3r, r fi(r)fl,(r) fl, (r)fi(r ),

where r and r' are right input assignments. When the cardinality of the set is 

less than 2, we define the set to be a fooling set. 

  Note that this definition of a fooling set differs from Bryant's [8]. 
  The following theorem states the relation between the cardinality of a fooling 
set and the number of nodes of a *BMD representing a function f.

Theorem 1 Given a function f, if there 
nality is more than or equal to c for any 
representing f has at least c nodes.

exists a fooling set for f whose 
variable ordering g, then any

cardi-
*BMD

(Proof) Considering any *BMD representing f, let it be its variable ordering, 
and let A be its fooling set whose cardinality is more than or equal to c. For any 
two distinct left input assignments 1, 1' E A, let P and Q be the nodes defined 
in Lemma 1 as u for 1 and 1' respectively, and let fi/p and fig/q be the functions 
represented by P and Q respectively, where p and q are the integers defined in 
Lemma 1 as p. 

  In the following, we show P Q. Since 1 and 1' belong to the fooling set, at 
least one of the following cases holds. 

Case There exists a right input assignment r such that fl (r) = 0 and fl, (r) 0: 

  ft(r)lp(= 0) fi'(r)lq( 0). Hence, P Q. 
Case There exists a right input assignment r such that f l (r) 0 and fl, (r) = 0: 

  fc(r)lp( 0) fi'(r)lq(= 0). Hence, P Q. 
Case There exist two distinct right input assignments r and r' such that fl (r) • 

fl, (r') ft' (r) • fi (r'): 
  We suppose that P = Q. Then fl(r)/p = flu(r)/q and fl(r')/p = f1'(r')/q. 

Thus, f, (r) • fl, (r) = fl, (r) • fi(r'), a contradiction. Hence P Q. 

  Thus there is a node corresponding to each element in the fooling set, and 

they are distinct. Therefore the *BMD has at least c nodes. O

11



2.2.4 p-Splits 

For the set of inputs X = {xn-1, Xn-2, ... , x0} and Y = {2/n-1 i Yn-2, ... , y0}, we 
define binary representation of X and Y as 

               IIXiI = 2n-1xn-1 + 2n-2xn-2 -+ ... + 2oxo and               

I IYI I = 2n-'yn-1 + 2n-2yn-2 +... + 2oyo, 

respectively. 

  Let f be a quotient function of IIXII divided by IIYII, whose set of inputs is 
X UY. 

  We assume that n is even. Note that our purpose is to show an exponential 

lower bound. Thus, if n is odd, we can treat n bit division as n - 1 bit division 

by regarding both xn_1 and yn-1 as 0. Then we obtain a lower bound Q (C") from 
the result for the case that n is even by ignoring a constant coefficient of Sl(cn-1) 

  We define XU and XD as 

                       XU = {xn-1, xn-2, ... , Xn/2} and 

                      XD = {xn/2-1, Xn/2-2, ... , xo}. 

  Given a variable ordering 7r, a left partition L and a right partition R, we 

define as follows:

                XUL=XUnL , XDL=XDnL 

               XUR=XUnR , XDR=XDnR. 

  For an integer p (1 < p < n - 1), we define Argsp as 

                                a-b=p, 

              Argsp = (xa, Xb) n - 1 > a > n/2, 
                          n/2>b>0 

(See Figure 2.3) 
  We define a p-split Splitp as 

   Splitp = Argsp n [(XUL X XDR) U (XUR X XDL)]• 

(See Figure 2.4) 
  The following lemma is proved in [8]. 

Lemma 3 If IX n LI = IX n RI, then there exists some integer p 
nality of Splitp is at least n/8.

and the cardi-

0
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x ~--- p --

p

(x 'P, x . ) EArgs

p < 2 

n p 2 

P

Figure 2.3: Args,

Variable IxiiIxioIxslxsIx7IxeIx5Ix4lxslx2Ixi xo

Partition I L I L I R I R I L I L I R I L I L I R I L R

        If p = 4, Args, = {(x9, x5), (x8i x4), (x7i x3), (x6i x2)} and 
                  Splitp = {(x8, x4), (x6, x2)}. 

                 Figure 2.4: An example of Splitp. 

  In the following, we assume that IX fl LI _ IX n R1. For the integer p defined 
in Lemma 3, we define s and t as 

              s = n/2 - p, t = n/2 (if p < n/2), 

                   s= 0, t= p (if p> n/2).

These s and t are illustrated in Figure 2.5. We define s' and t', i 

               s' = min{s'ln/2 > s' > s, ys, E R} and 

               t' = min{t'j n - 1 > t' > t, yt, E R}. 

  We define a high split bit Sh and a low split bit sl as follows: 

Case s' - s > t' - t, or s' does not exist and t' exists: 

   sl=s+(t'-t)=t'-p,sh=t' 

                           n-1 n/2 n/2-p 0 
                            ----- -----

              X -

                              

: ----- ----1 p < n/2 
                                       t s 

                          n-1 p 0 

                       X 
----------- p > n/2 

                               t S

-- -~

f exists, as

Figure 2.5: s and t 
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 i -

i

Sh t sl s

11
Xsh Xs1

1 

Ysh

X          sl I 

---------------

       YSj 

---------------

Ys1ER 

or 

Ys1ER

Figure 2.6 : Sh and si

Case s' - s < t' - t, or t' does not exist and s' exists: 

   s1=S',Sh=t+(s'-s)=s'+p 
Case neither s' nor t' exists: 

  Neither sl nor Sh is defined. 

These sl and Sh are illustrated in Figure 2.6. Intuitively, the pair (x Sh , xS1) is the 
lowest member in Argsp such that Ysh E R or ysa E R. 

  We define Split' based on the split bits as follows: 

                     Split, \I (xsh_i, xsl_i) I1 < i < Sh - t} 

         Split' _ (when both sh and si are defined) 

                         (when neither sh nor sl is defined) 

  The following lemma holds. 

Lemma 4 The number of pairs (xi, yi) such that xi E R and yj E L is at least 
Split' \ Split' . 

(Proof) For (xu, xd) E Split'\Split', both yu and yd belong to L by the definition 
of split bits. Exactly one of xu and Xd is a member of R by the definition of Split'. 

Hence, the lemma is proved. I

2.3 A Lower Bound on the Size of a. *BMD Rep-

    resenting a Quotient Function 

We consider two sets of inputs, X = {xn-1, xn-2, ... , x0} and Y = {yn_1, yn_2, 
... , yo}. Let f be a quotient function of I IXI I divided by IIYII, whose set of 
inputs is X U Y. 

  We have the following theorem for a lower bound on the size of a *BMD 
representing a quotient function. 

Theorem 2 A lower bound on the number of nodes of any *BMD representing 
a quotient function f is Q(2nI24) o

14



  To prove Theorem 2, we show the following two lemmas. 

Lemma 5 Given a variable ordering 7r and a left input assignment 1, if the weight 
of 1 is more than or equal to one, then 

     Sgn(l) = 0. 
    t, 4 

(Proof) The number of l's such that l ~"E 1 and whose weights are even is equal 
to that of i's such that l ' 1 and whose weights are odd. Hence the lemma is 
proved. 0 

  The following corollary is easily obtained. 

Corollary 1 Given a set of left input assignments S, if the number of left input 
assignments that belong to S and whose weights are even is equal to the number 
of left input assignments that belong to S and whose weights are odd, then 

   Y. Sgn(l) = 0. 
     lES 

0 

  In the following, X(a) and Y(a) denotes 11X) I and I JYJ ( resulting from a 
complete assignment a respectively. 

Lemma 6 Given a variable ordering 'ir, a left input assignment l whose weight 
is more than or equal to two and a right input assignment r, then 

   E X (l - r)Sgn(1) = 0. 
    i4 

(Proof) For convenience, we describe the assigned value to xi in an assignment 
1 • r as xi(l • r) instead of 1 - r(xi) defined before. Rewrite the given equation as 
follows: 

    E X (1. r)Sgn(1) = E(2'-1xn_1(l . r) + ... + 2°x°(1. r))Sgn(l) 
    hl hl 

  For each xi (0 < i < n - 1), 

Case xi E R: 

  Since xi (1 . r) is a constant that does not depend on 1, the following equation 
holds by Lemma 5. 

      2ixi(l . r)Sgn(l) = 0 
    F~a 
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Case xi E L and xi(l • r) = 0: 
  Since for all l ` 1, xi(l r) = 0, the following equation holds. 

   E 22xi(l • r)Sgn(1) = 0 
   t,l 

Case xi E L and xi(l • r) = 1: 

           22xi(1 • r)Sgn(l) 

               2ixi(l r)Sgn(l) + j 22xi(1 • r)Sgn(l) 
           lE{lI il,xi(l)=1} lE{lI il,x; (l)=o} 

                22xi(l • r)Sgn(l) + 0 
           lE{iIhl,xi(l)=1} 

  Since the weight of l is more than or equal to two, the number of l's (l '' 1) 
whose weights are even and which assign 1 to xi is equal. to the number of l's 

(l ti 1) whose weights are odd and which assign 1 to xi. Thus, by Corollary 1, 

      22xi(l • r)Sgn(1) _ 22xi(l • r)Sgn(l) _= 0. 
     hl iE{lIi l,xi(i)=1} 

Hence, 

   E X (l • r)Sgn(l) = 0. 
    it 

0 

  The following corollary is easily obtained from Lemma 6. 

Corollary 2 Given a variable ordering 7r, a set of left input assignments S and 
a right input assignment r for 7, if there exist a variable ordering ir', a left 
input assignment 1' whose weight is more than or equal to two and a right input 

assignment r' for ir' such that {l rIl E S} = {l' • r'l l' ' l'}, then 

   E X (l • r)Sgn(l) = 0. 
    lES 

                                                          El 

  We now give the proof of Theorem 2 

(Proof of Theorem 2) We assume that n is even by the same reason described 
in Section 2.2.4. 
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MSB  LIIREIL or R LSB
X 

(I) (1) 
Y

X 
(I) (ii) Y L I

(II) X 
Y

(the number of heavily shaded bits) > n 
                                                      24

Figure 2.7: An example of the cases.

  For any variable ordering 7, we show that there exist a left partition and a 

fooling set whose cardinality is Q(2 n/24) Then we can conclude that the number 
of nodes of a *BMD representing f is 1l(2n/24) by Theorem 1. 

  We suppose that an arbitrary variable ordering 7r is given. Let L and R be a 

left partition and a right partition respectively such that IX fl LI = I X fl RI. The 
partitions L and R exist obviously. There exists some integer p (1 < p < n - 1) 
such that I SplitpI > n/8 by Lemma 3. We consider such a fixed p in the following. 
When an assignment a assigns 0's to all the variables, we describe a = 0. 

  We show a brief outline of the proof. We consider the following cases.

(I) ( SplitpI > n/12 

   (1) I Spl2tp n (XUL X XDR) I > I split,p f1 (XUR X XDL) I 

   (ii) I Spl2tp fl (XUL X XDR) I < I Spl2tp fl (XUR X XDL) 

(II) I SplitpI < n/12 

While detailed explanations are described later, here we illustrate what each case 

is like (See Figure 2.7). In the case (I)(i), there exist a sufficient number of pairs 

(xi+p, xi) such that xi+p is in the upper half of X and in L and xi is in the lower 
half of X and in R. L and R are exchanged in the case(I)(ii). In the case(II), 
there exist a sufficient number of pairs (xi, yi) such that xi is in x fl R and yj is 
in Y fl L. For each case, we show that there exists a set of left input assignments, 

and any two distinct left input assignments in the set satisfy the condition of the 

definition of fooling sets. Then we conclude that the set of left input assignments 

is a fooling set.
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  We can apply one of the following cases to obtain a fooling set 

nality is S2(2n/24) We explain detail of each case in the following.
whose cardi-

(I) I Split; I > n/12 

(1) I Split" fl (XUL X XDR) I > I Split n (XUR X XDL) 
We define Split" as Split, = Split, fl (XUL X XDR). Then I Split"I > n/24 since 
Split > n/12 and Split, fl (XUL X XDR)I > I Split' fl (XUR X XDL) 
  Note that, in this case, the high split bit Sh and the low split bit sl exist. Let 

A be a set of all left input assignments satisfying the following conditions. 

Conditions: For any variable x such that x E {x, I (xu, xd) E Split"} -°- B, 

 [1] If x is the lowest member in B, that is, x has the minimum index in B, 
    then the value 1 is assigned to x. We define this variable x to be xq. 

 [2] The value 1 is assigned to at least one member of B \ {xq}. That is, the 
    value 1 is assigned to each of at least two members of B, including xq. 

 [3] If ysh E L, then the value 1 is assigned to ysh, where Sh is the high split bit. 

 [4] If ys, E L, then the value 1 is assigned to y,,, where sl is the low split bit. 

 [5] The value 0 is assigned to each of the variables that belongs to L other than 
    mentioned above. 

It is obvious that JAI > 2n/24-1 - 1. Intuitively these conditions mean that, for 
the bits belonging L in Figure 2.7(I) (i), the value 1 can be assigned only to the 
heavily shaded bits. We show that A is a fooling set in the following. If JAI < 1, 
it is obvious that A is a fooling set. We cope with the case that JAI > 2 in the 
following. 

  Let 1 and 1' be any two distinct left input assignments that belong to A. We 

assume that X (l -6) > X (l' . 0) without loss of generality. We define a right input 
assignment r as follows: 

 [1] If ysh E R, then r assigns 1 to ysh 

 [2] If ys, E R, then r assigns I to y,,. 

 [3] If i + Sh - sl q and the value 1 is assigned to xi+sh_s, in 1, that is, 
    l(xi+sh_s,) = 1, then r assigns 1 to xi. If i + Sh - sl = q, in which case 

    l (xi+sh_s1) = l (xq) = 1 obviously, then r assigns 0 to xi. 

                          18



X

Variable x11 x1o x9 x8 x7 X6 x5 X4 x3 x2 XI xo

Partition L L R L L L R R R R L R

Assignment 1 1 0 0 0 1 1 1 0 0 0 0

Y

Variable Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

Assignment 0 0 0 0 0 1 0 0 0 0 0 1

  Split' = {(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, Sh = 6, Sl = 0, p = 6, q = 6 

                Figure 2.8: An example of assignments. 

 [4] r assigns 0 to the variables that belong to R other than mentioned above. 
An example of an assignment satisfying [1]-[4] is shown in Figure 2.8. We show 
that fl (r) 0 and fly (r) = 0 in the following. First, we cope with the case that 
both ysh and ysa belong to R (case(a)), and then, we cope with the case that 
either ysh or ys, belongs to L (case(b)). 

(a) Both ys,, and y8, belong to R. 
  First, we compute fl(r). We consider i's such that l ti 1. 

  When l = 1, since [X (0 • r) + 2q-(sh-81)]/281 = X (l • 0)/2sh, the following 
equation holds. 

                        X(l . r) + 2q-(sh-sa) 
                  = X (1 • 0) + X (0 • r) + 2q-(sh-sz) 

       = (2sh + 2"')X(1. 0)/2 sh 

Thus, X (l • r) = (2sh + 2s` )X (l • 0)/2sh - 2q-(Sh-81). 
Since 21h+211 > 2q-(sh-sl) > 0 and Y(l • r) = 21h+ 2si, the quotient of X (l • r) 
divided by Y(1 • r) is 

    f(1•r)=X(1.0)/2sh-1. (2.1) 

  For any left input assignment l such that l 1 and l 1, since xq is the lowest 

in B,X(l•0)<X(l•0)-2q. 
Since [X(1 • 0) - 2q]/2sh = X (0 • r) /2", 0 < X (l • 0) /25h < X (O • r)/2s'. Thus, 

         X (l • r) - (2sh + 2")X(1. 0)/23h 

          _ [X (l • 0) + X (O • r)] - [X (l • 0) + 28, X (l 0)] 
                                                  28h 

                             281 
             X (O 2X (l • 0) 

                                           Sh 

          5 > X(0•r)-X(0-r)=0           1 
< X(0 •r) <28h+281 
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Thus, 

    28h + 281 > X (l -,r) - (28h + 2S' )X (l • 0)/2Sh > 0. 

Since Y(l • r) = 21h+ 2S', the quotient of X (l • r) divided by Y(l • r) is 

   f (l • r) = X (l . 0)/2Sh 

Thus, by Lemma 2, 

        fc (r) 
      = Sgn(l) E Sgn(l) f (l • r) 

            l1 

     = Sgn(l)[E Sgn(i)X(i • 0)/2Sh + Sgn(l)(X(l - 0)/2Sh -1)] 
                i i,i a 

      = Sgn(l)[{Y Sgn(l)X (l • 0)/2Sh} - Sgn(l) • 1] 
             ha 

By Lemma 6, fl(r) = -Sgn(l)2 = -1. 
  Next, we compute f p(r). 

  For anyl',since X(l•O)>X(l' 0), 

   X(l'•0) <X(l•0)-2q. 

Since [X (l • 0) - 2q]/2Sh = X (O - r)/2S', 

   0 < X (P • 0)/2Sh < X (O - r)/2S' 

Note that this inequality holds even for l' = 1'. By the same reason used t 

the equation (2.2), the quotient of X (P • r) di 

    f (l' • r) = X (l' • 0)/21h. 

Thus by Lemma 2, 

            fv (r) = Sgn(l') Sgn(l')f (l' • r) 

                = Sgn(l') Sgn(l')X (l' • 0)/2Sh 

By Lemma 6, fl, (r) = 0. 
  Hence, f, (r) 0 and fii(r) = 0. Therefore A is a fooling set. 

                         20

(2.2)

By the same reason used to obtain 

vided by Y (l' • r) is 

                     (2.3)



l 

       Sgn(l)[{y Sgn(1)X (l • 0)/2sh } - Sgn(l) • 1 
                   IESI 

              >iEso Sgn(1)X (1 • 0)/2sh] 

            + (ysh E R, that is, Y(l • r) = 25h)               E
fES° Sgn(1)X (l • r)/2st] 

                (m,, E R, that is, Y(l • r) = 281). 
Thus, by Corollary 2, fl(r) = -Sgn(l)2 = -1. 

  Similarly, we can compute fl, (r). 

      fig (r) = Sgn(l') E Sgn(1') f (l' • r) 

         = Sgn(l') [ > Sgn(i') f (P • r) + 
                        PE S11, PESOI 

In order to obtain f (l' • r) for l' 1 
to obtain the equation (2.3), treating 

                  0) /21h were in R. Thus, f (l' • r) = X (l 
shown in the above. By Corollary ) 
  Therefore, A is a fooling set.

(b) Either y-h or y81 belongs to L. 
  Note that, in this case, either ysh or ysi belongs to R by the definition of split 

bits (sh and si). When ysh E L, we define sets of left input assignments Sl and 
S° as 

   Si={uII 1,i(ysh)=1} and S°={iIIN1,i(ysh)=0 

When y51 E L, we define Sl and S° similarly, replacing ysh with y,1. 
  First, we compute fi(r). 

  By Lemma 2, 

       fi(r) = Sgn(l) E Sgn(l) f (l • r) 
                 hi 

          = Sgn(l)[~ Sgn(l) f (l . r) + Sgn(l) f (l . r)]. 
                        IESi IES° 

  In order to obtain f (l•r) for l E Sl , we can apply the same method that is used 
to obtain the equations (2.1) and (2.2), treating ysh or yst as fixed, in other words, 
as if it were in R. Then f (l • r) = X (l • 0)/2sh - 1 for 1, and f (l -,r) = X (l • 0)/2sh 
for l E Sl and l 1. Thus, 

 fj(r) = Sgn(l) [{T Sgn(l)X (1 • 0)/23h } - Sgn(l) • 1 + T Sgn(l) f (l -,r)] 
                    IESi iES°

  Sgn(1') f (1' • r)].

E Si,, we can apply the same method that is used 

     ysh or ys~ as fixed, in other words, as if it 
'       for l' E Sl . ,E So Sgn(l') f (l' • r) = 0 as 

  2, fig (r = 0. Hence, f i (r) 0 and fl, (r) = 0.
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(ii) I Split, n (XUL X XDR) ~< I Split, n (XUR X XDL) 
We define Split" as Split" = Split, fl (XUR X XDL). Then I Split"I > n/24 since 
I Spli' I > n/ 12 and I Split, fl (XUL X XDR) I < I Spli' fl (XUR X XDL) I. 
  Note that, in this case, the high split bit Sh and the low split bit sl exist. Let 

A be a set of all left input assignments satisfying the following conditions. 

Conditions: For any variable x such that x E {xdI (xu, xd) E Split"} = B, 

 [1] If x is the lowest member in B, that is, x has the minimum index in B, 
    then the value 1 is assigned to x. We define this variable x to be Xq. 

 [2] The value 1 is assigned to at least one member of B \ {xq}. That is, the 
    value 1 is assigned to each of at least two members of B, including Xq. 

 [3] If ysh E L, then the value 1 is assigned to ysh, where sh is the high split bit. 

 [4] If ys, E L, then the value 1 is assigned to ysl, where sl is the low split bit. 

 [5] The value 0 is assigned to each of the variables that belongs to L other than 
    mentioned above. 

  It is obvious that JAI > 2n/24-1 - 1. Intuitively these conditions mean that, 
for the bits belonging to L in Figure 2.7(I) (ii), the value 1. can be assigned only 
to the heavily shaded bits. We show that A is a fooling set in the following. If 

JAI < 1, it is obvious that A is a fooling set. We cope with. the case that JAI > 2 
in the following. 

  Let 1 and 1' be any two distinct left input assignments that belong to A. We 

assume that X (l • 0) > X (l' . 0) without loss of generality. We define a right input 
assignment r as follows: 

 [1] If ysh E R, then r assigns 1 to ysh. 

 [2] If ys, E R, then r assigns I to y,,. 

 [3] If the value 1 is assigned to xi in 1, that is, l(xi) = 1, then r assigns 1 to 
       xi+sh-81' 

  [4] r assigns 0 to the variables that belong to R other than mentioned above. 

An example of an assignment satisfying [l]-[4] is shown in Figure 2.9. We show 
that f, (r) 0 and fl, (r) = 0 in the following. First, we cope with the case that 
both ysh and ys, belong to R (case(a)), and then, we cope with the case that 
either ysh or ys, belongs to L (case(b)). 
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X

Variable xli x1o X9 x8 x7 x6 x5 x4 X3 X2 xl xo

Partition R R L R R R L L R L R L

Assignment 1 1 0 0 0 1 1 1 0 0 0 1

Y

Variable Yil Y10 y9 Y8 y7 Y6 y5 y4 y3 Y2 y1 YO
Assignment 0 0 0 0 0 1 0 0 0 0 0 1

Spl2tp" = {(x11, x5), (x107 x4), x81 x2), (x6i x0)}, Sh = 6, SL = 0, p = 6, q =

                Figure 2.9: An example of an assignment. 

(a) Both y8,j and y8, belong to R. 
   First, we compute fl(r). We consider i's such that l ,`. 1. 

  When l = 1, X (l . 0)/281 = X(6 • r)/28h. 
  Thus, the following equation holds. 

               X(1.r) = X(1.0)+X(0.r) 
                               281                       = 2S, X (O - r) + X(6 ' r) 

                        (28h + 281)X(0 - r)/2 8h 

Since Y(l • r) = 25h+ 281, the quotient of X (l • r) divided by Y(l • r) is 

    f (l • r) = X(0 . r)/28h. (2.4) 

  For any left input assignment l such that 1 and 1 1, X (1 . 0) < X (l • 0). 
Thus, X (1. 0)/281 < X (0 • r)/28h < (28h + 281)/281. 
Thus, 

              X(1. r) - (28h + 281)X(0 • r)/2 8h 
           _ [X(l•0)+X(0•r)]-[X(0•r)+ 281 2

8hX(0.r)] 
                            281 

               X(1.0) - 28-X(0. r) 

           < X (1.0) - X (1.0) = 0 
         { > X (l . 0) - (28h + 281) > -(28h + 2`1). 

Thus, 

    -(28h + 281) < X (1. r) - (28h + 281)X (0 • r)/28h < 0. 

Since Y(1 - r) = 28h + 281, the quotient of X (l . r) divided by Y(1 . r) is 

    f (l - r) = X (O • r)/28h - 1. (2.5)
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Thus, by Lemma 2, 

   fi(r) = Sgn(l) E Sgn(l) f (l - r) 

       = Sgn(l)[{ E Sgn(l)(X or) - 1)} + Sgn(l)X(O - r)/2Sh]         2h 
                    i.a,i~4c 

       = Sgn(l)[{E Sgn(l)(X (0 - r)/2Sh - 1)} + Sgn(l) • 1]. 
               Ii 

Since X (O - r)/2Sh is a constant, fl(r) = Sgn(1)2 = 1 by Lemma 5. 
  Next, we compute fi(r). 

  For any l' l', since X(l' - 0) < X(l 0), 

   X (P • 0) < X (l • 0). 

Thus, 

   X (P -0)/2" < X (O • r)/2Sh < (2Sh + 281)/2s1. 

Note that this inequality holds even for l' = 1'. By the same reason used to obtain 

the equation (2.5), the quotient of X (P • r) divided by Y(l' • r) is 

    f (l' • r) = X (O • r)/2Sh - 1 (2.6) 

Thus by Lemma 2, 

          fi,(r) = Sgn(l') Sgn(l') f (l' • r) 

              = Sgn(l') E Sgn(l')(X (0 • r)/2Sh - 1). 
                             i,;Sh 

Since X (O - r)/2Sh is a constant, fig (r) = 0 by Lemma 5. 
  Hence, f i (r) 0 and fig (r) = 0. Therefore A is a fooling set. 

(b) Either y8,, or y8, belongs to L. 
  Note that, in this case, either Ysh or ys, belongs to IR by the definition of 

split bits (Sh and si). We define Sl and S° in the same way as in (i). Then, by 
Lemma 2, 

       fl(r) = Sgn(l) > Sgn(l) f (l • r) 
                   ii 

           = Sgn(l) [> Sgn(l) f (l . r) + Sgn(l) f (l . r)]. 
                        IES' 1ES° 
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t 

    Sgn(l)[{~ Sgn(1)(X(0 • r)/2Sh - 1)} + Sgn(l) • 1 
               IESI 

          EiES° Sgn(i)X(O • r)/28h] 

        + (ysh ER, that is, Y(l • r) = 2Sh)           > 
ks1 Sgn(1)X (l • r) /281 ] 

            (ys, E R, that is, Y (l • r) = 281) 

Thus, by Corollary 1 and Corollary 2, fi(r) = Sgn(l)2 = 1. 
  Similarly, we can compute f i' (r). 

      fig (r) = Sgn(l') Sgn(l') f (1' • r) 

          = Sgn(l') [ E Sgn(l') f (l' • r) + 
                         I'ES1, PE SO, 

In order to obtain f (l' • r 
to obtain the equation 

                          r) /28h were in R. Thus, for P E 
as shown in the above. 
  Hence, f, (r) 0 and f () fooling 

(II) I Split" ,I < n/12 
There exist more than n/8 - ( )                  n/12 
y2 E L by Lemma 4. 

  If there exists no pair of                         yj 

L' and a right partition R' such 

R'), and there exist more than 
cardinality of L and increasing 

In this case, we can use L' an 

  Let (xw, yw) be a pair such that xw E R and yw E R Le 
input assignments satisfying the following conditions. 

                        25

  In order to obtain f (l•r) for l E Sl , we can apply the same method that is used 
to obtain the equations (2.4) and (2.5), treating ysh or ysa as fixed, in other words, 
as if it were in R. Then f (l - r) = X (0 • r) /2,9h for 1, and f (l • r) = X (0 - r)/2sh -1 
for l E Si and l 1. Thus, 

    fi (r) 
    Sgn(l)[{E Sgn(l)(X (0 • r)/2Sh - 1)} + Sgn(l) • 1 + E Sgn(l) f (l • r)] 

               lESr iES°

Sgn(l') f (l' • r)].

 for l' E Si,, we can apply the same method that is used 

2.6), treating ysh or ys~ as fixed, in other words, as if it 
Si,, f (l' r) = X (0                   - 1. ~i,ESo Sgn(l') f (1'- r) = 0 

Thus fig (r) 0 by Corollary 1. 

= 

 i' r = 0. Therefore A is a foolinset.

    = n/24 pairs of xi, y2such that xi E R and 

       E R), we can reconstruct a left partition xi E R, 

 that there exists exactly one pair of (xi E R', yj E 
n/24-1 pairs (xi E R', yi E L'), by decreasing the 

 the cardinality of R, that is, IL' n X i< I R' n X i. 
d R' as L and R respectively. 

                     t A be a set of all left



Variable x7 x6Ix5Ix4 x3 X2 x1 xo

Partition L RIRIR. R R L R

Assignment 0 11010 1 0 0 0

Y6 Y4 y3 Y2 Y1 YoVariable y7 y5

Partition L R I L I L L L R L

lr 0 11011 0 1 0 1

l'r 0 11110 1 1 0 1

l"r 0 11010 0 1 0 1

                             w=6, q=3 

                Figure 2.10: An example of assignments. 

Conditions: 

 [1] If xi E R and yi E L, then any value is assigned to yi. 

 [2] The value 0 is assigned to each of the other variables that belong to L. 

  It is obvious that JAS > 2f124-1. Intuitively these conditions mean that, for 
the bits belonging to L in Figure 2.7(11), the value 1 can be assigned only to the 
heavily shaded bits. We show that A is a fooling set in the following. If JAS < 1, 
it is obvious that A is a fooling set. We cope with the case that JAI > 2 in the 
following. 

  Let 1 and 1' be any two distinct left input assignments that belong to A. We 

show that there exist right input assignments r and r' such that f j (r) fi, (r') 
fl' (r) fl (r'). We assume that q is the minimum index of yj E Y such that yi E L 
and l(yi) l'(yi). We assume that l(yq) = 0 and l'(yq) = 1 without loss of 
generality. We define a left input assignment 1" as follows: 

 [1] For yi c Y (1 L (i < q), 1" assigns the same value as 1. It is also the same 
    value as 1' as a result. 

 [2] 1" assigns 0 to the other variables that belong to L. 

We define a right input assignment r as follows: 

 [1] r assigns 1 to each variable x, y,,, and xq. 

 [2] r assigns 0 to the other variables that belong to R. 
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An example of an assignment satisfying [1] and [2] is shown in Figure 2.10. We 
define SL, and SSI as 

            SL, = {1 i yi EL,i>q,l(y2)=1} 
                and 

            SSI = {l~l1dyZEL,i>q==> l(yz)=0}. 

Similarly, we define SLI, and SS,,. Note that {il •` l} = SL, U SS, and 
l'} = SLI, U SS,,. Then we obtain the following. 

          `dl E SL, f (l • r) = 0 

          VP E SLI, f (l' r) _ 1 (Y(h • r) = 2'° + 2q)                               0 (
otherwise) 

Note that SS, = SSI' _ {l~l ti l"}. By Lemma 2, 

           fi (r) 
         = Sgn(l) Sgn(l) f (l • r) 

               MI 

        = Sgn(l) [ Sgn(l) f (l • r) + E Sgn(l) f (l • r)] 
                         TESL` IESSI 

        = Sgn(l) [ > 0 + Sgn(l) f (l - r)] 
                      1ESLI hl" 

         = Sgn(l) Sgn(l) f (l • r) 

Note that, when Y (P • r) = 2 ° + 2q, the weight of l' is 1. Thus, 

     fly (r) = Sgn(l') E Sgn(l') f (l' • r) 

          = Sgn(l') [ Sgn(l') f (l' • r) + Sgn(l') f (P. r)] 
                          ['ESL,, t ESS1, 

         = Sgn(l')[-l +,E Sgn(l) f (l • r)]. 
                          F;~l" 

  Next, we define a right input assignment r' as 

 [1] r' assigns 1 to each variable x,,, and y,,,. 

 [2] r' assigns 0 to the other variables that belong to R. 
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Variable x7 x6 I X5 I x4 X3 X2

Partition L R I R I R R R

Assignment 0 11010 0 0

Variable y7 Y6IY5IY4 y3 Y2 h

Partition L R I L I L L L 1

lr' 0 11011 0 1 I

l'r' 0 11110 1 1 C

1"r' 0 11010 0 1 C

Figure 2.11:

1J 

0

 R L L L L R_ 
 1 0 1 0 1 0 

 1 1 0 1 1 0 

 1 0 0 0 1 0 

w=6, q=3 

An example of assignments.

xo 

R 

0 

Yo 

L 

1 

1 

1

An example of an assignment satisfying [1] and [2] is shown in Figure 2.11. Then, 
for any l such that l 1 or I N 1', 

Case Y(l . r') = 2w, that is, 1 = 0: 
  f(l.r')=1 

Case Y(l . r') 2w: 
  f(i.r')=0 

Thus by Lemma 2, 

   f, W) = Sgn(l) Sgn(l) f (l . r') = Sgn(l) . 1. 

Similarly, fi'(r') = Sgn(l') . 1. 
  Hence, f, (r) fl, (r') fl, (r) fj(r'). Therefore, A is a fooling set. 

  We conclude that a lower bound on the number of nodes of a *BMD repre-

senting a quotient function f is 1(2n/24) from (I), (II) and Theorem 1. 0

2.4 A Lower Bound on the Size of a *BMD Rep-

    resenting a Remainder Function 

An exponential lower bound for a remainder function can also be proved by the 

similar method used in Section 2.3. We show that a lower bound on the size of 

a *BMD representing a remainder function is S2(2n/24) 
  Let f be a remainder function of I IX I I divided by I IY 11, whose set of inputs is 

X U Y. We have the following theorem for a lower bound on the size of a *BMD 
representing f. 

Theorem 3 A lower bound on the number of nodes of any *BMD representing 
a remainder function f is cl(224 ). 0 
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  To prove Theorem 3, we show the following lemmas. 

Lemma 7 The remainder of 22+P divided by 22+1 is (22+1)-2P, where 0 < p < i. 

(Proof) We prove Lemma 7 by induction. 
  When p = 0, the lemma holds obviously. 

  We suppose that the lemma holds for p = k. We consider the case that 

p=k+1. 

  The following equation holds by the hypothesis of induction. 

    22+k = (2'+ 1)Qk + (2'+ 1) - 2k, 

where Qk is the quotient of 2i+k divided by 22 + 1. 
  Let Qk+1 and Rk+1 be the quotient and the remainder of 2i+k+1 divided by 

22 + 1 respectively. Then, 

                      2i+k+1 = (2i + 1)Qk+1 + Rk+1 

    2(22 + 1)Qk + 2(2'+ 1) - 2k+1 = (2'+ 1)Qk+l + Rk+1 

   (22 + 1) (2Qk - Qk+1 + 2) - 2k+1 = Rk+1 
                       Rk+1 = (22+1)Q-2k+1 

                              (where Q = (2Qk - Qk+1 + 2) ) 
           by 0<Rk+1 <21+1 

                        Rk+1 = (2'+l)-2k+1 

0 

  The following corollary is easily obtained from Lemma 7. 

Corollary 3 The remainder of 22+Pm + 22+Pm-1 + ... + 22+P1 divided by 22 + 1 is 
(2i + 1) - (2Pm + 2P--I + ... + 2P1), where pk 7 pi for k l and 0 < Pk < i for 
1<k<m. o 

  The following corollary is easily obtained from Corollary 3. 

Corollary 4 The remainder of 2Z+Pm + 2i+Pm-1 + ... + 22+P1 divided by 22 + 2i is 

                  2j{(22-j + 1) - (2Pm + 2Pm-1 + ... + 2P1)} 
              _ (22+2 ')-2j(2m+2m -1+...+22+P1), 

wherepkhpt forkl and0<pk <i-j forl <k<m. El 
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  We introduce two notations for left input assignments. A notation ll x=a de-
notes the left input assignment that is obtained from the left input assignment 1 

restricting the assignment to x to be a. For two distinct left input assignments 

1, 1', and a right input assignment r, we define a critical left input assignment 1, 

to be the left input assignment satisfying the following conditions. 

Conditions: 

 [1] 1, < l and 1, Al' or h rte, l' and 1, Al. We assume that 1, ~< 1 and 1, Al' for 
    the rest of this definition. For the case of 1, N l' and 1, ,l, the following 

    conditions are similarly defined. 

 [2] f (lc - r) f (1' - r) for l' ,: 1'. 

 [3] If f (l - r) > f (l, - r) (resp. f (l' - r) > f (l, - r)) for 1 (resp. l' N l'), then 
    there exists l' l' (resp. l N 1) and f (l- r) = f (l'-r) (resp. f (l'-r) = f (l- r)). 

Intuitively, f (l, - r) for 1, ti 1 is the maximum of f (l - r) where l N 1 and f (l - r) 
f (l' - r) for all l' ` 1'. Note that if {ala = f (l . r),1 ` 1} {ala = f (l' . r), l' ` l'}, 
a critical left input assignment exists. 

  We have the following lemma for fooling sets. 

Lemma 8 If the set of left input assignments A satisfies the following conditions, 
then A is a fooling set. 

Conditions: 

  [1] ar', dl, l' E A, Ir, f (l, - r) = 0 and r' r, where 1, is defined for 1, l' and r'. 

 [2] Vl E A, >iNl Sgn(l) f (l - r') = 0, where r' is the right input assignment in 
   condition [l]. 

 [3] 1q, Vl E A, the lowest bit to which the value 1 is assigned is xq. 

 [4] Vl, l' E A, if l lcI xq=o and l 1,1,q=1 for l ` 1 or l < 1', then f (ll xq=o - r') > 
    f (le . r') if and only if f (ll xq_1 - r') > f (l, - r'), where r' is the right input 

    assignment in condition [1]. 

  [5] 3t, s, Vl E A, Y(l . r) = Y(l - r') = 2'+ 2s, where r and r' are the right input 
    assignments in condition [1]. 

 [6] Vl, l' E A, if f (l - r') = f (l' - r') for I ` 1 and l' ` l', then f (ljxq=o - r') _ 
    f (l'Ixq_o - r') and f (11 ,,=1 - r') = f r'), where r' is the right input 

    assignment in condition [1], and q is the integer in condition [3]. 

0
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To prove Lemma 8, we introduce the following lemma.

Lemma 9 We suppose that the set of left input assignments A satisfies the con-
ditions in Lemma 8. For left input assignments 1, 1' E A, f (lcl xq=o • r') < f (lc • r') 
and f (lc xq=1 r') < f (l, • r'), where r' and Xq are defined in the conditions in 
Lemma 8.

(Proof) We assume that 1, N 1 and 1, ,l' without loss of generality, and also 
assume that either f (l,lxq=o • r') > f (1, • r') or f (lc)x,=1 • r') > f (h • r'). Then 
there exists l' N 1' such that f (l' • r') = f (lc xq=o • r') or f (l' • r') = f (hl xq=1 • r') 
by the definition of a critical left input assignment. Thus f (l'Ixq=o • r') = f (h • r') 
or f (l'Ixq-1 r') = f (l, • r') by condition [6] in Lemma 8. Note that' 'Ixq-o l' 
and l' I xq-1 ̀ 1' by 1' N 1' and condition [3] in Lemma 8. Thus there exists 1" ̀ 1', 
f (l" • r') = f (h • r'), contradicting the definition of a critical left input assignment. 

0 

  We now give the proof of Lemma 8. 

(Proof) For 1,1' E A, we assume that 1, _ 1 and 1, Al' without loss of generality, 
and let r and r' be the right input assignments in condition [1] in Lemma 8, and 
let t and s be the integers in condition [5] in Lemma 8. We show that fl(r) 0 
and fl, (r) = 0. 

  We define Sl and Sl as 

             Sl = 1', f (l' r') > f (lc r')} 
             Sl = ~` l', f (l' • r,) < f (l . r')}. 

  Note that the number of left input assignments that belong to Si (resp. SP) 
and whose weights are even is equal to the number of left input assignments that 

belong to SP (resp. Si) and whose weights are odd by condition [4] in Lemma 8, 
and also note that for W = (2t + 28) - f (1, • r'), f (l • r) = f (l • r') + W - (2t + 2s) 
for l E Sl and f (l . r) = f (l • r') + W for l E SS since f (l, • r') + W = (2'+ 2s) and 
by condition [5] in Lemma 8. To compute fl, (r) by Lemma 2, we expand fl, (r) 
into two terms as follows:

fl' (r)   Sgn(l') > Sgn(l') f (l' • r)

= Sgn(l') E 
['E S1,

Sgn(l')f(l'•r)+
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For the first term, 

  Sgn(l') f (l' r) 
PE SL,

     Sgn(l') (f (1' • r') + W - (2t + 2S)) 
  PE S1, 

    Sgn(l') f (l' 
  PEST, 

  (since W - (2t + 2s) is a constant, and by Corollary 1)
For the last term, 

   E Sgn(l') f (l' • r) 
     l'ESj

  E Sgn(l') (f (l' - r') + W ) 
   PE Sj 

     Sgn(l') f (l' • r'). 
   PE SI 

  (since W is a constant, and by Corollary 1)
Thus,

     •fi' (r) = Sgn(l') Sgn(l')f (l' - r') + Sgn(l')f (l' r') 
                      PEST l'ESi 

          = Sgn(l') Sgn(l') f (l' • r') 

              fi' (r/) 
          = 0 (by condition [2] in Lemma 8). 

  Next, we compute fl(r). 
  We define Si and Si as 

       Sf = {uI1 ti 1, f (l • r') > f (l, r')} 
        Sl = {il 1, f (l • r') < f (l, r')} \ fl, lxq=O, lcIxq=1}. 

  Note that the number of left input assignments that belong to SI (resp. Si ) 
and whose weights are even is equal to the number of left input assignments that 

belong to Sf (resp. S?) and whose weights are odd by condition [4] in Lemma 8. 
To compute fl (r), we expand fl (r) into three terms as follows: 

   fi(r) = Sgn(l) Y Sgn(l) f (l • r) 
              hl 

       = Sgn(l) E Sgn(l) f (l • r) + Sgn(l) f (l • r) 
                    IES1 IES? 

            + (Sgn(lcI xq=o)f (1,1.,,=o - r) + Sgn(lcI xq=1)f (lcI xq=1 - r))] 
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For the first term, 

E Sgn(l) f (l • r) _ Sgn(1) (f(I. r') + W - (2t + 2S)) 
 ZEST IESI 

                Sgn(l) f (l • r'). 
                      IESI 

                  (since W - (2t + 2S) is a constant, and by Corollary 1) 

  For the second term, 

   E Sgn(l) f (l • r) _ Sgn(l)(f (l • r') + W) 
     iES? IESI 

                    Sgn(l) f (l • r'). 
                           IESI 

                       (since W is a constant, and by Corollary 1) 

  Note that, by Lemma 9, one of f (lcl xq=o•r') and f (l~lxe=1 r') is f (1,-r'), and the 
other is less than f (l, • r'). That is, one of f (lcl 1.,,=o • r') + W and f (h1 xq=1 • r') + W 
is equal to 2' + 21, and the other is less than 2t + 2S. Thus, for the last term, 

      Sgn(lcl xq=o)f(1cI X, =0 • r) + Sgn(lc1 xq=1).f (1cI x9=1 . T) 
   = Sgn(lcl xq=o) (f (lcl xq=o • r') + W) + Sgn(lcl xq=1) (f (lclxq=1 • r') + W) 

     + (-Sgn(1,)(2t + 2S)) 
     Sgn(lc            ,I xq=o)f (l~I xq=o • r') + Sgn(lc xq=1).f (lcI xq=1 r ) 

     + (-Sgn(1,)(2t + 2S)) . 

  Thus,

   fi(r) = Sgn(l) Sgn(l) f (l • r') + Sgn(l) f (l • r') 
                    IESI IESI 

           + (Sgn(lcJxq=o)f (1,I xq=o • r) + Sgn(lcIxq=1).f (1cIxq=1 • r))] 

         Sgn(l) Y Sgn(1) f (1 • r') + (-Sgn(lc)(2t + 2S)) 
              ii 

       = f, (r') + Sgn(1) (-Sgn(l,)(2t + 2S)) 

          Sgn(l) (-Sgn(l,,)(2t + 2S)) . 

  Thus, fi (r) 0 and fl, (r) = 0. Hence A is a fooling set. 
  We now give the proof of Theorem 3 

(Proof) We assume the same situation as in the proof of Theorem 2.

0
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(I) I Split'I > n/12 

(1) I Split' n (XUL X XDR) I > Split n (XIJR X XDL) 
We define Split" as Split" = Split' fl (XUL X XDR). Then I Split;I > 24, since 
Split,I > 12 and I Split, fl (XUL X XDR) I > I Split' n (XUR X XDL)I. 

   If there exists no pair of (x, x71) (x21,, x71 E X fl R and. w = v + sh - sl), we 
can reconstruct a left partition L' and a right partition R' such that there exists 

exactly one pair of (x, x„) (x21„ x7, E X fl R' and w = v + Sh - sl), and there 
exist more than n/24 - 1 pairs (xi+sh_sl E L', xi E R') E Split', by decreasing 
the cardinality of L and increasing the cardinality of R, where Sh and sl are the 

high split bit and the low split bit respectively. In this case, we can use L' and 

R' as L and R respectively. 

  Let (x, x71) be a pair such that x,,,, x„ E X fl R' and w = V + sh - sl. 
  Similarly to the previous section, let A be a set of all left input assignments 

satisfying the following conditions. 

Conditions: For any variable x such that x E {xuI (xu, xd) E Split"} = B, 

 [1] If x is the lowest member in B, that is, x has the minimum index in B, 
    then the value 1 is assigned to x. We define this variable x to be xq. 

 [2] The value 1 is assigned to at least one member of 13 \ {xq}. That is, the 
    value 1 is assigned to each of at least two members of B, including xq. 

 [3] If ysh E L, then the value 1 is assigned to ysh, where sh is the high split bit. 

 [4] If yst E L, then the value 1 is assigned to ysi, where sl is the low split bit. 

 [5] The value 0 is assigned to each of the variables that belong to L other than 
    mentioned above. 

  It is obvious that JAI > 2-2141- -2 - 1. We show that A is a fooling set in the 
following. If JAI < 1, it is obvious that A is a fooling set. We cope with the case 
that JAI > 2 in the following. 

  We define a right input assignment r' as follows: 

 [1] If ysh E R, then r' assigns 1 to ysh 

 [2] If ys1 E R, then r' assigns I to y,,. 

 [3] r' assigns 1 to x,,. 

 [4] r' assigns 0 to the variables that belong to R other than mentioned above. 
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X

Variable x11 X10 x9 xg X7 X6 X5 X4 X3 X2 xl x0

Partition L L R L L L R R R R L R

Assignment 1 1 1 0 0 1 0 0 0 0 0 0

Y

Variable Y11 Y10 y9 Y8 y7 Y6 y5 y4 Y3 Y2 Yi YO

Assignment 0 0 0 0 0 1 0 0 0 0 0 1

Split' =        {(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, sh = 6, sl = 0, q = 6 

               Figure 2.12: An example of an assignment

X

Variable x11 x1o X9 X8 x7 X6 x5 x4 X3 X2 XI xo

Partition L L R L L L R R R R L R

Assignment 1 1 1 0 0 1 1 1 1 0 0 1

Y

Variable Y11 Ylo Y9 I Y8 Y7 Y6 I Y5 Y4 Y3 I Y2 I Y1 Yo

Assignment 0 0 010 0 110 0 0 1 0 1 0 1

spl2tp = {(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, sh = 6, sl = 0, q = 6 

               Figure 2.13: An example of an assignment 

  An example of an assignment satisfying [1]-[4] is shown in Fig.2.12. 
  Let 1 and 1' be any two distinct left input assignments that belong to A. We 
define 1, for 1, 1' and r'. We assume that 1, ti 1 and 1, /'l' without loss of 

generality. We define a right input assignment r as follows: 

 [1] If ysh E R, then r assigns 1 to ysh. 

 [2] If ys, E R, then r assigns 1 to y,,. 

 [3] r assigns 1 to x,,, and x,,. 

 [4] If the value 1 is assigned to xi+sh_s, in 1, that is, lc(xi+sh_sj) = 1, then r 
    assigns 1 to xi. 

 [5] r assigns 0 to the other variables that belong to R other than mentioned 
    above. 

  An example of an assignment satisfying [1]-[5] is shown in Fig.2.13. 
  The remainder of 2' (i > sh) divided by 21h+ 2s" is (2'h+ 281) - 2i-(Sh-SO 

by Corollary 4, and the remainder of 2i-(sh-st) (2sh - s1 > i > sh) divided by 
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28h+ 28, is 2i-(Sh-St). Thus the remainder of 22 + 2i-(Sh-S0 (2sh - sa > i > sh) 
divided by 2sh + 2" is 0. Thus, 

    f(h-r) = 0. 

  We show that A satisfies the conditions in Lemma 8 in the following. First, 

we cope with the case that both ysh and ys, belong to R (case(a)), and then, we 
cope with the case that either ysh or ys1 belongs to L (case(b)). 

(a) Both ysh and ys, belong to R. 
  Since the variables in X with the assignment of 1 in l - r' for l 1 E A are 

higher than the variable xsh, f (l - r') = (2sh + 2S') - hr-3~ for l N 1 E A by 
Corollary 4. Thus by Lemma 2, Lemma 5 and Lemma 6, 

        fi(r') = Sgn(l) E Sgn(l) f (l - r') 
                   ii 

                     Sgn(l) ((2Sh +2S1) - X (l ' r')                = Sgn(l) ;
)sh_Si 

               0. 

  Similarly, 

    fl, (r') = 0. 

(b) Either Ysh or ys, belongs to L. 
  Note that, in this case, either ysh or yst belongs to R by the definition of split 

bits (Sh and sl). For l 1 or l l', f (l - r') = 0 if the value 0 is assigned to ysh 
or ySj that belongs to L in l7 and f l - r') = (2'h+ 2Sl) by Corollary 4 if                                                (^ ~rsh,-s( 
the value 1 is assigned to ysh or yst that belongs to L in 1. 

  Let S be the set of left input assignments such that l ti 1 and f (l - r') _ 

(2Sh + 2s1) - xai_rs) Thus, b Lemma 2 Corollary I and Corollary 2         ah a Y Y 
fl(r') = Sgn(l) E Sgn(l) f (l - r') 

                  Il 

            Sgn(l) Sgn(l) f (l - r') + Sgn(l) f (l - r') 
                                         iEs 

            Sgn(l) 0 + Sgn(l) ((2sh +2s') - X (l - r') 
                      ks 2h 

            0. 
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Similarly, 

   fp(r') = Sgn(l') Sgn(l) f (l -r') = 0. 

  Hence the set A satisfies condition [2] in Lemma 8. 
  It is obvious that f (l(xq=o -r') > f (lI xq=i .,r') for l N l or l ' l' by Corollary 4. 

We assume that l N l or l ` l', lI xq=O h, ilxq=i l,, and f (lI xq-o r') > 

f (lc • r') > f (llxq=i .,r'). There exists no left input assignment l' N 1 or l' 1' such 
that f (11,;, =o • r') > f (l' • r') > f (llxq-l r') since Xq is the lowest bit to which the 
value 1 is assigned and by Corollary 4. This is a contradiction. Hence the set A 

satisfies condition [4] in Lemma 8. 
  It is obvious that the set A satisfies conditions [1], [3], [5] and [6] in Lemma 8. 

Hence A is a fooling set. 

(ii) I split, f1 (XUL X XDR) I < I Split, f1 (XUR X XDL) 
We define Split' as Splitp" = Split' n (XUR X XDL). Then I Split'l > n since 24 
Spli'l > n and I Split' n (XUL X XDR) I < I Split, n (XUR X XDL) I. 

  Similarly to the previous section, let A be a set of all left input assignments 
satisfying the following conditions. 
Conditions: For any variable x such that x E {xdl (xu, Xd) E Split'} aef B 

 [1] If x is the lowest member in B, that is, x has the minimum index in B, 
    then the value 1 is assigned to x. We define this variable x to be Xq. 

 [2] The value 1 is assigned to at least one member of B \ {xq}. That is, the 
    value 1 is assigned to each of at least two members of B, including Xq. 

 [3] If ysh E L, then the value 1 is assigned to ysh, where sh is the high split bit. 

 [4] If ys, E L, then the value 1 is assigned to ysl, where si is the low split bit. 

 [5] The value 0 is assigned to each of the variables that belong to L other than 
    mentioned above. 

  It is obvious that JAI > 2-h-1 - 1. We show that A is a fooling set in the 
following. If JAI < 1, it is obvious that A is a fooling set. We cope with the case 
that JAI > 2 in the following. 

  We define a right input assignment r' as follows: 

 [1] If ysh E R, then r' assigns' to ysh 
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X

Variable I X11 x1o xg x8 X7 X6 X5 X4 X3 X2 X1 xp

Partition I R R L R R R L L R L R L

Assignment 0 0 0 0 0 0 1 1 0 0 0 1

Y

Variable I yll I Y1o Y9 I Y8 y7 Y6 y5 y4 y3 Y2 Yi Yo

Assignment I 0 I 0 010 0 1 0 0 0 0 0 1

Split = 1(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, Sh = 6, Sl = 0, q = 0 

               Figure 2.14: An example of an assignment

X

Variable I X11 x1o x9 x8 X7 x6 x5 x4 x3 X 2 x1 xo

Partition I R R L R R R L L R L R L

Assignment 1 1 0 0 0 1 1 1 0 0 0 1

Y

Variable Yii Y10 Y9 Y8 Y7 Y6 y5 I Y4 I Y3 Y21Y1IYO

Assignment 0 0( 0 0 0 1 0 1 0 1 0 0 1 0 1 1

Split; _ {(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, sh = 6, sl = 0, q = 0 

               Figure 2.15: An example of an assignment 

 [2] If ysl E R, then r' assigns 1 to ysc 

 [3] r' assigns 0 to the variables that belong to R other than mentioned above. 

  An example of an assignment satisfying [1]-[3] is shown in Fig.2.14. 
  Let 1 and 1' be any two distinct left input assignments that belong to A. We 

define 1, for 1, 1' and r'. We assume that 1, ' 1 and l,, /'l' without loss of 

generality. We define a right input assignment r as follows: 

 [1] If ysh E R, then r assigns I to y,,. 

 [2] If ys, E R, then r assigns I to y,,. 

 [3] If the value 1 is assigned to xi in l, that is, l,(xi) = 1, then r assigns 1 to 
      xi+sh -SZ . 

 [4] r assigns 0 to the variables that belong to R other than mentioned above. 

  An example of an assignment satisfying [1]-[4] is shown in Fig.2.15. 
  We show that A satisfies the conditions in Lemma 8 in the following. First, 

we cope with the case that ysh E R and yst E R, or ysh E RR and ys, E L (case(a)), 
and then, we cope with the case that YSh E L and ysl E R (case(b)). 
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(a) ys,, E R and ys, E R, or ys,, E R and ys, E L. 
  For l -` 1 E A, since X (l • r') < 23h, f (l .,r') = X (l • r'). Thus by Lemma 2 and 

Lemma 6, 

   fi(r') = Sgn(l) Sgn(l) f (l • r') = 0. 
            hl 

Similarly, 

   fl, (r') = Sgn(l') Sgn(l) f (l • r') = 0. 

(b) Ys,, E L and ys, E R. 
  For l ' 1 , f (1•r') = 0 if the value 0 is assigned to ysh in 1, and f (1•r') = X (1-r') 

if the value 1 is assigned to ysh in 1. 

  Let S be the set of left input assignments such that l N 1 and f (l • r') = X (l • r'). 
Thus, by Lemma 2 and Corollary 2, 

     fi(r') = Sgn(l) Sgn(1) f (1 • r') 

          = Sgn(l) Sgn(l) f (l • r') + E Sgn(l) f (l • r') 
                         i s,iz lES 

          = Sgn(l) 0 + E Sgn(1)X (l • r') 
                                LES 

            0. 

Similarly, 

   fi'(r') = Sgn(l') Sgn(l) f (l • r') = 0. 

  Hence the set A satisfies condition [2] in Lemma 8. 
  By the same reason as shown in (i), the set A satisfies condition [4] in 

Lemma 8. It is obvious that the set A satisfies conditions [1], [3], [5] and [6] 
in Lemma 8. Hence A is a fooling set. 

(II) I Split; I < n/12 
There exist more than s - i2 = z4 pairs of (xi, y2) such that x2 E R and y2 E L 
by Lemma 4. 
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Variable x7 x6 I X5 I x4 x3 x2 x1 xo

Partition L R I R I R R R L R

Assignment 0 11010 1 0 0 0

Variable Y7 Y6IY5IY4 y3 Y2 2/1 YO

Partition L R I L I L L L R L

lr 0 11011 0 1 0 1

Pr 0 11110 1 1 0 1

l"r 0 11010 0 1 0 1

w=6, q=3

Figure 2.16: An example of an assignment

  Similarly to (II) in the previous section, let (x w, yw) be a, pair such that x2, E R 
and yw E R. 

  Similarly to the previous section, let A be a set of all Left input assignments 

satisfying the following conditions. 

Conditions: 

 [1] If p is the minimum index such that xp c R and yp E: L, then the value 1 is 
    assigned to yp. 

 [2] For i p, x2 E R and yz E L, the value 1 is assigned to at least one variable. 

 [3] The value 0 is assigned to each of the variables that belong to L other than 
    mentioned above. 

  It is obvious that JAI > 224-1 - 1. We show that A is a fooling set in the 
following. If JAI < 1, it is obvious that A is a fooling set. We cope with the case 
that JAI > 2 in the following. 
  Let 1 and 1' be any two distinct left input assignments that belong to A. We 

assume that q is the minimum index of y2 E Y such that y2 E L and l(y2) 1'(y2). 
We assume that l(yq) = 0 and l'(yq) = 1 without loss of generality. We define a 
left input assignment 1" in the same way as in (II) in the :previous section 

  We define a right input assignment r as follows: 

 [1] r assigns 1 to each variable x, yw and xq. 

 [2] r assigns 0 to the other variables that belong to R. 

  An example of an assignment satisfying [1] and [2] is shown in Fig.2.16. 
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  We define SLI, SS1, SL1,, and SSI, in the same way as in (II) in the previous 
section. Then we obtain the following. 

           `dl E SL, f (l • r) = 2- + 2q 
          dl' E SLI, f (l' r) _ 0 (Y(l' . r) = 2- + 2q)                                 2w + 2q (otherwise) 

Note that SS, = SSS, = {ill ̀ l"}. By Lemma 2, 

      fi(r) = Sgn(l) E Sgn(l) f (l • r) 
                ha 

         = Sgn(l) Sgn(l) f (I • r) + Sgn(I) f (l • r) 

                           IESL~ LESS, 

         = Sgn(l) Sgn(l) f (l • r) + E Sgn(l) f (l • r) 
                         IESL1 hl" 

Similarly, 

   fl, (r) = Sgn(l') Sgn(l') f (l' • r) + E Sgn(l) f (l - r) 
                      ['ESL,, hl" 

  The number of left input assignments that belong to SL, and whose weights 

are even is equal to the number of left input assignments that belong to SL, and 

whose weights are odd. Thus by Corollary 1, 

   fj(r) = Sgn(l) 0 + Sgn(l) f (l • r) 
                  hl„ 

Note that when 0' • r) = 2W + 2q, the weight of l' is 1. By Corollary 1, 

   fi(r) = Sgn(l') -{-(2w + 2q)} + Sgn(l') f (l' • r) 

  Next, we define a right input assignment r' as 

 [1] r' assigns 1 to each variable x,,, and yw. 

 [2] r' assigns 0 to the other variables that belong to R. 
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Variable x7 x61 x51 x4 x3 x2 xl xo

Partition L R I R I R R R L R

Assignment 0 11010 0 0 0 0

Variable Y7 Y6 I Y5 I Y4 Y3 Y2 Y1 YO

Partition L R I L I L L L R L

lr' 0 11011 0 1 0 1

l'r' 0 1 1 1 1 0 1 1 0 1

1"r' 0 11010 0 1 1) 1

                             w=6, q=3 

               Figure 2.17: An example of an assignment 

  An example of an assignment satisfying [1], [2] is shown in Fig.2.17. 
  For l~lor 

0 (Y 2-) 
                          2w (otherwise). 

Note that when Y(l - r') = 2W, the weight of l is 0. Thus, by Lemma 2 and 
Lemma 5, 

              fi(r') = Sgn(l) Sgn(l . r') f (l . r'') 

                      = -Sgn(l) .2'. 

Similarly, 

    fp(r') = -Sgn(l') .2w. 

Therefore 

   fi(r)fc'(r') ~ fl, (r) ft (7-') 

Hence, A is a fooling set. 

  We conclude that a lower bound on the number of nodes of a *BMD repre-

senting a remainder function f is S2(224) from (I), (II) and Theorem 1. 0 

2.5 Conclusion 

In this chapter, we show that a lower bound on the size of a *BMD represent-

ing a quotient function or a remainder function is SZ(2m/24). We are expecting 
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that the techniques in this chapter can be applied to analysis of other graph 

representations of arithmetic functions. 

  Researchers have observed that a BMD or a *BMD representing a quotient 

or a remainder becomes intractable in terms of size even for a small number 

of inputs. For example, in [10], the authors have given up construction of a 
BMD or a *BMD for a quotient or a remainder. Our result on the lower bound is 

consistent with the observation by other researchers. Besides, the time complexity 

of performing various operations over BMD's or *BMD's is also very high. For 

some operations, it can be exponential in the number of nodes. Our result on the 

lower bound in size, the experimental observation and the time complexity seem 

to suggest that it is hard to handle a BMD or a *BMD for dividers of practical 

size. We believe that it is significant to search for better graph representations 

for dividers or other arithmetic functions.
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Chapter 3

Kronecker Functional Decision 

Diagrams and the Complexity of 

Finding the Best Decomposition 

Type List

3.1 Introduction 

Binary decision diagrams[2, 7], which are data structures representing boolean 
functions and can be manipulated efficiently in terms of both time and space, are 

widely used in various areas of computer science. Kronecker functional decision 

diagrams are extensions of binary decision diagrams such that any decomposi-

tion type, such as Shannon expansion and Davio expansion, is allowed for each 

variable. 

  Time and space needed to manipulate decision diagrams deeply depend on 

the number of nodes. Thus it is important to represent boolean functions using 

as few nodes as possible. Researches has been made on finding the optimal 

variable ordering for binary decision diagrams and Kronecker functional decision 

diagrams[5, 22]. 
  As for Kronecker functional decision diagrams, any decomposition type may 

be selected for each variable. Thus it is possible to reduce the number of nodes by 

selecting good decomposition types. In this chapter, we show that the following 

problem is NP-hard: Determine whether we can assign a decomposition type 

to each variable for a fixed variable ordering so that the number of nodes of 

shared Kronecker functional decision diagrams representing the function given as 

a shared binary decision diagram can be less than or equal to K. 

  The remainder of this chapter has the following organization. In Section 3.2, 
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we define Kronecker functional decision diagrams. In Section 3.3, we show that 

the problem of finding the best decomposition types is NP-hard. We conclude 

with future work in Section 3.4.

3.2 Preliminaries

3.2.1 Ordered Kronecker Functional Decision Diagrams 

An ordered Kronecker functional decision diagram (OKFDDD) is a directed acyclic 

graph representing a boolean function. Let the input variables of a given function 

be X = {x1i x2, ... , xn}. A variable in X is attached to each internal node of 
an OKFDD. A boolean value is attached to each terminal node. Each internal 

node has two outgoing edges, called the 0-edge and the 1-edge respectively. Let 

low(v) and high(v) be the nodes to which the 0-edge and the 1-edge of a node 
v point respectively. Let var(v) and value(v) be the variable and the boolean 
value attached to an internal node v and a terminal node v respectively. 

  Each node of an OKFDD represents a boolean function, and one of the fol-

lowing two conditions holds between adjacent two nodes:

[1] f [v] = var(v) . f [low(v)] V var(v) • f [high(v)]. That is, f [low(v)] = 
  f [v] I var(y)=o, f [high(v)] = f [v] I var(y)=1. In this case, we say that the de-

  composition type of the node v is Shannon expansion.

[2] f [v] = f [low(v)] ® var(v) . f [high(v)]. That is, f [low(v)] = f [VI I var(v)=O, 
  f [high(v)] = f [v] I var(v)=o ® .f [v] I var(v)=1. In this case, we say that the de-

  composition type of the node v is positive Davio expansion.

In the above conditions, f [v] is the function represented by a node v, and 

f [v] I var(y)=o (resp. f [v] I var(y)=1) is the function obtained by substituting 0 (resp. 
1) for the variable var(v). We assume that the priority of boolean product (•) 
is higher than that of exclusive OR ((D). We denote `Shannon expansion' and 
`positive Davio expansion' as `S' and `pD' respectively. 

  For any two nodes, if the attached variables are the same, then the attached 
decomposition types are also the same. A terminal node represents a constant 
function, whose value is attached to the node. The function represented by the 
root node is the function represented by the OKFDD. An OKFDD has a variable 
ordering 7r = (xkl < xk2 < ... < xkn), and if xkti precedes xk,, then i < j, where 

(k1, ... , kn) is a permutation of (1,... , n). We illustrate examples of OKFDD's 
in Figure 3.1. If decomposition types are restricted only to "S', we call the decision 
diagram an ordered binary decision diagram (OBDD).
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Figure 3.1: Examples of an OKFDD and a reduced OKFDD representing f = 
x®yz.

  In general, negative Davio expansion (f [low Ml = f [v] I var(v)=1, f [high(v)] = 

f [v] I var(v)=O ® f [v] I var(y)=1) is also allowed. However we restrict OKFDD's to take 
only Shannon expansion and positive Davio expansion.

3.2.2 Reduced OKFDD's

We say that two nodes u and v are equivalent if low(u) = low(v), high(u) = 
high(v) and var(u) = var(v). Since equivalent nodes represent the same function, 
one of the two equivalent nodes can be deleted by redirecting the edges pointing 

to one node to the other. If the decomposition type of a node v is 'S' and 

low(v) = high(v), then v is called a redundant node. Also if the decomposition 
type of a node v is 'pD' and high(v) is the constant node of 0, then v is called 
a redundant node. In both cases, the node v can be deleted by redirecting the 

edges pointing to v to low(v). An OKFDD is a reduced OKFDD if its equivalent 
nodes and redundant nodes are maximally deleted. We illustrate an example of 

a reduced OKFDD in Figure 3.1. 

  A reduced OKFDD represents a function uniquely with a fixed variable order-

ing and fixed decomposition types. In this chapter, we use the term "OKFDD" 

to refer to "reduced OKFDD".

3.2.3 Shared OKFDD's

Given OKFDD's, they can share nodes representing the same functions if we 

use the same variable ordering for all OKFDD's. A shared OKFDD (SOKFDD) 
is a set of OKFDD's that share the nodes representing the same functions and 

maximally reduce the redundant nodes. SOKFDD({ fl, f2,... , fn.}), or simply
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Figure 3.2 : An example of an SOKFDD.

SOKFDD(fl, f2,... , f,,), denotes an SOKFDD that represents a set of functions 

{ fl, f2i ... , f,,,}. If decomposition types are restricted only to `S', we call the 
OKFDD a shared OBDD (SOBDD). We illustrate an example of an SOKFDD 
in Figure 3.2.

3.2.4 Complement Edge 

A complement edge is an edge such that the function represented by the node to 

which it points is negated[12]. If an internal node v has a complement edge, the 
relation between v and its children is modified as follows: 

Case: The 0-edge of v is a complement edge. 

   f VOW Ml = f [v] I var(v)=0 

Case: The 1-edge of v is a complement edge. 

      • If the decomposition type of v is `S', 

       f [high(v)] = f [v] I var(v)=l. 
      • If the decomposition type of v is 'pD', 

       f [high(v)] = f [v] I var(y)=0 ® f [v] I var(y)=1• 

  It is possible to share the nodes representing functions complementing each 

other by introducing complement edges. We illustrate an example of complement 

edges in Figure 3.3. To preserve the property of unique representation, we restrict 

the use of complement edges as follows[12]: 

  • There is only one terminal node, which represents the constant function of 

    0. The terminal node of 1 is replaced with the terminal node of 0 with a 

    complement edge.
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Figure 3.3: An example of an OKFDD representing f = x ®y with a complement 
edge. 

  • Only 1-edges can be complement edges. We do not use complement edges 
    for 0-edges (if necessary, we use complement edges at lower levels). 

  We use complement edges for every OKFDD in the following.

3.3 NP-hardness of Decomposition Type Selec-

    tion Problem of Kronecker Functional De-

    cision Diagrams 

In this chapter, we show that the following SOKFDD-MIN problem is NP-hard. 

Definition 1 [SOKFDD-MIN] 

INSTANCE A variable ordering it = (xkl < xk2 < ... < xkj, an SOBDD 
    representing functions f2(1 < i < n), and a constant K. 

PROBLEM Are there decomposition types according to which we can construct 

    an SOKFDD(fl, ... , fn) with at most K nodes for the variable ordering 7t ? 

n 

  We reduce 3-SAT problem, which is known to be NP-complete, to SOKFDD-

MIN problem in the following. 

Definition 2 [3-SAT] 

INSTANCE A CNF expression of a boolean function F = C1C2 ... Cn, where 
    each clause has exactly three literals (i. e. variables or their complements). 

PROBLEM Is there an assignment that satisfies F? 

0 
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Definition 3 [Transforming 3-SAT to SOKFDD-MIN] 

  Let the boolean function of a given instance of 3-SAT be F = CiC2 ... Cn,. Let 

the set of the variables on which F depends be X = {x1, X2,,- .. , Xm}. We consider 
the variable ordering 7' = (x1 < ... < x,,,,). For each clause Ci = lii V lie V li3 
(Ii; = xii or li.i = a boolean function Gi is generated as follows. We assume 
that xi, < xi2 < xi3 in 7r' without loss of generality. Let the set of the variables 

on which Gi depends be {xi1, xi27 xi3, ai, bi,... , hi}, where xil, xi27 xi3 e X, and 
ai,bi,... ,hi VX. 

 [l] 
     Case: lit = xi, 

          Gi = xii HABCD V xil HEFGH 

     Case: lii = xil 

         Gi = xii HABCD V xil (HABCD G HEFGH)

[2]
Case: lie = xi2

HABCD 

i HEFGH

i   x
i2 HAB 

i    x
i2 HEF

Case: lie = xi2

HABCD 

HEFGH

i = xi2 HAB 

= i    xi2 HEF

V xi2 HCD 

V xi2 HGH

V xi2 (HHB 
V xi2 (HEF

® HCD) 
®HGH)

[3]
Case: li3 = xi3

HAB = T,3 ai V x 

HEF = xi3 ei V x

i3 bi 

i3 fi

Case: li3 = x23

HAB = 

HHD = 

HEF 

i H
GH =

   i V / 
7 D _ - xi3Ci V xi3di  HH 

i 

  HGH = xi3gi V xi3hi

xi3 ai V xi3 (ai ® bi) 

x2302 V x23(ci ® di) 

xi3ei V xi3(ei ® A) 

xi3 gi V xi3 (9i (D hi)
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For each 

9i_221

i(1 < i < 
as follows.

n), we define boolean functions 9i_000, 9i_001, 9i_002, 9i_010,

gi_ooo = ai, 
gi_oo2 = ai ®bi, 
gi_oll = di, 
gi_020 = ai ® ci, 
gi_022 = ai ® bi ® ci ® di, 
9i_101 = fi, 
gi_11o = gi, 
gi_112=gi®hi, 
9i_121 = fi ED hi, 
gi_2oo = ai ® ei, 
gi_2o2=ai®biEDei®fi, 
gi_211 = di ® hi, 
gi_220=ai®ci®ei®gi,

gi_ool = bi, 

9i_010 = ci, 

9i_012 = ci ® di, 

gi_021 = bi ® di, 

gi_loo = ei, 

gi_102 = ei ® fi, 
9i_111 = hi, 
gi_120 = ei ® gi, 
gi_122=ei®f2 giEDhi, 
9i-2o1 = bi ® fi, 
gi_2lo = ci ® gi, 
gi_212=ci®di®gi®hi, 
gi_221=bi®diEDfi®hi.

Then the resulting instance of SOKFDD-MIN is as follows.

INSTANCE The variable ordering 7r = (xi <
... <hi < ... <ai <bi <... 

of the functions T = {Gi, gi_000 
K=39n+1.

< hn), the 
... , gi_22l 11

X2 < ... < x. < al < bl < 

SOBDD representing the set 

< i < n}, and the constant 

a

We consider the time complexity of the above transformation. Gi is generated 

based only on the combination of the positive and negative literals in Ci. Thus 

there are only the eight candidates for Gi. If we prepare the eight OBDD's that 

represent the candidates in advance, the OBDD that represents Gi can be con-

structed by copying the appropriate candidate and attaching the variables to its 

nodes. Similarly, the OBDD's that represent gi _ooo, ... , gi_221 can be constructed 

by copying the prepared candidates. Then we reduce the constructed OBDD's 

and obtain an SOBDD that represents T. This reducing procedure can be done 

in polynomial time[7]. It is obvious that the variable ordering 7r and the constant 
K can be determined in polynomial time. Therefore the whole procedure can be 

done in polynomial time. 0 

  In the following, we show that 3-SAT is reduced to SOKFDD-MIN by the 

above transformation.

Theorem 4 For the original instance of 3-SAT and the resulting instance of
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Fex Fex
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0

pD x

fex fex
0

 Figure 3.4: Examples of OKFDD's representing Fex with complement edges. 

SOKFDD-MIN described above, the following holds. 

         The boolean function F of the instance of 3-SAT is satisfiable. 

         There are decomposition types according to which the number 

        of nodes of SOKFDD(T) is less than or equal to K. 

                                                        El 

  We introduce the following lemmas and definition. 

Lemma 10 The number of nodes of SOKFDD(gi_ooo,... , gi221) without terminal 
nodes does not depend on the decomposition types, and it is 32. 0 

(Proof) 
  We consider the following boolean function Fex. 

    Fex = x ® fex, 

where x is a boolean variable and fex is a boolean function. Let v be the node that 
represents Fex in an OKFDD, that is, f [v] = Fex. We assume that var(v) = x. 
Then Fex is decomposed in terms of Shannon expansion as f [low(v)] = fex 
and f [high (v)] = fex. Also Fex is decomposed in terms of positive Davio ex-
pansion as f [low (v)] = fex and f [high (v)] = fex ®fex = 1. We illustrate 
examples of OKFDD's representing Fex in Figure 3.4. By Figure 3.4, it is obvi-

ous that the number of nodes of an OKFDD representing Fex does not depend 
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on the decomposition type on x. Since gi_ooo, ... , 9i_221 are literals or boolean 

functions that can be expressed by having only exclusive OR's as operators, any 

node of SOKFDD(gi_ooo,... , gi_221) represents a boolean function of the form 
Fex or a constant. Therefore the number of nodes of SOKFDD(gi_ooo, ... , 9i_221) 
does not depend on the given decomposition types. If a child u of a node v in 

SOKFDD(gi_ooo, ... , gi_221) is an internal node, u represents the boolean function 
f [u] = f [v] 1 var(v)=o by Figure 3.4. Thus each node of SOKFDD(gi_ooo...... i_221) 
represents a boolean function that is obtained by substituting 0's for the former 

k variables (in the given variable ordering for some 1 < k < 8 ) of some gi-Xxx • It 
is straightforward to see that the number of the distinct boolean functions thus 

obtained is 32. 0 

   We consider the following one-to-one correspondence. Let F be the boolean 

function of the instance of 3-SAT, and let X be the set of the variables on 

which F depends. Let A be the set of possible assignments of boolean values 

to X. Note that the set of the variables on which the boolean functions in 

T = IGi, gi_ooo7 . • . , 9i_22111 < i < n} depends includes X. Then let R be the set 
of possible assignments of decomposition types to X, and we define the following 

one-to-one correspondence M between A and R. 

[one-to-one correspondence M] 
  For an assignment a E A, we assign a decomposition type to each variable in 

X as follows: 

  . If the value of x in a is 1 (resp. 0), then we assign S (resp. pD) to x. 

Let the above assignment of decomposition types be r. We define the mapping 

M to be M(a) = r. It is obvious that the mapping M is a bijection. El 

Lemma 11 For the boolean function F of the original instance of 3-SAT and 
the transformed instance of SOKFDD-MIN, the following holds. 

  Let X be the set of the variables on which F depends, and let a E A and r E R 
be an assignment of boolean values and an assignment of decomposition types to 
X, respectively, that satisfies M(a) = r. Then, 

               a E A satisfies a clause Ci. 

              If we construct an SOKFDD(T) determining 

               decomposition types for X according to r 

                and those for the rest arbitrarily, then the 
                number of nodes except for terminal nodes is 

               less than or equal to 39,
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f [v12] _ 
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f [v14] _ 

_ f[V151

Gi 

HABCD 

HEFGH, or HABCD ® HEFGH 

Has 
HCD, or HAB ®HCD 

HEF, or HAB ® HEF 

HGH, or H6 ® HGH, or HCD ® HGH, or HAB ED HCD ® HEF ® HGH 

9i-000 

9i_ool, or 9i_002 

9i_o1o, or 9i_020 

9i_oll, or 9i_012, or 9i_021, or 9i_022 

9i_100, or 9i-2o0 

9i_lol, or 9i_102, or 9i_201, or 9i 902 

gi_llo, or 9i_120, or 9i_210, or 9i-22o 

9i_lll, or 9i_112, or 9i_121, or 9i_122, or 9i_211, or 9i212, or 9i221, or 9i_222

Figure 3.5: The functions that are represented by the nodes of SOKFDD(Ti).

where Ti = {Gi, 9i_ooo, ... , 9i_221} • 0

(Proof) 
  We illustrate the functions that are represented by the nodes of SOKFDD(Ti) 
in Figure 3.5, where gi_222 = ai ED bi ®ci ED di ED ei B f i ® gi ED hi . It is obvious that the 
functions represented by v8, • - • , v15 are different from each other by Figure 3.5. 
Thus there is one node with xil, two nodes with xi2 and four nodes with xi3 in 
SOKFDD(Ti). Note that an SOKFDD(gi_ooo, • • • , 91221) has exactly 32 nodes by 
Lemma 10. Therefore an SOKFDD(Ti) has at least 39 nodes. In the following, 
we show that the function represented by v15 in Figure 3.5 is gi_222, that is, the 

number of nodes except for terminal nodes is more than 39, if and only if a does
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not satisfy Ci. 

(a) a does not satisfy Ci 
  For the literal li, in Ci, if lit = xi, (resp. li, = xi, ), then xi, = 0 (resp. 

xi, = 1) since a does not satisfy Ci. Thus the decomposition type of pD (resp. 
S) is assigned to xi, by the definition of r = M(a). Therefore the function 
represented by v3 is always HABCD ® HEFGH, and does not depend on whether 
li, is a positive literal or a negative literal. Similarly, the function represented by 
v7 is always HAB ®HCD ® HEF ® HGH, and the function represented by V15 is 
always gi_222, and each of them does not depend on whether lie or 43 is a positive 
literals or not. 

(b) The function represented by v15 is gi_222 for the assignment of

literal or not. Similarly, lie 0 and li, 0, and a does not satisfy CZ. D 
  We obtain the following corollary by the proof of Lemma 11. 

Corollary 5 The following holds on the same condition as in Lemma 11. 

               a E A satisfies a clause Ci. 

              If we construct an SOKFDD(T) determining 

               decomposition types for X according to r 

               and those for the rest arbitrarily, then the 

                number of nodes except for terminal nodes 

                is exactly 39. 

where Ti = {Gi, gi_o00, ... , gi_221 } • 0 

  We show the proof of Theorem 4 in the following. 

(Proof of Theorem 4) 
(a) Sufficient Condition 

  We assume that F is satisfiable. Then there is an assignment a of boolean 

values to X that satisfies F. We define an assignment r of decomposition types 

to X to be r = M(a). We consider the SOKFDD(T) whose decomposition types 
are defined as follows:

decomposition types r(= M(a)). 
  The function represented by v7 must be HAS ® HGD ® HEF ® HGH since the 

function represented by v15 is gi_222. In addition, for the literal li3 in Ci, when 
li3 = xi3 (resp. li3 =xi3 ), the decomposition type of v7 must be pD (resp. S). 
Thus the value of xi3 in the assignment a is 0 (resp. 1) by the definition of 
r = M(a). Therefore li3 = 0 and this does not depend on whether li3 is a positive
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. For the variables in X, we assign decomposition types according to r.

. For the remaining variables, we assign decomposition types arbitrarily.

We show that the number of nodes of the resulting SOKF'DD(T) is less than or 
equal to K in the following. 

  The number of nodes of SOKFDD(Ti) is exactly 39 by Corollary 5 since a sat-
isfies Ci. Note that, for any distinct i and j, Ti and Tj have no common variable. 
Thus only the terminal node can be shared by SOKFDD(T1'i) and SOKFDD(T;). 
Therefore the number of nodes of the SOKFDD(T) is the sum of the numbers of 
nodes of SOKFDD(T1), ... , SOKFDD(T,,), plus 1, to which the terminal node 
of 0 contributes, and this is 39n + 1 = K. 

(b) Necessary Condition 
  We assume that F is unsatisfiable. Let r' be an assignment of decomposition 

types to the variables on which the functions in T depend. Let r be the assignment 

of decomposition types obtained by restricting r' to X. We define an assignment 

a of boolean values to X to be a = M-1(r). Then there exists an index i such 
that a does not satisfy Ci. Note that the number of nodes of SOKFDD(Ti) that 
is constructed according to r' is more than or equal to 40 by Lemma 11, and 

that, for any index j, the number of nodes of SOKFDD(Tj) that is constructed 
according to r' is at least 39 by Lemma 11 and Corollary 5. Similarly to the case 

in the proof of the sufficient condition, only the terminal node can be shared by 

SOKFDD(T1), ..., SOKFDD(T,,). Thus the number of nodes of SOKFDD(T) 
that is constructed according to r' is at least 39(n - 1) + 40 + 1 = K + 1. 0

3.4 Conclusion

In this chapter, we showed that the problem of determining whether there are 

decomposition types according to which the number of nodes of SOKFDD(T) 
can be less than or equal to K is NP-hard, where T is a set of boolean functions 

given as an SOBDD, K is a given constant, and the variable ordering is fixed. It 

is straightforward to see that it is still NP-hard if a set of boolean functions T is 

given as an SOKFDD with fixed decomposition types. 

  It remains to investigate NP-completeness of SOKFDD-MIN and complexity 

of SOKFDD-MIN with positive Davio expansion.
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Chapter 4

On the power of Quantum 
Branching Programs

4.1 Introduction

Since Shor developed a polynomial time factoring algorithm for quantum comput-

ers[21], much attention has focused on quantum computation. There are many 
results that quantum computers might be more powerful than classical computers 

[15, 21], it is unclear whether there is a computational gap between the model that 
may use quantum effects and the model that may not. It has been shown that 

some quantum automaton models are more powerful than classical ones [4, 18]. 
It would give hints on the power of quantum computation to study about other 

computation models to see whether quantum computation models can be more 

powerful than classical ones. 

  As one of classical computation models, branching programs have been stud-

ied intensively as well as automaton models, and several types of branching 

programs are introduced including read-once branching programs and bounded-

width branching programs [19]. 
  In this chapter, we introduce a new quantum computation model, a quantum 

branching program, as an extension of a classical probabilistic branching program, 

and make comparison of the power of these two models. We show that, under 

a bounded-width restriction, ordered quantum branching programs can compute 

some function that ordered probabilistic branching programs cannot compute. 

  The remainder of this chapter has the following organization. In Section 4.2, 

we define several types of quantum branching programs and probabilistic branch-

ing programs. In Section 4.3, we show that, under a bounded-width restriction, 

ordered quantum branching programs can compute some function that ordered 

probabilistic branching programs cannot compute. We conclude with future work
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in Section 4.4.

4.2 Preliminaries 

We define technical terms. 

Definition 4 Probabilistic Branching Programs 

  A probabilistic branching program (PBP) is a directed acyclic graph that has 
two terminal nodes, to which boolean values 0 and 1 are attached, and internal 

nodes, to which Boolean variables taken from a set X = {xl,... , xn} are attached. 
There is a distinguished node, called source, which has in-degree 0. Each internal 
node has two types of outgoing edges, called the 0-edges and the 1-edges respec-
tively. Each edge e has a weight w(e) (0 < w(e) < 1). Let Eo(v) and Ei(v) be 
the set of the 0-edges and the set of the 1-edges of a node v respectively. The sum 
of the weights of the edges in Eo(v) and Ei(v) is 1. That is, 

        w(e) = 1, w(e) = 1 . 
     eEEo(v) eEE1(v) 

  A PBP reads n inputs and returns a boolean value as follows: Starting at the 
source, the value of the variable attached to the node is tested. If this is 0 (1), 
an edge in Eo(v) (El(v)) is chosen according to the probability distribution given 
as the weights of the edges. The next node that will be tested is the node pointed 
by the chosen edge. Arriving at the terminal node, the attached boolean value is 
returned. 
  We say that a PBP P computes a function f (with error rate 1/2 - 8) if 
P returns the correct value of f for any inputs with probability at least 1/2 + 6 
(6>0). El 

  We show examples of PBP's in Fig. 4.1. 

Definition 5 Quantum Branching Programs 
  A quantum branching program (QBP) is an extension of a probabilistic branch-

ing program, and its form is same as a probabilistic branching program except for 
edge weights. In a QBP, the weight of each edge is a complex number w(e) 

(0 < 1w (e) i < 1). The sum of the squared magnitude of the weights of the edges 
in Eo(v) and El (v) is 1. That is, 

       11w(e)II 2 = 1, IIw(e)II2 = 1 . 
     eEEo(v) eEEi(v) 
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Figure 4.1: Probabilistic branching programs that compute f = xy with error 
rate 0 and 0.2 respectively. 

The edge weight w(e) represents the amplitude with which, currently in the node 
v, the edge will be followed in the next step. 

  Nodes are divided into the three sets of the accepting set (Qa,,e), the rejecting 
set (Qrej) and the non-halting set (Qn0 ). The configurations of P are identified 
with the nodes in Q = (Qace U Qrej U Q,,,,). A superposition of a QBP P is any 
element of 12(Q) (the space of mappings from Q to 0 with 12 norm). For each 
q E Q, 1q) denotes the unit vector that takes value 1 at q and 0 elsewhere. 

  Let C be the set of all complex numbers. We define a transition function 
6 : (Q x {0, 1} x Q) -* 0 as follows: 

    8(v, a, v') = w(e) , 

where w(e) is the weight of the a-edge (a = 0 or 1) from a node v to v'. If the 
a-edge from v to v' does not exist, then 6(v, a, v') = 0. We define a time evolution 
operator as follows: 

   U IV) _ 6(v, x(v), v') IV') 
                   v'EQ 

where x denotes the input of a QBP, and x(v) denotes the assigned value in x 
to the variable attached to the node v. If the time evolution operator is unitary, 
we say that the corresponding QBP is well formed, that is, the QBP is valid in 
terms of the quantum theory. 

  It is required to have edges from terminal nodes in order to be well formed. 
For convenience, we allow QBP's to have edges from terminal nodes and to be 
cyclic on the condition that it is still acyclic without the edges from terminal 
nodes. 
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4.2: A quantum branching program that computes f = x ® y with no

   We define the observable 0 to be, ® Erej (D Enon, where 

                 E.C = span {Iv) Jv E Q.c} , 

                 Erej = span {Iv) Iv E Qrej}, 

                 Eon = Span {Iv) Iv E Qn0n} . 

  A QBP reads n inputs and returns a boolean value as follows: The initial 
state Io) is the source Iv.,). At each step, the time evolution operator is applied 
to the state 1,0i), that is, I 'i+1) = US 10i). Next, k L' +i) is observed with respect to 
Eacc®Erej®Enon. Note that this observation causes the quantum state IOz+i) to be 
projected onto the subspace compatible with the observation. Let the outcomes of 
an observation be "accept", "reject" and "non-halting" corresponding to F , Erej 
and Enon respectively. Until "accept" or "reject" is observed, applying the time 
evolution operator and observation is repeated. If "accept" ("reject") is observed, 
boolean value 1 (0) is returned. 

  We say that a QBP P computes a function f (with error rate 1/2 - 6) if 
P returns the correct value of f for any inputs with probability at least 1/2 + S 

(6>0). o

  We show an example of a QBP 

1 or - , and only signs are put 
introduce the following theorem.

in Fig. 4.2, where the weight of each edge is 

on the figure. To check well-formedness, we
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Theorem 5 

   A QBP P is well-formed. 

   For any input x, the transition function S satisfies the following condition. 

                            ) = ql - q2    ~S(ql, x(ql), q')S(g2, x(q2), q, 1                               0 qi q2, 

q where S(q, a, q') denotes the conjugate of S(q, a, q'). 

(Proof) 
  It is obvious since UU is unitary if and only if the vectors Ua Jv) are orthonor-

mal. 0 

Definition 6 The Language Recognized by a Branching Program 

  In this chapter, we define a language L to be a subset of {0,1}*. Let the n-th 
restriction Ln of a language L be L fl {0,1}n. A sequence of branching programs 
{P,} recognizes a language L if and only if, there exists S(> 0), and the n-input 
branching program Pn computes the characteristic function fLn (x) of Ln with 
error rate at most 1/2 - S for all n E N, where 

    .IL-(x)= j 1 (xELn) 
         l 0 (xVLa). 

0 Definition 7 Bounded- Width Branching Programs 
   For a branching program P, we can make any path from the source to a node 

v have the same length by inserting dummy nodes. Let the resulting branching 
program be P'. We say that P' is leveled. Note that P' does not need to compute 
the same function as P. The length of the path from the source to a node v is 
called the level of v. We define width(i) for P as follows: 

    width(i) = {v I the level of v is i. } ( . 

We define Width(P) as follows: 

   Width(P') = max{width(i)} . 

2 We say that the width of P is bounded by Width(P'). 
  A sequence of branching programs {Pn} is a bounded-width branching program 

if, for some constant w, {Pn} satisfy the following condition. 

   VP E JP}, The width of P is bounded by w . 

0
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  We also call a sequence of branching programs "a branching program" when 
it is not confused. We denote a bounded-width QBP and a bounded-width PBP 
as a bw-QBP and a bw-PBP respectively. 

Definition 8 Ordered Branching Programs 
   Given a bounded-width branching program, we can make it leveled as shown 

in the above. For a given variable ordering 7r = (xkl < xk, < ... < xkn), if the 
appearances of the variables obey the ordering ir, that is, xki precedes xk, (i < j) 
on any path from the source to a terminal node, and the attached variables to all 
the nodes at the same level are the same, we say that the branching program is 
ordered. 0

4.3 Comparison of the Computational Power of 
    Ordered bw-QBP's and Ordered bw-PBP's 

In this section, we show that ordered bw-QBP's can compute some function that 
ordered bw-PBP's cannot compute. We define the function HALF,,, and the 
language LHALF. 

Definition 9 The Function HALFn and the Language LHALF 
   We define HALFn : Bn ---~ B as follows: 

                    1{x,Ixi =1}1 = 2     HALF
n(xl, ... , xn) = 0 otherwise 

  In the following, we denote the variables on which HALF" depends as X = 
{x1i x2, ... , xn}. We define LHALF as follows: 

   LHALF = {x (x E {0, 1}k, HALFk(x) = 1 } . 

0

4.3.1 Ordered bw-QBP's that Recognize LHALF 

In quantum computing, different computational paths interfere with each other 

when they reach the same configuration at the same time. In [18], a quantum 
finite automaton is constructed so that, only for inputs that the quantum finite 

automaton should accept, the computational paths interfere with each other. 

  In this chapter, we modify this technique for quantum branching programs, 

and construct a quantum branching program that recognizes the language LHALF. 
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Theorem 6 Ordered bw-QBP's can recognize LHALF. 

(Proof) 
   To show that ordered bw-QBP's can recognize LHALF, we construct an ordered 
bw-QBP that computes HALF,, for any n. Figure 4.3 illustrates the QBP. 

  We define the set of nodes Q as follows: 

           Q = IVs, v1, v2, v3, vacc, vrejl, vrej2} 
             U {v(i,xk)I xk E X, 1 < i < 3} 

              U {v(i,xk,j,T)I xk E X, 1 < i < 3, 1 < j < i} 
             U{v(i,xk,j,F)Ixk EX,1 <i<3,1 < j <3-i+1} . 

   The variable attached to the node V(i,xk), V(i,xk,j,T), and V(i,xk,9,F) is xk. The 
variable attached to the node vs is x1. The variable attached to the node v1, v2, 

and v3 is xn. 

  We define the accepting set (Qa,,), the rejecting set (Qrej), the set of 0-edges 

(Eo), the set of 1-edges (El) and the weights of edges (w(e)) as follows: 

    Qacc = {vacc}, Qrej = {vrejl, vrej2} .

Eo = { (vs, v(i,xl)) I 1 < i < 3 } 
      U { (v(i,xk), v(i,xk,1,F)) 11 < i < 3,1 < k < n } 

      U { (v(i,xk,j,F), v(i,xk,7+1,F)) 11 < i < 3,1 < j < 3 - i, 1 < k < n } 
      U { (v(i,xk,3-i+1,F), v(i,xk+l)) I'< i < 3, 1 < k < n - 1 } 

      U { (v(i,xn,3-i+1,F), vi) 11 < i < 3 } 
      U {(vi, vacc), (vi, vrejl), (vi, vrej2) 11 < i < 3 }

El = { (vs, v(i,xl)) 11 < i < 3 } 
      U { (v(i,xk), v(i,xk,1,T)) 11 < i < 3,1 < k < n } 

      U {(v(i,xkJ,T), v(i,xk,7+1,T)) I1 < i < 3,1 < j < i - 1,1 
      U { (v(i,xk,i,T), V (i,xk+l)) I 1 < i < 3,1 < k < n - 1 } 

      U { (v(i,xn,i,T), vi) 11 < i < 3 } 
      U {(vi, vacc), (vi, vrej1), (vi, vrej2) 11 < i < 3 }

<k<n }

w((vs, v(l,x,.))) 

w((v1i v-M =

= w((vs, v(2,xi))) 

W((vl, vrejl))

= w((vs, v(3,xi))) = 

W((vl, vrej2)) = 
V J ,

1
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       w((V2, Vacc)) _ W((v2, Vrejl)) _ exp 0232/ 
      VI((V2             Vrej2)) _                    xp 0432) I w((V3, Vacc)) = Y 3 

      w ((VS             Vrejl)) _ exp 0432/ , w((VS~ Vrej2)) = v _3_ Cg32/ exp 
The weights of the other edges are all 1. 
  Adding some more nodes and edges, each node of the QBP can be made to 

have 

 [1] one incoming 0-edge and one incoming 1-edge with the weight of 1, 

     or, 

 [2] three incoming 0-edges and three incoming 1-edges with the same weights 
       between (211iY72, 41g) and (Vacs Vrejli Vrej2)• 

and also have 

 [1] one outgoing 0-edge and one outgoing 1-edge with the weight of 1, 
     or, 

 [2] three outgoing 0-edges and three outgoing 1-edges with the same weights 
     as between (vl, v2i v3) and (Vacc, Vrejl, Vrej2)• 
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In addition, incoming edges of each node can be made to be originated from the 
nodes to which the same variable attaches. Then it is straightforward to see that 
this QBP can be well-formed by Theorem 5. 

  Given an input x, let the number of the variables in X = {x1,... , xn} to 
which the value 1 is assigned be k. Then the number of steps from V (i,xi) to vi 
is ik + (3 - i + 1)(n - k) + n. Thus for any two distinct i and j (1 < i, j < 3), 
the number of steps from the source to vi (vj) is the same if and only if k = n/2. 
Therefore the superposition of this QBP becomes 1 lv1) + Iv2) + Iv3) after 
3n + 1 steps if HALFn(x) = 1. Since UU ( Iv1) + Iv2) + Iv3)) = lvacc), 
this ordered bw-QBP returns 1 with probability 1 if HALF,,(x) = 1. On the 
other hand, since US l Vi) = I v c) + e Ivrejl) + e IVrej2), this ordered bw-QBP                                                    r- '3 

returns 0 with probability 2/3 if HALFn(x) = 0. Therefore this ordered bw-QBP 
computes HALFn with one-sided error. 0

4.3.2 Ordered bw-PBP's cannot Recognize LHALF 

Theorem 7 Ordered bw-PBP's cannot recognize LHALF. 0 

  To prove Theorem 7, we introduce the following definition and lemma. 

Definition 10 Total Variation Distance 
  The total variation distance of two probability distributions P1 and P2 over 

the same sample space I is defined as follows: 

2 
   2 E I Pl (i) - P2 (i) l 

       iEI 

Similarly, we define the total variation distance of two vectors x1 = (a,,... , an) 
and x2 = (b,.... , bn) (al, ... ) an, bl,... , bn : real numbers) as follows: 

1 

    2 Iai-bil 
       1<i<n 

0 

Lemma 12 Let rm be the set that consists of all probability distributions of m 
events, that is, 

     I'm = {(a1, ... , am) jai > 0.... , am > 0, a1 + ... + am = 1 } 

  For any constant 6 (6 > 0) there exists a natural number N, and for any finite 
set S C I'm, if the cardinality of S is greater than N, the following holds. 

    ID, E S, D2 E S(D1 D2) 
     (the total variation distance of D1 and D2) < 6
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(Proof) 
  Fm is a bounded subset of a m-dimensional metric space whose distance be-

tween points is defined as the total variation distance. Thus F' can be contained 

by some m-dimensional regular polyhedron whose volume is larger than Fm. We 

decompose the polyhedron into a finite number of smaller m-dimensional regular 

polyhedra whose lengths of edges are smaller than m . Let the number of such 
smaller polyhedra be N. For any two points in such a smaller polyhedron, the 

total variation distance of them is less than S. Thus if the cardinality of S is 

greater than N, there exist two distinct elements in S, say u and v, and the total 

variation distance of u and v is less than 6. El 

  We show the proof of Theorem 7 in the following. 

(Proof of Theorem 7) 
  We assume that there is an ordered bw-PBP {Pn} that recognizes LHALF, 

that is, P E {Pn} computes HALF,, with error rate 1/2 - 6. We say that a PBP 
is in normal form when all the variables appear on any path from the source 

to a terminal node. We assume that P is in normal form with the ordering 

v = (x1 < ... < xn) without loss of generality. Let Sz be the set of the variables 
of the former half of the variable ordering, that is, S 2 = {xjI1 < j < 2 }. When 
n is sufficiently large, there are sufficient number of assignments to the variables 
in SZ such that, for any two distinct assignments, the weights of the assignments 
differ. Let Da denotes the probability distribution for the nodes at which we 

arrive when we compute according to a. That is, Da(V) is the probability such 
that we arrive at the node v after we compute according to a. For sufficient 

number of assignments, there are sufficient number of corresponding probability 

distributions. Thus, since P is a bounded-width PBP, when n is sufficiently large, 

there are two distinct assignment, say a1 and a2, to the variables in SZ satisfying 

the following conditions by Lemma 12. 

  • The total variation distance of Dal and Dal is less than 6. 

  • The weight of a1 (the number of 1 in al) differs from that of a2. 

  Let arest be the assignment to the variables of the latter half of the variable 

ordering such that, for the complete assignment a1 - arest, HALF,,,(al . arest) = 1. 
Then if we compute according to a1 • crest, we arrive at the terminal node of 1 

with probability at least 1/2 + 6. On the other hand, if we compute according to 
a2•arest, we arrive at the terminal node of 1 with probability at least 1/2+6-S = 
1/2. We show the reason in the following. 
  Let I be 

. 

   I = {ZIDai(2) > D-2(')I
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Since the total variation distance of Dal and Dal is less than S,

E (Dai (2) - Dal (2)) _ E (Daz (i) - Dai (2)) < 6. 
iEI i¢I

Thus comparing the probabilities with which we arrive at the terminal node of 1 

computing according to al • arest and a2 - crest, the difference of the probabilities is 

at most S. Therefore we arrive at the terminal node of 1 with probability at least 

1/2 + S - S = 1/2 if we compute according to a2 • arest. However this probability 
must be less than 1/2 - S. This is a contradiction. El

4.4 Conclusion

In this chapter, we show that there is a function that can be computed by ordered 

bw-QBP's but cannot be computed by ordered bw-PBP's. This is an evidence 

that introducing quantum effects to a computational model increases its power. 

  It is still the future work to study what results we obtain if we remove the re-

striction of bounded-width and variable ordering. Since quantum computational 

models must be reversible, introducing classical "reversible branching programs" 

and comparing them with quantum branching programs can also be future work.
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Chapter 5

On the Power of 

Non-deterministic Quantum 
Finite Automata

5.1 Introduction

Recently, the power of quantum computation models has been investigated inten-

sively, and many results such as Shor's polynomial-time factoring algorithm [21] 
and Grover's searching algorithm [15] have been proposed, which suggest that 
quantum computers might be more powerful than classical ones. However, it is 

still unclear how the computational power arises. 

  As quantum computation models, various kinds of quantum finite automata 

have been proposed, including 1-way and 2-way quantum finite automata. The 

power of those automata has been studied in [3, 4, 6, 18]. Quantum computers 
must be reversible since their state transition operator must be unitary. Because 

of this constraint, it is not always the case that quantum computation models 

are more powerful than classical counterparts. In fact, it has been shown that 

the class of languages recognized by 1-way quantum finite automata is a proper 

subset of the class of all regular languages since reversibility becomes critical for 

1-way models [18]. 
  On the other hand, the class NQP was proposed as the class of problems that 

are solvable by non-deterministic quantum Turing machines in polynomial time 

[1], and the relation to the class co-C=P has been shown in [13, 14, 23]. 
  As for classical finite automata, the capabilities of deterministic finite au-

tomata and non-deterministic finite automata are the same in terms of accept-

ing languages. In this chapter, we investigate whether non-determinism makes 

(1-way) quantum finite automata more powerful or not. We introduce (1-way)

69



non-deterministic quantum finite automata in which the same non-determinism 
as in non-deterministic quantum Turing machines is applied. That is, if for an 
input word the probability of outputting 1 is 0, the word is rejected, otherwise, 
it is accepted. 

  We prove that a non-regular language LEQ, which is described later, can be 
recognized by non-deterministic quantum finite automata, and also show that 
any regular language can be recognized by non-deterministic quantum finite au-
tomata. In other words, non-deterministic quantum finite automata are strictly 
more powerful than classical deterministic/non-deterministic finite automata, and 
also strictly more powerful than 1-way quantum finite automata. 

  These results mean that the non-determinism introduced to quantum finite 

automata certainly increases their capabilities in terms of accepting languages. 

The results also imply that, as for quantum finite automata, non-deterministic 

1-way models can be more powerful than classical counterparts in spite of the 

restriction of reversible state transitions. 

  As a similar model, unbounded-error measure-many quantum finite automata 

have been studied in [6]. Our model can be regarded as a subclass of the model, 
in which its 'cut-point' is restricted to zero. In [6], inclusion of regular lan-
guages has not been shown. The above result of ours relating to inclusion of 

regular languages is shown for models which are considered to be less powerful 

than unbounded-error measure-many quantum finite automata. Thus, it is im-

plied that unbounded-error measure-many quantum finite automata are powerful 

enough to accept any regular language. 

  This chapter is organized as follows: Section 5.2 defines the non-deterministic 

quantum finite automata. Section 5.3 describes the main results. Section 5.4 

concludes this chapter.

5.2 Non-Deterministic Quantum Finite Auto-
mata

We define several types of finite automata in the following. 

Definition 11 (DFA) A deterministic Finite Automaton 
the following 5-tuple: 

    M= (Q,E,6,go,Qf), 

where Q is the set of states, E is the set of input symbols, 6 

function (6 : (Q x E x Q) --3 {0,1}), qo is the initial state 
accepting states.

(DFA) is defined by

is the state transition 
 and Q f is the set of 

              El
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  S(q, a, q') = 1 (0) means that the state changes (does not change) from q to 
q' when reading an input symbol a. For any q and a, there is exactly one q' that 

satisfies b(q, a, q') = 1. For an input word w, M reads the input symbol one by 
one, and states change as follows: 

  • Let the current state be q and the input symbol be a. The state changes 

    from q to q', where 8(q, a, q') = 1. 

If the final state (i.e., the state after reading all the input symbols) is in the set 
of the accepting states Q f, we say that M accepts the word w, otherwise, we say 
that M rejects the word w. 

Definition 12 (NQFA) A non-deterministic Quantum Finite Automaton (N-
QFA) is defined by the following 8-tuple: 

    M = (Q, E, I', b, qo, Qacc) Qrej' Qnon), 

where Q is the set of states, E is the set of input symbols, F = E U {~, $} ( and 
$ are the left and the right end-marker, respectively) is the set of tape symbols, 6 
is the state transition function (S : (Q x E x Q) --3 C), qo is the initial state, 
Qacc is the set of accepting states, Qrej is the set of rejecting states, Qnon = 
Q \ (Qacc U Qrej) is the set of non-halting states, and Qacc n Qrej = 0, where C 
is the set of all complex numbers. El 

  8(q, a, q') = a means that the amplitude of the transition from q to q' when 
reading a is a. Since configurations of an NQFA are described by only its states, 
we identify a configuration of an NQFA with its state. A superposition of configu-
rations in NQFA M is any element of 12(Q) of unit length. For each configuration 
q E Q, we define a column vector Iq) as follows: 

  • 1q) is a I Q I x 1 column vector. 

  • The row corresponding to q is 1, and the other rows are 0. 

For an input symbol a, we define a time evolution operator Ua as follows: 

   Ua(I q)) = S(q, a, q') I q') 
                 q'EQ 

If Ua is unitary for any a E E, that is, UatUa = I, then we say that the corre-
sponding NQFA is well-formed. This means that the NQFA is considered to be 
valid in terms of the quantum theory. We consider only well-formed NQFA's in 
the following.
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  We define the observable 0 = Enon ® Eacc (D Erej as follows: 

                Enon = span{ I q) Iq E Qnon}, 
                Eacc = span{) q) Iq E Qacc}, 

               Erej = span{ Iq) I q E QTej }. 

We define the outcomes of an observation to be "non", "acc" and "rej" corre-
sponding to Enon, Eacc and Erej respectively. 

  We define the notion of "words accepted by an NQFA M" as follows. 
  Let the initial state be qo. We define 100) = Iqo). We operate as follows: 

(a) We define Iii+l) to be I'Z+1) = Ua 10i) for the i-th input a. 

(b) We observe 10z+1) with respect to the observable 0. Note that this obser-
    vation causes IV)Z+1) to be projected onto the subspace compatible with the 

    observation. If the outcome is "acc", then the output of the NQFA is 1. If 
    the outcome is "rej", then the output is 0. If the outcome is "non", then 

   repeat (a). 

We call the above (a) and (b) `one step' collectively. For a word w, if the probabil-
ity of outputting 1 is not 0, we say that the NQFA accepts the word w, otherwise, 
we say that it rejects the word w. 

  The set of words accepted by a finite automata (deterministic or not) is the 
language recognized by the finite automata. 

  As an unbounded error quantum computation model, unbounded error measu-

re-many quantum finite automata (MM-QFA's) are introduced in [6]. An un-
bounded error MM-QFA is said to accept a language L with cut-point A if for all 
x E L the probability of M outputting 1 is greater than )A and for all x V L the 
probability of M outputting 1 is at most A. An NQFA is considered to be a spe-
cial case of an unbounded-error MM-QFA such that A =0. Thus the languages 
recognized by NQFA's are also recognized by unbounded-error MM-QFA's, but 
the converse is not certain. 

  To check well-formedness, we introduce the following lemma. 

Lemma 13 NQFA M is well-formed. The state transition function satisfies 
the following condition: 

= 

    Y 6(q', a, gl)S(g1, a, q2) 1 (qi q2)                   = 
0 (qi ~ q2) , 

       q'

where S(, •, •) is the conjugate of S(•,
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(Proof) 
  A matrix Ud is unitary if and only if Ua,UQ = I, where Ua is a transpose 

conjugate of U,,,. (i, j)-element of U,, Q, is Eq' 6(q', a, gi)6(q', a, qj). Thus, it is 
obvious that the lemma holds. El

5.3 NQFA's and Regular Languages 

In this section, we show that the class of languages recognized by NQFA's properly 

contains the class of all regular languages.

5.3.1 An NQFA that Recognizes the Language LEQ. 

We define the language LEQ as follows: 

                    w E {a, b}*, 
               * The number of a in w     LEQ = {a, b} \ w is equal to the number 

                    of b in w. 

It is obvious that language LEQ is not a regular language. We show that NQFA's 
can recognize LEQ. 

  In [3, 6], it has been shown that languages similar to LEQ can be recognized 
by variants of quantum finite automata. Based on those models, we can also make 
out quantum finite automata which accepts LEQ. Furthermore, by modifying 
the definition of "acceptance" appropriately, they can be regarded as NQFA's. 
In this sense, the following theorem is straightforward. To keep the chapter self-
contained, we show the proof of the theorem.

Theorem 8 NQFA's can recognize language LEQ. 

(Proof) 
  The NQFA with the following set of states and state transition function rec-
ognizes the language LEQ. 

                         Q = {qo, qi, qacc, grej } 

                 6(qo, a, qo) = cos V7r 

                 6(go,a,gi) = sin\~ 
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   S(qi, a, qo) = 

   S(qi, a, qj) = 

   S(qo, b, qo) = 

   S(qo, b, qj) = 

   S(qi, b, qo) = 
   S(qi, b, qj) = 

   S(qo, t, qo) = 

   b(qi, qj) = 

  S(qo, $, grej) _ 

 b(qi, $, gacc) = 

S(grej, a, grej) = 

S(gacc, a, gacc) = 

S(gTej, b, grej) = 

S(gacc, b, gacc) = 
  S(grej, $, qo) = 

 S(gacc, $, qj) = 

S(grej,~, grej) = 

S(gacc, ~, gacc) =

- sin vF2~r 

cosv2 n 

cos(-V7) 

sin v'2-,7r) 
- sin (-/ir) 

cos(-v'-27) 

1 1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1

It is obvious that the NQFA is well-formed by Lemma 13. 
  Let the initial state be IQ. The state is rotated by %/ r in the two dimensional 

space that is spanned by I qo) and I qi) if the input symbol. is a, and it is rotated 
by -V2--F if the input symbol is b. Thus, the superposition contains exactly one 
configuration Iqo) after reading the word w if and only if the number of a in w is 
equal to the number of b in w. If the number of a in w differs from the number of 

b in w, the superposition becomes a (qo) +,Q jqi) (# 0). Therefore, this NQFA 
recognizes the language LEQ. 0 

  We discuss the accuracy of the amplitudes of the NQFA in the following. We 
obtain the following lemma from Lemma 6 in [3].

Lemma 14 

at least i        2Iw12'

The NQFA in Theorem 8 outputs 1 for w E. LEQ with probability 

0

By Lemma 14, we can say that the accuracy (i.e., the number of bits) needed to 
represent the amplitudes is at most polynomial in terms of input lengths.
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5.3.2 Recognition of Regular 

We show that, for any regular language, 

language.

Languages by NQFA's 

there is an NQFA that recognizes the

Theorem 9 For any DFA, there is an NQFA that recognizes the language 
ognized by the DFA.

rec-

(Proof) 
  Let M = (Q, E, S, qo, Q f) be an arbitrary DFA. We are to make an NQFA 

    M* = (Q*, E, r, 6*, qo, Qacc, QTej' Qnon) 

that recognizes the language recognized by M. 
0   First, we will define the set of states Q*. Let Qm = Q \ Q f. 

  For each q E Q and a E E, let S(q, a) °= {q'Ib(q', a, q) = 1}, that is, the 
set of origins of incoming transitions to q. And for each a E E, let Da °_ {q E 

Q I I S(q, a) I > 2}, and let Na --° {q E QI S(q, a) = O}. 
  Using these sets, we define Q* as follows. 

  Q* 0      _ (Qf U QM U UaEE UgEDQ Raq) U (Of U Qm U UaEE UgED.. 4q), where Raq'S, 
Raq'S, Q f and Qm are mutually disjoint sets of new states (they are all disjoint 
from Q) such that IQfl = IQfI, IQml = IQml, and IRagi = IRagI = IS(q,a)I -1 
for aEE,gGDa. 

  As the cardinalities are the same, we can arbitrarily fix one to one correspon-
dence between Q f and Q f, also between Qm and Qm, and between Raq and Raq 
for a E E, q c Da. For q E Q f, we will denote the corresponding state in Q f by 

q. Similar convention will be used for Qm and Raq's. 
  For each Raq, we arbitrarily fix an ordering of states in Raq, which will be 

used in defining a transition function later. For a E E, we define Tao UgED.Raq. 
  As each state in M has exactly one destination state in the transition defined 

by S(., a,*), it is easy to see that ITal = I Nal. For each a E E, we arbitrarily 
define a bijection matea(.) from Ta to Na. 

  Now we will define 5* as follows. In the definition, as is stated before, q 
denotes the state corresponding to q.

J* (q, a, matea(q)) = 1 (q E Ta, a E E),

S*(q,b,q)=1 (geTa,aEE,bEE\{a}),
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q1 ~~ q 2 ---~q

1

Raq"

'

,mate(qz )

r

)~mate(q

S(q"..a)

q1,

Na

         Figure 5.1: Definition of 5*(., a, .) around Raq. 

S*(q, $, q) = 1 (q E Qf U Qm U UaTa), 

5*(q, $, q) = 1 (q E Qf U Qm U UaTa), 

8*(q, a, q) = 1 (a E E, q E Qf U Qm U UbTb),

   5*(q,~,q)=1 (qEQ*), 

   8*(q, a, g') = 1 C q'(E ,Q \ (Dq U Na)E~ ) 
     6*(q, a, q') _ exp('st) 

                    q E S(q", a), 
                       q' E Raq" U {q"}, , 

                        q11 E Da 

where k °_ IS (q", a) I > 2 and q is the s-th state in S(q", a) and q' the t-th state in 
Raq11 U {q"} and q" the last (i.e., the k-th) state in Raq" U {q"} (we assume fixed 
orderings in S(q", a) and in Raq" U {q"}). 
And for q, q' E Q* and a E E U {~, $} , for which S*(q, a, q') is not thus far defined, 
S* (q, a, q') = 0. 

  We illustrate the definition of 6* in Figure 5.1 and Figure 5.2. 
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Figure 5.2:

X -- QfU QmU UaTa      -- - QfU QmU UaTa 

Definition of b*(•, $, •) between q and q. 

                   ® states in Da states in Ta 
                  ® states in Na 0 states in QfU4mUUaTa

                                                     Transitions         Transitions of the original DFA M for an input symbol a . 
                                                           symbols a and $. 

           Figure 5.3: An example of M and corresponding M*. 

  Now we define Qnon, Qacc, and QTe~ as follows: 

              Qacc 0 = Qf 

             Qrej UaTa Ua Ta U (Q \ Qacc), 

                          ) (= Q)•             Qnon Q* \ (Qacc U Qrej 

  We define M* to be 

    M* = (Q*, E, r, S*, q0, Qacc, QTej ̀ t Tlon) 

where F = E U {~, $}. We illustrate an example of M and corresponding M* in 
Figure 5.3. 

Remark: We have replaced the transition from S(q, a) to q in M by a so-called 

quantum Fourier transform from S(q, a) to Rag U {q} (in case IS(q, a) I > 2). 
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  We claim that M* recognizes the language recognized by M and that 

well-formed. 

Well-formedness of the Resulting NQFA

M* is

  As the cases for a E {~, $} are clear, let a E E be arbitrarily fixed in the 
following. 

  Let S*(q, a) be defined on M* similarly to the way S(q., a) was defined on M, 
that is, S- (q, a) {u E Q* I S*(u, a, q) 0}. 

  It is not hard to see that I S* (q, a) > 2 if q E Ta U Da, and I S* (q, a) = 1 
otherwise. This implies that S* (q, a) 0 for any q E Q*• Also it is not hard to 
see that for any qi, q2 E Q*, either S*(qi, a) = S* (q2, a) or S*(qi, a)nS*(q2i a) _ 0. 

  We check the value of 

                      b*(q', a, qi)6*(q', a, q2) 
                        q' 

                               S*(q'~ a, qi)6*(q~~ a, q2) 
                         q'ES* (gl,a)flS* (q2,a) 

First, we assume that qi = q2. 

Case 1 : IS*(ql,a)l= 1 
  For q' E S*(ql, a), by the definition of 8*, 8*(q', a, qi) = 1. Thus, 

                        b*(q', a, qi)6*(q, a, qi) 
                           q' 

                             S*(q', a, qi)s*(q', a, qi) 
                               q'ES*(ql,a) 

                    = 1. 

Case 2 : IS*(qi,a)l > 2 
  In this case, there is a state q" E Da such that S*(qi, a) = S(q", a) and 

qi E Raq11 U {q"}. 
  For q' E S*(qi, a) = S(q", a), S*(q', a, qi) = exp(2k2cj), where k = IS*(qi, a)I 

and j, c E {1, 2, ... , k} are such that q' is the j-th state in S*(qi, a) = S(q", a) 
and qi is the c-th state in Raq" U {q"}. Thus, 

                            5*(q',a,gi)b*(q ,a,qi) 
                               q'ES*(ql,a) 

                            b*(q', a, qi)b*(q~, a, qi) 
                               q'ES(q",a) 

                 _ k=1 
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  Next, we assume that q1 q2. 

Case 1 : S*(ql, a) 4 S* (q2, a) 
  In this case, S*(ql, a) n S*(q2, a) _ 0. Thus, E q. b*(q', a, ql)6*(q', a, q2) = 0. 

Case 2 : S*(ql, a) = S* (q2, a) 
  In this case, there exists a state q" E Da such that ql, q2 E Raq"1 U {q"} and 

S*(ql, a) = S* (q2, a) = S(q", a). Thus 

                 L.7 b*(q', a, q1)6*(q!, a, q2) 
                       q'

q'ES(q"",a) 

1<j<k NFk 

1<j<k 

0,

S*(q', a, ql)S*(q~, a, q2)

  exp C 

1 

 exp

2 

2-7ri

Sri 1 
j k cgl 

(Cq2 - C) 'rk- qi )j
exp(

2iri . 

_ Cq2)

where k _ IS* (ql, a)I, and cql and Cq2 are non identical integers determined by ql 
and q2, respectively. 

  Therefore, the NQFA is well-formed by Lemma 13. 

Recognition of the language 
  We show that M* recognizes the language recognized by M in the following. 

  The outcomes of observations for M* are never "acc" before reading the right 
end-marker $. Thus, the outcome is only "rej" or "non" when it reads a symbol in 
F \ {$}. We consider one step from Iq) reading a E F \ {$}, where q E Qnon. The 
probability of obtaining "non" after the step is not 0, and if "non" is obtained, 

then the state collapses to the state jq') that consists of a single configuration q', 
where S(q, a, q') = 1. Thus, the probability of having only "non" (as outcomes) 
until reading the right end-marker $ is not 0, and in such a case, the sequence 
of the state transitions of M* is the same as that of M for the same input word. 
Therefore, when M reaches one of the accepting states (Q f) after reading an input 
word w, M* reaches the same state after reading w with probability greater than 
0. When M does not reach any of the accepting states after reading w, M* 
ends up with "rej" as the outcome in the middle of reading w or reaches one of 
the states in Q \ Q f after reading w.1 Therefore, M* recognizes the language 
recognized by M. 0 

  'The sequence of the state transitions is the same as that of M for w .
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  By Theorem 8 and Theorem 9, we can say that the class of languages recog-

nizable by NQFA's properly contains the class of all regular languages.

5.4 Conclusion 

In this chapter, we have introduced (1-way) non-deterministic quantum finite au-
tomata, and have compared them with classical finite automata. As a result, we 
have shown that the class of languages recognized by NQFA's properly contains 
the class of all regular languages. This means that non-deterministic quantum fi-
nite automata are more powerful than classical non-deterministic finite automata, 
and also they are more powerful than 1-way quantum finite automata. 

  It remains to compare NQFA's with push down automata, and to study 
whether NQFA's can be more compact than classical finite automata.

80



Chapter 6

Conclusions

In this dissertation, we investigated expressive power of several decision diagrams 

and quantum computation models. In Chapter 2, we showed that lower bounds 

on the size of binary moment diagrams representing division are exponential. 

This follows known experimental results. 

  In Chapter 3, we showed that the problem of finding the best decomposi-

tion type list for shared OKFDD's is NP-hard. This means that even if shared 

OKFDD's can represent given functions efficiently, it might be time consuming 

to find such small representations. 

  Decision diagrams are used in various area, and it is required to represent 

functions as small as possible. Therefore it is important to investigate expressive 

power of decision diagrams. It remains to investigate upper/lower bounds on the 
size of other decision diagrams. 

  In Chapter 4 and 5, we investigated the expressive power of quantum com-

putation models. It has been shown that quantum computation models have 

much more expressive power than classical computation models. We showed that 

there is some function that can be computed by bounded-width ordered quantum 

branching programs, but cannot be computed by classical counterparts. We also 

showed that non-deterministic quantum finite automata can be strictly more pow-

erful than classical deterministic/non-deterministic finite automata. This result 
also means that non-deterministic quantum finite automata is strictly more pow-

erful than 1-way quantum finite automata since 1-way quantum finite automata 

can recognize a proper subset of regular languages. 

  Recently quantum computers has attracted much attention, and many results 

have been shown suggesting that quantum computers can be more powerful than 

classical ones. However, it is still unclear what kind of problems are suitable 

for quantum computers solving. By investigating expressive power of quantum 

computation models, we might answer the question what is the secret to exploit
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quantum effects in computing. It remains to investigate other quantum computa-

tion models and to extract common properties that make quantum computation 

models more powerful.
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