
Title Expressive Power of Decision Diagrams and
Quantum Computation Models

Author(s) 中西, 正樹

Citation 大阪大学, 2002, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/2704

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Expressive Power of Decision Diagrams

 and Quantum Computation Models

Masaki Nakanishi

November 2001

Expressive Power of Decision Diagrams and

 Quantum Computation Models

 Masaki Nakanishi

 November 2001

Abstract

In this dissertation, we discuss expressive power of some decision diagrams, which

are representations of functions, and some quantum computation models.

 Many kinds of representations of functions have been proposed such as truth

tables, CNF's and various kinds of decision diagrams. It is desired that they have

much expressive power, that is, the size of representations of functions should be

small, or the class of functions that can be represented should be large on the

condition that the size of representations is restricted.

 When we discuss abilities of computation models such as finite automata and

push down automata, we associate computation models with formal languages.

Then abilities of computation models are evaluated in terms of to what extent

the computation models can recognize languages. This evaluation is also based

on the criteria of expressive power.

 In this dissertation, we show several results concerning expressive power such

as lower bounds on the size of a certain decision diagram and abilities to recognize

languages of certain computation models.

 In a practical sense, it is inconvenient if finding a small representation takes

too much time even though the representation has a small expression. Thus

it is also important to investigate how complex finding a small (or minimum)
representation is. We also discuss complexity of finding a minimum representation
of a certain decision diagram.

 In this dissertation, we deal with two sorts of decision diagrams. One is a
binary moment diagram, which represents a function from binary vectors to in-
tegers. The other is a Kronecker functional decision diagram, which represents
a boolean function. Binary moment diagrams can represent several arithmetic
functions, including multiplication, efficiently, while binary decision diagrams
need an exponential number of nodes to represent (a particular bit of) multipli-
cation. However, some experimental results show that lower bounds on the size

of a binary moment diagram representing division may be exponential. We give a

theoretical proof to this result. Kronecker functional decision diagrams are gen-

eralized decision diagrams, which take any decomposition type for each variable.

i

The size of a Kronecker functional decision diagram depends on a given decom-

position type list. We show that the problem of finding the best decomposition

type list is NP-hard.

 We deal with "quantum computation" as well as "classical computation".

In this dissertation, we propose two quantum computation models, quantum

branching programs and non-deterministic quantum finite automata. Branch-

ing programs are decision diagrams that are also known as (unordered) binary
decision diagrams. We show that under a bounded-width restriction, ordered

quantum branching programs can compute some function that ordered proba-

bilistic branching programs cannot compute. We also show that the class of

languages recognized by non-deterministic quantum finite automata properly in-

cludes the regular languages. This result means that non-deterministic quantum

finite automata are strictly more powerful than classical non-deterministic finite

automata since finite automata (regardless of deterministic or not) can recognize
exactly the regular languages.

ii

Acknowledgement

I am deeply indebted to many people for the advice and supports on this work.

I would especially like to thank my supervisor Professor Toshinobu Kashiwabara

for his invaluable suggestions, advice, and discussions throughout the work. I am

obliged to Professor Toru Fujiwara and Professor Toshimitsu Masuzawa for their

helpful comments and suggestions.

 I would like to thank Associate Professor Kiyoharu Hamaguchi for his dis-

cerning comments and worthy discussions. I would also like to thank Research

Assistant Takashi Kizu for his helpful supports. I would also like to express
hearty thanks to Mrs. Yukiko Tanobe for her kind supports.

 Finally, I would like to thank all the members of Kashiwabara Laboratory,

Graduate School of Engineering Science, Osaka University.

iii

List Of Publications

Publications Related to the Thesis

. Journal Papers

[1] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara: An Exponential
 Lower Bound on the Size of a Binary Moment Diagram Representing

 Integer Division, IEICE Transactions on Fundamentals of Electron-

 ics, Communications and Computer Sciences, vol.E82-A, no.5, pp.756-

 766, May 1999.

[2] M. Nakanishi, M. Sawada, K. Hamaguchi, and T. Kashiwabara: The
 Complexity of the Decomposition Type Selection Problem of Kro-

 necker Functional Decision Diagrams, IEICE Transactions on Infor-
 mation and Systems, vol. J83-D-I, no.1, pp.115-120, January 2000 (in

 Japanese). (Letter)

[3] M. Nakanishi, T. Indoh, K. Hamaguchi, and T. Kashiwabara: On the
 Power of Non-deterministic Quantum Finite Automata: IEICE Trans-

 actions on Information and Systems (to appear).

. International Conference

[4] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara: Ordered Quantum
 Branching Programs Are More Powerful than Ordered Probabilistic

 Branching Programs under a Bounded-Width Restriction, Proceedings
 of 6th Annual International Computing and Combinatorics Confer-

 ence (COCOON 2000), Lecture Notes in Computer Science, vol.1858,
 pp.467 - 476, July 2000.

. Workshops and Technical Reports

[5] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara: Exponential Lower
 Bounds of the Sizes of Binary Moment Diagrams Representing Divi-

v

 sion, IEICE Technical Report, COMP97-53, pp.63-70, October 1997

 (in Japanese).

[6] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara: An Exponential
 Lower Bound on the Size of a Binary Moment Diagram Representing

 Division, Booklet of 7th International Workshop on Post-Binary ULSI

 Systems, pp.42-43, May 1998.

[7] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara: On Comparison
 between Quantum Branching Programs and Probabilistic Branching

 Programs under Read-Once and Bounded-Width Restrictions, IEICE
 Technical Report, COMP99-95, pp.127-134, March 2000 (in Japan-

 ese).

[8] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara: On the Power of
 Bounded Width Quantum Branching Programs, NAIST Technical Re-

 port, NAIST-IS-TR2000010, November 2000 (in Japanese).

[9] M. Nakanishi, T. Indoh, K. Hamaguchi, and T. Kashiwabara: Non--
 deterministic Quantum Finite Automata, NAIST Technical Report,

 NAIST-IS-TR2000014, December 2000 (in Japanese).

[10] M. Nakanishi, K. Hamaguchi, and T. Kashiwabara: On the Power of
 Bounded Width Quantum Branching Programs, LA Symposium, Jan-

 uary 2001 (in Japanese).

[11] M. Nakanishi, T. Indoh, K. Hamaguchi, and T. Kashiwabara: On the
 Power of Quantum Pushdown Automata with a Classical Stack and
 1.5-way Quantum Finite Automata, NAIST Technical Report, NAIS-

 T-IS-TR2001005, March 2001.

Other Publications

 • International Conference

 [12] K. Nakamura, M. Nakanishi, T. Horiyama, M. Suzuki, S. Kimura, and
 K. Watanabe: A Real-Time User-Independent Eye Tracking LSI with

 Environment Adaptability, Proceedings of 10th Workshop on Syn-

 thesis and System Integration of Mixed Technologies (SASIMI 2001),
 pp.357-361, October 2001.

 • Workshops

 vi

[13] K. Nakamura, M. Nakanishi, T. Horiyama, M. Suzuki, S. Kimura, and
 K. Watanabe: Real-Time Eye Tracking LSI for Eye-Based Interface,

 4th System LSI Biwako Workshop, pp.267-270, November 2000 (in
 Japanese).

[14] K. Watanabe, S. Kimura, T. Horiyama, M. Nakanishi, Y. Itoh, K. Na-
 kamura, F. Lo, and F. Miyawaki: A Design Methodology of Uncon-

 ventional Systems - Promotion of Designers of New Information Sys-

 tems -, Symposium on Information System and Social Environment,

 IPSJ Symposium Series, vol.2001, no.3, pp.25-32, January 2001 (in
 Japanese).

vii

Contents

1

2

3

4

Introduction

On the Size of Binary Moment Diagrams Representing Division
2.1 Introduction
2.2 Preliminaries

 2.2.1 Multiplicative Binary Moment Diagrams
 2.2.2 Input Assignments and Left Terms

 2.2.3 Fooling Sets .
 2.2.4 p-Splits .

2.3 A Lower Bound on the Size of a *BMD Representing a Quotient
 Function .

2.4 A Lower Bound on the Size of a *BMD Representing a Remainder

 Function .
2.5 Conclusion .

Kronecker Functional Decision Diagrams and the Complexity of
Finding the Best Decomposition Type List
3.1 Introduction .

3.2 Preliminaries .
 3.2.1 Ordered Kronecker Functional Decision Diagrams

 3.2.2 Reduced OKFDD's .
 3.2.3 Shared OKFDD's
 3.2.4 Complement Edge .

3.3 NP-hardness of Decomposition Type Selection Problem of Kro-
 necker Functional Decision Diagrams

3.4 Conclusion .

On the power of Quantum Branching Programs

4.1 Introduction .
4.2 Preliminaries .

 ix

1

5

5

6

6

7

11

12

14

28

42

45

45

46

46

47

47

48

49

56

57

57

58

4.3 Comparison of the Computational Power of Ordered

 and Ordered bw-PBP's

 4.3.1 Ordered bw-QBP's that Recognize LHALF

 4.3.2 Ordered bw-PBP's cannot Recognize LHALF

4.4 Conclusion .

bw-QBP's

62

62

65

67

5 On the Power of Non-deterministic Quantum Finite Automata

 5.1 Introduction
 5.2 Non-Deterministic Quantum Finite Automata

 5.3 NQFA's and Regular Languages
 5.3.1 An NQFA that Recognizes the Language LEQ.

 5.3.2 Recognition of Regular Languages by NQFA's
 5.4 Conclusion .

69

69

70

73

73

75

80

6 Conclusions 81

Bibliography 83

x

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

An example of a *BMD.

An example of sharing nodes of a *BMD.

Argsp

An example of Splitp.. .

sand t

Sh and si

An example of the cases.

An example of assignments.

An example of an assignment.

An example of assignments.

An example of assignments.

An example of an assignment

An example of an assignment

An example of an assignment

An example of an assignment

An example of an assignment

An example of an assignment

3.1 Examples of an OKFDD and a reduced OKFDD representing f =
 xED yz

3.2 An example of an SOKFDD ..
3.3 An example of an OKFDD representing f = x ® y with a comple-

 ment edge ..
3.4 Examples of OKFDD's representing Fex with complement edges.
3.5 The functions that are represented by the nodes of SOKFDD(Ti).

4.1 Probabilistic branching programs that compute f = xy with error
 rate 0 and 0.2 respectively ..

4.2 A quantum branching program that computes f = x ® y with no
 error

4.3 A QBP that computes HALF. .

7

8

13

13

13

14

17

19

23

26

28

35

35

38

38

40

42

47

48

49

52

54

59

60

64

xi

5.1

5.2

5.3

Definition of 5*(., a, •) around Raq
Definition of S*(•, $,) between q and q
An example of M and corresponding M*

76

77

77

xii

Chapter 1

Introduction

To discuss how powerful particular algorithms and, in addition, computers on

which the algorithms run are, we analyze them in various kinds of criterion such

as time complexity and space complexity. In this dissertation, we focus on the

criteria of expressive power.

 To manipulate functions is one of basic operations of computation. Many

kinds of representations of functions have been proposed such as truth tables,

CNF's and various kinds of decision diagrams. It is desired that they have much

expressive power, that is, the size of representations of functions should be small,

or the class of functions that can be represented should be large on the condition

that the size of representations is restricted.

 When we discuss abilities of computation models such as finite automata and

push down automata, we associate computation models with formal languages.
Then abilities of computation models are evaluated in terms of to what extent

the computation models can recognize languages. This evaluation is also based

on the criteria of expressive power.

 In this dissertation, we show several results concerning expressive power such

as lower bounds on the size of a certain representation of functions and abilities

to recognize languages of certain computation models.

 In a practical sense, it is inconvenient if finding a small representation takes

too much time even though the representation has a small expression. Thus

it is also important to investigate how complex finding a small (or minimum)
representation is. We also discuss complexity of finding a minimum representation

of a certain data structure.

 We deal with several sorts of decision diagrams as representations of functions.

Decision diagrams are directed acyclic graphs representing functions. They can

represent some functions with relatively small space. The function is decomposed

at each node according to the decomposition type such as Shannon expansion and

1

Davio expansion, which is associated with each of the variables. The children of

the node represent the terms of the decomposed function. As for ordered decision

diagrams, given a variable ordering, the variables appear on any paths from the

root to terminal nodes according to the ordering. With a fixed variable order-

ing and fixed decomposition types, a decision diagram can represent a function

uniquely. This property of unique representation is used in the area of verifi-

cation of circuits[9, 10, 16], comparing the decision diagram that represents the
function computed by the circuit with the decision diagram that represents the

specification.

 The computation time and space of manipulating a decision diagram depend

on the size of the decision diagram. Studies on upper/lower bounds on the size
of decision diagrams and the algorithms of finding the best ordering have been

made[5, 8, 17, 22].
 In this dissertation, we deal with two sorts of decision diagrams. One is a

binary moment diagram, which represents a function fromm binary vectors to in-
tegers. The other is a Kronecker functional decision diagram, which represents
a boolean function. Binary moment diagrams can represent several arithmetic
functions, including multiplication, efficiently, while binary decision diagrams
need an exponential number of nodes to represent (a particular bit of) multi-

plication. Thus they are used in the area of verification of arithmetic circuits.
However, some experimental results show that lower bounds on the size for divi-

sion may be exponential. In Chapter 2, we give a theoretical proof to this result,

that is, we show that a binary moment diagram needs an exponential number

of nodes to represent division. Kronecker functional decision diagrams are gen-

eralized decision diagrams, which take any decomposition type for each variable.

The size of a Kronecker functional decision diagram depends on a given decom-

position type list. In Chapter 3, we show that the problem of finding the best

decomposition type list is NP-hard.

 The representations mentioned above are based on "classical computation".

We deal with "quantum computation" as well as "classical computation", and

propose several quantum computation models. Since Shor developed a polyno-

mial time factoring algorithm for quantum computers[21.j, much attention has
focused on quantum computation, and it has been shown that quantum com-

putation models can be more powerful than classical counterparts. Quantum
computers can exploit quantum effects, and can be in superpositions of config-

urations in their computation processes. With this feature, the computation by

quantum computers can be regarded as a kind of parallel computation, called
"quantum parallelism" . This quantum parallelism is the source of the power of

quantum computation.

2

 Several kinds of quantum computation models have been proposed such as

quantum Turing machines[11], quantum circuits[24] and quantum finite automata
[3, 4, 6, 18, 20]. It is believed that quantum Turing machines are more powerful
than classical Turing machines. Moreover it has been shown that even restricted

(or finite) models of quantum computation can be more powerful than classi-
cal counterparts in spite that quantum computation models must be reversible

in order to obey quantum theory. For example, the class of languages recog-

nized by 2-way quantum finite automata properly includes the regular languages.

However, the constraint of the reversibility makes some quantum computation

models less powerful than classical counterparts such that 1-way quantum finite

automata can recognize only a proper subset of the regular languages while 1-way

(classical) finite automata can recognize exactly the regular languages. Thus it is
unclear what kinds of quantum computation models can be more/less powerful
than classical counterparts, and it is important to investigate quantum compu-

tation models in detail.

 In this dissertation, we propose two quantum computation models, quantum

branching programs and non-deterministic quantum finite automata. Branch-

ing programs are decision diagrams that are also known as (unordered) binary
decision diagrams. We use "branching programs" rather than "binary decision di-

agrams" when we consider them as computation models, not as representations of

functions. In Chapter 4, we show that under a bounded-width restriction, ordered

quantum branching programs can compute some function that ordered probabilis-

tic branching programs cannot compute. In Chapter 5, we show that the class of

languages recognized by non-deterministic quantum finite automata properly in-

cludes the regular languages. This result means that non-deterministic quantum

finite automata are strictly more powerful than classical non-deterministic finite

automata since finite automata (regardless of deterministic or not) can recognize
exactly the regular languages.

 Chapter 6 concludes this dissertation, and discusses future works.

3

Chapter 2

On the Size of Binary Moment

Diagrams Representing Division

2.1 Introduction

A binary decision diagram (BDD) [2, 7] is a directed acyclic graph representing
a boolean function. BDD's can represent many useful boolean functions with

relatively small space. The size of a BDD depends on a given variable ordering.

The known lower bounds on the size of a BDD representing (a particular bit of)
multiplication[8] or division[17] are exponential, therefore BDD's are inconvenient
to represent arithmetic functions. Thus binary moment diagrams were introduced

to represent arithmetic functions efficiently by Bryant et al [9].
 A binary moment diagram (BMD) is a directed acyclic graph representing a

function from binary vectors to integers. A multiplicative binary moment diagram

(*BMD) is an extension of a BMD with edge weights attached, and can represent
some arithmetic functions, including multiplication, with the polynomial number

of nodes in terms of the number of inputs [9]. Thus it is used widely in the area
of verification of arithmetic circuits [9, 10, 16]. On the other hand, it had been
thought that division could not be represented efficiently even by a BMD or a
*BMD . Some experimental results show that lower bounds for division may be

exponential. However, there is no theoretical proof showing lower bounds for

division since the way of constructing BMD's or *BMD's for arithmetic functions

is more complex than that for BDD's. Thus it is not trivial to prove exponential

lower bounds for BMD's or *BMD's. In this chapter, we show exponential lower

bounds on the size of a *BMD representing a quotient function or a remainder

function. This also means that BMD's cannot represent these functions in poly-

nomial sizes since *BMD's can represent arbitrary functions more compactly than

BMD's.

5

 In Section 2.2, we explain the notion of fooling sets, which are useful to show

lower bounds, and show the relation between the cardinality of a fooling set and

the number of nodes of a *BMD. In Section 2.3 and 2.4, we show that lower

bounds on the size of a *BMD representing a quotient or a remainder function

are 1l(2n/24)

2.2 Preliminaries

2.2.1 Multiplicative Binary Moment Diagrams

A multiplicative binary moment diagram (*BMD) is a directed acyclic graph
representing a function from binary vectors to integers (f : {0, 1}n -* Z), where
Z is the set of all integers.

 In Bryant and Chen's original definition [9], we can construct a multiplicative
binary moment diagram uniquely by sharing isomorphic subgraphs and removing

redundant nodes. In this chapter, however, we allow multiplicative binary mo-

ment diagrams to contain multiple isomorphic subgraphs and to have redundant

nodes, since our purpose is to investigate a lower bound. Our results on lower

bounds guarantee that, even if we have all isomorphic subgraphs shared with

each other as much as possible, the size of a BMD or a *BMD representing a

quotient or a remainder cannot be less than the lower bound. In other words, the

lower bound is still valid for the original BMD's and *BMD described by Bryant

and Chen.

 A variable is attached to each internal node, and a constant integer value is

attached to each terminal node. Each internal node has exactly two outgoing

edges, called the 0-edge and the 1-edge respectively. Each node represents a

function from binary vectors to integers. For an internal node v, let the function

represented by v and the variable attached to v be f [v] and var(v) respectively,
let the node to which the 0-edge of v points and the node to which the 1-edge of

v points be low(v) and high(v) respectively, and let the non-zero integer weight
attached to the 0-edge of v and that to the 1-edge of v be 0-weight(v) and
1-weight(v) respectively. We do not allow *BMD's to have zero edge weight.
 The relation between functions represented by the nodes of a multiplicative

binary moment diagram is defined as follows:

 f [low(v)] = f [v] I var(y)=0 0-weight(v)

f [high(v)] =
f [v] I var(v)=1 - f [v] I var(v)=0

1-weight(v)

6

1

X 1

1 ,

1

2

X0

3

2

1

X 1

1

-.

3

2 • f [root] = 12x0x1 + 4xo + 6x1 + 2, 7r

1-edge

0-edge

= (x0 < xl)

Figure 2.1: An example of a *BMD.

where f (x is a function obtained by substituting a for a variable x of the function
f. A terminal node represents the constant function, whose value is attached
to the node. Let root-weight be the weight of the edge pointing to the root
node. The function root-weight • f [root] denotes the function represented by the
multiplicative binary moment diagram (See Figure 2.1).

 We assume that a variable ordering is given, and the appearances of variables

along any path from the root node to a terminal node obey the ordering. That

is, given 7r = (xkl < xk2 < ... < xkn) for a set of variables {x1i x2, ... , x,}, xkz
precedes xk, on any path from the root node to a terminal node if i < j, where
(k1, k2, ... , kn) is a permutation of (1, 2, ... , n). Each variable can appear at
most once on any path from the root node to a terminal node.

 For convenience, we describe `binary moment diagram' and 'multiplicative

binary moment diagram' as 'BMD' and `*BMD' respectively. When constructing

a BMD or a *BMD, we can share the nodes that represent the same functions

(See Figure 2.2).
 We give some more definitions to describe properties of *BMD's.

2.2.2 Input Assignments and Left Terms

Let f be a function from binary vectors to integers. Let X ={X1, x2, ... , xn}
be the set of inputs of f. An input assignment a : X - {0, 1} is an assignment
of boolean values to inputs. Given an input assignment a, f (a) E Z denotes the
resulting output value, where Z is the set of all integers.

 Given a variable ordering 7r = (xkl < xk2 < ... < xkn), where (k1, k2, • .. , kn)

7

2

X 0

2

1-edge

0-edge

x1

1

3

2 • f [root] = 12xox1 + 4xo + 6x1 + 2, ir = (xo < x1)

Figure 2.2: An example of sharing nodes of a, *BMD.

is a permutation of (1, 2.... , n), and some i (1 < i < n), we define the set of vari-
ables L (resp., R) as L = {xk1, xk2, ... , xki} (resp., R = {xk2+1, xk2+2, ... , xkn}).
We call L (resp., R) a left (resp., a right) partition. For particular partitions L and
R, a left (resp., a right) input assignment 1 : L {0, 1} (resp., r : R -~ {0,1}) is
an assignment of boolean values to the inputs in L (resp., R). We define a left
input assignment as 1 = E when L = 0. When a value a is assigned to a variable
x in 1, we describe as 1(x) = a. The assignment 1 . r denotes the complete input
assignment resulting from a left input assignment 1 and a right input assignment

r. When xk1 = a1, xk2 = a2, ... , xki = ai in a left input assignment 1 for it given

above, 1 is described as 1 = (al, a2.... , ai). Given a left input assignment 1, f (l)
denotes the resulting function, whose set of inputs is R. For example, for the

function f = xox2 + x1x2 + x3, the variable ordering it = (xo < xl < x2 < x3)
and the left input assignment 1 = (10), we obtain f (l) = x2 + x3.

 For a left input assignment 1, we define a left term f t of a function f recursively
as follows:
Case 1=E: f f = f
Case 1 e:

 fl = r fl' Ix k2 0 (a2 0)
 l fl' I xki=1 - ft' Ixk2=o (ai = 1),

where 1' = (al, a2, ... , ai-1) for 1 = (al, a2.... , at), and 7f = (xk1 < xk2 < ... <

8

xk).

 For example, for the function f = xox2 + x1x2 + x3, the variable ordering
7r = (xo < x1 < x2 < x3) and the left input assignment l = (10), we obtain
fl = x2. Note that fi differs from f (l).

 As for the relation between a *BMD representing a function f and a left term
of f , the following lemma holds.

Lemma 1 Let f be a function from binary vectors to integers. Given a variable
ordering 7r, let l be a left input assignment. We consider a *BMD that is con-
structed according to ir. We follow edges starting from the root node to a node to
which the last variable in 1 is attached as follows: .

If the assignment to the variable on the current node is 0 in 1, then we follow the
0-edge.
If the assignment to the variable on the current node is 1 in 1, then we follow the
1-edge.

 We suppose that we arrive at a node u. Let p be the product of the weights of
the edges on the path from the root node to u. Then the function represented by
u is fi/p.

(Proof) This lemma is obvious by the definitions. o
 Let l be a left input assignment. Let l be a left input assignment such that

if the assignment to a variable x is 1 in 1, then the assignment to x is 1 in 1.
We describe as 1 N 1. We define as e N E. For example, when 1 = (101), then

(101) '` 1, (100) '' 1, (001) ~`, 1 and (000) : 1. We call the number of 1's in an
assignment 1 the weight of 1. We define a function Sgn as

 Sgn(l) = 1 1 (the weight of 1 is even) l -1 (the weight of 1 is odd).

The weight of E is 0 and Sgn(E) = 1.
 To calculate a left term, we introduce the following lemma.

Lemma 2 For a function f and a left input assignment 1,

 fi = Sgn(l) . E Sgn(1) f (1))
 ii

(Proof) Without loss of generality, let it = (x1 < x2 < ... < xn) be a given
variable ordering. And let 1 = (al, a2i ... , ai) be a left input assignment for the
set of inputs X = {x1, X2.... , xn}. Let m be the weight of 1. We prove this
lemma by induction on m.

9

 When m = 0 (including the case that 1 = E). Since {ill ̀ l} = {l} ({lIl
E} = {E}) and fl = f (l), Sgn(l) Eg;~l Sgn(l) f (1) = Sgn(l)2 f (l) = f (1) = fl.
Hence the lemma holds for m = 0.

 We suppose that the lemma holds for m = k. We consider the case that

m=k+1.

 We suppose that ai=l. The case that ai = 0 is described later. We consider

the left input assignment 1' = (a1i a2, ... , ai_1), whose weight is k. Then,

 fi

 fl' Ixi=1 - fl' Ixi=O

 (by the definition of left terms)

 Sgn(l') Sgn(1') f (l') - Sgn(l') E Sgn(l') f (l')
 i'^ l' xi=1 l'til' xi=0

 (by the hypothesis of induction)

 Sgn(l') - Sgn(l) f (l) - Sgn(l') Sgn(l) f (l)
 lE{lIl(xi)=1,h1} lE{lIl(xi)=O,i4}

 Sgn(l) Sgn(l) f (l).
 al

 (by -Sgn(l') = Sgn(l))

 We now consider the case that ai = 0. Let jmax be the maximum of j such
that j < i and a. = 1. For the left input assignment 1" = (a,, a2, ... , ajmax), we
can apply the same method as in the case that ai = 1, identifying 1" with 1. Thus

the following equation is obtained.

 fly, = Sgn(l") Sgn(l) f (l)
 f;Sl"

By the definition of left terms, the following equation is also obtained.

 fl = fl" I xjmax+1=O,xjmax+2=0,... xi=o

Thus,

 fl = fl" Ixjmax+1=O,xjmax+2=0,....xi=O

 [Sgn(l") E Sgn(1) f (l)] Ixjmax+1=O,... ,xi=O
 i;~l"

 Sgn(l) Sgn(l) f (l).
 hl

Hence, the lemma is proved. 0

 10

2.2.3 Fooling Sets

Given a function f and a variable ordering it, a set A of left input assignments

with the same length is a fooling set if and only if the following condition holds

for any two distinct left input assignments 1, 1' E A.

or

or

3r fi (r) = 0, fl, (r) 0

3r fi (r) 0, ft' (r) = 0

3r, r fi(r)fl,(r) fl, (r)fi(r),

where r and r' are right input assignments. When the cardinality of the set is

less than 2, we define the set to be a fooling set.

 Note that this definition of a fooling set differs from Bryant's [8].
 The following theorem states the relation between the cardinality of a fooling
set and the number of nodes of a *BMD representing a function f.

Theorem 1 Given a function f, if there
nality is more than or equal to c for any
representing f has at least c nodes.

exists a fooling set for f whose
variable ordering g, then any

cardi-
*BMD

(Proof) Considering any *BMD representing f, let it be its variable ordering,
and let A be its fooling set whose cardinality is more than or equal to c. For any
two distinct left input assignments 1, 1' E A, let P and Q be the nodes defined
in Lemma 1 as u for 1 and 1' respectively, and let fi/p and fig/q be the functions
represented by P and Q respectively, where p and q are the integers defined in
Lemma 1 as p.

 In the following, we show P Q. Since 1 and 1' belong to the fooling set, at
least one of the following cases holds.

Case There exists a right input assignment r such that fl (r) = 0 and fl, (r) 0:

 ft(r)lp(= 0) fi'(r)lq(0). Hence, P Q.
Case There exists a right input assignment r such that f l (r) 0 and fl, (r) = 0:

 fc(r)lp(0) fi'(r)lq(= 0). Hence, P Q.
Case There exist two distinct right input assignments r and r' such that fl (r) •

fl, (r') ft' (r) • fi (r'):
 We suppose that P = Q. Then fl(r)/p = flu(r)/q and fl(r')/p = f1'(r')/q.

Thus, f, (r) • fl, (r) = fl, (r) • fi(r'), a contradiction. Hence P Q.

 Thus there is a node corresponding to each element in the fooling set, and

they are distinct. Therefore the *BMD has at least c nodes. O

11

2.2.4 p-Splits

For the set of inputs X = {xn-1, Xn-2, ... , x0} and Y = {2/n-1 i Yn-2, ... , y0}, we
define binary representation of X and Y as

 IIXiI = 2n-1xn-1 + 2n-2xn-2 -+ ... + 2oxo and

I IYI I = 2n-'yn-1 + 2n-2yn-2 +... + 2oyo,

respectively.

 Let f be a quotient function of IIXII divided by IIYII, whose set of inputs is
X UY.

 We assume that n is even. Note that our purpose is to show an exponential

lower bound. Thus, if n is odd, we can treat n bit division as n - 1 bit division

by regarding both xn_1 and yn-1 as 0. Then we obtain a lower bound Q (C") from
the result for the case that n is even by ignoring a constant coefficient of Sl(cn-1)

 We define XU and XD as

 XU = {xn-1, xn-2, ... , Xn/2} and

 XD = {xn/2-1, Xn/2-2, ... , xo}.

 Given a variable ordering 7r, a left partition L and a right partition R, we

define as follows:

 XUL=XUnL , XDL=XDnL

 XUR=XUnR , XDR=XDnR.

 For an integer p (1 < p < n - 1), we define Argsp as

 a-b=p,

 Argsp = (xa, Xb) n - 1 > a > n/2,
 n/2>b>0

(See Figure 2.3)
 We define a p-split Splitp as

 Splitp = Argsp n [(XUL X XDR) U (XUR X XDL)]•

(See Figure 2.4)
 The following lemma is proved in [8].

Lemma 3 If IX n LI = IX n RI, then there exists some integer p
nality of Splitp is at least n/8.

and the cardi-

0

12

x ~--- p --

p

(x 'P, x .) EArgs

p < 2

n p 2

P

Figure 2.3: Args,

Variable IxiiIxioIxslxsIx7IxeIx5Ix4lxslx2Ixi xo

Partition I L I L I R I R I L I L I R I L I L I R I L R

 If p = 4, Args, = {(x9, x5), (x8i x4), (x7i x3), (x6i x2)} and
 Splitp = {(x8, x4), (x6, x2)}.

 Figure 2.4: An example of Splitp.

 In the following, we assume that IX fl LI _ IX n R1. For the integer p defined
in Lemma 3, we define s and t as

 s = n/2 - p, t = n/2 (if p < n/2),

 s= 0, t= p (if p> n/2).

These s and t are illustrated in Figure 2.5. We define s' and t', i

 s' = min{s'ln/2 > s' > s, ys, E R} and

 t' = min{t'j n - 1 > t' > t, yt, E R}.

 We define a high split bit Sh and a low split bit sl as follows:

Case s' - s > t' - t, or s' does not exist and t' exists:

 sl=s+(t'-t)=t'-p,sh=t'

 n-1 n/2 n/2-p 0
 ----- -----

 X -

: ----- ----1 p < n/2
 t s

 n-1 p 0

 X
----------- p > n/2

 t S

-- -~

f exists, as

Figure 2.5: s and t

 13

 i -

i

Sh t sl s

11
Xsh Xs1

1

Ysh

X sl I

 YSj

Ys1ER

or

Ys1ER

Figure 2.6 : Sh and si

Case s' - s < t' - t, or t' does not exist and s' exists:

 s1=S',Sh=t+(s'-s)=s'+p
Case neither s' nor t' exists:

 Neither sl nor Sh is defined.

These sl and Sh are illustrated in Figure 2.6. Intuitively, the pair (x Sh , xS1) is the
lowest member in Argsp such that Ysh E R or ysa E R.

 We define Split' based on the split bits as follows:

 Split, \I (xsh_i, xsl_i) I1 < i < Sh - t}

 Split' _ (when both sh and si are defined)

 (when neither sh nor sl is defined)

 The following lemma holds.

Lemma 4 The number of pairs (xi, yi) such that xi E R and yj E L is at least
Split' \ Split' .

(Proof) For (xu, xd) E Split'\Split', both yu and yd belong to L by the definition
of split bits. Exactly one of xu and Xd is a member of R by the definition of Split'.

Hence, the lemma is proved. I

2.3 A Lower Bound on the Size of a. *BMD Rep-

 resenting a Quotient Function

We consider two sets of inputs, X = {xn-1, xn-2, ... , x0} and Y = {yn_1, yn_2,
... , yo}. Let f be a quotient function of I IXI I divided by IIYII, whose set of
inputs is X U Y.

 We have the following theorem for a lower bound on the size of a *BMD
representing a quotient function.

Theorem 2 A lower bound on the number of nodes of any *BMD representing
a quotient function f is Q(2nI24) o

14

 To prove Theorem 2, we show the following two lemmas.

Lemma 5 Given a variable ordering 7r and a left input assignment 1, if the weight
of 1 is more than or equal to one, then

 Sgn(l) = 0.
 t, 4

(Proof) The number of l's such that l ~"E 1 and whose weights are even is equal
to that of i's such that l ' 1 and whose weights are odd. Hence the lemma is
proved. 0

 The following corollary is easily obtained.

Corollary 1 Given a set of left input assignments S, if the number of left input
assignments that belong to S and whose weights are even is equal to the number
of left input assignments that belong to S and whose weights are odd, then

 Y. Sgn(l) = 0.
 lES

0

 In the following, X(a) and Y(a) denotes 11X) I and I JYJ (resulting from a
complete assignment a respectively.

Lemma 6 Given a variable ordering 'ir, a left input assignment l whose weight
is more than or equal to two and a right input assignment r, then

 E X (l - r)Sgn(1) = 0.
 i4

(Proof) For convenience, we describe the assigned value to xi in an assignment
1 • r as xi(l • r) instead of 1 - r(xi) defined before. Rewrite the given equation as
follows:

 E X (1. r)Sgn(1) = E(2'-1xn_1(l . r) + ... + 2°x°(1. r))Sgn(l)
 hl hl

 For each xi (0 < i < n - 1),

Case xi E R:

 Since xi (1 . r) is a constant that does not depend on 1, the following equation
holds by Lemma 5.

 2ixi(l . r)Sgn(l) = 0
 F~a

 15

Case xi E L and xi(l • r) = 0:
 Since for all l ` 1, xi(l r) = 0, the following equation holds.

 E 22xi(l • r)Sgn(1) = 0
 t,l

Case xi E L and xi(l • r) = 1:

 22xi(1 • r)Sgn(l)

 2ixi(l r)Sgn(l) + j 22xi(1 • r)Sgn(l)
 lE{lI il,xi(l)=1} lE{lI il,x; (l)=o}

 22xi(l • r)Sgn(l) + 0
 lE{iIhl,xi(l)=1}

 Since the weight of l is more than or equal to two, the number of l's (l '' 1)
whose weights are even and which assign 1 to xi is equal. to the number of l's

(l ti 1) whose weights are odd and which assign 1 to xi. Thus, by Corollary 1,

 22xi(l • r)Sgn(1) _ 22xi(l • r)Sgn(l) _= 0.
 hl iE{lIi l,xi(i)=1}

Hence,

 E X (l • r)Sgn(l) = 0.
 it

0

 The following corollary is easily obtained from Lemma 6.

Corollary 2 Given a variable ordering 7r, a set of left input assignments S and
a right input assignment r for 7, if there exist a variable ordering ir', a left
input assignment 1' whose weight is more than or equal to two and a right input

assignment r' for ir' such that {l rIl E S} = {l' • r'l l' ' l'}, then

 E X (l • r)Sgn(l) = 0.
 lES

 El

 We now give the proof of Theorem 2

(Proof of Theorem 2) We assume that n is even by the same reason described
in Section 2.2.4.

 16

MSB LIIREIL or R LSB
X

(I) (1)
Y

X
(I) (ii) Y L I

(II) X
Y

(the number of heavily shaded bits) > n
 24

Figure 2.7: An example of the cases.

 For any variable ordering 7, we show that there exist a left partition and a

fooling set whose cardinality is Q(2 n/24) Then we can conclude that the number
of nodes of a *BMD representing f is 1l(2n/24) by Theorem 1.

 We suppose that an arbitrary variable ordering 7r is given. Let L and R be a

left partition and a right partition respectively such that IX fl LI = I X fl RI. The
partitions L and R exist obviously. There exists some integer p (1 < p < n - 1)
such that I SplitpI > n/8 by Lemma 3. We consider such a fixed p in the following.
When an assignment a assigns 0's to all the variables, we describe a = 0.

 We show a brief outline of the proof. We consider the following cases.

(I) (SplitpI > n/12

 (1) I Spl2tp n (XUL X XDR) I > I split,p f1 (XUR X XDL) I

 (ii) I Spl2tp fl (XUL X XDR) I < I Spl2tp fl (XUR X XDL)

(II) I SplitpI < n/12

While detailed explanations are described later, here we illustrate what each case

is like (See Figure 2.7). In the case (I)(i), there exist a sufficient number of pairs

(xi+p, xi) such that xi+p is in the upper half of X and in L and xi is in the lower
half of X and in R. L and R are exchanged in the case(I)(ii). In the case(II),
there exist a sufficient number of pairs (xi, yi) such that xi is in x fl R and yj is
in Y fl L. For each case, we show that there exists a set of left input assignments,

and any two distinct left input assignments in the set satisfy the condition of the

definition of fooling sets. Then we conclude that the set of left input assignments

is a fooling set.

17

 We can apply one of the following cases to obtain a fooling set

nality is S2(2n/24) We explain detail of each case in the following.
whose cardi-

(I) I Split; I > n/12

(1) I Split" fl (XUL X XDR) I > I Split n (XUR X XDL)
We define Split" as Split, = Split, fl (XUL X XDR). Then I Split"I > n/24 since
Split > n/12 and Split, fl (XUL X XDR)I > I Split' fl (XUR X XDL)
 Note that, in this case, the high split bit Sh and the low split bit sl exist. Let

A be a set of all left input assignments satisfying the following conditions.

Conditions: For any variable x such that x E {x, I (xu, xd) E Split"} -°- B,

 [1] If x is the lowest member in B, that is, x has the minimum index in B,
 then the value 1 is assigned to x. We define this variable x to be xq.

 [2] The value 1 is assigned to at least one member of B \ {xq}. That is, the
 value 1 is assigned to each of at least two members of B, including xq.

 [3] If ysh E L, then the value 1 is assigned to ysh, where Sh is the high split bit.

 [4] If ys, E L, then the value 1 is assigned to y,,, where sl is the low split bit.

 [5] The value 0 is assigned to each of the variables that belongs to L other than
 mentioned above.

It is obvious that JAI > 2n/24-1 - 1. Intuitively these conditions mean that, for
the bits belonging L in Figure 2.7(I) (i), the value 1 can be assigned only to the
heavily shaded bits. We show that A is a fooling set in the following. If JAI < 1,
it is obvious that A is a fooling set. We cope with the case that JAI > 2 in the
following.

 Let 1 and 1' be any two distinct left input assignments that belong to A. We

assume that X (l -6) > X (l' . 0) without loss of generality. We define a right input
assignment r as follows:

 [1] If ysh E R, then r assigns 1 to ysh

 [2] If ys, E R, then r assigns I to y,,.

 [3] If i + Sh - sl q and the value 1 is assigned to xi+sh_s, in 1, that is,
 l(xi+sh_s,) = 1, then r assigns 1 to xi. If i + Sh - sl = q, in which case

 l (xi+sh_s1) = l (xq) = 1 obviously, then r assigns 0 to xi.

 18

X

Variable x11 x1o x9 x8 x7 X6 x5 X4 x3 x2 XI xo

Partition L L R L L L R R R R L R

Assignment 1 1 0 0 0 1 1 1 0 0 0 0

Y

Variable Y11 Y10 Y9 Y8 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO

Assignment 0 0 0 0 0 1 0 0 0 0 0 1

 Split' = {(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, Sh = 6, Sl = 0, p = 6, q = 6

 Figure 2.8: An example of assignments.

 [4] r assigns 0 to the variables that belong to R other than mentioned above.
An example of an assignment satisfying [1]-[4] is shown in Figure 2.8. We show
that fl (r) 0 and fly (r) = 0 in the following. First, we cope with the case that
both ysh and ysa belong to R (case(a)), and then, we cope with the case that
either ysh or ys, belongs to L (case(b)).

(a) Both ys,, and y8, belong to R.
 First, we compute fl(r). We consider i's such that l ti 1.

 When l = 1, since [X (0 • r) + 2q-(sh-81)]/281 = X (l • 0)/2sh, the following
equation holds.

 X(l . r) + 2q-(sh-sa)
 = X (1 • 0) + X (0 • r) + 2q-(sh-sz)

 = (2sh + 2"')X(1. 0)/2 sh

Thus, X (l • r) = (2sh + 2s`)X (l • 0)/2sh - 2q-(Sh-81).
Since 21h+211 > 2q-(sh-sl) > 0 and Y(l • r) = 21h+ 2si, the quotient of X (l • r)
divided by Y(1 • r) is

 f(1•r)=X(1.0)/2sh-1. (2.1)

 For any left input assignment l such that l 1 and l 1, since xq is the lowest

in B,X(l•0)<X(l•0)-2q.
Since [X(1 • 0) - 2q]/2sh = X (0 • r) /2", 0 < X (l • 0) /25h < X (O • r)/2s'. Thus,

 X (l • r) - (2sh + 2")X(1. 0)/23h

 _ [X (l • 0) + X (O • r)] - [X (l • 0) + 28, X (l 0)]
 28h

 281
 X (O 2X (l • 0)

 Sh

 5 > X(0•r)-X(0-r)=0 1
< X(0 •r) <28h+281

 19

Thus,

 28h + 281 > X (l -,r) - (28h + 2S')X (l • 0)/2Sh > 0.

Since Y(l • r) = 21h+ 2S', the quotient of X (l • r) divided by Y(l • r) is

 f (l • r) = X (l . 0)/2Sh

Thus, by Lemma 2,

 fc (r)
 = Sgn(l) E Sgn(l) f (l • r)

 l1

 = Sgn(l)[E Sgn(i)X(i • 0)/2Sh + Sgn(l)(X(l - 0)/2Sh -1)]
 i i,i a

 = Sgn(l)[{Y Sgn(l)X (l • 0)/2Sh} - Sgn(l) • 1]
 ha

By Lemma 6, fl(r) = -Sgn(l)2 = -1.
 Next, we compute f p(r).

 For anyl',since X(l•O)>X(l' 0),

 X(l'•0) <X(l•0)-2q.

Since [X (l • 0) - 2q]/2Sh = X (O - r)/2S',

 0 < X (P • 0)/2Sh < X (O - r)/2S'

Note that this inequality holds even for l' = 1'. By the same reason used t

the equation (2.2), the quotient of X (P • r) di

 f (l' • r) = X (l' • 0)/21h.

Thus by Lemma 2,

 fv (r) = Sgn(l') Sgn(l')f (l' • r)

 = Sgn(l') Sgn(l')X (l' • 0)/2Sh

By Lemma 6, fl, (r) = 0.
 Hence, f, (r) 0 and fii(r) = 0. Therefore A is a fooling set.

 20

(2.2)

By the same reason used to obtain

vided by Y (l' • r) is

 (2.3)

l

 Sgn(l)[{y Sgn(1)X (l • 0)/2sh } - Sgn(l) • 1
 IESI

 >iEso Sgn(1)X (1 • 0)/2sh]

 + (ysh E R, that is, Y(l • r) = 25h) E
fES° Sgn(1)X (l • r)/2st]

 (m,, E R, that is, Y(l • r) = 281).
Thus, by Corollary 2, fl(r) = -Sgn(l)2 = -1.

 Similarly, we can compute fl, (r).

 fig (r) = Sgn(l') E Sgn(1') f (l' • r)

 = Sgn(l') [> Sgn(i') f (P • r) +
 PE S11, PESOI

In order to obtain f (l' • r) for l' 1
to obtain the equation (2.3), treating

 0) /21h were in R. Thus, f (l' • r) = X (l
shown in the above. By Corollary)
 Therefore, A is a fooling set.

(b) Either y-h or y81 belongs to L.
 Note that, in this case, either ysh or ysi belongs to R by the definition of split

bits (sh and si). When ysh E L, we define sets of left input assignments Sl and
S° as

 Si={uII 1,i(ysh)=1} and S°={iIIN1,i(ysh)=0

When y51 E L, we define Sl and S° similarly, replacing ysh with y,1.
 First, we compute fi(r).

 By Lemma 2,

 fi(r) = Sgn(l) E Sgn(l) f (l • r)
 hi

 = Sgn(l)[~ Sgn(l) f (l . r) + Sgn(l) f (l . r)].
 IESi IES°

 In order to obtain f (l•r) for l E Sl , we can apply the same method that is used
to obtain the equations (2.1) and (2.2), treating ysh or yst as fixed, in other words,
as if it were in R. Then f (l • r) = X (l • 0)/2sh - 1 for 1, and f (l -,r) = X (l • 0)/2sh
for l E Sl and l 1. Thus,

 fj(r) = Sgn(l) [{T Sgn(l)X (1 • 0)/23h } - Sgn(l) • 1 + T Sgn(l) f (l -,r)]
 IESi iES°

 Sgn(1') f (1' • r)].

E Si,, we can apply the same method that is used

 ysh or ys~ as fixed, in other words, as if it
' for l' E Sl . ,E So Sgn(l') f (l' • r) = 0 as

 2, fig (r = 0. Hence, f i (r) 0 and fl, (r) = 0.

21

(ii) I Split, n (XUL X XDR) ~< I Split, n (XUR X XDL)
We define Split" as Split" = Split, fl (XUR X XDL). Then I Split"I > n/24 since
I Spli' I > n/ 12 and I Split, fl (XUL X XDR) I < I Spli' fl (XUR X XDL) I.
 Note that, in this case, the high split bit Sh and the low split bit sl exist. Let

A be a set of all left input assignments satisfying the following conditions.

Conditions: For any variable x such that x E {xdI (xu, xd) E Split"} = B,

 [1] If x is the lowest member in B, that is, x has the minimum index in B,
 then the value 1 is assigned to x. We define this variable x to be Xq.

 [2] The value 1 is assigned to at least one member of B \ {xq}. That is, the
 value 1 is assigned to each of at least two members of B, including Xq.

 [3] If ysh E L, then the value 1 is assigned to ysh, where sh is the high split bit.

 [4] If ys, E L, then the value 1 is assigned to ysl, where sl is the low split bit.

 [5] The value 0 is assigned to each of the variables that belongs to L other than
 mentioned above.

 It is obvious that JAI > 2n/24-1 - 1. Intuitively these conditions mean that,
for the bits belonging to L in Figure 2.7(I) (ii), the value 1. can be assigned only
to the heavily shaded bits. We show that A is a fooling set in the following. If

JAI < 1, it is obvious that A is a fooling set. We cope with. the case that JAI > 2
in the following.

 Let 1 and 1' be any two distinct left input assignments that belong to A. We

assume that X (l • 0) > X (l' . 0) without loss of generality. We define a right input
assignment r as follows:

 [1] If ysh E R, then r assigns 1 to ysh.

 [2] If ys, E R, then r assigns I to y,,.

 [3] If the value 1 is assigned to xi in 1, that is, l(xi) = 1, then r assigns 1 to
 xi+sh-81'

 [4] r assigns 0 to the variables that belong to R other than mentioned above.

An example of an assignment satisfying [l]-[4] is shown in Figure 2.9. We show
that f, (r) 0 and fl, (r) = 0 in the following. First, we cope with the case that
both ysh and ys, belong to R (case(a)), and then, we cope with the case that
either ysh or ys, belongs to L (case(b)).

 22

X

Variable xli x1o X9 x8 x7 x6 x5 x4 X3 X2 xl xo

Partition R R L R R R L L R L R L

Assignment 1 1 0 0 0 1 1 1 0 0 0 1

Y

Variable Yil Y10 y9 Y8 y7 Y6 y5 y4 y3 Y2 y1 YO
Assignment 0 0 0 0 0 1 0 0 0 0 0 1

Spl2tp" = {(x11, x5), (x107 x4), x81 x2), (x6i x0)}, Sh = 6, SL = 0, p = 6, q =

 Figure 2.9: An example of an assignment.

(a) Both y8,j and y8, belong to R.
 First, we compute fl(r). We consider i's such that l ,`. 1.

 When l = 1, X (l . 0)/281 = X(6 • r)/28h.
 Thus, the following equation holds.

 X(1.r) = X(1.0)+X(0.r)
 281 = 2S, X (O - r) + X(6 ' r)

 (28h + 281)X(0 - r)/2 8h

Since Y(l • r) = 25h+ 281, the quotient of X (l • r) divided by Y(l • r) is

 f (l • r) = X(0 . r)/28h. (2.4)

 For any left input assignment l such that 1 and 1 1, X (1 . 0) < X (l • 0).
Thus, X (1. 0)/281 < X (0 • r)/28h < (28h + 281)/281.
Thus,

 X(1. r) - (28h + 281)X(0 • r)/2 8h
 _ [X(l•0)+X(0•r)]-[X(0•r)+ 281 2

8hX(0.r)]
 281

 X(1.0) - 28-X(0. r)

 < X (1.0) - X (1.0) = 0
 { > X (l . 0) - (28h + 281) > -(28h + 2`1).

Thus,

 -(28h + 281) < X (1. r) - (28h + 281)X (0 • r)/28h < 0.

Since Y(1 - r) = 28h + 281, the quotient of X (l . r) divided by Y(1 . r) is

 f (l - r) = X (O • r)/28h - 1. (2.5)

23

Thus, by Lemma 2,

 fi(r) = Sgn(l) E Sgn(l) f (l - r)

 = Sgn(l)[{ E Sgn(l)(X or) - 1)} + Sgn(l)X(O - r)/2Sh] 2h
 i.a,i~4c

 = Sgn(l)[{E Sgn(l)(X (0 - r)/2Sh - 1)} + Sgn(l) • 1].
 Ii

Since X (O - r)/2Sh is a constant, fl(r) = Sgn(1)2 = 1 by Lemma 5.
 Next, we compute fi(r).

 For any l' l', since X(l' - 0) < X(l 0),

 X (P • 0) < X (l • 0).

Thus,

 X (P -0)/2" < X (O • r)/2Sh < (2Sh + 281)/2s1.

Note that this inequality holds even for l' = 1'. By the same reason used to obtain

the equation (2.5), the quotient of X (P • r) divided by Y(l' • r) is

 f (l' • r) = X (O • r)/2Sh - 1 (2.6)

Thus by Lemma 2,

 fi,(r) = Sgn(l') Sgn(l') f (l' • r)

 = Sgn(l') E Sgn(l')(X (0 • r)/2Sh - 1).
 i,;Sh

Since X (O - r)/2Sh is a constant, fig (r) = 0 by Lemma 5.
 Hence, f i (r) 0 and fig (r) = 0. Therefore A is a fooling set.

(b) Either y8,, or y8, belongs to L.
 Note that, in this case, either Ysh or ys, belongs to IR by the definition of

split bits (Sh and si). We define Sl and S° in the same way as in (i). Then, by
Lemma 2,

 fl(r) = Sgn(l) > Sgn(l) f (l • r)
 ii

 = Sgn(l) [> Sgn(l) f (l . r) + Sgn(l) f (l . r)].
 IES' 1ES°

 24

t

 Sgn(l)[{~ Sgn(1)(X(0 • r)/2Sh - 1)} + Sgn(l) • 1
 IESI

 EiES° Sgn(i)X(O • r)/28h]

 + (ysh ER, that is, Y(l • r) = 2Sh) >
ks1 Sgn(1)X (l • r) /281]

 (ys, E R, that is, Y (l • r) = 281)

Thus, by Corollary 1 and Corollary 2, fi(r) = Sgn(l)2 = 1.
 Similarly, we can compute f i' (r).

 fig (r) = Sgn(l') Sgn(l') f (1' • r)

 = Sgn(l') [E Sgn(l') f (l' • r) +
 I'ES1, PE SO,

In order to obtain f (l' • r
to obtain the equation

 r) /28h were in R. Thus, for P E
as shown in the above.
 Hence, f, (r) 0 and f () fooling

(II) I Split" ,I < n/12
There exist more than n/8 - () n/12
y2 E L by Lemma 4.

 If there exists no pair of yj

L' and a right partition R' such

R'), and there exist more than
cardinality of L and increasing

In this case, we can use L' an

 Let (xw, yw) be a pair such that xw E R and yw E R Le
input assignments satisfying the following conditions.

 25

 In order to obtain f (l•r) for l E Sl , we can apply the same method that is used
to obtain the equations (2.4) and (2.5), treating ysh or ysa as fixed, in other words,
as if it were in R. Then f (l - r) = X (0 • r) /2,9h for 1, and f (l • r) = X (0 - r)/2sh -1
for l E Si and l 1. Thus,

 fi (r)
 Sgn(l)[{E Sgn(l)(X (0 • r)/2Sh - 1)} + Sgn(l) • 1 + E Sgn(l) f (l • r)]

 lESr iES°

Sgn(l') f (l' • r)].

 for l' E Si,, we can apply the same method that is used

2.6), treating ysh or ys~ as fixed, in other words, as if it
Si,, f (l' r) = X (0 - 1. ~i,ESo Sgn(l') f (1'- r) = 0

Thus fig (r) 0 by Corollary 1.

=

 i' r = 0. Therefore A is a foolinset.

 = n/24 pairs of xi, y2such that xi E R and

 E R), we can reconstruct a left partition xi E R,

 that there exists exactly one pair of (xi E R', yj E
n/24-1 pairs (xi E R', yi E L'), by decreasing the

 the cardinality of R, that is, IL' n X i< I R' n X i.
d R' as L and R respectively.

 t A be a set of all left

Variable x7 x6Ix5Ix4 x3 X2 x1 xo

Partition L RIRIR. R R L R

Assignment 0 11010 1 0 0 0

Y6 Y4 y3 Y2 Y1 YoVariable y7 y5

Partition L R I L I L L L R L

lr 0 11011 0 1 0 1

l'r 0 11110 1 1 0 1

l"r 0 11010 0 1 0 1

 w=6, q=3

 Figure 2.10: An example of assignments.

Conditions:

 [1] If xi E R and yi E L, then any value is assigned to yi.

 [2] The value 0 is assigned to each of the other variables that belong to L.

 It is obvious that JAS > 2f124-1. Intuitively these conditions mean that, for
the bits belonging to L in Figure 2.7(11), the value 1 can be assigned only to the
heavily shaded bits. We show that A is a fooling set in the following. If JAS < 1,
it is obvious that A is a fooling set. We cope with the case that JAI > 2 in the
following.

 Let 1 and 1' be any two distinct left input assignments that belong to A. We

show that there exist right input assignments r and r' such that f j (r) fi, (r')
fl' (r) fl (r'). We assume that q is the minimum index of yj E Y such that yi E L
and l(yi) l'(yi). We assume that l(yq) = 0 and l'(yq) = 1 without loss of
generality. We define a left input assignment 1" as follows:

 [1] For yi c Y (1 L (i < q), 1" assigns the same value as 1. It is also the same
 value as 1' as a result.

 [2] 1" assigns 0 to the other variables that belong to L.

We define a right input assignment r as follows:

 [1] r assigns 1 to each variable x, y,,, and xq.

 [2] r assigns 0 to the other variables that belong to R.

 26

An example of an assignment satisfying [1] and [2] is shown in Figure 2.10. We
define SL, and SSI as

 SL, = {1 i yi EL,i>q,l(y2)=1}
 and

 SSI = {l~l1dyZEL,i>q==> l(yz)=0}.

Similarly, we define SLI, and SS,,. Note that {il •` l} = SL, U SS, and
l'} = SLI, U SS,,. Then we obtain the following.

 `dl E SL, f (l • r) = 0

 VP E SLI, f (l' r) _ 1 (Y(h • r) = 2'° + 2q) 0 (
otherwise)

Note that SS, = SSI' _ {l~l ti l"}. By Lemma 2,

 fi (r)
 = Sgn(l) Sgn(l) f (l • r)

 MI

 = Sgn(l) [Sgn(l) f (l • r) + E Sgn(l) f (l • r)]
 TESL` IESSI

 = Sgn(l) [> 0 + Sgn(l) f (l - r)]
 1ESLI hl"

 = Sgn(l) Sgn(l) f (l • r)

Note that, when Y (P • r) = 2 ° + 2q, the weight of l' is 1. Thus,

 fly (r) = Sgn(l') E Sgn(l') f (l' • r)

 = Sgn(l') [Sgn(l') f (l' • r) + Sgn(l') f (P. r)]
 ['ESL,, t ESS1,

 = Sgn(l')[-l +,E Sgn(l) f (l • r)].
 F;~l"

 Next, we define a right input assignment r' as

 [1] r' assigns 1 to each variable x,,, and y,,,.

 [2] r' assigns 0 to the other variables that belong to R.

 27

Variable x7 x6 I X5 I x4 X3 X2

Partition L R I R I R R R

Assignment 0 11010 0 0

Variable y7 Y6IY5IY4 y3 Y2 h

Partition L R I L I L L L 1

lr' 0 11011 0 1 I

l'r' 0 11110 1 1 C

1"r' 0 11010 0 1 C

Figure 2.11:

1J

0

 R L L L L R_
 1 0 1 0 1 0

 1 1 0 1 1 0

 1 0 0 0 1 0

w=6, q=3

An example of assignments.

xo

R

0

Yo

L

1

1

1

An example of an assignment satisfying [1] and [2] is shown in Figure 2.11. Then,
for any l such that l 1 or I N 1',

Case Y(l . r') = 2w, that is, 1 = 0:
 f(l.r')=1

Case Y(l . r') 2w:
 f(i.r')=0

Thus by Lemma 2,

 f, W) = Sgn(l) Sgn(l) f (l . r') = Sgn(l) . 1.

Similarly, fi'(r') = Sgn(l') . 1.
 Hence, f, (r) fl, (r') fl, (r) fj(r'). Therefore, A is a fooling set.

 We conclude that a lower bound on the number of nodes of a *BMD repre-

senting a quotient function f is 1(2n/24) from (I), (II) and Theorem 1. 0

2.4 A Lower Bound on the Size of a *BMD Rep-

 resenting a Remainder Function

An exponential lower bound for a remainder function can also be proved by the

similar method used in Section 2.3. We show that a lower bound on the size of

a *BMD representing a remainder function is S2(2n/24)
 Let f be a remainder function of I IX I I divided by I IY 11, whose set of inputs is

X U Y. We have the following theorem for a lower bound on the size of a *BMD
representing f.

Theorem 3 A lower bound on the number of nodes of any *BMD representing
a remainder function f is cl(224). 0

 28

 To prove Theorem 3, we show the following lemmas.

Lemma 7 The remainder of 22+P divided by 22+1 is (22+1)-2P, where 0 < p < i.

(Proof) We prove Lemma 7 by induction.
 When p = 0, the lemma holds obviously.

 We suppose that the lemma holds for p = k. We consider the case that

p=k+1.

 The following equation holds by the hypothesis of induction.

 22+k = (2'+ 1)Qk + (2'+ 1) - 2k,

where Qk is the quotient of 2i+k divided by 22 + 1.
 Let Qk+1 and Rk+1 be the quotient and the remainder of 2i+k+1 divided by

22 + 1 respectively. Then,

 2i+k+1 = (2i + 1)Qk+1 + Rk+1

 2(22 + 1)Qk + 2(2'+ 1) - 2k+1 = (2'+ 1)Qk+l + Rk+1

 (22 + 1) (2Qk - Qk+1 + 2) - 2k+1 = Rk+1
 Rk+1 = (22+1)Q-2k+1

 (where Q = (2Qk - Qk+1 + 2))
 by 0<Rk+1 <21+1

 Rk+1 = (2'+l)-2k+1

0

 The following corollary is easily obtained from Lemma 7.

Corollary 3 The remainder of 22+Pm + 22+Pm-1 + ... + 22+P1 divided by 22 + 1 is
(2i + 1) - (2Pm + 2P--I + ... + 2P1), where pk 7 pi for k l and 0 < Pk < i for
1<k<m. o

 The following corollary is easily obtained from Corollary 3.

Corollary 4 The remainder of 2Z+Pm + 2i+Pm-1 + ... + 22+P1 divided by 22 + 2i is

 2j{(22-j + 1) - (2Pm + 2Pm-1 + ... + 2P1)}
 _ (22+2 ')-2j(2m+2m -1+...+22+P1),

wherepkhpt forkl and0<pk <i-j forl <k<m. El

 29

 We introduce two notations for left input assignments. A notation ll x=a de-
notes the left input assignment that is obtained from the left input assignment 1

restricting the assignment to x to be a. For two distinct left input assignments

1, 1', and a right input assignment r, we define a critical left input assignment 1,

to be the left input assignment satisfying the following conditions.

Conditions:

 [1] 1, < l and 1, Al' or h rte, l' and 1, Al. We assume that 1, ~< 1 and 1, Al' for
 the rest of this definition. For the case of 1, N l' and 1, ,l, the following

 conditions are similarly defined.

 [2] f (lc - r) f (1' - r) for l' ,: 1'.

 [3] If f (l - r) > f (l, - r) (resp. f (l' - r) > f (l, - r)) for 1 (resp. l' N l'), then
 there exists l' l' (resp. l N 1) and f (l- r) = f (l'-r) (resp. f (l'-r) = f (l- r)).

Intuitively, f (l, - r) for 1, ti 1 is the maximum of f (l - r) where l N 1 and f (l - r)
f (l' - r) for all l' ` 1'. Note that if {ala = f (l . r),1 ` 1} {ala = f (l' . r), l' ` l'},
a critical left input assignment exists.

 We have the following lemma for fooling sets.

Lemma 8 If the set of left input assignments A satisfies the following conditions,
then A is a fooling set.

Conditions:

 [1] ar', dl, l' E A, Ir, f (l, - r) = 0 and r' r, where 1, is defined for 1, l' and r'.

 [2] Vl E A, >iNl Sgn(l) f (l - r') = 0, where r' is the right input assignment in
 condition [l].

 [3] 1q, Vl E A, the lowest bit to which the value 1 is assigned is xq.

 [4] Vl, l' E A, if l lcI xq=o and l 1,1,q=1 for l ` 1 or l < 1', then f (ll xq=o - r') >
 f (le . r') if and only if f (ll xq_1 - r') > f (l, - r'), where r' is the right input

 assignment in condition [1].

 [5] 3t, s, Vl E A, Y(l . r) = Y(l - r') = 2'+ 2s, where r and r' are the right input
 assignments in condition [1].

 [6] Vl, l' E A, if f (l - r') = f (l' - r') for I ` 1 and l' ` l', then f (ljxq=o - r') _
 f (l'Ixq_o - r') and f (11 ,,=1 - r') = f r'), where r' is the right input

 assignment in condition [1], and q is the integer in condition [3].

0

30

To prove Lemma 8, we introduce the following lemma.

Lemma 9 We suppose that the set of left input assignments A satisfies the con-
ditions in Lemma 8. For left input assignments 1, 1' E A, f (lcl xq=o • r') < f (lc • r')
and f (lc xq=1 r') < f (l, • r'), where r' and Xq are defined in the conditions in
Lemma 8.

(Proof) We assume that 1, N 1 and 1, ,l' without loss of generality, and also
assume that either f (l,lxq=o • r') > f (1, • r') or f (lc)x,=1 • r') > f (h • r'). Then
there exists l' N 1' such that f (l' • r') = f (lc xq=o • r') or f (l' • r') = f (hl xq=1 • r')
by the definition of a critical left input assignment. Thus f (l'Ixq=o • r') = f (h • r')
or f (l'Ixq-1 r') = f (l, • r') by condition [6] in Lemma 8. Note that' 'Ixq-o l'
and l' I xq-1 ̀ 1' by 1' N 1' and condition [3] in Lemma 8. Thus there exists 1" ̀ 1',
f (l" • r') = f (h • r'), contradicting the definition of a critical left input assignment.

0

 We now give the proof of Lemma 8.

(Proof) For 1,1' E A, we assume that 1, _ 1 and 1, Al' without loss of generality,
and let r and r' be the right input assignments in condition [1] in Lemma 8, and
let t and s be the integers in condition [5] in Lemma 8. We show that fl(r) 0
and fl, (r) = 0.

 We define Sl and Sl as

 Sl = 1', f (l' r') > f (lc r')}
 Sl = ~` l', f (l' • r,) < f (l . r')}.

 Note that the number of left input assignments that belong to Si (resp. SP)
and whose weights are even is equal to the number of left input assignments that

belong to SP (resp. Si) and whose weights are odd by condition [4] in Lemma 8,
and also note that for W = (2t + 28) - f (1, • r'), f (l • r) = f (l • r') + W - (2t + 2s)
for l E Sl and f (l . r) = f (l • r') + W for l E SS since f (l, • r') + W = (2'+ 2s) and
by condition [5] in Lemma 8. To compute fl, (r) by Lemma 2, we expand fl, (r)
into two terms as follows:

fl' (r) Sgn(l') > Sgn(l') f (l' • r)

= Sgn(l') E
['E S1,

Sgn(l')f(l'•r)+

31

I:
l'ESi,

Sgn(l') f (1' • r)

For the first term,

 Sgn(l') f (l' r)
PE SL,

 Sgn(l') (f (1' • r') + W - (2t + 2S))
 PE S1,

 Sgn(l') f (l'
 PEST,

 (since W - (2t + 2s) is a constant, and by Corollary 1)
For the last term,

 E Sgn(l') f (l' • r)
 l'ESj

 E Sgn(l') (f (l' - r') + W)
 PE Sj

 Sgn(l') f (l' • r').
 PE SI

 (since W is a constant, and by Corollary 1)
Thus,

 •fi' (r) = Sgn(l') Sgn(l')f (l' - r') + Sgn(l')f (l' r')
 PEST l'ESi

 = Sgn(l') Sgn(l') f (l' • r')

 fi' (r/)
 = 0 (by condition [2] in Lemma 8).

 Next, we compute fl(r).
 We define Si and Si as

 Sf = {uI1 ti 1, f (l • r') > f (l, r')}
 Sl = {il 1, f (l • r') < f (l, r')} \ fl, lxq=O, lcIxq=1}.

 Note that the number of left input assignments that belong to SI (resp. Si)
and whose weights are even is equal to the number of left input assignments that

belong to Sf (resp. S?) and whose weights are odd by condition [4] in Lemma 8.
To compute fl (r), we expand fl (r) into three terms as follows:

 fi(r) = Sgn(l) Y Sgn(l) f (l • r)
 hl

 = Sgn(l) E Sgn(l) f (l • r) + Sgn(l) f (l • r)
 IES1 IES?

 + (Sgn(lcI xq=o)f (1,1.,,=o - r) + Sgn(lcI xq=1)f (lcI xq=1 - r))]

 32

For the first term,

E Sgn(l) f (l • r) _ Sgn(1) (f(I. r') + W - (2t + 2S))
 ZEST IESI

 Sgn(l) f (l • r').
 IESI

 (since W - (2t + 2S) is a constant, and by Corollary 1)

 For the second term,

 E Sgn(l) f (l • r) _ Sgn(l)(f (l • r') + W)
 iES? IESI

 Sgn(l) f (l • r').
 IESI

 (since W is a constant, and by Corollary 1)

 Note that, by Lemma 9, one of f (lcl xq=o•r') and f (l~lxe=1 r') is f (1,-r'), and the
other is less than f (l, • r'). That is, one of f (lcl 1.,,=o • r') + W and f (h1 xq=1 • r') + W
is equal to 2' + 21, and the other is less than 2t + 2S. Thus, for the last term,

 Sgn(lcl xq=o)f(1cI X, =0 • r) + Sgn(lc1 xq=1).f (1cI x9=1 . T)
 = Sgn(lcl xq=o) (f (lcl xq=o • r') + W) + Sgn(lcl xq=1) (f (lclxq=1 • r') + W)

 + (-Sgn(1,)(2t + 2S))
 Sgn(lc ,I xq=o)f (l~I xq=o • r') + Sgn(lc xq=1).f (lcI xq=1 r)

 + (-Sgn(1,)(2t + 2S)) .

 Thus,

 fi(r) = Sgn(l) Sgn(l) f (l • r') + Sgn(l) f (l • r')
 IESI IESI

 + (Sgn(lcJxq=o)f (1,I xq=o • r) + Sgn(lcIxq=1).f (1cIxq=1 • r))]

 Sgn(l) Y Sgn(1) f (1 • r') + (-Sgn(lc)(2t + 2S))
 ii

 = f, (r') + Sgn(1) (-Sgn(l,)(2t + 2S))

 Sgn(l) (-Sgn(l,,)(2t + 2S)) .

 Thus, fi (r) 0 and fl, (r) = 0. Hence A is a fooling set.
 We now give the proof of Theorem 3

(Proof) We assume the same situation as in the proof of Theorem 2.

0

33

(I) I Split'I > n/12

(1) I Split' n (XUL X XDR) I > Split n (XIJR X XDL)
We define Split" as Split" = Split' fl (XUL X XDR). Then I Split;I > 24, since
Split,I > 12 and I Split, fl (XUL X XDR) I > I Split' n (XUR X XDL)I.

 If there exists no pair of (x, x71) (x21,, x71 E X fl R and. w = v + sh - sl), we
can reconstruct a left partition L' and a right partition R' such that there exists

exactly one pair of (x, x„) (x21„ x7, E X fl R' and w = v + Sh - sl), and there
exist more than n/24 - 1 pairs (xi+sh_sl E L', xi E R') E Split', by decreasing
the cardinality of L and increasing the cardinality of R, where Sh and sl are the

high split bit and the low split bit respectively. In this case, we can use L' and

R' as L and R respectively.

 Let (x, x71) be a pair such that x,,,, x„ E X fl R' and w = V + sh - sl.
 Similarly to the previous section, let A be a set of all left input assignments

satisfying the following conditions.

Conditions: For any variable x such that x E {xuI (xu, xd) E Split"} = B,

 [1] If x is the lowest member in B, that is, x has the minimum index in B,
 then the value 1 is assigned to x. We define this variable x to be xq.

 [2] The value 1 is assigned to at least one member of 13 \ {xq}. That is, the
 value 1 is assigned to each of at least two members of B, including xq.

 [3] If ysh E L, then the value 1 is assigned to ysh, where sh is the high split bit.

 [4] If yst E L, then the value 1 is assigned to ysi, where sl is the low split bit.

 [5] The value 0 is assigned to each of the variables that belong to L other than
 mentioned above.

 It is obvious that JAI > 2-2141- -2 - 1. We show that A is a fooling set in the
following. If JAI < 1, it is obvious that A is a fooling set. We cope with the case
that JAI > 2 in the following.

 We define a right input assignment r' as follows:

 [1] If ysh E R, then r' assigns 1 to ysh

 [2] If ys1 E R, then r' assigns I to y,,.

 [3] r' assigns 1 to x,,.

 [4] r' assigns 0 to the variables that belong to R other than mentioned above.

 34

X

Variable x11 X10 x9 xg X7 X6 X5 X4 X3 X2 xl x0

Partition L L R L L L R R R R L R

Assignment 1 1 1 0 0 1 0 0 0 0 0 0

Y

Variable Y11 Y10 y9 Y8 y7 Y6 y5 y4 Y3 Y2 Yi YO

Assignment 0 0 0 0 0 1 0 0 0 0 0 1

Split' = {(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, sh = 6, sl = 0, q = 6

 Figure 2.12: An example of an assignment

X

Variable x11 x1o X9 X8 x7 X6 x5 x4 X3 X2 XI xo

Partition L L R L L L R R R R L R

Assignment 1 1 1 0 0 1 1 1 1 0 0 1

Y

Variable Y11 Ylo Y9 I Y8 Y7 Y6 I Y5 Y4 Y3 I Y2 I Y1 Yo

Assignment 0 0 010 0 110 0 0 1 0 1 0 1

spl2tp = {(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, sh = 6, sl = 0, q = 6

 Figure 2.13: An example of an assignment

 An example of an assignment satisfying [1]-[4] is shown in Fig.2.12.
 Let 1 and 1' be any two distinct left input assignments that belong to A. We
define 1, for 1, 1' and r'. We assume that 1, ti 1 and 1, /'l' without loss of

generality. We define a right input assignment r as follows:

 [1] If ysh E R, then r assigns 1 to ysh.

 [2] If ys, E R, then r assigns 1 to y,,.

 [3] r assigns 1 to x,,, and x,,.

 [4] If the value 1 is assigned to xi+sh_s, in 1, that is, lc(xi+sh_sj) = 1, then r
 assigns 1 to xi.

 [5] r assigns 0 to the other variables that belong to R other than mentioned
 above.

 An example of an assignment satisfying [1]-[5] is shown in Fig.2.13.
 The remainder of 2' (i > sh) divided by 21h+ 2s" is (2'h+ 281) - 2i-(Sh-SO

by Corollary 4, and the remainder of 2i-(sh-st) (2sh - s1 > i > sh) divided by

 35

28h+ 28, is 2i-(Sh-St). Thus the remainder of 22 + 2i-(Sh-S0 (2sh - sa > i > sh)
divided by 2sh + 2" is 0. Thus,

 f(h-r) = 0.

 We show that A satisfies the conditions in Lemma 8 in the following. First,

we cope with the case that both ysh and ys, belong to R (case(a)), and then, we
cope with the case that either ysh or ys1 belongs to L (case(b)).

(a) Both ysh and ys, belong to R.
 Since the variables in X with the assignment of 1 in l - r' for l 1 E A are

higher than the variable xsh, f (l - r') = (2sh + 2S') - hr-3~ for l N 1 E A by
Corollary 4. Thus by Lemma 2, Lemma 5 and Lemma 6,

 fi(r') = Sgn(l) E Sgn(l) f (l - r')
 ii

 Sgn(l) ((2Sh +2S1) - X (l ' r') = Sgn(l) ;
)sh_Si

 0.

 Similarly,

 fl, (r') = 0.

(b) Either Ysh or ys, belongs to L.
 Note that, in this case, either ysh or yst belongs to R by the definition of split

bits (Sh and sl). For l 1 or l l', f (l - r') = 0 if the value 0 is assigned to ysh
or ySj that belongs to L in l7 and f l - r') = (2'h+ 2Sl) by Corollary 4 if (^ ~rsh,-s(
the value 1 is assigned to ysh or yst that belongs to L in 1.

 Let S be the set of left input assignments such that l ti 1 and f (l - r') _

(2Sh + 2s1) - xai_rs) Thus, b Lemma 2 Corollary I and Corollary 2 ah a Y Y
fl(r') = Sgn(l) E Sgn(l) f (l - r')

 Il

 Sgn(l) Sgn(l) f (l - r') + Sgn(l) f (l - r')
 iEs

 Sgn(l) 0 + Sgn(l) ((2sh +2s') - X (l - r')
 ks 2h

 0.

 36

Similarly,

 fp(r') = Sgn(l') Sgn(l) f (l -r') = 0.

 Hence the set A satisfies condition [2] in Lemma 8.
 It is obvious that f (l(xq=o -r') > f (lI xq=i .,r') for l N l or l ' l' by Corollary 4.

We assume that l N l or l ` l', lI xq=O h, ilxq=i l,, and f (lI xq-o r') >

f (lc • r') > f (llxq=i .,r'). There exists no left input assignment l' N 1 or l' 1' such
that f (11,;, =o • r') > f (l' • r') > f (llxq-l r') since Xq is the lowest bit to which the
value 1 is assigned and by Corollary 4. This is a contradiction. Hence the set A

satisfies condition [4] in Lemma 8.
 It is obvious that the set A satisfies conditions [1], [3], [5] and [6] in Lemma 8.

Hence A is a fooling set.

(ii) I split, f1 (XUL X XDR) I < I Split, f1 (XUR X XDL)
We define Split' as Splitp" = Split' n (XUR X XDL). Then I Split'l > n since 24
Spli'l > n and I Split' n (XUL X XDR) I < I Split, n (XUR X XDL) I.

 Similarly to the previous section, let A be a set of all left input assignments
satisfying the following conditions.
Conditions: For any variable x such that x E {xdl (xu, Xd) E Split'} aef B

 [1] If x is the lowest member in B, that is, x has the minimum index in B,
 then the value 1 is assigned to x. We define this variable x to be Xq.

 [2] The value 1 is assigned to at least one member of B \ {xq}. That is, the
 value 1 is assigned to each of at least two members of B, including Xq.

 [3] If ysh E L, then the value 1 is assigned to ysh, where sh is the high split bit.

 [4] If ys, E L, then the value 1 is assigned to ysl, where si is the low split bit.

 [5] The value 0 is assigned to each of the variables that belong to L other than
 mentioned above.

 It is obvious that JAI > 2-h-1 - 1. We show that A is a fooling set in the
following. If JAI < 1, it is obvious that A is a fooling set. We cope with the case
that JAI > 2 in the following.

 We define a right input assignment r' as follows:

 [1] If ysh E R, then r' assigns' to ysh

 37

X

Variable I X11 x1o xg x8 X7 X6 X5 X4 X3 X2 X1 xp

Partition I R R L R R R L L R L R L

Assignment 0 0 0 0 0 0 1 1 0 0 0 1

Y

Variable I yll I Y1o Y9 I Y8 y7 Y6 y5 y4 y3 Y2 Yi Yo

Assignment I 0 I 0 010 0 1 0 0 0 0 0 1

Split = 1(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, Sh = 6, Sl = 0, q = 0

 Figure 2.14: An example of an assignment

X

Variable I X11 x1o x9 x8 X7 x6 x5 x4 x3 X 2 x1 xo

Partition I R R L R R R L L R L R L

Assignment 1 1 0 0 0 1 1 1 0 0 0 1

Y

Variable Yii Y10 Y9 Y8 Y7 Y6 y5 I Y4 I Y3 Y21Y1IYO

Assignment 0 0(0 0 0 1 0 1 0 1 0 0 1 0 1 1

Split; _ {(x11, x5), (x10, x4), (x8, x2), (x6, x0)}, sh = 6, sl = 0, q = 0

 Figure 2.15: An example of an assignment

 [2] If ysl E R, then r' assigns 1 to ysc

 [3] r' assigns 0 to the variables that belong to R other than mentioned above.

 An example of an assignment satisfying [1]-[3] is shown in Fig.2.14.
 Let 1 and 1' be any two distinct left input assignments that belong to A. We

define 1, for 1, 1' and r'. We assume that 1, ' 1 and l,, /'l' without loss of

generality. We define a right input assignment r as follows:

 [1] If ysh E R, then r assigns I to y,,.

 [2] If ys, E R, then r assigns I to y,,.

 [3] If the value 1 is assigned to xi in l, that is, l,(xi) = 1, then r assigns 1 to
 xi+sh -SZ .

 [4] r assigns 0 to the variables that belong to R other than mentioned above.

 An example of an assignment satisfying [1]-[4] is shown in Fig.2.15.
 We show that A satisfies the conditions in Lemma 8 in the following. First,

we cope with the case that ysh E R and yst E R, or ysh E RR and ys, E L (case(a)),
and then, we cope with the case that YSh E L and ysl E R (case(b)).

 38

(a) ys,, E R and ys, E R, or ys,, E R and ys, E L.
 For l -` 1 E A, since X (l • r') < 23h, f (l .,r') = X (l • r'). Thus by Lemma 2 and

Lemma 6,

 fi(r') = Sgn(l) Sgn(l) f (l • r') = 0.
 hl

Similarly,

 fl, (r') = Sgn(l') Sgn(l) f (l • r') = 0.

(b) Ys,, E L and ys, E R.
 For l ' 1 , f (1•r') = 0 if the value 0 is assigned to ysh in 1, and f (1•r') = X (1-r')

if the value 1 is assigned to ysh in 1.

 Let S be the set of left input assignments such that l N 1 and f (l • r') = X (l • r').
Thus, by Lemma 2 and Corollary 2,

 fi(r') = Sgn(l) Sgn(1) f (1 • r')

 = Sgn(l) Sgn(l) f (l • r') + E Sgn(l) f (l • r')
 i s,iz lES

 = Sgn(l) 0 + E Sgn(1)X (l • r')
 LES

 0.

Similarly,

 fi'(r') = Sgn(l') Sgn(l) f (l • r') = 0.

 Hence the set A satisfies condition [2] in Lemma 8.
 By the same reason as shown in (i), the set A satisfies condition [4] in

Lemma 8. It is obvious that the set A satisfies conditions [1], [3], [5] and [6]
in Lemma 8. Hence A is a fooling set.

(II) I Split; I < n/12
There exist more than s - i2 = z4 pairs of (xi, y2) such that x2 E R and y2 E L
by Lemma 4.

 39

Variable x7 x6 I X5 I x4 x3 x2 x1 xo

Partition L R I R I R R R L R

Assignment 0 11010 1 0 0 0

Variable Y7 Y6IY5IY4 y3 Y2 2/1 YO

Partition L R I L I L L L R L

lr 0 11011 0 1 0 1

Pr 0 11110 1 1 0 1

l"r 0 11010 0 1 0 1

w=6, q=3

Figure 2.16: An example of an assignment

 Similarly to (II) in the previous section, let (x w, yw) be a, pair such that x2, E R
and yw E R.

 Similarly to the previous section, let A be a set of all Left input assignments

satisfying the following conditions.

Conditions:

 [1] If p is the minimum index such that xp c R and yp E: L, then the value 1 is
 assigned to yp.

 [2] For i p, x2 E R and yz E L, the value 1 is assigned to at least one variable.

 [3] The value 0 is assigned to each of the variables that belong to L other than
 mentioned above.

 It is obvious that JAI > 224-1 - 1. We show that A is a fooling set in the
following. If JAI < 1, it is obvious that A is a fooling set. We cope with the case
that JAI > 2 in the following.
 Let 1 and 1' be any two distinct left input assignments that belong to A. We

assume that q is the minimum index of y2 E Y such that y2 E L and l(y2) 1'(y2).
We assume that l(yq) = 0 and l'(yq) = 1 without loss of generality. We define a
left input assignment 1" in the same way as in (II) in the :previous section

 We define a right input assignment r as follows:

 [1] r assigns 1 to each variable x, yw and xq.

 [2] r assigns 0 to the other variables that belong to R.

 An example of an assignment satisfying [1] and [2] is shown in Fig.2.16.

 40

 We define SLI, SS1, SL1,, and SSI, in the same way as in (II) in the previous
section. Then we obtain the following.

 `dl E SL, f (l • r) = 2- + 2q
 dl' E SLI, f (l' r) _ 0 (Y(l' . r) = 2- + 2q) 2w + 2q (otherwise)

Note that SS, = SSS, = {ill ̀ l"}. By Lemma 2,

 fi(r) = Sgn(l) E Sgn(l) f (l • r)
 ha

 = Sgn(l) Sgn(l) f (I • r) + Sgn(I) f (l • r)

 IESL~ LESS,

 = Sgn(l) Sgn(l) f (l • r) + E Sgn(l) f (l • r)
 IESL1 hl"

Similarly,

 fl, (r) = Sgn(l') Sgn(l') f (l' • r) + E Sgn(l) f (l - r)
 ['ESL,, hl"

 The number of left input assignments that belong to SL, and whose weights

are even is equal to the number of left input assignments that belong to SL, and

whose weights are odd. Thus by Corollary 1,

 fj(r) = Sgn(l) 0 + Sgn(l) f (l • r)
 hl„

Note that when 0' • r) = 2W + 2q, the weight of l' is 1. By Corollary 1,

 fi(r) = Sgn(l') -{-(2w + 2q)} + Sgn(l') f (l' • r)

 Next, we define a right input assignment r' as

 [1] r' assigns 1 to each variable x,,, and yw.

 [2] r' assigns 0 to the other variables that belong to R.

 41

Variable x7 x61 x51 x4 x3 x2 xl xo

Partition L R I R I R R R L R

Assignment 0 11010 0 0 0 0

Variable Y7 Y6 I Y5 I Y4 Y3 Y2 Y1 YO

Partition L R I L I L L L R L

lr' 0 11011 0 1 0 1

l'r' 0 1 1 1 1 0 1 1 0 1

1"r' 0 11010 0 1 1) 1

 w=6, q=3

 Figure 2.17: An example of an assignment

 An example of an assignment satisfying [1], [2] is shown in Fig.2.17.
 For l~lor

0 (Y 2-)
 2w (otherwise).

Note that when Y(l - r') = 2W, the weight of l is 0. Thus, by Lemma 2 and
Lemma 5,

 fi(r') = Sgn(l) Sgn(l . r') f (l . r'')

 = -Sgn(l) .2'.

Similarly,

 fp(r') = -Sgn(l') .2w.

Therefore

 fi(r)fc'(r') ~ fl, (r) ft (7-')

Hence, A is a fooling set.

 We conclude that a lower bound on the number of nodes of a *BMD repre-

senting a remainder function f is S2(224) from (I), (II) and Theorem 1. 0

2.5 Conclusion

In this chapter, we show that a lower bound on the size of a *BMD represent-

ing a quotient function or a remainder function is SZ(2m/24). We are expecting

 42

that the techniques in this chapter can be applied to analysis of other graph

representations of arithmetic functions.

 Researchers have observed that a BMD or a *BMD representing a quotient

or a remainder becomes intractable in terms of size even for a small number

of inputs. For example, in [10], the authors have given up construction of a
BMD or a *BMD for a quotient or a remainder. Our result on the lower bound is

consistent with the observation by other researchers. Besides, the time complexity

of performing various operations over BMD's or *BMD's is also very high. For

some operations, it can be exponential in the number of nodes. Our result on the

lower bound in size, the experimental observation and the time complexity seem

to suggest that it is hard to handle a BMD or a *BMD for dividers of practical

size. We believe that it is significant to search for better graph representations

for dividers or other arithmetic functions.

43

Chapter 3

Kronecker Functional Decision

Diagrams and the Complexity of

Finding the Best Decomposition

Type List

3.1 Introduction

Binary decision diagrams[2, 7], which are data structures representing boolean
functions and can be manipulated efficiently in terms of both time and space, are

widely used in various areas of computer science. Kronecker functional decision

diagrams are extensions of binary decision diagrams such that any decomposi-

tion type, such as Shannon expansion and Davio expansion, is allowed for each

variable.

 Time and space needed to manipulate decision diagrams deeply depend on

the number of nodes. Thus it is important to represent boolean functions using

as few nodes as possible. Researches has been made on finding the optimal

variable ordering for binary decision diagrams and Kronecker functional decision

diagrams[5, 22].
 As for Kronecker functional decision diagrams, any decomposition type may

be selected for each variable. Thus it is possible to reduce the number of nodes by

selecting good decomposition types. In this chapter, we show that the following

problem is NP-hard: Determine whether we can assign a decomposition type

to each variable for a fixed variable ordering so that the number of nodes of

shared Kronecker functional decision diagrams representing the function given as

a shared binary decision diagram can be less than or equal to K.

 The remainder of this chapter has the following organization. In Section 3.2,

 45

we define Kronecker functional decision diagrams. In Section 3.3, we show that

the problem of finding the best decomposition types is NP-hard. We conclude

with future work in Section 3.4.

3.2 Preliminaries

3.2.1 Ordered Kronecker Functional Decision Diagrams

An ordered Kronecker functional decision diagram (OKFDDD) is a directed acyclic

graph representing a boolean function. Let the input variables of a given function

be X = {x1i x2, ... , xn}. A variable in X is attached to each internal node of
an OKFDD. A boolean value is attached to each terminal node. Each internal

node has two outgoing edges, called the 0-edge and the 1-edge respectively. Let

low(v) and high(v) be the nodes to which the 0-edge and the 1-edge of a node
v point respectively. Let var(v) and value(v) be the variable and the boolean
value attached to an internal node v and a terminal node v respectively.

 Each node of an OKFDD represents a boolean function, and one of the fol-

lowing two conditions holds between adjacent two nodes:

[1] f [v] = var(v) . f [low(v)] V var(v) • f [high(v)]. That is, f [low(v)] =
 f [v] I var(y)=o, f [high(v)] = f [v] I var(y)=1. In this case, we say that the de-

 composition type of the node v is Shannon expansion.

[2] f [v] = f [low(v)] ® var(v) . f [high(v)]. That is, f [low(v)] = f [VI I var(v)=O,
 f [high(v)] = f [v] I var(v)=o ® .f [v] I var(v)=1. In this case, we say that the de-

 composition type of the node v is positive Davio expansion.

In the above conditions, f [v] is the function represented by a node v, and

f [v] I var(y)=o (resp. f [v] I var(y)=1) is the function obtained by substituting 0 (resp.
1) for the variable var(v). We assume that the priority of boolean product (•)
is higher than that of exclusive OR ((D). We denote `Shannon expansion' and
`positive Davio expansion' as `S' and `pD' respectively.

 For any two nodes, if the attached variables are the same, then the attached
decomposition types are also the same. A terminal node represents a constant
function, whose value is attached to the node. The function represented by the
root node is the function represented by the OKFDD. An OKFDD has a variable
ordering 7r = (xkl < xk2 < ... < xkn), and if xkti precedes xk,, then i < j, where

(k1, ... , kn) is a permutation of (1,... , n). We illustrate examples of OKFDD's
in Figure 3.1. If decomposition types are restricted only to "S', we call the decision
diagram an ordered binary decision diagram (OBDD).

46

S X

pD

S

H 0

z

Y

z

x

Y

0

7G= (x<y<z)

 1-edge

 0-edge

no

z

1

Y

v

z

X

KY

z

Figure 3.1: Examples of an OKFDD and a reduced OKFDD representing f =
x®yz.

 In general, negative Davio expansion (f [low Ml = f [v] I var(v)=1, f [high(v)] =

f [v] I var(v)=O ® f [v] I var(y)=1) is also allowed. However we restrict OKFDD's to take
only Shannon expansion and positive Davio expansion.

3.2.2 Reduced OKFDD's

We say that two nodes u and v are equivalent if low(u) = low(v), high(u) =
high(v) and var(u) = var(v). Since equivalent nodes represent the same function,
one of the two equivalent nodes can be deleted by redirecting the edges pointing

to one node to the other. If the decomposition type of a node v is 'S' and

low(v) = high(v), then v is called a redundant node. Also if the decomposition
type of a node v is 'pD' and high(v) is the constant node of 0, then v is called
a redundant node. In both cases, the node v can be deleted by redirecting the

edges pointing to v to low(v). An OKFDD is a reduced OKFDD if its equivalent
nodes and redundant nodes are maximally deleted. We illustrate an example of

a reduced OKFDD in Figure 3.1.

 A reduced OKFDD represents a function uniquely with a fixed variable order-

ing and fixed decomposition types. In this chapter, we use the term "OKFDD"

to refer to "reduced OKFDD".

3.2.3 Shared OKFDD's

Given OKFDD's, they can share nodes representing the same functions if we

use the same variable ordering for all OKFDD's. A shared OKFDD (SOKFDD)
is a set of OKFDD's that share the nodes representing the same functions and

maximally reduce the redundant nodes. SOKFDD({ fl, f2,... , fn.}), or simply

47

S

 _.

X Vyz

/
PD"' y

\ S z

1-edge ------.

1

S

0-edge

 wyz

pD y

 S z

1

E= (w<x<y<z)

 x Vyz

s 6
- / PD l y

S
z

1

 wyz

S Cb

n

Figure 3.2 : An example of an SOKFDD.

SOKFDD(fl, f2,... , f,,), denotes an SOKFDD that represents a set of functions

{ fl, f2i ... , f,,,}. If decomposition types are restricted only to `S', we call the
OKFDD a shared OBDD (SOBDD). We illustrate an example of an SOKFDD
in Figure 3.2.

3.2.4 Complement Edge

A complement edge is an edge such that the function represented by the node to

which it points is negated[12]. If an internal node v has a complement edge, the
relation between v and its children is modified as follows:

Case: The 0-edge of v is a complement edge.

 f VOW Ml = f [v] I var(v)=0

Case: The 1-edge of v is a complement edge.

 • If the decomposition type of v is `S',

 f [high(v)] = f [v] I var(v)=l.
 • If the decomposition type of v is 'pD',

 f [high(v)] = f [v] I var(y)=0 ® f [v] I var(y)=1•

 It is possible to share the nodes representing functions complementing each

other by introducing complement edges. We illustrate an example of complement

edges in Figure 3.3. To preserve the property of unique representation, we restrict

the use of complement edges as follows[12]:

 • There is only one terminal node, which represents the constant function of

 0. The terminal node of 1 is replaced with the terminal node of 0 with a

 complement edge.

48

S X

S Y y

 0 1

 o 0 complement-edge -.-61

Figure 3.3: An example of an OKFDD representing f = x ®y with a complement
edge.

 • Only 1-edges can be complement edges. We do not use complement edges
 for 0-edges (if necessary, we use complement edges at lower levels).

 We use complement edges for every OKFDD in the following.

3.3 NP-hardness of Decomposition Type Selec-

 tion Problem of Kronecker Functional De-

 cision Diagrams

In this chapter, we show that the following SOKFDD-MIN problem is NP-hard.

Definition 1 [SOKFDD-MIN]

INSTANCE A variable ordering it = (xkl < xk2 < ... < xkj, an SOBDD
 representing functions f2(1 < i < n), and a constant K.

PROBLEM Are there decomposition types according to which we can construct

 an SOKFDD(fl, ... , fn) with at most K nodes for the variable ordering 7t ?

n

 We reduce 3-SAT problem, which is known to be NP-complete, to SOKFDD-

MIN problem in the following.

Definition 2 [3-SAT]

INSTANCE A CNF expression of a boolean function F = C1C2 ... Cn, where
 each clause has exactly three literals (i. e. variables or their complements).

PROBLEM Is there an assignment that satisfies F?

0

 49

Definition 3 [Transforming 3-SAT to SOKFDD-MIN]

 Let the boolean function of a given instance of 3-SAT be F = CiC2 ... Cn,. Let

the set of the variables on which F depends be X = {x1, X2,,- .. , Xm}. We consider
the variable ordering 7' = (x1 < ... < x,,,,). For each clause Ci = lii V lie V li3
(Ii; = xii or li.i = a boolean function Gi is generated as follows. We assume
that xi, < xi2 < xi3 in 7r' without loss of generality. Let the set of the variables

on which Gi depends be {xi1, xi27 xi3, ai, bi,... , hi}, where xil, xi27 xi3 e X, and
ai,bi,... ,hi VX.

 [l]
 Case: lit = xi,

 Gi = xii HABCD V xil HEFGH

 Case: lii = xil

 Gi = xii HABCD V xil (HABCD G HEFGH)

[2]
Case: lie = xi2

HABCD

i HEFGH

i x
i2 HAB

i x
i2 HEF

Case: lie = xi2

HABCD

HEFGH

i = xi2 HAB

= i xi2 HEF

V xi2 HCD

V xi2 HGH

V xi2 (HHB
V xi2 (HEF

® HCD)
®HGH)

[3]
Case: li3 = xi3

HAB = T,3 ai V x

HEF = xi3 ei V x

i3 bi

i3 fi

Case: li3 = x23

HAB =

HHD =

HEF

i H
GH =

 i V /
7 D _ - xi3Ci V xi3di HH

i

 HGH = xi3gi V xi3hi

xi3 ai V xi3 (ai ® bi)

x2302 V x23(ci ® di)

xi3ei V xi3(ei ® A)

xi3 gi V xi3 (9i (D hi)

50

For each

9i_221

i(1 < i <
as follows.

n), we define boolean functions 9i_000, 9i_001, 9i_002, 9i_010,

gi_ooo = ai,
gi_oo2 = ai ®bi,
gi_oll = di,
gi_020 = ai ® ci,
gi_022 = ai ® bi ® ci ® di,
9i_101 = fi,
gi_11o = gi,
gi_112=gi®hi,
9i_121 = fi ED hi,
gi_2oo = ai ® ei,
gi_2o2=ai®biEDei®fi,
gi_211 = di ® hi,
gi_220=ai®ci®ei®gi,

gi_ool = bi,

9i_010 = ci,

9i_012 = ci ® di,

gi_021 = bi ® di,

gi_loo = ei,

gi_102 = ei ® fi,
9i_111 = hi,
gi_120 = ei ® gi,
gi_122=ei®f2 giEDhi,
9i-2o1 = bi ® fi,
gi_2lo = ci ® gi,
gi_212=ci®di®gi®hi,
gi_221=bi®diEDfi®hi.

Then the resulting instance of SOKFDD-MIN is as follows.

INSTANCE The variable ordering 7r = (xi <
... <hi < ... <ai <bi <...

of the functions T = {Gi, gi_000
K=39n+1.

< hn), the
... , gi_22l 11

X2 < ... < x. < al < bl <

SOBDD representing the set

< i < n}, and the constant

a

We consider the time complexity of the above transformation. Gi is generated

based only on the combination of the positive and negative literals in Ci. Thus

there are only the eight candidates for Gi. If we prepare the eight OBDD's that

represent the candidates in advance, the OBDD that represents Gi can be con-

structed by copying the appropriate candidate and attaching the variables to its

nodes. Similarly, the OBDD's that represent gi _ooo, ... , gi_221 can be constructed

by copying the prepared candidates. Then we reduce the constructed OBDD's

and obtain an SOBDD that represents T. This reducing procedure can be done

in polynomial time[7]. It is obvious that the variable ordering 7r and the constant
K can be determined in polynomial time. Therefore the whole procedure can be

done in polynomial time. 0

 In the following, we show that 3-SAT is reduced to SOKFDD-MIN by the

above transformation.

Theorem 4 For the original instance of 3-SAT and the resulting instance of

51

Fex Fex

S x

0

pD x

fex fex
0

 Figure 3.4: Examples of OKFDD's representing Fex with complement edges.

SOKFDD-MIN described above, the following holds.

 The boolean function F of the instance of 3-SAT is satisfiable.

 There are decomposition types according to which the number

 of nodes of SOKFDD(T) is less than or equal to K.

 El

 We introduce the following lemmas and definition.

Lemma 10 The number of nodes of SOKFDD(gi_ooo,... , gi221) without terminal
nodes does not depend on the decomposition types, and it is 32. 0

(Proof)
 We consider the following boolean function Fex.

 Fex = x ® fex,

where x is a boolean variable and fex is a boolean function. Let v be the node that
represents Fex in an OKFDD, that is, f [v] = Fex. We assume that var(v) = x.
Then Fex is decomposed in terms of Shannon expansion as f [low(v)] = fex
and f [high (v)] = fex. Also Fex is decomposed in terms of positive Davio ex-
pansion as f [low (v)] = fex and f [high (v)] = fex ®fex = 1. We illustrate
examples of OKFDD's representing Fex in Figure 3.4. By Figure 3.4, it is obvi-

ous that the number of nodes of an OKFDD representing Fex does not depend

 52

on the decomposition type on x. Since gi_ooo, ... , 9i_221 are literals or boolean

functions that can be expressed by having only exclusive OR's as operators, any

node of SOKFDD(gi_ooo,... , gi_221) represents a boolean function of the form
Fex or a constant. Therefore the number of nodes of SOKFDD(gi_ooo, ... , 9i_221)
does not depend on the given decomposition types. If a child u of a node v in

SOKFDD(gi_ooo, ... , gi_221) is an internal node, u represents the boolean function
f [u] = f [v] 1 var(v)=o by Figure 3.4. Thus each node of SOKFDD(gi_ooo...... i_221)
represents a boolean function that is obtained by substituting 0's for the former

k variables (in the given variable ordering for some 1 < k < 8) of some gi-Xxx • It
is straightforward to see that the number of the distinct boolean functions thus

obtained is 32. 0

 We consider the following one-to-one correspondence. Let F be the boolean

function of the instance of 3-SAT, and let X be the set of the variables on

which F depends. Let A be the set of possible assignments of boolean values

to X. Note that the set of the variables on which the boolean functions in

T = IGi, gi_ooo7 . • . , 9i_22111 < i < n} depends includes X. Then let R be the set
of possible assignments of decomposition types to X, and we define the following

one-to-one correspondence M between A and R.

[one-to-one correspondence M]
 For an assignment a E A, we assign a decomposition type to each variable in

X as follows:

 . If the value of x in a is 1 (resp. 0), then we assign S (resp. pD) to x.

Let the above assignment of decomposition types be r. We define the mapping

M to be M(a) = r. It is obvious that the mapping M is a bijection. El

Lemma 11 For the boolean function F of the original instance of 3-SAT and
the transformed instance of SOKFDD-MIN, the following holds.

 Let X be the set of the variables on which F depends, and let a E A and r E R
be an assignment of boolean values and an assignment of decomposition types to
X, respectively, that satisfies M(a) = r. Then,

 a E A satisfies a clause Ci.

 If we construct an SOKFDD(T) determining

 decomposition types for X according to r

 and those for the rest arbitrarily, then the
 number of nodes except for terminal nodes is

 less than or equal to 39,

53

 V1

CD
 v2 _

 xi2

 v4 v5 V

 xi3 xi3

 V8 V9 V10 V11 V12

xi2

V3

6

 xi3

V13

 V7

 xi~

V14 V15

f [v1] =
f [v2] =

f [v3] =
f [v4] =

f [v5] =
f [vs] =

f [v7] =
f [v8] _

f [v9] _
f [viol _

f[ull] _
f [v12] _

f [v13] _
f [v14] _

_ f[V151

Gi

HABCD

HEFGH, or HABCD ® HEFGH

Has
HCD, or HAB ®HCD

HEF, or HAB ® HEF

HGH, or H6 ® HGH, or HCD ® HGH, or HAB ED HCD ® HEF ® HGH

9i-000

9i_ool, or 9i_002

9i_o1o, or 9i_020

9i_oll, or 9i_012, or 9i_021, or 9i_022

9i_100, or 9i-2o0

9i_lol, or 9i_102, or 9i_201, or 9i 902

gi_llo, or 9i_120, or 9i_210, or 9i-22o

9i_lll, or 9i_112, or 9i_121, or 9i_122, or 9i_211, or 9i212, or 9i221, or 9i_222

Figure 3.5: The functions that are represented by the nodes of SOKFDD(Ti).

where Ti = {Gi, 9i_ooo, ... , 9i_221} • 0

(Proof)
 We illustrate the functions that are represented by the nodes of SOKFDD(Ti)
in Figure 3.5, where gi_222 = ai ED bi ®ci ED di ED ei B f i ® gi ED hi . It is obvious that the
functions represented by v8, • - • , v15 are different from each other by Figure 3.5.
Thus there is one node with xil, two nodes with xi2 and four nodes with xi3 in
SOKFDD(Ti). Note that an SOKFDD(gi_ooo, • • • , 91221) has exactly 32 nodes by
Lemma 10. Therefore an SOKFDD(Ti) has at least 39 nodes. In the following,
we show that the function represented by v15 in Figure 3.5 is gi_222, that is, the

number of nodes except for terminal nodes is more than 39, if and only if a does

54

not satisfy Ci.

(a) a does not satisfy Ci
 For the literal li, in Ci, if lit = xi, (resp. li, = xi,), then xi, = 0 (resp.

xi, = 1) since a does not satisfy Ci. Thus the decomposition type of pD (resp.
S) is assigned to xi, by the definition of r = M(a). Therefore the function
represented by v3 is always HABCD ® HEFGH, and does not depend on whether
li, is a positive literal or a negative literal. Similarly, the function represented by
v7 is always HAB ®HCD ® HEF ® HGH, and the function represented by V15 is
always gi_222, and each of them does not depend on whether lie or 43 is a positive
literals or not.

(b) The function represented by v15 is gi_222 for the assignment of

literal or not. Similarly, lie 0 and li, 0, and a does not satisfy CZ. D
 We obtain the following corollary by the proof of Lemma 11.

Corollary 5 The following holds on the same condition as in Lemma 11.

 a E A satisfies a clause Ci.

 If we construct an SOKFDD(T) determining

 decomposition types for X according to r

 and those for the rest arbitrarily, then the

 number of nodes except for terminal nodes

 is exactly 39.

where Ti = {Gi, gi_o00, ... , gi_221 } • 0

 We show the proof of Theorem 4 in the following.

(Proof of Theorem 4)
(a) Sufficient Condition

 We assume that F is satisfiable. Then there is an assignment a of boolean

values to X that satisfies F. We define an assignment r of decomposition types

to X to be r = M(a). We consider the SOKFDD(T) whose decomposition types
are defined as follows:

decomposition types r(= M(a)).
 The function represented by v7 must be HAS ® HGD ® HEF ® HGH since the

function represented by v15 is gi_222. In addition, for the literal li3 in Ci, when
li3 = xi3 (resp. li3 =xi3), the decomposition type of v7 must be pD (resp. S).
Thus the value of xi3 in the assignment a is 0 (resp. 1) by the definition of
r = M(a). Therefore li3 = 0 and this does not depend on whether li3 is a positive

55

. For the variables in X, we assign decomposition types according to r.

. For the remaining variables, we assign decomposition types arbitrarily.

We show that the number of nodes of the resulting SOKF'DD(T) is less than or
equal to K in the following.

 The number of nodes of SOKFDD(Ti) is exactly 39 by Corollary 5 since a sat-
isfies Ci. Note that, for any distinct i and j, Ti and Tj have no common variable.
Thus only the terminal node can be shared by SOKFDD(T1'i) and SOKFDD(T;).
Therefore the number of nodes of the SOKFDD(T) is the sum of the numbers of
nodes of SOKFDD(T1), ... , SOKFDD(T,,), plus 1, to which the terminal node
of 0 contributes, and this is 39n + 1 = K.

(b) Necessary Condition
 We assume that F is unsatisfiable. Let r' be an assignment of decomposition

types to the variables on which the functions in T depend. Let r be the assignment

of decomposition types obtained by restricting r' to X. We define an assignment

a of boolean values to X to be a = M-1(r). Then there exists an index i such
that a does not satisfy Ci. Note that the number of nodes of SOKFDD(Ti) that
is constructed according to r' is more than or equal to 40 by Lemma 11, and

that, for any index j, the number of nodes of SOKFDD(Tj) that is constructed
according to r' is at least 39 by Lemma 11 and Corollary 5. Similarly to the case

in the proof of the sufficient condition, only the terminal node can be shared by

SOKFDD(T1), ..., SOKFDD(T,,). Thus the number of nodes of SOKFDD(T)
that is constructed according to r' is at least 39(n - 1) + 40 + 1 = K + 1. 0

3.4 Conclusion

In this chapter, we showed that the problem of determining whether there are

decomposition types according to which the number of nodes of SOKFDD(T)
can be less than or equal to K is NP-hard, where T is a set of boolean functions

given as an SOBDD, K is a given constant, and the variable ordering is fixed. It

is straightforward to see that it is still NP-hard if a set of boolean functions T is

given as an SOKFDD with fixed decomposition types.

 It remains to investigate NP-completeness of SOKFDD-MIN and complexity

of SOKFDD-MIN with positive Davio expansion.

56

Chapter 4

On the power of Quantum
Branching Programs

4.1 Introduction

Since Shor developed a polynomial time factoring algorithm for quantum comput-

ers[21], much attention has focused on quantum computation. There are many
results that quantum computers might be more powerful than classical computers

[15, 21], it is unclear whether there is a computational gap between the model that
may use quantum effects and the model that may not. It has been shown that

some quantum automaton models are more powerful than classical ones [4, 18].
It would give hints on the power of quantum computation to study about other

computation models to see whether quantum computation models can be more

powerful than classical ones.

 As one of classical computation models, branching programs have been stud-

ied intensively as well as automaton models, and several types of branching

programs are introduced including read-once branching programs and bounded-

width branching programs [19].
 In this chapter, we introduce a new quantum computation model, a quantum

branching program, as an extension of a classical probabilistic branching program,

and make comparison of the power of these two models. We show that, under

a bounded-width restriction, ordered quantum branching programs can compute

some function that ordered probabilistic branching programs cannot compute.

 The remainder of this chapter has the following organization. In Section 4.2,

we define several types of quantum branching programs and probabilistic branch-

ing programs. In Section 4.3, we show that, under a bounded-width restriction,

ordered quantum branching programs can compute some function that ordered

probabilistic branching programs cannot compute. We conclude with future work

57

in Section 4.4.

4.2 Preliminaries

We define technical terms.

Definition 4 Probabilistic Branching Programs

 A probabilistic branching program (PBP) is a directed acyclic graph that has
two terminal nodes, to which boolean values 0 and 1 are attached, and internal

nodes, to which Boolean variables taken from a set X = {xl,... , xn} are attached.
There is a distinguished node, called source, which has in-degree 0. Each internal
node has two types of outgoing edges, called the 0-edges and the 1-edges respec-
tively. Each edge e has a weight w(e) (0 < w(e) < 1). Let Eo(v) and Ei(v) be
the set of the 0-edges and the set of the 1-edges of a node v respectively. The sum
of the weights of the edges in Eo(v) and Ei(v) is 1. That is,

 w(e) = 1, w(e) = 1 .
 eEEo(v) eEE1(v)

 A PBP reads n inputs and returns a boolean value as follows: Starting at the
source, the value of the variable attached to the node is tested. If this is 0 (1),
an edge in Eo(v) (El(v)) is chosen according to the probability distribution given
as the weights of the edges. The next node that will be tested is the node pointed
by the chosen edge. Arriving at the terminal node, the attached boolean value is
returned.
 We say that a PBP P computes a function f (with error rate 1/2 - 8) if
P returns the correct value of f for any inputs with probability at least 1/2 + 6
(6>0). El

 We show examples of PBP's in Fig. 4.1.

Definition 5 Quantum Branching Programs
 A quantum branching program (QBP) is an extension of a probabilistic branch-

ing program, and its form is same as a probabilistic branching program except for
edge weights. In a QBP, the weight of each edge is a complex number w(e)

(0 < 1w (e) i < 1). The sum of the squared magnitude of the weights of the edges
in Eo(v) and El (v) is 1. That is,

 11w(e)II 2 = 1, IIw(e)II2 = 1 .
 eEEo(v) eEEi(v)

 58

/
1

/

 1/ I

0 /

1

Y

1

1

x

i
1 0

.8/

 1 0
1
i

0

0.

.2

0 2 1-edge

~- -. 0-edge

Y

1

1

Figure 4.1: Probabilistic branching programs that compute f = xy with error
rate 0 and 0.2 respectively.

The edge weight w(e) represents the amplitude with which, currently in the node
v, the edge will be followed in the next step.

 Nodes are divided into the three sets of the accepting set (Qa,,e), the rejecting
set (Qrej) and the non-halting set (Qn0). The configurations of P are identified
with the nodes in Q = (Qace U Qrej U Q,,,,). A superposition of a QBP P is any
element of 12(Q) (the space of mappings from Q to 0 with 12 norm). For each
q E Q, 1q) denotes the unit vector that takes value 1 at q and 0 elsewhere.

 Let C be the set of all complex numbers. We define a transition function
6 : (Q x {0, 1} x Q) -* 0 as follows:

 8(v, a, v') = w(e) ,

where w(e) is the weight of the a-edge (a = 0 or 1) from a node v to v'. If the
a-edge from v to v' does not exist, then 6(v, a, v') = 0. We define a time evolution
operator as follows:

 U IV) _ 6(v, x(v), v') IV')
 v'EQ

where x denotes the input of a QBP, and x(v) denotes the assigned value in x
to the variable attached to the node v. If the time evolution operator is unitary,
we say that the corresponding QBP is well formed, that is, the QBP is valid in
terms of the quantum theory.

 It is required to have edges from terminal nodes in order to be well formed.
For convenience, we allow QBP's to have edges from terminal nodes and to be
cyclic on the condition that it is still acyclic without the edges from terminal
nodes.

 59

/

+1

1

14

/

+/

Y

0

x

-11 -

1

Y

-. 1-edge

- - 0-edge

•
 t -

+ /

1

Figure

error.

4.2: A quantum branching program that computes f = x ® y with no

 We define the observable 0 to be, ® Erej (D Enon, where

 E.C = span {Iv) Jv E Q.c} ,

 Erej = span {Iv) Iv E Qrej},

 Eon = Span {Iv) Iv E Qn0n} .

 A QBP reads n inputs and returns a boolean value as follows: The initial
state Io) is the source Iv.,). At each step, the time evolution operator is applied
to the state 1,0i), that is, I 'i+1) = US 10i). Next, k L' +i) is observed with respect to
Eacc®Erej®Enon. Note that this observation causes the quantum state IOz+i) to be
projected onto the subspace compatible with the observation. Let the outcomes of
an observation be "accept", "reject" and "non-halting" corresponding to F , Erej
and Enon respectively. Until "accept" or "reject" is observed, applying the time
evolution operator and observation is repeated. If "accept" ("reject") is observed,
boolean value 1 (0) is returned.

 We say that a QBP P computes a function f (with error rate 1/2 - 6) if
P returns the correct value of f for any inputs with probability at least 1/2 + S

(6>0). o

 We show an example of a QBP

1 or - , and only signs are put
introduce the following theorem.

in Fig. 4.2, where the weight of each edge is

on the figure. To check well-formedness, we

60

Theorem 5

 A QBP P is well-formed.

 For any input x, the transition function S satisfies the following condition.

) = ql - q2 ~S(ql, x(ql), q')S(g2, x(q2), q, 1 0 qi q2,

q where S(q, a, q') denotes the conjugate of S(q, a, q').

(Proof)
 It is obvious since UU is unitary if and only if the vectors Ua Jv) are orthonor-

mal. 0

Definition 6 The Language Recognized by a Branching Program

 In this chapter, we define a language L to be a subset of {0,1}*. Let the n-th
restriction Ln of a language L be L fl {0,1}n. A sequence of branching programs
{P,} recognizes a language L if and only if, there exists S(> 0), and the n-input
branching program Pn computes the characteristic function fLn (x) of Ln with
error rate at most 1/2 - S for all n E N, where

 .IL-(x)= j 1 (xELn)
 l 0 (xVLa).

0 Definition 7 Bounded- Width Branching Programs
 For a branching program P, we can make any path from the source to a node

v have the same length by inserting dummy nodes. Let the resulting branching
program be P'. We say that P' is leveled. Note that P' does not need to compute
the same function as P. The length of the path from the source to a node v is
called the level of v. We define width(i) for P as follows:

 width(i) = {v I the level of v is i. } (.

We define Width(P) as follows:

 Width(P') = max{width(i)} .

2 We say that the width of P is bounded by Width(P').
 A sequence of branching programs {Pn} is a bounded-width branching program

if, for some constant w, {Pn} satisfy the following condition.

 VP E JP}, The width of P is bounded by w .

0

61

 We also call a sequence of branching programs "a branching program" when
it is not confused. We denote a bounded-width QBP and a bounded-width PBP
as a bw-QBP and a bw-PBP respectively.

Definition 8 Ordered Branching Programs
 Given a bounded-width branching program, we can make it leveled as shown

in the above. For a given variable ordering 7r = (xkl < xk, < ... < xkn), if the
appearances of the variables obey the ordering ir, that is, xki precedes xk, (i < j)
on any path from the source to a terminal node, and the attached variables to all
the nodes at the same level are the same, we say that the branching program is
ordered. 0

4.3 Comparison of the Computational Power of
 Ordered bw-QBP's and Ordered bw-PBP's

In this section, we show that ordered bw-QBP's can compute some function that
ordered bw-PBP's cannot compute. We define the function HALF,,, and the
language LHALF.

Definition 9 The Function HALFn and the Language LHALF
 We define HALFn : Bn ---~ B as follows:

 1{x,Ixi =1}1 = 2 HALF
n(xl, ... , xn) = 0 otherwise

 In the following, we denote the variables on which HALF" depends as X =
{x1i x2, ... , xn}. We define LHALF as follows:

 LHALF = {x (x E {0, 1}k, HALFk(x) = 1 } .

0

4.3.1 Ordered bw-QBP's that Recognize LHALF

In quantum computing, different computational paths interfere with each other

when they reach the same configuration at the same time. In [18], a quantum
finite automaton is constructed so that, only for inputs that the quantum finite

automaton should accept, the computational paths interfere with each other.

 In this chapter, we modify this technique for quantum branching programs,

and construct a quantum branching program that recognizes the language LHALF.

 62

Theorem 6 Ordered bw-QBP's can recognize LHALF.

(Proof)
 To show that ordered bw-QBP's can recognize LHALF, we construct an ordered
bw-QBP that computes HALF,, for any n. Figure 4.3 illustrates the QBP.

 We define the set of nodes Q as follows:

 Q = IVs, v1, v2, v3, vacc, vrejl, vrej2}
 U {v(i,xk)I xk E X, 1 < i < 3}

 U {v(i,xk,j,T)I xk E X, 1 < i < 3, 1 < j < i}
 U{v(i,xk,j,F)Ixk EX,1 <i<3,1 < j <3-i+1} .

 The variable attached to the node V(i,xk), V(i,xk,j,T), and V(i,xk,9,F) is xk. The
variable attached to the node vs is x1. The variable attached to the node v1, v2,

and v3 is xn.

 We define the accepting set (Qa,,), the rejecting set (Qrej), the set of 0-edges

(Eo), the set of 1-edges (El) and the weights of edges (w(e)) as follows:

 Qacc = {vacc}, Qrej = {vrejl, vrej2} .

Eo = { (vs, v(i,xl)) I 1 < i < 3 }
 U { (v(i,xk), v(i,xk,1,F)) 11 < i < 3,1 < k < n }

 U { (v(i,xk,j,F), v(i,xk,7+1,F)) 11 < i < 3,1 < j < 3 - i, 1 < k < n }
 U { (v(i,xk,3-i+1,F), v(i,xk+l)) I'< i < 3, 1 < k < n - 1 }

 U { (v(i,xn,3-i+1,F), vi) 11 < i < 3 }
 U {(vi, vacc), (vi, vrejl), (vi, vrej2) 11 < i < 3 }

El = { (vs, v(i,xl)) 11 < i < 3 }
 U { (v(i,xk), v(i,xk,1,T)) 11 < i < 3,1 < k < n }

 U {(v(i,xkJ,T), v(i,xk,7+1,T)) I1 < i < 3,1 < j < i - 1,1
 U { (v(i,xk,i,T), V (i,xk+l)) I 1 < i < 3,1 < k < n - 1 }

 U { (v(i,xn,i,T), vi) 11 < i < 3 }
 U {(vi, vacc), (vi, vrej1), (vi, vrej2) 11 < i < 3 }

<k<n }

w((vs, v(l,x,.)))

w((v1i v-M =

= w((vs, v(2,xi)))

W((vl, vrejl))

= w((vs, v(3,xi))) =

W((vl, vrej2)) =
V J ,

1

63

 xl X2

 V3 ~, x1

 V2
, x1

 1, x1, 1,T

 1,x1

 V1,x1,1,F V1,x1,3,F
 V1,xl,2,F

, e

,

 as

x
n-1

f

x
n

V3

 .1-edge

 ------------ ' 0 -edge

 - 1 -edge

 and 0-edge

P

 zejl

~- ~ ecc

 A QBP that computes HALF, Figure HALF,

 w((V2, Vacc)) _ W((v2, Vrejl)) _ exp 0232/
 VI((V2 Vrej2)) _ xp 0432) I w((V3, Vacc)) = Y 3

 w ((VS Vrejl)) _ exp 0432/ , w((VS~ Vrej2)) = v _3_ Cg32/ exp
The weights of the other edges are all 1.
 Adding some more nodes and edges, each node of the QBP can be made to

have

 [1] one incoming 0-edge and one incoming 1-edge with the weight of 1,

 or,

 [2] three incoming 0-edges and three incoming 1-edges with the same weights
 between (211iY72, 41g) and (Vacs Vrejli Vrej2)•

and also have

 [1] one outgoing 0-edge and one outgoing 1-edge with the weight of 1,
 or,

 [2] three outgoing 0-edges and three outgoing 1-edges with the same weights
 as between (vl, v2i v3) and (Vacc, Vrejl, Vrej2)•

 64

In addition, incoming edges of each node can be made to be originated from the
nodes to which the same variable attaches. Then it is straightforward to see that
this QBP can be well-formed by Theorem 5.

 Given an input x, let the number of the variables in X = {x1,... , xn} to
which the value 1 is assigned be k. Then the number of steps from V (i,xi) to vi
is ik + (3 - i + 1)(n - k) + n. Thus for any two distinct i and j (1 < i, j < 3),
the number of steps from the source to vi (vj) is the same if and only if k = n/2.
Therefore the superposition of this QBP becomes 1 lv1) + Iv2) + Iv3) after
3n + 1 steps if HALFn(x) = 1. Since UU (Iv1) + Iv2) + Iv3)) = lvacc),
this ordered bw-QBP returns 1 with probability 1 if HALF,,(x) = 1. On the
other hand, since US l Vi) = I v c) + e Ivrejl) + e IVrej2), this ordered bw-QBP r- '3

returns 0 with probability 2/3 if HALFn(x) = 0. Therefore this ordered bw-QBP
computes HALFn with one-sided error. 0

4.3.2 Ordered bw-PBP's cannot Recognize LHALF

Theorem 7 Ordered bw-PBP's cannot recognize LHALF. 0

 To prove Theorem 7, we introduce the following definition and lemma.

Definition 10 Total Variation Distance
 The total variation distance of two probability distributions P1 and P2 over

the same sample space I is defined as follows:

2
 2 E I Pl (i) - P2 (i) l

 iEI

Similarly, we define the total variation distance of two vectors x1 = (a,,... , an)
and x2 = (b,.... , bn) (al, ...) an, bl,... , bn : real numbers) as follows:

1

 2 Iai-bil
 1<i<n

0

Lemma 12 Let rm be the set that consists of all probability distributions of m
events, that is,

 I'm = {(a1, ... , am) jai > 0.... , am > 0, a1 + ... + am = 1 }

 For any constant 6 (6 > 0) there exists a natural number N, and for any finite
set S C I'm, if the cardinality of S is greater than N, the following holds.

 ID, E S, D2 E S(D1 D2)
 (the total variation distance of D1 and D2) < 6

65

(Proof)
 Fm is a bounded subset of a m-dimensional metric space whose distance be-

tween points is defined as the total variation distance. Thus F' can be contained

by some m-dimensional regular polyhedron whose volume is larger than Fm. We

decompose the polyhedron into a finite number of smaller m-dimensional regular

polyhedra whose lengths of edges are smaller than m . Let the number of such
smaller polyhedra be N. For any two points in such a smaller polyhedron, the

total variation distance of them is less than S. Thus if the cardinality of S is

greater than N, there exist two distinct elements in S, say u and v, and the total

variation distance of u and v is less than 6. El

 We show the proof of Theorem 7 in the following.

(Proof of Theorem 7)
 We assume that there is an ordered bw-PBP {Pn} that recognizes LHALF,

that is, P E {Pn} computes HALF,, with error rate 1/2 - 6. We say that a PBP
is in normal form when all the variables appear on any path from the source

to a terminal node. We assume that P is in normal form with the ordering

v = (x1 < ... < xn) without loss of generality. Let Sz be the set of the variables
of the former half of the variable ordering, that is, S 2 = {xjI1 < j < 2 }. When
n is sufficiently large, there are sufficient number of assignments to the variables
in SZ such that, for any two distinct assignments, the weights of the assignments
differ. Let Da denotes the probability distribution for the nodes at which we

arrive when we compute according to a. That is, Da(V) is the probability such
that we arrive at the node v after we compute according to a. For sufficient

number of assignments, there are sufficient number of corresponding probability

distributions. Thus, since P is a bounded-width PBP, when n is sufficiently large,

there are two distinct assignment, say a1 and a2, to the variables in SZ satisfying

the following conditions by Lemma 12.

 • The total variation distance of Dal and Dal is less than 6.

 • The weight of a1 (the number of 1 in al) differs from that of a2.

 Let arest be the assignment to the variables of the latter half of the variable

ordering such that, for the complete assignment a1 - arest, HALF,,,(al . arest) = 1.
Then if we compute according to a1 • crest, we arrive at the terminal node of 1

with probability at least 1/2 + 6. On the other hand, if we compute according to
a2•arest, we arrive at the terminal node of 1 with probability at least 1/2+6-S =
1/2. We show the reason in the following.
 Let I be

.

 I = {ZIDai(2) > D-2(')I

66

Since the total variation distance of Dal and Dal is less than S,

E (Dai (2) - Dal (2)) _ E (Daz (i) - Dai (2)) < 6.
iEI i¢I

Thus comparing the probabilities with which we arrive at the terminal node of 1

computing according to al • arest and a2 - crest, the difference of the probabilities is

at most S. Therefore we arrive at the terminal node of 1 with probability at least

1/2 + S - S = 1/2 if we compute according to a2 • arest. However this probability
must be less than 1/2 - S. This is a contradiction. El

4.4 Conclusion

In this chapter, we show that there is a function that can be computed by ordered

bw-QBP's but cannot be computed by ordered bw-PBP's. This is an evidence

that introducing quantum effects to a computational model increases its power.

 It is still the future work to study what results we obtain if we remove the re-

striction of bounded-width and variable ordering. Since quantum computational

models must be reversible, introducing classical "reversible branching programs"

and comparing them with quantum branching programs can also be future work.

67

Chapter 5

On the Power of

Non-deterministic Quantum
Finite Automata

5.1 Introduction

Recently, the power of quantum computation models has been investigated inten-

sively, and many results such as Shor's polynomial-time factoring algorithm [21]
and Grover's searching algorithm [15] have been proposed, which suggest that
quantum computers might be more powerful than classical ones. However, it is

still unclear how the computational power arises.

 As quantum computation models, various kinds of quantum finite automata

have been proposed, including 1-way and 2-way quantum finite automata. The

power of those automata has been studied in [3, 4, 6, 18]. Quantum computers
must be reversible since their state transition operator must be unitary. Because

of this constraint, it is not always the case that quantum computation models

are more powerful than classical counterparts. In fact, it has been shown that

the class of languages recognized by 1-way quantum finite automata is a proper

subset of the class of all regular languages since reversibility becomes critical for

1-way models [18].
 On the other hand, the class NQP was proposed as the class of problems that

are solvable by non-deterministic quantum Turing machines in polynomial time

[1], and the relation to the class co-C=P has been shown in [13, 14, 23].
 As for classical finite automata, the capabilities of deterministic finite au-

tomata and non-deterministic finite automata are the same in terms of accept-

ing languages. In this chapter, we investigate whether non-determinism makes

(1-way) quantum finite automata more powerful or not. We introduce (1-way)

69

non-deterministic quantum finite automata in which the same non-determinism
as in non-deterministic quantum Turing machines is applied. That is, if for an
input word the probability of outputting 1 is 0, the word is rejected, otherwise,
it is accepted.

 We prove that a non-regular language LEQ, which is described later, can be
recognized by non-deterministic quantum finite automata, and also show that
any regular language can be recognized by non-deterministic quantum finite au-
tomata. In other words, non-deterministic quantum finite automata are strictly
more powerful than classical deterministic/non-deterministic finite automata, and
also strictly more powerful than 1-way quantum finite automata.

 These results mean that the non-determinism introduced to quantum finite

automata certainly increases their capabilities in terms of accepting languages.

The results also imply that, as for quantum finite automata, non-deterministic

1-way models can be more powerful than classical counterparts in spite of the

restriction of reversible state transitions.

 As a similar model, unbounded-error measure-many quantum finite automata

have been studied in [6]. Our model can be regarded as a subclass of the model,
in which its 'cut-point' is restricted to zero. In [6], inclusion of regular lan-
guages has not been shown. The above result of ours relating to inclusion of

regular languages is shown for models which are considered to be less powerful

than unbounded-error measure-many quantum finite automata. Thus, it is im-

plied that unbounded-error measure-many quantum finite automata are powerful

enough to accept any regular language.

 This chapter is organized as follows: Section 5.2 defines the non-deterministic

quantum finite automata. Section 5.3 describes the main results. Section 5.4

concludes this chapter.

5.2 Non-Deterministic Quantum Finite Auto-
mata

We define several types of finite automata in the following.

Definition 11 (DFA) A deterministic Finite Automaton
the following 5-tuple:

 M= (Q,E,6,go,Qf),

where Q is the set of states, E is the set of input symbols, 6

function (6 : (Q x E x Q) --3 {0,1}), qo is the initial state
accepting states.

(DFA) is defined by

is the state transition
 and Q f is the set of

 El

70

 S(q, a, q') = 1 (0) means that the state changes (does not change) from q to
q' when reading an input symbol a. For any q and a, there is exactly one q' that

satisfies b(q, a, q') = 1. For an input word w, M reads the input symbol one by
one, and states change as follows:

 • Let the current state be q and the input symbol be a. The state changes

 from q to q', where 8(q, a, q') = 1.

If the final state (i.e., the state after reading all the input symbols) is in the set
of the accepting states Q f, we say that M accepts the word w, otherwise, we say
that M rejects the word w.

Definition 12 (NQFA) A non-deterministic Quantum Finite Automaton (N-
QFA) is defined by the following 8-tuple:

 M = (Q, E, I', b, qo, Qacc) Qrej' Qnon),

where Q is the set of states, E is the set of input symbols, F = E U {~, $} (and
$ are the left and the right end-marker, respectively) is the set of tape symbols, 6
is the state transition function (S : (Q x E x Q) --3 C), qo is the initial state,
Qacc is the set of accepting states, Qrej is the set of rejecting states, Qnon =
Q \ (Qacc U Qrej) is the set of non-halting states, and Qacc n Qrej = 0, where C
is the set of all complex numbers. El

 8(q, a, q') = a means that the amplitude of the transition from q to q' when
reading a is a. Since configurations of an NQFA are described by only its states,
we identify a configuration of an NQFA with its state. A superposition of configu-
rations in NQFA M is any element of 12(Q) of unit length. For each configuration
q E Q, we define a column vector Iq) as follows:

 • 1q) is a I Q I x 1 column vector.

 • The row corresponding to q is 1, and the other rows are 0.

For an input symbol a, we define a time evolution operator Ua as follows:

 Ua(I q)) = S(q, a, q') I q')
 q'EQ

If Ua is unitary for any a E E, that is, UatUa = I, then we say that the corre-
sponding NQFA is well-formed. This means that the NQFA is considered to be
valid in terms of the quantum theory. We consider only well-formed NQFA's in
the following.

71

 We define the observable 0 = Enon ® Eacc (D Erej as follows:

 Enon = span{ I q) Iq E Qnon},
 Eacc = span{) q) Iq E Qacc},

 Erej = span{ Iq) I q E QTej }.

We define the outcomes of an observation to be "non", "acc" and "rej" corre-
sponding to Enon, Eacc and Erej respectively.

 We define the notion of "words accepted by an NQFA M" as follows.
 Let the initial state be qo. We define 100) = Iqo). We operate as follows:

(a) We define Iii+l) to be I'Z+1) = Ua 10i) for the i-th input a.

(b) We observe 10z+1) with respect to the observable 0. Note that this obser-
 vation causes IV)Z+1) to be projected onto the subspace compatible with the

 observation. If the outcome is "acc", then the output of the NQFA is 1. If
 the outcome is "rej", then the output is 0. If the outcome is "non", then

 repeat (a).

We call the above (a) and (b) `one step' collectively. For a word w, if the probabil-
ity of outputting 1 is not 0, we say that the NQFA accepts the word w, otherwise,
we say that it rejects the word w.

 The set of words accepted by a finite automata (deterministic or not) is the
language recognized by the finite automata.

 As an unbounded error quantum computation model, unbounded error measu-

re-many quantum finite automata (MM-QFA's) are introduced in [6]. An un-
bounded error MM-QFA is said to accept a language L with cut-point A if for all
x E L the probability of M outputting 1 is greater than)A and for all x V L the
probability of M outputting 1 is at most A. An NQFA is considered to be a spe-
cial case of an unbounded-error MM-QFA such that A =0. Thus the languages
recognized by NQFA's are also recognized by unbounded-error MM-QFA's, but
the converse is not certain.

 To check well-formedness, we introduce the following lemma.

Lemma 13 NQFA M is well-formed. The state transition function satisfies
the following condition:

=

 Y 6(q', a, gl)S(g1, a, q2) 1 (qi q2) =
0 (qi ~ q2) ,

 q'

where S(, •, •) is the conjugate of S(•,

72

(Proof)
 A matrix Ud is unitary if and only if Ua,UQ = I, where Ua is a transpose

conjugate of U,,,. (i, j)-element of U,, Q, is Eq' 6(q', a, gi)6(q', a, qj). Thus, it is
obvious that the lemma holds. El

5.3 NQFA's and Regular Languages

In this section, we show that the class of languages recognized by NQFA's properly

contains the class of all regular languages.

5.3.1 An NQFA that Recognizes the Language LEQ.

We define the language LEQ as follows:

 w E {a, b}*,
 * The number of a in w LEQ = {a, b} \ w is equal to the number

 of b in w.

It is obvious that language LEQ is not a regular language. We show that NQFA's
can recognize LEQ.

 In [3, 6], it has been shown that languages similar to LEQ can be recognized
by variants of quantum finite automata. Based on those models, we can also make
out quantum finite automata which accepts LEQ. Furthermore, by modifying
the definition of "acceptance" appropriately, they can be regarded as NQFA's.
In this sense, the following theorem is straightforward. To keep the chapter self-
contained, we show the proof of the theorem.

Theorem 8 NQFA's can recognize language LEQ.

(Proof)
 The NQFA with the following set of states and state transition function rec-
ognizes the language LEQ.

 Q = {qo, qi, qacc, grej }

 6(qo, a, qo) = cos V7r

 6(go,a,gi) = sin\~

 73

 S(qi, a, qo) =

 S(qi, a, qj) =

 S(qo, b, qo) =

 S(qo, b, qj) =

 S(qi, b, qo) =
 S(qi, b, qj) =

 S(qo, t, qo) =

 b(qi, qj) =

 S(qo, $, grej) _

 b(qi, $, gacc) =

S(grej, a, grej) =

S(gacc, a, gacc) =

S(gTej, b, grej) =

S(gacc, b, gacc) =
 S(grej, $, qo) =

 S(gacc, $, qj) =

S(grej,~, grej) =

S(gacc, ~, gacc) =

- sin vF2~r

cosv2 n

cos(-V7)

sin v'2-,7r)
- sin (-/ir)

cos(-v'-27)

1 1

1

1

1

1

1

1

1

1

1

1

It is obvious that the NQFA is well-formed by Lemma 13.
 Let the initial state be IQ. The state is rotated by %/ r in the two dimensional

space that is spanned by I qo) and I qi) if the input symbol. is a, and it is rotated
by -V2--F if the input symbol is b. Thus, the superposition contains exactly one
configuration Iqo) after reading the word w if and only if the number of a in w is
equal to the number of b in w. If the number of a in w differs from the number of

b in w, the superposition becomes a (qo) +,Q jqi) (# 0). Therefore, this NQFA
recognizes the language LEQ. 0

 We discuss the accuracy of the amplitudes of the NQFA in the following. We
obtain the following lemma from Lemma 6 in [3].

Lemma 14

at least i 2Iw12'

The NQFA in Theorem 8 outputs 1 for w E. LEQ with probability

0

By Lemma 14, we can say that the accuracy (i.e., the number of bits) needed to
represent the amplitudes is at most polynomial in terms of input lengths.

74

5.3.2 Recognition of Regular

We show that, for any regular language,

language.

Languages by NQFA's

there is an NQFA that recognizes the

Theorem 9 For any DFA, there is an NQFA that recognizes the language
ognized by the DFA.

rec-

(Proof)
 Let M = (Q, E, S, qo, Q f) be an arbitrary DFA. We are to make an NQFA

 M* = (Q*, E, r, 6*, qo, Qacc, QTej' Qnon)

that recognizes the language recognized by M.
0 First, we will define the set of states Q*. Let Qm = Q \ Q f.

 For each q E Q and a E E, let S(q, a) °= {q'Ib(q', a, q) = 1}, that is, the
set of origins of incoming transitions to q. And for each a E E, let Da °_ {q E

Q I I S(q, a) I > 2}, and let Na --° {q E QI S(q, a) = O}.
 Using these sets, we define Q* as follows.

 Q* 0 _ (Qf U QM U UaEE UgEDQ Raq) U (Of U Qm U UaEE UgED.. 4q), where Raq'S,
Raq'S, Q f and Qm are mutually disjoint sets of new states (they are all disjoint
from Q) such that IQfl = IQfI, IQml = IQml, and IRagi = IRagI = IS(q,a)I -1
for aEE,gGDa.

 As the cardinalities are the same, we can arbitrarily fix one to one correspon-
dence between Q f and Q f, also between Qm and Qm, and between Raq and Raq
for a E E, q c Da. For q E Q f, we will denote the corresponding state in Q f by

q. Similar convention will be used for Qm and Raq's.
 For each Raq, we arbitrarily fix an ordering of states in Raq, which will be

used in defining a transition function later. For a E E, we define Tao UgED.Raq.
 As each state in M has exactly one destination state in the transition defined

by S(., a,*), it is easy to see that ITal = I Nal. For each a E E, we arbitrarily
define a bijection matea(.) from Ta to Na.

 Now we will define 5* as follows. In the definition, as is stated before, q
denotes the state corresponding to q.

J* (q, a, matea(q)) = 1 (q E Ta, a E E),

S*(q,b,q)=1 (geTa,aEE,bEE\{a}),

75

q1 ~~ q 2 ---~q

1

Raq"

'

,mate(qz)

r

)~mate(q

S(q"..a)

q1,

Na

 Figure 5.1: Definition of 5*(., a, .) around Raq.

S*(q, $, q) = 1 (q E Qf U Qm U UaTa),

5*(q, $, q) = 1 (q E Qf U Qm U UaTa),

8*(q, a, q) = 1 (a E E, q E Qf U Qm U UbTb),

 5*(q,~,q)=1 (qEQ*),

 8*(q, a, g') = 1 C q'(E ,Q \ (Dq U Na)E~)
 6*(q, a, q') _ exp('st)

 q E S(q", a),
 q' E Raq" U {q"}, ,

 q11 E Da

where k °_ IS (q", a) I > 2 and q is the s-th state in S(q", a) and q' the t-th state in
Raq11 U {q"} and q" the last (i.e., the k-th) state in Raq" U {q"} (we assume fixed
orderings in S(q", a) and in Raq" U {q"}).
And for q, q' E Q* and a E E U {~, $} , for which S*(q, a, q') is not thus far defined,
S* (q, a, q') = 0.

 We illustrate the definition of 6* in Figure 5.1 and Figure 5.2.

 76

Figure 5.2:

X -- QfU QmU UaTa -- - QfU QmU UaTa

Definition of b*(•, $, •) between q and q.

 ® states in Da states in Ta
 ® states in Na 0 states in QfU4mUUaTa

 Transitions Transitions of the original DFA M for an input symbol a .
 symbols a and $.

 Figure 5.3: An example of M and corresponding M*.

 Now we define Qnon, Qacc, and QTe~ as follows:

 Qacc 0 = Qf

 Qrej UaTa Ua Ta U (Q \ Qacc),

) (= Q)• Qnon Q* \ (Qacc U Qrej

 We define M* to be

 M* = (Q*, E, r, S*, q0, Qacc, QTej ̀ t Tlon)

where F = E U {~, $}. We illustrate an example of M and corresponding M* in
Figure 5.3.

Remark: We have replaced the transition from S(q, a) to q in M by a so-called

quantum Fourier transform from S(q, a) to Rag U {q} (in case IS(q, a) I > 2).

 77

.........

 $
R

 of the resulting NQFA M*
for input smbols a and $.

 We claim that M* recognizes the language recognized by M and that

well-formed.

Well-formedness of the Resulting NQFA

M* is

 As the cases for a E {~, $} are clear, let a E E be arbitrarily fixed in the
following.

 Let S*(q, a) be defined on M* similarly to the way S(q., a) was defined on M,
that is, S- (q, a) {u E Q* I S*(u, a, q) 0}.

 It is not hard to see that I S* (q, a) > 2 if q E Ta U Da, and I S* (q, a) = 1
otherwise. This implies that S* (q, a) 0 for any q E Q*• Also it is not hard to
see that for any qi, q2 E Q*, either S*(qi, a) = S* (q2, a) or S*(qi, a)nS*(q2i a) _ 0.

 We check the value of

 b*(q', a, qi)6*(q', a, q2)
 q'

 S*(q'~ a, qi)6*(q~~ a, q2)
 q'ES* (gl,a)flS* (q2,a)

First, we assume that qi = q2.

Case 1 : IS*(ql,a)l= 1
 For q' E S*(ql, a), by the definition of 8*, 8*(q', a, qi) = 1. Thus,

 b*(q', a, qi)6*(q, a, qi)
 q'

 S*(q', a, qi)s*(q', a, qi)
 q'ES*(ql,a)

 = 1.

Case 2 : IS*(qi,a)l > 2
 In this case, there is a state q" E Da such that S*(qi, a) = S(q", a) and

qi E Raq11 U {q"}.
 For q' E S*(qi, a) = S(q", a), S*(q', a, qi) = exp(2k2cj), where k = IS*(qi, a)I

and j, c E {1, 2, ... , k} are such that q' is the j-th state in S*(qi, a) = S(q", a)
and qi is the c-th state in Raq" U {q"}. Thus,

 5*(q',a,gi)b*(q ,a,qi)
 q'ES*(ql,a)

 b*(q', a, qi)b*(q~, a, qi)
 q'ES(q",a)

 _ k=1

 78

 Next, we assume that q1 q2.

Case 1 : S*(ql, a) 4 S* (q2, a)
 In this case, S*(ql, a) n S*(q2, a) _ 0. Thus, E q. b*(q', a, ql)6*(q', a, q2) = 0.

Case 2 : S*(ql, a) = S* (q2, a)
 In this case, there exists a state q" E Da such that ql, q2 E Raq"1 U {q"} and

S*(ql, a) = S* (q2, a) = S(q", a). Thus

 L.7 b*(q', a, q1)6*(q!, a, q2)
 q'

q'ES(q"",a)

1<j<k NFk

1<j<k

0,

S*(q', a, ql)S*(q~, a, q2)

 exp C

1

 exp

2

2-7ri

Sri 1
j k cgl

(Cq2 - C) 'rk- qi)j
exp(

2iri .

_ Cq2)

where k _ IS* (ql, a)I, and cql and Cq2 are non identical integers determined by ql
and q2, respectively.

 Therefore, the NQFA is well-formed by Lemma 13.

Recognition of the language
 We show that M* recognizes the language recognized by M in the following.

 The outcomes of observations for M* are never "acc" before reading the right
end-marker $. Thus, the outcome is only "rej" or "non" when it reads a symbol in
F \ {$}. We consider one step from Iq) reading a E F \ {$}, where q E Qnon. The
probability of obtaining "non" after the step is not 0, and if "non" is obtained,

then the state collapses to the state jq') that consists of a single configuration q',
where S(q, a, q') = 1. Thus, the probability of having only "non" (as outcomes)
until reading the right end-marker $ is not 0, and in such a case, the sequence
of the state transitions of M* is the same as that of M for the same input word.
Therefore, when M reaches one of the accepting states (Q f) after reading an input
word w, M* reaches the same state after reading w with probability greater than
0. When M does not reach any of the accepting states after reading w, M*
ends up with "rej" as the outcome in the middle of reading w or reaches one of
the states in Q \ Q f after reading w.1 Therefore, M* recognizes the language
recognized by M. 0

 'The sequence of the state transitions is the same as that of M for w .

79

 By Theorem 8 and Theorem 9, we can say that the class of languages recog-

nizable by NQFA's properly contains the class of all regular languages.

5.4 Conclusion

In this chapter, we have introduced (1-way) non-deterministic quantum finite au-
tomata, and have compared them with classical finite automata. As a result, we
have shown that the class of languages recognized by NQFA's properly contains
the class of all regular languages. This means that non-deterministic quantum fi-
nite automata are more powerful than classical non-deterministic finite automata,
and also they are more powerful than 1-way quantum finite automata.

 It remains to compare NQFA's with push down automata, and to study
whether NQFA's can be more compact than classical finite automata.

80

Chapter 6

Conclusions

In this dissertation, we investigated expressive power of several decision diagrams

and quantum computation models. In Chapter 2, we showed that lower bounds

on the size of binary moment diagrams representing division are exponential.

This follows known experimental results.

 In Chapter 3, we showed that the problem of finding the best decomposi-

tion type list for shared OKFDD's is NP-hard. This means that even if shared

OKFDD's can represent given functions efficiently, it might be time consuming

to find such small representations.

 Decision diagrams are used in various area, and it is required to represent

functions as small as possible. Therefore it is important to investigate expressive

power of decision diagrams. It remains to investigate upper/lower bounds on the
size of other decision diagrams.

 In Chapter 4 and 5, we investigated the expressive power of quantum com-

putation models. It has been shown that quantum computation models have

much more expressive power than classical computation models. We showed that

there is some function that can be computed by bounded-width ordered quantum

branching programs, but cannot be computed by classical counterparts. We also

showed that non-deterministic quantum finite automata can be strictly more pow-

erful than classical deterministic/non-deterministic finite automata. This result
also means that non-deterministic quantum finite automata is strictly more pow-

erful than 1-way quantum finite automata since 1-way quantum finite automata

can recognize a proper subset of regular languages.

 Recently quantum computers has attracted much attention, and many results

have been shown suggesting that quantum computers can be more powerful than

classical ones. However, it is still unclear what kind of problems are suitable

for quantum computers solving. By investigating expressive power of quantum

computation models, we might answer the question what is the secret to exploit

81

quantum effects in computing. It remains to investigate other quantum computa-

tion models and to extract common properties that make quantum computation

models more powerful.

82

Bibliography

 [1] L. M. Adleman, J. DeMarrais, and M. A. Huang, "Quantum computability,"
 SIAM J. Comput., 26 (1997), 1524-1540.

 [2] S.B. Akers, "Binary decision diagrams," IEEE Trans. Comput., vol.C-27,
 no.6, pp.509-516, 1978.

[3] A. Ambainis and J. Watrous, "Two-way finite automata with quantum and
 classical states," LANL e-print cs.CC/9911009, 1999.

 [4] A. Ambainis and R. Freivalds, "1-way quantum finite automata: strengths,
 weakness and generalizations," Proc. 39th Symp. on Foundations of Com-

 puter Science, pp.332-341, 1998.

[5] B. Bollig and I. Wegener, "Improving the variable ordering of OBDDs is NP-
 complete," IEEE Trans. Comput., vol.45, No.9 , pp.993-1002, Sept. 1996.

[6] A. Brodsky and N. Pippenger, "Characterizations of 1-way quantum finite
 automata," LANL e-print quantu-ph/9903014, 1999.

[7] R.E. Bryant, "Graph-based algorithms for boolean function manipulation,"
 IEEE Trans. Comput., vol.C-35, no.8, pp.677-691, 1986.

[8] R.E. Bryant, "On the complexity of VLSI implementations and graph repre-
 sentations of boolean functions with application to integer multiplication,"

 IEEE Trans. Comput., vol.40, no.2, pp.205-213, 1991.

[9] R.E. Bryant and Y.-A. Chen, "Verification of arithmetic circuits with binary
 moment diagrams," Proc. 32nd Design Automation Conf., pp.535-541, 1995.

[10] Y.-A. Chen and R.E. Bryant, "ACV: An arithmetic circuit verifier," Proc.
 ICCAD-96, pp.361-365, 1996.

[11] D. Deutsch, "Quantum theory, the Church-Turing principle and the universal
 quantum computer," Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., vol.400,

 pp.96-117, 1985.

83

[12] R. Drechsler and B. Becker, "Ordered kronecker functional decision diagrams
 - a data structure for representation and manipulation of boolean functions ,"

 IEEE Trans. Comput.-Aided Des. Integrated Circuits & Syst., vol. 17, No.

 10, pp. 965-973, Oct. 1998.

[13] S. Fenner, F. Green, S. Homer, and R. Pruim, "Determining acceptance pos-
 sibility for a quantum computation is hard for the polynomial hierarchy,"

 Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci., vol.455, pp.3953-3966, 1999.

[14] L. Fortnow and J. Rogers, "Complexity limitations on quantum computa-
 tion," J. Comput. Syst. Sci., vol.59(2), pp.240-252, 1999.

[15] L. Grover, "A fast quantum mechanical algorithm for database search," Proc.
 28th Symp. on the Theory of Computing, pp.212-219, 1996.

[16] K. Hamaguchi, A. Morita, and S. Yajima, "Efficient construction of binary
 moment diagrams for verifying arithmetic circuits," Proc. ICCAD-95, pp.78-

 82, 1995.

[17] T. Horiyama and S. Yajima, "Exponential lower bounds on the size of OB-
 DDs representing integer division," Proc. 8th International Symposium on

 Algorithms and Computation, pp.163-172, 1997.

[18] A. Kondacs and J. Watrous, "On the power of quantum finite state au-
 tomata," Proc. 38th Symp. on Foundations of Computer Science, pp.66-75,

 1997.

[19] C. Meinel, "Modified branching programs and their computational power,"
 Lecture Notes in Computer Science 370, Springer-Verlag, Berlin, 1989.

[20] C. Moore and J. P. Crutchfield, "Quantum Automata, and Quantum Gram-
 mars," Theoretical Computer Science, vol.237, pp.275-306, 2000.

[21] P. Shor, "Polynomial-time algorithms for prime factorization and discrete
 logarithms on a quantum computer," SIAM J. Comput., 26 (1997), 1484-

 1509.

[22] S. Tani, K. Hamaguchi, and S. Yajima, "The complexity of the optimal
 variable ordering problems of shared binary decision diagrams," Proc. Inter-

 national Symposium on Algorithms and Computation, pp.389-398, 1993.

[23] T. Yamakami and A. C. Yao, "NQPc = co-C=P," Inf. Process. Lett., vol.71
 (2), pp.63-69, 1999.

84

[24]A C. Yao, "Quantum circuit complexity,

of Computer Science, pp.352-361, 1993.

" Proc . 34th Symp. on Foundations

85

	193@00001.pdf
	193@00002.pdf
	193@00003.pdf
	193@00004.pdf
	193@00005.pdf
	193@00006.pdf
	193@00007.pdf
	193@00008.pdf
	193@00009.pdf
	193@00010.pdf
	193@00011.pdf
	193@00012.pdf
	193@00013.pdf
	193@00014.pdf
	193@00015.pdf
	193@00016.pdf
	193@00017.pdf
	193@00018.pdf
	193@00019.pdf
	193@00020.pdf
	193@00021.pdf
	193@00022.pdf
	193@00023.pdf
	193@00024.pdf
	193@00025.pdf
	193@00026.pdf
	193@00027.pdf
	193@00028.pdf
	193@00029.pdf
	193@00030.pdf
	193@00031.pdf
	193@00032.pdf
	193@00033.pdf
	193@00034.pdf
	193@00035.pdf
	193@00036.pdf
	193@00037.pdf
	193@00038.pdf
	193@00039.pdf
	193@00040.pdf
	193@00041.pdf
	193@00042.pdf
	193@00043.pdf
	193@00044.pdf
	193@00045.pdf
	193@00046.pdf
	193@00047.pdf
	193@00048.pdf
	193@00049.pdf
	193@00050.pdf
	193@00051.pdf
	193@00052.pdf
	193@00053.pdf
	193@00054.pdf
	193@00055.pdf
	193@00056.pdf
	193@00057.pdf
	193@00058.pdf
	193@00059.pdf
	193@00060.pdf
	193@00061.pdf
	193@00062.pdf
	193@00063.pdf
	193@00064.pdf
	193@00065.pdf
	193@00066.pdf
	193@00067.pdf
	193@00068.pdf
	193@00069.pdf
	193@00070.pdf
	193@00071.pdf
	193@00072.pdf
	193@00073.pdf
	193@00074.pdf
	193@00075.pdf
	193@00076.pdf
	193@00077.pdf
	193@00078.pdf
	193@00079.pdf
	193@00080.pdf
	193@00081.pdf
	193@00082.pdf
	193@00083.pdf
	193@00084.pdf
	193@00085.pdf
	193@00086.pdf
	193@00087.pdf
	193@00088.pdf
	193@00089.pdf
	193@00090.pdf
	193@00091.pdf
	193@00092.pdf
	193@00093.pdf
	193@00094.pdf
	193@00095.pdf

