

Title	3次元構造によるMMICの高集積化・高機能化に関する 研究	
Author(s)	西川, 健二郎	
Citation	大阪大学, 2004, 博士論文	
Version Type VoR		
URL	https://hdl.handle.net/11094/2706	
rights		
Note		

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

2004年1月23日

3次元構造による MMIC の高集積化・ 高機能化に関する研究

西川 健二郎

内容梗概

本論文は、3次元構造を用いた超小型、高集積ミリ波帯 MMIC 及び SiMMIC の高周波化、高 機能化に関する研究で得られた成果をまとめたものである.

本研究では、MMIC の小型・高集積化,高機能化,低コスト化の実現を目的として,新たに 3次元構造を活用した小型低損失の受動回路に対し,各種回路構成の検討,理論的検討を加え た.さらに,能動回路との組合せにより各種の機能回路小型化を実現する設計法を確立してい る.本論文はこれらの研究成果をまとめたものであり,以下に示す8章から構成される.

第1章は序論であり、本研究の背景と目的について述べる.

第2章では、半導体基板上に誘電体薄膜を多層に積層し、その上にマイクロ波回路を形成す る3次元 MMIC を提案する. 3次元 MMIC の基本構造を示すとともに、従来のマイクロストリ ップ型 MMIC との比較により、その特徴を明確にし、3次元 MMIC が小型、高集積化に極めて 有効であることを示す.次に、3次元 MMIC を実現するプロセス技術として、誘電体膜として ポリイミドを用いた3次元 MMIC 製造プロセスについて述べ、開発したプロセスの均一性、信 頼性が従来のプロセスと比較しても十分な性能を有することを示す. さらに、製造プロセス時 間の短縮化と信頼性の向上を目的とした感光性 BCB を用いた3次元 MMIC 製造プロセスにつ いても述べ、感光性 BCB 膜を用いた3次元 MMIC ではプロセス時間の短縮だけでなく、その 低吸湿性から導体配線のレイアウト自由度がポリイミドと比較して大幅に向上することを試作 結果とともに示す.

第3章では、3次元構造を活かした超小型基本受動回路を提案し、その設計法、性能を示し ている.まず、3次元 MMIC のキーコンボーネントである薄膜マイクロストリップ線路(TFMS 線路)の特徴を明らかにし、MMIC 上で TFMS 線路を用いて高密度レイアウトを実現するため の手法を明らかにしている.多層構造を用いて実現したブロードサイドカプラの特徴を示し、 その設計手法を提案している.180度信号分配回路の小型化広帯域化を同時に実現するために、 上記ブロードサイドカプラを適用した新たなマーチャンドバランならび、カプラの不平衡性を 補償する新たな補正法を提案し、バランの広帯域化を実現している.また、同相合成分配回路 の小型化を実現するために積層型ウイルキンソンディバイダを提案し、半導体基板上及び積層 誘電体膜最上層に信号配線を形成し、誘電体膜中間層に信号配線と平行にスリットを入れた接 地導体を形成した構成とすることにより、高インビーダンス線路の積層化を MMIC レベルで初 めて実現すると同時に小型化を実現している.本章で提案している受動回路は試作によりその 性能、提案構成の効果を確認している.

第4章では、3次元構造を適用した化合物系デバイスをから構成される基本能動回路について、それらの小型化設計法を提案するとともに、RF回路を1チップに集積化した高集積 20GHz

i

帯3次元 MMIC1チップ受信機の設計,試作により3次元 MMIC の小型化,高集積化の有効性 を明らかにしている.まず,小型化に適し,かつ高利得を実現できるカスコード型増幅器の構 成と設計法について述べる.カスコード接続されるソース接地 FET とゲート接地 FET 間の伝 送線路とゲート接地 FET のゲートと接地導体間の伝送線路を最適化することにより,増幅器特 性を制御できることを示している.また,負帰還回路部にドレイン接地 FET を配置し,FET の相互コンダクタンスを変えることにより,帰還量を変化させるアクティブ帰還型可変利得増 幅器を提案し,その構成と設計法について述べ,歪み特性を大幅に改善できることを理論解析 及び試作により明らかにしている.さらに,整合回路を積層する小型化回路構成法を周波数変 換器に適用することを提案し,その設計法について述べるとともに,第3章で示した受動回路 との組合せにより,超小型なバランス型またはイメージ抑圧型周波数変換器を実現している. 小型化,高集積化を実現するための発振器構成及び設計法についても提案している.最後に, 機能回路を1チップに集積化した3次元 MMIC 受信機について,その構成及び設計法を示すと ともに試作により MMIC の性能を確認した.

第5章では、ミリ波帯、特に 60GHz 帯への 3 次元 MMIC の適用に焦点を当て、3 次元 MMIC 技術がミリ波帯 MMIC の小型化高集積化に極めて有効であることを TFMS 線路の特性及び高集 積 MMIC の試作によって明らかにしている.設計性、小型化、高集積化の観点から従来のマイ クロストリップ線路、コプレーナ線路との比較により、TFMS 線路のミリ波帯での優位性を明 らかにしている.ミリ波帯 MMIC の高集積化を実現する構成及び設計法について示すとともに、 60GHz 帯 1 チップダウンコンバータ 3 次元 MMIC を実現し、3 次元 MMIC のミリ波帯での効 果を明らかにしている.

第6章では、3次元 MMIC 技術を SiMMIC に適用した Si3次元 MMIC を提案し、SiMMIC の 高周波化と低電圧化を実現できることを明らかにしている.3次元構造により低抵抗 Si 基板と マイクロ波線路を Si 基板上に形成する接地導体により分離できることを提案し、Si 基板上の マイクロ波線路の損失を大幅に低減できることを明らかにする.3次元構造を適用した Si3次 元 MMIC インダクタを提案し、その特徴、性能をシミュレーション、試作により明らかにして いる.低損失マイクロ波線路を用いたリアクティブ整合回路構成を提案し、SiMMIC の高周波 動作と低電圧動作の両方を実現できることを明らかにしている.試作により実現した Si3次元 MMIC は広帯域設計により、高周波動作、低電圧動作と同時に広帯域化を達成している.最後 に機能回路を集積化した C帯1チップ受信機 MMIC について述べている.

第7章は、新たに提案するマスタスライス型3次元 MMIC 設計法について述べている、マス タスライス型3次元 MMIC 設計法は3次元 MMIC 技術をベースとしてゲートアレー的設計法を 取り入れたマイクロ波回路のセミカスタム設計法である。始めにマスタスライス型3次元 MMIC 設計法の概念と利点を述べるとともに、この技術が MMIC 開発の大幅な短縮化、低コスト化を 実現できることを示している. また, マスタスライス型3次元 MMIC 設計フローに基づく CAD ソフトウエアを開発し, これによりマイクロ波回路の開発が大幅に簡易化できることを明らか にするとともに,提案する設計法を用いて実現した高集積1チップ受信機 MMIC の構成及び特 性について述べ,開発手法が妥当であることを確認する.

第8章は本論文全体の総括である.

本論文をまとめるにあたり,終始,懇切かつ御熱心な御指導及び御助言を賜りました大阪大 学大学院工学研究科通信工学専攻・小牧省三教授に謹んで深謝の意を表します.

本論文をまとめるに際して,有益な御討論,御助言を賜りました大阪大学大学院通信工学専 攻・塩澤俊之教授に謹んで深謝の意を表します.

また,本論文に対して有益なる御助言を頂きました大阪大学大学院通信工学専攻·森永規彦 教授(現広島国際大学教授),河崎善一郎教授,馬場口登教授,産業科学研究所·元田浩教授, ならびに電子情報エネルギー専攻·北山研一教授に深く感謝致します.

本論文は筆者が日本電信電話株式会社において 1992 年以来行った研究をまとめたものであ り、この間、NTT 無線システム研究所超高周波回路研究グループ及び NTT ワイヤレスシステ ム研究所第 2 プロジェクトにおいて、終始変わらぬご指導を頂きました元ワイヤレスシステム 研究所第 2 プロジェクトリーダ・相川正義博士(現佐賀大学教授),徳満恒雄博士(現富士通 カンタムデバイス(株)),豊田一彦博士に深く感謝いたします.また、本研究の回路技術に ついて多くのご議論を頂きました鴨川健司博士(現NTTドコモ(株))に感謝いたします.

本研究を遂行するにあたり常に御指導,御鞭撻頂きました元 NTT 無線システム研究所・山本 平一博士(現奈良先端科学技術大学院大学教授),元 NTT ワイヤレスシステム研究所所長・小 桧山賢二博士(現慶應義塾大学教授),元同所所長・故鮫島秀一博士,元 NTT 未来ねっと研究 所所長・河内正夫博士(現同社先端技術総合研究所所長)に感謝いたします.御指導いただき ました元無線システム研究所無線方式研究部部長・森田浩三博士(現コトベール(株)),同 研究部部長栗田修博士(現ルーセントテクノロジー),元ワイヤレスシステム研究所研究企画 部長/第 2 プロジェクトリーダ・田中將義博士(現日本大学教授),元未来ねっと研究所ワイ ヤレスシステムイノベーション研究部部長・水野秀樹博士(現東海大学教授)に感謝いたしま す.

日本電信電話(株)において本研究を進めるに際し,3次元 MMIC プロセス技術を開発いた だきました元 NTTLSI 研究所・平田一雄博士(現新日本無線(株)),山崎王義博士(現 NTT 第3部門),平野真博士(現 NTT フォトニクス研究所),杉谷末広氏(現 NTT フォトニクス 研究所),山口力氏(現 NTT マイクロシステムインテグレーション研究所),井上考氏(現東 日本電信電話(株))他の方々に感謝いたします.

本研究について御指導,御議論いただきました元未来ねっと研究所ワイヤレス装置研究グル ープグループリーダ・村口正弘博士(現 NTT フォトニクス研究所テラビットデバイス研究部部 長),元同グループリーダ・荒木克彦氏(現適応信号処理研究グループリーダ),廣田哲夫博 士(現金沢工業大学教授),中津川征士氏(現 NTT 第3部門),NTT アドバンステクノロジ

謝辞

Hewlett Packard 社・Gary Hawisher 氏(現 Agilent Technology)はじめ多数の Hewlett Packard 社 CAD 開発グループの皆様にはマスタスライス CAD ソフトウエアの開発に多大な尽力を頂き ました.また,測定に関して御協力頂きました NTT アドバンステクノロジー(株)・望月秀之 氏,横山新一氏に感謝いたします.

論文目次

第 1₫	章 序		1
	1.1	研究の背景	1
	1.2	本研究の目的と論文の構成	2
第2章	章 3	次元 MMIC の構造とその特徴	6
	2.1	まえがき	6
	2.2	3次元 MMIC の基本構造とその特徴	6
	2.3	ポリイミドを用いた 3 次元 MMIC 製造プロセス	8
	2.4	感光性 BCB を用いた 3 次元 MMIC 製造プロセス	12
		2.4.1 製造プロセス	12
		2.4.2 BCB 3 次元 MMIC の配線構造	13
	2.5	まとめ	14
	参考	文献	16
第3章	〕 3	次元 MMIC 受動回路	17
	3.1	まえがき	17
	3.2	薄膜マイクロストリップ(TFMS)線路	17
		3.2.1 TFMS 線路の特性	17
		3.2.2 高密度レイアウトのための TFMS 線路の最小配置間隔	22
	3.3	ブロードサイドカプラ	25
	3.4	3 次元 MMIC マーチャンドバラン	28
	3.5	積層型ウイルキンソンディバイダ	34
	3.6	まとめ	37
	参考	文献	39
第 4章	章 3	次元 MMIC 基本能動回路と1チップ受信機への適用	41
	4.1	まえがき	41
	4.2	カスコード型増幅器	41
		4.2.1 カスコード型 FET の特徴	41
		4.2.2 20GHz 帯カスコード型増幅器 3 次元 MMIC の性能	44
	4.3	アクティブ帰還型可変利得増幅器	46

		4.3.1 アクティブ帰還型可変利得増幅器の構成及びその特徴	46
		4.3.2 アクティブ帰還型可変利得増幅器 MMIC の性能	51
	4.4	周波数変換器	55
		4.4.1 バランス型アップコンバータ	55
		4.4.2 イメージリジェクションミキサ	57
	4.5	電圧制御発振器	59
	4.6	20GHz 帯 1 チップ受信機	60
	4.7	まとめ	62
	参考	文献	63
	付録	4.1 GaAs MESFET 等価回路パラメータ	65
第5₫	章 3	次元構造によるミリ波帯 MMIC の高集積化	67
	5.1	まえがき	67
	5.2	ミリ波帯における 3 次元 MMIC の伝送線路特性	67
		5.2.1 TFMS 線路の基本特性	67
		5.2.2 最小隣接線路間隔	70
	5.3	ミリ波帯受動回路の特性	71
		5.3.1 V 帯ウイルキンソディバイダ	71
		5.3.2 V 帯ブロードサイドカプラ	72
	5.4	V 帯超小型増幅器 3 次元 MMIC	74
	5.5	V 帯高集積 3 次元 MMIC	77
		5.5.1 アップコンバータ MMIC	77
		5.2.2 ダウンコンバータ MMIC	78
	5.6	ミリ波 3 次元 MMIC の今後の展開	80
	5.7	まとめ	82
	参考	文献	83
第6章	章 3	次元構造による SiMMIC の高性能化	85
	6.1	まえがき	85
	6.2	Si 3 次元 MMIC の構造	86
		6.2.1 基本構造と Si 3 次元 MMIC の特徴	86
		6.2.2 Si 基板上の TFMS 線路特性	87
	6.3	Si 3 次元 MMIC インダクタ	88

		6.3.1 基本構造とその特徴	88
		6.3.2 マルチレベル化によるインダクタの高 Q 化	90
		6.3.3 Si 3 次元 MMIC インダクタの性能評価	91
		6.3.4 Si 3 次元 MMIC インダクタの最適デザインへの指針	93
		6.3.5 LNA への適用	95
	6.4	Si3次元 MMIC 增幅器	97
		6.4.1 Ka 帯 Si 3 次元 MMIC 増幅器	97
		6.4.2 1V 動作 X 帯 Si 3 次元 MMIC 増幅器	99
	6.5	Si 3 次元 MMIC ベース/コレクタ局発注入広帯域ミキサ	102
	6.6	Si 3 次元 MMIC 広帯域バランス型アップコンバータ	108
	6.7	高集積 C 帯 1 チップ Si 3 次元 MMIC 受信機	111
	6.8	Si 3 次元 MMIC の今後の展開	113
	6.9	まとめ	115
	参考	文献	116
第 7章	章 3	次元構造によるマスタスライス型 MMIC 設計法	123
	7.1	まえがき	123
	7.2	マスタスライス型3次元 MMIC の概念と特徴	124
		7.2.1 マスタスライス型 3 次元 MMIC	124
		7.2.2 マスタスライス型 3 次元 MMIC の特徴	125
		7.2.3 マスタスライス型 3 次元 MMIC の経済化効果	126
	7.3	マスタスライス型3次元 MMIC に基づく CAD ソフトウエア	127
		7.3.1 マスタスライス型3次元 MMIC 設計フロー	127
		7.3.2 マスタスライス型 3 次元 MMICCAD ソフトウエア	128
	7.4	高集積マスタスライス型3次元 MMIC の実現例	135
	7.5	マスタスライス型 3 次元 MMIC の今後の展開	138
	7.6	まとめ	142
	参考	交献	143

第8章 結論

145

本研究に関わる研究業績	147
その他の研究業績	152

viii

第1章 序論

1.1 研究の背景

携帯電話に代表されるように、1990 年代前半からのワイヤレス通信サービスの急速な拡大に より、通信装置の小型化、高性能化、低コスト化、低消費電力化、開発期間短縮(短 TAT)化 が求められてきた.また、90 年代後半からはワイヤレス LAN のような高速データ通信サービ スの開始や自動車レーダに代表されるセンサの実現により、通信装置への上記の要求がますま す強くなってきた.さらには、高速通信を実現するため、使用周波数帯の高周波化も行われて いる.一方、このようなワイヤレス通信装置に使用されるモノリシックマイクロ波集積回路 (Monolithic Microwave Integrated Circuit; MMIC)は、1980 年代に米国で軍事用として 本格的に開発されたのを端緒として、その後、90 年代に入って、一般のワイヤレス通信用とし て応用されるようになってきた.さらに、応用範囲の拡大に伴い、1 チップ上に複数の機能を 搭載した高機能 MMIC の開発が多くなってきており、MMIC には一層の小型、高集積化と低コ スト化が求められている.

現在主流となっている MMIC は, 化合物半導体ウエハの裏面に接地導体,表面に信号線導体 を形成するマイクロストリップ型 MMIC と半導体ウエハ表面に接地導体と信号線導体を形成す るコプレーナ型 MMIC である.マイクロストリップ型 MMIC では信号線幅はウエハ厚に依存す るため,信号線幅を小さくすることが難しく,波長に依存したハイブリッド回路などの受動回 路の面積が大きくなり,チップ全体に占める受動回路の面積は能動回路部の数倍に達している. コプレーナ型 MMIC はウエハ厚に依存せずに信号線幅を決めることができるが,コプレーナ線 路を実現するために信号線の両側に一定幅の接地導体を形成する必要があり,伝送線路全体と して見た場合の線路幅はマイクロストリップ型とあまり変わりなく,依然として受動回路の占 める面積は大きくなる.また,両形式と関係なくインダクタやキャパシタ,抵抗といった集中 定数素子を用いる集中定数型 MMIC は低い周波数帯においては小型化に有利であるが,集中定 数素子の周波数限界のために高周波数帯には適用できない.低コスト化に有利な Si 系デバイス は,近年の高性能化によって数 GHz 帯の SiMMIC の開発も活発となっているが,Si ウエハの 低抵抗性により SiMMIC の一層の高周波化は困難であった.これらの MMIC 設計においては伝 送線路の曲がり部,ビアホール,隣接素子間結合等の寄生成分を考慮して設計する必要がある.

つまり、電磁界解析を適用して等価回路と実際のパターンレイアウトの間を往復するバックア ノーテニションを行う必要があり、この設計プロセスが MMIC の開発時間を長期化させる要因 の一つとなっており、低コスト化の妨げとなっている。

このような既存の MMIC 技術の持つ問題点を解決し, MMIC の飛躍的な小型化, 高集積化を 実現する新たな3次元構造の MMIC を提案し,基本受動回路/能動回路設計技術を確立し,高

集積 1 チップ MMIC の実現を目指す. 提案する 3 次元構造の MMIC によりミリ波帯 MMIC 高 集積化, SiMMIC の高周波化, 高性能化を実現する. さらには MMIC 設計ノウハウが不要とな り, MMIC 開発期間の短縮を実現するマスタスライス型 MMIC を提案する.

1.2 本研究の目的と論文の構成

本論文は MMIC の小型・高集積化,高機能化,低コスト化の実現を目的として,3次元構造 を用いた超小型,高集積ミリ波帯 MMIC 及び SiMMIC の高周波化,高機能化について検討した ものである.さらに, MMIC 設計の一層の簡易化を実現するために開発したマスタスライス設 計手法をベースとした CAD ソフトウエアについても述べる.

まず、MMIC に要求されている特性、克服すべき問題点等を述べるとともに、本研究の目的 である小型・高集積化、高機能化、低コスト化を実現する手法について示す。本論文では、特 に、高集積化、低コスト化が困難であるミリ波帯 MMIC に対して3次元 MMIC を適用すること により、3次元配線のミリ波帯での特性を明らかにし、RF 回路~IF 回路までの1チップ集積 化を初めて実現した。これにより、チップ面積の小型化のみならず、MMIC と外部の接続端子 数の低減を実現できるため、ミリ波 MMIC の実装コストを大きく下げることが可能となる。次 に、低コスト化の観点から、低抵抗基板を用いた SiMMIC の高周波化について検討し、Si3次 元 MMIC を提案するとともに、基板による損失を克服する低損失受動回路を実現し、かつリア クティブ整合回路を適用した K 帯~Ka 帯で動作する SiMMIC を世界で初めて実現した。これ により、MMIC コストの大幅な低減を実現するとともに、ベースバンド~RF までの1チップ化 が可能となる。最後に、3次元 MMIC 技術とマスタスライス設計法を組合わせたマスタスライ ス型3次元 MMIC 設計法について述べ、この設計法をベースとした CAD ソフトウエアを開発 した。これは、MMIC のソフトウエアとして初めての自動レイアウト機能を持つとともに、MMIC 設計の大幅な簡易化ならびに、開発期間の短縮とコストの一層の低減をもたらすものである。

図 1.1 に本論文の構成を示す.

第1章は序論であり、本研究の背景、目的、論文構成について述べている.

第2章では、半導体基板上に誘電体薄膜を多層に積層し、その上にマイクロ波回路を形成す る3次元 MMIC を提案する.3次元 MMIC の基本構造を示すと同時に、従来の平面構成型 MMIC との比較により、その特徴を明確にし、3次元 MMIC が小型、高集積化に極めて有効であるこ とを構造的観点から示す.次に、3次元 MMIC を実現するために新たに開発した2つのプロセ ス技術について述べる.まず、誘電体膜としてポリイミドを用いた3次元 MMIC 製造プロセス について述べ、開発したプロセスの均一性、信頼性が、平面構成型 MMIC 製造プロセスと比較 して、同等であることを示す.次に、製造プロセス時間の短縮化と一層の信頼性の向上実現を 目的として開発した感光性 BCB を用いた3次元 MMIC 製造プロセスについて述べる.BCB3

次元 MMIC ではその製造プロセスの特徴を活かして新たにトレンチ構造の配線を提案,実現している.ここで提案するトレンチ構造の配線はビアホールプロセスを用いて実現され,伝送線 路損失が小さいという特徴を持っている.

第3章では、3次元構造によって実現した超小型基本受動回路について提案し、それらの構 成、特徴について述べる.まず、3次元 MMIC のキーコンボーネントである薄膜マイクロスト リップ線路(TFMS 線路)の特徴を述べるとともに、高密度レイアウトを実現するための伝送 線路レイアウト手法を明確にする.次に、多層構造を用いて実現したブロードサイドカプラ及 びブロードサイドカプラを応用したマーチャンドバランについてその構成、設計法、特性につ いて示す.ブロードサイドカプラは近接層間膜に 2 本の信号配線を平行に配置し、その積層さ れた 2 本の伝送線路の結合により実現している.ここでは 2 本の伝送線寸法とカプラの結合度 の関係を明確にし、カプラの強結合と小型化(従来の平面構成と比較して 1/20 の小型化)の両 立を実現している.マーチャンドバランは 180 度信号分配合成回路であり、2つの小型なブロ ードサイドカプラとそれらを接続する伝送線路により構成している.この構成により、カプラ 部で生じる不平衡性を補償し、バランの広帯域動作を実現している.積層型ウイルキンソンパ ワーディバイダは半導体基板上及び積層誘電体膜最上層に信号配線を形成し、誘電体膜中間層 に信号配線と平行にスリットを入れた接地導体を形成した構成である.この構成により、ディ バイダを構成する 70Ωという高インピーダンス線路の積層化を MMIC レベルで初めて実現する と同時に小型化を実現している.

第4章では、3次元構造の化合物系デバイスを用いた基本能動回路について述べるとともに、 それらを1チップに集積化した 20GHz 帯1チップ受信機 MMIC について述べる.まず、小型 化に適し、かつ高利得を実現できるカスコード型増幅器の構成と設計法について述べる.カス コード接続されるソース接地 FET とゲート接地 FET 間の伝送線路と、ゲート接地 FET のゲー トと接地導体間に伝送線路を導入することを提案し、それらの線路長を最適化することにより、 増幅器特性が向上することを明らかにする.次に、負帰還回路部にドレイン接地 FET を配置し、 FET の相互コンダクタンスを変えることにより、帰還量を変化させるアクティブ帰還型可変利 得増幅器を提案し、その構成と設計法について述べ、減衰動作時の歪み特性が大幅に改善する ことを示す.周波数変換器についてはアップコンバータ/ダウンコンバータ両構成について述 べる.整合回路を積層する小型化回路構成とその設計法について述べるとともに、第3章で示 した受動回路との組合せにより、超小型なバランス型またはイメージ抑圧型周波数変換器が実 現できることを示す.小型化と高性能化を実現する発振器構成を提案し、その設計法について 述べる.最後に、機能回路を1チップに集積化した高集積3次元 MMIC 受信機について、その 構成、設計法、及び特性を示す.

第5章では、ミリ波帯での3次元 MMIC の実現に焦点を当て、3次元 MMIC 技術がミリ波帯

MMIC の小型化高集積化に極めて有効であることを示す. TFMS 線路のミリ波帯での特性につ いて, 従来のマイクロストリップ線路, コプレーナ線路との比較により, その優位性を示す. さらに, 曲がり部等の不連続部の特性について明らかにし, その特性が従来の最適化されたマ イクロストリップ線路の不連続部と同等であることを示す. 次に, ミリ波帯 MMIC の高集積化 を実現する構成及び設計法を示すとともに, 実現した V 帯1チップダウンコンバータ/アップ コンバータについて述べ, ミリ波3次元 MMIC がミリ波帯においても極めて高い集積度を実現 できることを示す. 最後に, 3次元 MMIC 技術を応用したミリ波 MMIC/モジュールの一体化 構成 (アンテナー体化ミリ波システムオンパッケージ)を提案し, その特徴, 利点, 今後の課 題を明らかにする.

第6章では、基板とマイクロ波線路を分離できるという3次元 MMIC 技術の特徴を用いた SiMMIC の高周波化、低電圧化について述べる. 低抵抗 Si 基板とマイクロ波線路を Si 基板上 に形成する接地導体により分離することにより、Si 基板上のマイクロ波線路の損失を大幅に低 減できることを示すと同時に、その構造を適用した高 Q インダクタの設計法について述べる. これらの低損失受動素子を用いることにより、従来にない SiMMIC の高周波動作(K 帯増幅器) を実現している. さらに、低損失マイクロ波線路を用いたリアクティブ整合回路を適用した回 路構成により、1V 動作という低電圧動作を X 帯増幅器で実現している. さらに、Si トランジ スタの低入力インビーダンスの特徴と低インピーダンス線路を用いた超小型、広帯域周波数変 換器の設計法を提案、実現している. 次に、機能回路を集積化した低電圧、広帯域動作 C 帯 1 チップトランシーバ Si 3 次元 MMIC の構成と設計法について述べている. 最後に、Si 3 次元 MMIC 技術の今後の適用領域について述べている.

第7章では,新たに提案するマスタスライス型3次元 MMIC 設計法について述べる.提案す る設計法は3次元 MMIC 技術をベースとしてゲートアレー的設計法を取り入れたマイクロ波回 路のセミカスタム設計法である.初めに,マスタスライス型3次元 MMIC 設計法の概念と利点 を述べるとともに,この技術により MMIC 開発の大幅な短縮化,低コスト化が実現できること を示す.次に,新たに開発したマスタスライス型3次元 MMIC 設計フローに基づく CAD ソフ トウエアについてその特徴を述べる.開発した CAD ソフトウエアのウイザード機能,自動配 線レイアウト機能を用いることにより,マイクロ波回路の開発が大幅に簡易化されることを示 すとともに,提案する設計法を用いて実現した高集積1チップマスタスライス型3次元 MMIC 受信機について述べる.最後に,3次元 MMIC の設計自由度を拡大し,かつ MMIC 開発コスト の低減を期待できる開発手法を提案し,その開発手法の特徴を述べるとともに今後の課題を示 す.

4

第8章では本論文全体を総括する.

図 1.1 本論文の構成

ப

第1章

第2章 3次元 MMIC の構造とその特徴

2.1 まえがき

ワイヤレス通信の発展に伴って、MMIC の小型化、高集積化の要求が高まってきている. こ れまでの MMIC はマイクロストリップ線路を主体としたマイクロストリップ型 MMIC、コプレ ーナ線路を主体としたコプレーナ型 MMIC(ユニプレーナ型 MMIC)が開発されてきた. マイ クロストリップ型 MMIC は基板裏面に接地導体を形成し、基板表面に半導体や伝送線路が形成 された MMIC である. コプレーナ型 MMIC は基板表面に信号線、接地導体、半導体が形成され る MMIC である. これらの平面型 MMIC では基板厚の影響や接地導体面積の確保のため、MMIC の飛躍的な小型化、高集積化が困難であった.

本章では MMIC の飛躍的な小型化,高集積化を実現するために,基板上に誘電体膜と金属導体を多層に積層し,多層誘電体膜内でマイクロ波回路を形成する 3 次元 MMIC を提案する.まず,3 次元 MMIC の基本構造とその特徴を明確にする.次に誘電体膜としてポリイミドを用いた 3 次元 MMIC 製造プロセスの概要について述べる.最後に,InPHEMT 等の高性能デバイスとの集積化や3次元 MMIC 製造プロセスの短 TAT 化を目的とした感光性 BCB (BenzoCycroButene)を用いた製造プロセスの概要について述べる.

2.2 3 次元 MMIC の基本構造とその特徴

図 2.1 3 次元 MMIC の基本構造

図 2.1 は 3 次元 MMIC の基本構造を示している. トランジスタ,抵抗等が形成される半導体 基板上に誘電体膜と金属導体を多層に積層する多層化構造の MMIC である. 誘電体膜は 1 層当 たり 2.5µm 厚でありトータル 4 層構造とし, 10µm 厚となる. ここに示す例においては従来の 平面型 MMIC プロセスの 2 層配線と 4 層誘電体膜上の 4 層金属配線を合わせて 6 層配線構造と なっている. MIM キャパシタは第 1 層と第 2 層金属配線で形成される. 誘電体膜として, ポリ イミドと感光性 BCB を用いている. 配線厚さは第 1 層配線が 0.7µm, 第 2 層から第 5 層配線 までが 1µm, 最上層配線を 2µm としている. 各層間はビアホールで接続される. 接地導体は いずれの層においても形成することが可能である. さらに 3 次元 MMIC では図に示すような Microwire [1] と呼ぶ誘電体膜を貫いて形成される厚膜配線 (10µm 厚) も同時に形成できる. 3 次元 MMIC は信号線,接地導体を基板の表面に形成するコプレーナ型 MMIC と多層誘電体膜 上に信号線を形成するマイクロストリップ型 MMIC の両構造を合わせ持つ MMIC といえる.

3次元 MMIC は伝送線路として薄膜マイクロストリップ (Thin Film MicroStrip:TFMS) 線路 [2] と呼ぶマイクロストリップ線路を主に用いる.これは基板上の導体を接地導体,誘電体 膜最上層導体を信号線としても基板厚は 10μm と薄いことから名付けられている.この TFMS 線路構造により,信号線幅 5μm から 30μm の範囲において特性インピーダンス 10Ωから 100Ω の伝送線路を実現することができる (第3章で詳細を述べる).また,そのときの線路間隔も 狭くすることができる.接地導体の配置自由度により,例えば誘電体膜中間層に接地導体を配 置することにより,その上層部,下層部に分けてマイクロ波回路を形成することができる(積 層マイクロ波回路).また,半導体基板上に接地導体を配置し,その上部にマイクロ波回路を 形成できることから,基板上の接地導体のアイソレーション特性により半導体基板の特性に関 わらず,同一性能を持つマイクロ波回路を実現できる.Microwire はその金属厚さから導体損 の小さいマイクロ波線路として動作するだけでなく,壁面間の結合を利用した結合線路を実現 できる.さらに,これらを接地導体とすることにより,その左右に形成される回路の遮蔽壁と して利用することができ,高アイソレーションな高密度構造を実現できる.このような3次元 MMIC の構造的特徴により,図2.2に示すように以下の効果が得られる.

1) TFMS 線路は最大でも 10µm の基板厚であるため,線路幅及び隣接線路間隔を微少に形成 できる(不連続部を小さくできる)ので小型・高密度な配線を実現できる. さらに線路をメア ンダ状等に折り曲げてレイアウトできるため,設計自由度が大きくなり,一層の高密度化が可 能となる.

2) 接地導体を挟んで上下に回路を形成できるため、回路面積の小型・高密度化を実現できる.

3) 接地導体を半導体基板上に形成できるため,基板の導電性等の特性に関係なくマイクロ波 線路を形成できる.特に Si 基板との組合わせにおいては,たとえ Si 基板が導電性であっても, 低損失なマイクロ波線路を実現できる(第6章において詳述する).

4) 接地導体を半導体基板上に形成する構造はさらに,基板上のデバイスを選択することにも 使用できるため,効果的にマスタスライス設計法を実現可能とする(第7章において詳述する). これらの構造的特徴を組合わせることにより,極めて高い設計自由度を得ることができ,かつ

図 2.2 3 次元 MMIC の特徴

超小型·高密度な3次元 MMIC を実現することができる.

2.3 ポリイミドを用いた 3 次元 MMIC 製造プロセス [1]

3次元 MMIC を実現するために、FMIT (Folded Metal Interconnect Technology) と呼ぶ新し い誘電体膜を用いた多層配線プロセスを開発した. 図 2.3 に製造プロセスフローを示す. 1) 下層金属配線形成後、ポリイミドをスピンコートにより塗布,加熱し、ポリイミド膜を形成す る. 2) O₂/He RIE (Reactive Ion Etching) によりポリイミドを加工し、ビアホールを形成す る. 3) ストッパメタルとして WSiN をスパッタリングでポリイミド上に形成した後、電解め っきにより金をその上に形成する. 4) イオンミリングでより,金属配線のパターンニングを 行う. 5) O₂ プラズマ及び SF₆ RIE によりパターンニングのためのマスクを取り除く. この プロセスを最上層金属配線が形成されるまで繰り返し行う.なお,最上層金属配線形成時には, 同時に Microwire の形成を行う.このポリイミドを用いた3次元 MMIC 製造プロセスの特徴は, O₂/He RIE を用いることによりビアホールの側壁エッチングを防ぐことを可能としている. 低 電流電解めっき法により,アスペクト比の極めて高い Microwire を形成可能としている. 3つ 目の特徴はストッパメタルを用いることによりイオンミリングがポリイミドを加工するのを防 いでいる.図 2.4 は 3 インチ GaAs ウエハ上に形成したポリイミド膜のウエハ面内の厚さを測 定したものである.黒丸が X 軸方向、白丸が Y 軸方向の結果である.製造ターゲットは 2.5µm 厚である.測定結果から両方向とも 2.5µm±3%以内にポリイミド膜厚を制御できていることが

わかる. 3次元 MMIC 製造プロセスにおいて,ウエハ面内でほぼ均一な膜厚制御を実現してお り、良好な MMIC の製造歩留まりが期待できる. 図 2.5 は Microwire 技術により実現したポリ イミド膜最上層から最下層までをつらぬくビアホールチェーンの SEM 写真を示している. な お、ポリイミド膜は SEM 観察のために RIE により取り除いている. 図に示されるように 10µm のビアホールをほぼ垂直に実現できていることがわかる. また,図 2.6 はポリイミド膜上に形 成した金属導体の表面粗さを測定した結果である. 表面粗さは±15nm 以下である. この値は信 号線厚が 1µm または 2µm に対して 2 桁小さい値であり, 100GHz を越える周波数帯域におい ても金属導体の表面粗さを考慮する必要が無いことを示している. 最後に,表 2.1 にポリイミ ドを用いた 3 次元 MMIC 製造プロセスの特性をまとめる. 3 次元 MMIC 配線部は歩留まり,信 頼性とも良好な特性を実現している.

図 2.3 ポリイミドを用いた 3 次元 MMIC 製造プロセス

図 2.4 ポリイミド膜のウエハ面内膜厚

Polyimide was removed by RIE

図 2.5 3 次元 MMIC プロセスで形成した Microwire の SEM 写真

Material constant	t of polyimide	$\epsilon_r = 3.3$, tan $\delta = 0.0001@1MHz$
Breakdown volta	ge of polyimide film	3 x 10 ⁶ V/cm
Metal structure		Au (1μm or 2 μm) / WSiN or WSi
	10 µm height	5 μm x 5 μm mask size
via noie size	2.5 μm height	3 μm x 3 μm mask size
Film thickness control		2.5 μm ±3 %
Roughness of metal surface		< 15 nm
Yield		100 %
Reliability (with passivation)	JEDEC standard: No.22-A101-B @ 10 V	Pass
	JEDEC standard: No.22-A110-B	Pass
Characteristic impedance of TFMS line: w = 5 μ m – 30 μ m		10 Ω – 100 Ω

表 2.1 ポリイミドを用いた 3 次元 MMIC 製造プロセスの特性

2.4 感光性 BCB を用いた 3 次元 MMIC 製造プロセス [3] - [5]

2.4.1 製造プロセス

感光性 BCB を誘電体膜として用いた 3 次元 MMIC の開発目的は,次の 3 つである. ミリ波 帯への 3 次元 MMIC の応用のためにも InP 系デバイス等の高性能デバイスの 3 次元 MMIC 化, 製造プロセス時間の短縮,ベアチップ実装への適用である.ポリイミドを用いた 3 次元 MMIC ではプロセス温度が 300℃となり, InP 系デバイス等のプロセス温度を越えてしまい,集積化 が困難である.従って,プロセス温度がデバイスのプロセス温度以下であることが必要である. ポリイミドは吸湿性が高く(約 2%),ベアチップ実装を考慮した場合信頼性確保の点からよ り低い吸湿性材料であることが必要である. さらにポリイミドと比較して製造プロセス工程が 少ないことを考慮して,感光性 BCB の使用を決定した.感光性 BCB は誘電率 2.7,吸湿性 0.2% 以下,プロセス温度 250℃である. 図 2.7 は感光性 BCB を用いた製造プロセスを示している.

(1) 下層金属配線パターン形成後,感光性 BCB をスピンコートにより塗布,加熱する.その後,フォトリングラフィにより,BCB 膜上にビアホール,トレンチ配線(2.4.2 で詳細を述べる)用の加工を行う. (2) 密着用金属(WSi)及びシード金属としての金をスパッタリングにより BCB 膜上に形成する.その上に,めっきにより金配線を形成する. (3) 金配線はフォトレジストマスクを用いて,イオンミリングによりパターンニングされる. (4) フォトレジストマスクを O₂ プラズマにより除去する.このプロセスを最上層配線形成まで繰り返す.図 2.8 はポリイミドを用いた場合の製造プロセス時間と感光性 BCB を用いた場合の製造プロセス時

図 2.7 感光性 BCB を用いた 3 次元 MMIC 製造プロセス

図 2.8 ポリイミド版 3 次元 MMIC と感光性 BCB 版 3 次元 MMIC 製造プロセス時間の比較

間を比較した図である.感光性 BCB は低プロセス温度,低吸湿性のため,キュア時間がポリ イミドのほぼ 1/3 となる.フォトレジストマスクのエッティングレートは非常に低い値である ため,下層誘電体膜を保護するストッパメタルを使用しなくてもよい.ビアホール,トレンチ の加工をフォトリソグラフィで行うため,ビアホール加工時間の大幅な短縮を実現している. 従って,トータルで製造プロセス時間をポリイミドプロセスと比較して約 1/3 にすることがで きる.さらに感光性 BCB の低吸湿性は金属配線パターンニングの大幅な自由度向上をもたら す.つまり,誘電体膜内に水分がほとんどないため,加熱時等の水分の放出を考慮する必要が ないため,ビアホール,配線の配置に関する制限を取り除くことができる.

2.4.2 BCB 3 次元 MMIC の配線構造

図 2.9 は InGaP/InGaAs/GaAs heterostructure MESFET (HMESFET) [6], [7] を用いた BCB 3 次元 MMIC の構造を示している. 最下層に 2µm 厚の BCB 膜, その上に 2.5µmx4 層の BCB が形成される. 最下層の BCB 膜はトランジスタの T 型ゲートを支える役目を担っている. 従来の SiO₂を用いた容量だけでなく,容量の小型化,大容量化に有利な高誘電体材料である STO (SrTiO₃)を用いた容量を集積している [3]. ビアホールは層間ごとに形成する構成である. 層間ビアホールを層間を接続する本来のビアホール機能だけでなく,それらを溝のようにのば すことにより伝送線路として動作させることができる(トレンチ線路). さらに層間ビアはス タックドビア構造をとるため,トレンチ線路の厚さを変えることも可能である. このように金

図 2.9 HMESFET を用いた感光性 BCB 3 次元 MMIC の構造

属厚の厚い伝送線路は導体損失を低減することができるので、特に低い周波数帯で伝送線路の 低損失化に有効である.トレンチ線路を伝送線路やスパイラルインダクタへ適用することによ り、C帯において TFMS 線路を用いた場合と比較して 30%以上の低損失化を実現している [5]. 図 2.10 はトレンチ線路を試作したチップ写真である.BCB 膜は SEM 写真撮影のために取り除 いている. (a) は増幅器の整合回路をトレンチ線路で形成した例である. (b) は幅広の伝送 線路に2つのトレンチ線路を積層した例である. (c) はスパイラルインダクタ, (d) はソレ ノイドインダクタの例であり、これらの写真からもわかるように、配線自由度が大きく、かつ 良好な伝送線路を実現できていることが確認できる.

2.5 まとめ

3次元 MMIC を提案し、その特徴を明確に示すと同時に3次元 MMIC が小型、高集積化に極めて有効であることを示した。3次元構造を実現するプロセス技術として、ポリイミドを用いたプロセス、感光性 BCB を用いたプロセスを開発し、それぞれの特徴を示した。

(b)

(c)

(d)

図 2.10 トレンチ線路を用いた種々の受動回路チップ写真 (a)整合回路,(b)伝送線路,(c)スパイラルインダクタ,(d)ソレノイドインダクタ

参考文献

[1] M. Hirano, K. Nishikawa, I. Toyoda, S. Aoyama, S. Sugitani, and K. Yamasaki, "Threedimensional Passive Circuit Technology for Ultra-Compact MMIC's," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 12, pp. 2845-2850, Dec. 1995.

[2] T. Tokumitsu, T. Hiraoka, H. Nakamoto, and M. Aikawa, "Multilayer MMIC using a 3μmx3layer Dielectric Film Structure," IEICE Trans. Electron, Vol. E75-C, No. 6, pp. 698-706, June 1992.

[3] K. Inoue, K. Kamogawa, K. Nishikawa, K. Ikuta, K. Onodera, and M. Hirano, "Threedimensional MMIC Interconnect Process Using Photosensitive BCB and STO Capacitors," in Proc. 28th European Microwave Conf., Amsterdam, The Netherlands, Oct. 1998, pp. 642-647.

[4] K. Nishikawa, S. Sugitani, K. Inoue, K. Kamogawa, T. Tokumitsu, I. Toyoda, and M. Tanaka, "A Compact V-Band 3-D MMIC Single-Chip Down-Converter Using Photosensitive BCB Dielectric Film," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 12, pp. 2512-2518, Dec. 1999.

[5] K. Nishikawa, S. Sugitani, K. Inoue, T. Ishii, K. Kamogawa, B. Piernas, and K. Araki, "Lowloss, Passive Components on BCB-based 3-D MMIC Technology," in IEEE MTT-S Int. Microwave Symp., Dig., Phoenix, AZ, May, 2001, pp. 1881-1884.

[6] Y. Yamane, K. Onodera, T. Nittono, K. Nishimura, K. Yamasaki, and A. Kanda, "A D-DLL (double lightly doped drain) structure H-MESFET for MMIC applications," IEEE Trans. Microwave Theory Tech., Vol. 45, pp. 2229-2233, Dec. 1997.

[7] K. Onodera, K. Nishimura, T. Nittono, Y. Yamane, and K. Yamasaki, "Symmetric and asymmetric InGaP/InGaAs/GaAs heterostructure MESFET and their application to V-band amplifiers," IEICE Trans. Electron. Vol. E81-C, pp. 868-875, June 1998.

第2章

第3章 3次元 MMIC 受動回路

3.1 まえがき

第3章では3次元構造を適用した伝送線路と超小型基本受動回路の設計法及びその特性について述べ,3次元 MMIC 受動回路が小型でかつ良好な特性,設計性を得ることを示す.まず, 3次元 MMIC で使用する薄膜マイクロストリップ(Thin Film MicroStrip, TFMS)線路の構成と それらの特性について示す.次に多層構造を用いて実現したブロードサイドカブラ及び上記カ プラを適用したマーチャンドバランについて述べる.カプラは隣接層間膜に2本の信号配線を 平行に配置し,強結合と小型化(従来の平面構成と比較して 1/20 の小型化)の両立を実現して いる.バランについてはカブラの不平衡性を補償する新たな補正法を提案し,バランの広帯域 化法について述べる.最後に,積層型ウイルキンソンパワーディバイダの設計法,特性につい て述べる.このディバイダは半導体基板上及び積層誘電体膜最上層に信号配線を形成し,誘電 体膜中間層に信号配線と平行にスリットを入れた接地導体を形成した構成としている.この構 成により,高インビーダンス線路の積層化を MMIC レベルで初めて実現すると同時に小型化を 実現している.

3.2 薄膜マイクロストリップ (TFMS) 線路

3.2.1 TFMS 線路の特性

第2章で提案した3次元 MMIC はボリイミド層4層,配線層6層の多層構造であり,さらに Microwire による厚膜配線も実現することができる.この配線構造により様々な形態の伝送線 路を実現できる[1]-[6].図3.1 は3次元 MMIC で頻繁に用いられる伝送線路の構成を示し ている.図(a)は接地導体を半導体ウエハ上に配置し,信号線をポリイミド多層膜中に形成する. 図(b)は信号線をポリイミド層の最上層に配置し,接地導体をポリイミド多層膜中に形成する. この2つは TFMS 線路の基本となるものである.図(c)は信号線を半導体ウエハ上に配置し,接 地導体をポリイミド多層膜中に形成しており,逆 TFMSと呼ぶ.この線路は図(a),(b)の TFMS 線路と比較して,信号線を誘電率の高い半導体ウエハ上に配置しているため,一波長当たりの 実線路長を短くすることができる.さらに、ポリイミド多層膜中の接地導体をはさんで図(b)の TFMS 線路と組み合わせて使用することにより伝送線路の積層構造を実現することができ, MMIC の小型化,高集積化を実現できる.積層された伝送線路は接地導体が間にあるため,線 路間のアイソレーションを十分にとることができる.図(d)は接地導体を半導体ウエハ上及びボ リイミド膜中間層に配置し,その間に信号線を形成している.トリプレート TFMS 線路と呼ぶ. この構造の伝送線路も図(b)の TFMS 線路と組み合わせることにより、伝送線路の積層化を実現 できる.図(e)は信号線をポリイミド膜最上層,接地導体を半導体ウエハ上に配置し,信号線

図 3.1 3 次元 MMIC 上の伝送線路 (a)TFMS 線路, (b)TFMS 線路, (c)逆 TFMS 線路, (d)トリプレート TFMS 線路, (e)スリット付 TFMS 線路

下の接地導体にスリットを入れた構成であり,スリット付 TFMS 線路である.この構成では信 号線下に接地導体がないため,信号線の容量成分を従来の TFMS 線路と比較して小さくするこ とができる.つまり,同じ信号線幅ではより高い特性インピーダンスを持つ伝送線路を実現で きる.また同じ特性インピーダンスを実現する場合には信号線幅を大きくすることができるの で低損失化を実現できる.

図 3.2 から図 3.6 にこれらの伝送線路の特性インピーダンス,実効誘電率,伝送損失の計算 値を示す.これらの値は有限要素法による電磁界解析プログラム [7] や市販の電磁界シミュ レータを用いて計算したものである.なお,計算した信号線幅の下限はプロセス限界からくる 5µm,上限は実際に使用する特性インピーダンスの範囲を考慮して 30µm とした.計算に用い たパラメータは,周波数 10GHz,導体(金)の導電率 4.1x10⁷,ポリイミドの誘電率 3.3,ポ リイミドの誘電正接 0.0004 (1MHz),GaAs の誘電率 12.6 である.これらの図に示す伝送線 路特性パラメータは設計チャートとして第7章で述べるマスタスライス CAD ソフトウエアに 組み込み 3 次元 MMIC の良好な設計性を実現している.図 3.1(a),(b)に示す TFMS 線路にお いては信号線幅,基板厚を変えることにより特性インピーダンスを 1000から 100まで変化さ せることができる(図 3.2, 3.3) 逆 TFMS 線路においては特性インピーダンスの実現範囲は 65Ωから 10Ωであり,実効誘電率は 5 以上である(図 3.4) スリット付 TFMS 線路において は特性インピーダンス 50Ω(信号線幅 30μm)の伝送損失は 0.11dB/mm と低い値を実現してい る. このタイプの伝送線路は低損失が必要である LNA や発振器の共振器等に用いる.

図 3.3 TFMS 線路(図 3.1(b))の特性

図 3.4 逆 TFMS 線路(図 3.1(c))の特性 (a)特性インピーダンス,(b)実効誘電率,(c)損失

第3章

図 3.5 トリプレート TFMS 線路(図 3.1(d))の特性 (a) 特性インピーダンス,(b)実効誘電率,(c)損失

図 3.6 スリット付 TFMS 線路(図 3.1(e))の特性 (a)特性インピーダンス,(b)実効誘電率,(c)損失

ポリイミドを基板としたマイクロストリップ線路の損失の周波数依存性はある基準周波数での損失を基にして以下の式で示される[8].

$$\alpha(f) = \alpha_c(F) \cdot \sqrt{\frac{f}{F}} + \alpha_d(F) \cdot \frac{f^2}{F^2}$$

 $\alpha_{c}(F)$:基準周波数での導体損失, $\alpha_{d}(F)$:基準周波数での誘電体損失

回路設計においては上記の式を用いて任意周波数での損失を計算した. 図 3.7 に TFMS 線路 (線 路長 1mm)の測定した S パラメータと CAD ソフトウエア上の伝送線路モデルに上記式を適用 し,計算した S パラメータを示す. 図(a)は w=22 μ m, h=10 μ m の TFMS 線路 (50 Ω),図(b) は w=12 μ m, h=10 μ m の TFMS 線路 (70 Ω),図(c)は w=10 μ m, h=2.5 μ m の TFMS 線路 (30 Ω), 図(d)は w=15 μ m, h=5 μ m のトリプレート TFMS 線路 (15 Ω) である.実線が測定値,破線が 計算値である.両者はいずれのタイプの伝送線路においてもよく一致している.これらの結果 は上記に示した 10GHz で計算した伝送線路設計チャートと損失の周波数依存性を示す式を組 み合わせることにより設計性の良い TFMS 線路モデルを実現していることを示しており、3次

図 3.7 CAD 上の伝送線路モデルと測定値の S パラメータの比較 (a) TFMS 線路(50Ω), (b)TFMS 線路(70Ω), (c)TFMS 線路(30Ω), (d) トリプレート TFMS 線路(15Ω)

元 MMIC の良好な設計性を実現するものである.

ポリイミド膜厚及びポリイミドの誘電率は製造プロセス上ばらつきを考慮する必要があるパ ラメータである. 図 3.8 は TFMS 線路の特性パラメータのポリイミド膜厚及び誘電率依存性を 示した計算値である. 信号線幅 22μm の TFMS 線路 (50Ω)を用いて計算した値である. 図(a) は膜厚依存性, 図(b)は誘電率依存性である. 図中の黒実線が特性インビーダンス, 灰色実線が 実効誘電率,破線が損失を示している. ポリイミド膜厚が設計データである 10μm から±5%変 化しても,特性インピーダンスで 3.5%以下,実効誘電率で 0.5%以下,損失で 5%以下の変動 率に収まっている. 一方,ポリイミドの誘電率はポリイミドが水を吸うことにより変動するこ とが知られている. 図では設計データの 3.3 に対して±15%まで変化したときの値を示している. 実効誘電率が一番大きく変動し,最大で 12%変化する. しかしながら,これらの変動率は MMIC 設計上無視できうる値である.

図 3.8 ポリイミド膜厚及びポリイミドの誘電率変動が伝送線路特性に与える影響 (a) ポリイミド膜厚の影響,(b)ポリイミドの誘電率の影響

図 3.9 隣接線路間結合と増幅器特性 (a)20GHz 帯増幅器,(b)増幅器の特性

3.2.2 高密度レイアウトのための TFMS 線路の最小配置間隔

TFMS 線路の間隔を小さくし密に配置するほど回路の高集積化を実現できるが,隣接線路間 の結合が増加し伝送特性が劣化するという問題がある.ここでは回路設計上,隣接線路間の結 合を無視出来得る隣接する線路の最小間隔を明らかにする.図 3.9 は隣接線路間の結合が実際 の増幅器特性に及ぼす影響についてシミュレーションにより検討した結果を示している.図(a) は 20GHz 帯の等価回路図であり,線路幅 12μm の TFMS 線路 (70Ω) で整合回路を構成して いる.各 TFMS 線路はメアンダ状に配置され,その線路間隔を変えることにより隣接線路間の 結合を変化させている.使用しているデバイスは GaAs MESFET であり,カスコード接続して いる.図(b)はシミュレーション結果である.図には隣接線路間の結合が無い場合,-30dB,-40dB,

図 3.11 逆 TFMS 線路の隣接線路間結合と線路間隔の関係 (a)逆 TFMS 線路モデル,(b)結合度

-50dB のときの特性を示している. 結合が大きくなるに従って,中心周波数が高い方へずれて いくのがわかる. これは隣接線路間結合が大きくなると,その伝送線路の電気長が短くなるた めである. この図では結合が-30dB のとき,増幅器特性が大きく劣化している. 従って,結合 が-40dB 以下であれば隣接線路間結合を無視してもよいといえる. つまり,-40dB 以下となる ように隣接線路間隔を取ることによって,設計の簡易化を実現できる.

図 3.10, 図 3.11 に隣接線路間隔と結合度の関係を示す. 図 3.10 は TFMS 線路に関するもの であり, 図(a)にシミュレーションモデルを示している. シミュレーションは市販の電磁界シミ ュレーションにより行った. 図(b)は 20GHz のときのシミュレーション結果であり, 合わせて 1/4 波長時の線路の特性インピーダンスのずれを規格化して示している. 結合度としてバック

図 3.12 隣接線路間結合度と線路間隔の関係を示す測定値 (a)S₃₁, (b)S₄₁

ワード結合 (S_{31}), フォワード結合 (S_{41})を示している. 実線が S_{31} , 破線が S_{41} である. 隣 接する線路の長さが 1/32 波長のとき, s/h=2.3 以上で S_{31} <-40dB, 線路長が 1/16 波長のとき, s/h=4 以上で S_{31} <-40dB を実現する. S_{41} はそれ以下の値である. 一方, 図 3.11 は逆 TFMS 線 路に関するものであり, TFMS 線路と同様のシミュレーション結果を示している. 隣接する線 路の長さが 1/32 波長のとき, s/h=6 以上で S_{31} <-40dB を実現する. 隣接する線路長がこれより 短い場合には, より小さい s/h で S_{31} <-40dB を実現できる. また, このときの特性インピーダ ンスは隣接線路間の結合の影響をほとんど受けていない.

図 3.12 は 2 本の TFMS 線路 (w=10 μ m, h=5 μ m, L=2mm) を平行に配置し, その 2 本の TFMS 線路間の結合 (S₃₁, S₄₁) を測定した結果である.実線が測定値,黒丸が電磁界シミュレーシ ョンによる計算値である.線路長 2mm は 21.4GHz で 1/4 波長となる長さである.線路間隔と して s/h=1,2,4,6 のときの値を示している.測定値及び計算値はよく一致しており,このシミュ レーション結果が有効であることがわかる.S₃₁ は 21.4GHz のとき s/h=6 で-40dB である.線 路長が約 1/16 波長となる 5GHz では s/h=4 で-40dB を実現できることを示している.実際には メアンダ形状に TFMS 線路をレイアウトするときには隣接線路の線路長を 1/32 波長以下とす ることが多く線路間隔はより小さい値とすることができる.従って,このような線路間隔の基 準に基づいてレイアウトすることにより,回路面積を大幅に小型化できると同時にメアンダ形 状に有るにも関わらず設計上 1 本の TFMS 線路として扱うことができる.3 次元 MMIC はこの ような微細配置可能な TFMS 線路を用いて回路を構成できるため,小型で高密度な回路レイア ウトを実現できる.

24

3.3 ブロードサイドカプラ

マイクロ波回路において、方向性結合器は不可欠な基本素子であり、バランス型回路等、さまざまな回路に用いられる。平面型 MMIC ではランゲカプラやブランチライン型ハイブリッド が実現されているが、1/4 波長線路を複数使用するため大きな回路面積を必要としていた。3 次元 MMIC では多層構造を利用して 1/4 波長線路を上下に重ねるブロードサイドカプラ [10] が提案されている。ここでは、ブロードサイドカプラの結合度を決める重要なパラメータであ る線路幅及び線路間の膜厚について詳細に検討した結果を示す。

図 3.13 は 3 次元 MMIC で実現されるブロードサイドカプラの断面図である. 接地導体を半 導体基板上に形成し,ポリイミド膜最上層及びその直下の層に導体を重ねた構成である. w₁, w₂ はカプラを形成する導体の幅であり接地導体からの距離はそれぞれ 7.5µm, 10µm である. 上層導体の厚みは 2µm, 下層導体の厚みは 1µm である. 導体間のポリイミド膜厚は 1.5µm (1 層当たりのポリイミド膜厚は 2.5µm (導体厚 1µm 含む) としている) である. 図 3.14 は導体 幅 w₁ 及び w₂ の値を変化させたときの S₂₁ 及び S₃₁ の等高線表示した図である. 実線が S₂₁, 破

図 3.13 ブロードサイドカプラの断面図

図 3.14 ブロードサイドカプラの設計チャート

図 3.15 導体間の誘電体膜厚がカプラの結合特性に与える影響 (a)結合特性,(b)位相特性

線が S_{31} の等高線を示し,図中のイタリック数字が S_{21} の等高線の値,90 度回転させた数字が S_{31} の値を示している.太い実線は $S_{21}=S_{31}$ となるようにトレースした線であり,カプラの分配 振幅が等しくなる w_1 , w_2 を示している.この結果から,低損失かつ等分配な特性を得るために $u_2>w_1$ とする必要があることがわかる. $W_2=13.4\mu$ m, $w_1=8.4\mu$ m で結合度-3.7dB, $w_2=10\mu$ m, $w_1=8\mu$ m で結合度-3.8dB を得る.さらにこの図から,導体幅がプロセスばらつき等で数 μ m 設計値よりずれたとしてもカプラ特性にはほとんど影響しないことがわかる.

図 3.15 は積層される導体間の誘電体膜厚が結合特性に与える影響について検討した図である. 導体幅 $w_1=8\mu m$, $w_2=10\mu m$, 線路長 L=1.99mm として電磁界シミュレータを用いて計算した値 である. 図(a)は結合特性, 図(b)は位相差を示している. 図中の黒実線が設計値の膜厚 2.5 μm , 灰色実線が膜厚 2 μm , 破線が膜厚 3 μm のときの特性を示している. カプラの結合特性は導体 間の膜厚に依存し, 膜厚変動±0.5 μm で分配特性は最大 0.8dB, 0.6 度ずれることがわかる.

実際に試作した 18GHz 帯ブロードサイドカプラのチップ写真を図 3.16 に示す. メアンダ状 に折り曲げたレイアウトを行い, 0.2mmx1.2mm という小型なサイズで実現している. 設計サ イズは $w_1=8\mu m$, $w_2=10\mu m$, L=2.2mm である. 図 3.17 は試作したブロードサイドカプラの測 定結果を示している. 実線は測定値, 破線は計算値である. 計算値は市販の回路シミュレータ Hpeesof Libra (Agilent ADS) に搭載される結合線路モデルに以下のパラメータを入れて計算 した値である.

偶モード特性インピーダンス Zeven=121Ω

奇モード特性インピーダンス Z_{odd}=21Ω

偶モード実効誘電率ε_{even}=3.04

図 3.16 試作したブロードサイドカブラのチップ写真

図 3.17 試作したブロードサイドカプラの特性

奇モード実効誘電率ε_{odd}=4.22

偶モード伝送損失α_{even}=0.15dB/mm (10GHz)

奇モード伝送損失 α_{odd} =0.60dB/mm (10GHz)

これらの値はブロードサイドカプラが電気的に対称となっていると仮定して電磁界シミュレー ションより求めた値である.図に示すように測定値と計算値はほぼ等しい特性を示している. ブロードサイドカプラは 12.4GHz から 24.2GHz において出力振幅誤差 1dB 以内,位相差 89° ±3°, S₁₁<-13.1dB, S₄₁<-16.3dB を実現しており,小型で良好な特性を達成した.この結果は, ブロードサイドカプラは上記パラメータを用いることにより市販回路シミュレータにより良好 に設計できることを示している.図 3.18 はポリイミド膜(図(a))及び BCB 膜(図(b))を用い た 3 次元 MMIC 上に試作したブロードサイドカプラの特性ばらつきを示したものである.両方 の場合とも,出力振幅にわずかな差が生じているが良好な再現性を実現している.

本節ではブロードサイドカプラの特性と導体幅及び導体間膜厚の関係を明らかにした. 試作 したブロードサイドカプラを評価し,良好な設計性,再現性を実現できることを示した.

第3章

図 3.18 ブロードサイドカプラの特性ばらつき (a)ポリイミド版 3 次元 MMIC, (b)BCB 版 3 次元 MMIC

3.4 3次元 MMIC マーチャンドバラン

マーチャンドバラン [11] は 180 度信号分配回路であり, カプラ 2 つを組み合わせて実現で きるため MMIC においてもバランス回路等によく用いられており, 平面型 MMIC ではランゲカ プラやインタディジタルカプラを用いて構成される [12] - [16] . 図 3.19 は, マーチャンド バランの等価回路図であり, 2 本の 1/4 波長のカプラを用いて図に示すように接続する. カプ ラの散乱行列 [S] を

$$[S] = \begin{bmatrix} 0 & \alpha & \beta & 0 \\ \alpha & 0 & 0 & \beta \\ \beta & 0 & 0 & \alpha \\ 0 & \beta & \alpha & 0 \end{bmatrix}$$

とするとポート2及び3に出力される信号は以下のように示すことができる.

$$S_{21} = -\frac{\alpha \cdot \beta \cdot (1 + \beta^2 - \alpha^2)}{1 + \beta^2}$$
$$S_{31} = \frac{\alpha \cdot \beta \cdot (1 + \beta^2 - \alpha^2)}{1 + \beta^2}$$

従って,ポート 1 から入力した信号はポート 2 とポート 3 に等振幅で互いに逆相で出力する. 図 3.20 はマーチャンドバランの特性とカプラの位相速度差及び偶モードの特性インピーダンスの関係を示した図である.図(a)はカプラの偶モードの特性インピーダンス Z_{even}=121Ωのとき,

図 3.19 マーチャンドバランの等価回路図

図 3.20 マーチャンドバランの特性 (a)Z_{even}=121Ω, (b)Z_{even}=500Ω

マーチャンドバランの出力特性(振幅誤差及び位相差)の位相速度差依存性を示したものであ り、図(b)は Z_{even}=500Ωのときのバランの出力特性を示している.実線が位相差,破線が振幅誤 差を示している.これらの結果からカプラの偶モードの特性インピーダンスが大きいほど位相 速度差の影響を小さくすることができるといえる.さらに位相速度差がない場合(ε_{odd}/ε_{even}=1) には周波数に関わらず等振幅で逆相出力となることがわかる.MMIC においてはカプラ部の偶 モードと奇モードの位相速度を一致させることは極めて困難でありかつ,偶モードの特性イン ピーダンスを数 100Ωという高インピーダンス化することも極めて難しいため,マーチャンド バランの広帯域化を実現することは困難であった.

一方 Pavio ら [17] は多層構造を用いて偶モードの高インピーダンス化を実現し,パランの 広帯域化を実現している.彼等が提案する構造は GaAs 基板裏面に接地導体を配置し,基板表 面及びその上に形成されら誘電体膜上に信号導体を配置する多層構造である.しかしながらこ の構造では GaAs 基板上の信号線幅が 100µm 以上となり,極めて大きい回路面積を必要とし, 他の回路との集積化は難しい.この節では 3.3 節で述べた 3 次元 MMIC ブロードサイドカプラ と短い TFMS 線路を用いて小型でかつ広帯域なマーチャンドバランを提案する.

29

図 3.21 広帯域マーチャンドバランの構成

図 3.22 広帯域マーチャンドバランの等価回路図

図 3.21 は提案する広帯域マーチャンドバランの構造 [18] を示した図である.一方,図 3.22 はその等価回路を示している.提案するマーチャンドバランはブロードサイドカプラとそれを 接続する TFMS 線路のみから成る簡易な構成である.カプラの接続に使う TFMS 線路はカプラ のアンバランス性を効果的に改善し、バラン全体の特性として広帯域化を実現する.図 3.23 は 提案するマーチャンドバランの動作原理を示す図である.図(a)は振幅誤差,図(b)は位相差の変 化を示している.計算に用いたブロードサイドカプラ,TFMS 線路のバラメータを図中に示し ている.破線はカプラの直交モードの位相速度が同じでカプラを直接接続した場合である.灰 色実線は位相速度に差があるカプラを直接接続した場合である.黒実線は位相速度が同じで TFMS 線路を用いてカプラを接続した場合である.この計算結果が示すように、カプラの直交 モードの位相速度差が原因となるバランの振幅誤差,位相差のずれる方向と TFMS 線路を挿入 したことにより生じるバランの振幅誤差,位相差のずれる方向が 0dB,180 度に対して互いに 逆になっていることがわかる.つまり、直交モードの位相速度に差があるカプラを用いてマー チャンドバランを構成する場合にカプラ間を適当な長さの TFMS 線路を用いて接続することに より、位相速度に差があることより生じるバランのバランス特性のずれを補正することができ

(a) 振幅, (b)位相

図 3.24 TFMS 線路長とバランの動作帯域の関係

る. カプラを接続する TFMS 線路をインダクタ及びキャパシタより構成される π型の等価回路 と見ると、TFMS 線路はカプラのオープンポート側の線路に接続されていることから等価回路 からインダクタを取り除くことができるので、キャパシタが並列に接続されているとすること ができる. 従って、等価的に偶モードの位相速度を遅くすることにより、奇モードとの位相速 度差を小さくすることを意味している.

図 3.24 は 20GHz 帯 3 次元 MMIC マーチャンドバランのカプラを接続する TFMS 線路の線路 長とバランの動作帯域の関係を示している. 横軸は TFMS 線路の線路長,縦軸は中心周波数 (20GHz)で規格化した動作帯域を示している. バランの動作帯域としてバランがバランス型 回路等に使われることを想定して位相差 180°±10°以内,振幅誤差 1dB 以内 [19] でかつ出 力信号の 3dB 帯域を満たす周波数領域と規定している. 計算に用いたブロードサイドカプラの パラメータは以下の通りである.

> Z_{even}=121Ω, $ε_{even}$ =3.02, $α_{even}$ =0.15dB/mm(10GHz) Z_{odd}=21Ω, $ε_{odd}$ =4.22, $α_{odd}$ =0.60dB/mm(10GHz)

図 3.26 ブロードサイドカプラの線路長とバランの動作帯域の関係

L=1.99mm

また、TFMS 線路の特性インピーダンスは 60Ω, 実効誘電率は 3.3 である. この計算結果から、 挿入する TFMS 線路の線路長を 0.25mm から 0.35mm (約 0.04λ) とすることによりバランの 動作帯域を TFMS 線路を挿入しない場合と比較して 80%以上拡大することができる. つまり、 TFMS 線路を用いてカプラを接続するという簡易な方法でバランの広帯域化を容易に実現する ことができる. 図 3.25 は挿入した TFMS 線路の線路長 L₁=0.3mm のときのマーチャンドバラ ンの位相差と振幅誤差の特性を示している (太い実線). 図には比較のため、従来のカプラを 直接接続する構成の計算結果も合わせて示している (細い実線). また、破線はバランの動作 帯域を示す境界線である. この計算結果では 5GHz から 35GHz において、バランの出力振幅 誤差 1dB 以内,位相差 180°±10°以内を実現している.20GHz では振幅誤差 1dB,位相差 176° であり、バランの広帯域特性を実現している.

図 3.26 はマーチャンドバランを構成するブロードサイドカプラの線路長を変えたときのバランの動作帯域を計算した結果を示している. 縦軸は 1/4 波長で規格化したカプラの線路長であり, 横軸は周波数を示している. 横軸のバーはバランの動作帯域を示しており, 黒丸はバランの中心周波数 (カプラの線路長が 1/4 波長となる周波数)を示している. 挿入している TFMS

図 3.27 試作した広帯域マーチャンドバランのチップ写真

図 3.28 広帯域マーチャンドバランの測定結果

線路の線路長は 0.3mm である.動作周波数の上限はカプラの中心周波数の上昇と同様に高く なるが,動作周波数の下限は微増するのみである.カプラの長さを 30%短くすることにより, バランの動作帯域を 28%広くすることができる.従って,カプラの中心周波数を高く(線路長 を短く)してもバランの動作周波数の上限のみを高くすることができるので,回路の小型化, 広帯域化を容易に実現することが可能である.

次に実際に試作した 20GHz 帯 3 次元 MMIC マーチャンドバランの特性について述べる.図 3.27 は試作したマーチャンドバランのチップ写真である.試作したバランはカプラの線路長 L=1.5mm, TFMS 線路の線路長 L₁=0.2mm (Z=64 Ω , ε_{eff} =3.3) である.一層の小型化を実現す るためにカプラはメアンダ状に形成しており,バランのサイズは 0.2mmx0.4mm である.ポー ト1はカプラの下層配線に接続し,ポート2及びポート3は上層配線に接続する構成としてい る.図 3.28 は測定値を示している.実線が測定値,破線が計算値である.測定値から試作した マーチャンドバランの動作帯域は 8.2GHz から 30GHz を実現している. これは図 3.24 で示し た規格化した動作帯域で 1.09 である.特に高周波側で測定値と計算値がずれる原因はカプラの オープンポート部の見積もりが実際のフリンジング容量より小さかったためであると推察される.しかしながら、従来のカプラを直接接続して実現されるマーチャンドバランと比較して約 1.7 倍の広帯域化を実現した.

本節では新たな3次元 MMIC マーチャンドバランを提案し, TFMS 線路でカプラを接続する という簡易な方法でバランの広帯域化,小型化を実現した.この結果は今後の MMIC の小型化, 高集積化に有益である.

3.5 積層型ウイルキンソンディバイダ

ウイルキンソンディバイダはバランス型回路等に頻繁に用いられる受動回路であり、3次元 MMIC では TFMS 線路の使用によりこのような 1/4 波長線路により構成される受動回路を平面 型 MMIC と比較して十分小さい面積で実現できる、今後さらなる小型化、高集積化を実現する ために積極的に積層構造を利用していく必要がある。しかしながら、現在の3次元 MMIC は 2.5μmx4 層ポリイミド層の構造においてはウイルキンソンディバイダを構成する 70.7Ωという 比較的高い特性インピーダンスの TFMS 線路を積層構成することはプロセスルール、線路損失 の問題により困難であった。本節ではこのような高インピーダンス線路の積層構成を実現する 3次元構造を提案し、提案構造を用いたウイルキンソンディバイダについて述べる.

図 3.29 は提案する積層型ウイルキンソンディバイダの構成 [20] を示している. 図(a)は等価回路図, 図(b)は断面図である. 誘電体膜中間層に接地導体を形成し,その上部(誘電体膜最上層)及び GaAs 基板上に TFMS 線路,逆 TFMS 線路を形成する積層構造である. 高い特性インピーダンスを実現するために上下 TFMS 線路の中心線上の接地導体にスリットを形成している. TFMS 線路直下及び直上の接地導体にスリットを設けることにより TFMS 線路のもつ接地容量値を低減させることができるので,高い特性インピーダンスを実現できる. この構造によ

図 3.29 積層型ウイルキンソンディバイダの構成

(a)等価回路図, (b)断面図

図 3.30 1/4 波長線路の結合度とウイルキンソンディバイダのアイソレーション特性の関係

り,特性インピーダンス 70.7Ωという高い値を持つ TFMS 線路の積層化を実現し,ウイルキン ソンディバイダの占める面積を従来の 1/2 に小型化できる.提案構成においては上下の TFMS 線路間で結合が生じるため,ウイルキンソンディバイダの特性に影響を与えない程度の結合度 となるように伝送線路幅,スリット幅等を決める必要がある.

図 3.30 はウイルキンソンディバイダを構成する 1/4 波長線路に結合がある場合にその結合度 とディバイダの分配端子間のアイソレーション特性を示した図である. 結合度が大きくなるほ どアイソレーション特性が悪くなっているのがわかる. アイソレーション特性-15dB 以下を実 現する場合, 結合度-15dB 以下であれば結合がない場合とほぼ等しい動作帯域を実現できる. 従って, 積層 TFMS 線路の結合度が-15dB 以下でかつ各線路の特性インピーダンスが 70.7Ωと なるように TFMS 線路幅, スリット幅を決定する. 実際には図 3.29 に示す積層構造において は疎結合が予測されるので, まずスリット幅, 線路幅を決定し, その寸法での結合度を確認す る方法で構造を決定する.

図 3.31 は接地導体のスリット幅を変えたときその上下に形成される TFMS 線路, 逆 TFMS 線路が 70Ωとなる導体幅及び損失(図(a)),実効誘電率(図(b))を示している. 周波数 20GHz のときの値である. シミュレーションは HP-eesof HFSS を用いて行った. TFMS 線路及び逆 TFMS 線路の実効誘電率に大きな差あることから, 1/4 波長線路の損失が等しくなるようにス リット幅を決定した. 以下に構造パラメータを示す.

スリット幅:25µm

TFMS 線路: w_1 =16 μ m, α_1 =0.15dB/mm(10GHz), ϵ_{eff1} =2.85, λ /4=2.22mm

逆 TFMS 線路: $w_2=5.5\mu$ m, $\alpha_2=0.34$ dB/mm(10GHz), $\varepsilon_{eff2}=7.71$, $\lambda/4=1.35$ mm これらの値より、1/4 波長線路での損失差は 0.126dB, 位相差は 0.17°/mm であり無視できる 値である. 図 3.32 は上記構造の TFMS 線路を用いた場合の線路間の結合度を計算した結果で

35

図 3.32 積層された TFMS 線路の結合度

ある. TFMS 線路, 逆 TFMS 線路で実長さが異なり,実際に結合する線路長は 1.35mm となる. この計算結果から,結合度は-15dB 以下であることがわかりこの構成をウイルキンソンディバ イダに適用しても従来のウイルキンソンディバイダと同等の特性が得られることが予測できる.

図 3.33 は試作した積層構成ウイルキンソンディバイダのチップ写真である. TFMS 線路は一 層の小型化のためにメアンダ状に形成している. アイソレーション抵抗は導体損失を考慮して 最大のアイソレーション特性を実現するように最適化(110Ωを用いている)している. ディバ イダ部は 0.3mmx0.7mm と超小型である. 図 3.34 は試作したウイルキンソンディバイダの測 定結果である. 実線が測定結果,破線はシミュレーション結果であり,両者はよく一致してい る. 挿入損失は 10GHz から 30GHz において 0.5dB±0.5dB であり,ポート間の誤差もほとんど ない. アイソレーション-15dB を得る周波数帯域は 15.8GHz から 28GHz であり,従来構成と

図 3.33 試作した積層型ウイルキンソンディバイダのチップ写真

図 3.34 積層型ウイルキンソンディバイダの測定値 (a)通過特性/アイソレーション,(b)反射特性

比較して同等の帯域幅である. 21.4GHz でアイソレーション-19.2dB を実現している. 反射特性は帯域内において-11dB 以下である.

70Ωという比較的高い値の特性インピーダンスを持つ TFMS 線路の積層構成を新たに提案し、 それを用いた積層型ウイルキンソンディバイダを提案,実現した.この結果ディバイダの面積 を従来と比較して 1/2 以下とすることが可能となった.さらに試作した 20GHz 帯ディバイダの 特性は従来とほぼ同等の性能である.

3.6 まとめ

本章では3次元 MMIC の受動基本素子であるブロードサイドカプラ,マーチャンドバラン, ウイルキンソンディバイダについて提案し,その特性を明らかにした.これらは3次元構造を 有効に活用し, TFMS 線路を積層して実現している.その結果平面構造の回路と比較して 1/2 以下の面積で実現している. この結果は 3 次元 MMIC の小型化,高集積化の実現に大きく貢献 する.

参考文献

[1] T. Tokumitsu, T. Hiraoka, H. Nakamoto, and M. Aikawa, "Multilayer MMIC Using a 3 μm x N-layer Dielectric Film Structure," IEICE Trans. Electron, Vol. E75-C, No. 6, pp. 698-706, June 1992.

[2] T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, and M. Aikawa, "Highly Integrated
3-D MMIC Technology Being Applied to Novel Masterslice GaAs- and SiMMIC's," in 18th IEEE
GaAs IC Symp. Dig., Nov. 1996, pp. 151-154.

[3] I. Toyoda, T. Tokumitsu, and M. Aikawa, "Highly Integrated Three-dimensional MMIC Single-chip Receiver and Transmitter, " IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, pp. 2340-2346, Dec., 1996.

[4] I. Toyoda, M. Hirano, and T. Tokumitsu, "Three-dimensional MMIC and Its Application: An Ultra-wideband Miniature Balun," IEICE Trans. Electron, Vol. E78-C, No. 8, pp. 919-924, Aug. 1995.

[5] M. Hirano, K. Nishikawa, I. Toyoda, S. Aoyama, S. Sugitani, and K. Yamasaki, "Threedimensional Passive Circuit technology For Ultra-compact MMIC's," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 12, pp. 2845-2850, Dec. 1995.

[6] K. Onodera, M. Hirano, M. Tokumitsu, I. Toyoda, K. Nishikawa, and T. Tokumitsu, "Folded U-shape Microwire Technology For Ultra-compact Three-dimensional MMIC's," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, pp. 2347-2353, Dec. 1996.

[7] M. Matsubara and T. Angkaew, "Analysis of Waveguide with Loss or Gain by the Finiteelement-method," IEICE Trans. Vol. J71-C, No. 10, pp. 1398-1403, Oct. 1988.

[8] S. Banba and H. Ogawa, "Small-sized MMIC Amplifiers Using Thin Dielectric Layers," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 3, pp. 485-492, March 1995.

[9] K. Nishikawa, I. Toyoda, K. Kamogawa, T. Tokumitsu, and M. Tanaka, "Three-dimensional Monolithic Microwave Integrated Circuit Technology For Fully Computer-aided Designcompatible Monolithic Microwave Integrated Circuit Development," International Journal of RF and Microwave CAE, Vol. 8, No. 6, pp. 498-506, Nov. 1998.

[10] I. Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, "Multilayer MMIC Branch-line Coupler and Broad-side Coupler," 1992 IEEE Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., June 1992, pp. 79-82.

[11] N. Marchand, "Transmission-line Conversion Transformers," Electronics, Vol. 17, No. 12, pp. 142-145, 1944.

[12] D. Neilson, B. Allen, M. Kintis, and M. Hoppe, "A Broad-band Up-converter IC," 1992 IEEE

Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., June 1992, pp. 163-166.

[13] M. Tsai, "A New Compact Wide-band Balun," 1993 IEEE Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., June 1993, pp. 123-125.

[14] S. Maas and K. Chen, "A Broad-band, Planar, Doubly Balanced Monolithic Ka-band Diode Mixer," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 12, pp. 2330-2335, Dec. 1993.

[15] Y. Ryu, K. Kobayashi, and A. Oki, "A Monolithic Broad-band Doubly Balanced EHF HBT Star Mixer With Novel Microstrip Balun," 1995 IEEE Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., May 1995, pp. 155-158.

[16] S. Maas, "A Broad-band Planar Monolithic Ring Mixer," 1996 IEEE Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., June 1996, pp. 51-54.

[17] A. Pavio and A. Kikel, "A Monolithic Or Hybrid Broad-band Compensated Balun," 1990 IEEE MTT-S Int. Microwave Symp. Dig., June 1990, pp. 483-486.

[18] K. Nishikawa, I. Toyoda, and T. Tokumitsu, "Compact and Broad-band Three-dimensional MMIC Balun," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 1, pp. 96-98, Jan. 1999.

[19] S. Maas, Microwave Mixers Second Edition, Artech House Inc., 1993.

[20] K. Nishikawa, T. Tokumitsu, and I. Toyoda, "Miniaturized Wilkinson Power Divider Using Three-dimensional MMIC Technology," IEEE Microwave And Guided Wave Letters, Vol. 6, No. 10, pp. 372-374, Oct. 1996.

第4章 3次元 MMIC 基本能動回路と1 チップ受信機への適用

4.1 まえがき

第4章では GaAsMESFET を用いた3次元 MMIC 基本能動回路について述べるとともにそれ らを1チップに集積化した 20GHz 帯1チップ受信機について述べる.基本能動回路は小型化, 高集積化,高性能化を同時に実現するために,整合回路の積層化と高利得を実現する構成法を 組合わせて設計している、基本増幅器回路として、小型化に適し、かつ高利得を実現できるカ スコード型増幅器の構成を採用している.カスコード接続されるソース接地 FET とゲート接地 FET 間の伝送線路とゲート接地 FET のゲートと接地導体間の伝送線路を最適化することによ り、増幅器特性の向上と入出力整合を取りやすくすることができる。さらに、増幅器特性の上 記伝送線路長依存性について明らかにする.可変利得増幅器については,負帰還回路部にドレ イン接地 FET を配置し、ドレイン接地 FET の相互コンダクタンスを変えることにより、帰還 量を変化させるアクティブ帰還型可変利得増幅器を提案し、その構成と設計法について述べ、 減衰動作時の歪み特性が大幅に改善することを示す。周波数変換器についてはバランス型アッ プコンバータ/イメージリジェクション型ダウンコンバータ両構成について述べる. 整合回路 を積層する小型化回路構成とその設計法について述べるとともに、第3章で示した受動回路と の組合せにより、超小型な周波数変換器が実現できることを示す。発振器については小型化を 実現する構成及び設計法について述べる。最後に、機能回路を1チップに集積化した1チップ 受信機について、その構成及び設計法、試作回路の特性について示す.

4.2 カスコード型増幅器

4.2.1 カスコード型 FET の特徴

増幅器において高利得を得るためには通常ソース接地 FET を用いた 1 段増幅器を縦続接続し て多段増幅器構成とする. このとき FET 間に整合回路, バイアス回路が必要であり増幅器の面 積は大きくなる. 一方, カスコード接続された FET はソース接地 FET と比較して, 高利得, 高出カインビーダンス, 高アイソレーションである [1] - [4] . ソース接地 FET とゲート接 地 FET を直接または伝送線路を介して接続することにより, 段間整合回路を省略できるととも に, バイアス回路も両 FET で共用できるため増幅器の小型化を実現できる. 3次元 MMIC で はソース接地 FET とゲート接地 FET を TFMS 線路を用いて接続し, TFMS 線路長を変えるこ とにより, 高利得化と広帯域化を実現している [2] - [4] . 図 4.1 はカスコード接続 FET の 最大有能利得 (MAG) /最大安定利得 (MSG)の計算結果を示している. 図中には合わせて ソース接地 FET の MAG/MSG の計算結果も示す. カスコード接地 FET はソース接地 FET と ゲート接地 FET を特性インピーダンス 70Ω, 線路長 1mm の伝送線路で接続した構成である.

図 4.2 TFMS 線路の線路長とカスコード FET の S11, S22の関係

計算に用いたデバイスは GaAsMESFET (w_g=200µm) (等価回路パラメータを付録 4.1 に示す) である. 図に示すように, カスコード FET の最大利得はソース接地 FET と比較して FET の f_{max} の 80%の周波数帯まで 7dB から 10dB 高い値を実現することができる. これはソース接地 FET を用いた 1 段増幅器を縦続接続した 2 段増幅器の利得とほぼ等しい値である. また, カスコー ド FET の 20GHz 付近のリップルは MAG の領域 (K>1) であり, 利得が MSG の外挿ラインよ り低下している. しかし, ソース接地 FET の MSG と比較しても十分大きい値となっている. 従って, カスコード接続 FET を用いて増幅器を構成することにより, 小型でかつ高利得な増幅 器 MMIC を実現できる.

図 4.2 はソース接地 FET とゲート接地 FET の間の TFMS 線路(特性インピーダンス 70 Ω) の線路長を 0mm から 2mm (0.22 λ_g)まで変えたときのカスコード FET の S₁₁, S₂₂の軌跡を示 したものである(周波数は 15GHz から 25GHz). 図中に計算に用いたカスコード FET モデル を示す. FET 間の接続及びゲート接地 FET のゲート側に TFMS 線路を用いた構成である. FET

第4章

図 4.3 カスコード FET の特性と TFMS 線路 L1 の特性インピーダンスの関係

(a) MSG/MAG, (b)F_{min}, (c)K-factor

は w_g=200µm のものを用いている. S₁₁ は低周波側ではスミスチャートの内から外へ向かって 移動し,高周波側では内,外,内と円を描くような軌跡をとる. S₂₂ は低周波側ではスミスチャ ートの外から内へ向かって移動し,高周波側では外,内,外と円を描く軌跡となる. このよう にソース接地 FET とゲート接地 FET を接続する TFMS 線路の線路長を変えることにより,カ スコード FET の入出力インピーダンスを自由に変えることができるので,高利得化とともに広 帯域化も同時に実現できることがわかる. ここで注意すべき点は, S₂₂ はある線路長,周波数帯 でスミスチャートの外周で出てしまうため不安定となる. 従って実際の MMIC 設計時には安定 化対策が必要である.

次に 20GHz 帯でのカスコード FET の特性と L_1 及び L_2 の TFMS 線路の線路長の関係を詳細 に示す. ここではゲート幅 100 μ m の FET を用いて計算している. 図 4.3 は TFMS 線路 L1 の 特性インピーダンスを変えたときのカスコード FET の MAG/MSG (最大利得), F_{min} (最小 雑音指数), K-factor (安定係数)の値を示している. 図 4.3 より,最大利得,最小雑音指数と も 70 Ω のものが最も良い値であり,安定係数も特性インピーダンス 70 Ω のとき線路長 0.8mm 以上で 1 を越える. つまり, L_1 の特性インピーダンス値は高いほどカスコード FET の高性能化 (高利得,低雑音,安定化)を実現できるといえる.図 4.4 は TFMS 線路 L₂の線路長を変えた ときの特性変化を示している.L₂の線路長を長くすることにより,最大利得は高い値及び最小 雑音指数は小さい値になっていくのがわかる.しかしながら安定係数は線路長が長くなるにし たがって低くなり,L₂の線路長が 0.5mm のときには L₁の長さに関係なく 1 以下となる.この 場合には L₁の長さに関係なく不安定となっていることを示している.つまり,L₂の線路長を長 くすることにより,負性抵抗が発生し利得を増加,雑音指数を低下させることができるが,カ スコード FET の不安定性が増加することになる.L₂の線路長を長くしすぎると,増幅器設計に おいて強固な安定化対策 (整合回路内に損失を持たせる等)をとる必要があるため,カスコー ド FET の高利得,低雑音化の効果を整合回路の損失で相殺する可能性がある.従って,L₂の線 路長は利得,雑音性能と回路の安定度の両方を考慮して決定する必要がある.

4.2.2 20GHz 帯カスコード型増幅器 3 次元 MMIC の性能

図 4.5 は試作した 20GHz 帯カスコード型増幅器の等価回路図である. 整合回路を構成する TFMS 線路は使用する MESFET の性能, TFMS 線路の損失, 増幅器の面積を考慮して特性イン ビーダンス 70Q (ポリイミド基板厚 10µm) である. 70Qの TFMS 線路は線路幅が 12µm であ り (第 2 章参照),メアンダ状にレイアウトすることによりコンパクトに整合回路を実現する ことができる. カスコード接続される FET を接続する TFMS 線路は線路長 0.95mm である. 各 TFMS 線路は所望帯域幅,利得を実現する最短線路長となるよう最適化している. 低周波領 域で安定化を行うために入力整合回路に 250Qの抵抗を並列接続している. 使用している FET のサイズはゲート幅 200µm である. 図 4.6 は試作した 20GHz 帯カスコード増幅器のチップ写 真である. チップサイズは 0.78mmx0.78mm (実質的な回路面積は 0.7mmx0.6mm) であり, 極めて小さい面積で実現している. 図 4.7 は増幅器の周波数特性を示している. 図 (a) は S-

図 4.5 20GHz 帯カスコード型増幅器の等価回路図

パラメータ、図(b) はコントロールバイアス V。を変えたときの利得可変特性を示している. 18GHz から 26GHz 帯において、 S_{21} =11dB±1dB、 S_{11} <-9dB、 S_{22} <-4dB、 S_{12} <-25dB を実現している. また、利得可変幅は帯域内において 30dB 以上である. 図 4.8 は NF 特性を示しており、 8dB 以下である. これらの特性はマイクロストリップ型 MMIC で実現される増幅器と比較して 1.5 倍以上の利得/面積比を実現している. ここで実現したカスコード型増幅器は小型でかつ 高利得、広帯域な特性、大きな利得可変特性を有しているため、高集積 MMIC 実現において段 間のレベル調整、受信利得制御等はば広い用途に適用できる.

第4章

図 4.8 試作したカスコード型増幅器の NF 特性

4.3 アクティブ帰還型可変利得増幅器

可変利得増幅器は受信利得制御,送信電力制御,段間レベル調整等いろいろな用途に使用さ れる.従来の可変利得増幅器としては 4.2 節で述べたようなカスコード接続 FET [5] または デュアルゲート FET [6] を用いてゲート接地 FET (第 2 ゲート)のゲートバイアスを制御す ることにより増幅器の利得を制御する方法がある.また,フィードバック型増幅器のフィード バック回路部にバリスタを用い,バリスタの抵抗値を変えることによりフィードバック量を可 変に増幅器の利得を制御する方法がある [7] .カスコード FET やデュアルゲート FET を用い る方法では利得減衰時の線形性が低いという問題がある.これは FET の相互トランスコンダク タンス (gm)の値が小さいために生じる.一方バリスタ帰還型可変利得増幅器ではバリスタの 最小抵抗値が最大帰還量を決定するため,利得減衰値の最大値に制限があり,利得可変幅を大 きくするには多段化を余儀なくされる.本節では上記問題点を解決する新たなアクティブ帰還 型可変利得増幅器を提案,実現する.

4.3.1 アクティブ帰還型可変利得増幅器の構成及びその特徴

図 4.9 は新たに提案するアクティブ帰還型可変利得増幅器の基本構成を示している [8] . 帰 還回路部にドレイン接地 FET (CDF)を形成し,ドレイン接地 FET の gm を変えることにより 帰還量を制御し,増幅器の利得を可変にする構成である. 図 4.10 は主増幅部 (ここではソース 接地 FET (CSF) としている) と CDF で構成される帰還回路を FET の等価回路パラメータで 示した図である. 等価回路を簡易化するため CDF は gm のみで示している. CSF, CDF の Y 行 列を

 $\begin{bmatrix} Y_{CSF} \end{bmatrix} = \begin{bmatrix} j\omega C_{gs} & 0 \\ G_{m0} & G_d \end{bmatrix}$

第4章

$$\begin{bmatrix} Y_{CDF} \end{bmatrix} = \begin{bmatrix} g_m & -g_m \\ 0 & 0 \end{bmatrix}$$

ただし,G_{mo}はG_mの線形パラメータである.

とすると、図 4.10 に示す等価回路の Y 行列は

$$\begin{bmatrix} Y \end{bmatrix} = \begin{bmatrix} j\omega C_{gs} + g_m & -g_m \\ G_{m0} & G_d \end{bmatrix}$$

と表せる. 従って上式より等価回路の S₂₁ 及び入力インピーダンス Z_{in}は以下のようになる.

$$\begin{split} S_{21} &= \frac{-2G_{m0}Z_0}{1 + Z_0G_d + (1 + Z_0G_d + Z_0G_{m0})Z_0g_m + j\omega Z_0C_{gs}(1 + Z_0G_d)} \\ &\approx \frac{-2G_{m0}Z_0}{1 + (1 + Z_0G_{m0})Z_0g_m} \\ Z_{in} &= \frac{1 + Z_0G_d}{(1 + Z_0G_d + Z_0G_{m0})g_m + j\omega C_{gs}(1 + Z_0G_d)} \approx \frac{1}{(1 + Z_0G_{m0})g_m} \end{split}$$

図 4.10 アクティブ帰還型可変利得増幅器の主要部の等価回路図

これらの式は S_{21} , Z_{in} とも帰還回路部のドレイン接地 FET の g_m により制御できることを示しており、次の3つのことをいうことができる.

1) 幅器の利得は CDF の g_m が0 (ゲート電圧がピンチオフのとき)のとき最大利得を取り, g_m が最大のとき, 増幅器の利得は最小となる.

2) 増幅器の入力インピーダンスは CDF の gm が最大のとき,最小となる. この入力インピー ダンスを如何に小さくするかによって,増幅器の最大入力電力が決定する.図 4.11 は CDF 帰 還型可変利得増幅器とバリスタ帰還可変利得増幅器の入力インピーダンスを比較したものであ る.主増幅部の FET パラメータは両者とも同じである.また,バリスタとして CDF と同じ FET を用いそのドレインーソース間抵抗により構成している.入力インピーダンスは利得の減少と ともに小さくなり,その値は CDF 帰還型可変利得増幅器の入力インピーダンスの方が小さい ことがわかる.

3)利得減衰動作時においては温度変化に対する増幅器の利得変動を小さく抑えることができる。これは主増幅部の FET の相互コンダクタンス及び、CDF の相互コンダクタンスが温度変化により同じ方向に変化するが、帰還量の観点から見た場合主増幅部の利得増減方向と帰還量の増減方向が反対となるためである。この温度補償効果は以下の式で示すことができる。

$$\frac{\partial S_{21}}{\partial g_m} \approx \frac{-2Z_0 \alpha (1-Z_0^2 \alpha g_m^2)}{(1+Z_0 g_m + Z_0^2 \alpha g_m^2)^2} = \frac{-2Z_0 \alpha (1-Z_0^2 G_{m0} g_m)}{(1+Z_0 g_m + Z_0^2 G_{m0} g_m)^2}$$
ただし G_{m0}=ag_m と仮定している.

増幅器の利得変動は $G_{m0}g_m = \frac{1}{Z_0^2}$ のとき 0 とすることができる. さらに g_mの値が大きい場合

(減衰動作時)には分母の $(G_{m0}g_mZ_0^2)^2$ 項の値が大きくなり $\frac{\partial S_{21}}{\partial g_m} \approx 0$ となるので利得変動を抑

えることができる.

次にアクティブ帰還型可変利得増幅器の歪み特性について述べる.ここでは文献[9], [10] で述べられている FET の相互コンダクタンスの非線形性のべき級数展開を用いてその特性を示 す.主増幅部 FET の相互コンダクタンス Gm はゲートーソース間電圧 Vos とすると

 $G_m = G_{m0} + G_{m1}V_{gs} + G_{m2}V_{gs}^2$ と示すことができる、図 4.10 より

$$V_{d} = -\frac{G_{m}}{G_{L} + G_{L}} V_{gs} = -\frac{G_{m0}V_{gs} + G_{m1}V_{gs}^{2} + G_{m2}V_{gs}}{G_{L} + G_{L}}$$

となる.等振幅の入力信号を ω_1 , ω_2 とし, CDFの g_m の変化による可変利得増幅器の入力イン ピーダンス, Z_n の低下を考慮して, V_{as} は以下のように示すことができる.

$$V_{gs} = Av_g(\cos(\omega_1 t) + \cos(\omega_2 t))$$

上式より基本波成分 (ω1 またはω2) の出力は

$$V_{d \text{ fundamental}} = -\frac{G_{m0}Av_g + \frac{9}{4}G_{m2}(Av_g)^3}{G_L + G_d}\cos(\omega_n t)$$

一方 3 次混変調 (2ω1-ω2) の出力は

$$V_{d2\omega_{1}-\omega_{2}} = -\frac{\frac{3}{4}G_{m2}(Av_{g})^{3}}{G_{L}+G_{d}}\cos((2\omega_{1}-\omega_{2})t)$$

と示すことができる. 従って, 基本波と3次歪みとの D/U 比は以下のように示すことができる.

$$\begin{bmatrix} D_{U} \\ C_{DF} \end{bmatrix}_{CDF} = 20 \log \left| \frac{V_{d \ fundamental}}{V_{d \ 2\omega 1 - \omega 2}} \right| = 20 \log \left| \frac{G_{m0} A v_{g} + \frac{9}{4} G_{m2} (A v_{g})^{3}}{\frac{3}{4} G_{m2} (A v_{g})^{3}} \right|$$

$$\approx 20 \log \left| \frac{4G_{m0}}{3G_{m2} (A v_{g})^{2}} \right|$$

同様にして,バリスタ帰還型可変利得増幅器における基本波と 3 次歪みとの D/U 比は以下のように示すことができる.

$$\begin{bmatrix} D/U \end{bmatrix}_{Varistor} = 20\log \left| \frac{(G_{m0} - \frac{1}{R_{fb}})Bv_g + \frac{9}{4}G_{m2}(Bv_g)^3}{\frac{3}{4}G_{m2}(Bv_g)^3} \right| \approx 20\log \left| \frac{4(G_{m0} - \frac{1}{R_{fb}})}{3G_{m2}(Bv_g)^2} \right|$$

$$teteU, \quad B = \frac{R_{fb} + Z_0}{R_{fb} + (2 + G_m Z_0)Z_0}$$

ここで、パリスタ部は抵抗 R_{fb} のみとしている. CDF 帰還型可変利得増幅器の D/U 比のパリス タ帰還型可変利得増幅器の D/U 比を比較すると、図 4.11 より $Av_g < Bv_g$ となるので CDF 帰還 型可変利得増幅器の D/U 比の方が大きくなる. さらに、CDF 帰還型では分子の項は G_{m0} で 一定である. これは CDF のユニラテラル性に起因している. これに対してパリスタ帰還型で は G_{m0} -1/ R_{fb} (R_{fb} は入力電力 v_g の増加とともに小さくする必要がある) となっているので分子 の項は v_g の増加とともに減少する. この違いは特に高い入力電力 (減衰動作)時に両者の D/U 比の差が大きくなることを示している. 図 4.12 は D/U 比の入力電力依存性を計算した図であ る. いずれの入力電力においても CDF 帰還型可変利得増幅器の D/U 比が大きな値を示してお り,その差は 10dB 以上である. 図 4.13 は可変利得増幅器の利得を可変させたときの D/U 比を 計算した図である. この計算値においても CDF 帰還型の方が大きい D/U 比を実現しており, 特に減衰動作時の差が大きくなるのがわかる. 従って, CDF 帰還型可変利得増幅器はバリスタ 型と比較してより高い線形性を実現できることがわかる.

図 4.11 入力インピーダンスと

図 4.12 D/U 比の入力電力依存性

図 4.13 D/U 比の増幅器利得依存性

4.3.2 アクティブ帰還型可変利得増幅器 MMIC の性能

図 4.14 は試作した 4GHz 帯 CDF 帰還型可変利得増幅器の等価回路図である. 主増幅部は高 利得化のためカスコード FET を用いている. 帰還回路部は CDF, DC ブロック容量 C₁, 増幅 器の高利得動作時の安定性を実現するための帰還抵抗 R₁より構成している. 使用しているデバ イスは付録 4.1 に示す 0.3µmGaAs MESFET であり, FET のゲート幅は 200µm である. FET サイズは所望の最小利得,可変利得幅,温度安定性を実現するために決定した. 図 4.15 は試作 した MMIC のチップ写真であり, 1.41mmx1.43mm の小型なチップサイズで実現している.

図 4.14 試作した CDF 帰還型可変利得増幅器の等価回路図

図 4.15 試作した MMIC のチップ写真

図 4.17 試作した増幅器の NF 特性

図 4.16 は可変利得特性の測定値である. 実線が測定値,破線が最大利得時の計算値であり, 測定値とよく一致している. 増幅器利得は図 4.14 に示す等価回路上の CDF のゲートバイアス V_{ig}を制御して可変している. V_d, V_c, V_{id}はそれぞれ 5V, 2.5V, 3V である. 利得可変幅は 3GHz から 4.5GHz において 15dB 以上を実現している. このとき V_{ig}は-7V から 0V の間で制御して いる. 出力リターンロスの変動幅は利得可変範囲において, 3.5dB 以下である. 一方入力リタ ーンロスは利得滅衰に伴って劣化する. これは実際のシステムにおいては前段に LNA を配置す ることによりマスキングされるため許容できる. 図 4.17 は NF 特性を示した図である. 実線が NF 特性,破線が対応する利得を示している. NF は最大利得時に 7dB, 最小利得時に 17dB で ある. NF 特性の可変幅は 10dB であり, 利得可変幅と比較して低く抑えられている.

図 4.18 は増幅器への入力電力と D/U 比(基本波と 3 次混変調歪みの比)の関係を示した測 定値である.可変利得増幅器は減衰動作を行っている.図には同時に試作したバリスタ帰還型

52

図 4.18 減衰動作時の D/U 比と入力電力の関係

図 4.19 CDF 帰還型可変利得増幅器の線形性と CDF のゲートバイアスの関係

可変利得増幅器 MMIC (CDF 部をゲート接地 FET を用いたバリスタに変更)の測定値も合わ せて示している. CDF 帰還型の D/U 比はバリスタ帰還型と比較して 15dB 以上高い値を示して いる. また, D/U 比 50dB を実現する最大入力電力では 8dB の改善を実現しており, その値は 0dBm である. 図 4.19 は CDF 帰還型可変利得増幅器の線形性と CDF のゲートバイアスの関係 を示している. そのバイアス時の増幅器利得も合わせて示している. 黒丸は D/U 比 50dB を実 現するための最大入力電力, 白丸は増幅器利得を示している. この図は黒丸の折れ線以下の入 力電力では D/U 比 50dB 以上であることを示している. 最大入力電力は最大利得時から利得を 下げてくと一旦減少し, その後 (図では V_{tb}=-5.8V のとき)増加し, V_{tb}=0V のとき 0dBm を実 現する. これら結果は CDF 帰還型可変利得増幅器が極めて高い線形性を実現していることを 示している.

図 4.20 は可変利得増幅器の利得及び NF の温度依存性を示している. 図(a)が利得, 図(b)が

53

図 4.21 D/U 比の温度依存性

NF である. -15℃から 100℃まで温度を変えた時,最大利得時の利得変動は 2dB,最小利得時 の利得は温度変化に依存せずほぼ一定である.一方 NF は最大利得時および最小利得時とも 2dB の変動がある.図4.21 は D/U 比の温度依存性を示した図である.測定した温度は-15℃,25℃, 100℃である.いずれの温度においても D/U 比 50dB を実現する入力電力は 0dBm で一定であ ることがわかる.これらの温度依存性の測定結果から,CDF 帰還型可変利得増幅器の持つ温度 補償効果が作用していることが示された.

帰還回路にドレイン接地 FET を用いた CDF 帰還型可変利得増幅器を提案,試作し,その動 作原理,測定結果を示した.提案する増幅器は線形性が高く,かつ温度補償機能により温度安 定性が高い回路構成である.

4.4 周波数変換器

周波数変換器は送信機,受信機において必要不可欠な機能回路であり,特にバランス型構成 の周波数変換器は LO 成分やイメージ成分を抑圧する機能を有しているため重要である.しか しながらバランス型周波数変換器は同相信号分配合成回路や 90 度/180 度ハイブリッドと複 数の単位ミキサで構成されているため,MMIC 上で大きな面積を占めていた [11] - [14] .特 にハイブリッド等の受動回路の占める面積が大きい.送受信機の 1 チップ化,高集積化を実現 するためにはこれら周波数変換器の小型化,高集積化が不可欠である.本節では 3 次元 MMIC 技術を用いてハイブリッド等の受動回路の小型化だけでなく,周波数変換器全体を積層構造に より小型化,高集積化する構成,設計法について述べる.

4.4.1 バランス型アップコンバータ

バランス型アップコンバータは RF 出力部での LO 信号の漏れを位相的にキャンセルする構成であり、LO 信号の入力側に逆相信号を実現するハイブリッドを配置するもの、ミキサからの RF 出力側で逆相合成するもの、LO 信号入力側及び RF 出力側の両方に 90 度ハイブリッドを配置する構成がある. いずれの場合にも IF 信号は逆相で入力する. ここでは、ハイブリッド回路の損失の影響を軽減するとともに LO 信号をリアクティブに終端することにより変換損失の低減が図れる LO 信号を逆相入力する構成法を採用した. さらに単位ミキサは変換損失の小さいゲート局発注入型ミキサを用いた.

図 4.22 はバランス型アップコンバータの構成を示している [15] . LO 信号を逆相分配する

図 4.22 バランス型アップコンバータの構成

55

図 4.23 試作したバランス型アップコンバータ MMIC のチップ写真

回路として第3章で提案しているマーチャンド型バラン [16] を用いている.単位ミキサの入 出力整合回路はポリイミド層中間層に接地導体を配置し,その上下に配置する積層構成として いる.入力整合回路はバランの出力インビーダンスに整合するように構成している.出力整合 回路は単位ミキサからの RF 信号の合成回路を兼ねており,合成点では逆相で出てくる LO 信 号漏洩分を反射して FET へ戻す構成とし,変換利得が最大となるように FET と合成点までの 距離を最適化している [11].図 4.23 は試作したバランス型アップコンバータ MMIC のチッ プ写真である.単位ミキサの整合回路は FET の回りに積層して配置することにより小型化を実 現している.バランはメアンダ状に配置している.単位ミキサは 0.4mmx0.33mm,バランは 0.3mmx0.42mm でありトータル回路面積は 0.79mmx0.69mm と超小型である.FET はゲート 幅 200µm の 0.3µm GaAs MESFET (付録 4.1 参照)を用いている.

図 4.24 はバランス型アップコンバータのバランス特性を示す測定値である.実線が測定値, 破線が計算値である.測定は単位ミキサの FET の片方を OFF とし, ON 状態の FET を増幅器 として動作させ, LO 入力端子 RF 出力端子への通過特性を測り, FET の ON/OFF 状態を切り 替えたときの通過特性の差を評価している. 16GHz から 20GHz において,振幅差 2dB 以内, 位相差 185°±7°であり,良好なバランス性を実現している.また,計算値ともよく一致して いる.図 4.25 は RF 端子での RF 出力, LO 抑圧比の LO 周波数依存性を示している. LO 入力 電力 10dBm, IF 入力電力 0dBm, IF 周波数は 140MHz である.測定帯域内において, RF 出力 は LSB, USB とも-5dBm 以上である.一方,LO 抑圧比は 24dB 以上を実現している.また, 出力 IP3 は 12dBm である.ドレイン電圧は 3V,ゲート電圧は-0.75V,ドレイン電流は 23mA

第4章

図 4.24 バランス型アップコンバータの バランス特性

である. この結果は試作した3次元 MMIC バランス型アップコンバータが良好なバランス特性 を実現できるとともに小型化、広帯域化も実現している.

4.4.2 イメージリジェクションミキサ

イメージリジェクションミキサは IF 出力のイメージ成分を位相的にキャンセルさせるもので あり、受信機に必要不可欠である、イメージリジェクションミキサは2つの単位ミキサと同相 信号分配回路, 90 度ハイブリッドで構成される. 図 4.26 は実現した 3 次元 MMIC イメージリ ジェクションミキサの構成[17]である.同相信号分配回路として第3章で提案した積層型ウ イルキンソンディバイダ [18], 90 度ハイブリッドとしてブロードサイドカプラ [19] を用 いている. FET はゲート幅 200µm の 0.3µm GaAs MESFET である. 単位ミキサはドレイン局 発注入ミキサ [14] であり、RF 信号を FET のゲートから、LO 信号をドレイン側から入力し、 IF 信号をドレイン側から取り出す構成である.このミキサ構成はドレイン側より比較的レベル の高い LO 信号を入力し、ドレイン電圧を変化させ、これに伴う FET の相互コンダクタンスの 変化を利用して周波数変換を行うものである.このミキサの特徴はドレイン電圧を LO 信号で 変化させるため、FET へのドレイン電圧の印加を必要とせず、消費電力が0となることである. 単位ミキサは小型化を実現するため、RF 信号入力側、LO 信号入力側とも TFMS 線路と容量の みの簡単な構成で整合回路を実現している. RF 信号入力側に損失の小さいウイルキンディバ イダ, LO 信号入力側にブロードサイドカプラを配置している. IF 信号は LO 信号に対しては 十分大きく、IF 信号に対しては無視し得るシャントキャパシタを介して出力する、損失の小さ いウイルキンソンディバイダは RF 信号入力側, 比較的損失の大きいブロードサイドカプラは LO 信号入力側に配置している. これはミキサの飽和領域レベルの LO 入力信号を使用するため,

57

図 4.26 イメージリジェクションミキサの

等価回路図

図 4.27 試作したイメージリジェク ションミキサ MMIC のチップ写真

図 4.28 イメージリジェクションミキサの周波数特性

ブロードサイドカプラの損失を無視でき得るためである.

図 4.27 は試作したイメージリジェクションミキサ MMIC のチップ写真である. チップサイ ズは 0.89mmx1.04mm と超小型であり,従来のコプレーナ線路で構成される MMIC と比較して 1/2 以下のサイズである. 図 4.28 はイメージリジェクションミキサの周波数特性を示している. LO 入力 10dBm, RF 入力-30dBm, IF 周波数 140MHz,ゲート電圧は-0.95V である. 19.4GHz から 24.6GHz において,変換利得-10dB±1dB,イメージ抑圧比 17.3dB 以上を実現している. この結果は 3 次元 MMIC 技術により,超小型でかつ広帯域なイメージリジェクションミキサを 実現でき,受信機の高集積化を実現可能にさせるものである.

4.5 電圧制御発振器

電圧制御発振器(VCO)は送受信機においてキーとなる機能回路の1つである. 1 チップ送 受信機を実現するためには VCO の小型化,特に共振器部の小型化が重要である. 図 4.29 は 20GHz 帯 3 次元 MMICVCO の回路構成である. 能動素子としてソース接地 FET を用いている. ソース側にショートスタブと可変リアクタンス素子として FET を用いたバラクタ (ソース・ド レイン間を短絡させ,ゲート・ドレイン間及びゲート・ソース間容量を使用する)を配置した シリーズフィードバック型発振器である. 共振器はゲート側に配置し,線路幅 30µm の低損失 TFMS 線路(40Ω, 0.16dB/mm)を使用している. 出力整合回路は 2 本の逆 TFMS 線路より構 成され,ポリイミド層中間層接地導体を用いて前述のショートスタブと積層構成となっている. 使用している FET は主 FET,バラクタともゲート幅 100µm の 0.3µm GaAs MESFET である.

図 4.30 は VCO と出力用 2 段増幅器を一体にした 3 次元 MMIC 発振器のチップ写真である. VCO の共振器部は小型化するためにスパイラル状に配置している.また,主 FET とバラクタ 用 FET も真横にレイアウトすることにより,一層小型化を実現している.増幅器はゲート幅 200µm の FET を用いたカスコード型増幅器である.VCO 部は 0.6mmx0.6mm と超小型であり, トータルサイズは 1mmx1mm である.このサイズは従来のコプレーナ線路を用いた VCO と比 較して約 1/3 の小型化を実現している.図 4.31 は発振周波数及び出力の測定値である.発振周 波数はバラクタの制御電圧を-6V から 6V まで変えることにより 20.7GHz から 19.2GHz まで可 変にすることができる.このときの発振出力は 4.5dBm±1dBm である.図 4.32 は 20GHz での 位相雑音である.測定はスペクトルアナライザを用いて直接読み取った値である.1MHz offset において-92dBc/Hz を実現しており,GaAs MESFET を用いて実現される VCO の位相雑音と

図 4.29 VCO の等価回路図

図 4.30 試作した VCOMMIC のチップ写真

図 4.32 試作した VCOMMIC の位相雑音

しては妥当な値である. ドレイン電圧は 3V, ゲート電圧は 0V である. 3次元 MMICVCO は 平面構成の MMICVCO と比較して 1/3 の小型化を実現できるとともに良好な特性を実現できる ことを明らかにした.

4.6 20GHz 帯1チップ受信機

本節ではこれまで述べてきた 3 次元 MMIC 機能回路を基にして実現した 20GHz 帯高集積 1 チップ受信機 3 次元 MMIC [17], [20] について述べる. 図 4.33 は 1 チップ受信機 MMIC の構成図であり, 3 段フロントエンド RF 増幅器, VCO, 2 段 LO 用増幅器, ウイルキンソンデ ィバイダ, ブロードサイドカプラ, 2 つの単位ミキサから成るイメージリジェクションミキサ が集積化されている. 受信機に必要な RF 機能回路全てを 1 チップ MMIC 上に実現している. 図 4.34 は 3 次元 MMIC のチップ写真であり, チップサイズは 1.78mmx1.78mm と超小型であ り, 各機能回路の平均面積も 0.3mm² である. これは従来の平面構成の 1 チップ受信機 MMIC と比較して 2 倍以上の集積化, 小型化を実現している.

1.78mmx1.78mm

図 4.33 1 チップ受信機 MMIC の構成

図 4.34 試作した 1 チップ受信機 MMIC のチップ写真

図 4.35 はオンチップ VCO の発振周波数と VCO のコントロール電圧の関係を示したもので あり、1.2GHz の周波数可変範囲を実現している. 図 4.36 は受信機特性の IF 周波数依存性を示 している. LO 周波数は 20.7GHz である. RF 入力-50dBm, IF 周波数 50MHz から 200MHz の とき、IF 出力は-27dBm 以上(変換利得 23dB 以上)、イメージ抑圧比 19dB 以上である. NF は約 8dB である. 図 4.37 は IF 周波数 140MHz としたときの VCO のコントロール電圧(LO 周波数)依存性を示している. VCO の可変周波数帯域内において、IF 出力-32dBm 以上(RF 入力-50dBm 時)、イメージ抑圧比 15dB 以上、NF8dB 以下を実現している. 図 4.38 は LO 周 波数 20.7GHz、IF 周波数 140MHz のときの受信機の入出力特性を示している. RF フロントエ ンド増幅器の利得可変量は 20dB 以上であり、IF 出力は飽和領域まで良好な線形性を保ってい る. 飽和出力は 0dBm 以上である. これらの結果は 3 次元 MMIC 技術により、小型、高集積な 1 チップ受信機 MMIC を実現できることを示した. その集積度 [21] は平面構成の高集積 MMIC と比較して 2 倍以上である. またその特性も良好である.

図 4.37 1 チップ受信機 MMIC 特性の VCO 制御電圧依存性

図 4.38 1 チップ受信機 MMIC の入出力 特性

4.7 まとめ

3次元 MMIC 技術を用いて小型化を実現した増幅器,周波数変換器,電圧制御発振器につい て,その小型化手法について述べた.さらにこれら3次元 MMIC 機能回路を用いて 20GHz 帯 1 チップ高集積化受信機 MMIC を実現した.受信機 MMIC はチップサイズが 1.78mmx1.78mm と超小型であり,平面回路構成の高集積 MMIC と比較しても 2 倍以上の集積度を実現した.こ れらの結果は3次元 MMIC 技術が MMIC の小型化高集積化に極めて有効であることを示すとと もに,MMIC の高集積化により RF 部の低コスト化を実現でき得る可能性を持っているといえ る.

参考文献

[1] E. Niehenke, R. Hess, J. Rosen, L. Dickens, and J. Faulkner, "A Compact Broad-band Multifunction ECM MIC Module," IEEE Trans. Microwave Theory Tech., Vol. 30, No. 12, pp. 2194-2200, Dec. 1982.

[2] I. Toyoda, T. T. Tokumitsu, and M. Aikawa, "Highly Integrated Three-dimensional MMIC Single-chip Receiver And Transmitter," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, pp. 2340-2346, Dec. 1996.

[3] T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, K. Nishikawa, and M. Aikawa, "Highly Integrated Three-dimensional MMIC Technology Applied To Novel Masterslice GaAs- And Si-MMIC's," IEEE Journal of Solid-State Circuits, Vol. 32, No. 9, pp. 1334-1341, Sept. 1997.

[4] K. Nishikawa, S. Sugitani, K. Inoue, K. Kamogawa, T. Tokumitsu, I. Toyoda, and M. Tanaka, "A Compact V-band 3-D MMIC Single-chip Down-converter Using Photosensitive BCB Dielectric Film," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 12, pp. 2512-2518, Dec. 1998.

[5] R. Larue, S. Bandy, and G. Zdasiuk, "A High Gain, Monolithic Distributed Amplifier Using Cascode Active Elements," 1991 IEEE Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., pp. 23-26, 1991.

[6] C. Liechi, "Performance of Dual-gate GaAs MESFET's as Gain Controlled Low-noise Amplifiers and High-speed Modulators," IEEE Trans. Microwave Theory Tech., Vol. 23, No. 6, pp. 461-469, June 1975.

[7] M. Muraguchi and M. Aikawa, "A Linear Limiter: A 11 GHz Monolithic Low Distortion Variable Gain Amplifier," in 1991 IEEE MTT-S International Microwave Symp. Dig., pp. 525-528, 1991.

[8] K. Nishikawa and T. Tokumitsu, "An MMIC Low-distortion Variable-gain Amplifier Using Active Feedback," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 12, pp. 2812-2816, Dec. 1995.

[9] T. Tan, K. Kotzebue, D. Braun, J. Centanni, and D. Mcquate, "A Low-distortion K-band GaAs Power FET," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 6, pp. 1023-1031, June 1988.

[10] R. Turckey and C. Rauscher, "Modeling The 3rd-order Intermodulation-distortion Properties of a GaAs F.E.T.," Electron Lett., Vol. 13, No. 17, pp. 508-509, Aug. 1977.

[11] T. Hirota and M. Muraguchi, "K-band Frequency Up-converter Using Reduced-size Couplers and Dividers," in 1991 IEEE GaAs IC Symp. Dig., pp.53-56, Nov. 1991.

[12] T. Takenaka and H. Ogawa, "Miniaturized MMIC mixers; Image Rejection and Balanced

第4章

Mixers Using Multilayer Microstrip Lines and Line-unified HEMT Modules," IEICE Trans. Electron., Vol. E75-C, No. 6, pp. 689-697, June 1992.

[13] A. Minakawa and T. Tokumitsu, "A 3-7 GHz Wide-band Monolithic Image-rejection Mixer on a Single-chip," IEICE Trans. Electron., Vol. E76-C, No. 6, pp. 955-960, June 1993.

[14] A. Minakawa and T. Hirota, "An Extremely Small 26 GHz Monolithic Image-rejection Mixer Without DC Power Consumption," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 9, pp. 1634-1637, Nov. 1993.

[15] K. Nishikawa, I. Toyoda, and T. Tokumitsu, "Miniaturized Three-dimensional MMIC K-band Upconverter," IEEE Microwave and Guided Wave Lett., Vol. 7, No. 8, pp. 230-232, Aug. 1997.

[16] K. Nishikawa, I. Toyoda, and T. Tokumitsu, "Compact and Broad-band Three-dimensional MMIC Balun," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 1, pp. 96-98, Jan. 1999.

[17] K. Nishikawa, K. Kamogawa, T. Tokumitsu, M. Aikawa, M. Hirano, and S. Sugitani, "Highly-integrated Three-dimensional MMIC 20-GHz Single-chip Receiver," in 26th European Microwave Conference Dig., pp. 199-203, Sept. 1996.

[18] K. Nishikawa, T. Tokumitsu, and I. Toyoda, "Miniaturized Wilkinson Power Divider Using Three-dimensional MMIC Technology," IEEE Microwave And Guided Wave Letters, Vol. 6, No. 10, pp. 372-374, Oct. 1996.

[19] I. Toyoda, T. Hirota, T. Hiraoka, and T. Tokumitsu, "Multilayer MMIC Branch-line Coupler and Broad-side Coupler," 1992 IEEE Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., pp. 79-82, June 1992.

[20]K. Nishikawa, I. Toyoda, K. Kamogawa, T. Tokumitsu, and M. Tanaka, "Three-Dimensional Monolithic Microwave Integrated Circuit Technology for Fully Computer-Aided Design-Compatible Monolithic Microwave Integrated Circuit Development," International Journal of RF and Microwave CAE, Vol. 8, No. 6, pp.498-506, Nov. 1998.

[21]西川健二郎,豊田一彦,鴨川健司,徳満恒雄, "高集積 3 次元 MMIC," NTT R&D, Vol. 45, No. 12, pp. 1285-1292, Dec. 1996.

付録 4.1 GaAs MESFET 等価回路パラメータ

第 4 章で使用した 0.3µm プロセスの GaAs MESFET (SAINT300A) の等価回路パラメータを 示す.

図付 4.1 は MESFET の等価回路図である.

図付 4.1 GaAs MESFET の等価回路図

表付 4.1 は各ゲートバイアス(V_d=3V)での MESFET の等価回路モデルパラメータである.

$V_{d}(V)$	3	÷	l ←	←	←	l ←
$V_{\alpha}(V)$	0	-0.2	-0.4	-0.6	-0.8	-1
l _{ds} (mA)	14	10	6	4	1	0
g _m (mS)	21.8	20.3	17.5	13.7	8.72	3.44
t (psec)	1.31	1.35	1.46	1.66	2.06	2.78
C _{as} (pF)	0.123	0.116	0.108	0.0975	0.0833	0.0668
G _{as} (mS)	0	0	0	0	0	0
R _i (Ω)	3.60	4.16	4.69	5.16	4.99	4.94
C _{dq} (pF)	0.0141	0.0145	0.0149	0.0157	0.0169	0.0183
C _{dc} (pF)	0	0	0	0	0	0
C _{ds} (pF)	0.0192	0.0191	0.0192	0.0189	0.0185	0.0184
$R_{ds}(\Omega)$	482.4	487.2	507	577.1	785.9	1691
$R_{s}(\Omega)$	0.2	0.553	1.11	1.49	1.52	0.633
$R_{g}(\Omega)$	2.41	(((÷	\
L _a (nH)	3.8e-3	(÷	÷	÷	(
$R_{d}(\Omega)$	2.47	\	÷	\	(÷
L _d (nH)	0.01	(÷	((\
L _s (nH)	2e-4	((←	\	((
$R_{ss}(\Omega)$	2.67	(÷	÷	(

0. 3µm GaAs MESFET w_g=100µm

図付 4.2 は V_d=3V, V_g=-0.2V のときの測定値と等価回路パラメータの比較した図であり,測定 値と FET モデルはよく一致している.

図付 4.2 FET の測定値と等価回路モデルの比較

第5章 3次元構造によるミリ波帯 MMIC の高集積化

5.1 まえがき

近年, ミリ波帯を用いたワイヤレスアプリケーションや自動車レーダ, センサー等の開発が 活発に行われている.特に, RF 部のコアとなる MMIC の開発は盛んであり, MMIC の高集積 化に注目が集まっている.上記のアプリケーションにおいては, ミリ波帯を使用しているとい えども携帯電話に代表される低周波数帯の MMIC と同様に,低コスト,高集積,高性能が求め られている.しかし,現在開発されているミリ波帯 MMIC [1] - [5] はチップサイズが大きく, 機能回路ごとのチップとなっている.一部受信機能を1チップ化したものも開発されている

[6] がチップサイズが極めて大きいものとなっている.これはミリ波帯においては回路間の 結合や伝送線路の不連続部が MMIC の特性を劣化させるために,直線的な設計をせざるを得ず, 集積度を上げることが困難であるためである.さらに設計時に不連続部等を電磁界シミュレー ション等で詳細に検討する必要があり,設計,レイアウトが複雑かつ時間がかかるものとなっ ている.

本章ではミリ波帯での小型,高集積 MMIC を実現するため、ミリ波帯、特に V 帯への3次元 MMIC の適用に焦点を当て、3次元 MMIC 技術がミリ波帯 MMIC の小型化高集積化に極めて有 効であることを示す.TFMS 線路のミリ波帯での特性について、従来のマイクロストリップ線 路、コプレーナ線路との比較により、その優位性を示す.さらに、曲がり部等の不連続部の特 性について明らかにし、その特性が従来の最適化されたマイクロストリップ線路の不連続部と 同等であることを示す.さらに、ミリ波帯 MMIC の高集積化を実現する構成及び設計法につい て示すとともに、実現した V 帯1チップアップコンバータ/ダウンコンバータ MMIC について 述べる.

5.2 ミリ波帯における 3 次元 MMIC の伝送線路特性 [7]

5.2.1 TFMS 線路の基本特性

図 5.1 は線路幅 22µm (誘電体基板厚 10µm) の TFMS 線路の特性を示した測定値である. ネットワークアナライザにより S-parameter を測定し,そのデータより特性インピーダンス, 実効誘電率,損失を求めている.また,同図には市販の電磁界シミュレータ (Sonnet Inc.社 em) で計算した値も合わせて示している (〇で示す).特性インピーダンス,実効誘電率とも測定 した 85GHz までほぼ一定の値を示しており,周波数分散の小さい特性を持っている.また損 失は 20GHz 以上において 2dB/Ag以下であり 60GHz では 1.7dB/Agである.測定値と計算値は よく一致しており,シミュレーションによる特性把握が十分可能であり,設計精度が良いこと を示している.

f = 60 GHz	TFMS h = 10 μm w = 22 μm	Microstrip h = 100 μm w = 75 μm	CPW g = 16 μm w = 20 μm	
Guided wavelength λ_g (mm)	2.96	1.72	2.03	
Electrical length of 90- degree bend (degree)	2.3	9.4		
Reflection coefficient S ₁₁ of 90-degree bend	0.0122	0.141	0.0294	
Electrical length of via pad size (degree)	2.4 - 3.6	31.4 - 41.9		
Inductance of via-hole (pH)	1.8	14		
Loss per wave- length (dΒ / λ _g)	1.7	0.46	1.68	

表 5.1 60GHz での各種伝送線路の特性比較

表 5.1 は TFMS 線路, マイクロストリップ線路, コプレーナ線路のそれぞれの 50Ω線路の 60GHz での特性を比較したものである. それぞれの物理寸法は TFMS 線路が線路幅 22μm, ポ リイミド基板厚 10μm, マイクロストリップ線路が線路幅 75μm, GaAs 基板厚 100μm (この 値はマイクロストリップ線路を用いて実現する MMIC の一般的な GaAs ウエハの厚みである),

コプレーナ線路は線路幅 20µm, 信号線と接地導体のギャップ 16µm (GaAs 基板厚 600µm) である. 表に示すように, TFMS 線路の 90 度ベンド, ビアホールパッド, ビアホールのイン ダクタンスの値は他の線路と比較して 1/4 から 1/10 の値であり, 極めて小さい値であるといえ る. この TFMS 線路の特性はベンドやビアパッド等の不連続部は従来の伝送線路と比較して極 めて小さく、回路設計を簡略化するだけでなく伝送線路をコンパクトに配置することができる ことを示している。また、波長あたりの損失もコプレーナ線路とほぼ同等である。マイクロス トリップ線路の損失と比較すると約4倍の値となっているが、後に 60GHz 帯の低雑音増幅器 の特性で示すようにこの損失の差は機能回路実現には問題とならない値である.

図 5.2 は 60GHz での TFMS 線路とマイクロストリップ線路の 90 度ベンドの反射特性の線路 幅依存性を比較したものである。合わせて対応する線路幅の特性インピーダンスも同時に示し ている. TFMS 線路は単純に 90°に曲げた場合のデータ(黒丸で示す), マイクロストリップ 線路(GaAs 基板厚 100µm)は単純に 90°に曲げた場合と(黒四角で示す), コーナーで発生 する不連続を極力抑えるように次式で示される条件のもとに曲がり部の角にきざみを入れて最 適化された場合(黒三角で示す) [8] を示している.

$$\frac{X}{D} = 0.52 + 0.65 \times e^{(-1.35 \times (W/H))}$$

W:線路幅, H:基板厚

この図が示すように TFMS 線路の単純な曲がり部の反射係数はマイクロストリップ線路の単純 な曲がり部に比較して極めて小さく、マイクロストリップ線路の最適化された曲がり部の値と ほぼ同等である. さらにその小さい反射特性はその特性インビーダンスが 100Ωから 40Ωとい う広いインピーダンス範囲で実現している. 図 5.3 は表 5.1 に示した 50Ω伝送線路の 90 度べ

周波数依存性

ンド部の反射特性の周波数依存性を示している. TFMS 線路のペンド部の反射特性はすべての 周波数において他の伝送線路のものに比較して極めて小さい値であり,0.02 以下である. これ は理想的に最適化されたマイクロストリップ線路のペンド部とほぼ同等の値である. これらの 結果は TFMS を用いることにより,曲がり部等の寄生成分を考慮せずに回路設計が可能である ことを示しており,回路設計の簡易化(回路設計からレイアウトへのストレートフォワード設 計)を実現できる可能性が高いことを示している. さらに,曲がり部を多数使用することが可 能となり,メアンダ線路等により回路の小型化を実現できることを示している.

5.2.2 最小隣接線路間隔

隣接伝送線路間の結合特性は線路間隔と電気長に依存している. 1/4 波長線路の結合係数は 一般的に以下の式で示される.

$$k = \frac{Z_{even} - Z_{odd}}{Z_{even} + Z_{odd}}$$
$$Z_m = \frac{1}{\sqrt{C_m^a \cdot C_m}} \qquad \text{(m is even or odd)}$$

Zeven, Zodd は even モード, odd モードの特性インピーダンスであり, *C* は真空中の光の速度である. C_m^a は空気中での even モード, odd モードの結合容量, C_m は誘電体中での結合容量を示している. Z_m , C_m^a , C_m は規格化線路間隔 (s/h, s:線路間隔, h:基板厚)に依存している. さらに Z_0 は以下の式で示される.

 $Z_0 = \sqrt{Z_{even} \cdot Z_{odd}}$

図 5.4 は 50 Ω TFMS 線路が並走してレイアウトされた場合の隣接線路間結合と線路間隔の関係 を示したものである. 結合量として S₃₁ (バックワードカップリング), S₄₁ (フォワードカッ

図 5.4 60GHz での TFMS 線路の隣接線路間結合と線路間隔の関係

プリング)の両方を示している.合わせて,そのときの伝送線路の規格化特性インビーダンス (結合がない場合の伝送線路の特性インビーダンスと結合がある場合の特性インビーダンスの 比)も示している.60GHz での値である.結合がある伝送線路の特性インビーダンスは線路間 隔 s/h が 2 以上において,結合がない伝送線路の特性インピーダンスとほぼ等しいといえる. 例えば隣接線路間結合が機能回路に影響を与えない結合度-40dB [9]を実現する場合, $\lambda_g/32$, $\lambda_g/16$ 線路長の線路では s/h=2.5, 4.5 であることが読み取れる.3次元 MMIC では1つの機能 回路の面積はほぼ 0.4mm²以下で実現できることを考慮すると,1つの線路セグメント長は $\lambda_g/16$ 以下と推察される [9], [10].従って,最小線路間隔として $\lambda_g/32$ で 25µm, $\lambda_g/16$ で 45µm を保持することにより,隣接線路間の結合を考慮せずに設計することが可能であるといえる. これらの値は 3次元 MMIC がミリ波帯においても高集積化を実現できることを示している.

5.3 ミリ波帯受動回路の特性

本節ではマイクロ波回路を実現する上で必要不可欠となるウイルキンソンパワーディバイダ, 90 度カプラの 60GHz 帯での特性を示す.

5.3.1 V帯ウイルキンソンディバイダ

図 5.5 は試作した 3 次元 MMIC ウイルキンソンディバイダのチップ写真である. 60GHz 帯で の設計を行い,ディバイダを構成する伝送線路長は 720µm,線路幅は 12µm (70Ω線路)であ る.線路間隔は 70µm としている.ミリ波帯での S パラメータ測定は対向で行う必要があるこ とから,測定対象となるポート以外のポートには半導体プロセスにおいて 50Ω抵抗を形成し, 接続し終端している.従ってディバイダの特性を評価するために終端ポートが異なる回路を 3 つ試作している.図 5.6 は測定したウイルキンソンディバイダの特性である.実線が測定値, 破線は市販シミュレータにより計算した計算値である.両特性はよく一致しており,良好な設 計性を実現している.60GHz において S₂₁=S₃₁=-3.8dB, S₃₂=-26.5dB を実現している.この結 果は 1/4 波長線路を用いたミリ波帯受動回路であっても MMIC 上に極めて小さいエリアで実現

図 5.5 試作した 60GHz 帯 3 次元 MMIC ウイルキンソンディバイダのチップ写真

図 5.7 試作した 60GHz 帯ブロードサイドカプラのチップ写真 (a)直線状レイアウト,(b)メアンダ状レイアウト

できることを示しており、ミリ波 MMIC の高集積化を実現できることを示している. さらにその特性,設計性も良好である.

5.3.2 V帯ブロードサイドカプラ[11]

図 5.7 は試作した 60GHz 帯ブロードサイドカプラのチップ写真である. 図(a)は直線状に, 図(b)はメアンダ状にそれぞれレイアウトしている. ブロードサイドカプラの断面形状は図(a)中 に示す. また,線路長は 660µm (1/4 波長) である. 図(b)のメアンダ形状は線路折り曲げのセ グメント長は 160µm,線路間隔は 30µm である. 評価に際しては,ウイルキンソンディバイダ の場合と同様に,対象ポート以外を 50Ω抵抗で終端した TEG 回路を3種類試作し,それらを 測定した. 図 5.8 は測定したブロードサイドカプラの特性を示している. 図(a)は直線状レイア ウト,図(b)はメアンダ状レイアウトの測定結果である.図中の破線は市販の電磁界シミュレー タ(Sonnet 社の em)で計算した直線状レイアウトの結果である.測定値は計算値とほぼ一致 しており,良好な設計性を実現している.60GHz において,直線状レイアウトではインサーシ ョンロス 1.5dB,位相差 95 度,メアンダ状レイアウトではインサーションロス 1.2dB,位相差 91 度を実現している.これらの結果はレイアウトによる差もほとんどなく,線路の不連続部等 を考慮せずに設計しても,ほぼ設計通りの結果が得られることを示している.従って,3次元 MMIC技術により,ミリ波 MMIC の簡易設計,小型,高集積化が実現できることを示している.

図 5.8 試作したブロードサイドカプラの特性 (a)直線状レイアウト,(b)メアンダ状レイアウト

5.4 V 帯超小型増幅器 3 次元 MMIC

V 帯 3 次元 MMIC 増幅器の開発において,NTT システムエレクトロニクス研究所で開発された InGaP/InGaAs/GaAs heterostructure MESFET (HMESFET) [12], [13] を用いた.HMESFET は buried p-layer lightly doped drain (BP-DLL)構造であり,0.1µm Au/WsiN T 型ゲートを持つ. 以下にゲート幅 100µm (ゲート電圧 0V,ドレイン電圧 1.5V)の等価回路パラメータを示す.

 g_m =60.7mS, τ =0ps, R_i =3.2 Ω , R_{ds} =164.1 Ω , R_{gs} =4300 Ω , C_{ds} =26.1fF, C_{gs} =86fF, C_{dg} =18.3fF, R_d =7.8 Ω , R_g =2 Ω , R_s =7.8 Ω , L_d =14.4pH, L_g =49.5pH, L_s =2pH

また、 f_{T} =70GHz, f_{max} =130GHz である. 図 5.9 はマスタスライス設計手法(第 7 章で詳しく述 べる)で試作した V 帯増幅器 3 次元 MMIC [7] のチップ写真である. MMIC 上には 2 種類の 増幅器が形成されており、図面上部が 60GHz 帯増幅器,下部が 50GHz 帯増幅器である. それ ぞれのサイズは 0.84mmx0.32mm と超小型である. 図 5.10 は試作した増幅器の等価回路図で ある. HMESFET を 70 Ω の伝送線路を介してカスコード接続し、その長さを調整して高利得化 と入出カインピーダンスの整合の両方を実現している. 入出力整合回路は整合回路内の損失を 低減するため、線路幅 22 μ m の 50 Ω 線路で構成している. 図 5.11,図 5.12 は 60GHz 帯増幅器

0.84 mm

図 5.11 V帯増幅器の周波数特性

の測定した S パラメータ, NF である. 図中の実線は測定値, 破線は設計値である. 設計では ベンド, ビアホール, 隣接線路間結合等の寄生成分を考慮していない. しかしながら, 設計値 と測定値は S₁₁ を除いて低周波からミリ波帯までよく一致している. S₁₁の, 特にミリ波帯での 誤差は設計に用いたデバイスモデルと実際に実現した MESFET の差 (プロセス誤差)による ものである. 60GHz 帯増幅器の利得は 56GHz から 61GHz において 8dB 以上である. NF は 58GHz において 5.3dB である. 一方, 50GHz 帯増幅器は 49GHz から 54GHz において利得 8dB 以上, 51GHz で NF5.5dB である. さらにこれらの増幅器はカスコード接続されたゲート接地 FET のゲート電圧 (V_o) を変えることにより, 20dB 以上の利得可変幅を実現している. これ らの結果は, 3次元 MMIC 技術は小型なミリ波増幅器を良好な性能で実現できることを示して いる. 同時に, ミリ波回路の設計の簡易化と良好な設計性を実現している.

図 5.13 はこれまで報告されている V 帯増幅器と3次元 MMIC 増幅器の NF 性能を比較した ものである. 図の横軸は利得密度(増幅器の利得をそのチップサイズで割ったもの),縦軸が NF を示している. △が InP HEMT を用いた増幅器,□が GaAs HEMT を用いた増幅器,○が HMESFET を用いた増幅器の特性であり,それぞれマイクロストリップ型 MMIC もしくはコプ

レーナ型 MMIC である. 一方●は今回実現した 3 次元 MMIC 増幅器の特性である. ■は 0.15µm GaAs pHEMT (f_t=110GHz, f_{max}=180GHz) のデバイスパラメータを用いたシミュレーション 値、▲は 0.15µm InP HEMT (f_t=187GHz, f_{max}=263GHz) のデバイスパラメータを用いたシミ ュレーション値である. 今回実現した 3 次元 MMIC の NF 特性は同じ FET を用いて実現したコ プレーナ型増幅器 MMIC と同等の性能であり、GaAs pHEMT 及び InP HEMT を用いる場合に はマイクロストリップ型 MMIC 増幅器と同等の NF 性能を実現できることを示している. つま り、TFMS 線路とマイクロストリップ線路の線路損失の差は増幅器の性能にはほとんど影響し ないといえる. さらに、利得密度は従来の増幅器 MMIC と比較して 3 倍から 5 倍大きい値を実 現できる. これは高性能な高集積 MMIC を実現できることを示している.

図 5.12 V帯増幅器の NF 特性

図 5.13 V帯3次元 MMIC 増幅器と他の増幅器との NF 特性の比較

5.5 V 帯高集積 3 次元 MMIC

5.5.1 アップコンバータ MMIC [14]

図 5.14 にミリ波用マスタアレーを用いて実現した V 帯1チップ高集積アップコンバータ3 次元 MMIC を示す. ミリ波用マスタアレーはゲート幅 100µm の HMESFET [12], [13], 抵抗, 2 サイズの MIM 下地容量で構成されるユニットアレーが 8x2 の 16 個で構成されており, ミリ波帯での電気長を考慮して, ユニットアレーの配置間隔を短くしている. 図(a)がマスタア レーの構成であり, 図(b), (c)にチップ写真と回路構成を示している. チップサイズは 1.84mmx0.87mm である. V 帯3次元 MMIC の開発においては第 2 章で述べた BCB 膜を用いた 3 次元 MMIC プロセスを用いている. アップコンバータは LO 用増幅器, Marchand Balun [15]

(b)

(C)

図 5.14 V 帯高集積 3 次元 MMIC アップコンバータ (a)マスタアレーの構成, (b)チップ写真, (c)アンプコンバータの構成

図 5.15 V帯アップコンバータの特性

を用いたバランス型アップコンバータ,RF 増幅器から構成されている.LO 用増幅器,RF 増 幅器は HMESFET をカスコード接続し,高利得化と小型化の両立を図っている.それぞれの増 幅器の整合回路は線路幅 12µm (70ΩTFMS 線路)を用いて構成し,整合回路の小型化を実現 している.バランス型アップコンバータはゲート LO 入力型ミキサを用い,FET のゲートの入 カインピーダンスとバランの出力インピーダンスが整合するよう段間回路を構成している.ミ キサ部出力を直接伝送線路で接続することにより,出力合成回路を省き,小型化を図っている. 図 5.15 は測定データを示しており,55GHz から 61GHz において,出力電力-12dBm,RF ポー トでのLO 信号出力-25dBm 以下である.なお,IF 周波数 800MHz,IF 入力 0dBm,LO 入力-10dBm である.消費電力は 162mW (ドレイン電圧 3V) である.

5.5.2 ダウンコンバータ MMIC [16]

図 5.16 は開発した V 帯 1 チップダウンコンバータ 3 次元 MMIC を示している.図(a) はチ ップ写真,図(b)は回路構成である.図 5.14 に示したマスタアレーを用いて実現しており,チ ップサイズは 1.84mmx0.87mm である.回路構成は 2 段 RF 増幅器,イメージリジェクション ミキサ (ドレイン LO 注入ミキサ,パワーディバイダ,ブロードサイドカプラより構成される), IF 増幅器である.RF 増幅器は FET をカスコード接続し,高利得と小型化の両立を実現してい る.入出力整合回路は低損失化と小型化のため線路幅 22µm (50ΩTFMS 線路)をメアンダ状 にレイアウトしている.これにより入力整合回路での損失を 0.7dB に抑えている.イメージリ ジェクションミキサと IF 増幅器は中間層接地導体の上下に回路を積層構成し,小型化を実現し ている.図 5.17 はダウンコンバータ MMIC の特性を示している.56.5GHz から 59.5GHz にお いて,利得 19.3dB±1dB,イメージ抑圧比 18dB 以上である.LO入力電力,IF 周波数はそれぞ

(a)

(b)

図 5.16 V帯1チップ3次元 MMIC ダウンコンバータ (a) チップ写真, (b)ダウンコンバータの構成

図 5.17 V帯ダウンコンバータの特性

れ 5dBm, 800MHz である. 消費電力は 220mW である.

図 5.18 はこれまで報告されている V 帯1チップダウンコンバータ MMIC と3次元 MMIC1 チップダウンコンバータの集積度を比較したものである.比較指標として利得密度(=変換利 得/チップ面積)を用いている. この図に示す1チップダウンコンバータ MMIC はバランス型 以上示したように、3次元 MMIC 技術はミリ波帯 MMIC の小型化・高集積化に極めて有効で あり、かつミリ波帯 MMIC の設計を簡易化することができる技術である。従って、ミリ波 MMIC の大幅な低コスト化実現を可能とすることができる。

図 5.18 V帯3次元 MMIC ダウンコンバータの集積度

5.6 ミリ波 3 次元 MMIC の今後の展開

本章ではミリ波 MMIC の小型化,高集積化に3次元 MMIC 技術が極めて有効であることを述 べてきた.ミリ波帯での無線装置の一層の低コスト化,小型化を実現するためには,携帯電話 や無線 LAN と同等のモジュール化が必要となってくる.そのためには実装も含めた形でミリ波 モジュールを検討する必要がある.現在のミリ波モジュールは機能回路を実装するマルチチッ プモジュールが主流であり,ワイヤボンディングやハンダバンプでチップ間の接続がされてい る.しかしながら,これらを用いて多数のチップ間接続部でミリ波信号を伝送することはモジ ュール性能を低下させる原因となるだけでなく,高度な実装技術を必要とし,結果としてミリ 波装置の高コスト化の原因となっている.これらの問題点を解決する方法として図 5.19 に示す アンテナ集積化ミリ波システムオンパッケージを提案する.モジュール内には発振器,アンテ ナも含めた1チップ送受信機 MMIC が実装される.パッケージのふたの部分には MMIC アンテ ナと電磁結合される主アンテナ (ここではレンズアンテナの例を示す)が形成され,これによ りアンテナの利得向上,ビーム幅の制御を行う.このモジュールでは外部回路との接点は低周 波数以下の信号となるため,モジュールの取り扱いが簡易になり,装置の実装コストを大幅に 抑制することが可能となる.さらにモジュール内部は3次元 MMIC 技術により,アンテナ(ま たは1次放射器)を含めた RF/IF 回路をすべて1チップ MMIC に集積化することにより, MMIC と外部との信号伝達が IF 周波数以下となり,ミリ波信号を取り扱う実装を省くことができる. このようなミリ波システムオンパッケージ/1チップ送受信機 MMIC を実現する上での今後の 研究項目として以下のものがあげられる.

オンチップフィルタの高性能化

オンチップ発振器の低雑音化、高性能化

送受信間の高アイソレーション化

高安定バイアス回路

ディジタル回路の集積化

高利得, 挟ビームアンテナの実現

オンチップアンテナ-主アンテナ間の高効率結合

などであり、これらを実現していくことにより、携帯電話や無線 LAN と十分競争が可能なミリ 波無線装置、アプリケーションを実現できる.

図 5.19 アンテナ集積化ミリ波システムオンパッケージ

5.7 まとめ

小型化,高集積化において,TFMS 線路がミリ波帯での優位性を明確にするとともに、3次 元 MMIC 技術を用いた超小型 V 帯増幅器を実現した.さらに高集積1チップアップコンバータ /ダウンコンバータ MMIC を実現した.これらの集積度は従来の MMIC と比較しても数倍以上 であり、ミリ波帯 MMIC の小型化、高集積化において3次元 MMIC 技術が極めて有効であるこ とを示した.この結果はミリ波 MMIC の大幅な経済化を実現するものである.最後に、一層の 高集積化3次元 MMIC によりミリ波システムオンパッケージ実現への布石となることを述べた.

参考文献

[1] K. Ohata, T. Ion, M. Funabashi, A. Inoue, Y. Takimoto, T. Kuwabara, S. Shinozaki, K. Maruhashi, K. Hosaya, and H. Nagai, "Sixty-GHz-Band Ultra-Miniature Monolithic T/R Modules for Multimedia Wireless Communication Systems," IEEE Trans. Microwave Theory Tech., Vol. 44, pp. 2354-2360, Dec. 1996.

[2] U. Güttich, A. Plattner, W. Schwab, I. Telliez, S. Tranchant, P. Savary, P. Bourne-Yaonaba,
B. Byzery, E. Delhaye, C. Cordier, and M. Chelouche, "60GHz GaAs MMIC Technology For a
High Data Rate Mobile Broadband Demonstrator," in 1996 IEEE MTT-S Int. Microwave Symp.
Dig., San Francisco, CA, pp. 495-498, June 1996.

[3] J. Müller, T. Grave, H. J. Siweris, M. Kärner, A. Schäfer, H. Tischer, H. Riechert, L. Schleicher, L. Verweyen, A. Bangert, W. Kellner, and T. Meier, "A GaAs HEMT MMIC Chip Set for Automotive Radar Systems Fabricated by Optical Stepper Lithography," IEEE Journal of Solid-State Circuits, Vol. 32, pp. 1342-1349, Sep. 1997.

[4] F. Cardinal, H. An, I. Mag, and R. Smith, "A High-Performance Broadband MMIC PHEMT Resistive Drain Mixer For 28-40 GHz Band PCN Applications," in 1996 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig., San Francisco, CA, pp. 47-50, June 1996.

[5] M. Schefer, U. Lott, H. Benedickter, H. Meier, W. Patrick, and W. Bächtold, "Active, Monolithically Integrated Coplanar V-band Mixer," in 1997 IEEE MTT-S Int. Microwave Symp. Dig., Denver, pp. 1043-1046, June 1997.

[6] C. Zelley, A. Bames, D. Bannister, and R. Ashcroft, "A 60 GHz Integrated Sub-harmonic Receiver MMIC," in IEEE GaAs IC Symp. Dig., Seattle, pp. 175-178, Nov. 2000.

[7] K. Nishikawa, K. Kamogawa, K. Inoue, K. Onodera, T. Tokumitsu, M. Tanaka, I. Toyoda, and M. Hirano, "Miniaturized Millimeter-Wave Masterslice 3-D MMIC Amplifier and Mixer," IEEE Trans. Microwave Theory Tech., Vol. 47, pp. 1856-1862, Sept. 1999.

[8] R. Hoffman, Handbook of Microwave Integrated Circuits, Artech House, 1987, pp. 267-309.

[9] K. Nishikawa, I. Toyoda, K. Kamogawa, T. Tokumitsu, and M. Tanaka, "Three-Dimensional Monolithic Microwave Integrated Circuit Technology For Fully Computer-Aided Design-Compatible Monolithic Microwave Integrated Circuit Development," International Journal of RF and Microwave CAE, Vol.8, No. 6, pp. 498-506, Nov. 1998.

[10] T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, K. Nishikawa, M. Aikawa, "Highly Integrated Three-Dimensional MMIC Technology Applied to Novel Masterslice GaAs- and Si-MMIC's," IEEE Journal of Solid-State Circuits, Vol. 32, No. 9, pp. 1334-1341, Sept. 1997.

[11] T. Tokumitsu, K. Nishikawa, K. Kamogawa, I. Toyoda, and K. Nishimura, "Three-

Dimensional MMIC Technology and Application to Millimeter-Wave MMIC's," in 1997 Topical Symp. Millimeter Waves Dig., pp. 97-100, 1997.

[12] Y. Yamane, K. Onodera, T. Nittono, K. Nishimura, K. Yamasaki, and A. Kanda, "A D-DLL (double lightly doped drain) structure H-MESFET for MMIC applications," IEEE Trans. Microwave Theory Tech., Vol. 45, pp. 2229-2233, Dec. 1997.

[13] K. Onodera, K. Nishimura, T. Nittono, Y. Yamane, and K. Yamasaki, "Symmetric and asymmetric InGaP/InGaAs/GaAs heterostructure MESFET and their application to V-band amplifiers," IEICE Trans. Electron. Vol. E81-C, pp. 868-875, June 1998.

[14] K. Nishikawa, K. Kamogawa, B. Piernas, M. Tokumitsu, S. Sugitani, I. Toyoda, and K. Araki, "Three-Dimensional MMIC Technology for Low-Cost Millimeter-Wave MMICs," IEEE Journal of Solid-State Circuits, Vol. 36, No. 9, pp. 1351-1359, Sept. 2000.

[15] K. Nishikawa, I. Toyoda, and T. Tokumitsu, "Compact and Broad-Band Three-Diemensional MMIC Balun," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 1, pp. 96-98, Jan. 1999.

[16] K. Nishikawa, S. Sugitani, K. Inoue, K. Kamogawa, T. Tokumitsu, I. Toyoda, and M. Tanaka, "Compact V-Band 3-D MMIC Single-Chip Down-Converter Using Photosensitive BCB Dielectric Film," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 12, pp. 2512-2518, Dec. 1999.

第6章 3次元構造による SiMMIC の高性能化

6.1 まえがき

ワイヤレス通信の飛躍的な拡大は無線装置の小型化、低消費電力化、使用周波数帯の高周波 化等の要求を一層大きくしている. MMIC においても低コスト化、低消費電力化がより強く要 求されている. MMIC の低コスト化、低消費電力化実現に向けて Si デバイスを用いた SiMMIC の開発が重要である. 近年の Si デバイスは fr、 fmax が 200GHz 近くにまでおよび、飛躍的な性 能向上を実現している (図 6.1 参照). しかしながら、Si 基板の低抵抗性のために伝送線路や オンチップインダクタの損失が大きく、SiMMIC の高周波化に制限を加えていた. Si 基板に起 因する問題を解決し SiMMIC の高周波化を実現する手法がいくつか提案されている. 高抵抗 Si 基板 [1], [2], SOI 基板 [3], SIMPOL (silicon/metal/polyimide) 基板 [4], [5] の 使用、MEMS 技術の適用 [6], [7], 厚膜誘電体層 [8], 厚膜導体 [9], 積層導体 [10], [11] を用いる構成、ポーラス Si 基板 [8], [12] の使用がある. これらの方法を用いても 伝送線路の低損失化やインダクタの高 Q 化には限界があり、一層の高周波化は困難である. さ らには Si 基板に変更を加えることによる Si デバイスの性能劣化を生じるという問題がある. 一方、SiMMIC の回路構成はデバイスの縦積構成や抵抗整合を用いたものが普通である. これ らの構成では電圧降下を考慮する必要があるため、供給電圧の低減に制限があり、低消費電力 化に向けて新たな構成法の検討が必要となっている.

図 6.1 Si デバイス性能向上の変遷

本章では3次元 MMIC 技術を SiMMIC に適用し, SiMMIC 上の伝送線路損失の低減を実現するとともに,低損失 TFMS 線路を用いてリアクティブ整合回路による高周波動作,低電圧動作を実現する方法を提案,実証する.

6.2 Si 3 次元 MMIC の構造

6.2.1 基本構造と Si 3 次元 MMIC の特徴

図 6.2 は Si 3 次元 MMIC の構造 [13] である. 2 層配線(保護膜含む)構造の SilC ウエハ上 に 3 次元 MMIC 構造を形成している.本章では Si デバイスとして NTT エレクトロニクス社の 0.5µm Si bipolar process (SST1C [14] / HSST [15])を用いている. Si プロセスで製造され る第 2 層配線までは AI であり,ポリイミド層上は GaAs 3 次元 MMIC と同様に Au を用いてい る. AI 配線と Au 配線の接続は Au 配線の AI への拡散を防ぐためにストッパ金属を介して接続 している.ポリイミド層は 2.5µmx4 層であり, Au 配線の導体厚は 1µm (最上層は 2µm) であ る. GaAs 3 次元 MMIC プロセスではポリイミド層最上層から第 2 層配線までを貫くビアホー ルを形成しているが, Si 3 次元 MMIC では Si ウエハ表面の凹凸が GaAs ウエハよりも大きいた め,最上層-第 3 層ビアホール+第 3 層-第 2 層ビアホールの組合せにより置き換えている.

Si3次元 MMIC の特徴は Si 基板上に形成する接地導体によりポリイミド層上に形成されるマ イクロ波線路と導電性の Si 基板とを分離できることにある。接地導体のアイソレーション機能 により、マイクロ波線路の電界分布を Si 基板内に分布させることを防ぐことができるので Si

図 6.3 Si 基板上の TFMS 線路の損失

基板内での損失をなくすことができる.従って,従来の SiMMIC で使用される伝送線路と比較 して低損失なマイクロ波線路を実現できる.この効果は Si デバイスが本来持つ高周波性能を十 分に引き出すマイクロ波回路を実現でき,SiMMIC の高周波化を実現できる.

6.2.2 Si 基板上の TFMS 線路特性

図 6.3 は Si 基板上の TFMS 線路及びコプレーナ線路 (CPW) の伝送損失を比較したもので ある. コプレーナ線路はその構造から電界の Si 基板への侵入を比較的少なくできるため, SiMMIC においてはよく用いられる伝送線路である. どちらも特性インピーダンスは 50Qであ り,信号線幅は TFMS 線路は 22µm, CPW は 20µm である. Si 基板は抵抗率ρ=30Qcm である. この測定結果から TFMS 線路の損失は K 帯において CPW と比較して 50%以上の損失低減を実 現しており,それよりも高い周波数帯では損失低減はさらに大きくなる. また, TFMS 線路の 損失は GaAs 基板上に形成される CPW と同等の損失特性である. 従って, Si 3 次元 MMIC は 低損失なマイクロ波受動回路を実現できる.

第6章

6.3 Si 3 次元 MMIC インダクタ [16] - [18]

6.3.1 基本構造とその特徴

3次元構造を用いた新しいオンチップインダクタの構造を図 6.4 に示す.本インダクタは低 抵抗 Si 基板上にパッシベーションとなる絶縁膜(2.6µm)を形成し,その上に AI の接地導体 を積層した後(ここまでは通常の SiIC 製造プロセスである),3次元配線プロセスによりスパ イラルパターン及びアンダーパス部を形成したものである.最上層の Au 配線を用いて形成さ れたスパイラルパターンの直下およびその周辺には接地導体は形成せずウインドウを開けてい る.また,最上層配線(2µm 厚)以外はメタル厚が 1µm であるため,インダクタの電流容量 を勘案してアンダーパス部は上から2および3番目の Au 配線層をビアで接続して形成してい る.図 6.4 に示す構造は以下の特徴を持っている.

図 6.5 Si オンチップインダクタの電界分布 (a)従来のオンチップインダクタ, (b)Si 3 次元 MMIC インダクタ

- スパイラルパターンが形成された下部の接地導体を取り除くことによりスパイラルパ ターンを形成する TFMS 線路の高インピーダンス化を実現する(インダクタンス値の 向上).
- スパイラルパターンは3次元配線最上層(Si 基板に対してポリイミド厚 10µm, パッ シベーション膜厚 2.6µm の高さ上に形成)に形成されるため Si 基板への寄生容量を低 減できる.
- 3) スパイラルパターン周辺が接地導体に覆われているため Si 基板上の接地導体に電界が集中し、図 6.5 に示すように従来のマイクロストリップタイプのインダクタと比較して Si 基板へ入り込む交流磁界を減少させることができる。従って、うず電流の発生を抑圧し、Si 基板による損失を低減できる。
- 4) 低誘電率のポリイミド(ε_r=3.3)の使用により、スパイラルパターンと接地導体との 寄生容量を減少できる、従って広い動作周波数範囲を実現できる.

以上の特徴から Si3次元 MMIC インダクタは準絶縁性基板上に形成されたコプレーナ型インダ クタと等価であると考えられ、その絶縁性はポリイミド、パッシベーション膜の膜厚に依存す る.さらにスパイラルパターンと接地導体の形成される層が異なるため、平面上のコプレーナ 型インダクタに比べて小型化が図れる.

次に簡略化シミュレーションモデルによりSi3次元MMICインダクタの特性をより明確に示す. 簡略化したモデルとして信号線下の接地導体にスリットを形成したスリット付 TFMS 線路を用 いている(図 6.6 中のモデルを参照).シミュレーションは Agilent HFSS を用いて行っている. 抵抗率 30Ωcm の Si 基板上に 2.6μm の SiO₂膜が形成され,その上に厚さ 1μm の AI が接地導体

図 6.6 Si 基板上のスリット付 TFMS 線路の損失とスリット幅の関係

として形成されている. これらの上に3次元配線としてポリイミド厚 10µm と厚さ 2µm の Au 配線が信号配線として形成される. 信号配線直下の接地導体は取り除かれている. 計算結果を 図 6.6 に示す. 信号線の一波長当たりの損失は接地導体に形成したスリットの幅 G に対して G=150µm までは単調増加するが,それ以上拡大しても線路損失はほぼ一定となる. この結果 は Si3次元 MMIC インダクタの構造のようにスパイラルパターン直下の接地導体を取り除いて も電界が基板上の接地導体に集中するために Si 基板そのものの影響を受けにくいということを 示している.

6.3.2 マルチレベル化によるインダクタの高Q化

Si3次元 MMIC の高性能化をねらった新たなインダクタとしてスパイラルパターンを2層(3 次元配線の第6層,第5層)を積層したマルチレベルインダクタを提案する.図 6.7 にその構成を示している.積層されるスパイラルパターンは図 6.7 に示すように各コーナーとセグメントの中間点でビアホールを用いて接続されている.このインダクタの特徴はスパイラルパターンのマルチレベル化により,直列抵抗を低減できることである.結果としてQ値の向上を実現する.

図 6.7 マルチレベル Si 3 次元 MMIC インダクタの構造

図 6.9 Si 3 次元 MMIC インダクタの等価回路図

6.3.3 Si 3 次元 MMIC インダクタの性能評価

図 6.8 は実際に試作した Si 3 次元 MMIC インダクタの例である. (a)が Single-level inductor, (b)が Double-level inductor である. それぞれ, 4巻, 内径 D=100 μ m, 線路幅 w=20 μ m, スパ イラルパターンと接地導体とのギャップG=10 μ m,線路間隔 s=5 μ m である. Si プロセスは 0.5 μ m Sibipolar (SST1C) プロセスを用いている. Si 基板の抵抗率は ρ =30 Ω cm, 基板厚は 625 μ m で ある. 測定は 0.2GHz から 60GHz まで Network Analyzer を用いて S-パラメータを測定し, 同 時に試作した open パッド及び short パッドを用いて DUT の RF パッドを校正した. 図 6.9 は Si 3 次元 MMIC インダクタの等価回路モデルである. C1 及び C2 は接地導体への寄生容量であ り, CS1, CS2 は Si 基板への寄生容量, RS1, RS2 は寄生抵抗である. 表 6.1 に図 6.8 に示し た Si 3 次元 MMIC インダクタの等価回路パラメータを示す.

表 6.1	等価回路モデル	パラメータ

Structure #	Dimensions			Model parameters of equivalent circuit				Fres	Peak Q					
	w (μm)	D (μm)	n	L (nH)	R (Ω)	C1 (fE)	C2 (fF)	C3	CS1	CS2	RS1	RS2	(GHz)	
						(17)	()	\n <i>j</i>			(32)	(36)		
n4w20D100_S	20	100	4	2.457	1.870	52.08	33.07	0.1	20.374	28.073	450	450	12.5	23.90
n4w20D100_D	20	100	4	2.306	1.308	68.34	40.70	0.1	23.682	34.170	450	450	11.5	28.38

図 6.10 は図 6.8(a)に示すインダクタの測定値と等価回路モデルの比較をしたものである. 等価 回路モデルは測定値とよく一致しており,本等価回路モデルが Si3次元 MMIC インダクタの評 価に有効であることがわかる.

図 6.10 インダクタの等価回路モデルと測定値の比較

インダクタの特性を示す指標である Q 値は図 6.9 に示す等価回路モデルから導出している. すなわち,Q 値は等価回路モデルの Port2 の部分を短絡させたときの Port1 から見た入力イン ピーダンスの実部 *Re*[*Z*_{in}]と虚部 *Im*[*Z*_{in}]の比によって次式で表される.

$$Q = \frac{Im[Z_{in}]}{Re[Z_{in}]}$$

また,自己共振周波数は虚部が0 になる周波数である.上式から図 6.8 に示した Si 3 次元 MMIC インダクタの最大 Q 値は Single-level inductor で 23.9@4GHz, Double-level inductor で 28.4@ 3.6GHz である. 従来の低抵抗 Si 基板上に実現される CPW 型インダクタの Q 値が4から5程 度であることから Si 3 次元 MMIC インダクタが大幅な特性向上を実現していることがわかる. 図 6.11 および図 6.12 は学会等でこれまでに報告されている Si インダクタのインダクタンス値 に対する最大 Q 値および自己共振周波数と Si 3 次元 MMIC インダクタのそれとを比較したも

図 6.12 オンチップインダクタの自己共振周波数の比較

のである. Si3次元 MMIC インダクタの値は実際に試作した Si3次元 MMIC インダクタより得 られた結果である. これらの結果は Si3次元 MMIC インダクタの最大 Q 値はサファイヤ基板 上に形成されたインダクタやマイクロマシン技術により製作されたインダクタと同等またはそ れ以上の性能であることを示している. また図 6.12 に示すように自己共振周波数の値もトップ レベルの特性である. さらに高周波帯への応用に対しては 0.39nH のインダクタンス値を得る インダクタにおいて,最大Q値 118.2を 53.6GHz で実現している.

6.3.4 Si 3 次元 MMIC インダクタの最適デザインへの指針

図 6.13 はスパイラルパターンと接地導体の間のギャップ G と最大 Q 値との関係を示したものである. インダクタは 4 巻,線路幅 20µm,内径 D=30,60,100µm の値を示している.G

図 6.15 インダクタの内径と最大Q 値の関係

が小さいほど Q 値は高周波側ヘシフトしており,最大 Q 値も大きな値となっている. 接地導体がスパイラルパターンに近づくことにより低抵抗 Si 基板へ入り込む交流磁界を抑え,かつうず電流の発生を抑えるためである. さらに,スパイラルパターンを形成する TFMS 線路の損失も小さくすることができる. ギャップ G の最適値は数μm であると予測される.

図 6.14 は図 6.13 に示した 4 巻,線路幅 20µm,ギャップ 10µm のインダクタパターンにおいて,single-level と double-level の Q 値を比較したものである.スパイラルパターンと接地導体の距離が近づくとこにより自己共振周波数は若干低くなるが、Q 値は大幅に上昇させることができる. これは double-level による直列抵抗の低下の効果が寄生容量の増加による Q 値の減少を上回っているためである.一方,より小さいインダクタンス値をとるインダクタにおいては double-level 化による抵抗の減少と寄生容量の増加のバランスが逆転する.図 6.15 は上述のことを裏づけるデータである.線路幅 20µm のインダクタでは小さいインダクタンス値を得る

図 6.16 Si 基板上のポリイミド膜厚とスリット付 TFMS 線路の損失の関係

場合, single-level の方が最大Q値を得ることになり、その境界点は0.72nHとなる.

基板上のポリイミドの膜厚に関してその損失低減効果をスリット付 TFMS 線路を用いて数値 計算により評価した結果を図 6.16 に示している. 図中の実線(●,▲) は低抵抗 Si 基板上に 形成された線路幅 20µm, 10µm の TFMS 線路の損失を示している. 破線は絶縁性基板上に形 成された場合の損失である. これらの結果を見ると 40µm 程度のポリイミドを形成することに より,低抵抗 Si 基板上においても絶縁性基板上に形成される線路と同等の線路損失を実現する ことができる. Si 3 次元 MMIC のポリイミド膜厚は 10µm であり,このときの TFMS 線路の 損失は絶縁性基板の場合に対して約 1dB/Ag の損失増加である. 実際の Si 3 次元 MMIC インダ クタでは Si プロセスの 2 層配線分と保護膜分の厚みが加わるため,その損失は上記の値より小 さくなる. この結果は,通常の Si プロセスにおいてさらなる多層配線化やパッシベーション膜 厚の増加により,線路損失 (インダクタの損失)を一層小さくすることができる.

6.3.5 LNA への適用

この節では前述した Si 3 次元 MMIC インダクタを S-band Si-LNA へ適用した例を示す.図 6.17(a)は S-band LNA の等価回路図であり,入力側に 2.05nH と 3.95nH のインダクタを用い ている. 出力側は 70 Ω の TFMS 線路(線路幅 12 μ m)を用い,小型化と高性能化の両立を図っ ている. 同図(b)は実際に試作した MMIC のチップ写真である. LNA は第 7 章で述べるマスタ スライス設計手法により, 0.5 μ m Si バイポーラトランジスタ (SST1C) が形成された Si ウエ ハ上に実現されている. 使用したトランジスタは 9x0.3 μ m x 13.4 μ m サイズであり, f_T, f_{max} は 24GHz, 30GHz である. 図 6.18 は LNA の特性を示しており,実線が測定値,マークが設計値 を示している. 2.4GHz で利得 14.6dB, NF 3.3dB である. またリターンロスは-10dB 以下, IIP3
は-10dBm である. コレクタ電圧は 2V, 消費電力は 29mW である. Si3次元 MMIC インダク タを適用することにより S 帯において良好な LNA 特性を得ることができた.

(b)

図 6.17 Si 3 次元 MMIC インダクタを用いた S 帯 SiBJTLNA (a) 等価回路図, (b)試作した MMIC チップ写真

図 6.18 試作した S帯 LNA の特性

6.4 Si 3 次元 MMIC 増幅器

Si 3 次元 MMIC においては前節までに述べたように低損失な伝送線路やインダクタを実現で きるため、受動素子で形成される整合回路の低損失化が可能となる.これはマイクロ波回路で 用いられるリアクティブ整合による増幅器を実現できることを示している.リアクティブ整合 された増幅器は f_{max} によって決まる最大有能利得 (MAG) によりその動作周波数帯域が制限さ れ、増幅器の動作帯域としては f_{max}/3 から f_{max}/2 まで実現できる.また、リアクティブ整合回路 は使用する Si デバイスの動作点に合わせて最適な整合条件を実現できるため、Si デバイスの 動作点の選択自由度が広がるという特徴を持つ.この特徴は SiMMIC の低電圧動作を実現でき ることを示している.本節では HSST プロセスを用いたマスタスライス型 3 次元 MMIC (第7 章で詳細を述べる) により検討した結果を示す.使用した SiBJT は抵抗率 ρ =20 Ω cm の Si ウエ ハ上に形成され、f_T=40GHz、f_{max}=62GHz (V_{ce}=1V) である.主なデバイスパラメータは以下 の通りである.エミッタサイズ 0.3 μ mx8 μ m のとき r_b=40.8 Ω , C_{jeo}=13.6fF, C_{jeo}=9.2fF, C_{jeo}=8.7fF, h_{FE}=44, BV_{CEO}=3V, BV_{CBO}=9.3V (V_{ce}=1V) である [19] .MIM キャパシタは 0.08 μ m の SiN を用いており単位面積当たりの容量値は 0.74fF/ μ m²と大容量化を実現している.これにより、 MMIC 上に形成する電源用バイバスキャパシタの面積を小さくすることができる.

6.4.1 Ka帯Si3次元MMIC増幅器[19]

図 6.19 は実現した Ka 帯 Si 3 次元 MMIC 増幅器の等価回路図である. 高利得化と小型化を実 現するために SiBJT をカスコード接続している.使用した SiBJT のエミッタサイズ 0.3µmx64µm である. エミッタ接地 BJT のコレクタとベース接地 BJT のエミッタを接続する TFMS 線路及 びベース接地 BJT のベースに接続される TFMS 線路の長さを調整することにより,カスコード 接続された BJT の利得と整合条件の最適化を行っている(第4章参照). 入力整合回路はポリ

図 6.19 Ka帯 Si 3 次元 MMIC 増幅器の等価回路図

 $(fg)_{lag} = 0$ $(fg)_{lag} = 0$ (fg)

図 6.20 試作した Ka 帯 Si 3 次元 MMIC 増幅器のチップ写真

図 6.21 Ka帯 Si 3 次元 MMIC 増幅器の特性

イミド層中間層に接地導体を配置し,その上下に TFMS^{*}線路を積層構成,整合回路の小型化を 実現している.出力整合回路は 70Ωの TFMS 線路を用いて 2 周波数整合を実現し,増幅器の広 帯域化を図っている.

図 6.20 は試作した Si 3 次元 MMIC 増幅器のチップ写真である. 増幅器の面積は 0.6mmx0.4mm と小型である.図 6.21 は Ka 帯 Si 3 次元 MMIC 増幅器の測定値である. 22.8GHz から 28.5GHz で利得 10dB±1dB を実現している.帯域内で入力リターンロスは-14dB 以下である.出力リタ ーンロスは帯域の下限,上限において-10dB 以下を実現している.コレクタ電圧 V_oは 2V であ り,消費電力は 20mW である.また,25GHz において 1dB コンプレッションボイントは 0dBm である.

図 6.22 は利得/消費電力(dB/mW)で定義された利得効率を指標として,実現した Si3次元 MMIC とこれまで報告されている SiMMIC を比較した図である. Si3次元 MMIC 増幅器は使用

98

図 6.22 SiMMIC の高周波特性の比較

した SiBJT の f_{max} の約 1/2 の周波数までの高周波動作を実現した. さらに利得効率においても トップレベルの性能を示していることがわかる. これらの結果は低損失な TFMS 線路によるリ アクティブ整合回路の使用により SiMMIC 増幅器の高周波化と低消費電力化を実現できること を示しており, 3次元 MMIC 技術の適用が SiMMIC の高周波化,低消費電力化に有効であると いえる.

6.4.2 1V 動作 X 帯 Si 3 次元 MMIC 増幅器 [21]

RF部の1V動作はワイヤレス通信,特にモバイル用通信装置の拡大に伴って注目されている. つまり,乾電池1本での動作が可能となる電圧である.低電圧動作へのアプローチとして,ト ランジスタの縦積み構造の1部を受動素子に置き換える方法[30],[31],LCタンク回路 を用いた容量結合構成[32],[33]の回路設計技術を基にした検討とサブミクロン CMOS[34], SiGe [35] またはそれらと SOI 技術[36] - [38]の組合せによるプロセス技術を基にした検 討がなされている.しかしながら,回路設計手法では1-2GHz帯で1-2Vの動作電圧までにし か実現されていない.プロセス技術を基にした手法においては0.5-1.5Vの動作電圧を実現して いるが動作周波数がC帯以下であり,今後の超高速ワイヤレス通信を実現する上では一層の高 周波化が必要である.ここではSi3次元 MMIC技術に基づくリアクティブ整合回路により高周 波化と1V動作を同時に実現する回路構成,設計法について述べる.

図 6.23 はエミッタサイズ 0.3 μ mx64 μ m の HSST の f_T, f_{max}, MAG のコレクタ電圧依存性を示している. ベース電圧は 0.9V である.上記エミッタサイズ,ベース電圧時の MAG (10GHz) は単位 BJT の MAG の 90%の値である.図より,コレクタ電圧 1V のとき f_T=37.5GHz, f_{max}=51GHz である. MAG は 15.7dB である. これらの値は HSST の 1V 動作時に 10GHz において増幅器

第6章

図 6.24 X帯増幅器の等価回路図

を十分実現できることを示している.

図 6.24 は X 帯増幅器の等価回路図である. 低電圧動作を実現するため, エミッタ接地 BJT を採用し,入出力整合回路は 50Ω/70Ωの TFMS 線路及び MIM キャパシタを用いて形成してい る.入力整合回路は所望帯域の上限と下限周波数帯で整合する 2 周波数整合回路とし,出力整 合回路は MAG の周波数特性を考慮し,所望帯域の上限周波数帯で整合するように設計してい る. これにより広帯域でフラットな利得特性を実現する. ベース及びコレクタ電圧は入出力整 合回路の並列スタブよりそれぞれ供給している. 図 6.25 は試作した X 帯増幅器 MMIC のチッ プ写真である. 整合回路はメアンダ状に配置し,一層の小型化を実現している. 増幅器の面積 は 0.51mmx0.58mm と小型である.

図 6.26 は試作した増幅器の高周波特性のコレクタ電圧依存性を示したものである. S₂₁, NF, IIP3 ともコレクタ電圧を 1V から 2V まで変化させても S₂₁ が 1dB 変わる以外はほとんど変化し ないといえる. またコレクタ電流 (I_c) も同じである. 図 6.27 は増幅器の周波数特性を示して いる. V_c=1V のときの測定値である. なお S₂₁ については V_c=1.5V, 2V のときの値も合わせて 示している. 増幅器の利得は 7GHz から 12GHz において 10dB±1dB である. この値は V_c=2V のときと比較しても 1dB 以下の利得低下である. リターンロスは-6dB 以下である. コレクタ

電流は 13mA であり, 消費電力は 13mW である. 図 6.28 は 1V 動作時の NF 特性である. 帯域 内において 6.5dB 以下であり, 10.8GHz で 5.1dB である.

表 6.2 では本節で実現した Si 3 次元 MMIC の性能とこれまで報告されている X 帯 SiMMIC 増幅器の特性を比較している. Si 3 次元 MMIC 増幅器は最小供給電力(1V)で実現できていることがわかる. これらの結果から Si 3 次元 MMIC 技術が SiMMIC の低電圧化に極めて有効であるといえる.

Ref	Supply voltage (V)	Power consumption (mW)	Frequency (GHz)	Gain (dB)	NF (dB)	Input IP3 (dBm)	Technology
[22]	4	29.2	10	16.6	2.5		0.4µm Si BJT
[28]	4.7	46.5	10	4			SiGe HBT, MEMS
[23]	3.6	42.1	10	12.5	3.6		SiGe HBT
Si3D MMIC	1	13	10	9.8	5.5	2.5	0.5µm Si BJT
[39]	3.6	3.6	10.5	26.3	2		0.5µm SiGe HBT
[25]	1.5	1.5	13	15	7	-29	0.1µm SOS CMOS

表 6.2 X帯 SiMMIC 増幅器の比較

6.5 Si 3 次元 MMIC ベース/コレクタ局発注入広帯域ミキサ [20]

本節では SiMMIC ミキサの高周波化と低電圧動作を実現するために, これまでの SiIC ミキサ でよく用いられているギルバートミキサに代表されるトランジスタの縦積構成を用いないミキ サ構成を提案する. はじめに使用した SiBJT (SST1C)の AC 特性, 高周波特性について述べ る. 次に提案するシングルエンド型ミキサの構成, 動作原理及び試作 MMIC の特性について述 ベ, SI3 次元 MMIC 技術がミキサの高周波化と低電圧動作の両方を実現できることを示す.

ここで用いた SiBJT は SST1C [14] であ り、エミッタサイズは 0.3μ mx13.4 μ mx9 で ある. このトランジスタサイズは 36mA の 電流密度を持ち、ゲート幅 200 μ m の 0.3μ mGaAsMESFET と同等の電流密度であ る. f_T及び f_{max} は 24GHz, 30GHz (V_c=1V) である. その他の主要なパラメータを表 6.3 に示す. また図 6.29 に IV 特性を示す. 図(a)

Emitter area	0.3µmx13.4µmx9	
۴b	5.56 Ω	
Cjeo	279 fF	
Cjco	279 fF	
C _{jso}	273 fF	
f _T ,f _{max}	24, 30 GHz	
h _{FE}	55	
BV _{CEO} (I _c =10mA)	3.6 V	
^{BV} CBO	V _{CBO} 9V	
	@ Vce = 1 V	

図 6.29 SiBJT の I-V 特性 (a)I_c-V_a特性,(b)I_c-V_b特性

図 6.30 Si 3 次元 MMIC ミキサの構成

図 6.31 エミッタ接地 SiBJT の大信号動作時の入出力インピーダンスの周波数特性

は V_c -l_c特性,図(b)は V_b -l_c特性を示している.この図は V_{be} を 0.8V 付近, V_c を 0.2-0.3V (knee 電圧)付近に設定することにより,FET ミキサと同様に SiBJT の非線形性を利用することがで き低電圧,低消費電力でミキシングを行えることを示している.

図 6.30 は Si3 次元 MMIC ミキサの構成を示している. エミッタ接地 SiBJT を用い, ベース 側, コレクタ側に RF, LO 信号入力のための整合回路を形成している. IF 信号はコレクタ側よ り, 並列スタブと IF 信号に影響を与えない並列接地容量を介して取り出す. なお, 測定では IF 出力端子にバイアス Tを接続して, IF 信号と取り出しとコレクタ電圧供給を同時に行っている. ベース電圧は抵抗を介して供給することにより, ベース電圧に対する SiBJT の感度を下げてい る. 図 6.31 は SiBJT の大信号入力時の入出力インピーダンスを示した図である. 周波数範囲 は 10GHz から 30GHz, バイアス条件は V_c=0.3V, V_{be}=0.8V である. この図が示すように, 上 記周波数帯において入力インピーダンス (ベース側), 出力インピーダンス (コレクタ側) と

図 6.32 SiBJT の等価回路図

も低インピーダンスであり、周波数応答も小さい値となっている. つまり、周波数変化に対し てインピーダンス変化がわずかであるために簡易な整合回路で広帯域な整合を実現できる. 従 って本提案のミキサにおいてはベース側、コレクタ側とも 2 本の TFMS 線路と直列容量のみの 簡易な構成による整合回路を実現している. これは回路の小型化の点からも有利である. さら にベース側のインピーダンスがより低いため、ベース側の整合回路は低い特性インピーダンス を実現しやすいトリプレート TFMS 線路を用いて構成している. コレクタ側は TFMS 線路で整 合回路を構成し、両整合回路はポリイミド層中間層の接地導体を介して積層構成している(図 6.30 参照). このミキサを LO 信号入力をベース側、コレクタ側のどちらからでも行うことが でき、そのときの RF 信号は LO 信号入力とは逆の端子から行う. ミキシングはコレクタ電流 の非線形性を用いて行い、具体的には図 6.32 に示す SiBJT の等価回路の相互コンダクタンス gm 及びコレクターエミッタコンダクタンス goの非線形性を用いる.

$$g_{m} = \frac{\partial I_{c}}{\partial V_{be}}$$
$$g_{0} = \frac{\partial I_{c}}{\partial V_{bc}} - \frac{\partial I_{b}}{\partial V_{bc}}$$

また,LO 信号をベース側から入力するタイプはコレクタ側から入力する RF 信号レベルが小さ いために RF 信号に対してコレクタ電流は線形に変化する.従って,LO ベース入力ミキサの低 歪み特性が期待できる.

図 6.33 は試作した Si 3 次元 MMIC ミキサのチップ写真である. 回路サイズは 0.46mmx0.42mm と小型である. 図中の白い部分が中間層の接地導体であり, 太い方の線路がトリプレート TFMS

図 6.34 ミキサ IF 出力の電圧依存性 (a)コレクタ電圧依存性,(b)ペース電圧依存性

線路, 細い方の線路が TFMS 線路である. 中間層接地導体はビアホールにより Si ウエハ上の 接地導体と接続されている.

図 6.34 は IF 出力のベース, コレクタ電圧依存性を示している. LO 入力は 0dBm, RF 入力 は-20dBm, LO 周波数は 20GHz, IF 周波数は 140MHz である. 図(a)は V_b =1.6V 時のコレクタ 電圧依存性を示している. どちらの LO 入力タイプにおいても IF 出力は 0.2V までは増加し, それ以上の電圧値では IF 出力-29dBm でほぼ一定である. 一方ベース電圧依存性(図(b))は V_c =0.3V の時, ベース電圧 1.6V で最大 IF 出力をとる. 従って, この後のミキサ特性評価には バイアス条件として V_c =0.3V, V_b =1.6V を採用した. 図 6.35 はミキサの変換損失の周波数依存

図 6.36 ミキサの歪み特性(20GHz)

図 6.37 ミキサの IP3 の周波数依存性

÷

性を示している. LO 入力 5dB, RF 入力-20dBm, IF 周波数 140MHz である. 図中の実線がコ レクタ LO 入力ミキサ,破線がベース LO 入力ミキサのときの特性である. 両方の動作におい て, 16.5GHz から 23GHz において変換損失 8dB±1dB である. 10GHz から 30GHz においては コレクタ LO 入力ミキサ動作時には変換損失 8.5dB±3.5dB, ベース LO 入力ミキサ動作時には 10dB±2dB である. 消費電力は両動作とも 7mW 以下である. 図 6.36 は 20GHz において歪み 特性を測定した結果である. 黒丸がコレクタ LO 入力ミキサ, 白丸がベース LO 入力ミキサで ある. RF 入力-10dBm のとき IM3 抑圧比はコレクタ LO 入力ミキサ時 38dB, ベース LO 入力 ミキサ時 42dB である. 図 6.37 は入力 IP3 (IIP3) の周波数特性を示している. IIP3 はベース LO 入力ミキサ時の方が高い値を示しており, 15GHz から 25GHz において 13dBm とほぼ一定 である.

表 6.4 は実現した Si 3 次元 MMIC ミキサとゲート幅 200μm の GaAs MESFET を用いて実現 されたコプレーナ型 MMIC ミキサ [40] の特性を 20GHz 帯で比較したものである. GaAs

Device	0.5 Si bi	i μm ipolar	0.3 μm GaAs MESFET	
LO injection port	Base	Collector	Drain	Gate
Gain (dB)	- 8.5	-7.7	-3.0	-8.5
IP3 (dBm)	12	9	5.6	12.5
Power consumption (mW)	6.99	6.58	0	0
Transistor size(µm)	0.3 x 1	3.4 x 9	0.3 x 200	
Area (mm ²)	0.46 x 0.42		1.1 x 1.2	
LO power (dBm)	5		10	
Structure	3-D MMIC		Uniplanar MMIC	
	This work		[40]	

表 6.4 Si 3 次元 MMIC ミキサと GaAs MESFET ミキサとの比較

図 6.38 Si ミキサの動作電圧の比較

MESFET ミキサはドレインミキサ及びレジスティブミキサを引用している. これらのミキサに はドレイン電圧は供給されないため,消費電力は0である.Si3次元 MMIC ミキサの性能は GaAs MESFET ミキサとほぼ同等である. 従って, これらの結果から Si3次元 MMIC は小型,低消 費電力でかつ GaAs MESFET ミキサと同等の高周波性能を実現できるといえる.

図 6.38 は報告されている Si ミキサの動作周波数と動作電圧の関係を示した図である. 図に は本節で述べた 20GHz帯Si 3 次元 MMIC ミキサに加えて 10GHz帯Si 3 次元 MMIC ミキサ[20] も示している.報告されているミキサは SiBJT, CMOS, BiCMOS プロセスにより実現された ものであり、ギルバートミキサタイプのものがほとんどである. トランジスタの縦積み構成の ため、従来のミキサは 2V 以上の電圧を必要している. 一方、Si 3 次元 MMIC ミキサはエミッ タ接地 BJT とリアクティブ整合回路により 10GHz帯ミキサで 0.8V, 20GHz帯ミキサで 1.6V の低電圧動作を実現している.実現したミキサは 3 次元 MMIC ハイブリッド回路との組合せに より、動作電圧の増加なしにバランス型やダブルバランス型ミキサを実現できる. 6.6 Si 3 次元 MMIC 広帯域バランス型アップコンバータ [50] , [51]

本節では周波数変換回路のもう一つ重要な重要な回路であるアップコンバータについて、 その高周波化,広帯域化,低電圧動作を実現するための構成法,設計法について述べる.バラ ンス型アップコンバータは RF 出力で 0/πの位相合成をして LO 信号をキャンセルする回路であ り、この回路の広帯域化は変換利得性能の広帯域化のみならず、LO 信号の抑圧特性も広帯域 化する必要がある.これまで、広帯域バランス型アップコンバータとして、分布型やダイオー ドミキサと広帯域バランの組合せ、ギルバートミキサ等の構成が報告されている [52] - [56] . しかしながら、これらのアップコンバータには回路面積、高変換損失、高消費電力、高動作電 圧の問題があった.ここでは第3章で提案したマーチャンドバラン [57] とベース LO 注入 Si ミキサを組合わせたバランス型アップコンバータを提案するととに広帯域化の手法について述 べる.次に試作した Si3次元 MMIC バランス型アップコンバータの特性について述べ、Si3次 元 MMIC 技術により SiMMIC の高周波化、低電圧化のみならず、広帯域化を実現できることを 示す.バランス型アップコンバータ MMIC の試作には HSST を用いている.

図 6.39 は Si3次元 MMIC バランス型アップコンバータの回路構成を示している. 第 3 章で 提案したマーチャンドバランとベース LO 注入ミキサ2つにより構成している. マーチャンド

図 6.39 Si 3 次元 MMIC バランス型アップコンバータの構成

図 6.40 試作した Si 3 次元 MMIC バランス型アップコンバータのチップ写真

バランは 2 組のブロードサイドカプラとカプラを接続する TFMS 線路で構成している. ここで はブロードサイドカプラを構成する上下に配置された TFMS 線路の損失差を解消するためにカ プラの真ん中で上層配線と下層配線を入れ替えるように構成している. 単位ミキサは入力整合 回路をトリプレート TFMS 線路,出力整合回路を TFMS 線路で構成し,積層化により小型化を 実現している. ミキサの入力整合回路はバランの出力と SiBJT のベースが整合するよう構成し ている. IF 信号は並列スタブを介して入力し,2つの単位ミキサへは互いに逆相になるように 入力する. 一方出力整合回路は SiBJT でアップコンバートされた RF 信号を直接合成すること により合成回路を取り除いている.使用した HSST のエミッタサイズは 0.3µmx40µm である. 図 6.40 は試作した Si 3 次元 MMIC バランス型アップコンバータのチップ写真である.回路面 積は 1.4mmx0.7mm と超小型である.

図 6.41 はアップコンバータで用いたマーチャンドバランの特性を示している.実線が振幅誤 差,破線が位相差を示している.10GHz から 30GHz において振幅誤差 1.5dB 以下,位相差は 180-5°であり,良好なバランス特性を実現している.図 6.42 は 20GHz でのコレクタ電圧と アップコンバータの出力特性を示している.出力は RF 信号,LO 信号ともコレクタ電圧 0.5V 以上で飽和している.この結果からバランス型アップコンバータは V_c=0.5V 以上で良好な動作 を実現できることがわかる.ここでは歪み特性を考慮して V_c=1V で評価する.図 6.43 はバラ ンス型アップコンバータの周波数特性を示している.図中には変換利得と RF 出力端子での LO 信号の抑圧比を示している.また破線は 2 つの SiBJT へ供給するベース電圧を V_b=0.86V と一 定にしたときの特性である(12GHz から 27GHz において,変換利得 2.5dB±2.5dB, LO 抑圧 比 30dB 以上).一方,実線は文献 [64] で提案しているバイアスチューニング法によりアッ プコンバータのバランス特性を最適化したときの測定値である.バランス型アップコンバータ

109

ではバランのバランスのずれ、SiBJT そのものの特性差が存在し、その特性差は周波数依存で ある. バイアスチューニング法ではある周波数範囲ごとに両者の SiBJT のペース電圧に差を与 えることにより、上記のバランスのずれを補正するものである. この方法を適用することによ り、LO 抑圧比は 12GHz から 27GHz において 38dB 以上を実現している. 一方、変換利得の 周波数特性は V_bを一定としたときと比較してほとんど変化しない. LO入力、IF入力は 0dBm、 -20dBm である. IF 周波数は 400MHz である. コレクタ電圧は 1V であり、消費電力は 13mW である. 図 6.44 は LO入力ポート、RF 出力ポートのリターンロスを示しており、15GHz から 24GHz で-10dB 以下 (12GHz から 27GHz で-5dB 以下)を実現している. また 20GHz におい てアップコンバータの飽和出力は-7dBm であり、出力 IP3 は 0dBm である. これらの結果から 提案、実現した Si3 次元 MMIC バランス型アップコンバータは高周波化、広帯域化、低電圧・ 低消費電力化を実現しているといえる.

図 6.45 は Si3 次元 MMIC バランス型アップコンバータとこれまで報告されているアップコンバータ MMIC の広帯域特性を以下に示す指標で比較したものである.

BroadbandFactor =
$$\frac{|G| \cdot \Delta f}{f_0 \cdot S}$$

|G|:変換利得 (MAG) , $\frac{\Delta f}{f_0}$:帯域幅, S:面積

実現したアップコンバータ MMIC は最大の広帯域特性を実現している. BroadbandFactor の値 も 1 を超えており,同じ面積の MMIC と比較しても 2 倍以上の値である. さらに,動作電圧, 消費電力とも最小である.

図 6.45 バランス型アップコンバータの広帯域特性の比較

6.7 高集積 C 帯 1 チップ Si 3 次元 MMIC 受信機 [65]

本節ではこれまで述べてきた Si3次元 MMIC 技術を用いて開発した C 帯低電圧動作 1 チッ プ受信機 MMIC についてその構成及び特性について述べる.

図 6.46 は 1 チップ受信機 MMIC の構成図である. 2 段 LNA, イメージリジェクションミキ サ(同相分配回路を兼ねた 2 出力増幅器, ブロードサイドカプラ, コレクタ LO 注入ミキサ), IF 帯増幅器, IF 帯 90 度ハイブリッドより構成している. SiBJT は HSST を用いており, 増幅 器用として 0.3µmx64µm エミッタサイズ, ミキサ用として 0.3µmx128µm エミッタサイズを用 いている. 図 6.47 は試作した Si 3 次元 MMIC1 チップ受信機のチップ写真であり, チップサイ ズは 1.8mmx1.8mm と小型である.

2 段 LNA はエミッタ接地 SiBJT と TFMS 線路によるリアクティブ整合回路より構成している. 入力整合回路は低損失化のためにポリイミド層 10μm を基板厚とした低損失 TFMS 線路を 用いて構成している. 出力整合回路は小型化のためにポリイミド中間層に接地導体を形成し,

図 6.46 C帯 Si 3 次元 MMIC1 チップ 受信機 図 6.47 試作した 1 チップ受信機 MMIC のチップ写真

その上下にトリプレート TFMS 線路, TFMS 線路を積層構成している. 整合回路は C 帯におい て平坦な利得を得られるよう整合回路を最適化している. LNA は 4.5GHz から 6GHz において, 利得 17.5dB±1.5dB, NF4dB 以下を実現している. また, ベース電圧はコレクタ電圧と同じ値 を供給できるよう抵抗を介して電圧供給している. LNA の動作電圧は 2V であり, 消費電力は 64mW である. イメージリジェクションミキサは同相分配回路を兼ねたエミッタ接地 SiBJT を 用いた 2 出力増幅器, ブロードサイドカプラ, コレクタ LO 注入型ミキサより構成している. 2 出力増幅器, ミキサは積層構成されたリアクティブ整合回路で構成され, 広帯域, 低電圧動作 を実現している. ブロードサイドカプラはλ_g/8 の地点で上下の伝送線路を入れ替え, 上層配線, 下層配線の損失差を補正している. イメージリジェクションミキサの動作電圧は 1V (増幅器), 0.3V (ミキサ) である. IF 増幅器は RC 整合している. また, IF 帯 90° ハイブリッドも抵抗 及び容量で構成している.

図 6.48 は 1 チップ受信機 MMIC の特性を示している. 4.5GHz から 6GHz において, 変換利 得 13dB±0.5dB, イメージ抑圧比 25dB 以上, NF5.3dB 以下を実現している. また入力 IP3 は-24dBm である. 実現した MMIC の消費電力は 115.5mW である. 表 6.5 は報告されている C 帯 1 チップ MMIC 受信機,送受信機(受信部)の特性を比較したものである. 試作した C 帯 1 チップ受信機 Si 3 次元 MMIC は C 帯をフルにカバーする広帯域動作を実現するとともに, 2V 動作にも関わらず GaAs MESFET を用いた MMIC と同等の性能を実現した. これらの結果は Si 3 次元 MMIC 技術により低コスト高集積 1 チップ MMIC の実現可能性を示している.

Reference	Device technology	Operating frequency (GHz)	NF (dB)	Conversion gain (dB)	Supply voltage (V)
Si3DMMIC	0.25 µm Si bipolar	4.5 - 6	5.25 ± 0.5	13 ± 0.5	< 2
NEC [66]	0.4 µm BiCMOS	5 - 5.4	7	18	2.6 - 5
Rockwell [67]	0.35 µm CMOS	5.2	8	5	-3.3
Nortel [68]	IBM SiGe HBT	5	5.9	19	3.5
OKI [69]	0.5 µm GaAs MESFET	5.8	4.1	20.4	3
Mitsubishi [70]	1 µm GaAs MESFET	5.8	5.6	13.5	3
Hittite [71]	0.6 µm GaAs MESFET	5.7 - 7.5	5.5 ± 0.5	25 ± 1	3.

表 6.5 C帯 1 チップ受信機 MMIC の特性比較

6.8 Si 3 次元 MMIC の今後の展開

本章では3次元 MMIC 技術により、Si ウエハの持つ導電性からマイクロ波回路をアイソレー トすることにより、リアクティブ整合を用いた回路構成を実現できることを示した.その結果、 Si3次元 MMIC はこれまでにない SiMMIC の高周波動作と低電圧動作の両方を実現できること を示した. Si デバイスそのものは、はじめにも述べたようにその単体性能が急速に向上してお り、GaAs 系デバイスを追い越し、InP 系デバイスへ迫ろうとしている.従って、Si3次元 MMIC 技術を用いることにより図 6.49 に示すように Ka 帯を越えるようなミリ波帯への展開が十分に 期待できる. さらに Si ウエハの低コスト性、大規模チップサイズの実現性を考慮すると BB 部 現在の Si デバイスの高周波化,低電圧化は特に CMOS においてそのゲート長を短くするこ とにより実現されている.その結果,新たなプロセス開発に大きなリスクとコストがかかると いう問題点がある.また,ゲート長を短くすることにより低電圧化を実現しているが,これは 逆のいい方をするとデバイスの耐圧が小さくなっているということであり,使用可能電力が小 さくなるという問題点もある.Si3次元 MMIC 技術では本章で示したように,f_{max}の 1/3 から 1/2 まで MMIC の動作周波数を実現できるため,ゲート長のスケーリングに頼ることなく SiMMIC の高周波化を実現することができる.従って,Si プロセスの各世代の寿命を現在より長くでき る可能性があり,一層の低コスト化が期待できる.

最後に, Si プロセスはデバイスの高性能化だけでなく, 配線プロセスの一層の多層化, 厚膜 化も進行している. AI または Cu を用いた現在の Si 多層配線プロセスにおいて, 10μm を越え るような多層膜厚が実現される場合には回路設計面において本章で示した Si 3 次元 MMIC 技術 を適用することができる. 従って, ポリイミド等有機系誘電体材料を用いなくても 3 次元 MMIC を実現できる可能性がある.

以上示したような分野に Si 3 次元 MMIC 技術を今後適用していくことができる.

図 6.49 Si 3 次元 MMIC の適用周波数

6.9 まとめ

SiMMIC に3次元 MMIC 技術を適用することを提案し,標準的な SiIC プロセスを用いた SiMMIC の高周波動作,低電圧動作を初めて実現した.3次元 MMIC 技術により,Si 基板の導 電性とマイクロ波回路を分離することを実現し,低損失なマイクロ波受動素子を実現した.こ れにより,リアクティブ整合回路を実現し,SiMMIC の高周波化を達成した.さらに各機能回 路において動作電圧が 1V という低電圧動作を実現できることを示した.これらの結果より,Si 3次元 MMIC による X-Ka 帯 MMIC の大幅な経済化と低電圧化を実現できる見通しを示した. さらに Si3次元 MMIC の一層の高周波化,高集積化を実現し,IF,ベースバンドー体の1チッ プトランシーバ実現の見通しを示した.

参考文献

[1] A.C. Reyes, S.M. El-Ghazaly, S.J. Dorn, M. Dydyk, D.K. Schroder, and H. Patterson, "Coplanar waveguides and microwave inductors on silicon substrates," IEEE Trans. Microwave Theory and Tech., vol. MTT-43, no. 9, pp. 2016-2022, Sep. 1995.

[2] K.B. Ashby, I.C. Koullias, W.C. Finley, J.J. Bastek, and S. Moinian, "High Q inductors for wireless applications in a complementary silicon bipolar process," IEEE J. Solid-State Circuits, vol. 31, no. 1, pp. 4-9, Jan. 1996.

[3] Y.-C. Ho, K.-H. Kim, B.A. Floyd, C.W. Yuan Taur, I. Lagado, and K.K. O, "4- and 13-GHz tuned amplifier implemented in a 0.1 μm CMOS technology on SOI, SOS, and bulk substrates," IEEE J. Solid-State Circuits, vol. 33, pp. 2066-2073, Dec. 1998.

[4] J. Kim, X. Qian, G. Feng, P. Ma, M.F. Chang, and T Itoh, "High performance silicon MMIC interconnect for millimeter wave wireless communication," Proc. Of Electrical Performance of Electronic Packaging, pp. 235-238, Oct. 1999.

[5] J. Kim, X. Qian, G. Feng, P. Ma, M.F. Chang, and T Itoh, "Millimeter-wave silicon MMIC interconnect and coupler using multilayer polyimide technology," IEEE Trans. Microwave Theory and Tech., vol. MTT-48, no. 9, pp. 1482-1487, Sep. 2000.

[6] L.-H. Lu, G.E. Ponchak, P. Bhattacharya, and L.P.B. Katehi, "High-Q X-band and K-band micromachined spiral inductors for use in Si-based integrated circuits," Proc. Of Silicon Monolithic Integrated Circuits in RF Systems, pp. 108-112, Apr. 2000.

[7] H. Jiang, Y. Wang, J.-L.A. Yeh, and N.C. Tien, "Fabrication of high-performances on-chip suspended spiral inductors by micromachining and electroless copper plating," IEEE MTT Int. Symp. Digest., vol. MTT-S-1, pp. 279-282, June 2000.

[8] C.-M. Nam, and Y.-S. Kwon, "High-performance planar inductor on thick oxidized porous silicon (OPS) substrate," IEEE Microwave and Guided Wave Lett., vol. 7, no. 8, pp. 236-238, Aug. 1997.

[9] B.-K. Kim, B.-K. Ko, K. Lee, J.-W. Jeong, K.-S. Lee, and S.-C. Kim, "Monolithic planar RF inductor and waveguide structures on silicon with performances comparable to those in GaAs MMIC," IEDM'95 Technical Digest., pp.717-720, 1995.

[10] J.N. Burghartz, M. Soyuer, K.A. Jenkins, and M.D. Hulvey, "High-Q inductors in standard silicon interconnect technology and its application to an integrated RF power Amplifier," IEDM'95 Technical Digest., pp.1015-1017, 1995.

[11] S.-G. Lee, G.-J. Ihm, and W.-C. Song, "Design and analysis of symmetric dual-layer spiral inductor for RF integrated circuits," AP-ASIC'99 Technical Digest., pp. 5-9, Aug. 1999.

第6章

[12] H.-S. Kim, D. Zheng, A.J. Becker, and Y.-H. Xie, "Spiral inductor on Si p/p⁺ substrates with resonant frequency of 20 GHz," IEEE Electron Device Lett., vol. 22, no. 6, pp. 275-277, June 2001.

[13] I. Toyoda, K. Nishikawa, T. Tokumitsu, K. Kamogawa, C. Yamaguchi, M. Hirano, and M. Aikawa, "Three-dimensional Masterslice MMIC on Si Substrate," in 1997 IEEE RFIC Symp. Dig., pp. 113-116, June 1997.

[14] C. Yamaguchi, Y. Kobayashi, M. Miyake, K. Ishii, and H. Ichino, "0.5 μm Bipolar Technology Using a New Base Formation Method: SST1C," in Proc. IEEE Bipolar Circuits Tech. Meeting, pp. 63-66, Sept. 1993.

[15] M. Ugajin, J. Kodate, Y. Kobayashi, S. Konaka, and T. Sasaki, "Very-high fT and fmax Silicon Bipolar Transistors Using Ultra-high-performance Super Self-aligned Process Technology for Low-energy and Ultra-high speed LSIs," IEDM95 Tech. Dig., pp. 735-738, Dec. 1995.

[16] K. Kamogawa, K. Nishikawa, I. Toyoda, T. Tokumitsu, and M. Tanaka, "A Novel High-Q and Wide-Frequency-Range Inductor Using Si 3-D MMIC Technology," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 1, pp. 16-18, Jan. 1999.

[17] K. Kamogawa, K. Nishikawa, and M. Tanaka, "A Novel High-Q Inductor Based on Si 3D MMIC Technology and Its Applications," in 1999 IEEE MTT-S Dig., pp.489-492, 1999.

[18] B. Piernas, K. Nishikawa, K. Kamogawa, T. Nakagawa, and K. Araki, "High-Q Factor Three-dimensional Inductors," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 8, pp. 1942-1949, Aug. 2002.

[19] K. Nishikawa, K. Kamogawa, B. Piernas, M. Tokumitsu, S. Sugitani, I. Toyoda, and K. Araki, "Three-dimensional MMIC Technology for Low-cost Millimeter-wave MMICs," IEEE J. Solid-State Circuits, Vol. 36, No. 9, pp. 1351-1359, Sept. 2001.

[20] K. Nishikawa, I. Toyoda, K. Kamogawa, and T. Tokumitsu, "Three-Dimensional Silicon MMIC's Operating up to K-band," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 5, pp. 677-684, May 1998.

[21] K. Nishikawa, K. Kamogawa, B. Piernas, T. Nakagawa, and K. Araki, "1-V Operation High-frequency Broadband Si 3-D MMICs," in 2002 Asia-Pacific Microwave Conf. Proc., pp. 693-696, Nov. 2002.

[22] D. Zöschg, W. Wilhelm, J. Böck, H. Knapp, M. Wurzer, K. Aufinger, H.-D. Wohlmuth, and A.L. Scholtz, "Monolithic LNAs up to 10 GHz in a production-near 65 GHz fmax silicon bipolar technology," in 2000 IEEE Radio Frequency Integrated Circuits Symp. Dig., pp. 135-138, June

第6章

2000.

[23] U. Erben, H. Schumacher, A. Schüppen, and J. Arndt, "Application of SiGe Heterojunction Bipolar Transistors in 5.8 and 10 GHz Low-noise Amplifiers," Electronics Lett., Vol. 34, No. 15, pp. 1498-1500, 1998.

[24] K.M. Strohm, J.-F. Luy, F. Schäffler, H. Jorke, H. Kibbel, C. Rheinfelder, R. Doermer, J. Gerdes, F.J.Schmückle, and W. Heinrich, "Coplanar Ka-band SiGe-MMIC Amplifier," Electronics Lett., Vol. 31, No. 16, pp. 1353-1354, 1995.

[25] Y.-C. Ho, K.-H. Kim, B.A. Floyd, C. Wann, Y. Taur, I. Lagnado, and K.K. O, "4- and 13-GHz Tuned Amplifiers Implemented in a 0.1-μm CMOS Technology on SOI, SOS, and Bulk Substrates," IEEE J. Solid-State Circuits, Vol. 33, No. 12, pp. 2066-2073, Dec. 1998.

[26] H. Yano, Y. Nakahara, T. Hirayama, N. Matsuno, Y. Suzuki, and A. Furukawa, "Performance of Ku-band On-chip Matched Si Monolithic Amplifiers Using 0.18-μm-gatelength MOSFETs," IEEE Trans. Microwave Theory and Tech., Vol. 49, No. 6, pp. 1086-1093, June 2001.

[27] T. Okamura, C. Kurioka, Y. Kuraishi, O. Tsuzuki, T. Senba, M. Ushirozawa, and M. Fujimaru, "10-GHz Si Bipolar Amplifier and Mixer IC's for Coherent Optical Systems," IEEE J. Solid-State Circuits, Vol. 27, No. 12, pp. 1775-1779, Dec. 1992.

[28] J.-S Rieh, L.-H. Lu, L.P.B. Katehi, P. Bhattacharya, E.T. Croke, G.E. Ponchak, and S.A. Alterovitz, "X- and Ku-band Amplifiers Based on Si/SiGe HBT's and Mcromachined Lumped Components," IEEE Trans. Microwave Theory and Tech., vol. 46, No. 5, pp. 685-694, June 1998.

[29] M. Möller, H.-M. Rein, and H. Wernz, "A Si-bipolar AGC Amplifier IC with High Gain and Wide Dynamic Range for 10 Gb/s Optical-Fiber Receivers," in IEEE 1994 Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., pp. 107-110, June 1994.

[30] J. Long and M. Copeland, "A 1.9 GHz Low Voltage Silicon Bipolar Receiver Front-end for Wireless Personal Communications Systems," IEEE Journal Solid-State Circuits, Vol. 30, No. 12, pp. 1438-1448, Dec. 1995.

[31] T. Tsukahara, M. Ishikawa, and M. Muraguchi, "A 2-V 2-GHz Si-bipolar Direct-conversion Quadrature Modulator," IEEE Journal Solid-State Circuits, Vol. 31, No. 2, pp. 263-267, Feb. 1996.

[32]B. Razavi, "A 1.5 V 900 MHz Downconvertion Mixer," in Proc. IEEE Int. Solid State Circuits, pp. 48-49, Feb. 1996.

[33] T. Manku, G. Beck, and E. J. Shin, "A Low-voltage Design Technique for RF Integrated

118

Circuits," IEEE Trans. Circuits Syst. II, Vol. 45, No. 10, pp. 1408-1413, Oct. 1998.

[34] Y. Ho, C. Wann, Y. Taur, I. Lagnado, and K. O, "1.0-V and 1.5-V Operation of 4-GHz Tuned Amplifiers Implemented in a 0.1-μm CMOS Technology on Bulk and SOI Substrates," 1998 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems Dig., pp. 85-89, 1998.

[35] M. Soyuer, J. Plouchart, H. Ainspan, and J. Burghartz, "A 5.8-GHz 1-V Low-noise Amplifier in SiGe Bipolar Technology," in 1997 IEEE RFIC Symp. Dig., pp. 19-22, June 1997.

[36] C. Tinella and J. Fournier, "Design of a SOI Fully Integrated 1V, 2.5GHz Front-end Receiver," 2001 IEEE International SOI Conf. Dig., pp. 139-140, 2001.

[37] R. Johnson, C. Chang, P. Houssaye, M. Wood, G. Garcia, P. Asbeck, and I. Lagnado, "A 2.4-GHz Silicon-on-Sapphire CMOS Low-noise Amplifier," IEEE Microwave and Guided Wave Lett., Vol. 7, No. 10, pp. 350-352, Oct. 1997.

[38] M. Harada, T. Tsukahara, J. Kodate, A. Yamagishi, and J. Yamada, "2-GHz RF Front-end Circuits in CMOS/SIMOX Operating at an Extremely Low Voltage of 0.5 V," IEEE Journal Solid-State Circuits, Vol. 35, No. 12, pp. 2000-2004, Dec. 2000.

[39] D. Zöschg, W. Wolhelm, T.F. Meister, H. Knapp, h-D. Wohmust, K. Aufinger, M. Wurzer, J. Böck, H. Schäfer, and A. Scholtz, "2 dB noise figure, 10.5 GHz LNA using SiGe bipolar technology," Electron. Lett., vol. 35, pp. 2195-2196, Dec. 1999.

[40] T. Nakagawa and T. Hirota, "Low Intermodulation K-band Resistive FET Mixer MMIC," in IEICE Fall Conf. Proc., Vol. C-75, Sept. 1994.

[41] J. Wholey, I. Kipnis, and C. Snapp, "Silicon Bipolar Double Balanced Active Mixer MMIC's for RF and Microwave Applications Up To 6 GHz," in 1989 IEEE MTT-S Int. Microwave Symp. Dig., pp. 281-285, June 1989.

[42] S. P. Voinigescu and M. C. Maliepaard, " 5.8 GHz and 12.6 GHz Si Bipolar MMICs," in 1997 IEEE Int. Solid-State Circuits Conf. Dig., pp. 372-373, Feb. 1997.

[43] J. M. Moniz and B. Maoz, "Improving The Dynamic Range of Si MMIC Gilbert Cell Mixers for Homodyne Receivers," in 1994 IEEE Micowave and Millimeter-wave Monolithic Symp. Dig., pp. 103-106, June 1994.

[44] R. Lowther, A. Begley, G. Bajor, A. Rivoli, and W. R. Eisenstadt, "Substrate Parasitics and Dual-Resistivity Substrates," IEEE Trans. Microwave Theory Tech., vol. 44, no. 7, pp. 1170-1174, July 1996.

[45] M. Madihian, E. Bak, H. Yoshida, H. Hirabayashi, K. Imai, Y. Kinoshita, T. Yamazaki, and L. Desclos, "A 2-V, 1-10 GHz BiCMOS Transceiver Chip for Multimode Wireless Communications

[46] M. Madihian, K. Imai, H. Yoshida, Y. Kinoshita, and T. Yamazaki, "L-C-Band Low-Voltage BiCMOS MMIC's for Dual-Mode Cellular-LAN Applications," IEEE Trans. Microwave Theory Tech., vol. 44, no. 11, pp. 2025-2031, Nov. 1996.

[47] J. C. Rudell, J. Ou, T. B. Cho, G. Chein, F. Brianti, J. A. Weldon, and P. R. Gray, "A 1.9GHz Wide-Band IF Double Conversion CMOS Integrated Receiver for Cordless Telephone Applications," in 1997 IEEE Int. Solid-State Circuits Conf. Dig., pp. 304-305, Feb. 1997.

[48] A. Rofougaran, J. Chang, M. Rofougaran, and A. A. Abidi, "A 1 GHz CMOS RF Front-END IC for a Direct-Conversion Wireless Receiver," IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 880-889, July 1996.

[49] P. R. Kinget and M. Steyaert, "A 1-GHz CMOS Up-Conversion Mixer," IEEE Journal of Solid-State Clrcuits, vol. 32, no. 3, pp. 370-376, March 1997.

[50] K. Nishikawa, K. Kamogawa, T. Nakagawa, B. Piernas, and K. Araki, "Broadband and Compact SiBJT Balanced Up-converter MMIC Using Si 3-D MMIC Technology," in 2001 IEEE MTT-S Int. Microwave Symp. Dig., pp. 87-90, 2001.

[51] B. Piernas, K. Nishikawa, K. Kamogawa, and I. Toyoda, "Three-Dimensional MMIC Technology on Silicon: Review and Recent Advances," IEICE Trans. Electron., Vol. E85-C, No. 7, pp. 1394-1403, July 2002.

[52] F. Ali, S. Moghe, and R. Ramachandran, "A Highly Integrated Monolithic X-Ku Band Upconverter," in 1988 IEEE GaAs IC Symp. Dig., pp. 157-160, 1988.

[53] G. K. Lewis, I. J. Bahl, and A. E. Geissberger, "GaAs MMIC Slotline/CPW Quadrature IF Upconverter," in 1988 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp. Dig., pp. 51-54, 1988.

[54] T. Takenaka and H. Ogawa, "A Miniaturized, Ultra-Wideband MMIC Balanced Up-Converter using a Line Unified HEMT Module and Multilayer Microstrip Lines," in 1992 Asia-Pacific Microwave Conf. Dig., pp. 331-334, 1992.

[55] K. W. Kobayashi, L. T. Tran, S. Bul, A. K. Oki, J. R. Velebir, D. C. Streit, and M. Rosen, "InAIAs/InGaAs HBT X-band Double-Balanced Upconverter," in 1993 IEEE GaAs IC Symp. Dig., pp. 219-222, 1993.

[56] D. Neilson, B. Allen, M. Kintis, and M. Hoppe, "A Broadband Upconverter IC," in 1992 IEEE MTT-S Int. Microwave Symp. Dig., pp. 455-458, 1992.

[57] K. Nishikawa, I. Toyoda, and T. Tokumitsu, "Compact and Broad-Band Three-Dimensional MMIC Balun," IEEE Trans. Microwave Theory and Tech., vol. MTT-47, no. 1, pp. 96-98, Jan.

1999.

[58] I. Toyoda, T. Tokumitsu, M. Aikawa, "Highly Integrated Three-Dimensional MMIC Singlechip Receiver and Transmitter," IEEE Trans. Microwave Theory and Tech., vol. 44, no. 12, pp. 2340-2346, Dec. 1996.

[59] A. Minakawa, T. Imaoka, and N. Imai, "A Millimeter-Wave Band MMIC Dual-Quadrature Up-Converter Using Multilayer Directional Couplers," IEEE Trans. Microwave Theory and Tech., vol. MTT-45, no. 1, pp. 78-82, Jan. 1997.

[60] T. Hirota and M. Muraguchi, "K-Band Frequency Up-Converters Using Reduced-Size Couplers And Dividers," in 1991 IEEE GaAs IC Symp. Dig., pp. 53-56, 1991.

[61] K. Nishikawa, I. Toyoda, and T. Tokumitsu, "Miniaturized Three-Dimensional MMIC K-Band Upconverter," IEEE Microwave and Guided Wave Lett., vol. 7, no. 8, pp. 230-232, Aug. 1997.

[62] A. Freundorfer and C. Falt, "A Ka-band GalnP/GaAs HBT Double Balanced Upconvert Mixer Using Lumped Element Balun," in 1996 IEEE MTT-S Int. Microwave Symp. Dig., pp. 963-966, 1996.

[63] K. Kobayashi, R. Kasody, A. Oki, S. Dow, B. Allen, and D. Streit, "K-band Double-balanced Mixer Using GaAs HBT THz Schottky Diodes," in 1994 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1163-1166, 1994.

[64] B. Piernas, K. Nishikawa, T. Nakagawa H. Hayashi, and K. Araki, "Analysis of Balanced Active Doubler for Broad-Band Operation-The Frequency-Tuning Concept," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 4, pp. 1120-1126, Apr. 2002.

[65] K. Nishikawa, K. Kamogawa, T. Nakagawa, and M. Tanaka, "Low-Voltage C-Band SiBJT Single-Chip Receiver MMIC Based on Si 3-D MMIC Technology," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 6, pp. 248-250, June 2000.

[66] M. Madihian, T. Drenski, L. Desclos, H. Yoshida, H. Hirabayashi, and T. Yamazaki, "A 5-GHz-Band Multifunctional BiCMOS Transceiver Chip for GMSK Modulation Wireless Systems," IEEE J. Solid-State Circuits, vol.34, No.1, pp.25-32, Jan. 1999.

[67] K. Runge, D. Pehlke, and B. Schiffer, "On-chip matched 5.2 GHz differential integrated mixer with RF and LO preamplification, fabricated in 0.35 μ m CMOS technology," Electronics Lett., Vol.35, No.18, pp.1545-1546, Sep. 1999.

[68] S. Voinigescu, M. Copeland, D. Marchesan, P. Popescu, and M. Maliepaard, "5GHz SiGe HBT Monolithic Radio Transceiver with Tunable Filtering," in 1999 IEEE Radio Frequency Integrated Circuits Symp. Dig., pp.131-134, June 1999. [69] E. Low, H. Nakamura, H. Fujishiro, and K. Yan, "A Plastic Package GaAs MESFET 5.8GHz Receiver Front-end with On-chip Matching For ETC System," in 1999 IEEE Radio Frequency Integrated Circuits Symp. Dig., pp.43-46, June 1999.

[70] M. Hieda, K. Nakajima, N. Suematsu, E. Taniguchi, Y. Tsukahara, S. Sakamoto, K. Miyawaki, M. Hisada, Y. Iyama, and T. Takagi, "A 6GHz Band Transceiver Front-end MMIC for ETC," in Proc. 1998 IEICE Electronics Society Conference, C-2-43 (in Japanese).

[71] C. Trantanella, P. Blount, and M. Shifrin, "A GaAs +3V Low Noise Integrated Downconverter for C-band Applications," in 1999 IEEE GaAs IC Symp. Dig., pp.199-202, Nov. 1999.

第 7 章 – 3 次元構造によるマスタスライス型 MMIC 設計法

7.1 まえがき

1990 年代に入ってからの携帯電話に代表されるワイヤレス通信サービス,市場の急速な拡大 によって,ワイヤレス装置の低コスト化,小型・高集積化,製品開発期間の短縮に関する強い 要求がなされている.特に装置コストの4割程度を占める RF 部 (MMIC) について上記要求項 目の改善が求められている.低コスト化,小型・高集積化の要求に対して,本論文においては 前章までに3次元 MMIC,Si3次元 MMICを提案し,上記項目を達成できることを示している. 一方,従来の MMIC の開発期間は設計/パターンレイアウト/半導体デバイス製造プロセス/ 配線プロセスと分類すると,一般的に図 7.1 に示すような時間配分となっており,半導体デバ

イス製造工程が全期間の約半分を占めている. また, MMIC の設計, パターンレイアウトにお

いても,等価回路とパターンレイアウト の整合性を取るためにバックアノーテイ ションを行う必要があり,このことが開 発期間を延長させる原因となっている. 上記問題点を解決する方法として,マイ クロ波回路をレイアウトできるだけのス ペースを設けてデバイスをあらかじめウ エハ上に作り込んでおき,配線工程の修 正によって様々な機能回路を実現する方 法が Turner [1] や Mondal [2] から提 案されている.しかし,これらの提案方

MMIC manufacturing process

図 7.1 MMIC 製造プロセス時間の内訳

法ではマイクロ波回路をレイアウトするスペースを大きくとる必要があり、MMIC チップサイズがかなり大きくなるという欠点があった.

本章においては新たに3次元 MMIC 技術に基づくマスタスライス型3次元 MMIC 設計法を提 案し,開発期間の大幅な短縮化を実現できることを示す. さらに MMIC 設計の一層の簡易化と 設計時間短縮化を実現するマスタスライス型3次元 MMIC 設計法をベースとした CAD ソフト ウエアについて述べる. これらの技術により MMIC の一層の低コスト化を実現できることを示 す.最後に提案する技術を用いて実現した 25GHz 帯高集積化1チップ受信機 MMIC の特性に ついて示す. 7.2 マスタスライス型3次元 MMIC の概念と特徴

7.2.1 マスタスライス型3次元 MMIC [3] - [10]

提案するマスタスライス型3次元 MMIC の概念とは図 7.2 に示すように, FET 等のデバイス エレメントがマトリックス状に予め作り込まれたマスタアレーと呼ぶフットプリントを用いて, そのアレー上に3次元 MMIC 配線プロセスを行うことにより様々な機能回路を実現する技術で ある. つまり,同じマスタアレー上に異なる配線レイアウトを行うことにより,異なる機能, 周波数帯の MMIC を実現することができる. 図 7.3 はマスタスライス型3次元 MMIC の基本構 造を示している. 図(a)は断面図,図(b)は斜視図を示している. GaAs または Si 基板上に FET, 抵抗, MIM 容量下地電極が形成される. 使用するデバイス以外を GND1 と呼ぶ第2 層配線で覆 い,その上にマイクロ波回路を3次元配線プロセスを用いて形成している. 各層間及び基板上 に形成されたデバイスの接続はビアホールを用いて行われる. GND1 は次に示す機能を持って

図 7.2 マスタスライス型 3 次元 MMIC の概念

いる.1)接地導体としての機能,2)基板上に形成されたデバイスを選択する機能,3) MIM 容量を決定する機能である.最初の2つの機能はマトリックス状に配置された FET,抵抗等を 回路に使用するものと使用しないものに区別し,使用するデバイス以外を接地導体(第2層配線)で覆うことであり,その結果未使用のデバイス上にもマイクロ波回路を形成することが可能となり,回路形成可能領域を大きく確保することができる.つまり,ウエハ上に予めデバイ スを作り込んでおいてもカスタム設計の3次元 MMIC と同等の小型化,高集積化を実現することができる. MIM 容量は予め基板上に形成された下地電極とパッシベーションを介して上層に 形成される第2層配線により構成されるため,第2層配線の面積が MIM 容量を決定することに なる.また MIM 容量の最大値は基板上に形成された下層金属に制限される.

7.2.2 マスタスライス型3次元 MMIC の特徴

マスタスライス型3次元 MMIC が持つ特徴の1つ目は MMIC 開発期間(TAT, Turn-Around Time)の短縮である. 図 7.4 は MMIC 開発の TAT を比較したものである. 従来の MMIC 開発 の TAT を1として規格化している. 一般に MMIC の開発期間は設計/パターンレイアウト/ 半導体デバイス製造プロセス/配線プロセスと分類すると半導体デバイス製造工程が全期間の 約半分を占めているが,提案するマスタスライス型3次元 MMIC においてはマスタアレーと呼 ぶ同じ基板を用いて3次元配線プロセスによる配線レイアウトの変更のみで種々の回路を実現 できるので,開発毎の半導体デバイス製造工程が不要となる. つまり,マスタアレーを予め製 造,ストックしておき,必要に応じてそれらのウエハを用いることが可能となる. またはマス タアレーを製造,供給するファンドリの出現により,必要に応じて手に入れることが可能とな

図 7.4 MMIC 開発の TAT の比較

る. 結果として、マスタスライス型3次元 MMIC 技術により TAT を約 1/2 に短縮できる. さら に CAD の活用(自動配線や機能回路のライブラリ化)により、一層の TAT の短縮を実現でき る. 2つ目の特徴は FET や抵抗等のデバイスが基板上にマトリックス状に配置されていること により、伝送線路の接続点が制限されるということである. つまり、デバイスの配置や伝送線 路接続点が予め決まっているので回路レイアウトに要する時間が短縮され、かつ CAD との整 合性を取りやすいということができる. 3つ目の特徴は基板上に形成される第2層配線を接地 導体として用いることにより、マイクロ波回路を形成する3次元構造部と FET 等のデバイスを 形成する基板(ウエハ)を分離することができるので、基板の特性に関わらずマイクロ波回路 の特性を維持することができる. 例えば CMOS 等の製造に使用される安価な低抵抗 Si 基板上 にも3次元プロセスにより MMIC を実現することが可能となり、MMIC の低コスト化を実現す ることができる. 上記3つの特徴に合わせて3次元 MMIC が持つ小型化、高集積化の特徴を持 っている. 従って、マスタスライス型3次元 MMIC は小型、高集積かつ製造時間の大幅な短縮、 低コスト化を実現できる技術である.

7.2.3 マスタスライス型 3 次元 MMIC の経済化効果

図7.5 はマスタスライス型3次元 MMIC による MMIC の低コスト化を評価したグラフであり, GaAs 3 インチウエハ上に実現される従来の2次元構成 MMIC の製造コストを1として規格化 したものである.3次元 MMIC においては従来型 MMIC の約 1/3 以下の面積で実現できること によるコスト減少分と3次元構造による配線工程の増加分を加味すると約 1/2 の低コスト化を 実現できる.マスタスライス型3次元 MMIC による量産効果により一層の低コスト化が可能と なる.さらに,大口径でかつ安価な Si プロセスを用いることにより約 90%程度の低コスト化 を実現できる.

図 7.5 MMIC の 製造コスト比較

7.3 マスタスライス型 3 次元 MMIC に基づく CAD ソフトウエア [11] - [15]

7.3.1 マスタスライス型3次元 MMIC 設計フロー

マスタスライス型3次元 MMIC は前節で示したようにデバイス位置や配線接続点が事前に決 まっていることから、従来のカスタム MMIC と比較して、回路レイアウトフローを回路種類や 人によらずにほぼ一定とすることができる. 図 7.6 は提案するマスタスライス型3次元 MMIC の開発フローを示している.以下にその詳細を示す.

1) 仕様を満たす MMIC 設計を行う.

2) 設計と整合するマスタアレーを選択する.

3) MMICを実現するための使用デバイスをマスタアレー上より選択する.

4) マスタアレー上のデバイスと伝送線路を接続するビアホール,回路を構成する伝送線路を レイアウトする.

5)マスタアレー上に接地導体をレイアウトし、使用デバイスはウインドウをきる.必要に応じて他の層にも接地導体をレイアウトする.

6)回路レイアウトがプロセスルール等に違反していないかチェックを行い,違反している場合は修正する.

7)回路レイアウトの完成後, プロ セスマスクを製作するためのマスク データを回路レイアウトより作成す る.

 8)上記マスクデータより、マスク を作成し、3次元配線プロセスを行い MMICを完成させる。

2) ~7)が回路レイアウト部分で ある.このようなレイアウトフロー とすることにより,設計者はステッ プバイステップに回路レイアウトを 行うことができ,従来のマイクロ波 回路レイアウト時に必要であったノ ウハウ的要素を減少させることがで きる.さらに時系列的にレイアウト を行うことにより,ソフトウエア化 を容易に実現できる.

図 7.6 マスタスライス型 3 次元 MMIC 設計フロー

127

7.3.2 マスタスライス型 3 次元 MMICCAD ソフトウエア

開発した CAD ソフトウエアは Agilent Technology (元 Hewlett Packard) Eesof Series IV ver.6.1 をプラットフォームとしてマスタスライス技術に特化したユーザインターフェースやレイアウト機能をモジュールとして組込んだ構成となっている. 図 7.7 は CAD ソフトウエアのモジュール構成を示している. なお,開発した CAD ソフトウエアの動作環境は以下の通りである.

OS : HP-UX 9.X or 10.X

Agilent Eesof Series IV License modules :

Project Design Environment (E4688)

Linear Simulation (E4610)

Non-linear Simulation (E4611)

Layout (E4671)

Data Display (E4669)

GDS-II Translator (E4672)

図 7.7 マスタスライス型 3 次元 MMICCAD ソフトウエアの構成

(a) マスタスライス型 3 次元 MMIC ライブラリ

Masterslice electrical part library (図 7.7) には 3 次元 MMIC 設計のコアとなるレイアウトル ール, プロセスルール, TFMS 線路設計チャート,基本回路ライブラリ,マスタアレー情報が 収められている. CAD ソフトウエアはこれらの情報をカスタマイズできる機能を有している. この結果,任意の製造プロセスに対応でき,CAD の汎用性を高めている. さらには,開発済み の回路を再利用するリユース機能を有しているため,開発期間の一層の短縮を実現可能とし, MMIC の低コスト化を推進する.

(b) ユーザインターフェース

図 7.8 にマスタスライス型3次元 MMICCAD ソフトウエアの全体図を示す.全体をコントロ ールするメインウインドウ,回路図を示すスケマティックウインドウ,レイアウトウインドウ, シミュレーションデータを示すグラフウインドウを示している.スケマティックウインドウに 描かれた回路素子とレイアウトウインドウに生成された回路素子は素子パラメータ情報を相互 共有しており,スケマティックウインドウ上で設計されたデータに基づいたパターンレイアウ トがレイアウトウインドウに生成される.つまり,回路図からは各設計パラメータがパターン レイアウトに伝わり,パターンレイアウトからはアドレス情報,実レイアウトパラメータが回 路図へ伝わる.その結果,レイアウト後の回路特性検証シミュレーションが容易に行え,レイ アウトパターンニングによる人為的ミスを防止できる.

さらに、メインウインドウには設計者にレイアウト手順を示すウイザードプログラムを内蔵 している.マスタアレーの選択からマスク生成までの過程をステップバイステップで行えるよ うサポートしている.ウイザートプログラムの手順は以下の通りである.

1) Select Master Array (マスタアレーの選択)

2) Associate layout elements (素子選択及び素子パラメータの決定)

3) Place vias and junctions (ビアホール及びジャンクションの位置決定)

4) Route interconnect (配線ルーティング)

5) Generate ground (接地導体生成)

6) Create masks (マスクデータ生成)

(c) 自動レイアウト

マスタスライス型3次元 MMICCAD ソフトウエアには設計者のレイアウト作業をサポートす るスケマティック上の回路図と連動した自動レイアウト機能を搭載している.自動レイアウト 機能として,スケマティック及びレイアウトウインドウ上でのビアホール,ジャンクションの 生成,マイクロ波伝送線路レイアウト,MIM 容量パターン生成,接地導体生成がある.さらに, プロセスルールチェックを考慮しながら自動レイアウトを実施しているため,レイアウト作業 後に必修の DRC ルールチェックをリアルタイムに実現している.

ウイザードメニュー

CAD全体図

マスタアレー選択ウィンドウ

選択されたマスタアレー

図 7.9 マスタアレーの選択

図 7.9 はマスタアレー選択ウインドウと選択されたマスタアレーの例を示している.マスタ アレー選択ウインドウでは使用可能なマスタアレーがリストアップされている.マスタアレー レイアウトにはトランジスタ,抵抗, MIM 容量下地電極より構成されるユニットアレーがマト リックス状に配置されている.さらにマスタアレーの外周部には外部接続用のパッドが配置さ れている.

図 7.10 レイアウト上での素子ハイライト機能

図 7.10 はスケマティック上で選択された素子に対して、レイアウト上において選択可能な素 子をハイライトする機能を示している.設計者はハイライトされた素子を選択するだけで、選 択された素子の回りの回路レイアウトが自動で行われる.

図 7.11 は MIM 容量レイアウトについて示している. MIM 容量とそこに接続される伝送線路 間を接続するビアホールはスケマティック上において自動生成される.設計に用いられた MIM 容量値に基づいてレイアウト上の選択された MIM 下地電極上に上層電極がレイアウトされる (レイアウト上のハイライト部分).さらにスケマティック上でビアホールを選択することに より,ビアホール配置可能エリアをレイアウト上にハイライトする.この結果,設計者はビア ホールを正確に MIM 容量電極上に配置することができる.

図 7.11 MIM 容量/ビアホールのレイアウトサポート機能

図 7.12 は自動配線機能の動作を示した図である. 図中の(a-1), (a-2)は自動配線前のレイア ウト, (c-1), (c-2)は自動配線後のレイアウトを示している. 同図(b)はバックグランドで機能し ているレイアウトルールの自動認識機能により, 配線レイアウトが行えないエリアをハイライ トさせた状態を示している. スケマティック上には TFMS 線路の設計モデルとして新たに 「MS_TLINP」を組み込みんでいる. このモデルには図中に示すような設計バラメータが組み 込まれている. 伝送線路タイプ (DL) と線路幅 (w) を設定することにより, 他のパラメータ は CAD に組み込んだ設計ライブラリにより自動的に計算される. スケマティック上でレイア ウトを行う伝送線路を選択した後, 設計者はレイアウト上で自動配線を行わせたいエリアをマ ウスにより設定 ((a-2)中の黒枠) することにより, 始点から終点まで自動的にスケマティック 上の設計伝送線路長 (L) に一致するように伝送線路はレイアウトされる ((c-2)). このとき, スケマティック上では実際にレイアウトされた実線路長 (AL) が示される.

(c-1)

(c-2)

図 7.12 自動配線レイアウト機能

12-0-4-FF-1-X-1X

図 7.13 接地導体自動レイアウト機能

図 7.13 は接地導体の自動レイアウト動作について示している. 図中に示される伝送線路は最 上層に信号線,中間層に接地導体を持つ伝送線路である. 自動配線レイアウト機能により配線 レイアウトが完成後, CAD ソフトウエアは使用された伝送線路の構造, ビアホールの位置を認 識して必要な箇所に中間層の接地導体を自動生成する. このとき同時に層間の異なる接地導体 間を接続するビアホールも生成される.

図 7.14 はウイザードプログラムの最終行程であるマスクデータの生成を示したものである. マスタスライス MMIC を製造するのに必要なレイヤーのみを出力する. つまり, マスタアレー 上にあらかじめレイアウトされているトランジスタ等のデータは出力されず, 配線, 接地導体

レイアウト上のMMICデータ

生成されたMMICマスクデータ

図 7.14 マスクデータの生成

等のレイアウトデータのみ出力されるため、データ容量を従来のすべてのレイアウトデータを 出力する場合に比較して大幅に圧縮することができる.

上記に示した自動レイアウト機能とウイザードプログラムにより、マスタスライス CAD ソ フトウエアは設計者の負担を軽減し、ノウハウ的要素をできるだけ必要としないソフトウエア である.

7.4 高集積マスタスライス型3次元 MMIC の実現例

この節ではマスタスライス型3次元 MMIC 技術を用いて実現した MMIC について述べる.図 7.15 は使用したマスタアレーである.1.8mm 角に 6x3 のアレーユニットが配置されている. アレーユニットの間には終端用もしくは低抵抗値の実現のために 50Ω,100Ωの抵抗を配置し ている.アレーユニットはゲート幅 100μm の GaAs MESFET 2 つを並列に配置している.FET の回りには 1kΩ,250Ωの抵抗,MIM キャパシタの下地メタル2種を配置し,アレーユニット の面積は約 0.2mm² である.このマスタアレーは約 5GHz から 30GHz を適用周波数領域とする ために設計されており,RF 接地及び DC カット有効に実現するための MIM 下地メタルのサイ ズ,FET 間の接続距離を考慮したユニットアレーの間隔等を調整している.

マスタスライス3次元 MMIC の特徴である同一のマスタアレー基板から異なる機能回路を実現した例を図 7.16, 図 7.17 に示している. 図 7.16(a)は高集積1チップ受信機 MMIC を構成する機能回路の特性を把握するために実現したプロトタイプであり、3段 RF 増幅器と VCO と LO 増幅器で構成されるローカルオシレータを搭載している.一方, 図 7.16(b)は注入同期発振器 MMIC である [16].

第7章

図 7.15 マスタアレーの構成

図 7.16 マスタスライス型 3 次元 MMIC の実現例 (a)受信機 MMIC プロトタイプ,(b)注入同期発振器

図 7.17 は実現した 25GHz 帯発振器内蔵 1 チップ受信機 MMIC を示しており, 同図(a)に回路 構成, 同図(b)にチップ写真を示している. 1.8mm 角のチップ内に 3 段 RF 増幅器, ウイルキン ソンパワーディバイダ, 90 度カプラ及び 2 つのドレインミキサで構成されるイメージリジェク ションミキサ, VCO, 2 段 LO 増幅器を実現している. RF 増幅器, LO 増幅器は同じ構成であ り, ユニットアレー 2 つを用いたカスコード型増幅器である. ドレインミキサはユニットアレ 一内の FET 2 つを用いて (トータルゲート幅 200µm) ミキシングデバイスを構成している. VCO は同一ユニットアレー内の FET をそれぞれ主増幅デバイス, バラクタデバイスとして用いている.

図 7.18 から図 7.20 に試作した MMIC の特性を示す. 図 7.18 は内蔵 VCO の発振周波数とバ ラクタのコントロール電圧の関係を示したものである. 周波数可変帯域 10%を実現している. 図 7.19 はバラクタコントロール電圧 Vc=0.5V のときの変換利得, イメージ抑圧比の IF 周波数 依存性を示している. 測定した IF 周波数帯(50MHz から 200MHz)において,変換利得 17dB±2dB, イメージ抑圧比 30dB 以上を実現している. 図 7.20 は入出力特性を示しており, 飽和出力 0dBm

(a)

(b)

137

図 7.20 入出力特性

を実現している.上記に示したようにマスタスライス型3次元 MMIC 技術により,同一マスタ アレー上に3次元配線を変更するだけで異なる機能回路を高集積に実現し,提案するマスタス ライス技術の特徴を実際に示した.さらに,試作によりマスタスライス型 MMIC は前章までに 示してきたカスタム型の3次元 MMIC と同様に高集積化を実現できることを示した.

7.5 マスタスライス 3 次元 MMIC の今後の展開 [17] - [18]

本章において, 3次元 MMIC 技術を応用し, 短 TAT 化, 簡易設計化による MMIC 開発コストの低減を狙ったマスタスライス 3次元 MMIC 設計技術の提案,実証を示してきた.本節では,マスタスライス 3次元 MMIC を用いた MMIC 開発の高効率化を実現する開発手法について展望を述べる.

現在の MMIC 開発は従来の平面型 MMIC であれ、3次元/多層 MMIC であれ、デバイスプロ セスから配線プロセスまで一貫してひとつのプロセスとして開発が行われている.つまり、新 しいデバイスを開発するたびに配線プロセスも新たに開発する必要がある.さらに配線構造も 本論文が提案する3次元 MMIC のように多層化される傾向にあり、デバイス、配線を一体で開 発する時間、コスト、リスクはより大きくなってきている.一方、MMIC 設計者から見ると新 たな高性能デバイスを適用できるまでの時間が長くなり、かつその選択肢も少ないという問題 点がある.

図 7.21 が提案する MMIC 開発手法を示している. MMIC の開発のためのプロセス開発コス トやリスクを低減するために,まずデバイスプロセスと配線プロセスを分けて考えるという概 念を導入する. MMIC 設計者は,開発ターゲットに合わせて最適なデバイスプロセスと配線プ ロセスを選択し,それらを組み合わせて MMIC を開発する.ここでは設計者が MMIC 設計から 製造プロセスまでをオーガナイズする.本章で提案しているマスタスライス 3 次元 MMIC はこ のアプローチの1つである.以下に本開発手法の特徴利点を示す.

第7章

138

図 7.21 提案する MMIC 開発手法

(1) プロセス開発リスクの分散

デバイスプロセス, 配線プロセスを分けることにより, それぞれ個別に開発できることから, 一体開発に比べて開発リスクを低減できる.

(2) 特定開発技術に特化

ファンドリメーカは自社に無いプロセスを外部から調達することにより,それぞれ得 意分野のデバイス,配線開発に特化できるため,開発コストの低減を期待できる.

(3) 設計自由度,精度の大幅な向上

多層/3次元配線化による設計自由度だけでなく、デバイス、配線を種々組み合わせて MMICを開発できる.

(4) 情報の分散

設計者はファンドリメーカに設計データをすべて供給する必要が無くなり,製造に必要な部分のみのデータを供給すればよい.この結果,MMIC 設計データ全体像は設計 者のみが把握することになり,開発情報の秘匿性が高くなる.

(5) 開発期間の短縮

新しいデバイス開発を待たずに、外部からデバイスまたは配線プロセスを調達できる ため、開発期間の短縮が可能である.

(6) 回路 IP (Intellectual property) を用いた設計

回路設計においては事前に用意された回路ライブラリの受動回路部を修正するだけで 新たなデバイスプロセスに対応できるため、単なるプロセスに依存した回路ライブラ リではなく回路 IP としてライブラリ化し、プロセスに依存しない汎用性のある回路 ライブラリを実現できる可能性がある.

このような特徴を持つ開発手法は、これまでデバイスグループが主導してきた MMIC 開発を設計グループ主導の MMIC 開発に変えるものであり、より迅速な MMIC 開発、コスト低減を実現するものである.

図 7.22 は図 7.21 に示す開発手法の製造フローを示したものである. MMIC 設計, レイアウ ト終了後,マスクデータはデバイスプロセス用,配線プロセス用に分けられ,それぞれのファ ンドリメーカへ供給される.デバイス製造完了後,ウエハは配線メーカへ渡される. このとき, 設計者は実際に使用するデバイス特性を測定することができるので,必要に応じて測定したデ バイスパラメータを用いて配線レイアウトを修正することが可能となる. 配線メーカでは配線 プロセスを行い, MMIC 製造プロセスは終了する.デバイスプロセス,配線プロセスを効率良 く組み合わせるには設計者と両ファンドリの間で,デバイス(ウエハ)ー配線インターフェー ス情報,製造装置情報,デバイスそのものの情報を共有する必要がある.いかに情報の共有化,

規格化していくかが今後の課題である.

図 7.23 は松下製 GaAs pHEMT デバイスと NEL 製3次元配線プロセスを組合わせた3次元 MMIC の構造を示している. 2 層配線までは GaAs pHEMT プロセスにより製造し, pHEMT, 抵抗,容量がウエハ上に形成される. 2 層配線まで形成されたウエハ上に3次元配線プロセス を行い, 3次元 MMIC を実現する. 図 7.24 は試作した 60GHz 帯増幅器のチップ写真とその特 性を示している. 実現した MMIC は 1.24mmx0.43mm のチップサイズであり,利得 10dB を実 現している.

図 7.23 ファンドリデバイスを用いた 3 次元 MMIC の構造

図 7.24 試作した 60GHz 帯増幅器 (a)チップ写真,(b)増幅器の特性

7.6 まとめ

MMIC 開発期間の短縮と経済化を実現するマスタスライス設計法を提案すると共に,その有 効性を示した.さらに,マスタスライス設計法を基にした CAD ソフトウエアを実現し, MMIC 開発の一層の短 TAT 化,経済化を実現できる見通しを得た.

最後に、3次元、多層化 MMIC 技術を用いた MMIC 開発プロセスを提案するとともに、提案プロセスがもたらす効果について述べた.

参考文献

[1] E. Turner, Z. Lemnios, S. Moghe, A. Podell, C. Korgell, R. Genin, and H. C. Huang, "Application Specific MMIC: A Unique And Affordable Approach To MMIC Development," IEEE 1988 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, June 1988, pp. 9-12.

[2] J. Mondal, G. Dietz, K. Vu, K. Peterson, R. Haubenstricker, K. McReynolds, P. Laux, S. Moghe, P. Rice, and L. Aina, "Ka- and W- Band MMICs on Microwave and Millimeterwave Device Arrays (MMDA) using 0.1 μm Tgate PHEMT," 1997 IEEE GaAs IC Symposium Digest, Oct. 1997, pp. 279-282.

[3] T. Tokumitsu, M. Aikawa and K. Kohiyama, "Three-Dimensional MMIC Technology : A Possible Solution to Masterslice MMIC's on GaAs ans Si," IEEE Microwave and Guided Wave Letters, Vol.5, No.11, pp.411-413, 1995.

[4] T. Tokumitsu, K. Nishikawa, K. Kamogawa, I. Toyoda and M. Aikawa, "Three-Dimensional MMIC Technology for Multifunction Integration and Its Possible Application to Masterslice MMIC," in 1996 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp., pp.85-88, 1996.

[5] M. Aikawa, T. Tokumitsu and K. Nishikawa, "Advanced MMIC Technology for The Next Generation-3D MMICs and Master-Slice Technology," in 26th European Microwave Conf. Proc., pp.748-753, 1996.

[6] T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, and M. Aikawa, "Highly Integrated 3-D MMIC Technology Being Applied To Novel Masterslcie GaAs- and Si-MMIC's," in 18th IEEE GaAs IC Symposium Dig., pp. 151-154, 1996.

[7] I. Toyoda, K. Nishikawa, T. Tokumitsu, K. Kamogawa, C. Yamaguchi, M. Hirano and M. Aikawa, "Three-Dimensional Masterslice MMIC on Si Substrate," in 1997 IEEE Radio Frequency Integrated Circuits Symp. Dig., pp.113-116, 1997.

[8] T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, K. Nishikawa and M. Aikawa, "Highly Integrated Three-Dimensional MMIC Technology Applied to Novel Masterslice GaAs- and Si-MMIC's," IEEE Journal of Solid-State Circuits, Vol.32, No.9, pp.1334-1341, 1997.

[9] I. Toyoda, K. Nishikawa, T. Tokumitsu, K. Kamogawa, C. Yamaguchi, M. Hirano and M. Aikawa, "Three-Dimensional Masterslice MMIC on Si Substrate," IEEE Trans. Microwave Theory Tech., Vol.45, No.12, pp.2524-2529, 1997.

[10] 徳満恒雄, 平野真, 豊田一彦, 西川健二郎, 山口力, 相川正義, "マスタスライス型 3 次元 MMIC," NTT R&D, Vol. 45, pp. 1293-1300, 1996.

143

[11]K. Nishikawa, I. Toyoda, K. Kamogawa, T. Tokumitsu, and M. Tanaka, "Three-Dimensional Monolithic Microwave Integrated Circuit Technology for Fully Computer-Aided Design-Compatible Monolithic Microwave Integrated Circuit Development," International Journal of RF and Microwave CAE, Vol. 8, No. 6, pp.498-506, Nov. 1998.

[12] I. Toyoda, T. Tokumitsu, and M. Aikawa, "A Basic Concept of Microwave Design Automation based on Three-Dimensional Masterslice MMIC Technology," in 27th European Microwave Conf. Proc., pp. 14-19, 1997.

[13] 西川健二郎, 鴨川健司, 豊田一彦, 徳満恒雄, 田中將義, "マスタスライス型 3 次元 MMIC 用 CAD ソフトウエア," 1998 年信学ソサイエティ大会, SC-2-2.

[14]鴨川健司, 西川健二郎, 豊田一彦, 徳満恒雄, 田中將義, "マスタスライス型 3 次元 MMIC 用 CAD ソフトウエア," 信学技報, MW98-81, pp. 43-96.

[15] T. Tokumitsu, "Masterslice Three-dimensional MMIC Technology Simplifying Multifunction MMIC Development," Advanced Design of Microwave and Millimeter-Wave MMICs, APMC'98 Workshop, Yokohama, Japan, pp. 3-18, Dec. 1998.

[16] K. Kamogawa, I. Toyoda, T. Tokumitsu, and K. Nishikawa," Wide-band Subharmonically Injection-locked Oscillators Using Three-dimensional MMIC Technology," IEICE Trans. E81-C, no. 6, pp. 848-855, June 1998.

[17] K. Kamogawa, K. Nishikawa, I. Toyoda, M. Tokumitsu, M. Hirano, T. Nakagawa, and M. Muraguchi, "New Methodology for Microwave/Millimeter-wave MMIC Development, " in 2000 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1913-1916, 2000.

[18] K. Nishikawa, K. Kamogawa, B. Piernas, M. Tokumitsu, S. Sugitani, I. Toyoda, and K. Araki, "Three-Dimensional MMIC Technology for Low-Cost Millimeter-Wave MMICs," IEEE Journal of Solid-State Circuits, vol. 36, no.9, pp. 1351-1359, Sept. 2001.

第8章 結論

本研究は、MMIC の小型化,高集積化,高機能化,低コスト化の実現を目的として、3次元 構造を用いた超小型,高集積3次元 MMIC を提案し、3次元構造を活かした新しい受動回路/ 能動回路の構成,設計法について検討したものである.具体的な適用例として、まず、3次元 MMIC 技術を用いたミリ波3次元 MMIC を提案し、ミリ波 MMIC の小型,高集積化について検 討した.次に、Si3次元 MMIC を提案し、SiMMIC の高周波化,低電圧化を実現性について検 討した.最後に、3次元 MMIC を提案し、SiMMIC の高周波化,低電圧化を実現性について検 討した.最後に、3次元 MMIC をべースとしたマスタスライス型3次元 MMIC 技術を提案し、 その経済性について検討するとともに MMIC 設計の簡易化と開発期間の短縮(短 TAT) 化を実 現する CAD の開発を行った.以下に得られた結論を述べる.

(1) 3次元 MMIC を提案し、その特徴を明確に示すと同時に 3次元 MMIC が小型、高集積化 に極めて有効であることを示した. さらに 3次元構造を実現する誘電体膜(ポリイミド/BCB) 多層配線プロセス技術を開発し、多層配線プロセス技術はマイクロ波、ミリ波 MMIC の小型化 を実現するための十分な加工精度、信頼性があることを示した.

(2) 3次元 MMIC のキーコンポーネントである薄膜マイクロストリップ(TFMS)線路につ いて、その特性を示し、かつ TFMS 線路の最小隣接配置線路間隔を明確にし、小型、高集積化 を実現するための回路レイアウトの指針を示した.3次元構造を応用した超小型受動回路を提 案し、その特性を示した.配線、接地導体の多層化により実現できる層間結合と層間アイソレ ーションを応用したブロードサイドカプラおよび積層化ウイルキンソンディバイダについてそ の設計法と特性を示した.さらにブロードサイドカプラを適用した広帯域バランを提案しその 設計法および特性を示した.これらの3次元 MMIC 受動回路は MMIC 上の受動回路面積の占め る割合を低減させるとともに1チップ送受信機等の高集積 MMIC 実現に寄与する.

(3) 3次元構造を応用した基本能動回路(増幅器,周波数変換器,発振器等)の構成法及び その設計法を示した.可変利得増幅器として,新たにドレイン接地 FET を帰還回路に配置した アクティブ帰還型可変利得増幅器を提案し,その低歪み特性を示した.さらに発振器までを含 めた能動回路を1チップに集積した 20GHz 帯1チップ受信機 MMIC を初めて実現し,その特 性を示した.この結果は3次元 MMIC 技術が MMIC の小型化,高集積化実現に極めて有効であ ることを示している.

(4) 小型化,高集積化,設計の簡易化の点において,薄膜マイクロストリップ(TFMS)線

145

路のミリ波帯での優位性を示すとともに、 3次元 MMIC 技術を用いた超小型ミリ波能動回路を 実現した. さらに高集積 V 帯 1 チップダウンコンバータ MMIC を実現した. これらの集積度は 平面構成の MMIC と比較しても数倍以上であり、ミリ波帯 MMIC の小型化、高集積化において 3次元 MMIC 技術が極めて有効であることを示した. この結果はミリ波 MMIC の大幅な経済化 を実現するものである.

(5) SiMMIC に3次元 MMIC 技術を適用することを提案し,標準的な SiIC プロセスを用いた SiMMIC の高周波動作,低電圧動作を初めて実現した.3次元 MMIC 技術により,Si 基板の導 電性とマイクロ波回路を分離することを実現し,低損失なマイクロ波受動素子を実現した.こ れにより,リアクティブ整合回路を実現し,SiMMIC の高周波化を達成した.さらに駆動電圧 が 1V という低電圧動作を実現できることを示した.これらの結果より,Si3次元 MMIC によ る X-Ka 帯 MMIC の大幅な経済化と低電圧化を実現できる見通しを示した.さらに RF 部の高 集積化を実現し,IF,ベースバンドー体の1チップトランシーバ実現の見通しを得た.

(6) MMIC 開発期間の短縮と経済化を実現するマスタスライス MMIC 設計法を提案すると共 に、その有効性を示した、マスタスライス設計法を基にした CAD ソフトウエアを実現し、MMIC 開発の一層の期間の短縮化、経済化を実現できる見通しを得た。

以上述べたように3次元 MMIC 技術は,マイクロストリップ線路やコプレーナ線路を使用する 平面構成の MMIC と比較して,その構造的特徴により MMIC の小型化,高集積化を実現できる ことを示した.今後は MMIC の分野においても3次元/多層配線技術の適用が盛んになってい くものと考えられる.さらにミリ波帯 MMIC においてはパッケージ技術,アンテナ技術との融 合によりミリ波システムオンパッケージが実現されるものと考えられる.SiMMIC においては LSI プロセス技術の多層配線膜の厚膜化,3次元化が期待できるため,ここで示した Si3次元 MMIC 技術の応用が拡大されるものと期待される.

本研究に関わる研究業績

論文

- K. Nishikawa and T. Tokumitsu, "An MMIC Low-Distortion Variable-Gain Amplifier Using Active Feedback," IEEE Trans. Microwave Theory Tech. Vol. 43, No. 12, pp. 2812-2816, Dec. 1995.
- (2) <u>K. Nishikawa</u>, I. Toyoda, K. Kamogawa, and T. Tokumitsu, "Three-Dimensional Silicon MMIC's Operating up to K-band," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 5, pp. 677-684, May 1998.
- (3) <u>K. Nishikawa</u>, I. Toyoda, K. Kamogawa, T. Tokumitsu, and M. Tanaka, "Three-Dimensional Monolithic Microwave Integrated Circuit Technology For Fully Computer-Aided Design-Compatible Monolithic Microwave Integrated Circuit Development," International Journal of RF and Microwave CAE, Vol. 8, No. 6, pp. 498-506, Nov. 1998.
- (4) <u>K. Nishikawa</u>, I. Toyoda, and T. Tokumitsu, "Compact and Broadband Three-dimensional MMIC Balun," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 1, pp. 96-98, Jan. 1999.
- (5) <u>K. Nishikawa</u>, K. Kamogawa, K. Inoue, K. Onodera, T. Tokumitsu, M. Tanaka, I. Toyoda, and M. Hirano, "Miniaturized Millimeter-wave Masterslice 3DMMIC Amplifier and Mixer," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 9, pp. 1856-1862, Sept. 1999.
- (6) <u>K. Nishikawa</u>, S. Sugitani, K. Inoue, K. Kamogawa, T. Tokumitsu, I. Toyoda, and M. Tanaka, "A Compact V-band 3DMMIC Single-chip Down-converter Using Photosensitive BCB Dielectric Film," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 12, pp. 2512-2518, Dec. 1999.
- (7) <u>K. Nishikawa</u>, K. Kamogawa, B. Piernas, M. Tokumitsu, I. Toyoda, S. Sugitani, and K. Araki, "Three-dimensional MMIC Technology for Low-cost Millimeter-wave MMICs," IEEE Journal of Solid-state Circuits, Vol. 36, No. 9, pp. 1351-1359, Sept. 2001.
- (8) <u>K. Nishikawa</u>, T. Tokumitsu and I. Toyoda, "Miniaturized Wilkinson Power Divider Using Three-Dimensional MMIC Technology," IEEE Microwave and Guided Wave Letters, Vol.6, No.10, pp.372-374, Oct. 1996.
- (9) <u>K. Nishikawa</u>, I. Toyoda and T. Tokumitsu, "Miniaturized Three-Dimensional MMIC K-Band Upconverter," IEEE Microwave and Guided Wave Letters, Vol.7 No.8, pp.230-232, Aug. 1997.
- (10) <u>K. Nishikawa</u>, K. Kamogawa, T. Nakagawa, and M. Tanaka, "Low-Voltage C-Band SiBJT Single-Chip Receiver MMIC Based on Si 3-D MMIC Technology," IEEE Microwave and

Guided Wave Letters, Vol. 10, No. 6, pp. 248-250, June 2000.

- (11) M. Hirano, Y. Imai, <u>K. Nishikawa</u>, M. Tokumitsu and K. Asai, "Three-Dimensional Passive Elements for Compact GaAs MMICs," IEICE Trans. Electron., Vol.E76-C, No.6, pp.961-967, June 1993.
- (12) M. Hirano, <u>K. Nishikawa</u>, I. Toyoda, S. Aoyama, S. Sugitani and K. Yamasaki, "Three-Dimensional Passive Circuit Technology for Ultra-Compact MMIC's," IEEE Trans. Microwave Theory Tech., Vol.43, No.12, pp.2845-2850, Dec. 1995.
- (13) K. Onodera, M. Hirano, M. Tokumitsu, I. Toyoda, <u>K. Nishikawa</u> and T. Tokumitsu, "Folded U-Shaped Microwire Technology for Ultra-Compact Three-Dimensional MMIC's," IEEE Trans. Microwave Theory Tech., Vol.44, No.12, pp.2347-2353, Dec. 1996.
- (14) T. Tokumitsu, M. Hirano, K. Yamasaki, C. Yamaguchi, <u>K. Nishikawa</u> and M. Aikawa, "Highly Integrated Three-Dimensional MMIC Technology Applied to Novel Masterslice GaAs- and Si-MMIC's," IEEE Journal of Solid-State Circuits, Vol.32, No.9, pp.1334-1341, Sept. 1997.
- (15) M. Hirano, <u>K. Nishikawa</u>, I. Toyoda, S. Aoyama, S. Sugitani and K. Yamasaki, "Three-Dimensional Interconnect Technology for Ultra-Compact MMICs," Solid-State Electronics, Vol.41, No.10, pp.1451-1455, 1997.
- (16) K. Kamogawa, <u>K. Nishikawa</u>, C. Yamaguchi, M. Hirano, I. Toyoda and T. Tokumitsu, "Wide-Tuning Range Si Bipolar VCO's Based on Three-Dimensional MMIC Technology," IEEE Trans. Microwave Theory Tech., Vol.45, No.12, pp.2436-2442, Dec. 1997.
- (17) I. Toyoda, <u>K. Nishikawa</u>, T. Tokumitsu, K. Kamogawa, C. Yamaguchi, M. Hirano and M. Aikawa, "Three-Dimensional Masterslice MMIC on Si Substrate," IEEE Trans. Microwave Theory Tech., Vol.45, No.12, pp.2524-2529, Dec. 1997.
- (18) K. Kamogawa, I. Toyoda, T. Tokumitsu, and <u>K. Nishikawa</u>, "Wide-Band Subharmonically Injection-Locked Oscillators Using Three-Dimensional MMIC Technology," IEICE Trans. Electron., Vol. E81-C, No. 6, pp. 848-855, June 1998.
- (19) I. Toyoda, M. Hirano, M. Tokumitsu, Y. Imai, <u>K. Nishikawa</u>, K. Kamogawam, and S. Sugitani, "Quick Development of Multifunctional MMICs Using Three-Dimensional Masterslice MMIC Technology," IEICE Trans. Electron., Vol. E82-C, No.11, pp. 1951-1959, Nov. 1999 (Invited paper).
- (20) B. Piernas, <u>K. Nishikawa</u>, K. Kamogawa, and I. Toyoda, "Three-Dimensional MMIC Technology on Silicon: Review and Recent Advances," IEICE Trans. Electron., Vol. E85-C, No. 7, pp. 1394-1403, July 2002 (Invited paper).
- (21) B. Piernas, K. Nishikawa, K. Kamogawa, T. Nakagawa, and K. Araki, "High-Q Factor

Three-dimensional Inductors," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 8, pp. 1942-1949, Aug. 2002.

(22) K. Kamogawa, <u>K. Nishikawa</u>, I. Toyoda, T. Tokumitsu, and M. Tanaka, "A Novel High-Q and Wide-Frequency-Range Inductor Using Si 3-D MMIC Technology," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 1, pp. 16-18, Jan. 1999.

国際会議発表論文

- (1) <u>K. Nishikawa</u> and T. Tokumitsu, "An MMIC Low-Distortion Variable-Gain Amplifier Using Active Feedback," in 1995 IEEE MTT-S Dig., pp. 1691-1622, 1995.
- (2) <u>K. Nishikawa</u>, K. Kamogawa, T. Tokumitsu, M. Aikawa, M. Hirano and S. Sugitani, "Highly-Integrated Three-Dimensional MMIC 20-GHz Single Chip Receiver," in 26th European Microwave Conf. Proc., pp.199-203, 1996.
- (3) <u>K. Nishikawa</u>, I. Toyoda, K. Kamogawa, T. Tokumitsu, C. Yamaguchi, and M. Hirano, "K-Band Si MMIC Amplifier and Mixer using Three-Dimensional Masterslice MMIC Technology," ISSCC Digest of Technical Papers, pp.252-253, Feb., 1998.
- (4) <u>K. Nishikawa</u>, K. Kamogawa, K. Inoue, K. Onodera, M. Hirano, T. Tokumitsu, and I. Toyoda, "Millimeter-wave Three-dimensional Masterslice MMICs," in 1998 IEEE Radio Frequency Integrated Circuits Symp. Dig. pp. 239-242, 1998.
- (5) <u>K. Nishikawa</u>, S. Sugitani, K. Inoue, K. Kamogawa, T. Tokumitsu, I. Toyoda, and M. Tanaka, "A Compact V-Band 3DMMIC Single-Chip Down-Converter Using Photosensitive BCB Dielectric Film," in 1999 IEEE MTT-S Dig., pp.131-134, 1999.
- (6) <u>K. Nishikawa</u>, K. Kamogawa, I.Toyoda, T. Tokumitsu, and M. Tanaka, "C-Band Si 3D MMIC Transceiver for Wireless Applications," in 1999 IEEE Radio Frequency Integrated Circuits Symp. Dig. pp.35-38, 1999.
- (7) <u>K. Nishikawa</u>, K. Kamogawa, I. Toyoda, and M. Hirano, "Three-dimensional MMIC Technology and Application to Millimeter-wave MMICs and Silicon MMICs, " in GHz 2000 Symp. Proc., pp. 207-210, 2000 (Invited paper).
- (8) <u>K. Nishikawa</u>, K. Kamogawa, M. Tokumitsu, I. Toyoda, S. Sugitani, and K. Araki, "Threedimensional MMIC Technology For Low-cost Millimeter-wave MMICs, " in 2000 IEEE GaAs IC Symp. Dig., pp. 153-156 (Invited paper).
- (9) <u>K. Nishikawa</u>, K. Kamogawa, T. Nakagawa, B. Piernas, and K. Araki, "Broadband and Compact SiBJT Balanced Up-converter MMIC Using Si 3-D MMIC Technology," in 2001 IEEE MTT-S Int. Microwave Symp. Dig., pp. 87-90, 2001.

- (10) <u>K. Nishikawa</u>, S. Sugitani, K. Inoue, T. Ishii, K. Kamogawa, B. Piernas, and K. Araki, "Lowloss Passive Components on BCB-based 3-D MMIC Technology," in 2001 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1881-1884, 2001.
- (11) <u>K. Nishikawa</u>, K. Kamogawa, B. Piernas, T. Nakagawa, and K. Araki, "1-V Operation Highfrequency Broadband Si 3-D MMICs," in 2002 Asia-Pacific Microwave Conf. Proc., pp. 693-696, 2002.
- (12) M. Hirano, <u>K. Nishikawa</u>, I. Toyoda, S. Aoyama, S. Sugitani and K. Yamasaki, "Three-Dimensional Passive Circuit Technology for Ultra-Compact MMICs," in 1995 IEEE MTT-S Dig., pp.1447-1450, 1995.
- (13) T. Tokumitsu, <u>K. Nishikawa</u>, K. Kamogawa, I. Toyoda and M. Aikawa, "Three-Dimensional MMIC Technology for Multifunction Integration and Its Possible Application to Masterslice MMIC," in 1996 IEEE Microwave and Millimeter-Wave Monolithic Circuits Symp., pp.85-88, 1996.
- (14) M. Hirano, <u>K. Nishikawa</u>, I. Toyoda, S. Aoyama, S. Sugitani and K. Yamasaki, "3-D Interconnect Technology for Ultra-Compact MMICs," in 1996 Topical Workshop on Heterostructure Microelectronics, pp.18-19, 1996.
- (15) M. Aikawa, T. Tokumitsu and <u>K. Nishikawa</u>, "Advanced MMIC Technology for The Next Generation-3D MMICs and Master-Slice Technology," in 26th European Microwave Conf. Proc., pp.748-753, 1996.
- (16) K. Kamogawa, <u>K. Nishikawa</u>, C. Yamaguchi, M. Hirano, I. Toyoda and T. Tokumitsu, "A Very Wide-Tuning Range 5-GHz-Band Si Bipolar VCO Using Three-Dimensional MMIC Technology," in 1997 IEEE MTT-S Dig., pp.1221-1224, 1997.
- (17) I. Toyoda, <u>K. Nishikawa</u>, T. Tokumitsu, K. Kamogawa, C. Yamaguchi, M. Hirano and M. Aikawa, "Three-Dimensional Masterslice MMIC on Si Substrate," in 1997 IEEE Radio Frequency Integrated Circuits Symp. Dig., pp.113-116, 1997.
- (18) T. Tokumitsu, <u>K. Nishikawa</u>, K. Kamogawa, I. Toyoda and K. Nishimura, "Three-Dimensional MMIC Technology and Application to Millimeter-Wave MMIC's," in 1997 Topical Symp. Millimeter Waves Dig., pp.97-100, 1997.
- (19) I. Toyoda, <u>K. Nishikawa</u>, K. Kamogawa, C. Yamaguchi, M. Hirano, K. Onodera, and T. Tokumitsu, "X-band Si Bipolar Transistor Single-chip Transceiver Using Three-dimensional MMIC Technology," in 1998 IEEE Radio Frequency Integrated Circuits Symp. Dig. pp. 289-292, 1998.
- (20) K. Inoue, K. Kamogawa, <u>K. Nishikawa</u>, K. Ikuta, K. Onodera, and M. Hirano, "Threedimensional MMIC Interconnect Process Using Photosensitive BCB and STO Capacitors,"

in 28th European Microwave Conf. Proc., pp. 642-647, 1998.

- (21) K. Kamogawa, <u>K. Nishikawa</u>, and M. Tanaka, "A Novel High-Q Inductor Based on Si 3D MMIC Technology and Its Applications," in 1999 IEEE MTT-S Dig., pp.489-492, 1999.
- (22) K. Kamogawa, <u>K. Nishikawa</u>, I. Toyoda, M. Tokumitsu, M. Hirano, T. Nakagawa, and M. Muraguchi, "New Methodology for Microwave/Millimeter-wave MMIC Development, " in 2000 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1913-1916.

その他の研究業績

論文

- (1) K. Kamogawa, I. Toyoda, <u>K. Nishikawa</u>, and T. Tokumitsu, "Characterization of a Monolithic Slot Antenna Using an Electro-Optic Sampling Technique," IEEE Microwave and Guided Wave Letters, Vol.4, No.12, pp.414-416, 1994.
- (2) M. Nakatsugawa, A. Kanda, H. Okazaki, <u>K. Nishikawa</u>, and M. Muraguchi, "Line-Loss and Size Reduction Techniques for Millimeter-Wave RF Front-End Boards by Using a Polyimide/Almina-Ceramic Multilayer Configuration," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, pp. 2308- 2315, Dec. 1996.
- (3) B. Piernas, H. Hayashi, <u>K. Nishikawa</u>, and T. Nakagawa, "Improvement of the design of 180° rat-race hybrid," Electronics Letters, Vol. 36, No. 12, pp. 1035-1036, June 2000.
- (4) B. Piernas, H. Hayashi, <u>K. Nishikawa</u>, K. Kamogawa, and T. Nakagawa, "A Broadband and Miniaturized V-Band PHEMT Frequency Doubler," IEEE Microwave and Guided Wave Letters, Vol. 10, No. 7, pp. 276-278, July 2000.
- (5) H. Hayashi, B. Piernas, <u>K. Nishikawa</u>, and T. Nakagawa, "A Miniaturized 45°Power Divider Using Three-dimensional MMIC Technology," Electronics Letters, Vol.36, No.21, pp. 1785-1786, Oct. 2000.
- (6) M. Nakatsugawa and <u>K. Nishikawa</u>, "A Novel Configuration for 1:N Multiport Power Dividers Using Series/Parallel Transmission-Line Division and a Polyimide/Alumina-Ceramic Structure for HPA Module Implementation," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 6, pp. 1187-1193, June 2001.
- (7) B. Piernas, <u>K. Nishikawa</u>, T. Nakagawa H. Hayashi, and K. Araki, "Analysis of Balanced Active Doubler for Broad-Band Operation-The Frequency-Tuning Concept," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 4, pp. 1120-1126, Apr. 2002.
- (8) M. Kawashima, T. Nakagawa, H. Hayashi, <u>K. Nishikawa</u>, and K. Araki, "A 0.9-2.6 GHz Broadband Direct Conversion Transceiver For Software Defined Radios," IEICE Trans. Electron, Vol. E85-B, No. 12, pp. 2732-2740, Dec. 2002.
- (9) B. Piernas, <u>K. Nishikawa</u>, T. Nakagawa, and K. Araki, "A Compact and Low Phase-noise Kaband PHEMT-based VCO," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 3, pp. 778-783, March 2003.

国際会議

(1) I. Toyoda, T. Tokumitsu and K. Nishikawa, "A Multilayer MMIC Filter Using Short-Line

Meshes (SLMs)," in 24th European Microwave Conf. Proc., pp.443-447, 1994.

- (2) M. Nakatsugawa, A. Kanda, H. Okazaki, <u>K. Nishikawa</u>, and M. Muraguchi, "Line-Loss and Size Reduction Techniques for Millimeter-Wave RF Front-End Boards by Using a Polyimide/Almina-Ceramic Multilayer Configuration," in 1997 IEEE MTT-S Dig., pp. 509-512, 1997.
- (3) T. Tokumitsu, K. Kamogawa, <u>K. Nishikawa</u>, I. Toyoda, and M. Tanaka, "An Extremely Compact, Lossless MMIC Combiner/Divider Using Combination of Line-Unified-FET and Three-Dimensional MMIC Structures," in 28th European Microwave Conf. Proc., pp. 421-426, 1998.
- (4) T. Tokumitsu, K. Kamogawa, <u>K. Nishikawa</u>, and M. Tanaka, "A Line-Unified-FET Combiner/Divider with Built-In 3D Amplifier (LUFET-AMP) and Its Application to a Very Small Injection-Locked Oscillator," in 1999 IEEE MTT-S Dig., pp.21-24, 1999.
- (5) B. Piernas, H. Hayashi, <u>K. Nishikawa</u>, and T. Nakagawa, "A New Family of Broadband Phase Compensated 180° Rat-race Hybrid Type Power Divider, " in 2000 Topical Symp. on Millimeter Wave Dig., pp. 153-156, 2000.
- (6) B. Piernas, <u>K. Nishikawa</u>, K. Kamogawa, T. Nakagawa, and K. Araki, "Improved Three-Dimensional GaAs Inductors," in 2001 IEEE MTT-S Int. Microwave Symp. Dig., pp. 189-192, 2001.
- (7) <u>K. Nishikawa</u>, B. Piernas, T. Nakagawa, and K. Araki, "Miniaturized and Broadband V-band Balanced Frequency Doubler for Highly Integrated 3-D MMIC," in 2002 IEEE MTT-S Int. Microwave Symp. Dig., pp. 351-354, 2002.
- (8) <u>K. Nishikawa</u>, B. Piernas, K. Kamogawa, T. Nakagawa, and K. Araki, "Compact LNA and VCO 3-D MMICs Using Commercial GaAs PHEMT Technology for V-band Single-chip TRX MMIC," in 2002 IEEE MTT-S Int. Microwave Symp. Dig., pp. 1717-1720, 2002.
- (9) M. Kawashima, H. Hayashi, T. Nakagawa, <u>K. Nishikawa</u>, and K. Araki, "A 0.9 –2.6 Ghz Broadband RF Front-end For Direct Conversion Transceivers," in 2002 IEEE MTT-S Int. Microwave Symp., Dig., pp. 927-930, 2002.
- (10) <u>K. Nishikawa</u>, B. Piernas, T. Nakagawa, K. Araki, and K. Cho, "60-Ghz Single-chip Receiver 3-D MMIC using Commercial GaAs pHEMT Technology, " in 2002 Int. Conf. Solid State Devices and Materials(SSDM) Dig., pp. 302-303, 2002.
- (11) T. Nakagawa, <u>K. Nishikawa</u>, B. Piernas, T. Seki, and K. Araki, "60-Ghz Antenna and 5-Ghz Demodulator MMICs for More Than 1-Gbps FSK Transceivers," in 32nd European Microwave Conf. Proc., pp. 929-932, 2002.

- (12) T. Nakagawa, <u>K. Nishikawa</u>, and K. Araki, "60-GHz band and 5-GHz band Demodulator MMICs for More Than 1-Gbps FSK Transceivers," in 2002 Asia-Pacific Microwave Conf. Proc., pp. 839-842, 2002.
- (13) M. Kawashima, H. Hayashi, T. Nakagawa, <u>K. Nishikawa</u>, and K. Araki, "A Multi-Band Direct Conversion Transceiver For Software-Defined Radios," in 2002 Asia-Pacific Microwave Conf. Proc., pp. 985-988 , 2002.
- (14) T. Seki, <u>K. Nishikawa</u>, and K. Cho, "Novel Multi-layer Active Integrated Antenna Configuration Using Teflon Substrate," in *ISAPi-02* Dig., pp. 105-108, 2002.