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An energy spectrum is exactly examined for a one·dimensional many boson system where bosons 
are interacting to each other through a delta· functional repulsive potential. ,After a unitary transfor· 
mation, the Hamiltonian is diagonalized to be the following compact form "2,p(p2/2m)np+(7rn!2mL) 
x "2,p,qip- qinpnq + (1/6m)(7rn!L)2[("2,pnp)3- "2,~np] at the infinitely large limit of the coupling constant. 
This form is non-linear with respect to the numbers np of quasi-particles. The non-linear terms are 
Galilean-invariant and produce a phonon-like spectrum. In a case of a finite coupling constant g, the 
total energy is expanded to power series of (l/g). 

§ 1. Introduction 

A one-dimensional system of interacting many bosons was exactly solved by 
Giradau/) and Lieb and Liniger2

) on the basis of the first quantization formalism, 
The orthogonal and complete set of eigenstates was obtained by Sasaki and 
Kebukawa4)-6)on the basis of the field theory formalism, They also found a unitary 
transformation which transforms the total Hamiltonian to the diagonal form. 

The energy levels of the system have been investigated by Lieb3) in terms of the 
fermion momenta (not boson). The use of the fermion momenta originates in the fact 
that the energy of the interacting bose system agrees with the one of the non
interacting fermion system!) in the limit of the infinitely large coupling constant. 

However his classification scheme includes the following three difficulties as 
mentioned by himself;3) first every excitation is described in terms of two parameters 
(two fermion momenta before and after excitation) instead of only one as physicists 
normally hope to do for a bose system. Second, there are too many provisos between 
these momenta by the exclusion principle which is needless in' the original bose 
system. Third, his scheme includes two types of supplementary umklapp excitations 
besides two types of normal excitations. 

These difficulties have been overcome by Sasaki and Kebukawa4)-6) in the second 
quantized form through a unitary transformation U diagonalizing· the total 
Hamiltonian completely. They have introduced the dressed boson operators by 
transforming the original bare boson operators through the unitary transformation 
U. Then, the ground state has been expressed by the' product of the creation
operators of dressed bosons with zero momentum. Each excitation state has been 
produced by changing zero momentum of one dressed boson to non-zero momentum 
p. Thus, each excitation is distinguished by only one momentum p which can take 
arbitrary value in contrast to Lieb's scheme where there are many provisos. Accord
ingly, the difficulties mentioned above have been removed. 

However, the expression of the eigenenergies in the previous paper is rather 
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Energy Spectrum of One-Dimensional Many Boson System 1159 

complicated. In this paper, we rewrite the total energy by using the number of the 
dressed bosons and succeed in obtaining the compact form as 

(1·1) 

in an infinitely large limit ofthe coupling constant g, where np denotes the number of 
the dressed bosons with momentum p, N is the total number of the bosons and L is the 
length of the one-dimensional space. Moreover, in the case of a finite value of the 
coupling constant, we obtain expansion of the energy to the power series of (l/g). 
The calculations in this paper are not a mere reexpression of the energy, but give a 
physically meaningful form as follows: The right-hand side of Eq. (1·1) is constructed 
by two parts: One term is the kinetic energy of the dressed bosons which is Galilean
covariant and the residual terms Galilean-invariant terms. The latter terms have 
non-linear forms with respect to the dressed boson number. This nonlinearity 
derives the essential property of the interacting many boson system. Namely, these 
non-linear terms produce the drastic change in the excitation spectrum, that is, the 
phonon-like spectrum appears or disappears according to the change of the momen
tum distribution of the dressed bosons. In the final section, we will discuss possibility 
of an extension of this theory to a three-dimensional many boson system. 

§ 2. Energy spectrum in the infinitely large coupling constant 

Let us investigate the following interacting many boson system of which a total 
Hamiltonian is 

(2·1) 

where m indicates the mass of one boson, g the coupling constant, and p, q or r the 
momentum which takes one of such values as (27rPt/L) X integer owing to the periodic 
boundary condition of the length L. The operators ap and ap * are the annihilation 
and creation operators which obey the commutation relations 

[ap,ap *] = 8p,q . 

and 

(2·2) 

where 8p ,q is the Kronecker-delta function. Here, we shall briefly summarize the 
results of the previous papers.4

)-6) The Hamiltonian (2·1) is diagonalized by the 
unitary operator U:5

) 

(2·3) 

where the operator UN denotes the unitary transformation that produces the exact 
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1160 S. Sasaki 

eigenstates of the fixed total number N and is written as 

(2'4) 

In this equation, (lq' .. ··.qN and /3q,.···.qN are the normalization constants and are given by 

(2'5a) 

and 

( 
(2)N(N-l). .. 

/3q"···.qN= V 7r ,(m the hmit g-'> (0) . (2·5b) 

where np is the number of the momentum P in ql, q2, ... , qN. The running parameters 
pij indicate the transfer momenta from the i-th boson to the j-th boson. The constant 
values kij are uniquely determined by the following coupled equations: 

(2'6) 

where 

kij=-kji, -7rn/L~kij<O. (1~i<j~N) (2'7) 

The exact eigenstate of the Hamiltonian (2'1) is described by 

(2·8) 

where 10) is a vacuum state. Then, the eigenvalue Eq,···qN of the total energy becomes 

(2'9) 

These results have been obtained in the previous paper. 
Now, in this section, let us derive a reexpression of the total energy in the limit 

g-'>oo. In this limit, the value kij is easily determined from Eqs. (2'6) and (2'7) as 

where 

7rn 
kij=T7jij , 

-1 

o 
1 

for 
for 

for 

(2'10) 

i<j, 

Z=J, 

i>j. (2·11) 

Using the unitary oprator U of Eq. (2'3), we define the creation and annihilation 
operators of one dressed boson in the interaction cloud as 

(2·12) 

The creation operator Ap * of the dressed boson produces any eigenstates of the total 
Hamiltonian: 
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(2·13) 

Then, the number operator of the dressed boson with momentum p is given by 

(2·14) 

We can reexpress the total energy in terms of these number operators np as will be 
mentioned below. This reexpression starts with substitution of Eqs. (2·10) and (2·11) 
into Eq. (2·9). Then, Eq. (2·9) becomes 

. 1 N 2 1 7Cn N N 1 (7Cn)2 
=-2-L:qi +--L L:(qiL:1Jil )+2m -L L:1Jij1Jil. m i=1 m i=1 1=1 ijl 

The antisymmetric property of the suffices of 1Jil gives 

and the right-hand side of Eq. (2·16) becomes 

for 

for 
i< 1, 

i> 1. 

, (2·15) 

(2 ·16) 

(2 ·17) 

If we remember the restriction among the values of the momenta ql, q2, "', qN in the 
sum of Eq. (2·4), then we can rewrite Eq. (2·17) into the absolute value of the 
momentum difference, that is, 

(Qi-QI)1Jil=lqi-qll. (2·18) 

By combining Eq. (2 ·18) withEq. (2 ·16), we obtain 

L:Qi1Jil=l.-L:IQi-QII. i,1 2 i,1 (2·19) 

In order to calculate the third term on the right-hand side of Eq. (2·15), ,we use the 
following property: 

N 

L: 1Jil= -(i-l)+ N -i=N + 1-2i 
1=1 ' 

(2·20) 

which yields 

L: 1Jij1Jil= ~[N + 1-2i)2=l.-N(N2 -1). 
i,j,1 i=1 3 (2·21) 

By substituting Eqs. (2·19) and (2·21) into Eq. (2·15), we have 

(2·22) 

Let us rewrite the expression (2·22) in terms of the number operator which is defined 
by Eq. (2 ·14). We easily obtain it as follows: 
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1162 S. Sasaki 

_ 1 2 1 'lrn I 1 ('lrn)2 N(N2-1) 
E-2m~pnp+2mL~P-qlnpnq+2m L 3 ' , (2·23) 

which is equivalent to 

H =-21 ~p2 Ap * Ap +-21 'lrLn ~ Ip- qlAp * ApAq * Aq m p m p,q 

Consequently we have succeeded in rewriting the total energy into the simple form 
(2·23) in the case g-HX). This result immediately leads that the total Hamiltonian is 
diagonalized as follows: 

U*HU=-21 ~p2ap*ap+-21 'lrLn ~Ip-qlap*apaq*aq m p m p,q 

(2·24) 

where we make use of the inverse transformation 

(2·25) 

Next, let us investigate the property of the energy spectrum by using this compact 
form. We define the excitation energy cp as an energy-increase of the system when 
the dressed boson in the interaction cloud is excited from the zero momentum state to 
the state with momentum p. This excitation is described by the change of the number 
distribution from {nq} to {nq'}, which are related to each other, 

no'=no-1, 

np'=np+ 1, 

for q=FO and q=F p. 

Then, the excitation energy cp is easily obtaind from Eq. (2·23) as 

cp=E({nq'})- E({nq}) 

=L+l'lrn ~(Ip-ql-Iql)n _l'lrn Ipl. 2m m L q q m L 

(2·26) 

(2·27) 

When the value nolL is non-zero in the limit L~oo, the excitation energy becomes 

cp (2·28) 

This indicates that cp is proportional to the absolute value of p in the region of small 
value of Ipl. This means that the phonon velocity is equal to 'lrnnolmL. 

Next, let us investigate Galilean covariancy of the total energy. The first term 
on the right-hand side of Eq. (2·23) is decomposed into the kinetic energy of the center 
of mass and the remaining term, 

(2·29) 
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Energy Spectrum of One-Dimensional Many Boson System 1163 

Then, the total energy is expressed as 

E= 2 IN (~pnp)2+[ 4 lN ~(p-q)2npnq+ 27rftL ~Ip-qlnpnq m p m p,q m p,q 

(2·30) 

The terms in the square parenthesis on the right-hand side of Eq. (2'30) are easily seen 
to be invariant under Galilean transformation, because its functional forms are made 
of momentum differences only. Thus, the total energy is decomposed into the kinetic 
energy of center of mass (the first term in Eq. (2'30)) and the Galilean-invariant part 
(the residual terms in Eq. (2'30)). Namely, the expression (2·30) of the total energy 
shows to be Galilean-covariant. 

§ 3. Expansion 

In this section, we expand kij into the power series of (l/g). We put k;j as 

k··=~ - k(Tf) 00 ( 1 )n 
lJ n=O g lJ, 

(3·1) 

where M!Jl is a coefficient of n-th order in the expansion. In the limit g~oo, kij is 
expressed by Eq. (2 '10) and therefore the zeroth order coefficient becomes 

(3·2) 

which yielcis the coupled eq~ation determining the coefficients {MY)} as 

cot -1Jij+-~ - MY) [ 
7r L 00 ( 1 )n ] 
2 2ft n=1 g 

=- qi-qj+-~(1Jil-1Jjl)+ ~ ~ - (M?)-k)?)) , ft [ 7rft NooN ( 1 )n ] 
mg L 1=1 n=1l=1 g (3'3) 

where we use Eqs. (2'6), (2·7), (3·1) and (3·2). Since 7r1Jij/2 is equal to 7r/2 or -7r/2, 
the coupled equation (3'3) is rewritten as 

L 00 ( 1 )n. ft [ 7rft 
270. ~ - MY)=-Arctan - qi-qj+-L ~(1Jil-1Jjz) 

n n=1 g 'mg 1 

(3·4) 

where the value of the function of Arctan is chosen in the range between - 7r/2 and 
7r/2 owing to the restriction (2·7). 

Now, Eq. (3·4) has the following property: The right-hand side of Eq. '(3'4) can be 
determined up to the (s+ l)-th order of (l/g) only by using the coefficients M?) up to the 
s-th order. Therefore, we can determine the coefficient M]+1) by using Eq. (3'4) by 
substituting the lower order coefficients MY) (O~ n~s) into the right-hand side of 
Eq. (3'4). 
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1164 S. Sasaki 

Let us determine the coefficients k}'j) up to the third order by making use of the 
expansion of Arctan x: 

00 X 2n - 1 x3 
Arctan x=~(_l)n-l __ =x __ +···. 

n=l 2n-1 3 

Then, Eq. (3·4) becomes 

~(lkW+lk(~)+lk(~)+ ... ) 21z g l.J g2 l.J g3 l.J 

+ ~ (~g Y[ qi-qj+ 7 ~(7Jil-7Jjl)r +Order( ;4). 

(3·5) 

(3·6) 

If we pick up the terms with the same power of (l/g) on both sides of Eq. (3·6), we 
obtain the coefficient M7)from the first order to the third order successively. 
(first order part) 

(3·7) 

(second order part) 

~k(~)= _~~(k(l)-k(l) 21z l.J m 7' ,I JI, 
(3·8) 

(third order part) 

in M]l=- !~(M7Lk)7)+~ (!Y[ qi-qj+ 7 ~(7Jil-7Jjl)r· (3·9) 

By substituting Eq. (3·7) into Eq. (3·8), the second order coefficient kffl becomes 

k(~)_(~)2~[ ._ .+~~( . - .)] 
l.J - Lm 7' q, qJ L -7' 7J,s 7JJS 

(3·10) 

Similarly, we put Eq. (3·10) into Eq. (3·9), and then obtain 
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Energy Spectrum of One-Dimensional Many Boson System 1165 

+( 7, r~(1]iS-1]jS)(1]it-1]jt)(1]iU-1]jU)J. (3-11) 

Thus, we have determined the value of kij up to the third order of the power of (llg). 

§ 4_ 11g power expansion of the energy 

In this section, we expand the total energy to the 11g power series and obtain the 
coefficients up to the third order. The total energy is expanded as follows: 

1 1 1 
E=Eo+-E1+-2E2+-3E3+'" . g g g (4-1) 

In order to obtain the coefficients En, we substitute MJ) obtained in the previous 
section into the representation (2-9): 

E=-L: q+-L:1]·s+L: -kW+-2k(~)+-3k(~) + Order -4 1 [Jrn ( 1 1 1 )J2 ( 1 ) 
2m i ' L s' j g Xl g ZJ g ZJ g 

+_1_lL:[2(qi+ Jrn L:1]is)L:kiPJ 2m giL s j 

+2~ ~3~[2(qi+ 7,~1]is)~k~)+2~MY~M~)J+Order (~4)' (4-2) 

By comparing Eq. (4-2) with Eq. (4-1), we obtain each coefficient as follows: 

(4-3) 

E 1= 2~~[2( qi+ 7, ~1]is)~kiPJ, (4-4) 

E =_1_~[2( .+ Jrn ~ . )~k(?)+~kW~k(1)J 
2 2m"T q, L 7' 1],s 'T ZJ 'T ZJ "T 'l ; (4-5) 

E3= 2~ ~[2( qi+ 7, ~1]is )~k~)+2~k3)~M~)J . (4-6) 

The coefficient Eo agrees with the total energy (2-22) of the limit g .... HX): 

E =_1_~ .2+_1_ Jrn ~I ._ .1 +_1_( Jrn )2 N(N2 -1) 
o 2m "T q, 2m L f.j q, qj. 2m L 3 . (4-7) 
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1166 S. Sasaki 

Here, we write down two identities useful in the higher order calculation: 

"i:l(q."i:lk(~»=l"i:l(q·-q.)k(~) -4 z-4 1-.1 2.4 1, J 1-.1 , 
1, J l.1 

(4-8) 

which are ~asily derived from the antisymmetric property k'iJ)= - k5r). 
Then, Eq. (4-4) is rewritten by using Eq. (3-7) as 

El=-2~ 1~i1{qi-qj+ t~(7Jis-7JjS)}{qi-qj+ t~(7Jit-r}jt)} 

_ 1 2n2 [ 2 2TCn - - 2m Lm i1 (qi-qj) +-----r-~(qi-qj)(7Jis-7JjS) 

+( 7 r~(7JiS-7JjS)(7Jit-7Jjt)]. (4-9) 

The second and third terms in the square parenthesis are rewritten by Eq. (2 -19) 

(4-10) 

(4-11) 

where we use the antisymmetric property for the suffices. Substituting Eqs. (4-10) 
and (4-11) into Eq. (4-9), we have 

E = __ 1_2n2["i:l( ._ .)2+2TCnN"i:l1 ._ 1+(TCn)22N2(N2-1)] 
1 2m Lm 7i q. qJ L fs' q. qs L 3 ' (4-12) 

where Eq. (2-21) is employed. Similiarly, by making use of Eqs. (4-5), (4-8) and 
(3-10), E2 becomes 

(4-13) 

By the calculation similiar to that of E 1, we can easily derive 

E =_l (~)23N["i:l( ._ .)2+2TCnN"i:l1 .~ 1+(~)22N2(N2-1)] 
2 2m Lm 2 7i q. qJ L fs' q. qs L 3 . 

(4-14) 

Consequently, we obtain the total energy up to the second order of the power of (l/g) 
as follows: 
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Energy Spectrum of One-Dimensional Many Boson System 1167 

+_1 {1- 2-n
2 2N+(~)23N2}' {~~I i- sl+(~)2N(N2-1)} 

2m Lmg Lmg L is q q L 3 

+Order (;3)' (4°15) 

Rewriting this expression in terms of the number distribtion {np} of' the dressed 
bosons, we get 

+_1 {1-~2N+(~)23N2}{~~IP- In n +(~)2N(N2-1)} 2m Lmg Lmg Lp,q q p q L 3 

+Order (~). (4 °16) 

If we decompose the first term on the right-hand side of Eq. (4°16) into the sum of the 
kinetiC energy of the center of mass and the Galilean invariant terms, we obtain 

E =_I_(~pn )2 +_1_{1 _ 2( 2-n
2 N) + 3( 2-n

2 
N )2}-

2mN p p 4mN mgL mgL 

[ { 2lC-nN} ( lC-nN)2 N
2
-1 ] ( 1 ) x ~ (p-q)2+ L Ip-ql npnq+2 ---r- 3 + Order 7 . 

(4°17) 

Thus, we have accomplished to rewrite the total energy to the compact form as Eqs. 
(4°15)",,(4°17). Next, let us calculate the third order coefficient E 3• By substituting 
the representation (3°7), (3°10) and (3°11) of Mf) into Eq. (4°6) and by employing Eq. 
(4 0 8), we obtain 
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1168 S. Sasaki 

+(3+ l)(qi-qj)( 1: rfd(T}iS-T}jS)(T}u-T}jt)(T}iU-T}jU) 

+( 1: ts:fut (T}is-T}jS)(T}u-T}jt)(T}iU-T}jU)(T}iv-T}jV) ] . (4-18) 

Through a slightly long calculation given in the Appendix, Eq, (4-18) becomes 

(Kh)3 2 +4 -L {2N~ qiT}isT}UT}iU+ N(N -l)~lqi-qsl} 
zstu zS 

(4 -19) 

Thus, we have accomplished the power expansion of the total energy up to the third 
order. 

§ 5_ Phonon velocity and ground state energy 

In this section, we calculate the phonon velocity up to the third order of the power 
of (l/g) and examine the relation between the phonon velocity and the ground state 
energy. 

The state of the single excitation is characterized by the number distribution 
function {n/'} as 

no"=N-1, 

np"=l, 

for all q. (q~O, q'*p) (5-1) 

Therefore, the single excitation energy cpo is defined by 

(5-2) 

where Ec denotes the ground state energy. Substituting the expression (4 -16) into 
Eq. (5-2), we can calculate the single excitation energy cpo up to the second order of 
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Energy Spectrum of One-Dimensional Many Boson System 1169 

the power of (llg) as 

c o=_1_p2+_1_{_~+(-'!JL)23N}2(N_1)P2 
P 2m 2m Lmg Lmg 2 . 

+ 2~ {1~ 1~g2N+(1!~r3N2} 12NIPI+Order (~3) 

=_1 {1-~2N+(~)23N2}(P2+ 2Jrn NlPI) 
2m Lmg Lmg L. 

+Order (~3 or l)· (5'3) 

N ow, the phonon velocity C is defined by 

C= lim(cpO lip!) 
IPI-O 

(5'4) 

which is expanded into the power series as 

1 1 1 
C = Co +-Cl +-C2+-C3+··· . g ~ g3 (5·5) 

Therefore, the coefficients Ci up to the second order are der:ived from Eqs. (5'3) and 
(5'4): 

Jrn N 
cO=mL' 

where we take a limit L-HX) under a fixed value of NIL. 

(5·6) 

(5'7) 

(5·8) 

We calculate the third order coefficient C3 by making use of Eq. (4'19), and obtain 

(5'9) 

Consequently, the phonon veJocity C is given by 

C=~[N _2 2n2(!fY +~(2n2)2(N)3 _-±-(2n2)3(J'f'\4] 
. m L g m rJ g2 m L g3 m rJ 

+-- -- - +Order - . 16 n (Jrn2)3(¥J4 ( 1 ) 3g3 m m L g4 (5'10) 

Next, let us expand the ground state energy EG to the power series as follows: 

 at O
saka D

aigaku N
ingen on M

arch 27, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/
http://ptp.oxfordjournals.org/


1170 S. Sasaki 

(5'11) 

By putting the number distribution function {nq} as 

no=N, for all q, (q*O) (5'12) 

in Eqs. (4·16) and (4·19), we obtain the coefficients EGo~EG3 in the expansion (5'11) 
of the ground state energy, 

= _..£ ;r2Pt
2 (2Pt2 )3( Jlf'\5 _1 l~(.!!...)3(J!!!...)4li 6 

EG3 32m m r)N+ 2m3 L m L 15 N , 

(5 '13) 

where we take a limit L-HYO under a fixed value of NIL. 
As is well known, a sound velocity v of liquid or gas is related to its ground state 

energy EG from a macroscopic argument. The relation is 

2_ L2 (PEG 
V - mN av (5 '14) 

Let us show that the relation (5 '14) also holds for the microscopical phonon velocity. 
First, we expand the square of the phonon velocity into the power of (l/g), 

C2 =co2+ l 2coCl +-4-(2 Co C2+ C12)+4(2coC3+2clC2)+'" . (5·15) 
. g g g 

Each coefficient of the same power of (l/g) in Eq. (5·15) becomes the middle sides of 
Eqs. (5'16)~(5'19) by using Eqs. (5'6)~(5'9): 

2=(J!!!...)2( 1'£\2 =~ a2 
EGO 

CO m r) mN av ' (5'16) 

(5 ·17) 

(5·18) 

(5·19) 
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Energy Spectrum of One-Dimensional Many Boson System 1171 

On the other hand, if we take the second partial derivatives of Eqs. (5 ·13), we obtain 
the last equalities in Eqs. (5 ·16) ~ (5 ·19). Consequently we have verified Eq. (5 ·14) in 
an explicit form up to the third order. 

§ 6. Conclusion and discussion 

In the previous sections, we have investigated the (l/g) power expansion of the 
energy spectrum for the interacting many boson system in one-dimensional space. 
This scheme is accomplished by using the number of the dressed boson, and the result 
gives a physically meaningful expression. Moreover, we have obtained the relation 
between the phonon velocity and the ground state energy explicitly. Taking consid
eration of the simplification of the energy-expression, we may also reexpress the 
unitary transformation U to a more compact form, but do not succeed in doing it. 

In conclusion, let us discuss a utilization of the present results in three
dimensional system. Some of the fundamental properties clarified in this paper may 
hold in the three-dimensional system, also. Especially the Galilean-invariant term in 
the total energy may be extended to the three-dimensional system where its total 
energy may have a similiar functional form Ip-qlnpnq (p and q are three
dimensional vectors). This idea gives a new viewpoint on a mic~oscopic theory of 
Liquid Hen as shown in Refs. 7)~9). 
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Appendix 

Let us rewrite each term of Eq. (4·18) as follows: 

L:(qi - qj)3(T}is - T}js)=2L:(Qi - Qj)3T}is 
ijs ijs 

where the final equality is derived from Eq. (2 ·18). Next the third term in the square 
parenthesis of Eq. (4·18) is reexpressed as ' 

L: (Qi-Qj)2(T}is- T}js)(T}it- T}jt) 
i,j,s,t 
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(A·2) 

where we use the asymmetric property for the suffices of rjiS and Eq. (2·19). The 
fourth term in the square parenthesis of Eq. (4 ·18) becomes 

(A·3) 

In the summation on the right-hand side of Eq. (A· 3), we can use the following 
properties: 

2:rjjU=O, 
ju 

Then, Eq. (A·3) is rewritten as 

2: (qi - qj)( rjiS - rjjS) ( rjit - rjjt)( rjiu - rjju) 
ijstu 

where we use Eq. (2·21). 

(A·4) 

(A·5) 

Finally, we calculate the fifth term in the square parenthesis of Eq. (4·18) as 
follows: 

2: (rjis- rjjs)(rjit.- rjjt)(rjiu- rjjU)(rjiv- rjjv) 
ijstuv 

Now, we calculate the first term on the tight-hand side of Eq. (A·6): 

If we put Eqs. (A· 7) and (2·21) into (A· 6), we obtain 

2: (rjis- rjjs)(rjit- rjjt)(rjiU- rjjU)(rjiv- rjjv) 
ijstuv 

= 2N2 [3N4-10N2+7]+ 6N
2
(N

2
-1)2 

15. 9 

= I~N2[2N4-5N2+3]. 

(A·6) 

(A·7) 

(A·8) 

By substituting Eqs. (A·l), (A·2), (A·5) and (A·8) into Eq. (4·18), we get the final 
result: 

 at O
saka D

aigaku N
ingen on M

arch 27, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/
http://ptp.oxfordjournals.org/


Energy Spectrum of One-Dimensional Many Boson System 1173 

+(~)22N2(N2_1) J+_1 l~(~)3[L:(qi-qJ4 
L 3 2m 3 L m ij 

+4 't ~lqi-qsl{(qi-qj)2+(qi-qj)(qs-qj)+(qs-qJ2} 
+6( 't r~t{2(qi-qj)21JiS1Jit+lqi-qsllqj-qtl} 
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