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An energy spectrum is exactly examined for a one-dimensional many boson system where bosons
are interacting to each other through a delta-functional repulsive potential. .After a unitary transfor-
mation, the Hamiltonian is diagonalized to be the following compact form 2x(p?/ 2m)np+ (xh/2mL)
X D p.alp— qluong +(1/6m) (2 /LY[(Zonp)* — 2 pns] at the infinitely large limit of the coupling constant.
This form is non-linear with respect to the numbers #, of quasi-particles. The non-linear terms are
Galilean-invariant and produce a phonon-like spectrum. In a case of a finite coupling constant g, the
total energy is expanded to power series of (1/g).

§1. Introduction

A one-dimensional system of interacting many bosons was exactly solved by
Giradau,” and Lieb and Liniger? on the basis of the first quantization formalism.
The orthogonal and complete set of eigenstates was obtained by Sasaki and
Kebukawa®~®on the basis of the field theory formalism. They also found a unitary
transformation which transforms the total Hamiltonian to the diagonal form.

The energy levels of the system have been investigated by Lieb® in terms of the
fermion momenta (not boson). The use of the fermion momenta originates in the fact
that the energy of the interacting bose system agrees with the one of the non-
interacting fermion system” in the limit of the infinitely large coupling constant.

However his classification scheme includes the following three difficulties as
mentioned by himself;® first every excitation is described in terms of two parameters
(two fermion momenta before and after excitation) instead of only one as physicists
normally hope to do for a bose system. Second, there are too many provisos between
these momenta by the exclusion principle which is needless in the original bose
system. Third, his scheme includes two types of supplementary umklapp excitations
besides two types of normal excitations. '

These difficulties have been overcome by Sasaki and Kebukawa®~® in the second
quantized form through a unitary transformation U diagonalizing -the total
Hamiltonian completely. They have introduced the dressed boson operators by
transforming the original bare boson operators through the unitary transformation
U. Then, the ground state has been expressed by the product of the creation-
operators of dressed bosons with zero momentum. Each excitation state has been
produced by changing zero momentum of one dressed boson to non-zero momentum
p. Thus, each excitation is distinguished by only one momentum 2 which can take
arbitrary value in contrast to Lieb’s scheme where there are many provisos. Accord-
ingly, the difficulties mentioned above have been removed.

However, the expression of the eigenenergies in the previous paper is rather
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complicated. In this paper, we rewrite the total energy by using the number of the
dressed bosons and succeed in obtaining the compact form as

<. 1 mh <y, 1 /zh)zN(Nz—l)
E=Sam™  om L it almenat g\ ) T

(1D

in an infinitely large limit of the coupling constant g, where #, denotes the number of
the dressed bosons with momentum p, N is the total number of the bosons and L is the
length of the one-dimensional space. Moreover, in the case of a finite value of the
coupling constant, we obtain expansion of the energy to the power series of (1/g).
The calculations in this paper are not a mere reexpression of the energy, but give a
physically meaningful form as follows: The right-hand side of Eq. (1-1) is constructed
by two parts: One term is the kinetic energy of the dressed bosons which is Galilean-
covariant and the residual terms Galilean-invariant terms. The latter terms have
non-linear forms with respect to the dressed boson number. This nonlinearity
derives the essential property of the interacting many boson system. Namely, these
non-linear terms produce the drastic change in the excitation spectrum, that is, the
phonon-like spectrum appears or disappears according to the change of the momen-
tum distribution of the dressed bosons. In the final section, we will discuss possibility
of an extension of this theory to a three-dimensional many boson system.

§ 2. ' Energy spectrum in the infinitely large coupling constant

Let us investigate the following interacting many boson system of which a total
Hamiltonian is -

2
H =%‘.2‘b—map*ap +%p§ra§+rai}‘-rapaq, ' (2-1)

~where m indicates the mass of one boson, g the coupling constant, and p, ¢ or 7 the
momentum which takes one of such values as (277%/L) X integer owing to the periodic
boundary condition of the length L. The operators @» and a,™ are the annihilation
and creation operators which obey the commutation relations

[dp,ﬂp*]:@p,q
and v
(a5, acl=[as*, as*]=0, ' : (2-2)

where p,¢ is the Kronecker-delta function. Here, we shall briefly summarize the

results of the previous papers.””® The Hamiltonian (2-1) is diagonalized by the
unitary operator U B :
U:1+ i{U +Ivz_lﬂ Z ¥ .. q% U oo
‘N=2 v =2 (N_ Z)!Puﬁz,---PN—zapl Qw1 Uty Gpw-s
—1)¥(N-1 s |
_(—)N(—!—)pltgp”ag""ag"a"""a"”}’ (2:3)

where the operator Uy denotes the unitary transformation that produces the exact
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eigenstates of the fixed total number N and is written as

. .. N N
Uv= 2 2}1841"-!11\16341"-!11»1 H ku H a?i‘l'szij;l—-[:laQI - ) (2'4)

a=gsz~<an {bys 1=i<5sN Ry— iy i=1

In this equation, @q,,,ev and Ba,,qv are the normalization constants and are given by

_ 1 '
a‘hy"',‘IN—l;.[ W | (2-53)
and
2 N(N-1) N .
Bq1,~-~,q~=< 7) , (in the limit g—o0) - (2-5b)

where 7, is the number of the mbmentum pin qi, qs, -+, gv. The running parameters
s indicate the transfer momenta from the i-th boson to the j-th boson. The constant
values %y are uniquely determined by the following coupled equations:

L 7
COt(ﬁkij>:%{qi*6B+2kij+lgj(kiz— jz)}, (2-6)
where
kij:_kji, —‘ﬂh/Lékij<0. (1§Z<]§N) (2’7)

The exact eigenstate of the Hamiltonian (2-1) is described by
]¢Q1-"QN> = UNa¢11"'¢INa§1"'a:l;N|O> s . (2 . 8)

where |0) is a vacuum state. Then, the eigenvalue E,..qy of the total energy becomes

qu...qN:“Z—lm_'z[Qi+gkij]2. | (2-9)

B

These results have been obtained in the previous paper. _
Now, in this section, let us derive a reexpression of the total energy in the limit
g—oo. In this limit, the value &, is easily determined from Egs. (2:6) and (2-7) as

_rh

kij—Tﬁij , (2' 10)
where
-1 for i<y,
9= 0 for i=j,

1 for i>j. ’ (2-11)

Using the unitary oprator U of Eq. (2-3), we define the creation and annihilation
operators of one dressed boson in the interaction cloud as

Ap*=Uap*U*, Ap:UapU*. (2'12)

The creation operator A,* of the dressed boson produces any eigenstates of the total
Hamiltonian: '
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]¢91"'QN>: Aqy-qn. :II<1"'A§N|O> . (2' 13)
Then, the number operator of the dressed boson with momentum p is given by
np:Ap*Ap= Udp*tlpU* . . (2'14)

We can reexpress the total energy in terms of these number operators #, as will be

mentioned below. This reexpression starts with substitution of Egs. (2-10) and (2:11)

into Eq. (2-9). Then, Eq. (2-9) becomes

N N
.Eqr--IIN:ﬁZ [Qz’ +”Th§ 77ij]2

N 1 ah &
2m2qz

2 .
S @B )+ () S '~ (2:15)
ijl :
The antisymmetric property of the suffices of 77:"[ gives
N N 1
(g2 7/:’1)272(41'*611)7%1, © (2-16)
=1 =1 7,1
and the right-hand side of Eq. (2:16) becomes

( Ve _{_(Qi_QZ) for i</,
2 (gi—q) for  i>1. _ (2-17)

If we remember the restriction among the values of the momenta ¢, ¢, ***, gn in the
sum of Eq. (2-4), then we can rewrite Eq. (2:17) into the absolute value of the
momentum difference, that is,

Agi—a)na=lai—ail . (2-18)
- By combining Eq. (2-18) with Eq. (2-16), we obtain

ZQi”z’l:LZlCIi_QZI . ) _ (2'19)

In order to calculate the third term on the right-hand s1de of Eq. (2 15) we use the
following property:

M=

z

1l
-

nu=—(i—1)+N—i=N+1-27, ' (2-20)
which yields

3 = BIN+1= 21 =L NV —1). L @)
By substltutmg Egs. (2-19) and (2-21) into Eq (2-15), we have

EQ1,--',¢IN: (2'22)

1 1 7k i 2 N(N?—
T2t tg Bla— al (?) (3 D

Let us rewrite the expression (2-22) in terms of the number operator which is defined
by Eq. (2-14). We easily obtain it as follows:
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1 (7 >2N(N2—1) , (2-23)

1
Z‘.p Mot TS 2“’ almpnats, A7 3

which is equivalent to
=1 s124 % 1 7n - XA A K
H 2m§p Ap*Ap+ o L Elp glAr* ArAd*Aq

o T FUS AT AP -S4 A,)

Consequently we have succeeded in rewriting the total energy into the simple form
(2-23) in the case g—~co. This result immediately leads that the total Hamiltonian is
diagonalized as follows:

U*HUz—Zp ata 21% TS p—glas* asas*aq
o ) H (S0~ Sasas) 2:24
2l 1) 3(Sarar-Saral, (2-24)

where we make use of the inverse transformation .
UtAy*U=ar*, U*AU=0ap. : (2-25)
Next, let us investigate the property of the energy spectrum by using this compact
form. We define the excitation energy &, as an energy-increase of the system when
the dressed boson in the interaction cloud is excited from the zero momentum state to

the state with momentum p. This excitation is described by the change of the number
distribution from {#4} to {n.’}, which are related to each other,

' =no—1,

' =unp+1, _

nd=nq for ¢=*0 and ¢=p. (2-26)
Then, the éxcitation energy &p is easily obtaind from Eq. (2-23) as

er=E({n})— E({nq}) '

_# 1 _Llm s
=3 T L2 p—al—laD)na ol . - @2
When the value #,/L is non-zero in the limit L~ oo, the excitation energy becomes

L-oo zh no,
fixed wo/L ~wm L'

&p ﬁ|+2m : mLE(Ip gl—lah)nq. (2+28)
This indicates that &, is proportional to the absolute value of p in the region of small
value of |p|. This means that the phonon velocity is equal to z#ne/mL.

Next, let us investigate Galilean covariancy of the total energy. The first term
on the right-hand side of Eq. (2-23) is decomposed into the kinetic energy of the center
of mass and the remaining term,

Lmé‘.ﬁzanﬁ@pm)z 4mN 2(19 ainsmg. '(2°29)
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Then, the total energy is expressed aé
E=tr(Spm )“[LZ‘.(?—QY% na -+ S p— glusm
2mN ‘5 ? 4mN b,q pTa ZmLp,q ?

+<”Z‘)2N(Jg’;”1)] | - (2-30)

The terms in the square parenthesis on the right-hand side of Eq. (2-30) are easily seen
to be invariant under Galilean transformation, because its functional forms are made

of momentum differences only. Thus, the total energy is decomposed into the kinetic’

energy of center of mass (the first term in Eq. (2-30)) and the Galilean-invariant part
(the residual terms in Eq. (2-30)). Namely, the expression (2:30) of the total energy
shows to be Galilean-covariant.

§3. Expansion

In this section, we expand k; into the power series of (1/g). We put k. as

=3 (%)”ké;‘) , (3-1)

n=0

‘where £? is a coefficient of #-th order in the expansion. In the limit g— oo, %y is
expressed by Eq. (2:10) and therefore the zeroth order coefficient becomes

K="y, (3-2)

which yields the coupled eqqation determining the coefficients {£{} as

col Zno 4 (L) k]

_nr __,_7_[.7?_N _ S sh( L\ pm_ (n)] .
_mg[qz QJ_V*— 3 lgl(”zl ”’l)+7§1i§1<g> (kzl 2 ) , (3 3)
where we use Egs. (2:6), (2:7), (3-1) and (3-2). Since 774/2 is equal to 7/2 or — /2,
the coupled equation (3+3) is rewritten as

- 2%&?11( )k(n)=—‘Arctan L[Qz qj+—”L£Zl‘.(mz—mz) |
S ) »

where the value of the function of Arctan is chosen in the range between — z/2 and
7/2 owing to the restriction (2-7).

Now, Eq. (3-4) has the following property: The rlght hand side of Eq. (3-4) can be

~ determined up to the (s+1)-th order of (1/g) only by using the coefficients £{ up to the
s-th order. Therefore, we can determine the coefficient 2§*" by using Eq. (3+4) by
substituting the lower order coefficients &P (0=<#<=<s) into the right-hand side of
Eq. (3:4).
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Let us determine the coefficients £ up to the third order by making use of the
expansion of Arctan x:

3

-1
Arctan x= Z( 1)”12n 7= 'g-i— : (3-5)

Then, Eq. (3-4) becomes

L

2h< kP + 2k<2>+ L+ )

.l 7k _

= mg[Qi q;+ Lle(mz ﬂjl)]
_Ez[ (b — D)+ S(k@) k(%)):l
m

+%< % >[qz 2(77,; 7}11)]3—1;Order<%>. (3+6)

mg

If we pick up the terms with the same power of (1/g) on both sides of Eq. (3-6), we
obtain the coefficient £ from the first order to the third order successively.
(first order part)

k=2 o g+ TS| @

(second order part)

==L — ), | G

(third order part) _
3 3
> GO ORS 1o | PRV AL CRe ] (3-9)

By substituting Eq. (3-7) into Eq. (3-8), the second order coefficient 4% becomes

2%° { ]
2) — .
A% <Lm> 2l gi— Zl(ms Mis)
o ] | ,

( Lm) N[qz S — 1) | (3+10)
Similarly, we put Eq. (3-10) into Eq. (39), and then obtain

2 20ENE ]

[ J—
2 LmE[( Lm) N[qz 2(7713 7718)

3 3
A E e P

__thsz[,_ h 4_.]
= <Lm>N a:i—q;+ LZS‘.(ms Nis)
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+”§"2—ZL<_>3[(Q£— g:)*+3(g:— Qj)z ﬂzl g(ms~ Zis)
+3(g:— qj)<7r_Z2)2§(7]is — s )it — 77;)

3 ) :
) B m) =)= | @
Thus, we have determined the value of Z; up to the third order of the power of (1/9).
§4. 1/g power expansion of the energy

In this section, we expand the total energy to the 1/g power series and obtain the
coefficients up to the third order. The total energy is expanded as follows:

E=Eo+%E1+—;2—Ez+%E3+‘-" . (4-1)

In order to obtain the coefficients E,., we substitute k¢ obtained in the previous
section into the representation (2-9):

=_2_1772[ st+2< JAONS 12 PO+ 3k(3))]2+0rder (%)

1 2
=gt )

E

S Bl
eS| 2 0t B S SR + TP T |
s 204 ”Lhgv,s)2k<3>+22k<l>zk@>]+0rder (&) @2

By comparing Eq. (4-2) with Eq. (4-1), we obtain each coefficient as follows:

| o ke Y
Eo= g et L Tne) #-3)
1 of Z
By 3| et 50e) 540 4-4)
Be=p | o 0t B 510 | SO+ AP S | (4-5)
E ——L _2 ﬂ—h k(3) (1) (2)’
3— 2m 7| q:+ L ;772'8 ; 4 +2;ku Zlk_ll . ) (4'6)

The coefficient Ey agrees with the total energy (2-22) of the limit g— oo:

E():

1 2. 1 7h 1 (nh 2N(Nz—l)
ZmZi:ql +2m Zlqz QJ|+ \ L) 3 (4'7)
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. Here, we write down two identities useful in the higher order calculation:

S0 =5 S a—a kS,

S0kl =5 37— 1 R | (4-8)
which are easily derived from the antisymmetric property £%=—k{P.
Then, Eq. (4-4) is rewritten by using Eq. (3-7) as
1 2% /3
Ei=—5— imZ{qi—qﬁ”Tg(vm ms)}{ Z(mt mt)}
1 2% 2
= B (4= 0 )+ E 5 g~ 0) (6 1)
2
+(Z) S0 1= . (4-9)
The second and third terms in the square parenthesis are rewritten by Eq. (2-19)
20— a:)(nis = 135) =2 amss+ Zams=NZla:—asl, v ©(4-10)
%lt(ms* D3s) (e — 956) = z_JZst(msmt + 03s75) =2N 23 7:570ie ' (4-11)

where we use the antisymmetric property for the suffices. Substituting Egs. (4:10)
and (4-11) into Eq. (4-9), we have

_ 1 2, 21h 7h \? 2N*(N?—1) .
El——mm[z( —a P+ EE NSl g— gl +(ZL I )

where Eq. (2:21) is employed. Similiarly, by making use of Egs. (4-5), (4-8) and
(3:10), E» becomes

272
Er= 2m<

A

2m

)NZ{qz LZ(ms U:s)}{qz q; ELE;(W—%)}

2\2
%Z’L)_NE{QZ d;i “?‘Zj(ﬂz‘s_ﬂj&}

X {CIi_CZj"‘th(ﬂit— ﬂjt)} o v (4-13)
By the calculation similiar to that of Ei, we can easily derive

Er= zm(ZZ)ng [2( — g+ 2R NZlql—qs|+( nh )2 2N (N?—1) ]

3 .
(4-14)

Consequently, we obtain the total energy up to the second order of the power of (1/g)
as follows:
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P B E S

omS 2m\| Lmg '\ Lmg
1 (2., ( o > , {_n_ (nh)zN(Nz—l)}
+2m{1 ngZN-i— Lwmg 3N} L %VI: as|+ 3
1 v )
+ Order (g) (4-15)

Rewriting this expression in terms of the number distribtion {#,} of the dressed
bosons, we get

1 aa 1 2B [ 20 \*3N)<ysr e
- m%’p n"+2ml Lmg ' < mg) 2 } q(p a)Vnona
1, o o Th i \EN(N*—1)
+2m{1 ng2N+<ng) }{ p2ql q‘""”ﬁ< L ) 3 }
1 )
+Order <g3)' | _ (4-16)

If we decompose the first term on the right-hand side of Eq. (4-16) into the sum of the
kinetic energy of the center of mass and the Galilean invariant terms, we obtain

Ezﬁ]—v—(gpnp)% i T Zlgg)*?’( ZZQZD }

[Rloor o B e (1)

_(4-17)

Thus, we have accomplished to rewrite the total energy to the compact form as Eqgs.
(4-15)~(4+17). Next, let us calculate the third order coefficient Es. By substituting

the representation (3:7), (3:10) and (3-11) of £ into Eq. (4:6) and by employmg Eq.

(4-8), we obtain

Es= Zin {qz qj+%h§(nis4vjs)}{ (%Z)NZ[ E(mt mt)}

5 2]?( )[(qz—q) F8(a a5 n— i) |

4=
+3(g:— 6];)( >2(771t 056)(Miw— 75

+ <7F—Lh>3t§( st = 05 )(Wiw— 05u) (Do f 7710)]}

o <2h2 > NZ}{ qJ—!-—Z‘.(??zs 'ﬂjs)}{Qi—Qz“i‘ﬂThzt‘.(??it‘ﬂzt).}

:_2m<2h2> NZZ:{ L Z‘.(ms_ 7715)}{411 g Lg;(”it_ﬂjt)}
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+§%§%<L> [(qi—qj)“f(HS)(qz 25 2(7lzs 7ss)
63 {(T) B )= )
+@+1)a— ) B B~ 20— 07— 70

+ <—”LZZ—>4S§U(7L—S’ — 0is) (i = 156N Diu— 03) (20— m-u)] : (4-18)

Through a slightly iong calculation given in the Appendix, Eq. (4-18) becomes

Es=——(ih7n>2N2[2(qz g:)*+ ZnhNZqu gsl
NERE SRy -

25 00— al(ai— )+ (ai— a)as— )+ (a—a:F)
7h \? _ 2 —_ _—
+6(-7) Z{2(ai—a:)*nsnie g~ asllai— ael}

+4( ){ZNZq,msmmzu+N(N2—1)2|Qz a5}

gr( R ) 8 \r(ont— 5N2+3)] . | (4-19)

Thus, we have accomplished the power expansibn of the total energy up to the third
order.

§5. Phonon velocity and ground state energy

In this section, we calculate the phonon velocity up to the third order of the power
of (1/g) and examine the relation between the phonon velocity and the ground state
energy.

The state of the smgle excitation is characterized by the number distribution
function {n"} as

"' =N—1,

np” =1,

7ng =0 for all g. (g0, g=p) (5-1)
Therefore, the single excitation energy &,° is defined by

&= E({ns"))~ Ee, 6

where E¢ denotes the ground state energy. Substituting the expression (4-16) into
Eq. (5-2), we can calculate the single excitation energy &,° up to the second order of
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the power of (1/g) as

S T on’ +( o >3N}2(N 1y

2m\  Lmg Lmg
+ﬁ{1—, fZQZNJr( EZQ)23N2} 2% N|p|+Order (%)
-+ (5 o)+ 2w
+Order (%'or %—) _ .(5-3)

Now, the phonon velocity ¢ is defined by
c=lim(e,"/|p]) (5-4)
1210 _
which is expanded into the power series as
c=cot+— 1 c1+ 12 C2 =5 13 Jor : (5-5)

Therefore, the coefficients ¢: up to the second order are derlved from Egs. (5-3) and
(5-4): '

23 =
2 2

s (O3 | 69

where we take a limit L— oo under a fixed value of NJ/L.
We calculate the third order coefficient ¢; by making use of Eq. (4-19), and obtain

=~ ) () a7 (R v
oy sy =
Consequently, the phonon velocity ¢ is given by
= A O ()]
o) (1) +Order () 610

Next, let us expand the ground state energy E¢ to the power series as follows:

Co—
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EG—E00+1E01+ 2Ecz+ 3Ec3+ (5'11)

By putting the number distribution function {#.} as
=N, nq=0 for all ¢, (g=0) (5-12)

in Egs. (4-16) and (4-19), we obtain the coefficients Eco~ E¢s in the expansion (5-11)
of the ground state energy,

s SE(E
oL SR B A ()

()

where we take a limit L~ oo under a fixed value of N/L.
As is well known, a sound velocity v of liquid or gas is related to its ground state
energy E¢ from a macroscopic argument. The relation is

. L* PEs
mN JL* -

(5-14)

Let us show that the relation (5-14) also holds for the microscopical phonon velocity.
First, we expand the square of the phonon velocity into the power of (1/g),

ch=, C02+%2C0c1 +%(20002+ clz)'+%(2cocs+201c2)+ e (5-15)

Each coefficient of the same power of (1/g) in Eq. (5-15) becomes the middle sides of

Egs. (5-16)~(5-19) by using Egs. (5:6)~(5-9):

SR e
o= DY L e e
s et Y (Y (L 2 61
et 2ceim 20 T (Y () 4 S Y

L? aZEcg. _ (5-19)

“mN oL’
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On the other hand, if we take the second partial derivatives of Egs. (5-13), we obtain
the last equalities in Egs. (5:16)~(5:19). Consequently we have verified Eq. (5-14) in
an explicit form up to the third order.

§6. Conclusion and discussion

In the previous sections, we have investigated the (1/g) power expansion of the
energy spectrum for the interacting many boson system in one-dimensional space.
This scheme is accomplished by using the number of the dressed boson, and the result
~ gives a physically meaningful expression. Moreover, we have obtained the relation
between the phonon velocity and the ground state energy explicitly. Taking consid-
eration of the simplification of the energy-expression, we may also reexpress the
unitary transformation U to a more compact form, but do not succeed in doing it.

In conclusion, let us discuss a utilization of the present results in three-
dimensional system. Some of the fundamental properties clarified in this paper may
hold in the three-dimensional system, also. Especially the Galilean-invariant term in
the total energy may be extended to the three-dimensional system where its total
energy may have a similiar functional form | p—alny,n, (p and q are three-

dimensional vectors). This idea gives a new viewpoint on a microscopic theory of

Liquid Hell as shown in Refs. 7)~9).
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Appen_dix
Let us rewrite each term of Eq. (4-18) as follows:
20— 4. (nis = 135) =22(q:— a:V'nis
=2(g:— ;) —(gs—a:)’1n:s
=2(a:—go)l(q:~ ;)" +(g:= a:)(qs— a:) + (gs— 2,17
—Sla—all(a—a)+ (@~ a)as— )+ e, (A1)

where the final equality is derived from Eq. (2|- 18). Next the third term in the square
parenthesis of Eq. (4-18) is reexpressed as ‘

; JES t(di-CIj)Z(ﬂis_ 77js)(77it - 77jt)
= st: t[Z(qi— @5 nssmie —2(q: — q5)2 0isie )

z

= 2 [2(a:— a5V nismie +4qugimisns]
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=ijzs"t[2(qz-~qj)zmsmt+Iqi—qsllqj—qtl], (A-2)

where we use the asymmetric property for the suffices of 7:s and Eq. (2:19). The
fourth term in the square parenthesis of Eq. (4:18) becomes

2 (g:i— @) (9is— 036 )(7ie — 936 ) (P — D)
ijstu
= Zl_jsszﬁ( Dishseliu— 3 NisNielliu -+ 30 isNielu— Nishstlsu) - ' (A-3)

In the summation on the right-hand side of Eq. (A-3), we can use the follovx}ing
properties:

J_Eu”ju:O s
J§u77js7/jt77ju=;(2]'—N—l)3=0 . C(A-4)

Then, Eq. (A-3) is rewritten as
ijgﬂl(qi — )7 — 759 — ﬁjt)(ﬂz‘u )
zzijsztu[qiﬂisﬂitﬂiu+34i77i87jt7/ju]
=2Nl§u4i7iis77z‘t77iu+N(N2—1):‘u:|61i_6]s|, . (A'5)

where we use Eq. (2:21).
~ Finally, we calculate the fifth term in the square parenthesis of Eq. (4-18) as
follows: :

2 (nis— 936)(Mie— 036 ) (Piw— 95u)(Bi0— Wiv)
ijstuv
= iszt!w[Z NisNitiulliv — 8 NisNitNiulliv +6 77is77it77ju77jv] . 7 (A * 6)

Now, we calculate the first term on the right-hand side of Eq. (A-6):

N 2
3 pemune=NZ(2i— N—=1'=A 3N~ 10N?+7]. (A7)
If we put Egs. (A7) and (2-21) into (A+6), we obtain
ﬁg‘.w(ms— 255 )( 72— 03 ) D — 05 ) (00— W50

2 20 AT2__1)\2
= 2N ra e 1one-+ 7]+ SV

=%N2[2N4—5N2+3] K ' (A-8)

By substituting Eqs. (A-1), (A-2), (A-5) and (A-8) into Eq. (4-18), we get the final
result: '
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2% 27rh

NZqu as|

NEA I Jgl L2 (%)s[lzj(qi—qj)f

+4—Z‘.|qz asl{(q:— g +(q:—q:)as— a5) +(as— a;)}
2
+6(£LE> szt{Z(qi— a5 i +a:— qsllas— q.l}

+4(Z ) N 54 et NV~ 13— o}

+<’f) 8 Ao 5N2+3)]. | | (A-9)
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