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Kukushkin et al. have measured the electron spin polarization versus magnetic field in the fractional quantum Hall states. The
polarization curves showwide plateaus and small shoulders.The 2D electron system is described by the totalHamiltonian (𝐻

𝐷
+𝐻
𝐼
).

Therein, 𝐻
𝐷
is the sum of the Landau energies and classical Coulomb energies. 𝐻

𝐼
is the residual interaction yielding Coulomb

transitions. It is proven for any filling factor that the most uniform electron configuration in the Landau states is only one. The
configuration has theminimum energy of𝐻

𝐷
.When themagnetic field is weak, some electrons have up-spins and the others down-

spins. Then, there are many spin arrangements. These spin arrangements give the degenerate ground states of𝐻
𝐷
. We consider the

partialHamiltonian only between the ground states.ThepartialHamiltonian yields the Peierls instability and is diagonalized exactly.
The sum of the classical Coulomb and spin exchange energies has minimum for an interval modulation between Landau orbitals.
Using the solution with the minimum energy, the spin polarization is calculated which reproduces the wide plateaus and small
shoulders. The theoretical result is in good agreement with the experimental data.

1. Introduction

In this paper, we examine the electron spin polarization in
the FQH states with the filling factor ] < 2. Before the
examination, we see here the investigations on the FQHE
briefly.

The fractional quantum Hall effect was discovered by
Pan et al. [1, 2]. The quasi particle with a fractional charge
and its wave function were introduced by Laughlin using
the variational method [3, 4]. Many physicists developed it
[5–7]. Jain proposed the composite fermion theory [8, 9].
Thereafter, the FQHstateswith the nonstandard filling factors
have been investigated by employing various methods as in
the references [10–14]. These theories assume the various
types of the quasi particles and their mixing. On the other
hand, Tao and Thouless [15, 16] examined the case that the
lowest Landau levels are partially filled with electrons. Their
method is very important to investigate the FQH states. We
have developed the Tao-Thouless theory and have found the
most uniform configuration of electrons. It has been proven
that the configuration is unique for any filling factor [17].The

configuration minimizes the expectation value of the total
Hamiltonian.

The Coulomb transitions conserve the 𝑥 component of
the total momentum where the 𝑥-direction indicates the
current direction.The conservation law produces energy gaps
for the specific filling factors. For the other filling factors, we
have found the gapless structure and peak structure [17–23].
The theory can well explain the behaviors of the FQHE at
] < 2 without any quasi particles.

On the other hand, the electrons in FQH states with ] > 2
occupy the higher Landau levels.Therein,many experimental
and theoretical investigations [24–43] are carried out and
various interesting phenomena are discovered. Also, the
electron spin polarization is investigated for the FQH states
with ] > 2 by the papers [44–49].

Although the function form of the spin-polarization
versus magnetic field is very important for investigating the
FQHE, there is no theoretical calculation of the function
shape quantitatively. In this paper, we calculate the spin-
polarization versus magnetic field at ] < 2 by developing the
previous method in the references [17–23].
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Figure 1: Experimental data of the polarization for the FQH states [50].

Kukushkin et al. have measured the electron spin-
polarization versus magnetic field [50]. They clarified the
function forms at twelve filling factors in ] < 2. Although
their experiments are rather old data, the obtained function
forms give us the important knowledge.

Their results are shown in Figure 1. Hereafter, we describe
the electron spin polarization by the symbol 𝛾

𝑒
. Then, 𝛾

𝑒
= 1

means a fully polarized state. The experimental polarization
curves have the following properties.

(1) The wide plateau appears at 𝛾
𝑒
= 0 for ] = 2/3 and

2/5.
The wide plateau appears at 𝛾

𝑒
= 1/3 for ] = 3/5 and

3/7.
The two wide plateaus appear at 𝛾

𝑒
= 0 and 1/2 for

] = 4/7 and 4/9.
(2) The small shoulder appears at 𝛾

𝑒
= 1/2 for ] = 2/3

and 2/5.
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The small shoulder appears at 𝛾
𝑒
= 2/3 for ] = 3/5

and 3/7.
The two small shoulder appear at 𝛾

𝑒
= 1/4 and 3/4 for

] = 4/7 and 4/9.

As shown in Figure 1, the ] = 2/3 polarization curve
resembles the ] = 2/5 curve. The ] = 3/5 polarization
curve resembles the ] = 3/7 curve. Also, the ] = 4/7

curve resembles the ] = 4/9 curve.The characters mentioned
above indicate that the shape of the spin polarization curves
depends mainly upon the numerator of the filling factor. The
numeratormeans the electron number per unit configuration
(see [17]).Therefore the polarization belongs to electrons (not
holes). In this paper we clarify the origin of the polarization
curve.

We shortly describe the fundamental properties of the
quasi-two-dimensional electron system below. We illustrate
a quantum Hall device where the directions of the axes 𝑥, 𝑦,
and 𝑧 are taken, as in Figure 2. Then, the vector potential, A,
has the components:

A = (−𝑦𝐵, 0, 0) , (1)

where 𝐵 is the strength of the magnetic field.
The Hamiltonian, 𝐻

0
, of a single electron in the absence

of the Coulomb interaction between electrons is given by

𝐻
0
=
(p + 𝑒A)2

2𝑚∗
+ 𝑈 (𝑦) +𝑊 (𝑧) , (2)

where 𝑈(𝑦) and 𝑊(𝑧) indicate the potentials confining
electrons to an ultrathin conducting layer in Figure 2.Therein
𝑚
∗ is an effective mass of electron, and p = (𝑝

𝑥
, 𝑝
𝑦
, 𝑝
𝑧
) is

the electron momentum. The effective mass 𝑚∗ differs from
material to material and the value in GaAs is about 0.067
times the free electron mass. The eigenvalue problem of this
Hamiltonian is solved and the single electron wave function
𝜓
𝐿,𝐽

is expressed as follows:

𝜓
𝐿,𝐽
(𝑥, 𝑦, 𝑧) = √

1

ℓ
exp(

𝑖𝑝𝑥

ℎ
) 𝑢
𝐿
𝐻
𝐿
(√

𝑚
∗
𝜔

ℎ
(𝑦 − 𝛼

𝐽
))

× exp(−𝑚
∗
𝜔

2ℎ
(𝑦 − 𝛼

𝐽
)
2
)𝜙 (𝑧) ,

(3)

where 𝛼
𝐽
is given by

𝛼
𝐽
=

𝑝

(𝑒𝐵)
= [

2𝜋ℎ

(ℓ𝑒𝐵)
] 𝐽, ℓ: length of 2D electron system.

(4)

Therein, 𝜙(𝑧) is the wave function of the ground state
along the 𝑧-direction, 𝐻

𝐿
is the Hermite polynomial of 𝐿th

degree and 𝑢
𝐿
is the normalization constant. We call 𝐿 the

Landau level number. Also, the eigenenergy is given by

𝐸
𝐿,𝐽

= 𝜆 + 𝑈 (𝛼
𝐽
) + ℎ𝜔(𝐿 +

1

2
) , (𝐿 = 0, 1, 2, 3, . . .) , (5)
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Figure 2: Quantum Hall device.

where 𝜆 is the ground state energy along the 𝑧-direction
𝑈(𝛼
𝐽
) is the potential energy in the 𝑦-direction.
When there are many electrons, the total Hamiltonian is

given by

𝐻
𝑇
=

𝑁

∑

𝑖=1

𝐻
0,𝑖

+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

𝑒
2

4𝜋𝜀√(𝑥
𝑖
− 𝑥
𝑗
)
2

+ (𝑦
𝑖
− 𝑦
𝑗
)
2

+ (𝑧
𝑖
− 𝑧
𝑗
)
2

,

(6a)

where𝑁 is the total number of electrons and𝐻
0,𝑖
is the single

particle Hamiltonian of the 𝑖th electronwithout the Coulomb
interaction as

𝐻
0,𝑖
=
(p
𝑖
+ 𝑒A)2

2𝑚∗
+ 𝑈 (𝑦

𝑖
) + 𝑊(𝑧

𝑖
) . (6b)

The many-electron state is characterized by a set of Lan-
dau level numbers 𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑁
and a set of momenta

𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑁
. The complete set is composed of the Slater

determinant as

Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

=
1

√𝑁!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝐿
1
,𝑝
1

(𝑥
1
, 𝑦
1
, 𝑧
1
) ⋅ ⋅ ⋅ 𝜓

𝐿
1
,𝑝
1

(𝑥
𝑁
, 𝑦
𝑁
, 𝑧
𝑁
)

...
...

𝜓
𝐿
𝑁
,𝑝
𝑁

(𝑥
1
, 𝑦
1
, 𝑧
1
) ⋅ ⋅ ⋅ 𝜓

𝐿
𝑁
,𝑝
𝑁

(𝑥
𝑁
, 𝑦
𝑁
, 𝑧
𝑁
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(7)

This state is the eigenstate of ∑
𝑁

𝑖=1
𝐻
0,𝑖
. The

expectation value of the total Hamiltonian is denoted
as𝑊(𝐿

1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) which is given by

𝑊(𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

=

𝑁

∑

𝑖=1

𝐸
𝐿
𝑖

(𝑝
𝑖
) + 𝐶 (𝐿

1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) ,

(8)

where 𝐶 is the expectation value of the Coulomb interaction
defined by

𝐶 (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

= ∫ ⋅ ⋅ ⋅ ∫Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

∗
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×

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

𝑒
2

4𝜋𝜀√(𝑥
𝑖
− 𝑥
𝑗
)
2

+ (𝑦
𝑖
− 𝑦
𝑗
)
2

+ (𝑧
𝑖
− 𝑧
𝑗
)
2

× Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) d𝑥
1
d𝑦
1
d𝑧
1
, . . . , d𝑥

𝑁
d𝑦
𝑁
d𝑧
𝑁
.

(9)

Hereafter, we call 𝐶(𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) “classical

Coulomb energy.” We divide the total Hamiltonian 𝐻
𝑇
into

two parts𝐻
𝐷
, and𝐻

𝐼
, as follows:

𝐻
𝐷
= ∑

𝐿
1
,...,𝐿
𝑁

∑

𝑝
1
,...,𝑝
𝑁

󵄨󵄨󵄨󵄨Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)⟩

× 𝑊(𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

× ⟨Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)
󵄨󵄨󵄨󵄨

(10)

𝐻
𝐼
= 𝐻
𝑇
− 𝐻
𝐷
, (11)

where 𝐻I is constructed only by the off-diagonal elements
and depends upon only the relative coordinate.Therefore, the
total momentum of the 𝑥-direction conserves in this system.
That is to say, the sum of the initial momenta 𝑝

𝑖
and 𝑝

𝑗
is

equal to the sum of the final momenta 𝑝󸀠
𝑖
and 𝑝󸀠

𝑗
via Coulomb

transition as follows:

𝑝
󸀠

𝑖
+ 𝑝
󸀠

𝑗
= 𝑝
𝑖
+ 𝑝
𝑗
. (12)

At a filling factor smaller than 1, the ground state of 𝐻
𝐷

satisfies the following properties.

(1) 𝑁 electrons exist in the lowest Landau levels with
𝐿
1
= 𝐿
2
= ⋅ ⋅ ⋅ = 𝐿

𝑁
= 0.

(2) The electrons most uniformly occupy the lowest Lan-
dau levels. Then, the classical Coulomb energy takes
the lowest one. The electron momenta 𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑁

are related to each centre position as in (4).

For any filling factor, we can find only one electron
configuration in Landau states which is the most uniform
and has the minimum energy of 𝐻

𝐷
. The proof is done in

[17]. When the magnetic field is weak, there are many spin
arrangements for a given configuration. These spin arrange-
ments construct the degenerate ground states of 𝐻

𝐷
. The

interaction Hamiltonian 𝐻
𝐼
yields the quantum transitions

among the ground states. We examine the interaction in the
next section.

2. Coulomb Interaction between Up- and
Down-Spin States (Equivalency between
Coulomb Transition and Spin
Exchange Interaction)

The degenerate ground states have the same momentum set
corresponding to the most uniform electron configuration.
TheHamiltonian𝐻

𝐼
given by (11) acts between two electrons.

We indicate the spin states by ↑ and ↓ for up- and down-
spins, respectively. Then, all the initial spin states with the
momentum pair 𝑝

1
, 𝑝
2
are described as

󵄨󵄨󵄨󵄨𝑝1 ↑, 𝑝2 ↑⟩ ,
󵄨󵄨󵄨󵄨𝑝1 ↑, 𝑝2 ↓⟩ ,

󵄨󵄨󵄨󵄨𝑝1 ↓, 𝑝2 ↑⟩ ,
󵄨󵄨󵄨󵄨𝑝1 ↓, 𝑝2 ↓⟩ .

(13)

When these states transfer via 𝐻
𝐼
, their final states are

described as follows:
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠

1
↑, 𝑝
󸀠

2
↑⟩ ,

󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠

1
↑, 𝑝
󸀠

2
↓⟩ ,

󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠

1
↓, 𝑝
󸀠

2
↑⟩ ,

󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠

1
↓, 𝑝
󸀠

2
↓⟩ ,

(14)

where 𝑝󸀠
1
and 𝑝󸀠

2
indicate the final momenta via the Coulomb

interaction. We consider the transitions only between the
degenerate ground states. Therefore, the final momentum set
should have the minimum energy of 𝐻

𝐷
. Accordingly, the

final momentum set is equivalent to the initial momentum
set because of the uniqueness of the electron configuration
for the ground state of𝐻

𝐷
:

𝑝
󸀠

1
= 𝑝
2
, 𝑝

󸀠

2
= 𝑝
1
. (15)

The case of (𝑝󸀠
1
= 𝑝
1
, 𝑝
󸀠

2
= 𝑝
2
) is removed because the

diagonal matrix elements of 𝐻I are zero. Applying (15), the
final state |𝑝󸀠

1
↑, 𝑝
󸀠

2
↑⟩ becomes |𝑝

2
↑, 𝑝
1
↑⟩which is the same

as its initial state. Also |𝑝󸀠
1
↓, 𝑝
󸀠

2
↓⟩ becomes |𝑝

2
↓, 𝑝
1
↓⟩.

In the two cases, the final state is identical to the initial state,
and therefore thematrix elements of𝐻

𝐼
are zero. Accordingly,

nonzero matrix elements are

⟨𝑝
2
↑, 𝑝
1
↓
󵄨󵄨󵄨󵄨 𝐻I

󵄨󵄨󵄨󵄨𝑝1 ↑, 𝑝2 ↓⟩ , (16a)
⟨𝑝
2
↓, 𝑝
1
↑
󵄨󵄨󵄨󵄨 𝐻I

󵄨󵄨󵄨󵄨𝑝1 ↓, 𝑝2 ↑⟩ , (16b)

where

⟨𝑝
2
↓, 𝑝
1
↑
󵄨󵄨󵄨󵄨 𝐻I

󵄨󵄨󵄨󵄨𝑝1 ↓, 𝑝2 ↑⟩ = ⟨𝑝2 ↑, 𝑝1 ↓
󵄨󵄨󵄨󵄨 𝐻I

󵄨󵄨󵄨󵄨𝑝1 ↑, 𝑝2 ↓⟩ .

(17)

We examine the following three cases.

Case 1. Consider 𝑝
1
− 𝑝
2
= ±2𝜋ℎ/ℓ

𝜉 = ⟨𝑝
2
↑, 𝑝
1
↓
󵄨󵄨󵄨󵄨 𝐻I

󵄨󵄨󵄨󵄨𝑝1 ↑, 𝑝2 ↓⟩ . (18a)

Case 2. Consider 𝑝
3
− 𝑝
4
= ±4𝜋ℎ/ℓ

𝜂 = ⟨𝑝
4
↑, 𝑝
3
↓
󵄨󵄨󵄨󵄨 𝐻I

󵄨󵄨󵄨󵄨𝑝3 ↑, 𝑝4 ↓⟩ . (18b)

Case 3. Consider 𝑝
5
− 𝑝
6
= ±6𝜋ℎ/ℓ

𝜍 = ⟨𝑝
6
↑, 𝑝
5
↓
󵄨󵄨󵄨󵄨 𝐻I

󵄨󵄨󵄨󵄨𝑝5 ↑, 𝑝6 ↓⟩ . (18c)

The Coulomb transition in Case 1 is shown in Figure 3.
The open circle indicates the up-spin state and the filled
one the down-spin state. We describe the momenta after the
transition by the symbols 𝑝󸀠

1
and 𝑝󸀠

2
which are given by

𝑝
󸀠

1
= 𝑝
1
+
2𝜋ℎ

ℓ
= 𝑝
2
, 𝑝

󸀠

2
= 𝑝
2
−
2𝜋ℎ

ℓ
= 𝑝
1
. (19)
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p1 p2 p1 p2

Initial state Final state

Coulomb
transition

Up spin state Down spin state

Figure 3: Equivalence of a specific Coulomb transition and spin
exchange interaction for Case 1.

p3 p4 p3 p4

Initial state Final state

Coulomb
transition

Figure 4: Equivalence of a specific Coulomb transition and spin
exchange interaction for Case 2.

This Coulomb transition is equivalent to the following
process:The spin at site 1 flips fromup to down and the spin at
site 2 flips from down to up simultaneously without changing
the momenta. Thus, the Coulomb transition of Case 1 is
equivalent to a spin exchange process which is described by
the interaction 𝜉𝜎−

1
𝜎
+

2
. Therein, 𝜎+ is the spin transformation

operator from down- to up-spin state and 𝜎− is the adjoint
operator of 𝜎+. There is another Coulomb transition given
by (16b) which is equivalent to 𝜉𝜎

+

1
𝜎
−

2
. Accordingly, the

Coulomb transition between the two electrons at sites 1 and 2
is expressed as

𝜉 (𝜎
−

1
𝜎
+

2
+ 𝜎
+

1
𝜎
−

2
) , (20)

where 𝜉 was already defined by (18a). In this Coulomb
transition, the classical Coulomb energy in the initial state is
exactly equal to the one in the final state.

The Coulomb transition of Case 2 is illustrated in Fig-
ure 4.

The momenta after the transition are described by the
symbols 𝑝󸀠

3
, 𝑝󸀠
4
, the values of which are given by

𝑝
󸀠

3
= 𝑝
3
+
2 × 2𝜋ℎ

ℓ
= 𝑝
4
, 𝑝

󸀠

4
= 𝑝
4
−
2 × 2𝜋ℎ

ℓ
= 𝑝
3
.

(21)

The Coulomb interaction of Case 2 is equivalent to the
following spin exchange interaction between an electron pair
placed in second nearest-neighboring orbital pair:

𝜂 (𝜎
−

3
𝜎
+

4
+ 𝜎
+

3
𝜎
−

4
) , (22)

where 𝜂 is the coupling constant defined by (18b).
TheCoulomb transition ofCase 3 is illustrated in Figure 5.

The momenta after the transition are described by the
symbols 𝑝󸀠

5
, 𝑝󸀠
6
:

𝑝
󸀠

5
= 𝑝
5
+
3 × 2𝜋ℎ

ℓ
= 𝑝
6
, 𝑝

󸀠

6
= 𝑝
6
−
3 × 2𝜋ℎ

ℓ
= 𝑝
5
.

(23)

p5 p6 p5 p6

Initial state Final state

Coulomb
transition

Figure 5: Equivalence of a specific Coulomb transition and spin
exchange interaction for Case 3.

Figure 5 shows that the Coulomb interaction of Case
3 is equivalent to the following spin exchange interaction
between an electron pair placed in third nearest-neighboring
orbital pair:

𝜍 (𝜎
−

5
𝜎
+

6
+ 𝜎
+

5
𝜎
−

6
) . (24)

We show the most uniform configuration of electrons for
the two cases of ] = 2/3 and ] = 2/5 in Figures 6(a) and 6(b),
respectively, where the spin-states are numbered sequentially
from left to right, as indicated by the green color.

In the ] = 2/3 state, the nearest electron pairs have the
coupling constant 𝜉 and the second nearest electron pairs
have the coupling constant 𝜂. At ] = 2/5, the nearest electron
pair is placed in the second neighboring orbital pair, and so
the coupling constant is 𝜂. The second nearest electron pair
is placed in the third neighboring orbital pair and so the
coupling constant is 𝜁 as shown in Figure 6(b). Thus, it is
noteworthy that the site number (namely, electron number)
is different from the orbital number.

In the third or further nearest electron pair, another
electron is inserted as in Figures 6(a) and 6(b). Therefore the
interaction between the third nearest electrons is quite weak
due to the screening effect of the interposing electron, and so
may be neglected.

At ] = 2/3 the most effective interaction is obtained as
follows:

𝐻effective = ∑

𝑗=1,2,3,...

[𝜉 (𝜎
+

2𝑗−1
𝜎
−

2𝑗
+ 𝜎
−

2𝑗−1
𝜎
+

2𝑗
)

+ 𝜂 (𝜎
+

2𝑗
𝜎
−

2𝑗+1
+ 𝜎
−

2𝑗
𝜎
+

2𝑗+1
)] ,

(25)

where the operator 𝜎+
2𝑗−1

indicates the transformation from a
down- to up-spin state of the electron at the (2𝑗−1)th site.This
Hamiltonian, (25), yields the quantum transition between the
degenerate ground states.When the externalmagnetic field is
applied in the 𝑧-direction, the Hamiltonian becomes

𝐻 = ∑

𝑗=1,2,3,...

[𝜉 (𝜎
+

2𝑗−1
𝜎
−

2𝑗
+ 𝜎
−

2𝑗−1
𝜎
+

2𝑗
)

+ 𝜂 (𝜎
+

2𝑗
𝜎
−

2𝑗+1
+ 𝜎
−

2𝑗
𝜎
+

2𝑗+1
)]

+ ∑

𝑖=1,2,3,...

𝜇
𝐵
𝑔
∗
𝐵(

1

2
) 𝜎
𝑧

𝑖
,

(26)

where 𝑔∗ is the effective 𝑔-factor, 𝐵 is the magnetic field,
(1/2)𝜎

𝑧 is the electron spin operator in the 𝑧-direction,
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Figure 6: (a) Coulomb transitions for first and second nearest pairs at ] = 2/3. (b) Coulomb transitions for the case of ] = 2/5.

and 𝜇
𝐵
is the Bohr magneton. The matrices (the Pauli spin

matrices) are explicitly indicated below:

𝜎
+
= (

0 1

0 0
) , 𝜎

−
= (

0 0

1 0
) , 𝜎

𝑧
= (

1 0

0 −1
) . (27)

We can obtain theHamiltonian𝐻 for other filling factors.
The Hamiltonian for ] = 3/5 and ] = 4/7 is given,
respectively by;

𝐻 = ∑

𝑗=1,2,3,...

[𝜉 (𝜎
+

3𝑗−2
𝜎
−

3𝑗−1
+ 𝜎
−

3𝑗−2
𝜎
+

3𝑗−1
)

+ 𝜂 (𝜎
+

3𝑗−1
𝜎
−

3𝑗
+ 𝜎
−

3𝑗−1
𝜎
+

3𝑗
)

+ 𝜂 (𝜎
+

3𝑗
𝜎
−

3𝑗+1
+ 𝜎
−

3𝑗
𝜎
+

3𝑗+1
)]

+ ∑

𝑖=1,2,3,...

𝜇
𝐵
𝑔
∗
𝐵(

1

2
) 𝜎
𝑧

𝑖
, for ] = 3

5
,

𝐻 = ∑

𝑗=1,2,3,...

[𝜉 (𝜎
+

4𝑗−3
𝜎
−

4𝑗−2
+ 𝜎
−

4𝑗−3
𝜎
+

4𝑗−2
)

+ 𝜂 (𝜎
+

4𝑗−2
𝜎
−

4𝑗−1
+ 𝜎
−

4𝑗−2
𝜎
+

4𝑗−1
)

+ 𝜂 (𝜎
+

4𝑗−1
𝜎
−

4𝑗
+ 𝜎
−

4𝑗−1
𝜎
+

4𝑗
)

+ 𝜂 (𝜎
+

4𝑗
𝜎
−

4𝑗+1
+ 𝜎
−

4𝑗
𝜎
+

4𝑗+1
)]

+ ∑

𝑖=1,2,3,...

𝜇
𝐵
𝑔
∗
𝐵(

1

2
) 𝜎
𝑧

𝑖
, for ] = 4

7
.

(28)

The three Hamiltonians, (26) and (28), can be exactly
diagonalized by using the method of [51].

3. Isomorphic Mapping from the FQH State to
One-Dimensional Fermion State

We examine the following mapping from a single spin state
to a fermion state. The down-spin state | ↓⟩ is mapped to the
vacuum state |0⟩, and the up-spin state | ↑⟩ is mapped to the
one fermion state 𝑐∗|0⟩, where 𝑐∗ is the creation operator

| ↑⟩ 󳨀→ 𝑐 ∗ |0⟩ , |↓⟩ 󳨀→ |0⟩ . (29)

Then the spin operators 𝜎+, 𝜎−, and 𝜎𝑧 are mapped to the
operators of the fermion system as

𝜎
+
󳨀→ 𝑐
∗
, 𝜎
−
󳨀→ 𝑐, 𝜎

𝑧
󳨀→ (2𝑐

∗
𝑐 − 1) . (30)

Next, we find the isomorphic mapping from many-spin
states to many-fermion states. Two examples of the mapping
are written as follows:
󵄨󵄨󵄨󵄨 ↑1, ↑2, ↓3, ↑4, ↓5, ↓6, ↑7, ↑8, ↓9, ↑10⟩ ←→ 𝑐

∗

1
𝑐
∗

2
𝑐
∗

4
𝑐
∗

7
𝑐
∗

8
𝑐
∗

10
| 0⟩ ,

󵄨󵄨󵄨󵄨 ↓1, ↑2, ↑3, ↓4, ↓5, ↑6, ↓7, ↓8, ↓9, ↑10⟩ ←→ 𝑐
∗

2
𝑐
∗

3
𝑐
∗

6
𝑐
∗

10
| 0⟩ .

(31)

It is noteworthy that the multiplying order of creation
operators is the same as the order of the up-spins. The
operators 𝑐

𝑖
and 𝑐∗
𝑖
satisfy the anticommutation relations as

follows:

{𝑐
𝑖
, 𝑐
∗

𝑗
} = 𝑐
𝑖
× 𝑐
∗

𝑗
+ 𝑐
∗

𝑗
× 𝑐
𝑖
= 𝛿
𝑖,𝑗
, (32a)

{𝑐
𝑖
, 𝑐
𝑗
} = 𝑐
𝑖
× 𝑐
𝑗
+ 𝑐
𝑗
× 𝑐
𝑖
= 0,

{𝑐
∗

𝑖
, 𝑐
∗

𝑗
} = 𝑐
∗

𝑖
× 𝑐
∗

𝑗
+ 𝑐
∗

𝑗
× 𝑐
∗

𝑖
= 0.

(32b)

The products of the spin operators 𝜎+
2𝑗−1

𝜎
−

2𝑗
, 𝜎−
2𝑗−1

𝜎
+

2𝑗
, 𝜎+
2𝑗
𝜎
−

2𝑗+1

and 𝜎−
2𝑗
𝜎
+

2𝑗+1
aremapped to the products of fermion operators

as follows:

𝜎
+

2𝑗−1
𝜎
−

2𝑗
←→ 𝑐

∗

2𝑗−1
𝑐
2𝑗
, 𝜎

−

2𝑗−1
𝜎
+

2𝑗
←→ −𝑐

2𝑗−1
𝑐
∗

2𝑗
, (33a)

𝜎
+

2𝑗
𝜎
−

2𝑗+1
←→ 𝑐

∗

2𝑗
𝑐
2𝑗+1

, 𝜎
−

2𝑗
𝜎
+

2𝑗+1
←→ −𝑐

2𝑗
𝑐
∗

2𝑗+1
, (33b)

𝜎
𝑧

𝑖
←→ 2𝑐

∗

𝑖
𝑐
𝑖
− 1. (33c)

It has been verified that the mapping ((33a), (33b), (33c))
is isomorphic (see [51]). Accordingly Hamiltonian (26) is
equivalent to the following form:

𝐻 = ∑

𝑗=1,2,3,...

[𝜉 (𝑐
∗

2𝑗−1
𝑐
2𝑗
− 𝑐
2𝑗−1

𝑐
∗

2𝑗
)

+ 𝜂 (𝑐
∗

2𝑗
𝑐
2𝑗+1

− 𝑐
2𝑗
𝑐
∗

2𝑗+1
)]

+ ∑

𝑖=1,2,3,...

𝜇
𝐵
𝑔
∗
𝐵(

1

2
) (2𝑐
∗

𝑖
𝑐
𝑖
− 1) .

(34)

We exactly solve the eigenvalue problem of this Hamilto-
nian.

New operators 𝑎
𝑗
and 𝑏
𝑗
are introduced as follows:

𝑎
𝑗
= 𝑐
2𝑗−1

, 𝑏
𝑗
= 𝑐
2𝑗
, 𝑎

∗

𝑗
= 𝑐
∗

2𝑗−1
, 𝑏

∗

𝑗
= 𝑐
∗

2𝑗
, (35)



ISRN Condensed Matter Physics 7

where 𝑗 is the cell number. Then the Hamiltonian (34)
becomes

𝐻 =

𝐽

∑

𝑗=1

[𝜉 (𝑎
∗

𝑗
𝑏
𝑗
− 𝑎
𝑗
𝑏
∗

𝑗
) + 𝜂 (𝑏

∗

𝑗
𝑎
𝑗+1

− 𝑏
𝑗
𝑎
∗

𝑗+1
)]

+

𝐽

∑

𝑗=1

𝜇
𝐵
𝑔
∗
𝐵(

1

2
) (2𝑎
∗

𝑗
𝑎
𝑗
+ 2𝑏
∗

𝑗
𝑏
𝑗
− 2) ,

(36)

where 𝐽 is the total number of cells given by 𝐽 = 𝑁/2

for the total number of electrons 𝑁. We apply a Fourier
transformation given by (38) to the operators 𝑎

𝑗
, 𝑎∗
𝑗
, 𝑏
𝑗
, and

𝑏
∗

𝑗
and obtain

𝐻 = ∑

𝑝

[𝜉 (𝑎
∗
(𝑝) 𝑏 (𝑝) + 𝑏

∗
(𝑝) 𝑎 (𝑝))

+ 𝜂 (𝑒
𝑖𝑝
𝑏
∗
(𝑝) 𝑎 (𝑝) + 𝑒

−𝑖𝑝
𝑎
∗
(𝑝) 𝑏 (𝑝))]

+∑

𝑝

𝜇
𝐵
𝑔
∗
𝐵(

1

2
) (2𝑎
∗
(𝑝) 𝑎 (𝑝) + 2𝑏

∗
(𝑝) 𝑏 (𝑝) − 2) ,

(37)

where 𝑎
𝑛
=

1

√𝐽
∑

𝑝

𝑒
𝑖𝑝𝑛
𝑎 (𝑝) , 𝑏

𝑛
=

1

√𝐽
∑

𝑝

𝑒
𝑖𝑝𝑛
𝑏 (𝑝) ,

(38)

and 𝑝 = (2𝜋/𝐽) × integer, −𝜋 < 𝑝 ≤ 𝜋.
In the summation in (37), the single term with a value of

𝑝 is expressed by the following matrix:

(
𝜇
𝐵
𝑔
∗
𝐵 𝜉 + 𝜂𝑒

−𝑖𝑝

𝜉 + 𝜂𝑒
𝑖𝑝

𝜇
𝐵
𝑔
∗
𝐵
) . (39)

This matrix has two eigenvalues 𝜆
1
(𝑝) and 𝜆

2
(𝑝) which

are given by

𝜆
1
(𝑝) = 𝜇

𝐵
𝑔
∗
𝐵 − √𝜉2 + 𝜂2 + 2𝜉𝜂 cos𝑝, (40a)

𝜆
2
(𝑝) = 𝜇

𝐵
𝑔
∗
𝐵 + √𝜉2 + 𝜂2 + 2𝜉𝜂 cos𝑝. (40b)

Using new annihilation operators 𝐴
1
(𝑝) and 𝐴

2
(𝑝)

𝐴
1
(𝑝) =

1

√2

𝑎 (𝑝) −
𝜉 + 𝜂𝑒

−𝑖𝑝

√2 (𝜉2 + 𝜂2 + 2𝜉𝜂 cos𝑝)
𝑏 (𝑝) , (41a)

𝐴
2
(𝑝) =

1

√2

𝑎 (𝑝) +
𝜉 + 𝜂𝑒

−𝑖𝑝

√2 (𝜉2 + 𝜂2 + 2𝜉𝜂 cos𝑝)
𝑏 (𝑝) , (41b)

the Hamiltonian (37) is expressed as follows:

𝐻 = ∑

𝑝

(𝜆
1
(𝑝)𝐴
∗

1
(𝑝)𝐴

1
(𝑝)

+𝜆
2
(𝑝)𝐴
∗

2
(𝑝)𝐴

2
(𝑝) − 𝜇

𝐵
𝑔
∗
𝐵) .

(42)

Thus, we have succeeded in diagonalizing the Hamilto-
nian (26).

4. Magnetic Field Dependence of
the Spin Polarization

The electron spin polarization 𝛾
𝑒
depends upon the tempera-

ture. We calculate its thermodynamic mean value as follows:

𝛾
𝑒
=
1

𝑁
⟨−

𝑁

∑

𝑖=1

𝜎
𝑧

𝑖
⟩ =

−1

𝑁
⟨

𝑁

∑

𝑖=1

(2𝑐
∗

𝑖
𝑐
𝑖
− 1)⟩

=
−1

𝑁
⟨

𝐽

∑

𝑗=1

(2𝑎
∗

𝑗
𝑎
𝑗
+ 2𝑏
∗

𝑗
𝑏
𝑗
− 2)⟩

=
−1

2𝐽
⟨∑

𝑝

(2𝑎
∗
(𝑝) 𝑎 (𝑝) + 2𝑏

∗
(𝑝) 𝑏 (𝑝) − 2)⟩

=
−1

2𝐽
⟨∑

𝑝

(

2

∑

𝑠=1

(2𝐴
∗

𝑠
(𝑝)𝐴

𝑠
(𝑝) − 1))⟩ ,

(43)

where ⟨⋅⟩ is the thermal average and the minus sign comes
from the negative charge of an electron. In deriving (43),
we have utilized (33c), (35), (38), (41a), and (41b). The
diagonal form, (42), indicates that all the eigenenergy states
are expressed by the direct product of the creation operators
𝐴
∗

𝑠
(𝑝).Therefore, the eigenstate is identified by the eigenvalue

of the fermion number operator 𝑛
𝑠
(𝑝) = 𝐴

∗

𝑠
(𝑝)𝐴
𝑠
(𝑝).

Equation (42) shows that the eigenenergy for 𝑛
𝑠
(𝑝) = 1

is 𝜆
𝑠
(𝑝) and the eigenenergy for 𝑛

𝑠
(𝑝) = 0 is zero. Then,

the Boltzmann factor is exp(−𝜆
𝑠
(𝑝)/𝑘
𝐵
𝑇) for 𝑛

𝑠
(𝑝) = 1

and exp(−0/𝑘
𝐵
𝑇) for 𝑛

𝑠
(𝑝) = 0, where 𝑘

𝐵
is the Boltz-

mann constant and 𝑇 is the temperature. Accordingly, the
probability for 𝑛

𝑠
(𝑝) = 1 is given by exp(−𝜆

𝑠
(𝑝)/𝑘
𝐵
𝑇)/(1 +

exp(−𝜆
𝑠
(𝑝)/𝑘
𝐵
𝑇)) and the probability for 𝑛

𝑠
(𝑝) = 0 is given

by 1/(1 + exp(−𝜆
𝑠
(𝑝)/𝑘
𝐵
𝑇)). These probabilities yield the

thermal average of 𝐴∗
𝑠
(𝑝)𝐴
𝑠
(𝑝) as

⟨𝐴
∗

𝑠
(𝑝)𝐴

𝑠
(𝑝)⟩ =

exp (−𝜆
𝑠
(𝑝) /𝑘

𝐵
𝑇)

1 + exp (−𝜆
𝑠
(𝑝) /𝑘

𝐵
𝑇)
, (44)

which gives

⟨2𝐴
∗

𝑠
(𝑝)𝐴

𝑠
(𝑝) − 1⟩ =

exp (−𝜆
𝑠
(𝑝) /𝑘

𝐵
𝑇) − 1

1 + exp (−𝜆
𝑠
(𝑝) /𝑘

𝐵
𝑇)

= − tanh(
𝜆
𝑠
(𝑝)

(2𝑘
𝐵
𝑇)
) .

(45)

Substitution of (45) into (43) derives

𝛾
𝑒
=

1

2𝐽
∑

𝑝

(

2

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) . (46)

Since the total number of electrons is amacroscopic value,
we can replace the summation by integration as

𝛾
𝑒
=

1

4𝜋
∫

𝜋

−𝜋

d𝑝(
2

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) . (47)
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Figure 7: Calculated spin polarization curve for ] = 2/3 𝜂/𝜉 =

0.2 𝑘
𝐵
𝑇/𝜉 = 0.1. Red dots are experimental data [50].

Thus, the electron-spin polarization at the filling factor of
2/3 is expressed by (47).

First, we study the low field behavior of the spin polariza-
tion.

Equation (40a) indicates that 𝜆
1
(𝑝) is restricted to the

following region:

𝜇
𝐵
𝑔
∗
𝐵 −

󵄨󵄨󵄨󵄨𝜉 + 𝜂
󵄨󵄨󵄨󵄨 ≤ 𝜆1 (𝑝) ≤ 𝜇𝐵𝑔

∗
𝐵 −

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨 . (48a)

Also, 𝜆
2
(𝑝) is in the region:

𝜇
𝐵
𝑔
∗
𝐵 +

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨 ≤ 𝜆2 (𝑝) ≤ 𝜇𝐵𝑔

∗
𝐵 +

󵄨󵄨󵄨󵄨𝜉 + 𝜂
󵄨󵄨󵄨󵄨 . (48b)

When the magnetic field takes a value between 0 and
|𝜉 − 𝜂|/(𝜇

𝐵
𝑔
∗
), 𝜆
1
(𝑝) is negative and 𝜆

2
(𝑝) is positive for any

value of 𝑝:

𝜆
1
(𝑝) < 0, 𝜆

2
(𝑝) > 0 for 0 < 𝐵 <

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

(𝜇
𝐵
𝑔∗)

. (49)

Therefore, tanh(𝜆
1
(𝑝)/2𝑘

𝐵
𝑇) is nearly equal to −1 and

tanh(𝜆
2
(𝑝)/2𝑘

𝐵
𝑇) is nearly equal to 1 at very low temper-

atures (𝑇 ≈ 0). Then, the spin polarization is almost zero
because the summation in the right hand side of (47) is nearly
equal to zero. When the magnetic field increases beyond
the value |𝜉 − 𝜂|/(𝜇

𝐵
𝑔
∗
), the spin polarization increases

continuously until it reaches the maximum value of 1. This
behavior is in agreement with the experimental data in
Figure 1.

When the quality of a quantum Hall device is bad,
many random potentials are produced by the impurities
and lattice defects. Then, the plateau in the Hall resistance
curve is rounded at both ends. Also, the wide plateau in the
polarization curve is rounded by the random potentials. The
effect resembles that of the thermal vibration. Therefore, we
include the random potential effect into the value of 𝑇.

The spin polarization is evaluated by integrating the right
hand side of (47). The integration has been done by using a
computer program. The result is shown in Figure 7 for the
parameter 𝜂/𝜉 = 0.2 and 𝑘

𝐵
𝑇/𝜉 = 0.1. Experimental data

[50] are plotted by red dots in the figure. We find that the
theoretical result reproduces the experimental data without
the small shoulder.

𝜉 𝜂 𝜉 𝜂𝜉󳰀 𝜂󳰀 𝜉󳰀 𝜂󳰀

Figure 8: Coupling constants of interactions caused by distortion
with double period.

5. Modulation of the Intervals between
Landau Orbitals

If we observe carefully the experimental spin polarization
curves, namely, Figure 1, we find small shoulders in it. The
structure has not been considered in the previous sections.
We examine the origin of the small shoulders in this section.

Peierls studied an electron system in a one-dimensional
crystal and considered the lattice distortion with the period
doubling the unit cell. This lattice distortion produces new
band gaps and the energy becomes lower than that without
the distortion. This effect is called spin Peierls effect [52].

In the present theory, the spin polarization of FQH states
is derived from the Hamiltonians (26), (28), and so on. If
we consider a new modulation of the intervals between the
nearest Landau orbitals with the period doubling the unit
configuration, the spin chain Hamiltonian of FQH system
resembles the one with the spin Peierls effect.

As an example, for ] = 2/3 we change the distance
between nearest orbitals in the first unit-configuration longer,
the one in the second unit-configuration shorter, and so on.
Then, we have the four kinds of the coupling constants 𝜉, 𝜉󸀠,
𝜂, and 𝜂󸀠 as shown in Figure 8.

The value of 𝜉󸀠 is larger than that of 𝜉 because the distance
for the 𝜉󸀠 interaction path is shorter than that for 𝜉. Also, 𝜂󸀠 >
𝜂 holds. This distortion with the double period of the unit-
configuration produces additional energies via the classical
Coulomb and spin exchange interactions. We call it “interval
modulation.” We calculate the total energy of this system.

We express the distance between the nearest orbitals
by the symbol 𝑟

0
for nondistortion case. We consider the

distortion that one of the distances between the nearest
Landau orbitals becomes 𝑟

0
+𝑑 for an odd cell number and the

other one becomes 𝑟
0
− 𝑑 for an even cell number. Then, the

classical Coulomb energy𝑊 increases. The increasing value
per electron is proportional to 𝑑2 as

Δ𝑊

𝑁
= 𝑓
𝐶
(
𝑑

𝑟
0

)

2

, (50)

where 𝑓
𝐶
is the constant parameter.

Next, we examine 𝑑-dependence of the coupling con-
stants 𝜉 and 𝜉󸀠.When 𝑑 > 0, the coupling constant 𝜉 is weaker
than 𝜉󸀠 because the 𝜉 interaction path is longer than that of 𝜉󸀠.
When the other case 𝑑 < 0, 𝜉 is stronger than 𝜉󸀠 because the
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𝜉 interaction path becomes shorter than that of 𝜉󸀠. Therefore,
there is a linear term of 𝑑 in 𝜉 and 𝜉󸀠 as follows:

𝜉 = 𝜉
0
− 𝑓
𝜉
(
𝑑

𝑟
0

) , 𝜉
󸀠
= 𝜉
0
+ 𝑓
𝜉
(
𝑑

𝑟
0

) , (51)

where 𝜉
0
is the coupling constant in the non-distortion case

and 𝑓
𝜉
is the proportionality constant. In order to simplify

(50) and (51), we define a new dimensionless quantity 𝑡 as

𝑡 = (
𝑓
𝜉

𝜉
0

)(
𝑑

𝑟
0

) . (52)

Then the coupling constants 𝜉 and 𝜉󸀠 are expressed as

𝜉 = 𝜉
0
(1 − 𝑡) , 𝜉

󸀠
= 𝜉
0
(1 + 𝑡) . (53)

The increasing value of the classical Coulomb energyΔ𝑊
is also expressed by this dimensionless parameter 𝑡 as follows:

Δ𝑊

𝑁
= 𝜉
0
𝐶𝑡
2
, (54a)

where 𝐶 is the dimensionless coefficient as

𝐶 =
𝜉
0
𝑓
𝐶

𝑓
2

𝜉

. (54b)

6. Total Energy due to the Interval Modulation

Now we calculate the spin exchange energy. Using the cou-
pling constants in Figure 8, the spin exchange Hamiltonian
for ] = 2/3 is given by

𝐻 = ∑

𝑗=1,2,3,...

[𝜉 (𝜎
+

4𝑗−3
𝜎
−

4𝑗−2
+ 𝜎
−

4𝑗−3
𝜎
+

4𝑗−2
)

+ 𝜂 (𝜎
+

4𝑗−2
𝜎
−

4𝑗−1
+ 𝜎
−

4𝑗−2
𝜎
+

4𝑗−1
)]

+ ∑

𝑗=1,2,3,...

[𝜉
󸀠
(𝜎
+

4𝑗−1
𝜎
−

4𝑗
+ 𝜎
−

4𝑗−1
𝜎
+

4𝑗
)

+ 𝜂
󸀠
(𝜎
+

4𝑗
𝜎
−

4𝑗+1
+ 𝜎
−

4𝑗
𝜎
+

4𝑗+1
)]

+ ∑

𝑗=1,2,3,...

𝜇
𝐵
𝑔
∗
𝐵(

1

2
) (𝜎
𝑧

4𝑗−3
+ 𝜎
𝑧

4𝑗−2
+ 𝜎
𝑧

4𝑗−1
+ 𝜎
𝑧

4𝑗
) .

(55)

This Hamiltonian equation (55) is rewritten from (33a),
(33b), and (33c) as

𝐻 = ∑

𝑗=1,2,3,...

[𝜉 (𝑐
∗

4𝑗−3
𝑐
4𝑗−2

− 𝑐
4𝑗−3

𝑐
∗

4𝑗−2
)

+ 𝜂 (𝑐
∗

4𝑗−2
𝑐
4𝑗−1

− 𝑐
4𝑗−2

𝑐
∗

4𝑗−1
)]

+ ∑

𝑗=1,2,3,...

[𝜉
󸀠
(𝑐
∗

4𝑗−1
𝑐
4𝑗
− 𝑐
4𝑗−1

𝑐
∗

4𝑗
)

+ 𝜂
󸀠
(𝑐
∗

4𝑗
𝑐
4𝑗+1

− 𝑐
4𝑗
𝑐
∗

4𝑗+1
)]

+ ∑

𝑖=1,2,3,...

𝜇
𝐵
𝑔
∗
𝐵(

1

2
) (2𝑐
∗

𝑖
𝑐
𝑖
− 1) .

(56)

Using the cell number 𝑗, we introduce new operators 𝑎
1,𝑗
,

𝑎
2,𝑗
, 𝑎
3,𝑗
, and 𝑎

4,𝑗
as follows:

𝑎
1,𝑗
= 𝑐
4𝑗−3

, 𝑎
2,𝑗
= 𝑐
4𝑗−2

, 𝑎
3,𝑗
= 𝑐
4𝑗−1

, 𝑎
4,𝑗
= 𝑐
4𝑗
.

(57)

Fourier transformation yields

𝑎
1,𝑗
=

1

√𝐽
∑

𝑝

𝑒
𝑖𝑝𝑗
𝑎
1
(𝑝) , 𝑎

2,𝑗
=

1

√𝐽
∑

𝑝

𝑒
𝑖𝑝𝑗
𝑎
2
(𝑝) ,

𝑎
3,𝑗
=

1

√𝐽
∑

𝑝

𝑒
𝑖𝑝𝑗
𝑎
3
(𝑝) , 𝑎

4,𝑗
=

1

√𝐽
∑

𝑝

𝑒
𝑖𝑝𝑗
𝑎
4
(𝑝) ,

(58)

where 𝐽 is the total number of unit cells (unit configurations),
namely, 𝐽 = 𝑁/4, and 𝑝 = (2𝜋/𝐽) × integer (−𝜋 < 𝑝 ≤ 𝜋).
Substitution of (57) and (58) into (56) gives

𝐻 = ∑

𝑝

[𝜉 (𝑎
∗

1
(𝑝) 𝑎
2
(𝑝) + 𝑎

∗

2
(𝑝) 𝑎
1
(𝑝))

+ 𝜂 (𝑎
∗

2
(𝑝) 𝑎
3
(𝑝) + 𝑎

∗

3
(𝑝) 𝑎
2
(𝑝))

+ 𝜉
󸀠
(𝑎
∗

3
(𝑝) 𝑎
4
(𝑝) + 𝑎

∗

4
(𝑝) 𝑎
3
(𝑝))

+ 𝜂
󸀠
(𝑒
𝑖𝑝
𝑎
∗

4
(𝑝) 𝑎
1
(𝑝) + 𝑒

−𝑖𝑝
𝑎
∗

1
(𝑝) 𝑎
4
(𝑝))]

+∑

𝑝

𝜇
𝐵
𝑔
∗
𝐵(

1

2
) (2 (𝑎

∗

1
(𝑝) 𝑎
1
(𝑝) + 𝑎

∗

2
(𝑝) 𝑎
2
(𝑝)

+ 𝑎
∗

3
(𝑝) 𝑎
3
(𝑝)

+ 𝑎
∗

4
(𝑝) 𝑎
4
(𝑝)) − 4) .

(59)

For one value of 𝑝, (59) is expressed by the following
matrix𝑀:

𝑀 =(

𝜇
𝐵
𝑔
∗
𝐵 𝜉 0 𝜂

󸀠
𝑒
−𝑖𝑝

𝜉 𝜇
𝐵
𝑔
∗
𝐵 𝜂 0

0 𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜉

󸀠

𝜂
󸀠
𝑒
𝑖𝑝

0 𝜉
󸀠

𝜇
𝐵
𝑔
∗
𝐵

) . (60)

The four eigenvalues of 𝑀 are denoted by the symbols
𝜆
1
(𝑝), 𝜆

2
(𝑝), 𝜆

3
(𝑝), and 𝜆

4
(𝑝) (𝜆

1
≤ 𝜆
2
≤ 𝜆
3
≤ 𝜆
4
) which

are given by
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𝜆
1
(𝑝) = 𝜇

𝐵
𝑔
∗
𝐵 − √

1

2
((1 + 𝛼2) (𝜉2 + 𝜉󸀠2) + √(1 + 𝛼2)

2
(𝜉2 + 𝜉󸀠2)

2
− 4 ((1 + 𝛼4) 𝜉2𝜉󸀠2 − 2𝛼2𝜉2𝜉󸀠2 cos𝑝)),

𝜆
2
(𝑝) = 𝜇

𝐵
𝑔
∗
𝐵 − √

1

2
((1 + 𝛼2) (𝜉2 + 𝜉󸀠2) − √(1 + 𝛼2)

2
(𝜉2 + 𝜉󸀠2)

2
− 4 ((1 + 𝛼4) 𝜉2𝜉󸀠2 − 2𝛼2𝜉2𝜉󸀠2 cos𝑝)),

𝜆
3
(𝑝) = 𝜇

𝐵
𝑔
∗
𝐵 + √

1

2
((1 + 𝛼2) (𝜉2 + 𝜉󸀠2) − √(1 + 𝛼2)

2
(𝜉2 + 𝜉󸀠2)

2
− 4 ((1 + 𝛼4) 𝜉2𝜉󸀠2 − 2𝛼2𝜉2𝜉󸀠2 cos𝑝)),

𝜆
4
(𝑝) = 𝜇

𝐵
𝑔
∗
𝐵 + √

1

2
((1 + 𝛼2) (𝜉2 + 𝜉󸀠2) + √(1 + 𝛼2)

2
(𝜉2 + 𝜉󸀠2)

2
− 4 ((1 + 𝛼4) 𝜉2𝜉󸀠2 − 2𝛼2𝜉2𝜉󸀠2 cos𝑝)).

(61)

Therein, we have assumed 𝜉
󸀠
/𝜉 = 𝜂

󸀠
/𝜂 because the

interval modulation is expected to give almost the same effect
to the coupling constants 𝜉 and 𝜂. Then, ratios between the
coupling constants are expressed as follows:

𝛼 =
𝜂

𝜉
=
𝜂
󸀠

𝜉󸀠
=
𝜂
0

𝜉
0

, (62a)

𝛽 =
𝜉
󸀠

𝜉
=
𝜂
󸀠

𝜂
. (62b)

Equation (53) derives the following relation:

𝛽 =
𝜉
󸀠

𝜉
=
𝜂
󸀠

𝜂
=
(1 + 𝑡)

(1 − 𝑡)
. (62c)

We show the two eigenvalues 𝜆
1
(𝑝) and 𝜆

2
(𝑝) by red and

black curves for 𝛽 = 1, blue curves for 𝛽 = 1.2 and green
curves for 𝛽 = 1.4 in Figure 9.

The difference 𝜆
2
(𝑝) − 𝜆

1
(𝑝) is minimal at 𝑝 = 𝜋 as seen

in Figure 9. When 𝛽 is equal to 1, namely, nondistorted case,
the energy gap 𝜆

2
(𝜋) − 𝜆

1
(𝜋) disappears. Equation (61) gives

the difference between 𝜆
2
(𝑝) and 𝜆

1
(𝑝) at 𝑝 = 𝜋 as

𝜆
2 (𝜋) − 𝜆1 (𝜋) =

√1 + 𝛼2
󵄨󵄨󵄨󵄨󵄨
𝜉
󸀠
− 𝜉

󵄨󵄨󵄨󵄨󵄨
= √1 + 𝛼2𝜉

0
2𝑡, (63)

where we have used (53). Thus, the difference is proportional
to 𝑡.

The eigenenergies (61) give the diagonal form of the
Hamiltonian as follows:

𝐻 = ∑

𝑝

(𝜆
1
(𝑝)𝐴
∗

1
(𝑝)𝐴

1
(𝑝) + 𝜆

2
(𝑝)𝐴
∗

2
(𝑝)𝐴

2
(𝑝)

+ 𝜆
3
(𝑝)𝐴
∗

3
(𝑝)𝐴

3
(𝑝)

+ 𝜆
4
(𝑝)𝐴
∗

4
(𝑝)𝐴

4
(𝑝) − 2𝜇

𝐵
𝑔
∗
𝐵) .

(64)

0.6

0.4

0.2

−0.2

−0.4

𝜆/(𝜇Bg
∗)

� = 2/3

p

𝜆1/(𝜇Bg
∗)

𝜆2/(𝜇Bg
∗)

(𝜆2 − 𝜆1)/(𝜇Bg
∗)

(𝜆2 − 𝜆1)/(𝜇Bg
∗)

1 2 3 4 5 6

Figure 9: Eigenvalues of spin interaction via interval modulation.
The red and black curves indicate the eigenvalues 𝜆

1
/(𝜇
𝐵
𝑔
∗
) and

𝜆
2
/(𝜇
𝐵
𝑔
∗
) at 𝛽 = 1.0. The blue curves indicate the eigenvalues

𝜆
1
/(𝜇
𝐵
𝑔
∗
) and 𝜆

2
/(𝜇
𝐵
𝑔
∗
) at 𝛽 = 1.2. The green curves indicate the

eigenvalues 𝜆
1
/(𝜇
𝐵
𝑔
∗
) and 𝜆

2
/(𝜇
𝐵
𝑔
∗
) at 𝛽 = 1.4.

We calculate the thermal average of thisHamiltonian.The
thermal average has been already examined in (44) which
gives

⟨𝐴
∗

𝑠
(𝑝)𝐴

𝑠
(𝑝)⟩ =

exp (−𝜆
𝑠
(𝑝) /𝑘

𝐵
𝑇)

1 + exp (−𝜆
𝑠
(𝑝) /𝑘

𝐵
𝑇)

=
1

2
(1 − tanh(

𝜆
𝑠
(𝑝)

(2𝑘
𝐵
𝑇)
)) .

(65)

Then the thermal average of the spin exchange energy is

⟨𝐻⟩ = ∑

𝑝

[{

4

∑

𝑠=1

(𝜆
𝑠
(𝑝)

1

2
(1 − tanh(

𝜆
𝑠
(𝑝)

(2𝑘
𝐵
𝑇)
)))}

−2𝜇
𝐵
𝑔
∗
𝐵] .

(66)
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Since the total number of electrons is amacroscopic value,
we can replace the summation by integration as

⟨𝐻⟩

𝑁
=
1

4

×
1

2𝜋
∫

2𝜋

𝑝=0

[{

4

∑

𝑠=1

(𝜆
𝑠
(𝑝)

1

2
(1−tanh(

𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)))

−2𝜇
𝐵
𝑔
∗
𝐵}] d𝑝,

(67a)

Δ𝐸Total
𝑁

= (
Δ𝑊

𝑁
) + Δ(

⟨𝐻⟩

𝑁
) . (67b)

We numerically calculate the integration in (67a). The
dashed red curve in Figure 10 shows the calculated result of
the spin exchange energy for 𝐵 = 2.2[𝑇]. The dashed black
curve shows the classical Coulomb energy for the parameter
𝐶 = 0.5 (see (54a), (54b)). Their sum Δ𝐸Total/𝑁 is the total
energy which is expressed by the blue curve. Then, the total
energy has a minimum at a nonzero 𝑡 as shown in Figure 10.
Consequently, the interval modulation actually occurs.

Further calculations are carried out for various values of
themagnetic field in the case of𝐶 = 0.5.The results are shown
in Figure 11. The interval modulation occurs in the region of
1.86[𝑇] < 𝐵 < 2.51[𝑇].

We calculate the total energy for another case ] = 3/5.
The coupling constants are illustrated in Figure 12.

These coupling constants in Figure 12 produce the ] = 3/5
Hamiltonian which is described by the following matrix:

(

(

𝜇
𝐵
𝑔
∗
𝐵 𝜉 0 0 0 𝜂

󸀠
𝑒
−𝑖𝑝

𝜉 𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0 0

0 𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0

0 0 𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜉

󸀠
0

0 0 0 𝜉
󸀠

𝜇
𝐵
𝑔
∗
𝐵 𝜂

󸀠

𝜂
󸀠
𝑒
𝑖𝑝

0 0 0 𝜂
󸀠

𝜇
𝐵
𝑔
∗
𝐵

)

)

(for ] = 3

5
) .

(68)

This matrix has the six eigenvalues 𝜆
1
(𝑝), 𝜆

2
(𝑝), 𝜆

3
(𝑝),

𝜆
4
(𝑝), 𝜆

5
(𝑝), and 𝜆

6
(𝑝), the 𝑝-dependences of which are

shown in Figure 13.
Figure 13 indicates the energy gap between 𝜆

1
(𝑝) and

𝜆
2
(𝑝) at 𝑝 = 𝜋.Then the interval modulation with the double

period of the unit-configuration produces additional energies
for the classical-Coulomb and spin-exchange interactions,
respectively, as follows:

Δ𝑊

𝑁
= 𝜉
0
𝐶𝑡
2
, (69a)

Energy Classical
Coulomb energy

Spin exchange
energy

Total energy

t

Figure 10: Dependence of total energy upon 𝑡.

⟨𝐻⟩

𝑁
=
1

6

×
1

2𝜋
∫

2𝜋

𝑝=0

[{

6

∑

𝑠=1

(𝜆
𝑠
(𝑝)

1

2
(1−tanh(

−𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)))

−3𝜇
𝐵
𝑔
∗
𝐵}] d𝑝,

(69b)

Δ𝐸Total
𝑁

= (
Δ𝑊

𝑁
) + Δ(

⟨𝐻⟩

𝑁
) . (69c)

The sum of Δ𝑊/𝑁 and Δ(⟨𝐻⟩/𝑁) is numerically calcu-
lated and the result is shown in Figure 14.

Therein, we have used the parameter𝐶 = 0.5which is the
same as in the case of ] = 2/3.This value of𝐶 affects the shape
of the polarization curve near the small shoulder as will be
discussed in the next section.We have shown the dependence
of the total energy upon 𝑡 for two examples. Therein, the
total energy has a minimum at a nonzero 𝑡 in some region,
of the magnetic field. The nonzero 𝑡 yields the stable state
with the distortion (interval modulation).This mathematical
mechanism is the one resembling the spin Peierls effect.

7. Spin Polarization in the Case with the
Interval Modulation

We calculate the spin-polarization 𝛾
𝑒
for the Hamiltonian

(64) of ] = 2/3. 𝛾
𝑒
is obtained by the integration as

𝛾
𝑒
=
1

4
×

1

2𝜋
∫

𝜋

−𝜋

d𝑝(
4

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) , (70)

where the four eigen-values 𝜆
1
(𝑝), 𝜆

2
(𝑝), 𝜆

3
(𝑝), and 𝜆

4
(𝑝)

are given in (61). We numerically calculate the spin-
polarization 𝛾

𝑒
by the following two methods, namely, easy

method A and precise method B. Method A is the rough cal-
culation under the fixed value of the distortion parameter 𝑡.
This method has been studied in the previous papers [53, 54]
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Figure 11: Dependence of total energy upon 𝑡.
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Figure 12: Coupling constants for ] = 3/5.
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Figure 13: 𝑝-Dependence of the six eigen values for ] = 3/5.

where the ratio 𝜉󸀠/𝜉 = 𝜂󸀠/𝜂 is treated to be a constant value as
in (62c). Method B is newly performed in this paper.

Method A. We use the fixed value 𝜉󸀠/𝜉 = 𝜂
󸀠
/𝜂 = 1.4. The

other parameters are adopted to be 𝜂/𝜉 = 𝜂
󸀠
/𝜉
󸀠
= 0.1 and

(𝑘
𝐵
𝑇/𝜉
0
) = 0.05. Then, a small energy gap appears between

𝜆
1
and 𝜆

2
.We numerically calculate the integration in (70) by

using the Mathematica program and draw the graph of spin-
polarization versus magnetic field. A small shoulder appears
in the theoretical curve of the electron spin-polarization as
seen in Figure 15.

This curve is slightly different from the experimental data
near the sharp corners 𝑃 and 𝑄. So we choose the different
value as (𝑘

𝐵
𝑇/𝜉
0
) = 0.1 in order to make the curvature small

in the corners 𝑃 and 𝑄. Then the small shoulder disappears.
In order to maintain the small shoulder, we take a larger
value 𝜉󸀠/𝜉 = 𝜂

󸀠
/𝜂 = 1.8. The calculated curve is shown in

Figure 16. The result is also different from the experimental
data. Accordingly,methodAhas some difficulty in explaining
the experimental data. This inadequacy is improved by using
the precise method B.

Method B. We carry out more precise method B where we
calculate the 𝑡-dependence of the total energy per electron.
We find the minimum point of the total energy for various
values of the magnetic field. Some examples have been
already shown in Figures 11 and 14. Therein, we obtain the
𝑡-value of the minimum point. The 𝑡-value gives 𝜉󸀠/𝜉 = 𝜂

󸀠
/𝜂

from (62c).We numerically calculate the spin-polarization by
using the magnetic field dependence of the minimum point.
The theoretical curve is shown in Figure 17.

Therein, we have used the parameter values 𝜂/𝜉 = 𝜂󸀠/𝜉󸀠 =
0.2, (𝑘

𝐵
𝑇/𝜉
0
) = 0.1 and 𝐶 = 0.5. Thus, the calculated result is

in good agreement with the experimental data. The reason is
simply discussed below.

The magnetic field is sufficiently strong near the corner
𝑃 in Figure 15. In this region, almost all the spins have
a down direction. Then the number of up- and down-
spin pairs decreases and the spin exchange energy becomes
small. So the increment of the total energy (67b) is nearly
equal to that of the classical Coulomb energy. Then, the
energy minimum appears at 𝑡 = 0, namely, non-distortion
(noninterval modulation). Thus, the distortion appears only
near the small shoulder as in Figure 11. Due to this situation,
the theoretical curve via method B is in good agreement with
the experimental data.

It is examined how the shape of the polarization curve
depends on the parameter 𝐶. We calculate the polarization
curve for the following two cases: 𝐶 = 0.4 and 0.65 in
Figure 18. These calculations make it clear that the shape
of the curve varies only in the neighborhood of the small
shoulder when changing the parameter 𝐶.

We study the case of ] = 3/5. The spin-polarization 𝛾
𝑒
for

] = 3/5 is given by

𝛾
𝑒
=
1

6
×

1

2𝜋
∫

𝜋

−𝜋

d𝑝(
6

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) , (71)
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Figure 14: Dependence of the total energy upon 𝑡 at ] = 3/5.

where the eigen-energies 𝜆
𝑠
for 𝑠 = 1, 2, 3, 4, 5, 6 are numer-

ically obtained from the matrix (68). The two calculated
curves via methods A and B are shown in Figure 19. In the
method B we have applied 𝐶 = 0.5, same as in ] = 2/3. As
seen in the right panel of Figure 19, the theoretical result via

method B is in good agreement with the experimental data.
We next examine the case of ] = 4/7. The most uniform

electron configuration is illustrated in Figure 20.
The electron configuration yields the ] = 4/7 Hamilto-

nian described by the following matrix (72):

(
(
(
(
(

(

𝜇
𝐵
𝑔
∗
𝐵 𝜉 0 0 0 0 0 𝜂

󸀠
𝑒
−𝑖𝑝

𝜉 𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0 0 0 0

0 𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0 0 0

0 0 𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0 0

0 0 0 𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜉

󸀠
0 0

0 0 0 0 𝜉
󸀠

𝜇
𝐵
𝑔
∗
𝐵 𝜂

󸀠
0

0 0 0 0 0 𝜂
󸀠

𝜇
𝐵
𝑔
∗
𝐵 𝜂

󸀠

𝜂
󸀠
𝑒
𝑖𝑝

0 0 0 0 0 𝜂
󸀠

𝜇
𝐵
𝑔
∗
𝐵

)
)
)
)
)

)

, (for ] = 4

7
) . (72)

The spin polarization 𝛾
𝑒
is given by

𝛾
𝑒
=
1

8
×

1

2𝜋
∫

𝜋

−𝜋

d𝑝(
8

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) . (73)

Therein, the eight values 𝜆
𝑠
for 𝑠 = 1, 2, 3, 4, 5, 6, 7, 8

indicate the eigenenergies of the matrix (72).
The spin polarization can be evaluated from the eigen-

energies. The results are shown in Figure 21. Method B has
used the same value 0.5 for the parameter 𝐶.

8. Effect Resembling Spin Peierls One in
Various Filling Factors

We examine the cases of ] = 2/5, ] = 3/7, and ] =

4/9 with the interval modulation, the most uniform electron
configurations of which are illustrated in Figures 22(a), 22(b),
and 22(c), respectively.

These electron configurations and their coupling con-
stants yield the spin-exchange Hamiltonians for ] = 2/5,
] = 3/7, and ] = 4/9, which are represented by the following
matrices, respectively:

(

𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 𝜍

󸀠
𝑒
−𝑖𝑝

𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜍 0

0 𝜍 𝜇
𝐵
𝑔
∗
𝐵 𝜂

󸀠

𝜍
󸀠
𝑒
𝑖𝑝

0 𝜂
󸀠

𝜇
𝐵
𝑔
∗
𝐵

) , (for ] = 2

5
) , (74a)

(

(

𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0 0 𝜍

󸀠
𝑒
−𝑖𝑝

𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0 0

0 𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜍 0 0

0 0 𝜍 𝜇
𝐵
𝑔
∗
𝐵 𝜂

󸀠
0

0 0 0 𝜂
󸀠

𝜇
𝐵
𝑔
∗
𝐵 𝜂

󸀠

𝜍
󸀠
𝑒
𝑖𝑝

0 0 0 𝜂
󸀠

𝜇
𝐵
𝑔
∗
𝐵

)

)

, (for ] = 3

7
) , (74b)
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(
(
(
(
(

(

𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0 0 0 0 𝜍

󸀠
𝑒
−𝑖𝑝

𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0 0 0 0

0 𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜂 0 0 0 0

0 0 𝜂 𝜇
𝐵
𝑔
∗
𝐵 𝜍 0 0 0

0 0 0 𝜍 𝜇
𝐵
𝑔
∗
𝐵 𝜂

󸀠
0 0

0 0 0 0 𝜂
󸀠

𝜇
𝐵
𝑔
∗
𝐵 𝜂

󸀠
0

0 0 0 0 0 𝜂
󸀠

𝜇
𝐵
𝑔
∗
𝐵 𝜂

󸀠

𝜍
󸀠
𝑒
𝑖𝑝

0 0 0 0 0 𝜂
󸀠

𝜇
𝐵
𝑔
∗
𝐵

)
)
)
)
)

)

, (for ] = 4

9
) . (74c)
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Figure 15: Method A: theoretical curve of the spin polarization for
] = 2/3. Blue dots are experimental data [50].
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Figure 16: Method A: calculated curve of the spin polarization for
] = 2/3 (the parameters are chosen as (𝑘

𝐵
𝑇/𝜉
0
) = 0.1 and 𝜉󸀠/𝜉 =

𝜂
󸀠
/𝜂 = 1.8).

The average value of 𝜉 and 𝜉
󸀠 is equal to 𝜉

0
. Also 𝜂

0
=

(𝜂 + 𝜂
󸀠
)/2. Accordingly, we obtain

𝜂 = 𝜂
0 (1 − 𝑡) , 𝜂

󸀠
= 𝜂
0 (1 + 𝑡) . (75)

The ratios between the coupling constants satisfy the
following relations:

𝜍

𝜂
=
𝜍
󸀠

𝜂󸀠
=
𝜍
0

𝜂
0

, (76a)

𝜂
󸀠

𝜂
=
𝜍
󸀠

𝜍
=
(1 + 𝑡)

(1 − 𝑡)
. (76b)
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Figure 17: Method B: calculated curve of the spin-polarization for
] = 2/3.

In order to compare the spin exchange and classical
Coulomb energies, we reexpress the 𝑡-dependence of the
classical Coulomb energy by using the coupling constant 𝜂

0
,

Δ𝑊

𝑁
= 𝜂
0
𝐷𝑡
2
, (77)

where 𝐷 is a new coefficient. Using the eigenvalues of the
matrices, the spin polarization is given by

𝛾
𝑒
=
1

4
×

1

2𝜋
∫

𝜋

−𝜋

d𝑝(
4

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) , (for ] = 2

5
) ,

(78a)

𝛾
𝑒
=
1

6
×

1

2𝜋
∫

𝜋

−𝜋

d𝑝(
6

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) , (for ] = 3

7
) ,

(78b)

𝛾
𝑒
=
1

8
×

1

2𝜋
∫

𝜋

−𝜋

d𝑝(
8

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) , (for ] = 4

9
) .

(78c)

We numerically calculate the spin-polarization curves via
method B, the results of which are shown in Figure 23.

It is found in these figures that the small shoulders
originate from the interval modulation (distortion with
double period). The theoretical curve via method B is in
better agreement with the experimental data than the one
via method A. Here we shortly discuss the parameter values
𝐶 and 𝐷. The increasing value of the classical Coulomb



ISRN Condensed Matter Physics 15

� = 2/3

Magnetic field strength (T)

1

0.8

0.6

0.4

0.2

2 4 6 8

� = 2/3

Magnetic field strength (T)

1

0.8

0.6

0.4

0.2

2 4 6 8

𝜂/𝜉 = 𝜂󳰀/𝜉󳰀 = 0.2 𝜂/𝜉 = 𝜂󳰀/𝜉󳰀 = 0.2

kBT/𝜉0 = 0.1 kBT/𝜉0 = 0.1

C = 0.4 C = 0.65

Figure 18: Spin-polarization via method B for two cases with 𝐶 = 0.4 and 0.65.
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Figure 19: Spin-polarization for ] = 3/5. Blue dots are experimental data [50].
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Figure 20: Coupling constants for ] = 4/7.

energy is expressed in (69a) and (77) as Δ𝑊/𝑁 = 𝜉
0
𝐶𝑡
2 and

Δ𝑊/𝑁 = 𝜂
0
𝐷𝑡
2, respectively. So the parameter 𝐷 may be

almost equal to

𝐷 ≈ 𝐶 ×
𝜉
0

𝜂
0

. (79a)

The fitting values of 𝐷 are 0.65, 1.5, and 1.2 for ] = 2/5,
3/7, and 4/9, respectively, as shown in Figure 23. We cannot
understand why the parameter𝐷 is small at ] = 2/5.

We examine the remaining cases of ] = 3/7 and 4/9.
The ratio 𝜂/𝜉 = 𝜂

󸀠
/𝜉
󸀠
= 𝜂
0
/𝜉
0
is 0.35 for ] = 3/5 and 4/7.

Substituting this value 0.35 for 𝜂
0
/𝜉
0
into (79a) we obtain the

value𝐷 as

𝐷 ≈
0.5

0.35
≈ 1.43 (79b)

which is the predicted value from the cases ] = 3/5 and 4/7.
The fitting values of 𝐷 are 1.5 and 1.2 for ] = 3/7 and 4/9 as
seen in Figure 23.These fitting values are consistent with 1.43
derived from the cases of ] = 3/5 and 4/7.

Next, we examine the spin polarization at ] = 4/3, 7/5,
and 8/5. The most uniform electron-configuration and the
coupling constants are shown in Figures 24(a), 24(b), and
24(c), respectively.

There are doubly occupied orbitals in these electron
configurations of Figures 24(a), 24(b), and 24(c). The spin
exchange forces act between electrons in singly occupied
orbitals. The electron pairs in doubly occupied orbitals have
no polarization because of cancellation by up- and down-spin
pairs.Therefore, the electron spin polarization is given by the
following equations:

𝛾
𝑒
=
2

4
×
1

4
×

1

2𝜋
∫

𝜋

−𝜋

d𝑝(
4

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) ,

(for ] = 4

3
) ,

(80)

𝛾
𝑒
=
3

7
×
1

6
×

1

2𝜋
∫

𝜋

−𝜋

d𝑝(
6

∑

𝑠=1

tanh(
𝜆
𝑠
(𝑝)

2𝑘
𝐵
𝑇
)) ,

(for ] = 7

5
) ,

(81)
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Figure 21: Spin-polarization for ] = 4/7. Blue dots are experimental data [50].
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Figure 22: (a) Coupling constants for ] = 2/5. (b) Coupling constants for ] = 3/7. (c) Coupling constants for ] = 4/9.
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Figure 23: Spin-polarization for ] = 2/5, 3/7, 4/9. Blue dots are experimental data [50].
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Figure 24: (a) Coupling constants for ] = 4/3. Double line indicates a Landau orbital occupied by an electron pair with up- and down-spins.
(b) Coupling constants for ] = 7/5. Double line indicates a Landau orbital occupied by an electron pair with up- and down-spins. (c) Coupling
constants for ] = 8/5. Double line indicates a Landau orbital occupied by an electron pair with up- and down-spins.
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Figure 25: Spin-polarization for ] = 4/3, 7/5, and 8/5. Blue dots are experimental data [50].
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(82)

where the coefficients 2/4, 3/7, and 2/8 in (80), (81) and
(82) come from the fact that the up- and down-spin pairs
cancel the polarization.That is to says, two electrons per four
electrons at ] = 4/3 have no polarization, four electrons per
seven electrons at ] = 7/5 have no polarization, and also six
electrons per eight electrons at ] = 8/5 have no polarization.

We numerically calculate the spin-polarization curves via
method B, the results of which are shown in Figure 25.

The polarization data at ] = 4/3 has a very sharp change
of the curvature from 𝐵 = 8.5[𝑇] to 𝐵 = 11.5[𝑇]. Therefore,
it is very difficult for the function to fit the experimental data.
The theoretical result viamethod B is in good agreement with
the experimental data at ] = 4/3, as seen in the left panel of
Figure 25.

The coupling constants at ] = 8/5 are 𝜏, 𝜅, 𝜏󸀠, 𝜅󸀠 as in
Figure 24(c). Accordingly, the coupling constants and the
classical Coulomb energy are reexpressed by using 𝜏

0
as

follows:

𝜏 = 𝜏
0 (1 − 𝑡) , 𝜏

󸀠
= 𝜏
0 (1 + 𝑡) , (83a)

Δ𝑊

𝑁
= 𝜏
0
𝐸𝑡
2
, (83b)

where 𝐸 is a new coefficient. The fitting value is 𝐸 = 0.35 for
] = 8/5. This value is different from 𝐶 and 𝐷. Probably the
reason is the shielding effect of the electron pair in doubly
occupied Landau orbitals in Figure 24(c).

In the case of ] = 4/3 and ] = 7/5, the fitting values
of 𝐶 are 0.7 and 0.5, respectively. These values are nearly
equal to 𝐶 = 0.5 in ] = 2/3, 3/5, and 4/7. The parameters
𝜂/𝜉, (𝑘

𝐵
𝑇/𝜉
0
), 𝐶 and others may be dependent upon the gate

voltage, sample, temperature, and so on.We have used almost
same value for𝐶. If we use different values of𝐶, we can find a
better fitting to the experimental data than the present results.
As seen in Figures 17, 19, 21, 23, and 25, the small shoulders
are caused by the interval modulation which comes from the
Peierls instability.

9. Conclusions

(1) The ] = 2/3 polarization curve resembles the ] = 2/5
curve, the ] = 3/5 one resembles the ] = 3/7 one, and
the ] = 4/7 one resembles the ] = 4/9 one. Thus, the
shape of the spin polarization curves depends mainly
upon the numerator of the filling factor.Therefore, the
polarization belongs to electrons (not holes).

(2) At low field, up- and down-spins coexist. Then,
there are many degenerate ground states which are
composed of different spin arrangements for a given
electron-configuration in the Landau orbitals. These
many electron states have the same eigenenergy of
𝐻
𝐷
. We have succeeded to diagonalize the par-

tial Hamiltonian describing the Coulomb transitions
among the degenerate ground states. The calculated
results reproduce the wide plateaus in the spin polar-
ization curves of the experimental data [50].

(3) The experimental curve of the polarization versus
magnetic field exhibits small shoulders. These small
shoulders are derived from the followingmechanism.
We have exactly solved the partial Hamiltonian and
also have minimized the total energy (sum of the spin
exchange and classical Coulomb energies). The total
energy decreases bymodulating the intervals between
Landau orbitals with the doubly period. Calculating
the 𝑡-value with the minimum energy, we have found
that the interval modulation actually occurs. Then,
the theoretical polarization curve reproduces the
small shoulder and the wide plateau. The results of
the present theory are in good agreement with the
experimental data.
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