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The fractional quantum Hall (FQH) states with higher Landau levels have new characters different from those with 0 < ] < 2. The
FQH states at 2 < ] < 3 are examined by developing the Tao-Thouless theory. We can find a unique configuration of electrons with
the minimum Coulomb energy in the Landau orbitals. Therein the electron (or hole) pairs placed in the first and second nearest
Landau orbitals can transfer to all the empty (or filled) orbitals at ]

0
= 8/3, 14/5, 7/3, 11/5, and 5/2 via the Coulomb interaction.

More distant electron (or hole) pairs with the same centre position have the same total momentum.Therefore, these pairs can also
transfer to all the empty (or filled) orbitals.The sumof the pair energies from these quantum transitions yields aminimum at ] = ]

0
.

The spectrum of the pair energy takes the lowest value at ]
0
and a higher value with a gap in the neighbourhood of ]

0
because many

transitions are forbidden at a deviated filling factor from ]
0
. From the theoretical result, the FQH states with ] = ]

0
are stable and

the plateaus appear at the specific filling factors ]
0
.

1. Introduction

The plateau at the filling factor ] = 5/2 attracts a great deal
of attention because of a new fractional quantumHall (FQH)
character.The plateau in the filling factor ] > 2 has characters
different from that at 0 < ] < 2. For example, Pan et al.
[1] have found a deep minimum of the diagonal resistance,
𝑅
𝑋𝑋

and 𝑅
𝑌𝑌
, at ] = 5/2 and 7/2. At ] = 9/2 and 11/2 the

diagonal resistance exhibits a strongly anisotropic behaviour,
where 𝑅

𝑋𝑋
has a sharp peak while 𝑅

𝑌𝑌
has a minimum at

] = 9/2, 11/2 [1–3]. (The definition of the coordinate axes,
𝑥, 𝑦, and 𝑧, will be shown in Figure 5 of the next section.)
Eisenstein et al. [4] have obtained the plateaus of Hall
resistance 𝑅

𝑋𝑌
at ] = 5/2 and 7/2 with even denominator.

Furthermore, the other plateaus have been discovered at ] =
7/3, 8/3, 11/5, 14/5, 16/5, and 19/5 with odd denominator as
seen in Figure 1.

The plateaus have the precise Hall resistance value. For
example, the plateau at ] = 7/2 has the Hall resistance value
2ℎ/(7𝑒

2
) within 0.015% as measured in [4]. This accuracy of

the Hall resistance indicates that the ] = (7/2) state has a
lower energy than the one at ] = (7/2)(1 ± 0.00015).

Further experimental data are shown in Figure 2 which
have been observed by Dean et al. [5] and Xia et al. [6].
The Hall resistance-curve in the left panel of Figure 2 [5]
is different from that in the right panel [6]. This difference
means that the shape of the Hall resistance versus magnetic
field curve depends on the samples and the experimental
conditions (magnetic field strength, etc.). In particular, the
difference is large at ] = 16/7, 11/5.

When the magnetic field is tilted from the direction
perpendicular to the quasi-2D electron system, the Hall
resistance plateau at ] = 5/2 disappears as seen in Figure 3
which has been found by Csáthy et al. [7]. On the other hand,
the ] = 7/3, 8/3 plateaus persist with the tilt as in Figure 3.

The temperature dependence of 𝑅
𝑋𝑋

has been measured
by many researchers. For example, the temperature depen-
dence of the diagonal resistance curves has been measured
by Pan et al. [8]. The diagonal resistance curve at 36mK is
different from that at 6mK. Furthermore, some local minima
in the diagonal resistance curve disappear at 36mK. Using
the temperature dependence of 𝑅

𝑋𝑋
, the Arrhenius plots are

drawn to give an energy gap. The energy gap is shown in
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Figure 1: Behavior of Hall resistance in the region of 2 < ] < 4 quoted from [4].
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Figure 2: Hall resistance curve in the region 2 < ] < 3. The left panel is quoted from [5] and the right panel from [6].

Figure 4 which is obtained by Choi et al. [9] and also in the
paper [5].

The data obtained in the highmobility sample [9] give the
energy gap for the filling factors of 14/5, 19/7, 8/3, 5/2, 7/3,
16/7, and 11/5 as in Figure 4.

These experimental findings at ] > 2 have stimulated
theoretical studies. Several theories have been proposed to
explain the plateaus of the Hall resistance at ] > 2, especially
at ] = 5/2. Some of them are briefly reviewed below.

Koulakov et al. have studied the ground state of a partially
filled upper Landau level in a weak magnetic field. They
have used the effective interaction [10] which was derived
by Aleiner and Glazman in the 2D-electron system with
high Landau levels, taking into account the screening effect
by the lower fully occupied levels. Then, they have found
that the ground state is a charge-density wave (CDW) state
with a large period [11]. Moessner and Chalker studied
a 2D-electron system with a fermion hardcore interaction
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Figure 3: Tilt dependence of the Hall resistance and diagonal
resistance [7].

and without disorder. They found a transition to both
unidirectional and triangular charge-density wave states at
finite temperatures [12]. Rezayi et al. numerically studied a
2D-electron system in magnetic field with a high Landau
level half filled by electrons. In finite size systems with up
to 12 electrons and torus geometry, they found a charge-
density wave ordering in the ground state. Their results
show that the highest weight single Slater determinant has
the occupation pattern 11111000001111100000, where 1 and
0 stand, respectively, for an occupied orbital and an empty
orbital [13].

Haldane and Rezayi investigated the pair state with spin-
singlet [14]. They used a hollow core Hamiltonian. In the
Landau level number 𝐿 = 1, the hollow core Hamiltonian has
the first pseudopotential 𝑉

1
> 0 although the zeroth Haldane

pseudopotential 𝑉
0
is zero. They found a ground state called

HR state. Moore and Read were inspired by the structure of
theHR state, and constructed the pair state a𝑝-wave (𝑝

𝑥
−𝑖𝑝
𝑦
)

polarized state. They have described the FQH state in terms
of conformal-field-theory [15]. The state is called the Moore-
Read state (MR state). In [16], Read wrote “the wavefunction
𝜓MR represents BCS [17, 18] pairing of composite fermions.
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Figure 4: Energy gaps for the FQH states. Open circles are quoted
from [5]. Solid circles and squares are quoted from [9].

One type are the charged vortices discussed above, with
charge 1/(2𝑞) which according to MR are supposed to obey
nonabelian statistics.” Greiter et al. investigated the MR state
from the viewpoint of the composite fermion pair [19, 20].
The statistics are an ordinary abelian fractional statistics.

Morf argued the quantum Hall states at ] = 5/2 by
a numerical diagonalization [21]. He studied spin-polarized
and -unpolarized states with 𝑁 ≤ 18 electrons. His result
indicates that the 5/2 state is expected to be the spin-
polarized MR state. Rezayi and Haldane [22] confirmed
Morf ’s results. Their results are based on numerical studies
for up to 16 electrons in two geometries: sphere and torus.
They found a first order phase transition from a striped state
to a strongly paired state. They examined 12 electrons in a
rectangular unit cell with the aspect ratio 0.5. They found the
stripe state, the probability weight of which is 58% for the
single Slater determinant state with the occupation pattern
000011110000111100001111. Also, they found an evidence that
the ] = 5/2 state is derived from a paired state which is closely
related to the MR polarized state or, more precisely, to the
state obtained particle-hole (PH) symmetrisation of the MR
state [22].

Tao and Thouless [23, 24] investigated the FQH states in
which the Landau states with the lowest energy are partially
filled with electrons. Thus, the theory does not assume any
quasiparticle. The present author has developed a theory on
the FQH states at 0 < ] < 2 [25–32] by extending the Tao-
Thouless theory. We will apply the theory to the problem of
5/2 plateau in Section 3. The plateaus at 2.5 < ] < 3 and at
2 < ] < 2.5 are discussed in Sections 5 and 6, respectively.
Before examining this problem, the fundamental properties
will be shortly summarized for the quasi-2D electron system
below.
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Figure 5: Quantum Hall Device.

2. The Properties of a Quasi-2D
Electron System

A quantum Hall device is illustrated in Figure 5 where the
𝑥-axis is the direction of the current and the 𝑦-axis is the
direction of the Hall voltage. Then, the vector potential, A,
has the components

A = (−𝑦𝐵, 0, 0) , (1)

where 𝐵 is the strength of the magnetic field. The Hamilto-
nian, 𝐻

0
, of a single electron in the absence of the Coulomb

interaction between electrons is given by

𝐻
0
=
(p + 𝑒A)2

2𝑚∗
+ 𝑈 (𝑦) +𝑊 (𝑧) , (2)

where 𝑈(𝑦) and 𝑊(𝑧) indicate the potentials confining
electrons to an ultrathin conducting layer in Figure 5.Therein
𝑚
∗ is an effective mass of electron and p = (𝑝

𝑥
, 𝑝
𝑦
, 𝑝
𝑧
) is the

electron momentum.The Landau wave function of the single
electron is given by

𝜓
𝐿,𝐽
(𝑥, 𝑦, 𝑧) = √

1

ℓ
exp(

𝑖𝑝𝑥

ℎ
) 𝑢
𝐿
𝐻
𝐿
(√

𝑚
∗
𝜔

ℎ
(𝑦 − 𝛼

𝐽
))

× exp(−𝑚
∗
𝜔

2ℎ
(𝑦 − 𝛼

𝐽
)
2
)𝜙 (𝑧) ,

(3a)

𝜔 =
𝑒𝐵

𝑚∗
, (3b)

where 𝜙(𝑧) is the wave function of the ground state along
the 𝑧-direction,𝐻

𝐿
is the Hermite polynomial of 𝐿th degree,

𝑢
𝐿
is the normalization constant, and ℓ is the length of the

quasi-2D electron system as in Figure 5.The integer𝐿 is called
Landau level number hereafter.

Because of the periodic boundary condition, themomen-
tum 𝑝 is given by

𝑝 = [
2𝜋ℎ

ℓ
] × 𝐽. (4)

Themomentum is related to the value𝛼
𝐽
in thewave function,

(3a), as

𝛼
𝐽
=

𝑝

(𝑒𝐵)
= [

2𝜋ℎ

(ℓ𝑒𝐵)
] 𝐽. (5)

The eigenenergy is given by

𝐸
𝐿,𝐽

= 𝜆 + 𝑈 (𝛼
𝐽
) + (

ℎ𝑒𝐵

𝑚∗
)(𝐿 +

1

2
) (𝐿 = 0, 1, 2, 3, . . .) ,

(6)

where 𝐿 is the Landau level number, 𝜆 is the ground state
energy along the 𝑧-direction, and 𝑈(𝛼

𝐽
) is the potential

energy in the 𝑦-direction.
When there are many electrons, the total Hamiltonian is

given by

𝐻
𝑇
=

𝑁

∑

𝑖=1

𝐻
0,𝑖

+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

𝑒
2

4𝜋𝜀√(𝑥
𝑖
− 𝑥
𝑗
)
2

+ (𝑦
𝑖
− 𝑦
𝑗
)
2

+ (𝑧
𝑖
− 𝑧
𝑗
)
2

,

(7)

where𝑁 is the total number of electrons, 𝜀 is the permittivity
and𝐻

0,𝑖
is the single particle Hamiltonian of the 𝑖th electron

without the Coulomb interaction as

𝐻
0,𝑖
=
(p
𝑖
+ 𝑒A)2

2𝑚∗
+ 𝑈 (𝑦

𝑖
) + 𝑊(𝑧

𝑖
) . (8)

The many-electron state is characterized by a set of Landau
level numbers𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑁
and a set ofmomenta𝑝

1
, 𝑝
2
, . . . ,

𝑝
𝑁
. The complete set is composed of the Slater determinant

as
Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

=
1

√𝑁!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝐿
1
,𝑝
1

(𝑥
1
, 𝑦
1
, 𝑧
1
) ⋅ ⋅ ⋅ 𝜓

𝐿
1
,𝑝
1

(𝑥
𝑁
, 𝑦
𝑁
, 𝑧
𝑁
)

...
...

𝜓
𝐿
𝑁
,𝑝
𝑁

(𝑥
1
, 𝑦
1
, 𝑧
1
) ⋅ ⋅ ⋅ 𝜓

𝐿
𝑁
,𝑝
𝑁

(𝑥
𝑁
, 𝑦
𝑁
, 𝑧
𝑁
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(9)

This state is the eigenstate of∑𝑁
𝑖=1

𝐻
0,𝑖
. The expectation value

of the total Hamiltonian is denoted by𝑊(𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . ,

𝑝
𝑁
) which is given by

𝑊(𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

=

𝑁

∑

𝑖=1

𝐸
𝐿
𝑖

(𝑝
𝑖
) + 𝐶 (𝐿

1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) ,

(10)

where 𝐶 is the expectation value of the Coulomb interaction
defined by

𝐶 (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

= ∫ ⋅ ⋅ ⋅ ∫Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

∗

×

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗>𝑖

𝑒
2

4𝜋𝜀√(𝑥
𝑖
− 𝑥
𝑗
)
2

+ (𝑦
𝑖
− 𝑦
𝑗
)
2

+ (𝑧
𝑖
− 𝑧
𝑗
)
2

× Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) 𝑑𝑥
1
𝑑𝑦
1
𝑑𝑧
1
⋅ ⋅ ⋅ 𝑑𝑥

𝑁
𝑑𝑦
𝑁
𝑑𝑧
𝑁
.

(11)
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Table 1: Energy gap measured for the fractional quantum Hall states in the second Landau level [9].

] ] = 14/5 ] = 19/7 ] = 8/3 ] = 5/2 ] = 7/3 ] = 16/7 ] = 11/5
Sample A 252mK 108mK 562mK 544mK 584mK 94mK 160mK
Sample B <60mK 150mK 272mK 206mK <40mK

Hereafter, we call 𝐶(𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) “classical Cou-

lomb energy.” We divide the total Hamiltonian 𝐻
𝑇
into two

parts𝐻
𝐷
and𝐻

𝐼
as follows:

𝐻
𝐷
= ∑

𝐿
1
,...,𝐿
𝑁

∑

𝑝
1
,...,𝑝
𝑁

󵄨󵄨󵄨󵄨Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)⟩

× 𝑊(𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

× ⟨Ψ (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)
󵄨󵄨󵄨󵄨 ,

(12a)

𝐻
𝐼
= 𝐻
𝑇
− 𝐻
𝐷
, (12b)

where 𝐻
𝐼
is composed of the off-diagonal elements only.

Accordingly, the total Hamiltonian 𝐻
𝑇

of the quasi-2D
electron system is a sum of𝐻

𝐷
and𝐻

𝐼
as follows:

𝐻
𝑇
= 𝐻
𝐷
+ 𝐻
𝐼
. (13)

The Slater determinant composed of the Landau states is the
exact eigenstate of𝐻

𝐷
. So we will examine the residual part,

namely, quantum transitions via the off-diagonal parts of the
Coulomb interaction.

Because the Coulomb interaction depends only upon the
relative coordinate of electrons, the total momentum along
the 𝑥-direction conserves in the quasi-2D electron system.
That is to say, the sum of the initial momenta 𝑝

𝑖
and 𝑝

𝑗
is

equal to that of the final momenta 𝑝󸀠
𝑖
and 𝑝󸀠

𝑗
:

𝑝
󸀠

𝑖
+ 𝑝
󸀠

𝑗
= 𝑝
𝑖
+ 𝑝
𝑗
. (14)

Next we discuss the configuration of electrons in the
Landau orbitals. The previous article [32] has verified that
the most uniform configuration of electrons is uniquely
determined for any filling factor except at both ends. The
effects of the boundaries may be neglected in a macroscopic
system. At ] < 1 the Landau states with the Landau level
number 𝐿 = 0 are partially occupied by electrons and all the
states with 𝐿 ≥ 1 are empty. For example, the most uniform
configuration for ] = 2/3 is constructed by repeating of the
unit configuration (filled, empty, filled) as shown in Figure 6.
This configuration determines the set of the momenta as

𝑝
2𝑛−1

= 𝑝
1
+ (

2𝜋ℎ

ℓ
) × 3 (𝑛 − 1) , 𝑛 = 1, 2, 3, . . . , (15a)

𝑝
2𝑛
= 𝑝
1
+ (

4𝜋ℎ

ℓ
) + (

2𝜋ℎ

ℓ
) × 3 (𝑛 − 1)

for the filling factor 2
3
,

(15b)

where 𝑝
1
is the minimum value of the momentum.

For an arbitrary filling factor, we can also find the most
uniform configuration of electrons in the Landau states.

y

x

Figure 6: Most uniform configuration of electrons at ] = 2/3. The
current flows along the𝑥-axis and theHall voltage yields along the𝑦-
axis. Red solid lines indicate the Landau orbitals filled with electron.
Blue dashed lines indicate the empty orbitals.

Then, the configuration yields the minimum expectation
value of𝐻

𝐷
, namely, the ground state of𝐻

𝐷
.

We next count the number of the Coulomb transitions
via 𝐻

𝐼
. When the filling factor deviates a little from the

specific filling factor, the number of quantum transitions
decreases abruptly because of the Fermi-Dirac statistics and
the momentum conservation. That is to say, the number of
the Coulomb transitions at the specific filling factors takes
the largest among those of the neighbouring filling factors.
This property produces the minimum energy at the specific
filling factors and yields the precise confinement of the Hall
resistance.Thismechanism can explain the phenomena of the
FQHE at ] < 2 without introducing any quasiparticles [25–
32].

Here, we remark the edge current in the FQH states.
Büttiker [33] investigated the current distribution in a 2D-
electron system and found the edge current. Both total
current and Hall voltage are affected by the edge current in
the IQHE but the Hall resistance remains to be the original
value. The mechanism has been studied for the FQH states
under the existence of the edge current in the article [29].The
precise confinement of the Hall resistance is derived from the
momentum conservation along the current direction.

3. Explanation for the Appearance of
5/2 Plateau

We first compare the energy gap at ] > 2 with that at ] <

2. The energy gap at ] = 5/2, 8/3, 7/3, and so forth is
determined from the experiment [9], the results of which are
listed in Table 1. The energy gap for ] < 1 is shown in Figure 7
which is obtained in [34].The value of the energy gap changes
from sample to sample as in Table 1.The energy gap at ] = 2/3

is about 4.3 K and that of ] = 5/2 is about 0.272∼0.544K as
measured in [9] and [34]. Thus, the energy gap in the region
2 < ] < 3 is about 1/10 times that in ] < 1. Therefore, we
cannot ignore the small terms of various Coulomb transitions
in studying the energy spectrum for ] > 2.

In the region of 2 < ] < 3, all the Landau states with
𝐿 = 0 are filled with electrons with up and down spins,
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Figure 8: Most uniform configuration at ] = 5/2. Dashed lines
indicate empty orbitals and solid lines indicate filled orbitals in the
second Landau level 𝐿 = 1. Allowed transitions are shown by green
arrow pairs.

and the Landau states with 𝐿 = 1 are partially occupied by
electrons. The interactions between electrons depend on the
shape of the Landau wave function in the 𝑥 and 𝑦 directions,
the wave function along the 𝑧-direction, the screening effect
of electrons in the lowest Landau level, and so on.The theories
[10–22] reviewed in Section 1 have employed various types of
interactions. For example, the first Haldane pseudopotential
𝑉
1
for𝐿 = 1 is positive although𝑉

0
for the lowest Landau level

(𝐿 = 0) is zero. Thus, the wave function and the interaction
in higher Landau levels are different from those in the lowest
Landau level.

In the previous articles [25–32], we have ignored the
energy from the pairs placed in the second nearest neigh-
boring Landau orbitals, because it is expected to be smaller
than that in the first nearest Landau orbitals. For the ] >

2 FQH states we have to include the contribution from
the electron pairs placed in the second neighboring Landau
orbitals because of the small energy-gap as in Table 1.

We first study the ] = 5/2 FQH state using the method
of the previous papers [25–32]. At ] = 5/2 = 2 + 1/2, the
most uniform configuration of electrons in the 𝐿 = 1 level is
illustrated in Figure 8 where the fully occupied orbitals with
𝐿 = 0 are not drawn for simplicity.

We examine the quantum transitions via the Coulomb
interaction 𝐻

𝐼
. All the Coulomb transitions satisfy the

momentum conservation along the 𝑥-axis. Figure 8 shows
schematically the quantum transitions from the electron pair
CD as an example. The momenta of electrons at C and D
are described by 𝑝C and 𝑝D, respectively. These momenta
change to 𝑝

󸀠

C and 𝑝
󸀠

D after the transition. The momentum
conservation gives the following relation:

𝑝
󸀠

C = 𝑝C − Δ𝑝, (16a)

𝑝
󸀠

D = 𝑝D + Δ𝑝, (16b)

whereΔ𝑝 is the momentum transfer.The quantum transition
is allowed to empty orbitals only. As seen in Figure 8, the
empty orbital exists in the odd numbered orbitals from the
left of the orbital C. Therefore, the transfer momentum takes
the following value derived from (4) and (5):

Δ𝑝 = (
2𝜋ℎ

ℓ
) × (2𝑛 − 1) 𝑛 = ±1, ±2, ±3, ±4, . . . , (17)

where 𝑛 = 0 is eliminated because the transition is forbidden
by the Pauli exclusion principle. All the allowed transitions
are illustrated by the green arrow pairs in Figure 8. Thus, any
electron pair placed in the second neighboring orbitals can
also transfer to all the empty orbitals (except 𝑛 = 0) at ] = 5/2.

In order to calculate the pair energies, the following
summation 𝑆 is introduced for the Landau level 𝐿 = 1:

𝑆 = − ∑

Δ𝑝 ̸= 0,−4𝜋ℎ/ℓ

⟨𝐿 = 1, 𝑝C, 𝑝D
󵄨󵄨󵄨󵄨 𝐻𝐼

󵄨󵄨󵄨󵄨󵄨
𝐿 = 1, 𝑝

󸀠

C, 𝑝
󸀠

D⟩

×

⟨𝐿 = 1, 𝑝
󸀠

C, 𝑝
󸀠

D
󵄨󵄨󵄨󵄨󵄨
𝐻
𝐼

󵄨󵄨󵄨󵄨𝐿 = 1, 𝑝C, 𝑝D⟩

𝑊G −𝑊excite (𝑝C 󳨀→ 𝑝
󸀠

C, 𝑝D 󳨀→ 𝑝
󸀠

D)
,

(18a)

𝑝D = 𝑝C +
4𝜋ℎ

ℓ
, (18b)

𝑝
󸀠

C = 𝑝C − Δ𝑝, 𝑝
󸀠

D = 𝑝D + Δ𝑝. (18c)

The summation is carried out for all the momentum changes
Δ𝑝 = (2𝜋ℎ/ℓ) × integer except Δ𝑝 = 0 and −4𝜋ℎ/ℓ. The
elimination comes fromdisappearance of the diagonalmatrix
element of 𝐻

𝐼
. The summation 𝑆 is positive, because the

denominator in (18a) is negative.Theperturbation energy 𝜍CD
of the pair CD is expressed by the summation 𝑆 as follows:

𝜍CD = −(
1

2
) 𝑆, (19)

because the function in (18a) is continuous for the argument
Δ𝑝 and also the momentum change 2𝜋ℎ/ℓ is extremely small
for a macroscopic size of the device. Therein the factor 1/2
comes from the fact that the number of allowed transitions is
equal to the number of the empty orbitals which is half of the
total Landau orbitals with 𝐿 = 1.

There are many electron pairs like CD. The total number
of the pairs like CD is equal to𝑁𝐿=1]=5/2 which indicates the total
number of electrons placed in the Landau orbitals with 𝐿 = 1.
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Accordingly, the perturbation energy of all the second nearest
electron pairs is given by

𝐸
pair
]=5/2 = −(

1

2
) 𝑆𝑁
𝐿=1

]=5/2. (20)

The pair energy per electron is

𝐸
pair
]=5/2

𝑁
𝐿=1

]=5/2
= −(

1

2
) 𝑆. (21)

The summation 𝑆 depends on the thickness, size, andmaterial
of the quasi-2D electron system. The reasons are as fol-
lows. The wave function along the 𝑧-axis depends on both
thickness and potential shape along the 𝑧-axis. The wave
function length of the 𝑥-direction depends on the device
size. The effective mass of electron and the permittivity
depend on the material of the device. Therefore, the classical
Coulomb energy 𝑊 and the transition matrix element vary
with changing the quantum Hall device. Accordingly, the
value of 𝑆 varies from sample to sample.

Furthermore, the 𝐿 = 1 Landau wave function is zero at
its center position because of the Hermite polynomial of 𝐿 =
1 degree as in (3a). Accordingly, the function form in (18a) is
quite different from that for 𝐿 = 0. Additionally, we need to
consider the screening effect from the 𝐿 = 0 electrons. The
effect is also unknown. Therefore, we do not go into detail of
the summation and treat 𝑆 as a parameter.

We have ignored the quantum transitions into higher
Landau levels with 𝐿 ≥ 2. The contribution is extremely
small because the excitation energy is very large as follows:
the excitation energy from the Landau level with 𝐿 to that
with 𝐿 + 1 is given by

𝐸
𝐿+1

− 𝐸
𝐿
=
ℎ𝑒𝐵

𝑚∗
, (22)

which is derived from (6). The effective mass𝑚∗ differs from
material to material and the value in GaAs is about 0.067
times that of free electron. For example, this excitation energy
is estimated at the magnetic field strength 4𝑇 as

𝐸
2
− 𝐸
1
≈ 1.055 × 10

−34
×

1.602 × 10
−19

× 4

(0.067 × 9.109 × 10−31)

≈ 1.108 × 10
−21

[J] ,

(𝐸
2
− 𝐸
1
)

𝑘
𝐵

≈ 80.3 [K] for 𝐵 = 4𝑇.

(23)

In the perturbation calculation, the denominator is the
energy difference 𝑊G − 𝑊excite. When the intermediate state
belongs to 𝐿 = 2, the main part of𝑊G −𝑊excite is 𝐸1 − 𝐸2 for
2 < ] < 4. The value (𝐸

2
− 𝐸
1
)/𝑘
𝐵
is about 80[K], and so the

absolute of the denominator for the intermediate states with
𝐿 = 2 is very large compared with that for the intermediate
states with 𝐿 = 1 in (18a). Therefore, the contribution
from the intermediate states with 𝐿 ≥ 2 is extremely small,
so we ignore them. We examine now the energy gaps in
Table 1 which have themagnitude of about 0.1 K.The absolute

A󳰀B󳰀B󳰀󳰀 D󳰀D󳰀󳰀 A󳰀󳰀 C󳰀C󳰀󳰀

�
=
4
8/
19

DC BAE G

Unit configuration

F

Figure 9: Quantum transitions at ] = 48/19 state.

value of the denominator for the intermediate state with
𝐿 = 2 is about 800 times the energy gaps. Accordingly, the
intermediate states with 𝐿 ≥ 2may be neglected.

Next, we study the perturbation energy in the neighbor-
hood of ] = 5/2. As an example, the ] = 48/19 = 2 + (10/19)

state is examined. The most uniform electron configuration
is illustrated in Figure 9 where the Landau orbitals with
𝐿 = 0 are not shown, for simplicity. The unit configuration is
(1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0), where 1 indicates
a filled orbital and 0 an empty orbital.

The electron pair CD can transfer to all the empty orbitals
as shown by green arrow pairs. On the other hand the pair
GA can transfer to only one site per unit configuration as
shown by black arrow pairs in Figure 9 where the red symbol
× indicates the forbidden transition. So the pair energy 𝜍󸀠GA is

𝜍
󸀠

GA = −(
1

19
) 𝑆 for ] = 48

19
. (24)

Therein the coefficient 1/19 indicates that the electron pair GA
can transfer to one site per 19 Landau orbitals. The energies
of the other pairs are calculated, the results of which are

𝜍
󸀠

FG = −(
3

19
) 𝑆, 𝜍

󸀠

EF = −(
5

19
) 𝑆,

𝜍
󸀠

DE = −(
7

19
) 𝑆, 𝜍

󸀠

CD = −(
9

19
) 𝑆, for ] = 48

19
.

(25)

We calculate the electron pair AB which is placed in the
nearest neighboring Landau orbitals as in Figure 9. In order
to calculate the energy of the nearest pair, we introduce the
following summation 𝑇:

𝑇 = − ∑

Δ𝑝 ̸= 0,−2𝜋ℎ/ℓ

⟨𝐿 = 1, 𝑝A, 𝑝B
󵄨󵄨󵄨󵄨 𝐻𝐼

󵄨󵄨󵄨󵄨󵄨
𝐿 = 1, 𝑝

󸀠

A, 𝑝
󸀠

B⟩

×

⟨𝐿 = 1, 𝑝
󸀠

A, 𝑝
󸀠

B
󵄨󵄨󵄨󵄨󵄨
𝐻
𝐼

󵄨󵄨󵄨󵄨𝐿 = 1, 𝑝A, 𝑝B⟩

𝑊G −𝑊excite (𝑝A 󳨀→ 𝑝
󸀠

A, 𝑝B 󳨀→ 𝑝
󸀠

B)
,

(26)

where

𝑝B = 𝑝A +
2𝜋ℎ

ℓ
, (27)

which is different from (18b). This summation 𝑇 is positive
because the denominator of (26) is negative. The value 𝑇 is
also treated as a parameter because 𝑇 varies from sample to
sample.The pair AB can transfer to any empty state as shown
by the red arrow pairs in Figure 9. The number of the empty
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Figure 10: Quantum transitions at ] = 78/31 state.

states is 9 per unit configuration. Accordingly, the pair energy
of AB is given by

𝜍
󸀠

AB = −(
9

19
)𝑇, for ] = 48

19
. (28)

The total perturbation energy from all the electron pairs
placed in the first and second neighboring Landau orbitals
with 𝐿 = 1 is

𝐸
pair
]=48/19 = (𝜁

󸀠

AB + 𝜁
󸀠

CD + 2𝜁
󸀠

DE + 2𝜁
󸀠

EF

+2𝜁
󸀠

FG + 2𝜁
󸀠

GA)(
𝑁
𝐿=1

]=48/19

10
) .

(29)

Substitution of (24), (25), and (28) into (29) yields

𝐸
pair
]=48/19 = −((

9

19
)𝑇 + (

41

19
) 𝑆) ⋅ (

𝑁
𝐿=1

]=48/19

10
) . (30)

The pair energy per electron for 𝐿 = 1 is

𝐸
pair
]=48/19

𝑁
𝐿=1

]=48/19
= −

((9/19) 𝑇 + (41/19) 𝑆)

10
. (31)

Onemore example ] = 78/31 = 2+(16/31)will be examined.
The most uniform configuration is shown in Figure 10 where
the Landau orbitals with 𝐿 = 0 are not shown. The electron
pair CD can transfer to all the empty orbitals as shown by
green arrows. On the other hand, the pair JA can transfer
to only one site per unit configuration as illustrated by black
arrows in Figure 10.

Accordingly, the pair energy 𝜍󸀠󸀠JA is

𝜍
󸀠󸀠

JA = −(
1

31
) 𝑆 for ] = 78

31
. (32)

The perturbation energies of the other second nearest pairs
are given by

𝜍
󸀠󸀠

IJ = −(
3

31
) 𝑆, 𝜍

󸀠󸀠

HI = −(
5

31
) 𝑆,

𝜍
󸀠󸀠

GH = −(
7

31
) 𝑆, 𝜍

󸀠󸀠

FG = −(
9

31
) 𝑆,

𝜍
󸀠󸀠

EF = −(
11

31
) 𝑆, 𝜍

󸀠󸀠

DE = −(
13

31
) 𝑆,

𝜍
󸀠󸀠

CD = −(
15

31
) 𝑆, for ] = 78

31
.

(33)

The electron pair AB can transfer to any empty state as shown
by the red arrows in Figure 10.Thenumber of the empty states

is 15 per unit configuration. Accordingly, the pair energy of
AB is given by

𝜍
󸀠󸀠

AB = −(
15

31
)𝑇 for ] = 78

31
. (34)

The total perturbation energy from all the electron pairs
placed in the first and second neighboring Landau orbitals
with 𝐿 = 1 is

𝐸
pair
]=78/31 = (𝜁

󸀠󸀠

AB + 𝜁
󸀠󸀠

CD + 2𝜁
󸀠󸀠

DE + 2𝜁
󸀠󸀠

EF + 2𝜁
󸀠󸀠

FG

+2𝜁
󸀠󸀠

GH + 2𝜁
󸀠󸀠

HI + 2𝜁
󸀠󸀠

IJ + 2𝜁
󸀠󸀠

JA)

× (

𝑁
𝐿=1

]=78/31

16
) .

(35)

Substitution of (32), (33), and (34) into (35) yields

𝐸
pair
]=78/31 = −((

15

31
)𝑇 + (

113

31
) 𝑆) ⋅ (

𝑁
𝐿=1

]=78/31

16
) . (36)

The pair energy per electron for 𝐿 = 1 is

𝐸
pair
]=78/31

𝑁
𝐿=1

]=78/31
= −

((15/31) 𝑇 + (113/31) 𝑆)

16
for ] = 78

31
. (37)

This filling factor ] = 78/31 = 2.5161 ⋅ ⋅ ⋅ is close to ] = 5/2.
The difference between ] = 5/2 and 78/31 is about 0.6%.
We compare the perturbation energy of the first and second
nearest pairs per electron between ] = 5/2 and 78/31:

𝐸
pair
]=5/2

𝑁
𝐿=1

]=5/2
−

𝐸
pair
]=78/31

𝑁
𝐿=1

]=78/31
= (𝑇 − 9𝑆) (

15

496
) . (38)

From (38) the pair energy at ] = 5/2 is lower (or higher) than
that at ] = 78/31 for 𝑇 − 9𝑆 < 0 (or 𝑇 − 9𝑆 > 0). We examine
the following two Cases 1 and 2.

Case 1 (9𝑆 ≫ 𝑇). In this case, the perturbation energy of the
first and second pairs per electron is

𝐸
pair
]=5/2

𝑁
𝐿=1

]=5/2
≪

𝐸
pair
]=78/31

𝑁
𝐿=1

]=78/31
. (39)

Accordingly the pair energy at ] = 5/2 is sufficiently lower
than that in the neighborhood of ] = 5/2. So the ] = 5/2

state is very stable and the Hall plateau appears at ] = 5/2.

Case 2 (9𝑆 ≪ 𝑇). In this case, the ] = 5/2 Hall plateau does
not appear because the pair energy at ] = 5/2 is higher than
that in its neighborhood.

Thus the FQH state is sensitive to the relative value of
𝑆 and 𝑇 which is dependent on the materials, thickness of
the conducting layer, device structure, and so on. In the next
section, we discuss the sample dependent phenomena based
on the theory obtained above.
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Figure 11: Plateaus of Hall conductance and local minima of
diagonal resistance in the experimental results of [35].

4. Sample Dependent Phenomena

For example, the 5/2 and 7/2 Hall plateaus do not exist on
the red curve of Hall conductance obtained by Dean et al. in
the article [35] as seen in Figure 11. On the other hand, the
experimental results in Figures 1–3 indicate the appearance
of the 5/2 and 7/2 Hall plateaus. Thus, the appearance or
disappearance of the ] = 5/2 and 7/2 plateaus seems to
depend upon the samples used in the experiments.

(Note: we point out similar phenomena at ] = 1/2.
The Hall plateau appears at ] = 1/2 in the experimental
results [36–40] but disappears in the ordinal experiments for
example in the article [34].)

According to our theory examined in Section 3, this
property comes from the relative value of 𝑆 and 𝑇.

5. FQH States at Filling Factors 2.5 < ] < 3

As will be shown below, in the region of 2.5 < ] < 3,
we find fractional filling factors where both first and second
nearest electron pairs can transfer to all the empty Landau
orbitals with 𝐿 = 1. These filling factors are ] = 8/3, 14/5, 18/7,
and 19/7 for the denominator smaller than nine. The allowed
transitions are shown by the arrow pairs in Figures 12, 13, 14,
and 15.

Figure 12 shows the most uniform configuration at ] =

8/3 = 2 + (2/3) where two types of electron pairs exist.
The pair AB represents the first nearest electron pair and
the pair CD the second nearest one. Both the pairs AB and
CD can transfer to all the empty orbitals with 𝐿 = 1. The
allowed transitions are shown by black and green arrow pairs,
respectively, in Figure 12.

The number of empty orbitals with 𝐿 = 1 is 1/3 of the
Landau orbitals with 𝐿 = 1. Therefore, the pair energies are
given by

𝜍AB = −(
1

3
)𝑇 for ] = 8

3
, (40a)

𝜍CD = −(
1

3
) 𝑆 for ] = 8

3
. (40b)

BA

DC

�
=
8/
3

Figure 12: Quantum transitions at ] = 8/3 state.

BA

DC

�
=
14
/5

Figure 13: Quantum transitions at ] = 14/5 state.

The total energy of the electron pairs placed in the first and
second neighboring Landau orbitals with 𝐿 = 1 is

𝐸
pair
]=8/3 = 𝜍AB × (

𝑁
𝐿=1

]=8/3

2
) + 𝜍CD × (

𝑁
𝐿=1

]=8/3

2
) , (41a)

where 𝑁𝐿=1]=8/3 indicates the total number of electrons in the
Landau orbitals with 𝐿 = 1. Substitution of (40a) and (40b)
into (41a) yields

𝐸
pair
]=8/3 = −(

𝑇

6
+
𝑆

6
)𝑁
𝐿=1

]=8/3. (41b)

We examine the pair energy in the limit from the right or left
to ] = 8/3. Using the same method reported in the previous
papers [25–32], we obtain the right and left hand limits as

lim
]→(8/3)+𝜀

𝐸
pair
] = −(

𝑇

12
+

𝑆

12
)𝑁
𝐿=1

]=8/3, (42a)

lim
]→(8/3)−𝜀

𝐸
pair
] = −(

𝑇

12
+

𝑆

12
)𝑁
𝐿=1

]=8/3. (42b)

Therefore, a valley in the energy spectrum appears as

Δ𝐸
pair
]=8/3 = 𝐸

pair
]=8/3 − lim

]→(8/3)±𝜀
𝐸
pair
] = −

1

12
(𝑇 + 𝑆)𝑁

𝐿=1

]=8/3.

(43)

The ] = 14/5, 18/7, and 19/7 states have the most uniform
configuration as shown in Figures 16, 17, and 18, respectively.
The allowed transitions are schematically drawn by the black
and green arrow pairs for the first and second nearest electron
pairs, respectively.

The number of the allowed transitions is 1/5 times the
number of Landau orbitals with 𝐿 = 1. Then, the pair energy
of AB and CD is given, respectively, by

𝜍AB = −(
1

5
)𝑇 for ] = 14

5
, (44a)

𝜍CD = −(
1

5
) 𝑆 for ] = 14

5
. (44b)

There are many electron pairs represented by AB and CD.
The total number of the pairs represented by AB is equal to
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Figure 15: Quantum transitions at ] = 19/7 state.
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Figure 16: Quantum transitions at ] = 7/3, 11/5, 17/7, and 16/7

states. Dashed lines indicate empty Landau orbitals with 𝐿 = 1 and
solid lines are orbitals filled with electron.
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Figure 17: Comparison of allowed transitions between ] = 8/3 and
7/3.
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Figure 18: Various electron pairs with the same total momentum at
] = 8/3. Dashed lines indicate empty orbitals and solid lines indicate
filled orbitals in the Landau level𝐿 = 1. Allowed transitions from the
electrons J and K are shown by black arrow pairs, from IL by blue,
from HM by brown, and from GN by dark green.

(1/4)𝑁
𝐿=1

]=14/5 and also that by CD is equal to (1/4)𝑁
𝐿=1

]=14/5.
Then, we obtain the total pair energy for the electron pairs
placed in the first and second neighboring Landau orbitals
with 𝐿 = 1 as

𝐸
pair
]=14/5 = −(

𝑇

20
+

𝑆

20
)𝑁
𝐿=1

]=14/5. (45)

Figure 14 shows the allowed transitions of the pairs AB
and CD at the filling factor ] = 18/7. The number of the
empty orbitals is 3/7 times that of the Landau orbitals with
𝐿 = 1. Accordingly, the pair energy of AB and CD is given,
respectively, by

𝜍AB = −(
3

7
)𝑇 for ] = 18

7
, (46a)

𝜍CD = −(
3

7
) 𝑆 for ] = 18

7
. (46b)

Then we obtain

𝐸
pair
]=18/7 = −(

3𝑇

28
+
3𝑆

28
)𝑁
𝐿=1

]=18/7. (47)

Next we count the number of allowed transitions of the pairs
AB and CD at ] = 19/7. The electron pairs AB and CD in
Figure 15 can transfer to all the empty Landau orbitals with
𝐿 = 1.

Since the number of the allowed transitions for each of
the AB and CD pairs is two per unit configuration composed
of the seven Landau orbitals, the pair energy of AB and CD is
given, respectively, by

𝜍AB = −(
2

7
)𝑇 for ] = 19

7
, (48a)

𝜍CD = −(
2

7
) 𝑆 for ] = 19

7
. (48b)

Then we obtain

𝐸
pair
]=19/7 = −(

2𝑇

35
+
2𝑆

35
)𝑁
𝐿=1

]=19/7. (49)

Thus, the electron pairs AB and CD can transfer to all the
empty orbitals at ] = 5/2, 8/3, 14/5, 18/7, and 19/7, and
therefore the pair energy becomes very low, resulting in a
strong binding energy.

The values of 𝑆 and 𝑇 may vary from sample to sample.
We examine the condition that the 5/2 plateau appears. From
(38), the ] = 5/2 state is stable when 𝑆 is sufficiently lager
than 𝑇/9. In the experiment [9], the energy gaps have been
measured as in Figure 4. In the high mobility sample [9], the
energy gap at ] = 5/2 is nearly equal to that at ] = 8/3.
Equations (21) and (41b) give the pair energy per electron as
follows:

𝐸
pair
]=5/2

𝑁
𝐿=1

]=5/2
= −(

𝑆

2
) , (50a)

𝐸
pair
]=8/3

𝑁
𝐿=1

]=8/3
= −(

𝑇

6
+
𝑆

6
) . (50b)
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The experimental data [9] can be explained by the present
theory under the following condition:

𝑇 ≈ 2𝑆. (51)

Equations (21), (41b), (45), and (49) give the theoretical ratio
of the pair energies at ] = 5/2, 8/3, 14/5, and 19/7 as follows:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
pair
]=5/2

𝑁
𝐿=1

]=5/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
pair
]=8/3

𝑁
𝐿=1

]=8/3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
pair
]=14/5

𝑁
𝐿=1

]=14/5

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐸
pair
]=19/7

𝑁
𝐿=1

]=19/7

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (
𝑆

2
) : (

𝑇

6
+
𝑆

6
) : (

𝑇

20
+

𝑆

20
) : (

2𝑇

35
+
2𝑆

35
) .

(52)

When condition (51) is satisfied, the theoretical ratio of the
pair energies becomes

(
𝑆

2
) : (

𝑇

6
+
𝑆

6
) : (

𝑇

20
+

𝑆

20
) : (

2𝑇

35
+
2𝑆

35
)

= 1 : 1 : (
3

10
) : (

12

35
) .

(53)

From Figure 4, the experimental data of the energy gap yield
the ratio for the high mobility sample as

0.0047 : 0.005 : 0.0023 : 0.001

= 0.94 : 1 : 0.46 : 0.2.

(54)

Thus, the present theory explains reasonably well the experi-
mental data.

6. FQH States at Filling Factors 2 < ] < 2.5

Next we examine the FQH states with 2 < ] < 2.5. The most
uniform configurations at ] = 7/3, 11/5, 17/7, and 16/7 are
schematically drawn in Figure 16. The hole-pairs AB and CD
can transfer to all the electron states in 𝐿 = 1 as easily seen
in Figure 16. This property produces a strong binding energy
between the hole-pairs.

The number of allowed transitions for the hole-pairs at
] = 7/3 is equal to that for the electron-pairs at ] = 8/3.
This symmetry between electron and hole is clearly seen by
comparing the number of transitions (namely, number of
arrows) for ] = 8/3 and 7/3, as easily seen in Figure 17.

From the discussion given in Sections 3, 5, and 6, we find
that the state with ] = 5/2, 7/3, 8/3, 11/5, 14/5, 16/7, 17/7,
and 18/7 and 19/7 is stable in the region 2 < ] < 3. The
left panel of Figure 2 quoted from [5] shows the plateaus of
the Hall resistance at ] = 5/2, 7/3, 8/3, 11/5, 14/5, and 16/7.
Similar investigation for ] > 3 can be performed by using
the method of this section. The pair energy becomes large
at the filling factor ] = 7/2, 10/3, 11/3, 16/5, and so on. The
Hall plateaus at these filling factors have been found in several
experiments.

The number of the allowed transitions via the Coulomb
interaction discontinuously varies with changing the filling
factor.The discontinuous variation is caused by the combined
effect of the momentum conservation along the current, the
most uniform configuration of electrons and the Fermi-Dirac

statistics.This effect produces the stability of FQHstates at the
several filling factors.

As described in Section 1, different states have been
proposed by different authors. For example, the ] = 5/2 FQH
state is explained by the stripeHR orMR states and so on.The
] = 7/3 FQH state is said to be composed of the composite
fermions where each electron binds to two flax quanta and
the ] = 11/5 FQH state is explained to be composed of
the composite fermions where each electron binds to four
flax quanta. The theory presented here explains the FQH
phenomena occurring at ] < 2 and those at 2 < ] < 3 in
a coherent way without assuming any quasi-particles.

7. Further Investigation of
the Pair Energy for 2 < ] < 3

We examine the exact energy of any FQH state. The total
energy 𝐸

𝑇
of the quasi-2D electron system is the sum of

the eigenenergy 𝑊 of 𝐻
𝐷
and the pair energy 𝐸pair via the

interaction𝐻
𝐼
as follows:

𝐸
𝑇
= 𝑊 + 𝐸

pair
, (55)

where𝑊 has been already given by (10) as follows:

𝑊 =

𝑁

∑

𝑖=1

𝐸
𝐿
𝑖

(𝑝
𝑖
) + 𝐶 (𝐿

1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) . (56)

Equations (5) and (6) yield the following equation:

𝑊 = 𝐶 (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) + 𝑁𝜆

+

𝑁

∑

𝑖=1

𝑈(
𝑝
𝑖

(𝑒𝐵)
) +

𝑁

∑

𝑖=1

(
ℎ𝑒𝐵

𝑚∗
)(𝐿
𝑖
+
1

2
) .

(57)

The energy difference between different Landau levels is
extremely large as shown in (22) and (23). The interval of
Landau energies has been estimated for GaAs

(𝐸
1
− 𝐸
0
)

𝑘
𝐵

=
(𝐸
2
− 𝐸
1
)

𝑘
𝐵

≈ 80.3 [K] for 𝐵 = 4𝑇. (58)

The experimental values of the energy gaps at 2 < ] < 3 are
smaller than 1 [K] as in Table 1 and therefore higher Landau
levels can be ignored at low temperatures. So, the ground state
at 2 < ] < 3 is obtained by superposing many-electron states
that all the Landau states with 𝐿 = 0 are occupied by electrons
with up and down spins and the Landau states with 𝐿 = 1

are partially occupied by electrons. We express the number
of electrons in the Landau level L by 𝑁𝐿] and the number of
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Landau orbitals by 𝑁level𝐿, respectively. The ratio 𝑁𝐿] /𝑁
level𝐿

is described as follows:

𝑁
𝐿=0

]

𝑁level𝐿 = 2 in the ground state with 2 < ] < 3, (59a)

𝑁
𝐿=1

]

𝑁level𝐿 = ] − 2 in the ground state with 2 < ] < 3, (59b)

𝑁
𝐿=2

]

𝑁level𝐿 = 0 in the ground state with 2 < ] < 3, (59c)

𝑁
𝐿>2

]

𝑁level𝐿 = 0 in the ground state with 2 < ] < 3, (59d)

where 𝑁level𝐿 depends on the sample and the magnetic field
strength but is independent of 𝐿. The total number 𝑁 of
electrons is

𝑁 = 𝑁
𝐿=0

] + 𝑁
𝐿=1

] in the ground state with 2 < ] < 3.

(60)

Substitution of (59a), (59b), (59c), (59d), and (60) into (57)
gives the eigenenergy𝑊 of𝐻

𝐷
as follows:

𝑊 = 𝐶 (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) + 𝑁𝜆

+

𝑁

∑

𝑖=1

𝑈(
𝑝
𝑖

(𝑒𝐵)
) +

1

2
(
ℎ𝑒𝐵

𝑚∗
)𝑁
𝐿=0

]

+
3

2
(
ℎ𝑒𝐵

𝑚∗
)𝑁
𝐿=1

] in the ground state with 2 < ] < 3.

(61)

Next, we investigate the pair energy which is caused by the
quantum transitions via𝐻

𝐼
. The electron pairs in the ground

state with 2 < ] < 3 have been classified into the following
three types:

First type: both electrons in the pair are placed in the
orbitals with 𝐿 = 0 only.
Second type: one electron is placed in 𝐿 = 0 and the
other in 𝐿 = 1.
Third type: both electrons in the pair are placed in 𝐿 =
1 only.

These pair energies are described by the symbols 𝐸pair
𝐿=0

,
𝐸
pair
𝐿=0 and 1, and 𝐸

pair
𝐿=1

, respectively. The total energy of all the
electron pairs is

𝐸
pair

= 𝐸
pair
𝐿=0

+ 𝐸
pair
𝐿=0 and 1

+ 𝐸
pair
𝐿=1

in the ground state with 2 < ] < 3.

(62)

Therein the pair energies 𝐸pair
𝐿=0

and 𝐸
pair
𝐿=0 and 1 are negligibly

small because of the following reason. Any order of the per-
turbation energy is obtained by a summation of the functions
with the denominator containing the energy difference of𝑊
between the ground and intermediate states. Any electron

pair belonging to the first or second types can transfer only
to the intermediate states with a higher Landau level because
all the Landau orbitals with 𝐿 = 0 are already occupied
by electrons with up and down spins. Therefore, the energy
difference between the ground and intermediate states is very
large as in (58).Thenwemay ignore the pair energy belonging
to the first and second types:

𝐸
pair
𝐿=0

≈ 0, 𝐸
pair
𝐿=0 and 1 ≈ 0 in the ground state with ]>2.

(63)

On the other hand, the electron pairs in 𝐿 = 1 can transfer to
empty orbitals with 𝐿 = 1 for 2 < ] < 3. Then, the energy
difference of 𝑊 between the ground and the intermediate
states comes from the difference in the classical Coulomb
energies and so the difference is very small. We will examine
any electron (or hole) pair placed in any Landau orbitals with
𝐿 = 1. As an example, we discuss the case of ] = 8/3. Figure 18
schematically shows the electron pairs at ] = 8/3. The
electron pairs IL, HM, and GN possess the total momentum
same as that of the pair JK. These pairs can transfer to all the
empty orbitals as easily seen in Figure 18.

The momenta of the electrons at G, H, I, J, K, L, M, and
N are described by the symbols 𝑝G, 𝑝H, 𝑝I, 𝑝J, 𝑝K, 𝑝L, 𝑝M, and
𝑝N, respectively.Then, the totalmomenta of the electron pairs
take the same value because of (4) and (5):

𝑝total = 𝑝G + 𝑝N = 𝑝H + 𝑝M = 𝑝I + 𝑝L = 𝑝J + 𝑝K. (64)

The energies of the pairs GN, HM, IL, and JK, 𝜍GN, 𝜍HM, 𝜍IL,
and 𝜍JK, can be reexpressed systematically by using a symbol
𝜍
𝐿=1

] (𝑝total, 𝑗), where 𝑝total and 𝑗 indicate the total momentum
and the distance between the pair as follows:

𝜍JK = 𝜍
𝐿=1

]=8/3 (𝑝total, 𝑗 = 1) , (65a)

𝜍IL = 𝜍
𝐿=1

]=8/3 (𝑝total, 𝑗 = 5) , (65b)

𝜍HM = 𝜍
𝐿=1

]=8/3 (𝑝total, 𝑗 = 7) , (65c)

𝜍GN = 𝜍
𝐿=1

]=8/3 (𝑝total, 𝑗 = 11) . (65d)

Therein the momentum of each electron is given as

𝑝J =
1

2
(𝑝total −

1 × 2𝜋ℎ

ℓ
) ,

𝑝K =
1

2
(𝑝total +

1 × 2𝜋ℎ

ℓ
) ,

(66a)

𝑝I =
1

2
(𝑝total −

5 × 2𝜋ℎ

ℓ
) ,

𝑝L =
1

2
(𝑝total +

5 × 2𝜋ℎ

ℓ
) ,

(66b)
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KL pair
JM pair

HO pair
IN pair

A B C E G I K M OD F H J L N P Q R S T

Figure 19: Various electron pairs with the same total momentum at
] = 8/3.Dashed lines indicate empty orbitals and solid lines indicate
filled orbitals in the Landau level𝐿 = 1. Allowed transitions from the
electrons K and L are shown by black arrow pairs, from JM by blue,
from IN by brown, and from HO by dark green.

𝑝H =
1

2
(𝑝total −

7 × 2𝜋ℎ

ℓ
) ,

𝑝M =
1

2
(𝑝total +

7 × 2𝜋ℎ

ℓ
) ,

(66c)

𝑝G =
1

2
(𝑝total −

11 × 2𝜋ℎ

ℓ
) ,

𝑝N =
1

2
(𝑝total +

11 × 2𝜋ℎ

ℓ
) .

(66d)

Thus, any momentum-pair (𝑝
𝑉
, 𝑝
𝑊
) is related to 𝑝total and 𝑗

as

𝑝
𝑉
=
1

2
(𝑝total −

𝑗 × 2𝜋ℎ

ℓ
) ,

𝑝
𝑊
=
1

2
(𝑝total +

𝑗 × 2𝜋ℎ

ℓ
) .

(67a)

𝑝total = 𝑝
𝑉
+ 𝑝
𝑊
, 𝑗 =

(𝑝
𝑊
− 𝑝
𝑉
)

(2𝜋ℎ/ℓ)
. (67b)

Because both momenta 𝑝
𝑉

and 𝑝
𝑊

should be equal to
(2𝜋ℎ/𝑙) × integer, the values of 𝑝total and 𝑗 are classified to
the following two cases:

𝑝total = (
2𝜋ℎ

ℓ
) × (odd integer) for 𝑗 = (odd integer) ,

(68a)

𝑝total = (
2𝜋ℎ

ℓ
) × (even integer) for 𝑗 = (even integer) .

(68b)

We have already examined the case of odd integer 𝑗 in
Figure 18.

Next, we examine the case of even integer 𝑗. Figure 19
shows quantum transitions with even integers 𝑗 given by
(68b). All the electron pairs possessing the total momentum
same as that of the pair KL can transfer to all the empty
orbitals as in Figure 19. The electron pairs KL, JM, IN, and
HO indicate the cases of 𝑗 = 2, 4, 8, and 10, respectively.

The pair energies are described as

𝜍KL = 𝜍
𝐿=1

]=8/3 (𝑝total, 𝑗 = 2) , (69a)

𝜍JM = 𝜍
𝐿=1

]=8/3 (𝑝total, 𝑗 = 4) , (69b)

𝜍IN = 𝜍
𝐿=1

]=8/3 (𝑝total, 𝑗 = 8) , (69c)

𝜍HO = 𝜍
𝐿=1

]=8/3 (𝑝total, 𝑗 = 10) . (69d)

The total energy of all the electron pairs is described by the
symbol 𝐸pair defined by (55). Use of (62) and (63) gives

𝐸
pair

≈ 𝐸
pair
𝐿=1

(]) in the ground state with 2 < ] < 3. (70)

This energy at 𝐿 = 1 is the sum of all the pair energies with
𝑝total and 𝑗:

𝐸
pair
𝐿=1

(])

= ∑

𝑝total,𝑗

𝜍
𝐿=1

] (𝑝total, 𝑗) in the ground state with 2 < ] < 3.

(71)

Equations (55), (70), and (71) yield the total energy of the
quasi-2D electron system as follows:

𝐸
𝑇
≈ 𝑊 + ∑

𝑝total,𝑗

𝜍
𝐿=1

] (𝑝total, 𝑗)

in the ground state with 2 < ] < 3.

(72)

Substitution of (61) into (72) gives

𝐸
𝑇
≈ 𝐶 (𝐿

1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
)

+ 𝑁𝜆 +

𝑁

∑

𝑖=1

𝑈(
𝑝
𝑖

(𝑒𝐵)
) +

1

2
(
ℎ𝑒𝐵

𝑚∗
)𝑁
𝐿=0

]

+
3

2
(
ℎ𝑒𝐵

𝑚∗
)𝑁
𝐿=1

] + ∑

𝑝total,𝑗

𝜍
𝐿=1

] (𝑝total, 𝑗)

in the ground state with 2 < ] < 3.

(73)

We express the pair energy per electron by the symbol 𝜉𝐿=1] (𝑗)

which is defined by

𝜉
𝐿=1

] (𝑗)

=

∑
𝑝total

𝜍
𝐿=1

] (𝑝total, 𝑗)

𝑁𝐿=1]
in the ground state with 2 < ] < 3.

(74)

The exact pair energy is the sum of all order terms in the
perturbation calculation as follows:

𝜉
𝐿=1

] (𝑗) = ∑

𝑛=2,3,4,...

𝜉
𝐿=1

] (𝑗; 𝑛) , (75)
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Table 2: Second order of the perturbation energy per electron for the electron pairs placed in the second nearest Landau orbital pairs.

] 5/2 48/19 78/31 8/3 14/5 18/7 19/7
𝜉
𝐿=1

] (2; 2) − (1/2) 𝑆 − (41/190) 𝑆 − (113/496) 𝑆 −𝑆/6 −𝑆/20 −3𝑆/28 −2𝑆/35

A1B1 pair

A2B2 pair

A3B3 pair

A4B4 pair

A8A7 A6 A4A3 A2A1A5 B8B7B6B4B3B2B1 B5

Figure 20: Various electron pairs with the same total momentum at ] = 14/5. Dashed lines indicate empty orbitals and solid lines indicate
filled orbitals in the Landau level 𝐿 = 1. Allowed transitions from the electrons A

1
and B

1
are shown by black arrow pairs, from A

2
B
2
by blue,

from A
3
B
3
by brown, and from A

4
B
4
by dark green.

where 𝜉𝐿=1] (𝑗; 𝑛) indicates the 𝑛th order of the perturbation
energy. Substitution of (74) and (75) into (73) yields

𝐸
𝑇
= 𝑊 + 𝐸

pair

≈ 𝐶 (𝐿
1
, . . . , 𝐿

𝑁
; 𝑝
1
, . . . , 𝑝

𝑁
) + 𝑁𝜆

+

𝑁

∑

𝑖=1

𝑈(
𝑝
𝑖

(𝑒𝐵)
) +

1

2
(
ℎ𝑒𝐵

𝑚∗
)𝑁
𝐿=0

]

+
3

2
(
ℎ𝑒𝐵

𝑚∗
)𝑁
𝐿=1

] + 𝑁
𝐿=1

]

× ∑

𝑗=1,2,3,...

( ∑

𝑛=2,3,4,...

𝜉
𝐿=1

] (𝑗; 𝑛))

in the ground state with 2 < ] < 3.

(76)

Therein the function form of 𝑊 is continuous with the
change in ]. On the other hand, the pair energy 𝐸pair has a
discontinuous form for the argument ], because the number
of the allowed transitions depends discontinuously upon ].
This discontinuous property produces the plateaus of the
Hall resistance at specific filling factors. We have already
calculated the second order perturbation energies for 𝑗 = 1

and 2 as in (21), (31), (37), (41b), (45), (47), and (49). We list
the results in Tables 2 and 3.

Now we examine the effects of further neighbouring
electron pairs in the ] = 14/5 state. Figure 20 shows the
most uniform configuration. Therein the allowed transitions
from the electron pairs A

𝑛
B
𝑛
(𝑛 = 1, 2, 3, . . .) are shown by

the arrow pairs. The centre position between the nearest pair
A
1
B
1
is equal to that of the electron pair A

𝑛
B
𝑛
for any integer

𝑛 > 1. Accordingly, the total momentum of the pair 𝐴
𝑛
𝐵
𝑛

is equal to that of the pair A
1
B
1
. Therefore, the electron pair

A
𝑛
B
𝑛
with 𝐿 = 1 can transfer to all the empty states as the pair

A
1
B
1
.

Also, the total momentum of the electron pair C
1
D
1
in

Figure 21 is equal to that of the pairs C
𝑛
D
𝑛
(𝑛 = 1, 2, 3, . . .)

and therefore the pair C
𝑛
D
𝑛
can transfer to all the empty

states except the orbital 𝑌 shown in blue. This only one
forbidden transition may be ignored in comparison with the

enormously many allowed transitions which are caused by
the spreading of the Landau wave function in the 𝑦-direction
for the macroscopic size of the device.

Thus, the further neighbouring electron (or hole) pairs
with 𝑗 ≥ 3 can transfer to all the empty (or filled) orbitals
at ] = 8/3, 14/5, 7/3, and 11/5. The energies of these pairs
with 𝑗 ≥ 3 are negative in the second order perturbation.
Therefore, the energies are accumulated to give a stronger
binding energy and so the states become more stable.

8. Conclusions

The FQH states with 2 < ] < 3 have been investigated by
using the method developed in previous articles [25–32]. We
have found the most uniform configuration in the Landau
orbitals at ] = 5/2, 48/19, 78/31, 8/3, 14/5, 18/7, 19/7, 7/3,

11/5, 17/7, and 16/7. Especially, the electron (or hole) pairs
placed in the first and second neighbouring Landau orbitals
in 𝐿 = 1 can transfer to all the empty orbitals at ]

0
=

8/3, 14/5, 7/3, and 11/5 states via the Coulomb interaction.
Also, at ]

0
= 5/2, the electron pairs placed in the second

nearest Landau orbitals can transfer to all the empty orbitals
with 𝐿 = 1. More distant electron (or hole) pairs with the
same centre positions as in the first and second nearest pairs
can also transfer to all the empty (or filled) orbitals at ]

0
.

Then, the energies of the distant pairs, 𝜉𝐿=1] (𝑗) for 𝑗 ≥ 3, are
accumulated to that of the first and second nearest pairs.

This capability of the quantum transitions to all the empty
orbitals means that the number of transitions is largest at
]
0
. Accordingly, the number of transitions decreases abruptly

when the filling factor deviates from ]
0
= 5/2, 8/3, 14/5, 7/3,

and 11/5.This property is caused by the combined effect of the
most uniform configuration, momentum conservation and
Fermi-Dirac statistics. For example, (41a), (41b)–(43) show
that the pair energy at ] = 8/3 becomes half of that in the
neighbourhood of ] = 8/3. The spectrum of the pair energy
has a valley structure at ]

0
= 5/2, 8/3, 14/5, 7/3, 11/5 and

so on. That is to say, the pair energy has a discontinuous
function form which takes the lowest value at the specific
filling factor ]

0
and becomes higher energy with a gap in

the neighbourhood of ]
0
. Therefore, the ]

0
-FQH states are



ISRN Condensed Matter Physics 15

C1D1 pair

C2D2 pair

C3D3 pair

C4D4 pair

YC8C7C6C5 C4C3C2C1 D8D7D6D4D3D2D1 D5

Figure 21: Various electron pairs with the same total momentum at ] = 14/5. Dashed lines indicate empty orbitals and solid lines indicate
filled orbitals in the Landau level 𝐿 = 1. Allowed transitions from the electrons C

1
and D

1
are shown by black arrow pairs, from C

2
D
2
by blue,

from C
3
D
3
by brown, and from C

4
D
4
by dark green.

Table 3: Second order of the perturbation energy per electron for the electron pairs placed in the nearest Landau orbital pairs.

] 5/2 48/19 78/31 8/3 14/5 18/7 19/7
𝜉
𝐿=1

] (1; 2) 0 − (9/190) 𝑇 − (15/496) 𝑇 −𝑇/6 −𝑇/20 −3𝑇/28 −2𝑇/35

stable at ]
0
= 5/2, 8/3, 14/5, 7/3, and 11/5. Since thousands of

the Landau wave functions are overlapping with each other,
the deviation of the Hall resistance from ℎ/(e2]

0
) becomes

smaller than 0.1%. This property is in agreement with the
experimental value, the accuracy of which is 0.015% at ]

0
=

7/2 and so on. Thus, we should study the quasi-2D system
with more than thousand electrons. Our treatment can do
this task because the present theory can count the number
of transitions for an enormous number of electrons.

When we choose the parameter-ratio (𝑇/𝑆) = 2, the
theoretical ratio of the pair energies at ]

0
= 5/2, 8/3, 14/5,

and 19/7 is equal to 1 : 1 : (3/10) : (12/35) which is in reasonable
agreement with the data of the high mobility sample in [9].

The present theory has explained the FQH phenomena
for various filling factors 2 < ] < 3 based on a standard treat-
ment of interacting quasi-2D electron gas without assuming
any quasiparticle.
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