

Title	Determination of the Coupling Constant g_ $\langle N N \eta \rangle$	
Author(s)	Sasaki, Shosuke	
Citation	Progress of Theoretical Physics. 1968, 40(1), p. 188-190	
Version Type	• VoR	
URL	https://hdl.handle.net/11094/27145	
rights	rights Copyright (c) 1968 Progress of Theoretical Physics	
Note		

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Prog. Theor. Phys. Vol. 40 (1968), No. 1

Determination of the Coupling Constant $g_{_{NN_{\eta}}}$

Shosuke SASAKI

Department of Physics, Osaka University
Toyonaka

April 20, 1968

At present, available information on η -N interactions can be obtained only*) from the process $\pi^- + p \rightarrow \eta + n$. In this note we determine the coupling constant $g_{NN\eta}$ using the dispersion relation of the amplitudes for the η -production.

The dispersion relation includes an integral over a wide range of energy from the low energy region below the η -N threshold to the high energy region.**) In order to avoid the unknown parts involved in this integral, we consider the dispersion relation for partial wave amplitudes. Among various partial waves, we exclusively consider a particular one for which the contribution from the integral becomes negligibly small as compared with that from the Born term. The P_{13} wave is appropriate for this purpose in the reaction $\pi^- + p \rightarrow \eta + n$ according to the results of a preceding paper.¹⁾

The following dispersion relation for the P_{13} wave is obtained in the same way as in the paper of C.G.L.N.²⁾ which is valid near the ηN threshold:

$$\begin{split} \frac{f_{P_{13}}}{q_{1}q_{2}} &= \frac{f_{P_{13}}^{\text{Born}}}{q_{1}q_{2}} + \frac{2}{3} \frac{1}{4\pi} \frac{\sqrt{(E_{1}+M)(E_{2}+M)}}{2W} \frac{1}{\pi} \\ &\times \left[\int_{(M+m_{\pi})^{2}}^{\infty} \left[\text{Im} \left\{ A^{(1)}(s',t_{0}) + (W-M)B^{(1)}(s',t_{0}) \right\} / (s'-s-i\epsilon) \right] \alpha s' \right. \\ &+ \int_{(M+m_{\pi})^{2}}^{\infty} \left[\text{Im} \left\{ A^{(1)}(s',t_{0}) + (W-M)B^{(1)}(s',t_{0}) \right\} / (s'-u) \right] ds' \\ &- \int_{(M+m_{\pi})^{2}}^{\infty} \left[\text{Im} \left\{ A(s',t_{0}) + (W-M)B(s',t_{0}) \right\} / (s'-u)^{2} \right] ds' \right], \end{split}$$
(1)

^{*)} There are experiments for the process $\tau + p \rightarrow \eta + p$. However, the experimental data were obtained for only one particular angle with very large errors.

**) Experiments for the reaction $\pi^- + p \rightarrow \eta + n$ were performed only for the energy range from the threshold to 1.3 BeV.

where q_1 , q_2 are the initial and final momenta, and E_1 , E_2 are the nucleon energies. A and B are the invariant amplitudes for the reaction $\pi + N \rightarrow \eta + N$ as defined in reference 2) and $A^{(1)}$, $B^{(1)}$ are the derivatives of A, B with respect to the square of momentum transfer. W, M, s, t_0 and u are respectively the total energy, nucleon mass, W^2 , square of momentum transfer at the threshold and $u = -s - t_0 + 2M^2 + m_\pi^2 + m_\eta^2$. $f_{P_{13}}^{Born}$ is the Born amplitude and has the following form in the static limit:

$$f_{P_{13}}^{\text{Born}} = \frac{-1}{\sqrt{3}} \frac{g_{NN\pi}g_{NN\eta}}{4\pi} \frac{\sqrt{(E_1 + M)(E_2 + M)}}{2W} \times (W - M) \frac{2q_1q_2}{(2E_1\omega_{\eta} - m_{\eta}^2)^2}.$$
(2)

In reference 1), it was shown that the η-production amplitudes have two types (Cases I and II) of the solutions. First, we discuss Case I. In this case the S_{11} and P_{11} waves have large imaginary parts. However, these waves contribute only to the third integral in Eq. (1) in which the denominator is equal to $(s'-u)^2$. Since the denominator has a large value, the contribution of this integral is negligibly small as compared with the l.h.s. of Eq. (1). In fact, the numerical value for the energy range 561~1300 MeV is equal to -0.004^{*} (see Table I). Below the ηN Table I. Numerical value of f_{P13}/q_1q_2 and the dispersion integrals in Eq. (1). (unit: η meson mass)

	$f_{P13}/q_1q_2 = -0.75 - 0.15 + 0.07$			
	Kinetic energy (MeV)	First integral	Sum of second and third inte- grals	
	0~561	0~0.01	$-0.005 \sim -0.002$	
	561~1300	0.01	-0.004	
	above 1300	absolute < 0.005	absolute < 0.001	

^{*)} This value is estimated by using the partial wave amplitudes of the solution 3 in reference 1).

threshold, the η -production amplitudes have no enhancement except for the P_{11} (1400 MeV) resonance. This contribution, however, is at most about a few per cent of the magnitude of l.h.s. of Eq. (1), when the integral is estimated by means of the extrapolation of physical amplitudes.

Consequently, the coupling constant $g_{NN\eta}$ can be determined from the value $f_{P_{13}}/q_1q_2$ for which we have, fortunately, a reliable value obtained by the analysis of reference 1). These considerations lead to the final result:

$$g_{NN_{\eta}}^{2}/4\pi = 4.1_{-0.7}^{+1.8}$$
 (3)

Secondly, $g_{NN_{\eta}}^2$ for Case II in reference 1) is roughly estimated in the same method as for Case I, and we obtain $g_{NN_{\eta}}^2/4\pi=0.4$. This value is too small to reproduce the enhancement of the η -production cross section near threshold. We, therefore, abandon this case and adopt Eq. (3) as the correct value $g_{NN_{\eta}}^2$.

From SU(3) symmetry,

$$\frac{g_{NN\eta}^2}{4\pi} = \frac{1}{3} (1 - 4f)^2 \frac{g_{NN\pi}^2}{4\pi} \,. \tag{4}$$

By using $f=0.41\pm0.07^3$) and $g_{NN\pi}^2/4\pi=14.5\pm0.4$, the calculated value of $g_{NN\eta}^2/4\pi=2.0$. This value is a half of experimental value given by Eq. (3). Thus pure octet model does not agree with the experimental result, suggesting the necessity of η - χ mixing. The physical mesons η and χ are expressed by the mixing of singlet meson η_0 and octet meson η_8 as follows:

$$\eta = \eta_8 \cos \theta + \eta_0 \sin \theta ,$$

$$\chi = -\eta_8 \sin \theta + \eta_0 \cos \theta .$$
(5)

The coupling constants for these η_0 and η_8 mesons are determined by nonet model, where the strong interactions between baryons and mesons are derived from the following interaction Hamiltonian (the γ_5

matrix is abbreviated):

$$H_I = \sqrt{2}g_{NN\pi} \operatorname{Tr}[\{(f+d)\overline{B}B + (d-f)B\overline{B}\}]$$

$$\times (M + (1/\sqrt{3})\eta_0 E)]. \tag{6}$$

B, M are matrices of baryon octet and meson octet respectively, and E is a unit matrix. From these Eqs. (5) and (6), the value of $g_{NN\eta}$ is given by

$$g_{NN\eta} = (g_{NN\eta}/\sqrt{3}) \left[(4f-1)\cos\theta + 2\sqrt{2}(1-f)\sin\theta \right]. \tag{7}$$

Using $\theta = 10.4^{\circ}$ determined⁴⁾ by the mass formula, we have

$$g_{NN_{\eta}}^{2}/4\pi = 4.2,$$
 (8)

which agrees with the experimental result. The nonet model seems to be consistent with the value of $g_{NN\eta}$ given by Eq. (3) within the accuracy of the present experimental data.

The author would like to thank Dr. J. Arafune for very useful advice about nonet model.

- S. Sasaki, J. Takahashi and K. Ozaki, Prog. Theor. Phys. 38 (1967), 1326.
- G. F. Chew, M. L. Goldberger, F. E. Low and Y. Nambu, Phys. Rev. 106 (1957), 1337.
- J. K. Kim, Phys. Rev. Letters 19 (1967), 1079.
- 4) H. Rosenfeld et al., UCRL 8030 (Rev.) September 1967.