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An XY model with two kinds of coupling constants J and —E is investigated. The system has plural
spin sites in a unit cell, where the coupling constant inside a unit cell is —X, and the coupling constant
between two unit cells is J. When the number of the spin sites L in a unit cell is even (or odd), there is an
energy gap (or no gap) between the ground state and the first excited state (for ~IC/J ~%1}. The magneti-
zation of the system with any even number of L vanishes below a critical magnetic field at the tempera-
ture T=0. Therefore, the susceptibility is zero at T=O when L is even, but the susceptibility is positive
when L is odd. The data for the magnetization of (CH3)4N Ni (NO2), resemble the calculated value of
the magnetization for L =2.

PACS number(s): 05.50.+q, 75.10.Jm, 75.40.—s

I. INTRODUCTION

Since Haldane [1] conjectured that a one-dimensional
Heisenberg antiferromagnet (1DHA) with an integer spin
value has an energy gap between the ground state and the
first excited state, a number of theoretical studies have
been done to elucidate the nature of the Haldane gap.
Haldane's conjecture has been confirmed by several nu-
merical calculations [2]. On the other hand, there is no
exact analytical treatment of the 1DHA with an integer
spin, except the treatment by AfHeck et al. [3]. They
studied the spin S= 1 1DHA system with the biquadratic
exchange interaction term, and showed the existence of
the energy gap exactly. However, there has been no real
system close to this model. Thus it is highly desirable to
find a realistic Hamiltonian that can be solved exactly.
An XY model is a good candidate for this, because the
S=

—,
' one-dimensional XY model has been solved exactly

[4] and there are a few examples of real materials which
are well approximated by an XYmodel. The energy spec-
trum of the traditional XYmodel is a continuous function
of the wave number, and has no energy gap. In this pa-
per, we will examine XY models with plural spin sites
(sites number L) inside a unit cell, and with two kinds of
coupling constants, J and —K. One of the coupling con-
stants, —X, belongs to the interaction between the
nearest spins inside the same unit cell, and the other cou-
pling constant J belongs to the interaction between the
spin of the right end of a unit cell and the spin of the left
end of the next unit cell.

In Sec. III, we will prove that this system has the fol-
lowing properties: there is an energy gap between the
ground state and the first excited state for the system
with an arbitrary even number of spin sites inside a unit
cell, and there is no gap for the system with an arbitrary
odd number of spin sites. Thus, in this paper we show
the interesting relation between the spin-site number L
and the existence of the energy gap. This relation in the
XY models with plural spin sites is the same as that dis-
cussed in Haldane's conjecture, where it should be noted
that the spins inside a unit cell construct the integral (or
half integral) angular momentum for any even (or odd)

number of spin sites inside a unit cell.
Here we examine investigations of spin chain models

which were carried out hitherto [5—7]. Kontorovich and
Tsukernik, Smith, Beni, and Pincus, Perk, Okamoto, and
many other authors have examined XY models with two
or three spin sites (L =2 and 3). Matsubara and Katsura,
D. Cabib and Mahanti, and Braeter and Kowalski stud-
ied the XY model with random coupling constants [6].
These works showed that random interactions inAuence
thermodynamic properties. Bonner and Blote, and many
other authors, examined the spin- —,

' alternating Heisen-
berg chain, and calculated the excitation energy of the
finite size chain [7].

These works did not prove the relation between the
number of spin sites inside a unit cell and the gap in exci-
tation energy spectra. Therefore, we point out this rela-
tion in this paper, and prove it in Sec. III.

In Sec. IV, we exactly calculate the magnetization and
susceptibility of the present system. From the results, it
becomes clear that the function form of the magnetiza-
tion versus applied magnetic field H are classified into the
following two types near H =0.

(1) First type: The magnetization smoothly increases
with the increment of the magnetic field H. The suscepti-
bility is positive at temperature T =0. This type appears
in a system with any odd number of spin sites inside a
unit cell.

(2) Second type: The magnetization is zero below the
critical magnetic field H, &

at T =0, and steeply increases
at H)H

&
~ The susceptibility is zero at T=O. This

second type belongs to a system with any even numbers
of spin sites inside a unit cell.

The graphs of the magnetization versus H (H )0) has
Q plateaus near zero temperature, where Q is the integer
part of (L+2)/2. This complex dependence comes from
the existence of band gaps in the eigenenergy levels. It
may be interesting to compare the calculated results with
several substances. There are many experiments [8,9] for
S =1 linear Heisenberg antiferromagnets, for example
Ni(C2HsN2)zNOz(C104) (NETP), tetramethyamine man-
ganese trichloride (TMMC), and (CH3}4NNi(NO2}3
(TMNIN). NETP is the typical substance of the S= 1
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linear Heisenberg antiferromagnet, but the magnetization
is measured only for a part of the region from zero to its
magnetic saturation field. On the other hand, the magne-
tization of TMNIN is measured for the whole region of
the magnetic field [9]. When applying a magnetic field H
to TMNIN, the magnetization is very small for H & H&„
but becomes large for H )Hc, in a steep slope. The ratio
of this critical magnetic field Hci and the magnetic satu-
ration field H&2 is very small (about Hc, /HC2=1/10).
This behavior is different form the pure S =1 linear
Heisenberg antiferromagnet. Therefore, it may be valu-

able to compare the data of TMNIN with our calculation
result. Then, we obtain a good agreement except for the
region of the magnetic field strength from 23 to 33 T (see
Sec. IV). This fact shows that the substance TMNIN is
different from a pure S = 1 Heisenberg spin chain.

II. INTERACTION HAMII. TONIAN

In this paper, we will examine the following Hamiltoni-
an with two coupling constants J and —K. A Hamiltoni-
an with L spin sites inside a unit cell is shown by

HI. =J g ( I.", ' i", '+i+O'Z' a~i, '+i)
n = 1, . . . , N

n = 1, . . . , N s = 1, . .. , L —1 n=1, , N s=1, ,L
(2.1)

where H is the magnitude of the applied magnetic field in the z direction, g is the g value, and p~ is the Bohr magneton.
Also, the spin matrices have the well known form

0 1 0 —i 1 0
(x) (y)— Q

(+) (2.2)
1 0 ' i 0 ' 0 —1

The subscripts of the spin matrices 0,' „', o.,' „', and o.,'„' denote the site number s and cell number n.
In order to diagonalize the Hamiltonian HL, we transform the Hamiltonian HL to a Hamiltonian HL. The transfor-

mation is the extension of the Jordan and Wigner transformation [10] for the case with plural spin sites (which is shown
in Appendix A). From the results, the new Hamiltonian Hl is given by

HI =2JQ[e '~al (p)ai(p)+e'~a i (p)al (p)]
p

—2K+ g [a,'(p )a, + i(p)+a,'+, (p)a, (p) ]
p s = 1, . ..,L —1

gp&Ha, (p)a, (p) + (L /2)g p&HN,
p s = 1, .. . ,L

(2.3)

where N is the maximum number of unit cells, and p is
the wave number which takes such values as

Since [ W'(p), W(q) ]=0, we may solve the following
eigenequation in order to diagonalize HL:

p = (2m. /N ) X ( integer ), (2.4) W' g a, (p)a,'(p) ~0)

In Eq. (2.3), the operators a,'(p) and a, (p) are the
creation and annihilation operators of the fermion with
site numbers s and wave number p. These operators satis-
fy the well-known anticommutation relations, as follows:

s = 1, . . ., L

X g a, (p)a,'(p) ~0),
s = 1,..., L

(2.7)

[a, (p), a,*(q) I =5, , 5

[a, (p), a, (q)] =0, Ia, (p), a, (q)] =0 .

(2.5a)

(2.5b)

where A,(p) denotes the eigenenergy at the applied mag-
netic field H =0. Let us write this eigenequation into the
matrix form as follows:

This Hamiltonian HL is the sum of the following opera-
tors W(p): Ma=A, (p )a, (2.8)

W(p) =2J[e 'J'al*(p)a, (p)+e'~a i (p)az (p)]
—2K g [a,*(p)a, +,(p)

where the matrix M has the matrix elements

Mij= —2K52 for 1 ~j ~L —1, MiI =2Je'i', (2.9a)
s = 1, ...,L —1

M, = —2K(5 +, +5;, ), for 2 i~~L —1, (2.9b)
+a,*+,(p)a, (p)]

giJ,~H Q a, (p)a, (p) —.
s 1 ~ ~ ~

7

(2.6)
ML1= 2Je ML = —2K5L 1. for 2~j~L .

(2.9c)
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This eigenequation has L solutions. The sth eigenvector
and its eigenvalue are denoted by a"(p) and A,"(p), re-
spectively. By using these eigenvectors and eigenvalues,
we obtain the diagonal form of the Hamiltonian HL as

H~ = g g [A,"(p)—gp~H][A, (p)]'A, (p)
p s = 1,.. . ,L

K/I = -4.0

2 3

-I

K/f= 0

Kj'J = - I.O

2

-2 p

+(L/2)g @KAHN,

where

(2.10)
3 2

—2

[ &,(p)]*= g a", (p)a,'(p),
f = 1, . . . , L

(2.11)

and A, (p) is the hermite conjugate operator of [ A, (p)]*.
The operators [ A, (p) ]* and A, (p) satisfy the anticom-
mutation relations;

[[A,(p)]*,[A, (q)]*]=0, [ A, (p), A, (q)] =0,
[ A, (p), [A, (q)]*]=5, ,5

(2.12)

Thus Hamiltonian HL has been completely diagonalized
as in Eq. (2.10). At the applied magnetic field H =0, the
ground-state energy EG becomes

L (p)/J

2

~E~ j'J

E,/J
p1 ' 2 3

K/J= 40
—3 —2 -1 ' j 2 3

FIG. 1. Eigenenergies A,"'(p) and A,
' '(p).

Therefore, there is no energy gap between the ground
state and the first excited state for H =0.

Now we show results of the diagonalization of H4.
When the eigenvalue of H& is denoted by A,(p) gp&H, —
A, (p) satisfies

E,=y
p for A.

( )(p) &0

and the ground state is

Ig«und state& =Q

(2.13)

(2.14)

—
A,(p)

—2E
0

2Je

—2K 0 2Je'p
—A,(p) —2K 0
—2K —A,(p) —2K

0 —2K —A, (p)
p for k( )(p) & 0

which gives

A, (p) —(12K +4J )A,(p) +16KThe excited state is produced by the annihilation of the
fermion A, (p) for k"(p) (0 or by the creation of fermion
[A,(p)]' for A."(p))0. Accordingly, the single excita-
tion energy becomes IA,"(p)I. Next we examine the ei-
genvalues of the Hamiltonian HL for L =2, 3, and 4.

Now we show the results of the diagonalization of Hz.
The case L =2 was already solved in Ref. [5]. The two
eigenvalues of Eq. (2.8) for L =2 are easily obtained as

+32cos(p)K J+16K J =0 . (2.17)

The four solutions of Eq. (2.17) are denoted by A,"(p)
(s = 1, 2, 3, and 4). Then the solutions are

A,"'(p) =+a(K,J)+3/a(K, J) b(K,J), —

A,
' '(p) = —I/a(K, J)++a (K,J) b(K, J), —

A, '"(p) =2+JR+K —2JK cos(p),

A,
' '(p)= 23/J +K 2JK—cos(p) . —

(2.18)
A,

' '(p) =+a(K,J)—+a(K,J) b(K,J), —

A,
' '(p) = —+a(K,J) tja(K, J) b(K—,J), —

(2.15)

where

a(K, J)=6K +2J
b(K, J)=16[K +2cos(p)K J+K J ) .

(2.19)

We show the graphs of A,"(p) (s = 1, 2, 3, and 4) in Fig. 3.

A (p)/J E3/J~J~ E/l
E, /3—[A(p)] +(4J +8K )A(p)+16JK cosp=0 . (2.16)

At H =0, the excited state is produced by the annihila-
tion of the fermion A2(p) or by the creation of the fer-
mion [A&(p)]*. Then the single excitation energy be-
comes IA,"(p)I (s =1 and 2). Since A,"(p)%0 for
IK/Jl&1, an energy gap appears for any case other than
J=K or J= —K. We show the function forms of A,

' "(p)
and k'~'(p) in Fig. 1. Thus there is an energy gap for

Now we show results of the diagonalization of H3.
The eigenvalue of H3 is denoted by A(p) gpsH. Then-
',(p) satisfies

The three solutions of Eq. (2.16) are denoted by A,"(p)
(s = 1, 2, and 3). We show the graphs of A,"(p) in Fig. 2.

At p=+m/2, A, (p)=0 is one of the solutions of Eq.
(2.16) for any value of the coupling constants J and K.

K/J= 1.0 K!J= 1.4

FIG. 2. Eigenenergies A,"(p) (s = 1, 2, and 3).
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K/3 = -2.0

E

4 (p)/J detM=( —1)'"(2K)' '[(I2K
I

—12JI)'+8IKJI

+( —1) 8KJ cosp] . (3.1)

In the case of lK lW l Jl, the first term in the square brack-
et of Eq. (3.1) is positive, namely, ( l2K l

—l2J l ) )0. The
sum of the residual terms is also non-negative as

8lKJl+( —1) 8KJ cosp )0 .

FIG. 3. Eigenenergies X"(p) (s = 1, 2, 3, and 4).

At J=kL, the gap disappears as in Fig. 3. Other cases,
namely cases of lJl&lKl, have an energy gap between
the ground state and the first excited state. HI = g +[A."(p)A, (p)*A, (p)], (3.2)

Therefore, (detM) is not zero for any wave number p.
This means that any eigenvalue A, (p) is not zero. That is
to say, the minimum value of

l
A,(p) l is positive. Since the

matrix M has I. rows and L, columns, there are I. eigen-
values, which are denoted by A, '"(p), A,

' '(p), . .. , A,
' '(p).

Using these eigenvalues, we can write the diagonal form
of the Hamiltonian HI as

III. PROOF OF THE EXISTENCE OF AN ENERGY GAP
FOR AN ARBITRARY EVEN NUMBER

OF SPIN SITES

In the absence of the external magnetic field H, we will
prove the existence of an energy gap for the system with
any even number of spin sites inside a unit cell, and that
there is no gap for the system with any odd number of
spin sites inside a unit cell. As seen in Eq. (2.8), the
eigenenergies of the present system for H =0 are the ei-
genvalues of the matrix M, which has the matrix element
M~1 as defined by Eq. (2.9). If the determinant of the ma-
trix M becomes zero, the matrix has the eigenvalue of
zero. Therefore, the excitation energy between the
ground state and the first excited state becomes zero.
That is to say there is no energy gap. On the other hand,
if the determinant of the matrix M is not zero, the matrix
does not have the eigenvalue zero. Therefore, there is an
energy gap between the ground state and the first excited
state.

Now we will calculate the determinant of the matrix

detM=4J(2K) ' cos p . (3.3)

This result gives the fact that one eigenvalue becomes
zero at p =km/2. Therefore, there is no gap energy be-
tween the ground state and the first excited state for any
odd number of spin sites inside a unit cell.

IV. MAGNETIZATION

where we have substituted H=0 into Eq. (2.10). The
ground state is such that the fermions occupy all the en-
ergy levels with negative eigenvalues. Therefore, the ex-
citation energy between the ground state and the first ex-
cited state is the minimum value of lA, (p)l. This value is
positive for the case of any even number of L, and
lKl&lJl. Consequently, the system has an energy gap
between the ground state and the first excited state.
When lK l

=
l Jl, the energy gap disappears.

From Appendix 8, for the case of any odd number of
L, we obtain

M,

detM=

2Je

—2L 0

—2K 0

0
0

0 2Je'~

0 0
0 0

0 —2E exp( —0/kii T ) = 1 for n, (p) =0, (4.1a)

exp( —[A,"(p) gp~H]/(k~T—)) for n, (p)=1, (4.1b)

In this section, we consider the canonical ensemble of
the present system. We denote the number operator
[ A, (p)] A, (p) by n, (p), and its mean value by n, (p). We
calculate the probabilities when n, (p) takes the eigenval-
ue 0 or 1. The probabilities are proportional to the fol-
lowing Boltzmann factors:

for the case of any even number of L,. From the results of
Appendix 8, we can obtain the determinant for arbitrary
even number of I. as follows:

where k~ is the Boltzmann's constant, and T is the tem-
perature. Then these probabilities give the mean value
n, (p), as follows:

n, (p) =exp[ —[A,"(p)—gpiiH] /(kli T)]/[1+exp[ —[1,"(p)—gp&H] /(kz T)]] .

Magnetization of the system M(H, T) is described in terms of n, (p) as follows:

(4.2)

M(H, T)= ,' gp~ g g [2n, (p) —1)], —
p s=l

(4.3)
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M(H, T)= ,'g —p~

X g g [exp[ —
j A,"(p)—gp~H j /(k~ T)]—1 j /[1+exp[ —[A,"(p)—gp~H j /(k~ T) ] j

p s=1

,

'gpss—g

g ( —1)tanh[ [A,"(p)—gpjiH j /(2k& T)],
p s=1

I

M(H, T)= ,'gpss—(N/(2n ))f g (
—1)tanh[[A, "(p) gp&—H j/(2k+ T)]dp .

7T

(4.4)

(4.5)

The derivative of the magnetization by H is given as follows:
I

dM(H, T)/dH= ,'gp&N—gpss/(4nk+T) f g sech [[A,"(p) gp~H—j/(2k' T)]dp .
s=1

(4.6}

Now, we numerically calculate the magnetization
M (H, T) and its derivative dM(H, T) /dH for the cases of
L =2, 3, and 4. The calculation result for L =2 is shown
in Fig. 4.

As seen in this figure, the calculated value of the mag-
netization has two plateaus of 0 ~ H & Hc, , and HC2 ~ H.
Moreover, dM(H, T)/dH has two peaks near H=HC,
and H=H&z. At the temperature T =0, the magnetiza-
tion is zero in the range of 0 ~ H ~ H~, , and is constant in
the range of H&2~H. Here, the critical values H&1 and

HC2 are equal to E, /gp~ and E2/gpii, respectively,
where E, and E2 are shown in Fig. 1.

Now we want to compare experimental data with this
calculation result. In the comparison, we need the data
of the magnetization from the magnetic field zero to the
saturated magnetic field. However, the author did not
find a suitable substance with the type of interaction of
the XYmodel.

Although the substance (CH3)~NNi(NO&)3 (TMNIN)
has the same type of interaction as the XXZ model, the
magnetization data of TMNIN are measured from the
magnetic field zero to the saturated magnetic field [9].

Therefore, it may be valuable to compare the data with
our calculation results (see Fig. 5). As can be easily seen
from the figure, the calculated value of the magnetization
agrees with the data of the magnetization of TMNIN ex-

cept for 23—33 T. Thus the data show that a quenching
of the gap appears around 2.7 T, and the value is very
small in comparison with the magnetic saturation field of
33 T. This means that TMNIN is close to the S =1 XY
model, but far from S =1 Heisenberg chain system.

Next, we calculate the magnetization and
dM(H, T)/dH for L =3 and 4. The results are shown in
Figs. 6 and 7, respectively. Figure 6 shows that there are
two plateaus of the magnetization in the ranges
H~, ~H &H&2 and H~3&H. Also, Fig. 7 shows that
there are three plateaus of the magnetization in the
ranges O~H ~H&1, Hcz~H ~Hc3, and H&4~H. These
plateaus correspond to the energy gaps. That is to say,

Hc, =E, /gp~ (s =1,2, 3 or s =1,2, 3,4) (4.7}

where E, is shown in Figs. 2 and 3.
Finally, we calculate the temperature dependence of

the susceptibility, namely dM(H, T)/dH at H =0. The
calculation results are shown in Fig. 8 for L =2, 3, and 4.
As seen in this figure, the susceptibilities are zero at the
temperature zero for L =2 and 4. On the other hand, for
L =3, its susceptibility takes a positive value even at
T=O. Thus, the susceptibility is zero at T=O for any
even number of the spin sites inside a unit cell because of
an excitation energy gap between the ground state and
the first excited state, but is positive at T =0 for any odd
number of the spin sites inside a unit cell because there is

Mj'(g cc, h/)

0.8 Calculated values

0. 6 ———— Data of Ref. P j

0. 4

g g~)3H/'J

I

l0 20 30 40
Magnetic field H [T]

FIG. 4. Magnetization and dM(H, T)/dH at K/J=1. 4, and

k& T/J =0.2 for the system with two spin sites in a unit cell.

FKJ. 5. The data of the magnetization of TMNIN, and the
calculated values of the magnetization for L =2, K/J = 1.4, and

k~ T/J =0.2.
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Mi(gu, N)
1.4:
1.2;

1
0. 8

0. 6

0. 4

0.2

C3 MZ(g~, ~
1.5

0. 5

C4

1 2 3

FIG. 6. Magnetization and dM(K, T)/dH at K/J=1. 4 and
k& T/J=0. 2 for the system with three spin sites in a unit cell.

FIG. 7. Magnetization and dM(H, T)/dH at E/J=1.4 and
kz T!J=0.2 for the system with four spin sites in a unit cell.

no gap in the excitation energy between the ground state
and the first excited state.

V. CONCLUSIONS

In this paper we proved that the energy gap between
the ground state and the first excited state appears for
any even number of spin sites inside a unit cell, and that
the energy gap disappears for any odd number of spin
sites. At T =0, the magnetization is zero in the range of
O~H ~H&& for any even number of spin sites inside a
unit cell, where Hc, =E, !gpz, and E, is the energy gap
between the ground state and the first excited state for
H=O. Therefore, the susceptibility is zero for any even
number of L. On the other hand, for any odd number of

L, the magnetization linearly increases from zero at
T =0, and therefore the susceptibility is positive for any
odd number of L. It has been found to be a property of
the present system that the function form of the magneti-
zation versus H(H ~ 0) has Q plateaus at T =0, where Q
is the integer part of (L +2)l2.
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APPENDIX A

nsass, m J '5s, r~n, m & I s, n r, m I

Ia,*„,a,* J =0, (A 1)

In order to diagonalize the Hamiltonian, we carry out
the following isomorphic mapping from the spin states to
fermion states. This mapping is an extension of the Jor-
dan and Wigner transformation [10] into a case with
plural spin sites. By mapping, an up-spin state is
transformed to a one-fermion state, and a down-spin state
is transferred to a zero-fermion state. Here we denote the
fermion creation operator with site number s and cell
number n by a,*„. The fermion operators a,'„satisfy the
well-known anticommutation relations as

XL, ;1, +1aL, a1, +1 lo&

=(aL „—aL „)(a,*„+,+a, „+,)aL „a*,„+,IO)

&L., 1,.+1aL,.Io)

(aL, aL, }(a1, +1 +a1, +1 )aL,.Io &

a 1, n+110)

(A4a)

(A4b)

where we have abbreviated all spin states other than the
two spin states with site number L, and cell number n,
and site number 1 and cell number n +1. On the other
hand, the operator XL „.1 n+1 has the properties

where Ia, „,a,' I =a, „a,* +a,' a, „, and 5„ is the
Kronecker delta function. In the mapped states, all the
creation operators are arranged in the following order;
we put a,*„ to the left of a,* for n & m, and put a,*„ to
the left of a,*„for the same cell numbers n and s & t.

An example for the case of I. =4 is

spin state fermion state

Tlt t . l J L t~ a11a31a41 a41vlo&
'

= ( L,.—aL,.}(a1,.+1+a 1,.+1 }a1,.+110&

=aL „Io),
+

L, n1, n +110)

(aL, n aL, n }(a1, +1 +a1, +1 ) Io &

(A4c)

(A4d)

where IO) is the vacuum state. Thus we have completed
the mapping from the spin states to the fermion states.
Next, the spin angular momentum operators in KL are
transformed as follows:

(x) (x)
+L, n +1,n +1 XL,n;1, n +1

Therefore, the operator XL „., n+, is equivalent to the
operator o.L '„a1 „'+,. Next, we calculate the products of
YL „., ~+, and the fermion states

YL, n ' 1, n + 1aL, n a 1, n + 1 I
o &

L, L, }( 1, +1 al, +1}aL, a1, +1 IO)

=«L, aL, }( 1, +I+a1, +1»
(y) (y)~L, n ~l, n+1~ YL, n;1, n+1

L, + L, }(a1, +1 1, +1}
(x) (x)

~s, nOs+1, n Xs, n;s+1, n

=(a,*„—a, „)(a,*+, „+a,+, „}

(A2a}

(A2b)
YL, n;1, n +1aL, n I

(aL, +aL, )(a~1, +1 a1, +1)aL,

+1lo &

(A5a)

(A5b)

(y) (y)
s, n s+1,n Ys, n;s+1, n

for 1&s &L —1, (A2c)

= —(a,*„+a,„)(a,'+1 „—a, +1 „)

YL, n; l, n+ la 1 n +1 10)
= —(aL,.+aL,.}«1,.+1

—a 1,.+1}a1,n+1Io &

=aL „lo&, (A5c)

cr,'„) ~Z, „=2a,*„a,„—1 .

for 1~s ~I. —1, (A2d)

(A2e)

YL„;1, +1I

(aL „+aL„)(a1„~1 a1 „+1)lo&
Next, we show that these fermion operators XL „., n+„
Yz n'1, n+1& Xs, n;s+1, n& Ys, n;s+1 n, and Zs n have the Same
works as those of the operators cr' ' cr'"', (rL' cr' '

(x) (x) (y) (y)
L„n 1,n+1&,n 1,n+1&

o., „o,+, „,o., „o,+1 „,and o,'„', respectively. The proof
is as follows. By multiplying the operator o L '„o'1"„'+1by
any spin state, we obtain

(A3a)

which are equivalent to the following relations:

(A5d)

(A6a)

(A6b)

~L, 'n ~'1",.'+1I T ~ &
=

I & T &,

~L, n1, n+1

~L,n~1, n+1

(A3b)

(A3c)

(A6c)

(A6d}

(A3d) Similarly, we can easily show the equivalence of the fer-
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Z, „a,', I
0 &

= (2a, „a,„—1)t2,*„10&
=a,', I0 &

Z, „IO& =(2a,'„a,„—1)IO& = —IO&,

(A7a)

mion operators (X, „.,+, „and Y, „.,+, „)and the opera-
tors (o,'"„'o,'"+', „and o,'~„'cr,'~+', „), respectively. Finally,
we can verify that the fermion operator Z, „does the
same work as the spin operator o.,'„', as follows:

'*'It&=lt&, (A7c)

(A7d)

In the proofs mentioned above, we have treated only the
nearest neighbor two spins. Therefore, it is necessary to
show the commutability between these operators and the
fermion operators of other sites, as follows:

[XL „., n+„a, ]=0 for (t, m)A(L, n) and (t, m)A(l, n +1),
[X, n. ,+~ „,a, ~]=0 for (t, m)X(s, n) and (t, m)A(s+l, n),

[YL „.& „+&,a,' ]=0 for (t m)A(L, n) and (t, m)%(l, n +1),
[Y,„.,+& „,a, ]=0 for (t, m)A(s, n) and (t, m)X(s+l, n),
[Z, „,a,* ]=0 for (t, m)A(s, n ) .

(A8a)

(A8b)

(A8c)

(A8d)

(A8e)

Since these commutabilities are easily verified, we can conclude that the replacements (A2a) —(A2e) are the isomorphic
mapping.

We transform the original Hamiltonian (2.1) by using the mapping (A2a) —(A2e) and then obtain the following Hamil-
tOnian HL.

HL =2J g (aL'„a, „+,+a) „+,aL „) 2EC—X (its nt's+i +n~ +si n~s n )
n=l, . . . , N

,'gpttH(2a, n—„a,„—1) .

n =1, . . . , Ns =1, . . . , L —1

(A9)
n =1, , Ns=1, ...,L

The Hamiltonian HL has the same energy spectra as that of HL because the mapping is isomorphic. In order to diago-
nalize the Hamiltonians HL, we introduce the Fourier transformation of the fermion operators,

a, „=(1 lN)'~ ge '~"a, (p),
p

(A10)

where N is the maximum number of unit cells and p is the wave number which takes such values as

p =(2m. /X) X(integer), n(p— (A 1 1)

We substitute Eq. (A10) and its hermite conjugate equation into the Hamiltonian (A9), and use the periodic boundary
conditions

1,N+1 1, 1 nd 1,N+1 1, 1 (A12)

and also the property

n=1,
e'~"e '«"=5 (A13)

Then we obtain

HL =2JQ[e '
aL (p)a, (p)+e' a; (p)a (tp)] —2Ãg g [a,*(p)a, +&(p)+a,*+,(p)a, (p)]

p s = 1,.. ~ ,L —1

gptt H~,*(p)as(p)+ ,'gpgH&L—
p s = 1,. ..,L

Thus Hamiltonian HL is transformed into the bilinear form of the fermion operators in momentum space.

(A14)
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APPENDIX B

0 0 2Je'1'

detM = 0
0

—2K 0
0
0

0
0

(81)

0

2Je

0
0

0
0

0

where the matrix M has L rows and L columns

L
detM= gM, A(J. ,

j=l
where A

&
denotes the cofactor of the element M& . Then we obtain

(82)

A )2=—

0
0

0
—2K 0

detM = —2EA, 2+ 2Je'~A &I,
—2E —2K 0 0 0

0 0
0 0

(83)

0
2Je

0 0
0 0

0
—2K 0

1)L+1

0
0

0
—2K 0

0

0 0
0 0
0 0

(85)

0
2Je

0
0

0
0

—2E 0
0

where it should be noted that the matrices appearing on the right-hand sides of Eqs. (84) and (85) have L —1 rows and
L —1 columns. We denote the cofactor of the (i,j ) element of the matrix appearing in Eq. (84) by B; ;then the cof.actor
A &2 becomes

A &2
=2KB

& &
2Je '~BI

where

0 —2K 0 0 0
0 0

(86)

0 —2K 0 0 0

0
0

0
0

0
0

0
—2K 0

(
—1)' '~ (2IC) for an even number of L

0 for an odd number of L (87)

—2K 0 0
0 —2K 0

—2K 0 —2X

0 0
0 0
0 0

0
0

0 0
0 0 0

=( —1) ( —2K) =(2K)

where it should be noted here that the matrices appearing in the middle sides of Eqs. (87) and (88) have L —2 rows and
L —2 columns. Substitution of Eqs. (87) and (88) into (86) gives
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( —1)' '/ (2K) ' —2Je 'P(2E) for an even number of L
~is= '

2J—e 'P(2K) for an odd number of L .

Similarly, we denote the cofactor of the (i,j ) element of the matrix appearing in Eq. (85) by Ci. ; then the cofactor A, L
becomes

A1L =( —1) +'( —2KC»+2Je 'PCI 1,), (810)

0 —2' 0
Q Q

Q 0
Q 0

0
0

=( —2K)L-2,

0
0

(811)

0 —2E 0

0 —2E 0
—2E 0 —2E

0 0
0 0
0 0

0
0

0
0

( —1) (2K) for an even number of L
0 for an odd number of L,

(812)

where it should be noted here that the matrices appearing in the middle sides of Eqs. (811) and (812) have L —2 rows
and L —2 columns. Substitution of Eqs. (811)and (812) into (810) gives

( —1) '[( —2E) '+2Je 'P( —1)' '/ (2K) ]for an even number of L
A)L= '

(2K) ' for an odd number of L .

By substituting Eqs. (89) and (813) into (83), we obtain

detM= —2K[( —1)' ' (2K) ' —2Je ' (2K) ]

+2JeiP( 1 )L + 1[( 2K)L —1 +2Je
—

iP( 1 )(L —2)/2(2K)L —
2]

—
( 1)L/2[(2K)L+(2J)2(2K)L —2)+2J(2K)L —1(eiP+e iP)]-

=( —1)L/2(2K)L 2[( [2K
~

—~2J~ )2+g~KJ~+( —1) L/28K J cosp]

(for an even number of L ) .

Similarly, for an odd number of L, the determinant of the matrix M is

det M=2K2Je 'P(2K) +2Je'P(2K)

=2J(2K) '(e'P+e 'P) =4J(2K) 'cos p (for an odd number of)L .

These results show the gap or gapless mechanism of the excitation energies.

(813)

(814)

(815)
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