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Abstract

In experiments of Liquid 4He, the elementary excitation energy varies with changing of the temperature. This is
caused by the non-linear dependence of the total energy upon the number-distribution of elementary excitations.
Taking this effect into consideration, we can numerically calculate the λ transition temperature. The results are
2.18 K for the saturated vapor pressure. Other calculated values are 2.8 K after Landau, and 3.16 K after London.
Since the experimental value is 2.172 K, our calculated value is well in accord with the experimental data.
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1. Introduction and total energy of liquid 4He

The values of the λ transition temperature have been
theoretically calculated by two methods until now. F.
London has obtained the temperature by neglecting
interactions between 4He atoms. His result is 3.16 K for
saturated vapor pressure [1]. Landau and Khalatnikov
have calculated the temperature on the basis of Landau
theory, and have got 2.8 K [2]. Its experimental value
is 2.172 K [3]. There is a large difference between the
theoretical values and the experimental value, and so
we need to find another theory deriving a good value of
the λ transition temperature. In this paper, we obtain
new theoretical values for various pressure values.

A total energy of any many-body-system should be
the sum of the kinetic energy of the center of mass and
Galilean-invariant terms. So, any three-dimensional-
system should have a general form of a total energy as

E =
∑
p

p2

2m
np +

∑
p,q

1

V
f(p− q)npnq + · · · . (1)

where nq is the number of the dressed-bosons with
momentum q. All the dressed-bosons have zero mo-
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mentum in the ground-state of liquid helium, as is
shown in Ref.[4]. The elementary excitation energy
ϵp at zero temperature is the energy increment from
the state{n0 = N} to the state {n0 = N − 1, np =
1}. This functional form ϵp determines the functional
forms f, · · ·in Eq.(1), consequently the total energy be-
comes∑
p

p2

2m
np +

0.5

N − 1

∑
p,q

(ϵp−q −
(p− q)2

2m
)npnq + EG.(2)

This gives E = EG for {n0 = N}, and E = ϵp +EG

for {n0 = N − 1, np = 1} . From subtraction of these
two results, the energy increment by one excitation
becomes ϵp certainly.

In an ultra low temperature, the total energy be-
comes E ≃

∑
p
ϵpnp + EG because n0

N
≃ 1. This form

is identical with the sum of the excitation energy in
Landau theory and the ground state energy EG.

For any temperature T smaller than the λ transi-
tion temperature Tλ, the number distribution {np} of
the dressed-bosons is derived from the solution of the
following equations as

np =
(
exp

(
ωp − µ

kBT

)
− 1

)−1

. (3)

where µ is the chemical potential, and
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ωp =
∂E

∂np
, µ = ω0 =

∂E

∂n0
, n0 = N −

∑
p̸=0

np. (4)

Production of one elementary excitation is the same
phenomenon that one dressed-boson with momentum
0 is annihilated and one dressed-boson with momen-
tum p is created. Therefore, the elementary excitation
energy at any temperature T is given by ϵ(p, T ) =
ωp − ω0. Consequently, the theoretical excitation en-
ergy depends upon the temperature. For a small mo-
mentum p, the equations (2)-(4) have the solution as

ϵ(p, T ) = ϵp
n0

N
+

p2

2m
(1− n0

N
) + higher order. (5)

We don’t succeed yet to find the functional form of
the elementary excitation energy near the roton mini-
mum. Therefore, we use the experimental data of Di-
etrich, Graf, Huang, and Passell [5] instead of the the-
oretical values near the roton minimum, as follows;

ϵ(p, T ) = ∆(T ) + (p−Q)2/(2mroton). (6)

At the λ transition temperature, these three param-
eters ∆λ, Qλ, mroton depend on the pressure as ∆λ =
0.409 − 0.0067P, Qλ/h̄ = 1.925 + 0.0045P, mroton =
(0.117 − 0.00014P )m , where P is the value of (pres-
sure/bar), the unit of ∆λ is meV, and the unit of Qλ/h̄
is inverse of angstrom. We illustrate the excitation en-
ergy near the transition temperature in Fig.1.

region 1 region 2 region 3 region 4

meV

Fig. 1. Excitation energy at λ point for the pressure of 1 bar.

Here, we have used Eq.(5), and (6) for the momen-
tum region 1and 3, respectively. For the region 4, we
also use the experimental data of Dietrich et al. The re-
sult is ϵ(p, Tλ) = dλp+ eλ where dλ = 238.6+6.19P −
0.077P 2. In the remaining region 2, there is no detail
data near the λ point, and therefore we use the func-
tion as

ϵ(p, Tλ) = aλp
2 + bλp+ cλ. (7)

where the values of aλ, bλ, cλ are determined by the
following three conditions. (1) The function of Eq.(7)
should be continuously connected to the function of
Eq.(6) at the boundary between the regions 2 and
3 (at p/h̄ = 1.75 (angstrom)−1). (2) The functions

of Eqs.(7) and (6) have the common tangent at this
boundary. (3) The functions of Eq.(7) and (5) have the
common tangent at the boundary between the regions
1 and 2. Thus all the values of the coefficients have
been determined, and we have no free parameter in the
function described the elementary excitaion energy.

2. λ transition temperature and Conclusion

We substitute the distribution function Eq.(3) into
Eq.(4), and obtain

n0

V
=

N

V
− 1

V

∑
p̸=0

(
exp

(
ϵ(p, T )

kBT

)
− 1

)−1

. (8)

Using Eq.(8), we determine the λ transition temper-
ature Tλ at which the value of n0/V becomes zero. The
results are shown in Fig.2.
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Fig. 2. Theoretical and experimental values of Tλ.

As is seen in Fig.2, the present results are well in
accord with the experimental data for all pressure re-
gions. For the saturated vapor pressure, the theoret-
ical value of Landau is 2.8 K, and one of London is
3.16 K. The present result is 2.18 K, and the experi-
mental value is 2.172 K. Thus, the present theory is in
good agreement with the experimental result. In the
present theory, the calculated λ transition temperature
decreases for increasing of pressure, this behavior is in
accord with the experimental data.
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