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Abstract 

Experimental data show a number of plateaus of varying widths in the magnetic-field 

dependence of the electron-spin-polarization for fractional quantum Hall states. We have 

calculated the magnetic-field dependence of the spin-polarization using a new theory. We 

start by adopting the Landau gauge and ignoring Coulomb interactions between electrons; 

then we construct single electron states in equally spaced orbitals. For a number of filling 

factors we have examined the many-electron states with electron configurations having 

minimum classical Coulomb energy. The residual Coulomb interactions in each 

many-electron state produce spin-exchange-forces. We have solved the eigenvalue problem 

of the interaction Hamiltonian composed of nearest neighbor spin-exchange-interactions. 

From the eigenvalues we have calculated the magnetic-field dependence of the 

spin-polarization. Our results are in good accord with the magnetic-field dependence in 

experimental results, including the number and shape of the plateaus. 
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1. Introduction 

The fractional quantum Hall effect (FQHE) has been the subject of a number of theoretical 

treatments [1, 2]. One theory is that of Tao and Thouless [2], which we have developed in a 

previous paper to explain the energy gap in FQHE [3] and obtained results in good agreement 

with the experimental data of the Hall resistance [4]. In this paper we study the magnetic-field 

dependence of the spin-polarization. The electron spin polarizations of the fractional quantum 

Hall states have been measured by Kukushkin, Klitzing, and Eberl for twelve filling factors 

[5]. The data show various types of behaviors for the magnetic-field dependence of the 

electron spin polarization. For the filling factors 1/2, 1/4, 3/5, 3/7, 7/5, and 3/2, the spin 

polarization value is proportional to the magnetic field strength near zero field. On the other 

hand, for the filling factors 2/3, 4/7, 2/5, 4/9, 8/5, and 4/3, the magnitude of the spin 

polarization is nearly equal to zero within a range near zero magnetic field, indicating an 

energy gap for these filling factors. We explain these properties by solving the eigenvalue 

problem for the Hamiltonian including the spin exchange interactions between nearest 

neighbor electrons. The calculated curves display the same number of plateaus as observed in 

the experimental data, with the same width and height; that is to say, the present theory can 

satisfactorily explain the behaviors of the spin polarizations in the quantum Hall effect. 

 

2. Many-electron states 

We first discuss the single electron states for the quantum Hall Effect. As is well known, a 

single electron state under a magnetic field of strength B has the form of a plane wave in the 

x-direction and has a Gaussian function form in the y-direction; 

      zeuezyx cyikx
kk   2

,,  , (1) 

where k = ( 2 ) integer,  2/eB , c  k eB , (2) 
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and   is the length of the system in the x-direction. The interval between the values of c is 

2 eB  and therefore all orbitals are equally spaced. 

 We divide the total Hamiltonian HT  into two parts, IDT HHH  , where the new 0th 

order Hamiltonian HD is the sum of three parts, the kinetic energy, the vector potential part 

of the magnetic field, and the classical Coulomb energy between electrons (the diagonal part 

of the Coulomb interaction). The residual part of the Coulomb interaction is denoted by HI. 

 The 0th order ground state takes an electron configuration so as to produce the minimum 

value of the classical Coulomb energy. We first consider the electron configuration for the 

filling factor  =2/3 as an example. When the quantum orbitals are filled with electrons in 

the sequence (filled, filled, empty, filled, filled, empty, ...), the many-electron state possesses 

the minimum classical Coulomb energy because this sequence is the most uniform for =2/3 

(see Figure 1). 

 -----------------------Fig. 1 ----------------------- 

 

The many-electron state   is 

 k1
x1,y1,z1 k2

x2,y2,z2 k3
x3, y3,z3 k4

x4, y4,z4  , (3) 

where 212  kk , 2313  kk , 2414  kk , 2615  kk ... (4) 

Numbering the electrons left to right in Figure 1, it can be seen that electrons 1 and 2 occupy 

nearest neighbor orbitals, whereas electrons 2 and 3 occupy second nearest orbitals as they 

are separated by an empty orbital. The difference in wave number between electrons in 

nearest neighbor orbitals is 2  , e.g. 212  kk . The difference in wave number 

between electrons separated by an empty orbital is 22 , e.g. 2223  kk . 

 The residual Coulomb interaction HI causes spin-exchange-forces between electrons. The 

spin-exchange-interaction takes the form    2121 C , where  
 is the 
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transformation operator from a down-spin state to an up-spin state and 
 is the Hermitian 

conjugate operator of   . The coupling constant values of the spin-exchange-interactions are 

evaluated by integrating transition matrix elements of the residual Coulomb interaction. The 

detail calculation is shown in Appendix 1. These spin-exchange-interactions produce 

quantum transitions where the energy before a transition is equal to the energy after a 

transition - that is to say, the two states are degenerate in DH . Therefore, the spin-exchange 

interactions should be treated strictly. When we consider the spin-exchange interactions 

between the nearest-neighbor electrons only, we obtain an approximate Hamiltonian H, the 

explicit form of which is shown in the next section. 

 We should note that there are two other electron configurations with filling factors of 2/3, 

apart from that shown in Figure 1. 

------------------- Fig. 2 -------------------------- 

 

When we move each electron in Figure 1 from its original orbital to the nearest orbital to the 

left, we obtain the new electron configuration shown in Figure 2a. Figure 2b is created from 

Figure 2a by the same movement, i.e. one orbital to the left. This movement cannot be 

produced through the Coulomb interactions, because the three total momenta of the 

x-direction are different from each other for the three electron configurations. This is verified 

as follows: we denote the wave number of i-th electron by ik  for Figure 1 and ik   for 

Figure 2b. Then, we can easily see 2 ii kk . So, the total momentum of the state 

shown in Figure 2b is larger than the total momentum of the state shown in Figure 1 by 

 2N , where N is the total number of electrons. Since the total momentum is 

conserved in the Coulomb transition, the three states are independent of each other. These 

states with the electron configurations of Figures 1, 2a and 2b have the same eigenvalue of 

the Hamiltonian HD neglecting edge effects, and therefore the probabilities of these states 
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are equal to each other in a thermal equilibrium. Consequently, the equilibrium state has a 

uniform charge density for large devices where we can neglect the edge effects. 

  When a quantum Hall device is extremely small, namely with an extremely small width of 

the direction y and with an extremely small length of the direction x, the intervals between 

electron orbitals becomes large and also the potentials in the two edges cannot be neglected. 

Accordingly, only one state in the three electron configurations of Figures 1, 2a and 2b has 

the minimum energy, and then only the state is realized in a low temperature. In this case, the 

striped pattern which is created by filled electron orbitals and by empty orbitals may be 

observed in an appropriate experiment.    

 

3. Spin exchange interaction 

We denote the coupling constants of the spin exchange interactions by   for an electron pair 

in the nearest orbitals, and by   for an electron pair in the second nearest orbitals. These 

coupling constants are evaluated in Appendix 1. Then, we get an approximate Hamiltonian H 

for the filling factor of 2/3, 

     












 

 3,2,1 0

B

3,2,1
122122212212 2

1

i

z
i

j
jjjjjjjj B

g
H 


 , (5) 

where g is the g-factor, B is the magnetic field strength, z  is the electron spin operator in 

the z-direction, 0  is the permeability of vacuum and B  is the Bohr magneton. The 

coupling constants   and   act between electron pairs as shown in Figure 1. The 

Hamiltonian of Equation (5) can be diagonalized by using the method in reference [6]. By 

replacing the down-spin state   with the vacuum state 0 , and the up-spin state   with 

a fermion state c * 0 , the Hamiltonian (5) can be rewritten in an equivalent form as 


H   c2 j1

* c2 j  c2 j1c2 j
*  c2 j

* c2 j1  c2 jc2 j1
*  

j1,2,3

 
Bg

0

B
1

2
2ci

*ci 1 
i1,2,3

 , (6) 
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where the operators ci  and ci
*  are the annihilation and creation operators of a fermion with 

site number i, and satisfy the anti-commutation relations 

 jiji cc ,
*},{  , 0},{ ji cc , 0},{ ** ji cc . (7) 

It should be noted that two minus signs appear in the square brackets of the Hamiltonian (6). 

When the operator c2 j1c2 j
*  acts on the state c2 j1

* 0 , we get c2 j1c2 j
* c2 j1

* 0  c2 j
* 0 . 

Thus, the minus signs ensure that the sign of spin states are correct. A unit cell in the 

Hamiltonian (6) is made of two electrons, and so we can renumber operators ci  and ci
*  

using the cell number j; 

 12  jj ca , jj cb 2 , *
12

*
 jj ca , and *

2
*

jj cb  . (8) 

This renumbering results in a new Hamiltonian (9), 

       


 
J

j
jjjj

J

j
jjjjjjjj bbaaB

g
ababbabaH

1

**

0

B

1

*
11

*** 222
2

1


 , (9) 

where J is the total cell number, 2NJ   for N the total number of electrons. 

 

4. Solution of eigenvalue problem 

We apply a Fourier transformation to the operators ja , *
ja , jb , and *

jb  as follows: 

 an 
1

J
eipna p 

p

 ,   bn 
1

J
eipnb p 

p

 , (10) 

where p 
2
J
 integer ,  -  < p   . Substituting (10) into (9) then produces 

                  

        





 

p

p

ipip

pbpbpapaB
g

pbpaepapbepapbpbpaH

222
2

1
       **

0

B

****






. (11) 

The Hamiltonian (11) is separated into various terms with different momenta. Hence we can 

diagonalize the Hamiltonian by solving the eigenvalue problem for the matrix 
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Bg

0

B   e ip

 eip Bg

0

B














. (12) 

The eigenvalues  p1  and  p2   are 

   pB
g

p cos 222

0

B
1 


  ,   pB

g
p cos 2 22

0

B
2 


  . (13) 

 We define new annihilation operators  pA1  and  pA2  as 

    
 

 pb
p

e
papA

ip

cos 222

1
221










, (14a) 

    
 

 pb
p

e
papA

ip

cos 222

1
222










. (14b) 

The Hamiltonian (11) can then be rewritten in the diagonal form 

             









p

B
g

pApAppApApH
0

B
2

*
221

*
11 

 . (15) 

The electron-spin polarization  e  is defined as the thermo-dynamic mean value 

 

 e 
1

N
  i

z

i1

N

 
1

N
2ci

*ci 1 
i1

N

 
1

N
2a j

* aj  2bj
*bj 2 

j1

J



      1

2J
2a* p a p  2b* p b p  2 

p

  1

2J
2As

* p As p 1 
s1

2



 




p


, (16) 

where the minus sign comes from the negative charge of an electron. Since the eigenenergies 

are 0 and s p   for the states As
* p As p  =0 and As

* p As p  =1 respectively, the 

probabilities of these states are proportional to the Boltzmann factors 1 and 

  Tkps Bexp  , where kB  is the Boltzmann constant and T is the temperature. 

Accordingly, the probability is   Tkps Bexp1

1


 for As

* p As p  =0, and 

  
  Tkp

Tkp

s

s

B

B

exp1

exp






 for As

* p As p =1. These probabilities give the thermo-dynamic mean 
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value of As
* p As p  , 

       
  Tkp

Tkp
pApA

s

s
ss

B

B*

exp1

exp






 , (17) 

which gives 

       
     Tkp

Tkp

Tkp
pApA s

s

s
ss B

B

B* 2tanh
exp1

1exp
12 








 . (18) 

Consequently, 

     









p s
se Tkp

J

2

1
B2tanh

2

1  . (19) 

For a macroscopic number of electrons, we can replace the summation with an integration, 

    
 



















2

1
B2tanhd

4

1

s
se Tkpp . (20) 

Thus, we have obtained the electron-spin polarization for the fractional quantum Hall state 

with a filling factor of 2/3. In the next section we perform the numerical integration. 

 

5. Magnetic behavior of the spin-polarization 

An energy gap appears between the two spectra of the eigenvalues  p1  and  p2 . At 

zero temperature, this gap causes a vanishing of the spin-polarization below some positive 

value X of the magnetic field. When the magnetic field strength increases beyond the value X, 

the spin-polarization increases continuously until reaching the maximum value of 1. 

 In a real Hall device, random potentials exist. The random potentials produce fluctuations in 

the eigenvalues of the system. We assume that this effect can be approximated by a thermal 

fluctuation. We therefore take T to be an effective temperature. 

 Adopting the values 25.0  and kBT    0.2, we obtain the magnetic behavior of 

spin-polarization shown in Figure 3. Experimental data from Kukushkin, Klitzing, and Eberl 

[5] are also shown in Figure 3.  
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 ------------------ Fig. 3 ---------------------------- 

 

Figure 3 shows that the calculated spin-polarization results are in good accord with the 

experimental data. 

 In the next section we examine the magnetic behaviors of the spin-polarization for filling 

factors other than 2/3. 

 

6. Other filling factors 

 We now calculate the spin-polarizations for the filling factors 1/2, 3/5, 7/5, 8/5, and 4/7. We 

first consider the filling factors 3/5 and 4/7. The electron configuration for  =3/5 is a 

repetition of the sequence (filled, filled, empty, filled, empty) and that for  =4/7 is a 

repetition of the sequence (filled, filled, empty, filled, empty, filled, empty) (see Figures 4a 

and 4b). 

------------------- Fig. 4 ------------------------- 

 

These electron configurations produce the minimum classical Coulomb energies. By 

considering only the spin-exchange interactions between the nearest neighbor electrons, we 

obtain an approximate Hamiltonian H for the filling factors of 3/5, in a form similar to that of 

the  =2/3 Hamiltonian (5), 

      









































3,2,1 0

B

3,2,1
13313331331313231323

2

1

i

z
i

j
jjjjjjjjjjjj

B
g

H







. 

 (21) 

Solving the eigenvalue problem for this Hamiltonian (21) by the same method as used in the 

Hamiltonian (5), we obtain the magnetic-field dependences of the spin-polarizations. The 
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result for  =3/5 is shown in Figures 5(a), where we adopt the values 25.0  and 

kBT    0.2, which are the same as in the case of  =2/3. 

-----------------------Fig. 5a ----------------------- Fig.5b --------------------------------- 

Similarly, the  =4/7 Hamiltonian can be obtained, and the calculated result of the 

spin-polarizations is shown in Figures 5(b). In Appendix 2, we examine how the 

spin-polarization depends on the parameters   and  TkB .  

 

The minimum Coulomb energy electron configuration for a filling factor of 1/2 is the 

sequence (filled, empty, filled, empty,...), and consequently all the nearest spin exchange 

interactions have the coupling constant   only. The calculated spin-polarization for this 

filling factor is shown in Figure 6 

------------------------ Fig.6 ---------------------- 

 

 For filling factors greater than 1, such as 7/5 and 8/5, some orbitals are occupied by two 

electrons with up and down spins, and the other orbitals are occupied by a single electron. 

The electron configuration with the minimum Coulomb energy for a filling factor of 8/5 is 

illustrated in Figure 7. 

----------------------- Fig.7 ---------------------- 

 

The orbitals occupied by a single electron are illustrated by single lines and the orbitals 

occupied by two electrons with up and down spins are illustrated by double lines. The 

coupling constants of spin-exchange interactions have the values   and   , indicated in 

Figure 7, where   is the coupling constant between an electron pair occupying third nearest 

orbitals, and the prime indicates that all the orbitals between the interacting pair of electrons 

are filled with electron pairs with up and down spins. The screening effect of the interposing 



11 

electron pairs weakens the coupling constants of the spin exchange interactions. The 

calculated spin polarizations are shown in the curves in Figures 8(a) and (b) for the filling 

factors of 7/5 and 8/5. 

---------------------------- Fig.8a -------- Fig.8b ------------------------------ 

Thus, for filling factors greater than 1, the calculated spin-polarizations are also in accord 

with the experimental data of Kukushkin, et al [5]. 

 

7. Conclusion 

The magnetic-field dependence of the spin-polarization in FQHE depends strongly on 

electron configuration. As can be seen in Figures 3, 5, 6, and 8, the fractional quantum Hall 

states for the filling factors 2/3, 4/7, and 8/5 possess an energy gap between the ground state 

and the first excited state at zero external field, whereas the states with the filling factors 1/2, 

3/5, and 7/5 have no energy gap. These curves are consistent with Haldane’s conjecture [7], 

and are derived from the present theory for spin-chains with two kinds of coupling constants. 

Thus, we have satisfactorily reproduced the various experimental spin polarization curves. 

We note also that, although not presented here, the theoretical values for the filling factors 1/4, 

2/5, 3/7, 4/9, 4/3, and 3/2 can also be shown to be in good accord with the experimental data.  

There are small shoulders in the experimental curves [5]. A height of a shoulder takes the 

mean value of the two heights of two horizontal parts appearing in the spin polarization curve. 

This structure is not explained by the present theory. This problem will be solved in the next 

paper, where we will take the spin-Peierls-effect into consideration. 
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Appendix 1 

We evaluate a transition matrix element  21 ,kkC  from an initial state   ,;, 21 kk  to a 

final state   ,;, 12 kk , as follows:  

 

   
     

    222111222111

2
21

2
21

2
21

2

222
*

111
*

21

dddddd ,,,,                     

                     

4
,,,,

,

21

12
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, 

where  is the permittivity of a Hall device. This matrix element means that the spin of the 

electron in orbital 1 flips from up to down and the spin of the electron in orbital 2 flips from 

down to up. Therefore, we obtain the spin exchange interaction such as   
2121 , kkC . 

Similarly, we obtain the interaction   
2121 , kkC  by calculating the transition matrix 

element from the initial state   ,;, 21 kk  to the final state   ,;, 12 kk .  

We adopt a Gaussian form 
2zfe 

 as the wave function of the z-direction  z . (This 

wave function depends on a potential shape of the z-direction, details of which are unknown.) 

Substituting this form into the integration in the transition matrix element, we obtain  
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The coupling constants  ,   and   in sections 3-6 are defined by  2, 11 kkC , 

 4, 11 kkC  and C k1,k1  6  , respectively. The ratio of the coupling constants   

and   is given by      2,4, 1111  kkCkkC . We numerically calculate this 

ratio by using a computer, where the strength of magnetic field is chosen to be the middle 

magnitude ( T5 B ) in the experimental data [5].  Since electrons are scattered by many 

impurities in a Hall device, the wave function of the x-direction takes a plane-wave form only 

in an interval between the impurities.  Therefore, the length   of the plane wave is not so 

long. We take the value of   to be m1.0   as an example, and choose the current depth of 

the z-direction to be 0.001m , namely  1000[m]1 . The value of (A1) weakly 

depends on the value of  . In the case of B  5T,   0.1m , and  1000[m]1, we 

obtain the ratio 247.0 . Therefore, we calculate the spin polarization near the value 

0.25 for  .
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Appendix 2 

We calculate spin-polarizations for different values of   in order to examine the 

dependence on parameters. The results are shown in Figure 9. The calculated 

spin-polarizations are fairly good agreement with the experimental data, when the value of 

  changes from 0.25 to 0.35.   

----------------------- Fig.9 ---------------------- 

As is easily seen in those four figures, the change of the value of   affects the width of 

the plateau. If another experiment is carried out, the experimental value of the plateau width 

is probably affected by the shape and by the quality of a Hall device used in the experiment.  

We already know similar phenomena that the widths of the plateaus in Hall resistance vary 

with the qualities of Hall devices used in the experiments. Consequently, the weak 

dependence on the parameters is favorable for explaining variety of data.
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Figure captions 

 
Figure 1: Ground state for  =2/3 
 
Figure 2: Other electron-configurations for  =2/3 
 
Figure 3: Calculated spin-polarization curve for    0.25, kBT    0.2 and experimental 

data for 32  
 
Figure 4: Electron-configurations for  =3/5 and 4/7 
 
Figure 5a: Spin polarization for  =3/5,    0.25, kBT    0.2 
 
Figure 5b: Spin polarization for  =4/7,    0.35, kBT    0.1 
 
Figure 6: Spin polarization for  =1/2, kBT   5.5  
 
Figure 7: Electron configuration for  =8/5 
 
Figure 8a: Spin polarization for  =7/5,    0.25, kBT   0.1 
 
Figure 8b: Spin polarization for  =8/5,   0.1, kBT   0.1 
 
Figure 9: Dependence of spin-polarization curves on parameter values 
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