
Title Computing the Stabilization Times of Self-
Stabilizing Systems

Author(s) Tokuda, Yusuke; Tsuchiya, Tatsuhiro; Kikuno,
Tohru

Citation
IEICE TRANSACTIONS on Fundamentals of
Electronics, Communications and Computer
Sciences. 2000, E83-A(11), p. 2245-2252

Version Type VoR

URL https://hdl.handle.net/11094/27243

rights Copyright © 2000 The Institute of Electronics,
Information and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.11 NOVEMBER 2000
2245

PAPER Special Section on Concurrent Systems Technology

Computing the Stabilization Times of Self-Stabilizing

Systems

Tatsuhiro TSUCHIYA†, Regular Member, Yusuke TOKUDA†, Nonmember,
and Tohru KIKUNO†, Regular Member

SUMMARY A distributed system is said to be self-
stabilizing if it converges to some legitimate state from an ar-
bitrary state in a finite number of steps. The number of steps
required for convergence is usually referred to as the stabilization

time, and its reduction is one of the main performance issues in
the design of self-stabilizing systems. In this paper, we propose
an automated method for computing the stabilization time. The
method uses Boolean functions to represent the state space in
order to assuage the state explosion problem, and computes the
stabilization time by manipulating the Boolean functions. To
demonstrate the usefulness of the method, we apply it to the
analysis of existing self-stabilizing algorithms. The results show
that the method can perform stabilization time analysis very fast,
even when an underlying state space is very huge.
key words: self-stabilization, stabilization times, automated

analysis, symbolic representation, distributed algorithms

1. Introduction

A distributed system is said to be self-stabilizing if it
converges to some legitimate state from an arbitrary
state. Self-stabilizing systems are thus inherently tol-
erant to transient faults that may change their state
arbitrarily. The notion of self-stabilization was first
introduced to computer science by Dijkstra [5]. This
notion, which originally had a very narrow scope of
application, has attracted much research interest in re-
cent years (e.g., [13]). Practical applications include,
for example, Internet servers [15] and FDDI media ac-
cess control protocols [4].

The number of steps required for reaching a legit-
imate state from an illegitimate state is usually called
the stabilization time. The reduction of the stabiliza-
tion time is one of the main performance issues in the
design of self-stabilizing algorithms, which specify self-
stabilizing systems, for several reasons. First, since be-
ing in illegitimate states means malfunction, it is nat-
urally desirable to reduce the time interval in which
the system remains in such states. Moreover, for algo-
rithms for some kinds of problems, such as ring orienta-
tion, leader election, and synchronization, the stabiliza-
tion time is the time complexity itself. It is therefore
desirable to design algorithms that are not only self-
stabilizing but also have the ability to reach a legitimate

Manuscript received April 6, 2000.
†The authors are with the Department of Informatics

and Mathematical Science, Osaka University, Toyonaka-shi,
560-8531 Japan.

state very fast. Research in this direction includes [1],
[8], [16].

In this paper, we propose an automated method
for computing the worst stabilization time, aiming at
supporting algorithm designers. In [6], Dolev et al. pro-
posed a theoretical method, called the scheduler luck
game, for stabilization time analysis. This method can
deal with randomized algorithms only, and it is not au-
tomated. Some work addresses the issues of automatic
verification of self-stabilizing systems (e.g., [11], [12],
[14]). To the best of our knowledge, however, there has
been no previous research that deals with stabilization
times.

In general, the major problem with analysis of con-
current systems is that the state space becomes very
huge since it grows exponentially in the number of com-
ponents. This problem, usually referred to as the state
explosion problem, is serious especially in modeling self-
stabilizing systems. Since any state can be the initial
state in a self-stabilizing system, the set of the reach-
able states is exactly the same as the Cartesian product
of sets of states of all components.

The use of partial order techniques is one of the
most promising approaches to this problem (e.g., [7],
[17]). This approach is based on the observation that
the validity of a given correctness property is often in-
sensitive to the order in which independently executed
events are interleaved. These techniques generate a
reduced set of reachable states that is indistinguish-
able for the given property, instead of generating the
whole reachable state space. Although this approach
has proven to be successful in verifying concurrent sys-
tems in a large class (e.g., [9]), it is not useful in ana-
lyzing self-stabilizing algorithms which can start their
execution from any state.

In this paper we adopt symbolic representation of
the state space, which is another approach to the state
explosion problem. In the approach, Boolean func-
tions represented by Ordered Binary Decision Diagrams
(OBDDs) are used to represent the state space, instead
of explicit adjacency lists. This can reduce dramatically
the memory and time required because OBDDs repre-
sent many frequently occurring Boolean functions very
compactly. This approach has already proven to be ef-
fective in model checking [3], [10], and model checking
that uses this approach is called symbolic model check-



2246
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.11 NOVEMBER 2000

ing. In the proposed method, the stabilization time is
computed by manipulating the OBDDs. As will be de-
scribed later, this can be done by using preimage com-
putation, which is also a technique used in symbolic
model checking.

In spite of the similarities between the proposed
analysis method and symbolic model checking, sym-
bolic model checking algorithms cannot be used for the
stabilization time analysis due to the following reason.
In general, model checking algorithms are used to de-
termine whether or not a given property holds in a sys-
tem in question. In contrast, the stabilization time is a
quantitative attribute of the system, and it cannot be
represented as a property that can be verified by model
checking. Therefore we need a different method that is
tailored to this analysis.

The remainder of this paper is organized as follows.
In the next section, we describe the system model and
the concept of self-stabilizing algorithms. In Sect. 3,
we present the proposed method. In Sect. 4, we ex-
plain a prototype system that implements the proposed
method, and show the results of applying the method
to several algorithms. We conclude this paper with a
brief summary in Sect. 5.

2. Self-Stabilizing Algorithms

2.1 Models and Definitions

We consider a distributed system that consists of m
processes, p0, p1, p2, · · · , pm−1. The topology of the sys-
tem is modeled by an undirected graph each of whose
vertices corresponds to a process.

Process pi can communicate with another process
pj if pi and pj are adjacent to each other on the graph.
Two commonly used communication models in the self-
stabilization literature are the state-reading model and
the link-register model. The former model assumes that
each process can directly read the internal state of its
adjacent processes, while the latter assumes that pro-
cesses can communicate with other processes only by
using separate registers. In this paper we assume the
state-reading model for brevity†.

A distributed algorithm specifies a transition rela-
tion for each process pi. In each step of execution of
process pi, pi reads the states of its adjacent processes,
calculates the next local state based on the transition
relation. A distributed algorithm thus specifies the be-
havior of the system.

To describe distributed algorithms, we use a
guarded command language in this paper, since it is
commonly used. A process has a set of finite domain
variables, and the local state of the process is the vec-
tor of the current values of the variables. Hence, the
set of local states is the Cartesian product of domains
of all the variables. The transition is specified by a list
of actions, and a list has the form

begin < action > [] · · · [] < action > end.

The symbol “[]” is a separator that separates the dif-
ferent actions. Each action is of the form

< guard >−→< statement >

where the guard is a Boolean expression over the vari-
ables of the process and the adjacent processes, and the
statement updates at least one variable of the process.

The global state of the system is the vector of the
states of all processes. Therefore the set of all global
states, denoted by G, is given as

G = Q0 ×Q1 × · · · ×Qm−1

where Qi (0 ≤ i ≤ m − 1) denotes the set of states of
pi.

An action is said to be enabled at a global state iff
its guard holds at that state. A process is enabled iff
some action in the process is enabled.

We assume the following semantics. In each step,
an arbitrary set of enabled processes is selected to
change their state. Each of the selected processes ex-
ecutes an enabled action. If there is more than one
enabled action, exactly one action is selected nondeter-
ministically.

We denote by g
U→ g′ (g′ �= g) the fact that

processes in U(⊆ {p0, p1, · · · , pm−1}) are all enabled
at g ∈ G and their parallel execution yields g′ ∈
G. We say that g → g′ holds if there exists U(⊆
{p0, p1, · · · , pm−1}) such that g

U→ g′. A sequence of
global states g0g1g2 · · · is a computation iff for every i
(≥ 0) gi → gi+1 holds. A maximal computation is one
which is either infinite or ends with a state g where no
process is enabled.

Self-stabilization is defined as follows. Let P be
a predicate that identifies the correct execution of the
system. We assume that P is given in the form of a
Boolean expression over the variables of the processes
in the system. We say global states satisfying (not sat-
isfying) P to be legitimate (illegitimate) states, respec-
tively. Let L denote the set of the legitimate states.
A distributed system is said to be self-stabilizing if it
satisfies the following two properties:

(1) Convergence — For any global state g0 ∈ G
and any maximal computation g0g1g2 · · · starting with
g0, there is an integer k (≥ 0) such that gk ∈ L, and

(2) Closure — For any global state g ∈ L, g → g′

implies g′ ∈ L.
An algorithm can be defined to be self-stabilizing

in a corresponding manner. Thus, a self-stabilizing al-
gorithm specifies a self-stabilizing system.

†The results shown here, however, can be easily ex-
tended to the the link-register model, by considering a
global state to be the vector of the states of processes and
shared registers.



TSUCHIYA et al.: COMPUTING THE STABILIZATION TIMES OF SELF-STABILIZING SYSTEMS
2247

(a)

p0 p1 p2 enabled processes selected processes
2 1 2 p0, p1, p2 p0

0 1 2 p1, p2 p1, p2

0 0 1 p2 p2

0 0 0 p0 p0

1 0 0 p1 p1

1 1 0 p2 p2

1 1 1 p0 p0

2 1 1 p1 —

(b)

Fig. 1 (a) A ring network. (b) An example of a computation
of the K-state algorithm (m = 3, K = 3).

The stabilization time, r, of a self-stabilizing sys-
tem is the number of steps required for reaching a le-
gitimate state in the worst case, i.e.,

r = max
g0g1g2···∈M

{
min
i≥0

{i : gi ∈ L}
}

where M is the set of all maximal computations.

2.2 Illustrative Example

Here we take Dijkstra’s K-state mutual exclusion al-
gorithm as an illustrative example [5]. Consider a dis-
tributed system consisting of m processes connected in
the form of a ring, as shown in Fig. 1(a).

We then define the legitimate states as those in
which exactly one process is enabled. This corresponds
to a form of mutual exclusion, because the enabled pro-
cess can be regarded as the only process that is allowed
in its critical section.

In the K-state algorithm, the state of each process
is in {0, 1, 2, · · · ,K − 1} where K is an integer larger
than or equal to m. Process p0 is treated differently
from all other processes. This algorithm is described
below.

Process p0

Variables S0 ∈ {0, 1, · · · ,K − 1}
begin

Sm−1 = S0 −→ S0 := (S0 + 1) mod K
end

Process pi(i = 1, 2, · · · ,m− 1)
Variables Si ∈ {0, 1, · · · ,K − 1}
begin

Si−1 �= Si −→ Si := Si−1

end

The predicate P that represents the legitimate
states is

P =
(

(Sm−1 = S0) ∧
∧

1≤j≤m−1

(Sj−1 = Sj)
)

∨
m−1∨
i=1

(
(Si−1 �= Si) ∧ (Sm−1 �= S0)

∧
∧

1≤j≤m−1
j �=i

(Sj−1 = Sj)
)
.

Figure 1(b) shows a part of a computation of the
system with three processes and K = 3. Although ev-
ery process is enabled initially, after two steps the sys-
tem reaches a state where only one process is enabled.

3. Proposed Method

3.1 Symbolic Representation

The major problem of automated analysis of concurrent
systems is that the state spaces arising from practical
problems are often huge, generally making exhaustive
exploration infeasible. To cope with the difficulty, we
symbolically represent the state space by using Boolean
functions. Since Boolean functions can be often repre-
sented by Ordered Binary Decision Diagrams (OBDDs)
very compactly, this approach can reduce the memory
and time required for analysis.

Let S be the set of Boolean vectors {0, 1}n. Then
any subset A of S can be uniquely represented by a
Boolean function f(x) with n Boolean variables (x =
(x1, x2, · · · , xn)), such that

f(a) =
{

1 a ∈ A
0 a �∈ A.

We call f the characteristic function of A. Since
S = {0, 1}n has 2n elements, up to 2n states can thus
be handled by using n Boolean variables. The tran-
sition relation is also represented by a Boolean func-
tion R(x,x′) with 2n variables (x = (x1, x2, · · · , xn),
x′ = (x′

1, x
′
2, · · · , x′

n)), such that

R(a, b) =
{

1 there is a transition from a to b.
0 otherwise.

(a, b ∈ S). We call Boolean function R the transi-
tion relation function. In the rest of the paper, we use
x(= (x1, x2, · · · , xn)) and x′(= (x′

1, x
′
2, · · · , x′

n)) only to
specify variables in Boolean functions. In other words,
these symbols never signify values assigned to these
variables.

Using the above idea, we represent the state space
using Boolean functions as follows. We encode each
variable in a distributed algorithm by using �log2 d�



2248
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.11 NOVEMBER 2000

Boolean variables, where d is the number of elements
in the domain of the variable. For example, global
states of the K-state algorithm are represented by us-
ing n = �log2 K� ∗m Boolean variables. In the sequel,
we identify a global state in G with its corresponding
vector in S. Then G ⊆ S holds.

The transition relation function R for a given algo-
rithm is the one such that R(a, b) = 1 iff a, b ∈ G and
a → b holds. In addition to R, we need to obtain char-
acteristic functions for G and L. Let G and L denote
these functions.

These necessary Boolean functions can be obtained
directly from the given algorithm. For example, con-
sider the K-state algorithm. When K = n = 3,
G(x) = ¬((x1∧x2)∨(x3∧x4)∨(x5∧x6)) if (x2i−1, x2i) =
(0, 0), (x2i−1, x2i) = (0, 1), (x2i−1, x2i) = (1, 0) specify
Si = 0, Si = 1, Si = 2, respectively (i = 1, 2, 3). R
and L can also be obtained without analyzing the state
space of the algorithm, because the guards for actions
and the predicate for legitimate states are given in the
form of Boolean expressions over variables in the algo-
rithm.

3.2 Computing Stabilization Time

Given the transition relation function R, the charac-
teristic function G of G, and the characteristic func-
tion L of the set of all legitimate states L, the pro-
posed method computes the maximum number of steps
needed for the system to reach some state in L from
an arbitrary state. The number is equal to the stabi-
lization time, if the system is self-stabilizing. We as-
sume that there is no state a ∈ G such that a �∈ L
and ¬∃b,a → b, since it is easy to check whether such
states exist or not†. Note that if such states exist, then
the system is not self-stabilizing since these states never
reach a legitimate state.

In the method, the state space is traversed back-
ward from L, by using (implicit) breadth-first search.
The breadth-first search is performed by iterating
preimage computation, which is an important technique
used in symbolic model checking.

Given a characteristic function C and a transition
relation function R, the preimage of C according to R
is defined as

P(R,C) = {a ∈ S : ∃b, R(a, b) = 1 ∧ C(b) = 1}.

In other words, P(R,C) is the set of states that can
reach C in one step where C is the set of states repre-
sented by C; i.e.,

P(R,C) = {a ∈ S : ∃b,a → b ∧ b ∈ C}.

The characteristic function of P(R,C), denoted by
P , can be obtained as follows. First let

∃xi.f = fxi=1 ∨ fxi=0

∃(xi1, xi2, · · · , xil).f = ∃xi1.∃xi2. · · · ∃xil.f

where fxi=b(b ∈ {0, 1}) is obtained by substitut-
ing b for xi, and let {1, 2, · · · , n} − {i1, i2, · · · , il} =
{j1, j2, · · · , jn−l}. Then ∃(xi1 , xi2 , · · · , xil

).f is eval-
uated to true for input (aj1 , aj2 , · · · , ajn−l

) iff f has
at least one truth assignment (b1, b2, · · · , bn) such that
(aj1 , aj2 , · · · , ajn−l

) = (bj1 , bj2 , · · · , bjn−l
). Thus

P (x) = ∃x′.(R(x,x′) ∧ C(x′)).

Preimage computation means to compute this formula.
This can be done very efficiently by using an algorithm
proposed by Bryant [2].

Suppose that L ⊆ C ⊆ G holds. Using the above
technique, the set of states that either necessarily stay
in C or necessarily move to a state in C in exactly one
step in any computation, i.e.,

{a ∈ S : (a ∈ C ∧ ¬∃b,a → b)
∨ ((∃b,a → b) ∧ (a → b ⇒ b ∈ C))}

can be computed. Specifically, this set of states is rep-
resented by

(S − P(R,¬C)) ∩ G,

since P(R,¬C) represents a set of states that can move
to some state in S − C in one step, and by assump-
tion any state in G − C can reach some other states.
Therefore its characteristic function is computed as

(¬∃x′.(R(x,x′) ∧ ¬C(x′))) ∧G(x).

The set of states that necessarily reach a state in
C in at most one step in any computation is the union
of C and the set of states any of whose next states is in
C; i.e.,

C ∪ ((S − P(R,¬C)) ∩ G).

It is then clear that this set can be represented by char-
acteristic function

C(x) ∨ ((¬∃x′.(R(x,x′) ∧ ¬C(x′))) ∧G(x)).

As can be seen, the above formula contains the OR,
AND, and NOT operators. These operations can also
be efficiently performed by using algorithms proposed
in [2].

Based on the above techniques, the method works
in the following four steps. Here C is the characteristic
function for the set of states visited, and c is the number
of iterations of preimage computation.

Step 1. C := L. c := 0.
Step 2. Check whether the whole state space is ex-

plored; i.e., check whether C = G or not. If C = G,
then c, which is the number of iterations of preim-
age computation, is the stabilization time r. Then
return c and stop; otherwise go to Step 3.

†(¬∃x0.R(x,x0)) ∧ G(x) ∧ ¬L(x) is the characteristic
function for these states. If this function is not the constant
FALSE, then deadlock occurs in some states in G − L.



TSUCHIYA et al.: COMPUTING THE STABILIZATION TIMES OF SELF-STABILIZING SYSTEMS
2249

Fig. 2 Schematic overview of the proposed method.

Fig. 3 The cases where the system is not self-stabilizing.

Step 3. By computing preimage, make the search
go backwards in one step; i.e., C ′(x) := C(x) ∨
((¬∃x′.(R(x,x′) ∧ ¬C(x′))) ∧G(x)). c := c + 1.

Step 4. If C ′ �= C, then C := C ′ and go to Step 2.
Otherwise, stop. In this case, there is a state from
which the system can never reach any legitimate
state.

Figure 2 schematically explains how the algorithm
works. In the figure, each dot represents a state in S
and an arc from dots A to B means that gi → gj holds
where gi and gj are the states represented by A and
B, respectively. Suppose that the state space defined
by a given algorithm is as shown in Fig. 2(a). Then
the search goes as shown in Fig. 2(b). C′

i is the set of
states represented by C ′ obtained in Step 3 at the ith
iteration. In this example, C′

i becomes the same as G
at the third iteration. Thus the stabilization time is
computed at three.

If the system does not meet the convergence prop-
erty, then the method can successfully detect that fact.
In that case, since there are some states that cannot be
guaranteed to reach a legitimate state in finite steps,
C converges before it becomes G. Then the fact that
the convergence property does not hold is detected in
Step 4. Figure 3(a) schematically depicts this case.
In the figure, there is a loop between two illegitimate
states. Hence there is a infinite computation that does
not reach a legitimate state.

On the other hand, whether or not the closure
property holds cannot be determined by the proposed
method. Figure 3(b) illustrates this. In this case, any
state must reach some state in L in at most three steps,
and the proposed method computes this number cor-

rectly. However, the algorithm is not self-stabilizing,
since it does not satisfy the closure property.

Using another procedure, we can determine
whether or not the algorithm meets the closure prop-
erty. Interested readers are referred to the appendix.

4. Case Studies

4.1 Prototype System

We developed a prototype system that implements the
proposed method. The system was written in the C
language. A BDD library† from Carnegie Mellon Uni-
versity was used for manipulating OBDDs. The system
was built on a Linux workstation with a 500 MHz pen-
tium III processor and 256 Mbyte memory.

At the moment, we have not fully implemented the
procedure for deriving the transition relation function
from a given concurrent program written in the guarded
command language. In the case studies, therefore, we
made transition relation function partly by hand.

4.2 Algorithms Tested

We used the prototype system for analyzing two algo-
rithms. The first algorithm is the K-state algorithm,
while the second one is another mutual exclusion algo-
rithm on rings, which was also proposed by Dijkstra
[5]. The second algorithm uses only three-state pro-
cesses and the state of a process is in {0, 1, 2}. The
algorithm is presented below.

Process p0

Variables S0 ∈ {0, 1, 2}
begin

(S0 + 1) mod 3 = Sm−1 −→ S0 := (S0 − 1) mod 3
end

Process pi(i = 1, 2, · · · ,m− 2)
Variables Si ∈ {0, 1, 2}
begin

(Si + 1) mod 3 = Si−1 −→ Si := Si−1

[] (Si + 1) mod 3 = Si+1 −→ Si := Si+1

end

Process pm−1

Variables Sm−1 ∈ {0, 1, 2}
begin

(Sm−2 = S0) ∧ ((Sm−2 + 1) mod 3 �= Sm−1)
−→ Si := Si−1

end

As in the K-state algorithm, legitimate states are
the ones where exactly one process is enabled in this

†http://www.cs.cmu.edu/afs/cs.cmu.edu/project/mod-
ck/pub/www/bdd.html



2250
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.11 NOVEMBER 2000

Table 1 Analysis results and performance for the K-state algorithm (K = m).

m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

Stabilization time 3 13 24 38 55 75
Execution time (in seconds) 0.01 0.02 0.16 1.09 6.87 28.11
Memory used (in Kbytes) 100 180 559 853 1725 2712

Table 2 Analysis results and performance for the 3-state algorithm.

m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

Stabilization time 1 10 22 39 57 79
Execution time (in seconds) 0.01 0.01 0.03 0.09 0.24 0.71
Memory used (in Kbytes) 96 153 283 330 618 851

algorithm. Hence the predicate P that represents these
legitimate states is given as

P =
m−1∨
i=0

(
Ei ∧

∧
0≤j≤m−1

j �=i

¬Ej

)

where

Ei =




((S0 + 1) mod 3 = Sm−1)
i = 0

((Si + 1) mod 3 = Si−1)
∨((Si + 1) mod 3 = Si+1)

1 ≤ i ≤ m− 2
(Sm−2 = S0)
∧((Sm−2 + 1) mod 3 �= Sm−1)

i = m− 1

4.3 Results

Varying the number of processes, we computed the sta-
bilization time of each of the two algorithms by the
proposed method. We also recorded the time required
for the computation and the size of memory used. Ta-
bles 1 and 2 show the results.

From the results, it can be seen that the two al-
gorithms have almost the same stabilization time when
the number of processes is modest. An interesting find-
ing, however, is that the stabilization time of the K-
state becomes slightly smaller than the 3-state algo-
rithm when the number of processes exceeds six and
the difference becomes larger as the number of processes
grows. This is rather counter-intuitive, since the num-
ber of states of each process required by the K-state
algorithm is larger than the 3-state algorithm and the
difference increases with the number of processes.

The results also show that the proposed method
completed analysis very fast, even when the state space
was very huge. For example, when the number of the
processes, m, is eight, the number of global states of
the K-state algorithm is in excess of 10 million. (More
precisely, it is Km = 16, 777, 216 since K = m = 8.)
Even in this case, the amount of time required for anal-
ysis was only around 30 seconds. The size of memory
used was also very small, and it was less than three
megabytes.

(a)

(b)

Fig. 4 Effect of symbolic representation. (a) the K-state
algorithm and (b) the 3-state algorithm.

It seems rather clear that the good performance
stems from the fact that the state space was repre-
sented very compactly using Boolean functions. This
fact is well illustrated by the two graphs in Fig. 4. In
the graphs, we plotted the number of nodes in the
OBDD for the transition relation function and the num-
ber of global states. Note that the latter would be the
same as the number of nodes when an explicit adja-
cency list were used for representing the transition re-
lation. As shown in these graphs, the reduction ratio
increases very rapidly with the number of processes.
For instance, for the case of the K-state algorithm, the
number of nodes of the OBDD was 6189 when m = 8.
This is only 0.037 percent of the total number of global
states.



TSUCHIYA et al.: COMPUTING THE STABILIZATION TIMES OF SELF-STABILIZING SYSTEMS
2251

5. Conclusions

Reduction of the stabilization time is one of the main
performance issues in the design of self-stabilizing sys-
tems. In this paper, we proposed an automatic method
for computing the stabilization time, aiming at sup-
porting algorithm designers. To circumvent the state
explosion problem, which often occurs in automated
analysis of concurrent systems, the proposed method
uses OBDDs to symbolically represent state spaces and
computes the stabilization time by manipulating the
OBDDs. Using a library for handling OBDDs, we de-
veloped a prototype system that implemented the pro-
posed method. To demonstrate the applicability of the
proposed method, we applied it to the analysis of ex-
isting self-stabilizing algorithms. In the case studies,
the method required a very little amount of time and
memory even when an underlying state space was very
huge. From the results obtained, it was found that this
was due to the fact that state spaces were expressed
very compactly by means of symbolic representation.

References

[1] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and
G. Varghese, “Time optimal self-stabilizing synchroniza-
tion,” Proc. 25th ACM Symp. on Theory of Computing,
pp.652–661, 1993.

[2] R.E. Bryant, “Graph-based algorithms for boolean func-
tion manipulation,” IEEE Trans. Comput., vol.C-35, no.8,
pp.677–691, 1986.

[3] J.R. Burch, E.M. Clarke, and K.L. McMillan, “Symbolic
model checking: 1020 states and beyond,” Information and
Computation, vol.98, pp.142–170, 1992.

[4] A.M. Costello and G. Varghese, “The FDDI MAC meets
self-stabilization,” Proc. 3rd Workshop on Self-Stabilizing
Systems, pp.1–9, 1999.

[5] E.W. Dijkstra, “Self-stabilizing systems in spite of dis-
tributed control,” Commun. ACM, vol.17, no.11, pp.643–
644, Nov. 1974.

[6] S. Dolev, A. Israeli, and S. Moran, “Analyzing expected
time by scheduler-luck games,” IEEE Trans. Software Eng.,
vol.21, no.5, pp.429–439, May 1995.

[7] P. Godefroid and P. Wolper “A partial approach to model
checking,” Information and Computation, vol.110, no.2,
pp.305–326, May 1994.

[8] S. Ghosh and A. Gupta, “An exercise in fault-containment:
Self-stabilizing leader election,” Inf. Process. Lett., vol.59,
pp.281–288, 1996.

[9] G.J. Holzmann, “The model checker SPIN,” IEEE Trans.
Software Eng., vol.23, no.5, pp.279–295, May 1997.

[10] K.L. McMillan, Symbolic Model Checking, Kluwer Aca-
demic, 1993.

[11] I.S.W.B. Prasetya, “Mechanically verified self-stabilizing
hierarchical algorithms,” Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’97), ed. E.
Brinksma, LNCS, vol.1217, pp.399–415, April 1997.

[12] S. Qadeer and N. Shankar, “Verifying a self-stabilizing
mutual exclusion algorithm,” Proc. IFIP Working Conf.
on Programming Concept and Methods (PROCOMET’98),
pp.424–443, June 1998.

[13] M. Schneider, “Self-stabilization,” ACM Computing Sur-
veys, vol.25, no.1, pp.45–67, March 1993.

[14] S. Shukla, D.J. Rosenkrantz, and S.S. Ravi, “Simulation
and validation of self-stabilizing protocols,” Proc. SPIN96
Workshop, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol.32, pp.1052–1798, 1997.

[15] A. Singhai, S.-B. Lim, and S.R. Radia, “The SunSCALR
framework for Internet servers,” Proc. 28th Symp. on Fault-
Tolerant Computing (FTCS-28), pp.108–117, 1998.

[16] G. Tel, “Maximal matching stabilizes in quadratic time,”
Inf. Process. Lett., vol.49, no.6, pp.271–272, 1994.

[17] A. Valmari, “A stubborn attack on state explosion,” Proc.
Second Workshop on Computer Aided Verification, LNCS,
vol.531, pp.156–165, June 1990.

Appendix: Verifying the Closure Property

By using preimage computation, it is also possible to
check whether or not a given algorithm meets the clo-
sure property. By definition, the closure property is
met if and only if no legitimate state exists that can
reach an illegitimate state in one step. Note that the
set of illegitimate states is G − L and its characteristic
function is G∧¬L. Let N be the set of states that can
reach an illegitimate state in one step; i.e.,

N = {a ∈ S : ∃b,a → b ∧ b ∈ G − L}.

Clearly, N is the preimage of G ∧ ¬L according to R;
i.e.,

N = P(R,G ∧ ¬L).

Since N∩L is the set of legitimate states that can reach
an illegitimate state in one step, the closure property
can be verified by checking the emptiness of this in-
tersection. This observation leads to the verification
procedure depicted below.

Step 1. L′ := G ∧ ¬L.
Step 2. Perform preimage computation to obtain the

characteristic function N for N ; i.e., N(x) :=
∃x′.(R(x,x′) ∧ L′(x′)).

Step 3. Compute the characteristic function I for N ∩
L; i.e., I := N ∧ L.

Step 4. Check whether I is the constant FALSE or
not. If so, then the closure property is met since
N ∩L = ∅; otherwise, the property does not hold,
because there is a legitimate state that can reach
an illegitimate state.

If we use the above procedure to restrict given
distributed algorithms to those that meet the clo-
sure property, then the proposed analysis method can
be simplified as follows. When the closure property
holds, C(x) ∨ ((¬∃x′.(R(x,x′) ∧ ¬C(x′))) ∧ G(x)) =
(¬∃x′.(R(x,x′) ∧ ¬C(x′))) ∧ G(x) holds in Step 3 of
the proposed analysis method. Thus C ′(x) := C(x) ∨
((¬∃x′.(R(x,x′)∧¬C(x′)))∧G(x)) in this step can be
modified as C ′(x) := (¬∃x′.(R(x,x′)∧¬C(x′)))∧G(x).



2252
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.11 NOVEMBER 2000

The rationale of this simplification is as fol-
lows. Suppose ∀a ∈ C,a → b ⇒ b ∈ C.
Then, by definition C ⊆ (S − P(R,¬C)) ∩ G holds
(i.e., C(x) ∨ ((¬∃x′.(R(x,x′) ∧ ¬C(x′))) ∧ G(x)) =
(¬∃x′.(R(x,x′) ∧ ¬C(x′))) ∧G(x)).

In this case, ∀a ∈ ((S − P(R,¬C)) ∩ G) − C,a →
b ⇒ b ∈ C also holds by definition. Hence ∀a ∈ C′,a →
b ⇒ b ∈ C′, where C′ = (S − P(R,¬C)) ∩ G.

Note that C is equal to L at the first iteration of
the proposed method and ∀a ∈ L,a → b ⇒ b ∈ L
holds due to the closure property. Therefore, for C at
any iteration, ∀a ∈ C,a → b ⇒ b ∈ C.

Tatsuhiro Tsuchiya received M.E.
and Ph.D. degrees in computer engineer-
ing from Osaka University in 1995 and
1998, respectively. He is currently an
assistant professor in the Department of
Informatics and Mathematical Science at
Osaka University. His research interests
are in the areas of distributed comput-
ing and fault-tolerant computing. He is
a member of IEEE.

Yusuke Tokuda is currently a mas-
ter course student in the Department of
Informatics and Mathematical Science at
Osaka University. He has been engaged
in research on self-stabilizing systems.

Tohru Kikuno was born in 1947.
He received M.S. and Ph.D. degrees from
Osaka University in 1972 and 1975, re-
spectively. He joined Hiroshima Univer-
sity from 1975 to 1987. Since 1990, he
has been a Professor of the Department
of Informatics and Mathematical Science
at Osaka University. His research inter-
ests include the quantitative evaluation of
software development processes and the
analysis of fault-tolerant systems. He

served as a program co-chair of the 1st International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC
’98) and the 5th International Conference on Real-Time Com-
puting Systems and Applications (RTCSA’98). He is a member
of IEEE and ACM.


