
Title New 2-Factor Covering Designs for Software
Testing

Author(s) Kobayashi, Noritaka; Tsuchiya, Tatsuhiro;
Kikuno, Tohru

Citation
IEICE TRANSACTIONS on Fundamentals of
Electronics, Communications and Computer
Sciences. 2002, E85-A(12), p. 2946-2949

Version Type VoR

URL https://hdl.handle.net/11094/27244

rights Copyright © 2002 The Institute of Electronics,
Information and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

2946
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

LETTER

New 2-Factor Covering Designs for Software Testing

Noritaka KOBAYASHI†∗a), Nonmember, Tatsuhiro TSUCHIYA†,
and Tohru KIKUNO†, Regular Members

SUMMARY 2-Factor covering designs, a type of combina-
torial designs, have recently received attention since they have
industrial applications including software testing. For these ap-
plications, even a small reduction on the size of a design is signifi-
cant, because it directly leads to the reduction of testing cost. In
this letter, we report ten new designs that we constructed, which
improve on the previously best known results.
key words: factor covering design, software testing, finite field

1. Introduction

Software testing often consumes up to half of the over-
all software costs. Even for simple software, exhaustive
testing is infeasible because the number of possible test
cases is typically prohibitively large. Much research
has been aimed at simultaneously achieving high effi-
cacy and reducing testing cost by selecting test cases
appropriately. One such approach is to use a set of
test cases that covers all pair-wise combinations of pa-
rameter values [1], [4], [7]. This approach is based on
the observation that a significant number of faults are
caused by parameter interactions in many applications.
To cover all pair-wise combinations of parameter values,
only a small number of test cases are sufficient if we can
select them appropriately. Thus this approach can lead
to reduce the cost of testing.

As an example, consider the problem of testing a
telephone switch’s ability to place telephone calls [1].
Table 1 shows four parameters that define a simple test
model. Each of the four parameters has three values.
The Call Type parameter tells the type of call. Its val-
ues are Local, Long Distance, and International. The
other three parameters (Billing, Access and Status) also
have three values. The table thus defines a total of 81
(= 34) different test cases. To cover all pair-wise pa-
rameter interactions, however, we need only nine test
cases, as shown in Fig. 1.

A test set that covers all pair-wise parameter in-
teractions can be viewed as a kind of a combinatorial
design. Dalal and Mallows named this type of design

Manuscript received October 5, 2001.
Manuscript revised April 15, 2002.
Final manuscript received August 2, 2002.

†The authors are with the Graduate School of Informa-
tion Science and Technology, Osaka University, Toyonaka-
shi, 560-8531 Japan.

∗Presently, with Nomura Research Institute, Ltd.
a) E-mail: n-kobays@ics.es.osaka-u.ac.jp

2-factor covering design [3]. Let p denote the number of
test parameters, and let v denote the number of values
that each parameter has. When we have t test cases
that cover all pair-wise interactions, we refer to the 2-
factor covering design as a (t, [vp]) design. In the rest of
the letter we call the t components just tuples, instead
of test cases.

For example, the design shown in Fig. 1 is a (9, [34])
design. We refer to the number of tuples in a design
D as the size of the design and denote it by |D|. Since
the values in any column can be permuted, we assume
without loss of generality that all parameters take 1 in
the first tuple in any design.

The size of a 2-factor covering design depends
on its construction; therefore much research has been
aimed at reducing the size. In this letter, we focus on
constructing 2-factor covering designs with v = 3. For
the case v = 2, a construction that can generate op-
timal 2-factor covering designs has been proposed [5].
However, the problem of constructing optimal 2-factor
covering designs for the case v = 3 is not solved. This
problem is called the ternary Spernery problem [6] and
has received recent attention. Dalal and Mallows [3]
summarized the best known 2-factor covering designs
with v = 3 as shown in Table 2.

In this letter, we present ten new designs with v =
3, which improve on the existing results. One of the ten
designs is a (17, [316]) design, which improves on the

Table 1 Parameters for placing a telephone call.

A:Call Type B:Billing C:Access D:Status
#1 Local Caller Loop Success
#2 Long Distance Collect ISDN Busy
#3 International 800 PBX Blocked

Test A B C D
#1 1 1 1 1
#2 1 2 2 2
#3 1 3 3 3
#4 2 1 2 3
#5 2 2 3 1
#6 2 3 1 2
#7 3 1 3 2
#8 3 2 1 3
#9 3 3 2 1

Fig. 1 A (9, [34]) design.

LETTER
2947

Table 2 Sizes of the best known (t, [3p]) designs reported in
[3].

p 4 5 6 13 16 18 56 126
t 9 11 12 15 18 21 24 27

Fig. 2 (a) B(3) and (b) D13,15(= D4,9 ×R B(3)).

#1 1 1 1 1 1 1 1
#2 2 2 2 2 1 2 2
#3 3 3 3 3 1 3 3
#4 1 3 2 3 2 1 2
#5 2 1 3 2 2 3 1
#6 3 2 1 3 3 2 1
#7 1 2 3 1 3 2 3
#8 3 1 2 1 3 3 2
#9 2 3 1 2 3 1 3

#10 2 1 2 3 2 2 3
#11 3 2 3 2 2 1 2
#12 2 3 2 1 2 2 1
#13 1 2 1 2 2 3 2

Fig. 3 A (13, [37]) design.

previously best known size for the case p = 17. Other
nine designs have different numbers of parameters from
those summarized in Table 2.

2. Basic Constructions

In this section we present three known constructions.
Using these constructions we have obtained the ten new
designs.

2.1 Heuristic Search-Based Algorithm [1]

AETG [1], an actual test generation system, employs
a heuristic algorithm. The algorithm incrementally
constructs a 2-factor covering design as follow. As-
sume that n tuples have already been constructed. The
(n+1)th tuple is obtained by first generating some fixed
number (e.g., 100 or 200) of different candidate tuples
at random and then choosing one that covers the most
new combinations of parameter values.

As stated later, the design shown in Fig. 3 was ob-
tained by this algorithm. Using this design, we will
explain the algorithm in brief. For example, suppose
that the first two tuples, #1 and #2, have been ob-
tained. Then the next tuple is generated as follows.
First some number of tuples are generated randomly as

candidates. Then for each candidate tuple, the num-
ber of new combinations it covers is computed. After
that a tuple that covers the most new combinations is
selected from the candidates.

In this case, since p = 7 and v = 3, there are a
total of v2p(p − 1)/2 = 189 combinations to be cov-
ered, and each tuple can cover at most p(p− 1)/2 = 21
combinations. The first two tuples cover 42 different
combinations, so there remain 147 combinations that
have not appeared yet. When we obtained this design,
(3, 3, 3, 3, 1, 3, 3) happened to be generated as a
candidate. This tuple covers 21 of the remaining com-
binations. Clearly there was no other candidate that
covers more than 21 new combinations, and thus the
tuple was selected as the third tuple. This process con-
tinues until all combinations are covered by at least one
tuple.

2.2 Simple Product [8]

Let F1 and F2 be 2-factor covering designs for [vp] and
[vq], respectively. The simple product, F1×F2, which is
a 2-factor covering design for [vpq], can be constructed
as follows. Let F ′

2 be a design that is obtained by re-
moving the first tuple (that is, the tuple (1, 1, · · · , 1))
from F2.

For each tuple (t1, t2, · · · , tp) in F1, we include in
the product the tuple

(t1, t2, · · · , tp, t1, t2, · · · , tp, · · · · · · , t1, t2, · · · , tp).
For each tuple (t1, t2, · · · , tq) in F ′

2, we include in the
product the tuple

(t1, t1, · · · , t1
︸ ︷︷ ︸

p

, t2, t2, · · · , t2
︸ ︷︷ ︸

p

, · · · · · · , tq, tq, · · · , tq
︸ ︷︷ ︸

p

).

The size of the product is |F1|+ |F2| − 1.

2.3 Reduced Product [2]

To describe this concept, we first define block structured
2-factor covering designs [2]. We assume that v = zj

for some prime z and integer j ≥ 1 (i.e., v is a prime
power number). It is well known that this is the nec-
essary and sufficient condition for a finite field with v
elements to exist. A 2-factor covering design for [vp] is
block structured, provided that the design can be par-
titioned into blocks such that each consists of the v
translates, (i⊕x1, · · · , i⊕xp), i ∈ {1, 2, · · · , v}, of some
tuple (x1, · · · , xp) in the block, where ⊕ denotes ad-
dition over the finite field. Suppose that blocks are
numbered from one to the total number of the blocks,
and that the block that includes the first tuple is the
first block.

Now we describe the reduced product. Let F1 and
F2 be 2-factor covering designs for [vp] and [vq], re-
spectively. Assume that F2 is block structured. The

2948
IEICE TRANS. FUNDAMENTALS, VOL.E85–A, NO.12 DECEMBER 2002

reduced product, F1×R F2, which is a 2-factor covering
design for [vpq+1], can be constructed as follows [2]. Let
F ′

2 be a design that is obtained by removing the first
block from F2. For each tuple (t1, t2, · · · , tp) in F1, we
include in the product the tuple

(t1, t2, · · · , tp, t1, t2, · · · , tp, · · · · · · , t1, t2, · · · , tp, 1).
For each tuple (t1, t2, · · · , tq) in F ′

2, we include in the
product the tuple

(t1, t1, · · · , t1
︸ ︷︷ ︸

p

, t2, t2, · · · , t2
︸ ︷︷ ︸

p

, · · · · · · , tq, tq, · · · , tq
︸ ︷︷ ︸

p

, i)

where i denotes the number assigned to the block that
contains the tuple (t1, t2, · · · , tq). The size of the re-
duced product is |F1|+ |F2| − v.

In [2], it is shown that a finite field with v ele-
ments yields a (v2, [vv+1]) design and a block structured
(v2, [vv]) design. Let B(v) denote a block structured
(v2, [vv]) design. In the remainder of this letter, we de-
note a (t, [3p]) design by Dp,t. For example, a (9, [34])
design shown in Fig. 1 is D4,9. Figure 2 shows B(3) and
D4,9 ×R B(3).

3. Results

In this section, we present the ten new designs obtained
by using the three constructions described in the previ-
ous section. Table 3 shows the number of parameters,
p, and the size, t, for each of the new designs. Due
to space limits, we show the five smallest designs. The
(13, [37]) design in Fig. 3 was constructed by the heuris-
tic search-based algorithm. The (17, [316]) design and
the (20, [324]) design in Figs. 4 and 5 were constructed
as the simple products D4,9 × D4,9 and D6,12 × D4,9,
respectively.

The (18, [319]) design and the (19, [322]) design in
Figs. 6 and 7 were the reduced product D6,12 ×R B(3)
and D7,13 ×R B(3), respectively. As shown in Table 3,
the remaining five new designs, D40,21, D49,23, D58,24,

Table 3 Constructions of the new (t, [3p]) designs.

Design p t Construction method
D7,13 7 13 The heuristic algorithm
D16,17 16 17 D4,9 × D4,9

D19,18 19 18 D6,12 ×R B(3)
D22,19 22 19 D7,13 ×R B(3)
D24,20 24 20 D6,12 × D4,9

D40,21 40 21 D13,15 ×R B(3)
D49,23 49 23 D16,17 ×R B(3)
D58,24 58 24 D19,18 ×R B(3)
D67,25 67 25 D22,19 ×R B(3)
D73,26 73 26 D24,20 ×R B(3)

Table 4 Sizes of the best known (t, [3p]) designs.

p 4 5 6 7 13 16 19 22 24 40 49 58 67 73 126
t 9 11 12 13 15 17 18 19 20 21 23 24 25 26 27

#1 1111 1111 1111 1111
#2 1222 1222 1222 1222
#3 1333 1333 1333 1333
#4 2123 2123 2123 2123
#5 2231 2231 2231 2231
#6 2312 2312 2312 2312
#7 3132 3132 3132 3132
#8 3213 3213 3213 3213
#9 3321 3321 3321 3321

#10 1111 2222 2222 2222
#11 1111 3333 3333 3333
#12 2222 1111 2222 3333
#13 2222 2222 3333 1111
#14 2222 3333 1111 2222
#15 3333 1111 3333 2222
#16 3333 2222 1111 3333
#17 3333 3333 2222 1111

Fig. 4 A (17, [316]) design.

#1 111111 111111 111111 111111
#2 122133 122133 122133 122133
#3 132321 132321 132321 132321
#4 131232 131232 131232 131232
#5 123312 123312 123312 123312
#6 221223 221223 221223 221223
#7 213333 213333 213333 213333
#8 233121 233121 233121 233121
#9 212212 212212 212212 212212

#10 312122 312122 312122 312122
#11 323231 323231 323231 323231
#12 331313 331313 331313 331313
#13 111111 222222 222222 222222
#14 111111 333333 333333 333333
#15 222222 111111 222222 333333
#16 222222 222222 333333 111111
#17 222222 333333 111111 222222
#18 333333 111111 333333 222222
#19 333333 222222 111111 333333
#20 333333 333333 222222 111111

Fig. 5 A (20, [324]) design.

#1 111111 111111 111111 1
#2 122133 122133 122133 1
#3 132321 132321 132321 1
#4 131232 131232 131232 1
#5 123312 123312 123312 1
#6 221223 221223 221223 1
#7 213333 213333 213333 1
#8 233121 233121 233121 1
#9 212212 212212 212212 1

#10 312122 312122 312122 1
#11 323231 323231 323231 1
#12 331313 331313 331313 1
#13 111111 222222 333333 2
#14 222222 333333 111111 2
#15 333333 111111 222222 2
#16 111111 333333 222222 3
#17 222222 111111 333333 3
#18 333333 222222 111111 3

Fig. 6 A (18, [319]) design.

LETTER
2949

#1 1111111 1111111 1111111 1
#2 2222122 2222122 2222122 1
#3 3333133 3333133 3333133 1
#4 1323212 1323212 1323212 1
#5 2132231 2132231 2132231 1
#6 3213321 3213321 3213321 1
#7 1231323 1231323 1231323 1
#8 3121332 3121332 3121332 1
#9 2312313 2312313 2312313 1

#10 2123223 2123223 2123223 1
#11 3232212 3232212 3232212 1
#12 2321221 2321221 2321221 1
#13 1212232 1212232 1212232 1
#14 1111111 2222222 3333333 2
#15 2222222 3333333 1111111 2
#16 3333333 1111111 2222222 2
#17 1111111 3333333 2222222 3
#18 2222222 1111111 3333333 3
#19 3333333 2222222 1111111 3

Fig. 7 A (19, [322]) design.

D67,25, and D73,26, can be constructed by making use
of D13,15 (shown in Fig. 2) and the above four designs.

Note that these designs improve the best known
results for a large range of values of p. For example,
since we have (17, 316) and (18, 319) designs, the best
known size is improved from 18 to 17 for 14 ≤ p ≤ 16
and from 21 to 18 for 17 ≤ p ≤ 19. Table 4 summarizes
the best known results updated by our results.

References

[1] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. Patton,
“The AETG system: An approach to testing based on com-
binatorial design,” IEEE Trans. Software Eng., vol.23, no.7,
pp.437–443, July 1997.

[2] D.M. Cohen and M.L. Fredman, “New techniques for de-
signing qualitatively independent systems,” J. Combinatorial
Designs, vol.6, no.6, pp.411–416, 1998.

[3] S.R. Dalal and C.L. Mallows, “Factor-covering designs for
testing software,” Technometrics, vol.40, no.3, pp.234–243,
Aug. 1998.

[4] I.S. Dunietz, W.K. Ehrlich, B.D. Szablak, C.L. Mallows,
and A. Iannino, “Applying design of experiments to software
testing,” Proc. IEEE Int’l Conf. Software Eng., pp.205–215,
1997.

[5] D.J. Kleitman and J. Spencer, “Families of k-independent
sets,” Discrete Mathematics, vol.6, pp.255–262, 1973.

[6] N.J.A. Sloane, “Covering arrays and intersecting codes,” J.
Combinatorial Designs, vol.1, no.1, pp.51–63, 1993.

[7] C.H. West, “Protocol validation—Principles and applica-
tions,” Computer Networks and ISDN Systems, vol.24, no.3,
pp.219–242, May 1992.

[8] A.W. Williams and R.L. Probert, “A practical strategy for
testing pair-wise coverage of network interfaces,” Proc. IEEE
7th Int’l Symp. Software Reliability Eng., pp.246–254, 1997.

