
Title Parallelizing SDP (Sum of Disjoint Products)
Algorithms for Fast Reliability Analysis

Author(s) Kajikawa, Tomoya; Tsuchiya, Tatsuhiro; Kikuno,
Tohru

Citation IEICE transactions on information and systems.
2000, E83-D(5), p. 1183-1186

Version Type VoR

URL https://hdl.handle.net/11094/27245

rights Copyright © 2000 The Institute of Electronics,
Information and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

IEICE TRANS. INF. & SYST., VOL.E83–D, NO.5 MAY 2000
1183

LETTER

Parallelizing SDP (Sum of Disjoint Products) Algorithms

for Fast Reliability Analysis

Tatsuhiro TSUCHIYA†, Member, Tomoya KAJIKAWA††, Nonmember,
and Tohru KIKUNO†, Member

SUMMARY The SDP (Sum of Disjoint Products) approach
is a well-known technique for computing network reliability mea-
sures. So far several algorithms have been developed based on
this approach. In this letter, we present a general framework
for parallelization of these SDP algorithms. Based on the frame-
work, we implemented a parallel version of an SDP algorithm
called CAREL on a network of workstations. Experimental re-
sults show that it works fairly well with almost linear speedups.
key words: network reliability, networks of workstations, de-
pendability evaluation, parallel processing, coherent systems

1. Introduction

The SDP (Sum of Disjoint Products) approach is a well-
known and important technique for reliability analysis.
It has been used for computing various measures re-
lated to network reliability, such as terminal-pair relia-
bility [1], [5], [10], distributed program reliability [7], dis-
tributed system reliability [7], [8], and the availability of
mutual exclusion mechanisms [12].

Given the reliabilities of components and minimal
sets of components that can allow a system to function
(which we call min-paths), an SDP algorithm computes
the reliability of the system, i.e., the probability that
all components in at least one of these sets are oper-
ational. Several SDP algorithms have been developed
so far (e.g., [1], [5], [9], [10]). In general, when using
the SDP approach, reliability evaluation is performed
in two phases; 1) enumerate all min-paths, and 2) com-
pute the reliability measure by using an SDP algorithm.
Results reported in literature show that usually the
time of the second phase is dominant in the total run-
ning time needed for evaluation. It is thus important
to reduce the running time of the SDP algorithms.

In this letter, we present a framework for paral-
lelization of the SDP algorithms, and report the results
of implementing a parallel version of an SDP algorithm
called CAREL, which is one of the most recent SDP
algorithms [10].

Although parallelization is a common approach to
running programs faster, there is few work in the field of
reliability evaluation. (Exceptions include, for example,

Manuscript received November 30, 1999.
†The authors are with the Department of Informatics

and Mathematical Science, Osaka University, Osaka-shi,
560–8531 Japan.

††The author is with CASIO Computer Co., Ltd.,
Hamura-shi, 205–8555 Japan.

[3].) To the best of our knowledge, this letter is the first
to deal with parallelization of the SDP algorithms.

In general, parallelization involves overcoming
some difficulties, including extracting parallelism and
managing communication overheads. In the remainder
of the letter, we show that the SDP algorithms inher-
ently contain parallelism, and the parallel version of
CAREL works very well even on a network of worksta-
tions, where communication overheads are much larger
compared to other kinds of parallel machines.

2. Preliminaries

2.1 Model

We consider a system L that consists of n components.
Each component has two states: operational or failed.
We denote the ith component by li(1 ≤ i ≤ n), i.e.,
L = {l1, l2, · · · , ln}. We assume that for each compo-
nent li ∈ L, the probability that it is operational, de-
noted by pi, is given. Failures of the components are
mutually independent. The current state of the system
is defined as a set S ⊆ L such that all components in S
are operational and all components in L\S are failed.

The system is either operational or failed. We as-
sume that the system is coherent [9], that is, if the sys-
tem is operational in state S, then it is operational in
any state S′ such that S ⊆ S′. Then there is a set S
of states such that the system is operational iff some
state in S is a (proper or improper) subset of the cur-
rent state. Each element in S is called a min-path. The
event that the system is operational, denoted by U , can
be then represented by

U =
∨

MPi∈S

∧

lj∈MPi

uj

where uj denotes the event that component lj is oper-
ational.

As an example, consider the network shown in
Fig. 1 and suppose L = {l1, l2, l3, l4, l5}. (For the pur-
pose of readability, we do not consider node failures in
this example.) Now let us assume that the system is
operational iff there is an operational path between s
and t. Then, for example, {l1, l2} is a min-path. In
this case, there are a total of four min-paths and S is

1184
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.5 MAY 2000

Fig. 1 A simple network.

{{l1, l2}, {l3, l4}, {l1, l4, l5}, {l2, l3, l5}}. Hence U is rep-
resented as U = u1u2 ∨ u3u4 ∨ u1u4u5 ∨ u2u3u5.

Let Ei be the event that all components of MPi ∈
S is operational, that is, Ei =

∨
uj∈MPi

uj. Then
U =

∨
MPi∈S Ei, and the probability that the system

is operation, denoted by R, can be written as

R = Pr[U] = Pr[E1 ∨ E2 ∨ · · · ∨ Em] (1)

where |S| = m.

2.2 SDP Approach

The problem we consider is as follows:

Given l1, l2, · · · , ln
p1, p2, · · · , pn

MP1, MP2, · · · , MPm

Compute R.

(We assume that MP1, MP2, · · · , MPm are sorted in an
ascending order of their cardinality.)

In the SDP approach, R is computed based on the
following equation.

E1 ∨ E2 ∨ · · · ∨ Em

= E1 ∨ E1E2 ∨ · · · ∨ E1E2 · · ·Em−1Em.

In the right hand side of the above equation, the
product terms are disjoint and mutually exclusive with
each other. Hence Eq. (1) can be transformed as

R = Pr[E1] + Pr[E1E2] + · · ·
+Pr[E1E2 · · ·Em−1Em].

The SDP algorithms obtain R by computing Pr[σi]
for all i(≤ m) where σi = E1E2 · · ·Ei−1Ei.

If MPj and MPj′ contain no common elements
for any j, j′(j �= j) such that 1 ≤ j, j′ ≤ i. then Pr[σi]
can be easily obtained. In this case, Ej and Ej′ are
independent, so Pr[σi] is given by

Pr[σi] = Pr[E1]Pr[E2] · · ·Pr[Ei−1]Pr[Ei]

=
∏

1≤j≤i−1

(1−
∏

lk∈MPj

pk)
∏

lk∈MPi

pk.

On the other hand, computing Pr[σi] is much com-
plicated if MPj and MPj′ contain common elements.
In such situations, Pr[σi] is given as

Pr[σi] = Pr[Ei]Pr[E1E2 · · ·Ei−1|Ei].

Pr[Ei] can be computed in a straightforward man-
ner since Pr[Ei] = Pr[

∧
lk∈MPi

uk] =
∏

lk∈MPi
pk.

Evaluating Pr[E1E2 · · ·Ei−1|Ei] is, however, a com-
plex problem. In order to compute this probability,
many techniques have been developed (see [9] for re-
cent a survey). Different SDP algorithms use different
techniques.

For example, given S = {{l1, l2}, {l3, l4},
{l1, l4, l5}, {l2, l3, l5}}, an SDP algorithm CAREL [10]
computes R by transforming Eq. (1) as follows:

R =Pr[u1u2 ∨ u3u4 ∨ u1u4u5 ∨ u2u3u5]
=Pr[u1u2] + Pr[u3u4]Pr[u1u2]
+Pr[u1u4u5]Pr[u2u3] + Pr[u2u3u5]Pr[u1u4]

= p1p2 + p3p4(1− p1p2)
+p1p4p5(1− p2)(1− p3)
+p2p3p5(1− p1)(1− p4)

3. Parallelization and Load Balancing

Regardless of the difference in ways of computing
Pr[σi], the task of computing Pr[σi] and that of com-
puting Pr[σi′] for i, i′(i �= i′) have no dependency in any
SDP algorithm. This means that Pr[σi] and Pr[σi′] can
be computed in parallel for any i, i′. Parallelism is thus
intrinsic in the SDP algorithms.

The problem with computing R in parallel is then
load balancing. It is known that in recent SDP algo-
rithms the time for computing Pr[σi] grows linearly in
i. Hence by statically allocating given min-paths to
processors, it is possible to distribute the load equally
to some extent, However, this may result in delay of
execution because the execution time of Pr[σi] is not
fully predictable. Hence we consider that dynamic dis-
tribution based on a master-slave model is preferable.
Another important advantage of dynamic load distri-
bution is that it is well suited for environments where
machines run at different speeds.

As a distribution rule we adopt the LPT (Longest
Processing Time) scheduling rule [6], which has been
widely used for scheduling independent tasks onto mul-
tiprocessors (e.g.,[2]). By using this rule, we can bal-
ance loads among the processors, thus reducing the idle
time spent by each processor after the last assigned task
was finished. According to this rule, whenever a pro-
cessor becomes free, the master process assigns to the
processor a task whose execution time is the largest of
the tasks not yet assigned. As stated above, although
the time required for computing Pr[σi] is not fully pre-
dictable, it usually grows as the value of i increases.
Thus we compute Pr[σi] in descending order of i.

The remaining problem is communication over-
heads. We use a task clustering technique to reduce the
overheads. Task clustering means to lump several tasks
together as a larger one. This technique thus reduces
the number of message exchanges required for assigning
tasks to the processors. Let Pi denote the task corre-
sponding to the computation of Pr[σi] and let c be a

LETTER
1185

Table 1 Execution times (in seconds) of the parallel version of CAREL.

of processors 1 2 3 4 5 6 7

Network 1 48.8 25.3 17.7 14.2 12.3 11.4 10.5
Network 2 130.6 66.3 45.1 34.8 28.8 25.0 22.2
Network 3 154.1 78.1 53.1 40.9 33.9 29.4 26.4
Network 4 337.6 170.4 115.3 88.0 72.1 62.0 54.8
Network 5 4918.3 2435.4 1625.8 1217.7 981.6 816.1 703.2

positive integer. We cluster Pm, Pm−1, · · · , Pm−c+1 into
task J1 (i.e., J1 = {Pm, Pm−1, · · · , Pm−c+1}), Pm−c,
Pm−c−1, · · · , Pm−2c+1 into J2, and so on, and then as-
sign J1, J2, J3, · · · in this order to the processors, ac-
cording to the LPT scheduling rule. (It should be
noted, however, that as the number of min-paths in
a task, i.e., the value of c grows, the communication
overheads incurred by distributing tasks decrease, but
the idle time of each processor may increase due to in-
crease of task granularity.)

The following describes the behavior of the master
and slave processes. Here N denote the number of the
slave processes. We assume that no two slave processes
run on the same processor.

The master process
Step 1) Send the inputs (all the min-paths and the re-
liabilities of the components) to all the slave processes.
Step 2) Assign the first N tasks, i.e., J1, J2, J3, · · · , JN ,
to the slave processes so that they will handle one task
each.
Step 3) When receiving a result from a slave process,
assign that process the next task. Repeat this step until
no task remains.
Step 4) Wait for results from slave processes that have
not completed their assigned tasks. When receiving re-
sults from all such processes, send termination messages
to all the slave processes. Then stop.

The slave processes
Step 1) Receive the inputs from the master process.
Step 2) On receiving a task from the master process,
execute the task. When finishing the task, send the
result to the master.
Step 3) Wait for a message from the master. If the
message is for assignment of another task, then repeat
from Step 2. Otherwise, the message is a termination
message. Then stop.

Note that a task can be sent simply by designat-
ing the indices of the first and the last min-paths to
be processed. The result of task Ji is the value of∑

Pj∈Ji
Pr[σj]. The reliability of the system, R, is ob-

tained simply by summing the result values the slave
processes returned to the master process.

4. Implementation and Experiment

Based on the proposed approach, we implemented a

Fig. 2 Benchmark networks.

parallel version of CAREL [10] in the C language using
the PVM message passing library [4]. In the program,
a master process is first created, and then it spawns
slave processes so that every workstation will run one
slave process each. Thus the workstation running the
master process also executes one slave process.

We conducted an experiment on a collection of
workstations connected by a 100baseT Ethernet. Each
workstation was running Free-BSD with a 400MHz
Pentium II processor and 128Mbyte memory.

We set the value of c to
 m
10·(# of workstations)� so

that each workstation would run 10 tasks on average.
(From preliminary experiments, we had found that this
value is small enough to make the idle time of each
workstation almost negligible.)

To assess the performance of the implemented pro-
gram, we recorded the time spent in computing the
availability of the majority voting scheme [11] for each
network in Fig. 2. The availability of majority voting is
defined as the probability that a majority of the nodes
are connected by operational paths. Therefore S is the
set of all minimal trees that span exactly
|V |/2� nodes
where V is the set of nodes. The total number of the
min-paths, |S|, is 8738, 10797, 11777, 18616, and 15750
for Networks 1, 2, 3, 4, and 5, respectively. (The min-
paths were obtained by using an algorithm proposed in
[12].) Since we consider both node and link failures,
L = V ∪ E holds where E is the set of edges.

Table 1 shows the running times needed for com-
puting the availability from the set of min-paths. (Each
value is the average of 10 runs.) Figure 3 shows the
speedup ratios. The speedup ratio is defined as W/Wp

where W is the execution time of CAREL on a sin-
gle workstation and Wp is that of the parallel version.
(Availabilities obtained are omitted due to the limit of
space. Interesting readers are referred to [12].)

1186
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.5 MAY 2000

Fig. 3 Speedup ratios.

Table 2 Overheads (in seconds).

of workstations 2 3 4 5 6 7

Network 1 1.5 1.9 2.2 2.5 2.9 3.5
Network 2 1.6 2.0 2.4 2.8 3.2 3.6
Network 3 1.8 2.3 2.8 3.3 3.6 4.2
Network 4 2.8 3.4 4.2 4.9 5.5 6.4
Network 5 2.7 3.3 4.0 4.5 5.1 6.1

From these results, it can be seen that except for
Network 1, the speedup ratios are almost linear. For
Network 1 the speedup ratio begins to saturate when
the number of workstations exceeds 5. The reason is
that the number of min-paths to be processed was rela-
tively small for Network 1, so the communication over-
heads made tangible effects on the running time.

To investigate this reason further, we measured the
overheads in the parallel program. This was done by
measuring the finishing times of a program obtained by
removing all statements contributing to reliability com-
putation from the parallel version of CAREL. Table 2
shows the results. As expected, the overheads increase
as the number of min-paths and that of workstations
grow. In the case of Network 1, the ratio of the over-
head to the total running time is much larger than the
other cases. Thus it is found that the gain obtained by
adding a workstation diminished more rapidly.

To illustrate this, let us consider the case where
a workstation is added to six workstations. Since the
running time for Network 1 is less than 49 seconds on
a single workstation, the reduction in the running time
achieved by this extra workstation is at most 49/6 −
49/7 ≈ 1.17 seconds. On the other hand, the overhead
increases by 3.5 − 2.9 = 0.6 second in this case, and
thus lessens the speedup to a considerable extent.

5. Conclusions

In this letter, we discussed parallelization of SDP al-
gorithms. We pointed out that the SDP algorithms
inherently contain parallelism and present a general
framework for parallelization. Based on the framework,
we implemented a parallel version of CAREL, which is
one of the most recent SDP algorithms, and conducted
an experiment on a network of workstations. The ex-
perimental results show that when the workload is not
small, the parallel version of CAREL achieves signifi-
cant speedup, which is almost linear in the number of
workstations. Future research includes developing an
analytic model for predicting the performance.

References

[1] J.A. Abraham, “An improved algorithm for network relia-
bility,” IEEE Trans. Reliab., vol.28, pp.58–61, 1979.

[2] V. Cherkassky and C.-I.H. Chen, “Redundant task-
allocation in multicomputer systems,” IEEE Trans. Reliab.,
vol.41, no.3, pp.336–342, 1992.

[3] N. Deo and M. Medidi, “Parallel algorithms for terminal-
pair reliability,” IEEE Trans. Reliab., vol.41, no.2, pp.201–
209, 1992.

[4] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam, PVM: Parallel Virtual Machine – A
Users’ Guide and Tutorial for Networked Parallel Comput-
ing, The MIT Press, 1994.

[5] S. Hariri and C.S. Raghavendra, “SYREL: A symbolic reli-
ability algorithm based on path and cutset methods,” IEEE
Trans. Comput., vol.36, no.10, pp.1224–1232, 1987.

[6] D.S. Johnson, A. Demers, J.D. Ullman, M.R. Garey, and
R.L. Graham, “Worst-case performance bounds for simple
one dimensional bin packing algorithm,” SIAM J. Comput.,
vol.3, pp.299–325, 1974.

[7] V.K. Prasanna Kumar, S. Hariri, and C.S. Raghavendra,
“Distributed program reliability analysis,” IEEE Trans.
Software Eng., vol.12, no.1, pp.42–50, 1986.

[8] C.S. Raghavendra, V.K. Prasanna Kumar, and S. Hariri,
“Reliability analysis in distributed systems,” IEEE Trans.
Comput., vol.37, no.3, pp.352–358, March 1988.

[9] S. Rai, M. Veeraraghavan, and K.S. Trivedi, “A survey of
efficient reliability computation using disjoint products ap-
proach,” Networks, vol.25, pp.147–163, 1995.

[10] S. Soh and S. Rai, “CAREL: Computer aided reliabil-
ity evaluator for distributed computing networks,” IEEE
Trans. Parallel and Distributed Systems, vol.2, no.2,
pp.199–213, 1991.

[11] R.H. Thomas, “A majority consensus approach to concur-
rency control,” ACM Trans. Database Systems, vol.4, no.2,
pp.180–209, 1979.

[12] T. Tsuchiya and T. Kikuno, “Availability evaluation of
quorum-based mutual exclusion schemes in general topol-
ogy networks,” Comput. J., vol.42, no.7, pp.613–622, 1999.

