
Title
A Hierarchical Approach to Dependability
Evaluation of Distributed Systems with
Replicated Resources

Author(s) Choi, Eun Hye; Tsuchiya, Tatsuhiro; Kikuno,
Tohru

Citation IEICE transactions on information and systems.
2001, E84-D(6), p. 692-699

Version Type VoR

URL https://hdl.handle.net/11094/27248

rights Copyright © 2001 The Institute of Electronics,
Information and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

692
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.6 JUNE 2001

PAPER

A Hierarchical Approach to Dependability Evaluation of

Distributed Systems with Replicated Resources

Eun Hye CHOI†, Nonmember, Tatsuhiro TSUCHIYA†,
and Tohru KIKUNO†, Regular Members

SUMMARY We propose a two-level hierarchical method for
dependability evaluation of distributed systems with replicated
programs and data files. Since Markov modeling is limited only
to each component in this method, state explosion can be circum-
vented successfully. Simulation results show that the method can
accomplish evaluation even for large systems for which Markov
modeling is not feasible.
key words: distributed systems, dependability evaluation, repli-
cated resources, Markov models, fault trees

1. Introduction

In distributed systems, programs and data files are of-
ten replicated and allocated to multiple nodes in a re-
dundant manner in order to achieve fault tolerance and
high dependability. Thus it is essential to capture the
effects of such redundant distribution of resources for
dependability analysis. For this purpose, Kumar et al.
proposed an analytic model of distributed systems [11].
In the model, a program is assumed to be executable
when at least one node that can execute the program
remains operational and all files required for the execu-
tion of the program are accessible from the node. Based
on this model, several algorithms have been proposed
to evaluate the availability of systems [1], [8], [11], [12].
However, they do not explicitly consider the failure-
repair behavior of system components and thus, they
can evaluate the system dependability only in a static
manner.

To model dynamic behavior of components, Lopez-
Benitez proposed a Petri-net-based method [10]. In this
method, the behavior of a distributed system is repre-
sented by a stochastic Petri-net. In [10], two typical re-
pair models, called the local repair model and the global
repair model, are proposed and discussed. Since failures
and repairs of system components are explicitly consid-
ered in these two models, dependability measures other
than availability can be evaluated. In addition, the cov-
erage for each component is explicitly taken into con-
sideration in these models. Coverage means the proba-
bility that handling of a component failure, which usu-
ally involves detection and system reconfiguration, is

Manuscript received November 30, 1999.
Manuscript revised September 11, 2000.

†The authors are with the Department of Informatics
and Mathematical Science, Graduate School of Engineering
Science, Osaka University, Toyonaka-shi, 560–8531 Japan.

completed successfully. If the handling is not success-
ful, then the component failure causes system failure
even though other components remain operational. We
call such a component failure a noncovered failure. It
has been shown that the system dependability is highly
sensitive to the coverage factor [3], [4].

Unfortunately, this Petri-net-based method is
prone to suffer from state explosion, which often oc-
curs when Markov models are used. Although the use
of a stochastic Petri-net is known as a common way to
circumvent state explosion in representing the failure-
repair model, for evaluating dependability measures, it
requires to generate all states of the underlying Markov
chain. Consequently, the state explosion problem can-
not be avoided. As shown later, the number of states
generated from the Petri-net model in [10] becomes very
large even when the number of nodes in the system is
less than 15.

As an alternative approach, a hierarchical method
is proposed in [6]. In this method, the availability of
each component is computed by using a Markov model.
Based on the availability of each component, the avail-
ability of the system is computed by the above men-
tioned algorithms [1], [8], [11], [12]. Since this method
necessitates the assumption that the behavior of each
component is independent of others, it can deal with
neither the coverage factor nor global repair.

To cope with the defects of the previous methods,
we propose a new evaluation method in this paper. As-
suming the global repair model in [10], the proposed
method models the system as a two-level hierarchical
structure. At the lower level (component level), the
behavior of each component is described by a Markov
model. At the higher level (system level), a fault tree
is used to model the behavior of the whole system.
Unlike in [6], the coverage factor is explicitly taken
into account at both of the two levels. Once a model
has been constructed, a software tool called SHARPE
(Symbolic Hierarchical Automated Reliability and Per-
formance Evaluator) [13], [14] can be used to analyze
the model and calculate some dependability measures.
Since Markov modeling is localized to each component,
the state explosion problem is circumvented in the pro-
posed method.

CHOI et al.: A HIERARCHICAL APPROACH TO DEPENDABILITY EVALUATION
693

2. Preliminaries

2.1 System Model

We consider a distributed system modeled by an undi-
rected graph G = (V, E), where each vertex xi ∈ V
represents a computing node and each edge xi,j ∈ E
represents a communication link between node xi and
node xj . We assume that G is connected and has
no self-loop and no parallel edges. We use the term
component to indicate a node or a link. Additionally,
we define S as the set of all the components (nodes
xi ∈ V and links xi,j ∈ E) of the distributed system
G, i.e., S = V ∪ E. In the following, we will often use
si ∈ S(i = 1, 2, · · · , |V | + |E|) to indicate a component
xi or xi,j for simplicity.

We assume that each component si(∈ S) is either
fully operational or completely failed, and that its times
to failure are exponentially distributed with parameter
λi. Usually, this parameter is referred to as the failure
rate. For each component si, the coverage is given by
ci(0 ≤ ci ≤ 1). This means that if si fails, then the sys-
tem also fails with probability 1−ci due to unsuccessful
handling of the component failure.

Let P = {P1, P2, · · · , P|P|} and F = {F1, F2, · · · ,
F|F|} denote a set of programs and a set of data files in
the system, respectively. We assume that the programs
and the data files are distributed throughout the nodes
of the system in a redundant manner. Let PRGi(⊆ P)
denote the set of programs that node xi can execute,
and let FAi(⊆ F) denote the set of data files located
on node xi. If node xi can execute program Pj , i.e.,
Pj ∈ PRGi, then we call the node xi a host node of
Pj . Let FNi(⊆ F) denote the set of data files needed
for the execution of program Pi. Suppose that xj is
a host node of Pi and data file F ∈ FNi is located
on xk. If xj and xk are operational, and there is an
operational path from xj to xk, then we say that F is
accessible from xj . We assume that the program Pi is
executable if and only if at least one host node of Pi is
operational, and every file in FNi is accessible from the
host node. We also assume that if any program in P
becomes not executable, then the system fails. That is,
the system fails if a program becomes not executable,
or a noncovered component failure occurs.

Concerning repair, we assume the global repair
model which is discussed in [10]. In the global repair
model, a repair action is taken only when the system
fails. In this model, any repair action is performed in
a centralized manner, and the whole system is restored
to its initial status after the repair. We assume that the
mean time to repair, MTTR, is given. Unlike in [10],
the assumption of the exponentially distributed repair
times is not made in this paper.

Fig. 1 Distributed system with four nodes.

Fig. 2 All MFSFs in the system in Fig. 1.

2.2 Minimal File Spanning Forest (MFSF)

In general, the set of nodes and links involved in the
execution of a program forms a tree in G. In [11], such
a tree is called a File Spanning Tree (FST). For a pro-
gram Pi, an FST is defined as a tree that contains a
host node for Pi and holds all files in FNi in some of
its nodes.

Example 1: Consider the system shown in Fig. 1.
Let P = {P1, P2}, FN1 = {F1, F2}, and FN2 =
{F2, F3}. In a tree ({x2, x4}, {x2,4}), node x2 can run
program P2, and every file in FN2 is held by x2 or x4.
Hence, this tree is an FST for P2. It is clear that if
all components of this tree are operational, then P2 is
executable. Similarly, ({x3}, ∅}) is an FST for P1.

In contrast, the subgraphs that will provide re-
quired paths for the execution of all the programs do
not always form trees because they are collections of
FSTs associated with the programs. To efficiently cal-
culate the probability that such subgraphs remain op-
erational, the notion of a Minimal File Spanning Forest
(MFSF) is introduced in [12]. An MFSF is defined as a
subgraph of G such that FSTs for all programs are con-
tained in the subgraph but none of its proper subgraphs
has this property.

Example 2: In the system in Fig. 1, a subgraph G′ =
({x2, x3, x4}, {x2,4, x3,4}) of G contains FSTs for all the
programs in P . However, this subgraph is not an MFSF
since its proper subgraph G′′ = ({x2, x3, x4}, {x2,4}) is
an MFSF. All MFSFs in this example are shown in
Fig. 2. (G′′ corresponds to MFSF3 in Fig. 2.)

By definition, all the programs are executable if
and only if an operational MFSF exists. Hence, the
system is operational if and only if at least one MFSF

694
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.6 JUNE 2001

is operational and no noncovered failure has occurred
on any component of the system†.

2.3 Dependability Measures

As dependability measures to be evaluated, we con-
sider reliability R(t), Mean-Time-To-Failure(MTTF),
and steady-state availability A.

The reliability of a system is its ability to function
correctly over a specified period of time. Formally the
reliability at a given time t, R(t), can be expressed as

R(t) = Pr(the system is operational in [0, t]).

Once R(t) has been obtained, we can compute the
MTTF as follows:

MTTF =
∫ ∞

0

R(t)dt.

Steady-state availability A, which is the probabil-
ity that the system is operational when sufficiently long
time elapses, is known as a suitable measure for evalu-
ation of systems experiencing a number of failures and
repairs. This measure A is formally defined as

A = lim
t→∞ Pr(the system is operational at t).

In this paper, we assume that a repair action is taken
when the system fails, and that the system is restored
to the initial status after repair. Hence, if the MTTF
and the mean time to repair (MTTR) of the system are
given, then A is computed as

A =
MTTF

MTTF + MTTR
.

3. Proposed Evaluation Method

The proposed method constructs a two-level hierarchi-
cal model of a distributed system so that software tool
SHARPE (Symbolic Hierarchical Automated Reliabil-
ity and Performance Evaluator) [13], [14] can analyze
the model. As the name suggests, SHARPE supports
hierarchical model composition. By using this tool, we
can estimate the dependability measures.

The proposed method has three steps listed below.

Step 1. Enumerate all MFSFs.
Step 2. Construct a hierarchical model, which con-

sists of the component level (the lower level) and
the system level (the upper level). The MFSFs
enumerated in Step 1 are used in modeling at the
system level.

Step 3. Evaluate the dependability measures by ap-
plying SHARPE to the constructed model in Step
2.

We use an algorithm proposed in [11] for MFSF
enumeration in Step 1. This algorithm first enumerates

Fig. 3 Markov model for a component si.

FSTs for all the programs in P , and then generates
MFSFs by merging them. (Though another algorithm
to generate MFSFs is proposed in [12], we found that
this algorithm can produce incorrect results. See the
appendix for details.) In the rest of this section, we
describe Step 2 and Step 3.

3.1 Hierarchical Model Construction (Step 2)

3.1.1 Modeling at the Component Level

At the lower level, a Markov model is used for each com-
ponent. The behavior of component si is represented by
the continuous-time Markov chain illustrated in Fig. 3.
In this figure, state ‘Operational’ means that si is oper-
ational. Two other states represent the fact that si has
failed. State ‘Covered’ means that si failed and the fail-
ure was handled successfully, while state ‘Noncovered’
means that the failure was noncovered. Transitions be-
tween states are expressed by arrows, each of which is
associated with its transition rate.

In the following, we use Oi and Ni to represent the
event that si is in state ‘Operational’ and the event that
si is in state ‘Noncovered’, respectively. These events
are used as its inputs to the model at the upper level.

3.1.2 Modeling at the System Level

At the higher level, we model the whole system by us-
ing a fault tree. As mentioned before, the system is
operational if and only if at least one MFSF remains
operational and no noncovered component failure has
occurred. In other words, the system is not operational
if and only if none of the MFSFs is operational or a
noncovered component failure has occurred on at least
one component. This is represented by the fault tree
shown in Fig. 4. Below, we explain modeling at the
system level by using this figure.

As stated before, MFSFs enumerated in Step 1
are used to construct this fault tree. Let M =
{MFSF1, MFSF2, · · · , MFSF|M |} denote the set of
all the MFSFs. In the fault tree, OR gate Ai cor-
responds to the ith MFSF, MFSFi, and thus inputs
to the OR gate correspond to the components of the
MFSF. Each of these inputs, denoted as Oj , represents

†Under the assumption described in Sect. 2.1, even for
a component not in MFSFs, its noncovered failure causes
system failure. Though this assumption is the same as [10],
it may be impractical in some situations. Thus we mention
this point in Sect. 6.

CHOI et al.: A HIERARCHICAL APPROACH TO DEPENDABILITY EVALUATION
695

Fig. 4 Fault tree at the system level.

Fig. 5 Modified fault tree.

the event that component sj of MFSFi is not oper-
ational. Then, the output of gate Ai represents the
event that MFSFi is not operational. (If the MFSF
is composed of one component, then the OR gate is
not necessary.) Therefore, the output of AND gate B
represents the event that none of the MFSFs in M is
operational.

Each input to OR gate C, denoted as Ni, corre-
sponds to component si of the system, and it represents
the event that a noncovered component failure has oc-
curred on si. Thus, the output of OR gate C represents
the event that a noncovered failure has occurred on at
least one component. Hence the system is not opera-
tional if and only if the output of AND gate B or that
of OR gate C is true. As a consequence, the output of
the top OR gate D represents the event that the whole
system has failed.

3.1.3 Modification of the Fault Tree

In the proposed method, we analyze of the constructed
model by using software tool SHARPE. To do so, some
minor modifications of the fault tree are required. In
SHARPE, input events of a fault tree must be indepen-
dent of each other. In contrast, the fault tree in Fig. 4

Fig. 6 (a) Fault tree for the system in Example 1, and (b)
modified one.

contains dependent events such as Oi and Ni for each
i(= 1, 2, · · · , |S|).

In order to satisfy this requirement, we modify
the original fault tree by introducing virtual events
Vi(i = 1, 2, · · · , |S|). Let Vi be a virtual event that al-
ways occurs with probability 1 − ci. Due to the nature
of the Markov model at the component level in Fig. 3,
it is known that event Ni occurs with probability 1− ci

whenever event Oi does not occur. Therefore, the event
Ni can be replaced with an AND gate with two inputs
Oi and Vi. After the modifications, the fault tree shown
in Fig. 5 is obtained from the fault tree shown in Fig. 4.

Example 3: Figure 6 (a) shows the fault tree for the
system shown in Fig. 1, where si = xi(i = 1, 2, 3, 4),
s5 = x1,2, s6 = x1,3, s7 = x2,3, s8 = x2,4, and s9 = x3,4.
With modification to this fault tree, the new fault tree
shown in Fig. 6 (b) is obtained.

3.2 Dependability Evaluation by SHARPE (Step 3)

Once a model is constructed, dependability measures
R(t), MTTF, and A, which are described in Sect. 2.3,
are evaluated by SHARPE. In SHARPE, a model to
be analyzed must be described as an input file written
in the SHARPE language. SHARPE analyzes the in-
put file and outputs symbolic expressions for reliability
R(t) and the value of MTTF. Once MTTF is obtained,

696
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.6 JUNE 2001

1 markov law(lam,c)
2 operational covered lam*c
3 operational noncovered lam*(1-c)
4 end
5 operational 1.0
6 end
7
8 bind lam1 0.001000
9 bind c1 0.950000

10 bind lam2 0.001000
11 bind c2 0.950000
12 bind lam3 0.001000
13 bind c3 0.950000
14 bind lam4 0.001000
15 bind c4 0.950000
16 bind lam5 0.001000
17 bind c5 0.950000
18 bind lam6 0.001000
19 bind c6 0.950000
20 bind lam7 0.001000
21 bind c7 0.950000
22 bind lam8 0.001000
23 bind c8 0.950000
24 bind lam9 0.001000
25 bind c9 0.950000
26
27 ftree failure
28
29 repeat nonop1 cdf(law;lam1,c1)
30 repeat nonop2 cdf(law;lam2,c2)
31 repeat nonop3 cdf(law;lam3,c3)
32 repeat nonop4 cdf(law;lam4,c4)
33 basic nonop5 cdf(law;lam5,c5)
34 basic nonop6 cdf(law;lam6,c6)
35 repeat nonop7 cdf(law;lam7,c7)
36 repeat nonop8 cdf(law;lam8,c8)
37 repeat nonop9 cdf(law;lam9,c9)
38
39 basic v1 gen 1-c1,0,0
40 basic v2 gen 1-c2,0,0
41 basic v3 gen 1-c3,0,0
42 basic v4 gen 1-c4,0,0
43 basic v5 gen 1-c5,0,0
44 basic v6 gen 1-c6,0,0
45 basic v7 gen 1-c7,0,0
46 basic v8 gen 1-c8,0,0
47 basic v9 gen 1-c9,0,0
48
49 or mfsf1 nonop1
50 or mfsf2 nonop2 nonop3 nonop4 nonop7 nonop9
51 or mfsf3 nonop2 nonop3 nonop4 nonop8
52
53 and d1 nonop1 v1
54 and d2 nonop2 v2
55 and d3 nonop3 v3
56 and d4 nonop4 v4
57 and d5 nonop5 v5
58 and d6 nonop6 v6
59 and d7 nonop7 v7
60 and d8 nonop8 v8
61 and d9 nonop9 v9
62
63 or dect d1 d2 d3 d4 d5 d6 d7 d8 d9
64
65 and mfsf mfsf1 mfsf2 mfsf3
66
67 or TOP mfsf dect
68 end
69
70 cdf(failure)
71 end

Fig. 7 Input file to SHARPE.

steady-state availability A is easily calculated by equa-
tion A = MTTF/(MTTF+MTTR), which has already
been described in Sect. 2.3.

CDF for system failure:
1.0000e+00 t(0) exp(0.0000e+00 t)

+ -6.6342e-01 t(0) exp(-1.0000e-03 t)
+ -2.7933e-01 t(0) exp(-2.0000e-03 t)
+ -5.1456e-02 t(0) exp(-3.0000e-03 t)
+ -7.7920e-01 t(0) exp(-4.0000e-03 t)
+ -2.0398e-01 t(0) exp(-5.0000e-03 t)
+ 1.6933e+00 t(0) exp(-6.0000e-03 t)
+ -6.3288e-01 t(0) exp(-7.0000e-03 t)
+ -8.0780e-02 t(0) exp(-8.0000e-03 t)
+ -2.2503e-03 t(0) exp(-9.0000e-03 t)
mean: 8.7438e+02
variance: 7.6146e+05

Fig. 8 Output of SHARPE.

Example 4: Consider the system shown in Fig. 1
again and assume MTTR = 10. Figure 7 shows
an input file representing the hierarchical model con-
structed by the proposed method, where λi = 0.001 and
ci = 0.95 for any component si. Analyzing this input
file, SHARPE computes reliability and MTTF. Figure
8 shows the output for the input file. In the output,
“CDF for system failure” means the cumulative distri-
bution function for system failure, i.e., 1 − R(t). From
the result, we can get the reliability R(t), the MTTF,
and the steady-state availability A of the system as fol-
low:

R(t) = 0.66342e−0.001t + 0.27933e−0.002t

+ 0.051456e−0.003t + · · ·
MTTF = 874.38
A = 874.38/(874.38 + 10) = 0.98869

4. Running Time Analysis

Using the C language, we wrote a program for Step
2 that constructs a model based on the proposed
method and outputs it as an input file to SHARPE.
For Step 1 we implemented an algorithm to enumer-
ate all MFSFs [11]. By applying these programs and
SHARPE to various example systems, we conducted
running time analysis in order to show the applicabil-
ity of the proposed method.

We took a collection of networks from [2], as shown
in Fig. 9, and used them as the topologies of benchmark
systems. Distribution of resources (programs and files)
were set as illustrated in this figure.

For each system in Fig. 9, we executed the pro-
grams on a SUN Ultra SS1 workstation and measured
the running time needed for evaluation. Note that the
total running time consists of (1) the time needed for
MFSF enumeration (Step 1), (2) the time needed for
model construction (Step 2), and (3) the time needed
for analysis by SHARPE (Step 3).

As mentioned before, the previous method [10]
based on Petri-nets cannot evaluate the dependability
measures with admissible running time when the sys-
tem is large. Thus for comparison, we counted the total
number of states of the underlying Markov chain that

CHOI et al.: A HIERARCHICAL APPROACH TO DEPENDABILITY EVALUATION
697

Table 1 Results of performance analysis.

#of components #of total run- Step 1 Step 2 Step 3 #of states of pre-
(nodes, links) MFSFs ning time(s) vious model [10]

1 22 (9,13) 45 13.50 1.59 0.01 11.50 2415
2 23 (9,14) 25 13.76 0.11 0.01 12.64 6859
3 29 (11,18) 27 18.82 0.20 0.02 18.60 253049
4 31 (10,21) 35 347.98 0.17 0.01 347.80 2053569
5 32 (11,21) 69 2058.14 1.08 0.02 2057.04 2080116
6 35 (13,32) 59 1699.71 4.95 0.02 1694.74 � 10000000
7 35 (14,21) 40 1599.98 0.30 0.01 1599.67 � 10000000
8 40 (16,24) 50 1090.68 9.90 0.03 1080.75 � 10000000
9 45 (18,27) 19 260.20 0.04 0.02 260.14 � 10000000

10 46 (16,30) 12 260.09 0.03 0.02 260.04 � 10000000
11 47 (21,26) 27 1157.96 0.09 0.02 1157.85 � 10000000
12 50 (20,30) 21 2161.58 0.31 0.01 2161.26 � 10000000

Fig. 9 Benchmarks.

the Petri-net-based method would generate.
Table 1 summarizes the total running times and

the total numbers of states. From this table, it is seen
that the running times of the proposed method were
fairly acceptable in all cases. (They were less than one
hour.) It is also observed that most of the running
time was spent in analyzing a constructed model by
SHARPE. On the contrary, one can see that the pre-
vious method in [10] would cause state explosion even
when the number of nodes was less than 15. The result
of this comparison study clearly shows that the applica-
bility of the proposed method is much superior to that
of the previous method.

5. Discussion on Failure Types

In this section, we remark on failure types that the
proposed method can deal with. Various kinds of com-
ponent failures may occur in a distributed system. In
general, component failures are classified into the fol-
lowing four categories based on the failed component’s
behavior [5], [7]: crash failure, omission failure, timing
failure, and Byzantine failure. Crash failure causes the
component to halt. Omission failure and timing failure
cause the component to not respond or to respond too
late, respectively. These three types of failures can be
detected by defining the response time of the compo-
nent if the system is not completely asynchronous. Fi-

698
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.6 JUNE 2001

nally, Byzantine failure causes the component to behave
in a totally arbitrary manner. This type of failures is
exceedingly difficult to detect, and thus, their detection
requires strong assumptions on underlying distributed
systems. In general, therefore, a system may experience
both detectable and undetectable component failures or
detectable failures only, depending on the assumptions
made on the system and the detection mechanism used.

In many dependability models of distributed sys-
tems that have been proposed so far, a component is
assumed to be in one of the two states: operational or
failed. This assumption is appropriate for detectable
failures, but it cannot deal with undetectable failures.
On the other hand, in our model, a component is in one
of the three state: operational, covered, or noncovered.
As mentioned before, state ‘covered’ represents the fact
that the component failed and the failure was handled
successfully, and state ‘noncovered’ signifies that the
component failed and handling (including detection) of
the failure was not completed. Therefore, our model
can deal with both detectable failures and undetectable
failures.

Another type of failures that can occur are those
that degrade performance of a component (or a sys-
tem). In order to deal with this type of failures, a new
dependability measure and system model are necessary.
Our future research includes their development.

6. Conclusions

We have proposed a hierarchical method for depend-
ability evaluation of distributed systems where pro-
grams and data files are distributed in a redundant
manner. The proposed method explicitly takes the
failure-repair behavior of the system into account.
Since the method employs Markov modeling in a local-
ized manner, it can avoid explosive state-space growth.
By running time analysis, we have shown that the pro-
posed method outperforms the previous method [10] in
terms of applicability.

Future research includes the following. (1) In the
system model used in this work, it is assumed that any
noncovered component failure leads to system failure.
This assumption may be impractical if the component
is isolated from MFSFs due to link and node failures.
We are planning to extend the system model so as to
consider connectivity of components. (2) In SHARPE,
input events of a fault tree must be mutually indepen-
dent, and this requirement limits features that can be
analyzed. As mentioned before, we make use of the
fact that when a component si is not operational, it
is in the state ‘Noncovered’ with probability 1 − ci, in
order to construct a model satisfying this requirement.
However, since the property does not hold for compo-
nents with local repairs, this technique is not applica-
ble to them. We are planning to improve the proposed
method to cope with this problem.

Acknowledgements

The authors would like to thank anonymous referees
for their helpful suggestions.

References

[1] D.J. Chen and T.H. Huang, “Reliability analysis of dis-
tributed systems based on a fast reliability algorithm,”
IEEE Trans. Parallel & Distributed Systems, vol.3, no.2,
pp.139–154, 1992.

[2] Y.G. Chen and M.C. Yuang, “A cut-based method for
terminal-pair reliability,” IEEE Trans. Reliability, vol.45,
no.3, pp.413–416, 1996.

[3] H. de Meer, K.S. Trivedi, and M. Dal Cin, “Guarded repair
of dependable systems,” J. Theoretical Computer Science,
vol.128, no.1-2, pp.179–210, 1994.

[4] J.B. Dugan and K.S. Trivedi, “Coverage modeling for de-
pendability analysis of fault-tolerant systems,” IEEE Trans.
Comput., vol.38, no.6, pp.775–787, 1989.

[5] P.D. Ezhilchelvan and S.K. Shrivastava, “A characteriza-
tion of faults in systems,” Sixth Symposium on Reliability
in Distributed Software and Database Systems, pp.215–222,
1986.

[6] S. Hariri and H. Mutlu, “Hierarchical modeling of avail-
ability in distributed systems,” IEEE Trans. Software Eng.,
vol.21, no.1, pp.50–56, 1995.

[7] P. Jalote, Fault Tolerance in Distributed Systems, PTR
Prentice Hall, 1994.

[8] A. Kumar and D.P. Agrawal, “A generalized algorithm
for evaluating distributed-program reliability,” IEEE Trans.
Reliability, vol.42, no.3, pp.416–426, 1993.

[9] A. Kumar, S. Rai, and D.P. Agrawal, “On computer com-
munication network reliability under program execution
constraints,” IEEE J. Select. Area Commun., vol.6, no.8,
pp.1393–1399, 1988.

[10] N. Lopez-Benitez, “Dependability modeling and analysis of
distributed programs,” IEEE Trans. Software Eng., vol.20,
no.5, pp.345–352, 1994.

[11] V.K. Prasanna Kumar, S. Hariri, and C.S. Raghavendra,
“Distributed program reliability analysis,” IEEE Trans.
Software Eng., vol.12, no.1, pp.42–50, 1986.

[12] C.S. Raghavendra, V.K. Prasanna Kumar, and S. Hariri,
“Reliability analysis in distributed systems,” IEEE Trans.
Comput., vol.37, no.3, pp.352–358, 1988.

[13] R.A. Sahner and K.S. Trivedi, “Reliability modeling using
SHARPE,” IEEE Trans. Reliability, vol.36, no.2, pp.186–
193, 1987.

[14] R.A. Sahner, K.S. Trivedi, and A. Puliafito, Performance
and Reliability Analysis of Computer Systems, Kluwer Aca-
demic Publishers, 1995.

Appendix

In [12], a breadth-first search-based algorithm, called
MFSF algorithm, is proposed to enumerate MFSFs.
However, this algorithm can produce incorrect results.

As an example, consider the system represented
by the graph in Fig. A· 1. In this system, node x1 holds
programs P1, P2 and file F1, while node x2 holds pro-
gram P2 and file F2. Suppose FN1 = {F1} and FN2 =
{F2}. It is then clear that subgraph ({x1, x2}, ∅) is the

CHOI et al.: A HIERARCHICAL APPROACH TO DEPENDABILITY EVALUATION
699

Fig.A· 1 Example for which the algorithm in [12] produces an
incorrect result.

only MFSF.
For this system, the MFSF algorithm works as

follows: In Step 1, the Cartesian product of PAi’s,
i.e., PA1 × PA2 is computed, where PAi denotes
the set of nodes that can host Pi. In this case,
it is equal to {(x1, x1), (x1, x2)}, so TRY is set to
{({x1}, ∅), ({x1, x2}, ∅)}. Next, ({x1, x2}, ∅) is removed
from TRY because ({x1}, ∅) is its subgraph. Then,
TRY = {({x1}, ∅)}. FOUND is initialized to be
empty.

In Step 2, two substeps called checking step and
expanding step are performed repeatedly. The checking
step checks for each subgraph in TRY whether it is an
MFSF or not. In this case, since x1 does not hold file
F2, the algorithm finds that a subgraph ({x1}, ∅) is not
an MFSF. Next, the expanding step is performed. This
substep constructs larger forests by adding edges and
nodes to the forests in TRY . In this case, since x1,2

is incident on x1, ({x1, x2}, {x1,2}) is constructed and
stored in TRY . Then, the checking step is performed
again. Since ({x1, x2}, {x1,2}) holds all the needed files,
it is stored in FOUND and removed from TRY . Then,
TRY becomes empty, and the MFSF algorithm halts.

Consequently, FOUND becomes {({x1, x2},
{x1,2})}. This means that MFSF algorithm concludes
that ({x1, x2}, {x1,2}) is the only MFSF. However, this
result is incorrect. In general, such a case may occur
when PAi

⋂
PAj �= ∅ for Pi, Pj(i �= j).

Eun Hye Choi received ME degree in
computer engineering from Osaka Univer-
sity in 1999. She is currently a doctoral
student in the Department of Informat-
ics and Mathematical Science at Osaka
University. Her research interests include
distributed and fault-tolerant computing
systems.

Tatsuhiro Tsuchiya received ME
and PhD degrees in computer engineer-
ing from Osaka University in 1995 and
in 1998, respectively. He is currently an
assistant professor in the Department of
Informatics and Mathematical Science at
Osaka University. His current research in-
terests are in the areas of distributed com-
puting and fault-tolerant computing.

Tohru Kikuno received MS and PhD
degrees from Osaka University in 1972
and 1975, respectively. He was with Hiro-
shima University from 1975 to 1987. Since
1990, he has been a professor in the De-
partment of Informatics and Mathemati-
cal Science at Osaka University. His re-
search interests include the quantitative
evaluation of software development pro-
cesses, the analysis and design of fault-
tolerant systems, and the design of proce-

dures for testing communication protocols. He served as a pro-
gram co-chair of the First International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’98) and the
Fifth International Conference on Real-Time Computing Systems
and Applications (RTCSA’98).

