<table>
<thead>
<tr>
<th>Title</th>
<th>New Constructions for Nondominated k-Coteries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Choi, Eun Hye; Tsuchiya, Tatsuhiro; Kikuno, Tohru</td>
</tr>
<tr>
<td>Citation</td>
<td>IEICE transactions on information and systems. E83-D(7) P.1526-P.1532</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000-07-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/27249</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td>Copyright © 2000 The Institute of Electronics, Information and Communication Engineers</td>
</tr>
</tbody>
</table>
New Constructions for Nondominated k-Coteries

Eun Hye CHOI1, Nonmember, Tatsuhiro TSUCHIYA1, and Tohru KIKUNO1, Regular Members

SUMMARY The k-mutual exclusion problem is the problem of guaranteeing that no more than k computing nodes enter a critical section simultaneously. The use of a k-coterie, which is a special set of node groups, is known as a robust approach to this problem. In general, k-coteries are classified as either dominated or nondominated, and a mutual exclusion mechanism has maximal availability when it employs a nondominated k-coterie. In this paper, we propose two new schemes called VOT and D-VOT for constructing nondominated k-coteries. We conduct a comparative evaluation of the proposed schemes and well-known previous schemes. The results clearly show the superiority of the proposed schemes.

key words: k-mutual exclusion, distributed systems, k-coteries, nondominated coteries, availability

1. **Introduction**

The distributed mutual exclusion problem is recognized as one of the most fundamental problems in distributed computing. The distributed k-mutual exclusion problem is its generalization and is the problem of guaranteeing that no more than k computing nodes can enter a critical section (CS) simultaneously. The solution to this problem is useful for various applications in a distributed environment. For example, it can be used to restrict the number of broadcasting nodes for congestion control. It can be also useful in the replicated databases that allow bounded ignorance [10]. In such databases, more than one updates are allowed to proceed simultaneously for achieving high concurrency.

Several methods have been proposed for solving the k-mutual exclusion problem. Among them, the use of a k-coterie is known as a reliable approach [1], [3], [4], [7]–[9], [11], [12]. A k-coterie is a special set of subsets of nodes. Each element in a k-coterie is called a quorum. For any $k+1$ quorums in a k-coterie, there is always a node that is shared by at least two of the $k+1$ quorums. Each node has to gain permissions from all nodes of a quorum before it is allowed to enter the CS, and thus it is guaranteed that more than k nodes never enter the CS simultaneously.

In the presence of failures, k-coterie-based mutual exclusion mechanisms provide fault-tolerance capability: The CS can be still entered if all nodes of a quorum are operational. It is then clear that the availability of a k-coterie-based mechanism depends on the k-coterie adopted by the mechanism.

In general, k-coteries are classified as either dominated or nondominated [12]. By the definition of domination, k-coteries provide higher availability than the k-coteries that they dominate. Thus nondominated k-coteries can be considered as a class of the most resilient k-coteries to failures.

So far, several constructions for k-coteries have been proposed [1], [3], [4], [7], [8], [11]–[13]. However most of them, including MAJ [4], [8], [13] and DIV [1], [4], can generate nondominated k-coteries only when certain conditions hold.

In this paper, we propose two new schemes, VOT and D-VOT, for constructing k-coteries. VOT is based on voting, and D-VOT is based on a composition of 1-coteries constructed by VOT. First, we show that k-coteries constructed by VOT dominate those by MAJ, and k-coteries constructed by D-VOT dominate those by DIV (unless they are identical). Therefore the new k-coteries constructed by VOT and D-VOT provide higher availability than those by MAJ and DIV, respectively. Furthermore, we show that the k-coteries constructed by both VOT and D-VOT are always nondominated.

The remainder of this paper is organized as follows: In Sect.2, the formal definition of a k-coterie is given. MAJ and DIV k-coteries are also described in this section. Then, the proposed scheme VOT is explained in Sect.3. In Sect.4, the other proposed scheme D-VOT is explained. Comparative evaluation of the new constructions with MAJ and DIV is performed in Sect.5. Finally, a brief summary is given in Sect.6.

2. **Preliminaries**

Let $V = \{v_1, \cdots, v_n\}$ denote the set of all nodes in a distributed system where n is the number of nodes. We assume that each node is either operational or nonoperational, and that they are connected via a reliable network. Let p be the reliability of each node (i.e., the probability that a node is operational).

Definition 1 (k-coterie and quorum): A nonempty
set C of nonempty subsets Q of V is called a k-coterie under V if and only if the following three properties hold:

1. Nonintersection property: For any $h(< k)$ elements $Q_1, Q_2, \ldots, Q_h \in C$ such that $Q_i \cap Q_j = \emptyset$ ($i \neq j, 1 \leq i, j \leq h$), there exists an element $Q \in C$ such that $Q \cap Q_l = \emptyset$ ($1 \leq l \leq h$).
2. Intersection property: For any $k+1$ elements $Q_1, Q_2, \ldots, Q_{k+1} \in C$, there exists a pair Q_i and Q_j such that $Q_i \cap Q_j \neq \emptyset$ ($1 \leq i, j \leq k + 1$).
3. Minimality property: For any $Q \in C$, there is no other element $Q' \in C$ such that $Q' \subset Q$.

Each element Q of a k-coterie C is called a quorum.

Obviously, if $k > n$, no k-coterie exists. This case is not of interest, so we assume that $k \leq n$ always holds throughout the paper.

To illustrate this concept, let us introduce two well-known constructions for k-coteries, MAJ and DIV.

Definition 2 (MAJ [4, 8, 13]): Suppose $w \leq n/k$ where $w = \lceil (n+1)/(k+1) \rceil$. An MAJ k-coterie under V is a set of all subsets of V that have exactly $\lceil (n+1)/(k+1) \rceil$ nodes.

Definition 3 (DIV [1, 4]): Suppose that $n \mod k = 0$, and all nodes of V are partitioned into k subsets of V, V_1, V_2, \ldots, V_k, such that $|V_1| = |V_2| = \cdots = |V_k| = n/k$. Let C_i be an MAJ 1-coterie under V_i ($1 \leq i \leq k$). A DIV k-coterie under V is an union of C_i ($1 \leq i \leq k$).

Example 1: Let $V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$. Now consider the following sets of subsets of V, C_1, C_2, and C_3. They are all 2-coteries. Among them, C_2 is an MAJ 2-coterie. C_3 is a DIV 2-coterie when the partition of V is $\{\{v_1, v_2, v_3\}, \{v_4, v_5, v_6\}\}$.

$$
C_1 = \{\{v_1, v_2, v_4\}, \{v_3, v_5, v_6\}\},
C_2 = \{\{v_1, v_2, v_3\}, \{v_1, v_2, v_4\}, \{v_1, v_2, v_5\}, \{v_1, v_2, v_6\},
\{v_1, v_3, v_4\}, \{v_1, v_3, v_5\}, \{v_1, v_3, v_6\}, \{v_1, v_4, v_5\},
\{v_1, v_4, v_6\}, \{v_2, v_3, v_4\}, \{v_2, v_3, v_5\}, \{v_2, v_3, v_6\}, \{v_2, v_4, v_5\},
\{v_2, v_4, v_6\}, \{v_2, v_5, v_6\}, \{v_3, v_4, v_5\}, \{v_3, v_4, v_6\}, \{v_3, v_5, v_6\}, \{v_4, v_5, v_6\}\}.
C_3 = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_4, v_5\},
\{v_4, v_6\}, \{v_5, v_6\}\}.
$$

A k-coterie is used to achieve k-mutual exclusion as follows: Before entering the CS, a node is asked to gain permission from every node in at least one quorum. Each node is allowed to give permission to at most one node. If a node has attained permission, it enters the CS and holds the permission until it leaves the CS. By the nonintersection property, if less than k nodes are in the CS, a node can enter the CS by selecting an appropriate quorum. Moreover, by the intersection property, more than k nodes cannot enter the CS simultaneously.

In order to evaluate the availability of a k-coterie, a generic measure called (k, r)-availability has been proposed in [8]. This measure is defined as the probability that at least $r(1 \leq r \leq k)$ computing nodes can enter the CS simultaneously in the presence of failures. Since a node can enter the CS if it gets permission from all members of a quorum, the (k, r)-availability of a k-coterie is calculated using the following formula [8]:

$$(k, r)\text{-availability} = \sum_{V' \subseteq V} F_r(V') \times p^{|V'|} \times (1 - p)^{|V'| - |V'|}$$

where $F_r(V') = 1$ iff there exist r mutually disjoint quorums each of which is a subset of V'; otherwise, $F_r(V') = 0$.

Definition 4 (nondominated coterie): Let C_i and C_j be k-coteries ($C_i \neq C_j$). We say that C_i dominates C_j if, for any $Q \in C_j$, there exists $Q' \in C_i$ such that $Q' \subseteq Q$. A k-coterie C is a nondominated k-coterie if there is no other k-coterie that dominates C.

Example 2: Consider C_1, C_2 and C_3 discussed in Example 1. Here C_2 dominates C_1, and C_3 dominates C_2. Furthermore one can prove that C_3 is a nondominated 2-coterie [12].

By Definition 4, it is easy to see that k-coteries are more resilient to failures than their dominated coteries. Let C_j be a k-coterie that is dominated by another k-coterie C_i. Then, for any quorum Q in C_j, there is a quorum Q' in C_i such that $Q' \subseteq Q$. Thus, if there exists a quorum in C_j such that all its nodes are operational, then there also exists such a quorum in C_i. As mentioned above, the CS can be entered if all nodes of a quorum are operational. Therefore, the availability of a k-coterie is higher than or at least equal to that of any other coteries that the k-coterie dominates.

3. Scheme VOT

In this section, we explain one of the two new constructions and prove that the new k-coteries are always superior to MAJ k-coteries. We call this construction VOT since it uses a technique similar to weighted voting [6].

3.1 Construction

First, the values of three integers, a, b, and w, are determined as follows: Let x be an integer such that $n + 1 + x$ mod $(k + 1) = 0$ and $0 \leq x \leq k$. Let y be...
(n + 1 + x)/(k + 1). (1) If y is even or x < y(y + 1)/2, then let a = x, b = 0 and w = y = [(n + 1)/(k + 1)]; (2) Otherwise (that is, y is odd and x ≥ y(y + 1)/2), let a = 0, w = [(n + 1)/(k + 1)] and b be an integer such that (n + 1 − b) mod (k + 1) = 0 and 0 < b ≤ k.

Next, votes are assigned to nodes in the following way:

1. Select any a nodes and assign each of them two votes. (2) Select any b nodes and assign each of them zero vote. (3) Assign other n − a − b nodes one vote each.

Finally, a k-coterie is formed as follows: Let W(A) denote the number of votes that the nodes in a subset A of V have. Consider a set CVOT of subsets of V such that a subset V′ of V is in CVOT iff W(V′) ≥ w and W(V′) < w for any V′ ⊂ V. Then, as will be shown later, CVOT is a k-coterie.

Example 3: Let V = {v1, v2, v3, v4, v5, v6}. Consider the case where k = 2 (then a = 2, b = 0, and w = 3). Assume that two(=a) nodes, v1 and v2, are assigned two votes and the other nodes are assigned one vote. Then, 2-coterie C2 shown below is obtained. (Take Q = {v1, v2} as an example. Then, W(Q) = 4(≥ w) and there is no Q′ ⊂ Q such that W(Q′) ≥ w. Thus Q ∈ C1.) Similarly, 3-coterie C3 is formed as shown below.

Theorem 1: CVOT is a k-coterie.

Proof: We show that CVOT satisfies the three properties of a k-coterie: the nonintersection property, the intersection property, and the minimality property.

1. Nonintersection property
There are two cases to be considered.

Case 1: There is no node assigned zero vote. (i.e. b = 0)

Case 2: There is a node assigned zero vote. (i.e. b > 0)

In Case 1, w = (n + 1 + a)/(k + 1), and then n = kw + (w − a − 1). By definition, W(Q) ≥ w for all elements Q in CVOT. Now assume W(Q) ≥ (w + 2) and let V be any node in Q and Q′ = Q − {v}. Since each node in Q is assigned one or two votes, Q′ ⊂ Q and W(Q′) ≥ (w + 2) − 2 = w. This is a contradiction. Thus W(Q) = w or (w + 1) for all elements Q in CVOT. Furthermore, every node in Q is assigned two votes if W(Q) = w + 1. (Assume that there is a node v in Q that is assigned one vote. Then W(Q − {v}) = w. This is a contradiction.) Thus, if w is even, there is no Q in CVOT such that W(Q) = w + 1.

Select h(< k) mutually disjoint elements Q1, ⋯, Qh in CVOT and let Set denote the union of such h elements. When w is even, each element in Set has w votes. Thus W(Set) = hw. Then W(V − Set) = (kw + w − 1) − hw ≥ w + (w − 1) ≥ w, since W(V) = kw + w − 1 and w ≥ 1. When w is odd, each of the h elements has either w or w + 1 votes. If it has w + 1 votes, all its nodes are assigned two votes, as mentioned above. Since Set contains no more than a nodes assigned two votes, it contains no more than [2a/(w + 1)] elements of CVOT that have w + 1 votes. Thus W(Set) ≤ [2a/(w + 1)](w + 1) + (k − 1 − [2a/(w + 1)])w = [2a/(w + 1)] + (k − 1)w. Then W(V − Set) ≥ kw + w − 1 − ([2a/(w + 1)] + (k − 1)w) = w + (w − 1 − [2a/(w + 1)]). Since, by definition, a < w(w + 1)/2, W(V − Set) ≥ w. Thus, whether w is even or odd, W(V − Set) ≥ w. Then there is Q ⊂ (V − Set) such that W(Q) ≥ w. Clearly, Q ∈ CVOT and Q ∩ Qi = ∅(1 ≤ i ≤ h).

In Case 2, since w = (n + 1 − b)/(k + 1), n = kw + (w − b − 1). Select h(< k) mutually disjoint elements Q1, ⋯, Qh in CVOT and let Set denote the union of such h elements. Then W(Set) = hw and W(V − Set) = kw + (w − 1) − hw ≥ w. Thus there is an element Q in (V − Set) such that W(Q) ≥ w. Clearly, Q ∈ CVOT and Q ∩ Qi = ∅(1 ≤ i ≤ h).

In both Case 1 and Case 2, CVOT satisfies the nonintersec-

2. Intersection property
Assume that there are k + 1 mutually disjoint elements in C. Let Set denote the union of such k + 1 elements. In the case where a > 0, W(Set) ≥ w(k + 1) = n + a + 1 > n + a. This is a contradiction. In the case where a = 0, W(Set) = w(k + 1) = n − b + 1 > n − b. (Recall that there are b nodes that are assigned zero vote.) Since this is also a contradiction, CVOT satisfies the intersection property.

3. Minimality property
Assume that there is a pair of Q and Q′ in CVOT such that Q ⊂ Q′. By definition, W(Q) < w. This is a contradiction. Thus CVOT satisfies the minimality property.

3.2 Properties
Here, we prove two properties of new k-coterie CVOT constructed by VOT. One is that CVOT dominates MAJ k-coterie CMaj. The other is that CVOT is nondominated.

Theorem 2: If CMaj exists and CVOT ̸= CMaj, then CVOT dominates CMaj.

Proof: As mentioned above, CMaj is a set of all y-subsets of V where y = [(n + 1)/(k + 1)]. Recall that CMaj exists only when n ≥ yk. Let x be an integer such that (n + 1 + x)/(k + 1) = [(n + 1)/(k + 1)]. Then n = yk + (y − x − 1). Thus y − x − 1 ≥ 0 if n ≥ yk. If y − x − 1 ≥ 0, then x < y(y + 1)/2. Thus, when
Theorem 3: \(C_{\text{vot}} \) is a nondominated \(k \)-coterie.

Proof: We prove this theorem by contradiction. Assume that \(C_{\text{vot}} \) is a dominated \(k \)-coterie. Then, because of the theorem of Neilsen and Mizuno [12], there exists a subset \(H \) of \(V \) that satisfies the following two properties: (P1) for any quorum \(Q \in C_{\text{vot}}, Q \subseteq H \), and (P2) for any \(k \) mutually disjoint quorums \(Q_1, Q_2, \ldots, Q_k \), there is \(Q_i \) such that \(H \cap Q_i \neq \emptyset \). In the following, we show that \(V - H \) contains \(k \) mutually disjoint quorums as its subsets, thus contradicting to (P2).

Due to (P1), \(W(H) < w \). Since \(W(V) = kw + w - 1 \), \(W(V - H) = W(V) - W(H) \geq kw \). When \(a = 0 \), that is, each node is assigned one or zero vote, \(V - H \) has at least \(kw \) nodes that have one vote. Hence it is clear that \(V - H \) contains at least \(k \) mutually disjoint quorums.

When \(a > 0 \), every node has one or two votes. In this case, if \(w \) is even, then at least \(k \) mutually disjoint subsets of \(V - H \) exist that have exactly \(w \) votes.

Finally, consider the case where \(a > 0 \) and \(w \) is odd. In this case, \(w \geq 3 \) since we assume \(n \geq k \). Let \(m \) denote the number of nodes in \(H \) that have one vote, and let \(m' \) denote the number of nodes in \(V - H \) that have one vote. Since \(a \leq k \) and \(m \leq w \), \(m' = n - a - m = (kw + w - a - 1) - a - m \geq k(w - 2) \geq k \). Hence there is a subset \(T \) of \(V - H \) that consists of exactly \(k \) nodes that have one vote. Let \(S = V - (H \cup T) \). Since \(W(S) = W(V - H) - W(T) \geq k(w - 1) \) and \(w - 1 \) is even, there are at least \(k \) subsets of \(S \) each of which has a total of \(w - 1 \) votes. By adding each node in \(T \) to each of the \(k \) subsets, \(k \) mutually disjoint quorums can be obtained. Thus the proof follows. \(\square \)

4. Scheme D-VOT (Division Strategy Using VOT)

The other proposed scheme D-VOT is based on VOT and a division strategy used in DIV. As mentioned above, the strategy in DIV partitions all nodes of \(V \) into \(k \) clusters so as to construct a \(k \)-coterie by combining 1-coteries in the clusters. However, since it partitions \(V \) equally, its applicability is limited to the cases where \(n \) mod \(k = 0 \). In our scheme, D-VOT, the division strategy is extended to an arbitrary number of nodes.

4.1 Construction

Let \(R \) be the remainder from integer division of \(n \) by \(k \). First, \(V \) is partitioned into \(k \) clusters (nonempty sets of nodes) \(V_1, V_2, \ldots, V_k \) with \(R \) of clusters containing \(\lceil n/k \rceil \) nodes and \(k - R \) clusters containing \(\lfloor n/k \rfloor \) nodes. Next, let \(C_{\text{d-vot}} = C_1 \cup C_2 \cup \cdots \cup C_k \) where \(C_i \) is the 1-coterie under \(V_i(1 \leq i \leq k) \) that is constructed by scheme VOT\(^1\). Then, \(C_{\text{d-vot}} \) is a \(k \)-coterie. (We omit the proof since it is trivial.) Note that VOT does not assign zero vote to any nodes in \(V \) if \(k = 1 \)\(^2\), and thus every node is contained in at least one quorum in \(C_{\text{vot}} \).

Example 4: Let \(V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\} \) and \(k = 2 \). Then \(R = 1 \). Suppose that the partition of \(V \) is \(\{v_1, v_2, v_3\}(= V_1), \{v_4, v_5, v_6, v_7\}(= V_2) \), and let \(C' \) and \(C'' \) be 1-coteries under \(V_1 \) and \(V_2 \) constructed by VOT, respectively. Then, 2-coterie \(C_6 \) shown below is obtained.

\[C_6 = C' \cup C'' = \{ \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\} \} \]

4.2 Properties

Let \(C_{\text{d-vot}} \) be a \(k \)-coterie constructed by D-VOT and let \(C_{\text{d-div}} \) be a DIV \(k \)-coterie under the same \(V \) and partition. Here, we prove two properties of the new \(k \)-coterie \(C_{\text{d-vot}} \).

One is that \(C_{\text{d-vot}} \) dominates \(C_{\text{d-div}} \). The other is that \(C_{\text{d-vot}} \) is nondominated.

Theorem 4: If \(C_{\text{d-vot}} \neq C_{\text{d-div}} \), then \(C_{\text{d-vot}} \) dominates \(C_{\text{d-div}} \).

Proof: Let \(\{V_1, V_2, \ldots, V_k\} \) be a partition of \(V \) into \(k \) clusters. By definition, \(C_{\text{d-div}} \) under \(V \) is \(D_1 \cup D_2 \cup \cdots \cup D_k \) where \(D_i \) is the MAJ 1-coterie under \(V_i(1 \leq i \leq k) \), \(C_{\text{d-vot}} \) under \(V \) is \(C_1 \cup C_2 \cup \cdots \cup C_k \), where \(C_i \) is the 1-coterie under \(V_i(1 \leq i \leq k) \) that is constructed by scheme VOT. By Theorem 2, \(C_i \) dominates \(D_i \) if \(C_i \neq D_i \)\(^3\).

\(^1\)When \(k = 1 \), VOT is equivalent to a 1-coterie construction proposed in [5].

\(^2\)Note that, in VOT, \(a = 0 \) or \(1 \), \(b = 0 \), and \(w = \lceil (n + 1)/2 \rceil \) if \(k = 1 \).
Table 1 The \((k, r)\)-availabilities of VOT, D-VOT, MAJ, and DIV.

<table>
<thead>
<tr>
<th>(k=2)</th>
<th>(r=1)</th>
<th>(n=14)</th>
<th>(n=15)</th>
<th>(n=16)</th>
<th>(n=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOT</td>
<td>0.99999932</td>
<td>0.999999915</td>
<td>0.999999881</td>
<td>0.999999969</td>
<td></td>
</tr>
<tr>
<td>MAJ</td>
<td>0.99999932</td>
<td>0.999999813</td>
<td>0.99999973</td>
<td>0.999999969</td>
<td></td>
</tr>
<tr>
<td>D-VOT</td>
<td>0.999992558</td>
<td>0.999992558</td>
<td>0.999992558</td>
<td>0.9999975696</td>
<td></td>
</tr>
<tr>
<td>DIV</td>
<td>0.999992558</td>
<td>-</td>
<td>0.999974756</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k=3)</th>
<th>(r=1)</th>
<th>(n=14)</th>
<th>(n=15)</th>
<th>(n=16)</th>
<th>(n=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOT</td>
<td>0.9999900715</td>
<td>0.999996375</td>
<td>0.999939017</td>
<td>0.9999713</td>
<td></td>
</tr>
<tr>
<td>MAJ</td>
<td>0.999818639</td>
<td>0.99996375</td>
<td>0.999495466</td>
<td>0.99984534</td>
<td></td>
</tr>
<tr>
<td>D-VOT</td>
<td>0.999454167</td>
<td>0.9997814336</td>
<td>0.9997814336</td>
<td>0.9997814336</td>
<td></td>
</tr>
<tr>
<td>DIV</td>
<td>-</td>
<td>0.9997814336</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k=4)</th>
<th>(r=1)</th>
<th>(n=14)</th>
<th>(n=15)</th>
<th>(n=16)</th>
<th>(n=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOT</td>
<td>0.9999938949</td>
<td>0.99444437</td>
<td>0.941620075</td>
<td>0.94824237</td>
<td></td>
</tr>
<tr>
<td>MAJ</td>
<td>0.841640019</td>
<td>0.94444437</td>
<td>0.51472783</td>
<td>0.761797189</td>
<td></td>
</tr>
<tr>
<td>D-VOT</td>
<td>0.955430581</td>
<td>0.9745391936</td>
<td>0.9745391936</td>
<td>0.9745391936</td>
<td></td>
</tr>
<tr>
<td>DIV</td>
<td>-</td>
<td>0.9745391936</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Is the 1-coterie under \(V_i(1 \leq i \leq k)\) that is constructed by scheme VOT. By Theorem 3, \(C_i(1 \leq i \leq k)\) is a nondominated coterie. Thus, by Theorem 5, \(C_{dvol}\) is nondominated.

5. Experimental Evaluation

In Sects. 3 and 4, we proved that the new constructions VOT and D-VOT provide higher level of availability than MAJ and DIV, respectively. Here, for the purpose of quantitative analysis, we perform experimental evaluation of the four constructions, VOT, D-VOT, MAJ and DIV.

As a measure for evaluation, we consider \((k, r)\)-availability. As mentioned above, \((k, r)\)-availability is a generic measure to evaluate the availability of a k-coterie, and it is defined as the probability that at least \(r(1 \leq r \leq k)\) nodes can enter the CS simultaneously.

Table 1 shows the \((k, r)\)-availabilities of k-coteries constructed by VOT, D-VOT, MAJ, and DIV when \(14 \leq n \leq 17, 2 \leq k \leq 4, \) and \(p = 0.9\). First, consider VOT and MAJ. When \((n, k) = (15, 4)\), no MAJ
k-coterie exists. When $(n,k) = (14,2), (14,4), (15,3),$ and $(17,2)$, VOT is equivalent to MAJ since $(n+1) \mod (k+1) = 0$. If $(n+1) \mod (k+1) \neq 0$, the (k,r)-availability of a VOT k-coterie is higher than that of an MAJ k-coterie. Especially, as the value of r increases, the difference of the availabilities between VOT and MAJ becomes larger. For example, when $(n,k,r) = (16,4,4)$, the difference of (k,r)-availabilities is larger than 0.6. Next, consider D-VOT and DIV. DIV k-coteries exist only when $(n,k) = (14,2), (16,2), (15,3)$ and $(16,4)$. When $(n,k) = (14,2)$ and $(15,3)$, D-VOT is equivalent to DIV since $(n+1) \mod 2 = 0$. In other cases, D-VOT outperforms DIV in (k,r)-availability. Like the relations between VOT and MAJ, as the value of r increases, the difference of the availabilities between D-VOT and DIV becomes larger. As a result, when r is small, VOT provides the highest (k,r)-availability among the four constructions, whereas VOT achieves the highest (k,r)-availability when r is large.

Although (k,r)-availability is a useful and well accepted measure, it may be difficult to compare k-coteries based on this measure only, since r can take any value up to k. For that reason, we introduce computation availability[2] as a unified measure for evaluation. Computation availability has been used for evaluating gracefully degradable systems in terms of both availability and performance. Here we define the computation availability of a k-coterie as follows:

$$\text{Computation availability} = \sum_{r=1}^{k} \alpha_r \times r\text{-availability}$$

where α_r denotes the computation capability when r nodes can enter the CS simultaneously, and r-availability denotes the probability that the maximum number of nodes that can enter the CS simultaneously is exactly r. Assuming that α_r is proportional to r, we set α_r to r/k in the evaluation.

Figure 1 shows the computation availabilities of 4-coteries constructed by VOT, D-VOT, MAJ, and DIV when $k=4$.

1r-Availability is easily obtained from the (k,r)-availabilities. If $r=k$, then r-availability = (k,r)-availability; otherwise, r-availability=(k,r)-availability−$(k,r+1)$-availability.
case where \(p = 0.9 \), VOT provides the highest computation availability when \(4 \leq n \leq 10 \), and D-VOT provides the highest computation availability when \(11 \leq n \leq 30 \). In the case where \(p = 0.95 \), VOT provides the highest computation availability when \(4 \leq n \leq 11 \), while D-VOT has the highest computation availability when \(12 \leq n \leq 30 \). Figures 1(b1) and (b2) show the results when \(0 \leq p \leq 1 \), and \(n = 16 \) and 40, respectively. We selected the two values of \(n \) because the four schemes construct different \(k \)-coteries when \(n \) has these values\(^1\). In both cases, when \(0 < p < 0.5 \), VOT provides the highest computation availability, while when \(0.5 < p < 1 \), D-VOT provides the highest computation availability. Interestingly, the computation availability of VOT and D-VOT is exactly equal to 0.5 when \(p = 0.5 \).

6. Conclusion

In this paper, we have proposed two new schemes VOT and D-VOT of constructing \(k \)-coteries. In scheme VOT, \(k \)-coteries are constructed by using weighted voting. In scheme D-VOT, \(k \)-coteries are constructed by using the partition of nodes and scheme VOT. We have shown that the \(k \)-coteries constructed by VOT and D-VOT dominate those by MAJ and DIV, respectively. We have also shown that the \(k \)-coteries constructed by both VOT and D-VOT are nondominated, which means that the new \(k \)-coteries provide higher availability than any of their dominated coteries. Furthermore, we have evaluated the four schemes in terms of \((k,r) \)-availabilities and the computation availabilities. The superiority of the new \(k \)-coteries has been also shown by the results.

Acknowledgements

The authors would like to thank anonymous referees for their helpful suggestions.

References

