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PAPER

New Constructions for Nondominated k-Coteries

Eun Hye CHOI†, Nonmember, Tatsuhiro TSUCHIYA†,
and Tohru KIKUNO†, Regular Members

SUMMARY The k-mutual exclusion problem is the prob-
lem of guaranteeing that no more than k computing nodes enter
a critical section simultaneously. The use of a k-coterie, which is
a special set of node groups, is known as a robust approach to
this problem. In general, k-coteries are classified as either domi-
nated or nondominated, and a mutual exclusion mechanism has
maximal availability when it employs a nondominated k-coterie.
In this paper, we propose two new schemes called VOT and D-
VOT for constructing nondominated k-coteries. We conduct a
comparative evaluation of the proposed schemes and well-known
previous schemes. The results clearly show the superiority of the
proposed schemes.
key words: k-mutual exclusion, distributed systems, k-coteries,
nondominated coteries, availability

1. Introduction

The distributed mutual exclusion problem is recognized
as one of the most fundamental problems in distributed
computing. The distributed k-mutual exclusion prob-
lem is its generalization and is the problem of guaran-
teeing that no more than k computing nodes can enter
a critical section (CS) simultaneously. The solution to
this problem is useful for various applications in a dis-
tributed environment. For example, it can be used to
restrict the number of broadcasting nodes for conges-
tion control. It can be also useful in the replicated
databases that allow bounded ignorance [10]. In such
databases, more than one updates are allowed to pro-
ceed simultaneously for achieving high concurrency.

Several methods have been proposed for solving
the k-mutual exclusion problem. Among them, the use
of a k-coterie is known as a reliable approach [1], [3], [4],
[7]–[9], [11], [12]. A k-coterie is a special set of subsets of
nodes. Each element in a k-coterie is called a quorum.
For any k+1 quorums in a k-coterie, there is always a
node that is shared by at least two of the k+1 quorums.
Each node has to gain permissions from all nodes of a
quorum before it is allowed to enter the CS, and thus it
is guaranteed that more than k nodes never enter the
CS simultaneously.

In the presence of failures, k-coterie-based mutual
exclusion mechanisms provide fault-tolerance capabil-
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ity: The CS can be still entered if all nodes of a quorum
are operational. It is then clear that the availability of
a k-coterie-based mechanism depends on the k-coterie
adopted by the mechanism.

In general, k-coteries are classified as either
dominated or nondominated[12]. By the definition of
domination, k-coteries provide higher availability than
the k-coteries that they dominate. Thus nondominated
k-coteries can be considered as a class of the most re-
silient k-coteries to failures.

So far, several constructions for k-coteries have
been proposed [1], [3], [4], [7], [8], [11]–[13]. However
most of them, including MAJ [4], [8], [13] and DIV [1],
[4], can generate nondominated k-coteries only when
certain conditions hold.

In this paper, we propose two new schemes, VOT
and D-VOT, for constructing k-coteries. VOT is based
on voting, and D-VOT is based on a composition of
1-coteries constructed by VOT. First, we show that k-
coteries constructed by VOT dominate those by MAJ,
and k-coteries constructed by D-VOT dominate those
by DIV (unless they are identical). Therefore the new
k-coteries constructed by VOT and D-VOT provide
higher availability than those by MAJ and DIV, re-
spectively. Furthermore, we show that the k-coteries
constructed by both VOT and D-VOT are always non-
dominated.

The remainder of this paper is organized as follows:
In Sect. 2, the formal definition of a k-coterie is given.
MAJ and DIV k-coteries are also described in this sec-
tion. Then, the proposed scheme VOT is explained in
Sect. 3. In Sect. 4, the other proposed scheme D-VOT
is explained. Comparative evaluation of the new con-
structions with MAJ and DIV is performed in Sect. 5.
Finally, a brief summary is given in Sect. 6.

2. Preliminaries

Let V = {v1, · · · , vn} denote the set of all nodes in a
distributed system where n is the number of nodes. We
assume that each node is either operational or nonop-
erational, and that they are connected via a reliable
network. Let p be the reliability of each node (i.e., the
probability that a node is operational).

Definition 1 (k-coterie and quorum): A nonempty
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set C of nonempty subsets Q of V is called a k-coterie
under V if and only if the following three properties
hold:

1. Nonintersection property: For any h(< k) ele-
ments Q1, Q2, · · · , Qh ∈ C such that Qi ∩ Qj =
∅ (i �= j, 1 ≤ i, j ≤ h), there exists an element
Q ∈ C such that Q ∩Ql = ∅ (1 ≤ l ≤ h).

2. Intersection property: For any k + 1 elements
Q1, Q2, · · · , Qk+1 ∈ C, there exists a pair Qi and
Qj such that Qi ∩Qj �= ∅ (1 ≤ i, j ≤ k + 1).

3. Minimality property: For any Q ∈ C, there is no
other element Q′ ∈ C such that Q′ ⊂ Q.

Each element Q of a k-coterie C is called a quorum.

Obviously, if k > n, no k-coterie exists. This case
is not of interest, so we assume that k ≤ n always holds
throughout the paper.

To illustrate this concept, let us introduce two well-
known constructions for k-coteries, MAJ and DIV.

Definition 2 (MAJ [4], [8], [13]): Suppose w ≤ n/k
where w = �(n + 1)/(k + 1)�. An MAJ k-coterie un-
der V is a set of all subsets of V that have exactly
�(n+ 1)/(k + 1)� nodes.

Definition 3 (DIV [1], [4]): Suppose that n mod k =
0, and all nodes of V are partitioned into k subsets of V ,
V1, V2, · · · , Vk, such that |V1| = |V2| = · · · = |Vk| = n/k.
Let Ci be an MAJ 1-coterie under Vi(1 ≤ i ≤ k). A DIV
k-coterie under V is an union of Ci(1 ≤ i ≤ k).

Example 1: Let V = {v1, v2, v3, v4, v5, v6}. Now con-
sider the following sets of subsets of V , C1, C2, and C3.
They are all 2-coteries. Among them, C2 is an MAJ
2-coterie. C3 is a DIV 2-coterie when the partition of
V is {{v1, v2, v3}, {v4, v5, v6}}.
C1 = {{v1, v2, v4}, {v3, v5, v6}}.
C2 = {{v1, v2, v3}, {v1, v2, v4}, {v1, v2, v5}, {v1, v2, v6},

{v1, v3, v4}, {v1, v3, v5}, {v1, v3, v6}, {v1, v4, v5},
{v1, v4, v6}, {v1, v5, v6}, {v2, v3, v4}, {v2, v3, v5},
{v2, v3, v6}, {v2, v4, v5}, {v2, v4, v6}, {v2, v5, v6},
{v3, v4, v5}, {v3, v4, v6}, {v3, v5, v6}, {v4, v5, v6}}.

C3 = {{v1, v2}, {v1, v3}, {v2, v3}, {v4, v5},
{v4, v6}, {v5, v6}}.

A k-coterie is used to achieve k-mutual exclusion
as follows: Before entering the CS, a node is asked to
gain permission from every node in at least one quorum.
Each node is allowed to give permission to at most one
node. If a node has attained permission, it enters the
CS and holds the permission until it leaves the CS. By
the nonintersection property, if less than k nodes are in

the CS, a node can enter the CS by selecting an appro-
priate quorum. Moreover, by the intersection property,
more than k nodes cannot enter the CS simultaneously.

In order to evaluate the availability of a k-coterie,
a generic measure called (k, r)-availability has been pro-
posed in [8]. This measure is defined as the probability
that at least r(1 ≤ r ≤ k) computing nodes can en-
ter the CS simultaneously in the presence of failures.
Since a node can enter the CS if it gets permission from
all members of a quorum, the (k, r)-availability of a k-
coterie is calculated using the following formula [8]:

(k, r)-availability =∑
∀V ′⊆V Fr(V ′) × p|V ′| × (1 − p)n−|V ′|

where Fr(V ′) = 1 iff there exist r mutually disjoint
quorums each of which is a subset of V ′; otherwise,
Fr(V ′) = 0.

Definition 4 (nondominated coterie): Let Ci and Cj

be k-coteries(Ci �= Cj). We say that Ci dominates Cj if,
for any Q ∈ Cj , there exists Q′ ∈ Ci such that Q′ ⊆ Q.
A k-coterie C is a nondominated k-coterie if there is no
other k-coterie that dominates C.

Example 2: Consider C1, C2 and C3 discussed in Ex-
ample 1. Here C2 dominates C1, and C3 dominates C2.
Furthermore one can prove that C3 is a nondominated
2-coterie [12].

By Definition 4, it is easy to see that k-coteries are
more resilient to failures than their dominated coter-
ies. Let Cj be a k-coterie that is dominated by another
k-coterie Ci. Then, for any quorum Q in Cj , there is
a quorum Q′ in Ci such that Q′ ⊆ Q. Thus, if there
exists a quorum in Cj such that all its nodes are oper-
ational, then there also exists such a quorum in Ci. As
mentioned above, the CS can be entered if all nodes of
a quorum are operational. Therefore, the availability
of a k-coterie is higher than or at least equal to that of
any other coteries that the k-coterie dominates.

3. Scheme VOT

In this section, we explain one of the two new con-
structions and prove that the new k-coteries are always
superior to MAJ k-coteries. We call this construction
VOT since it uses a technique similar to weighted vot-
ing[6].

3.1 Construction

First, the values of three integers, a, b, and w, are
determined as follows: Let x be an integer such that
(n + 1 + x) mod (k + 1) = 0 and 0 ≤ x ≤ k. Let y be



1528
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.7 JULY 2000

(n+ 1 + x)/(k + 1). (1) If y is even or x < y(y + 1)/2,
then let a = x, b = 0 and w = y = �(n + 1)/(k + 1)�;
(2) Otherwise (that is, y is odd and x ≥ y(y+1)/2), let
a = 0, w = �(n + 1)/(k + 1)� and b be an integer such
that (n+ 1 − b) mod (k + 1) = 0 and 0 < b ≤ k.

Next, votes are assigned to nodes in the following
way:
(1) Select any a nodes and assign each of them two
votes. (2) Select any b nodes and assign each of them
zero vote. (3) Assign other n − a − b nodes one vote
each.

Finally, a k-coterie is formed as follows: Let W (A)
denote the number of votes that the nodes in a subset
A of V have. Consider a set Cvot of subsets of V such
that a subset V ′ of V is in Cvot iff W (V ′) ≥ w and
W (V ′′) < w for any V ′′(⊂ V ′). Then, as will be shown
later, Cvot is a k-coterie.

Example 3: Let V = {v1, v2, v3, v4, v5, v6}. Consider
the case where k = 2 (then a = 2, b = 0, and w = 3).
Assume that two(= a) nodes, v1 and v2, are assigned
two votes and the other nodes are assigned one vote.
Then, 2-coterie C4 shown below is obtained. (Take Q =
{v1, v2} as an example. Then, W (Q) = 4(≥ w) and
there is no Q′ ⊂ Q such that W (Q′) ≥ w. Thus Q ∈
C4.) Similarly, 3-coterie C5 is formed as shown below.

C4 = {{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5},
{v1, v6}, {v2, v3}, {v2, v4}, {v2, v5},
{v2, v6}, {v3, v4, v5}, {v3, v4, v6}, {v4, v5, v6}}.

C5 = {{v1}, {v2, v3}, {v2, v4}, {v2, v5}, {v2, v6}, {v3, v4},
{v3, v5}, {v3, v6}, {v4, v5}, {v4, v6}, {v5, v6}}.

Theorem 1: Cvot is a k-coterie.
Proof: We show that Cvot satisfies the three properties
of a k-coterie: the nonintersection property, the inter-
section property, and the minimality property.
1. Nonintersection property
There are two cases to be considered.

Case 1: There is no node assigned zero vote. (i.e.
b = 0)

Case 2: There is a node assigned zero vote. (i.e.
b > 0)

In Case 1, w = (n + 1 + a)/(k + 1), and then
n = kw + (w − a − 1). By definition, W (Q) ≥ w for
all elements Q in Cvot. Now assume W (Q) ≥ (w + 2)
and let v be any node in Q and Q′ = Q − {v}. Since
each node in Q is assigned one or two votes, Q′ ⊂ Q
and W (Q′) ≥ (w+ 2)− 2 = w. This is a contradiction.
Thus W (Q) = w or (w + 1) for all elements Q in Cvot.
Furthermore, every node in Q is assigned two votes if
W (Q) = w + 1. (Assume that there is a node v in Q
that is assigned one vote. Then W (Q−{v}) = w. This
is a contradiction.) Thus, if w is even, there is no Q in
Cvot such that W (Q) = w + 1.

Select h(< k) mutually disjoint elements Q1, · · · ,

Qh in Cvot and let Set denote the union of such h el-
ements. When w is even, each element in Set has w
votes. Thus W (Set) = hw. Then W (V − Set) =
(kw + w − 1) − hw ≥ w + (w − 1) ≥ w, since
W (V ) = kw + w − 1 and w ≥ 1. When w is odd,
each of the h elements has either w or w + 1 votes.
If it has w + 1 votes, all its nodes are assigned two
votes, as mentioned above. Since Set contains no more
than a nodes assigned two votes, it contains no more
than �2a/(w + 1)� elements of Cvot that have w + 1
votes. Thus W (Set) ≤ �2a/(w + 1)�(w + 1) + (k −
1 − �2a/(w + 1)�)w = �2a/(w + 1)� + (k − 1)w. Then
W (V −Set) ≥ kw+w−1−(�2a/(w+1)�+(k−1)w) =
w + (w − 1 − �2a/(w + 1)�). Since, by definition,
a < w(w + 1)/2, W (V − Set) ≥ w. Thus, whether
w is even or odd, W (V − Set) ≥ w. Then there is
Q ⊆ (V − Set) such that W (Q) ≥ w. Clearly, Q ∈ Cvot

and Q ∩Qi = ∅ (1 ≤ i ≤ h).
In Case 2, since w = (n+1− b)/(k+1), n = kw+

(w + b − 1). Select h(< k) mutually disjoint elements
Q1, · · · , Qh in Cvot and let Set denote the union of such
h elements. Then W (Set) = hw and W (V − Set) =
kw+ (w− 1)− hw ≥ w. Thus there is an element Q in
(V − Set) such that W (Q) ≥ w. Clearly, Q ∈ Cvot and
Q ∩Qi = ∅ (1 ≤ i ≤ h).

In both Case 1 and Case 2, Cvot satisfies the non-
intersection property.
2. Intersection property
Assume that there are k+1 mutually disjoint elements
in C. Let Set denote the union of such k+1 elements. In
the case where a > 0, W (Set) ≥ w(k+1) = n+a+1 >
n+a. This is a contradiction. In the case where a = 0,
W (Set) = w(k + 1) = n − b + 1 > n − b. (Recall that
there are b nodes that are assigned zero vote.) Since
this is also a contradiction, Cvot satisfies the intersection
property.
3. Minimality property
Assume that there is a pair of Q and Q′ in Cvot such
that Q ⊂ Q′. By definition, W (Q) < w. This is a con-
tradiction. Thus Cvot satisfies the minimality property.

✷

3.2 Properties

Here, we prove two properties of new k-coterie Cvot con-
structed by VOT. One is that Cvot dominates MAJ k-
coterie Cmaj. The other is that Cvot is nondominated.

Theorem 2: If Cmaj exists and Cvot �= Cmaj, then Cvot

dominates Cmaj .
Proof: As mentioned above, Cmaj is a set of all y-
subsets of V where y = �(n + 1)/(k + 1)�. Recall that
Cmaj exists only when n ≥ yk. Let x be an integer
such that (n+1+x)/(k+1) = �(n+1)/(k+1)�. Then
n = yk + (y − x − 1). Thus y − x − 1 ≥ 0 iff n ≥ yk.
If y − x − 1 ≥ 0, then x < y(y + 1)/2. Thus, when
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Cmaj exists, a ≥ 0, b = 0 and w = �(n+ 1)/(k + 1)� in
VOT, which means that each node is assigned one or
two votes in VOT.

Let Q be a quorum in Cmaj . First, consider the
case where every node in Q is assigned one vote. In this
case, Q is also in Cvot since W (Q) = w. Next, consider
the case where there is at least one node assigned two
votes in Q. Since W (Q) > w in this case, Q is also
in Cvot if there is no Q′(⊂ Q) such that W (Q′) > w;
Otherwise (that is, there is Q′(⊂ Q) such thatW (Q′) >
w), Q′ is in Cvot. Consequently, for all Q ∈ Cmaj , there
existsQ′ ∈ Cvot such that Q′ ⊆ Q. Thus Cvot dominates
Cmaj unless Cvot = Cmaj . ✷

Theorem 2 means that new k-coterie Cvot domi-
nates MAJ k-coterie Cmaj if (n+1) mod (k+1) �= 0.
(Note that Cvot is exactly equal to Cmaj if (n+1) mod
(k+1)=0.) As mentioned above, a k-coterie provides
higher availability than its dominated coteries. Thus
it is guaranteed that the availability of Cvot is always
higher than or at least equal to that of Cmaj.

Theorem 3: Cvot is a nondominated k-coterie.
Proof: We prove this theorem by contradiction. As-
sume that Cvot is a dominated k-coterie. Then, because
of the theorem of Neilsen and Mizuno [12], there exists
a subset H of V that satisfies the following two proper-
ties; (P1) for any quorum Q ∈ Cvot, Q �⊆ H , and (P2) for
any k mutually disjoint quorums Q1, Q2, · · · , Qk, there
is Qi (1 ≤ i ≤ k) such that H ∩Qi �= ∅. In the follow-
ing, we show that V −H contains k mutually disjoint
quorums as its subsets, thus contradicting to (P2).

Due to (P1), W (H) < w. Since W (V ) = kw+w−
1, W (V − H) = W (V ) −W (H) ≥ kw. When a = 0,
that is, each node is assigned one or zero vote, V −H
has at least kw nodes that have one vote. Hence it is
clear that V −H contains at least k mutually disjoint
quorums.

When a > 0, every node has one or two votes. In
this case, if w is even, then at least k mutually disjoint
subsets of V −H exist that have exactly w votes.

Finally, consider the case where a > 0 and w is
odd. In this case, w ≥ 3 since we assume n ≥ k. Let m
denote the number of nodes in H that have one vote,
and let m′ denote the number of nodes in V −H that
have one vote. Since a ≤ k and m < w, m′ = n − a−
m = (kw + w − a− 1)− a−m ≥ k(w− 2) ≥ k. Hence
there is a subset T of V −H that consists of exactly k
nodes that have one vote. Let S = V − (H ∪ T ). Since
W (S) = W (V −H) −W (T ) ≥ k(w − 1) and w − 1 is
even, there are at least k subsets of S each of which has
a total of w − 1 votes. By adding each node in T to
each of the k subsets, k mutually disjoint quorums can
be obtained. Thus the theorem follows. ✷

4. Scheme D-VOT (Division Strategy Using
VOT)

The other proposed scheme D-VOT is based on VOT
and a division strategy used in DIV. As mentioned
above, the strategy in DIV partitions all nodes of V into
k clusters so as to construct a k-coterie by combining
1-coteries in the clusters. However, since it partitions
V equally, its applicability is limited to the cases where
n mod k = 0. In our scheme, D-VOT, the division
strategy is extended to an arbitrary number of nodes.

4.1 Construction

Let R be the remainder from integer division of n by k.
First, V is partitioned into k clusters (nonempty sets
of nodes) V1, V2, · · · , Vk with R of clusters containing
�n/k� nodes and k−R clusters containing �n/k� nodes.
Next, let Cdvot = C1 ∪ C2 ∪ · · · ∪ Ck where Ci is the 1-
coterie under Vi(1 ≤ i ≤ k) that is constructed by
scheme VOT†. Then, Cdvot is a k-coterie. (We omit the
proof since it is trivial.) Note that VOT does not assign
zero vote to any nodes in V if k = 1††, and thus every
node is contained in at least one quorum in Cvot.

Example 4: Let V = {v1, v2, v3, v4, v5, v6, v7} and
k = 2. Then R = 1. Suppose that the partition of
V is {{v1, v2, v3}(= V1), {v4, v5, v6, v7}(= V2)}, and let
C′ and C′′ be 1-coteries under V1 and V2 constructed by
VOT, respectively. Then, 2-coterie C6 shown below is
obtained.

C6 = C′(= {{v1, v2}, {v1, v3}, {v2, v3}})
∪ C′′(= {{v4, v5}, {v4, v6}, {v4, v7}, {v5, v6, v7}}).

4.2 Properties

Let Cdvot be a k-coterie constructed by D-VOT and let
Cdiv be a DIV k-coterie under the same V and partition.
Here, we prove two properties of the new k-coterie Cdvot.
One is that Cdvot dominates Cdiv. The other is that Cdvot

is nondominated.

Theorem 4: If Cdvot �= Cdiv, then Cdvot dominates
Cdiv.
Proof: Let {V1, V2, · · · , Vk} be a partition of V into k
clusters. By definition, Cdiv under V is D1∪D2∪· · ·∪Dk

where Di is the MAJ 1-coterie under Vi(1 ≤ i ≤ k).
Cdvot under V is C1 ∪ C2 ∪ · · · ∪ Ck where Ci is the 1-
coterie under Vi(1 ≤ i ≤ k) that is constructed by
scheme VOT. By Theorem 2, Ci dominates Di if Ci �=

†When k = 1, VOT is equivalent to a 1-coterie construc-
tion proposed in [5].

††Note that, in VOT, a=(0 or 1), b = 0, and w = �(n +
1)/2� if k = 1.
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Table 1 The (k, r)-availabilities of VOT, D-VOT, MAJ, and DIV.

n=14 n=15 n=16 n=17

k=2 r=1 VOT 0.999999932 0.999999915 0.999999981 0.999999996
MAJ 0.999999932 0.999999813 0.999999973 0.999999996

D-VOT 0.999992558 0.999992558 0.999992558 0.9999975696
DIV 0.999992558 - 0.999974756 -

r=2 VOT 0.990769788 0.989319285 0.992419734 0.995332524
MAJ 0.990769788 0.94444437 0.982996002 0.995332524

D-VOT 0.994551442 0.994551442 0.994551442 0.9963835104
DIV 0.994551442 - 0.989976544 -

k=3 r=1 VOT 0.999999998 1 1 1
MAJ 0.999999997 1 0.999999999 1

D-VOT 0.9999979483 0.9999993728 0.9999993728 0.9999993728
DIV - 0.9999993728 - -

r=2 VOT 0.999900715 0.999966375 0.999939017 0.9999713
MAJ 0.999818639 0.999966375 0.999495466 0.999894354

D-VOT 0.9994514697 0.9997814336 0.9997814336 0.9997814336
DIV - 0.9997814336 - -

r=3 VOT 0.931389849 0.94444437 0.941620075 0.948624327
MAJ 0.841640019 0.94444437 0.51472783 0.761797189

D-VOT 0.9554305819 0.9745391936 0.9745391936 0.9745391936
DIV - 0.9745391936 - -

k=4 r=1 VOT 1 1 1 1
MAJ 1 - 1 1

D-VOT 0.999999385 0.999999385 0.999999385 0.999999812
DIV - - 0.999992518 -

r=2 VOT 0.999998749 0.999997021 0.999998856 0.99999963
MAJ 0.999998749 - 0.999994076 0.999999

D-VOT 0.999914036 0.999914036 0.999914036 0.999958479
DIV - - 0.999450223 -

r=3 VOT 0.998525946 0.997822648 0.998469537 0.999012267
MAJ 0.998525946 - 0.982996002 0.995332524

D-VOT 0.995469772 0.995469772 0.995469772 0.997012567
DIV - - 0.98471026 -

r=4 VOT 0.841640019 0.847288609 0.855083665 0.863827683
MAJ 0.841640019 - 0.185302019 0.481785249

D-VOT 0.892616807 0.892616807 0.892616807 0.910469143
DIV - - 0.806646999 -

Di (1 ≤ i ≤ k). Then, for any quorum Q in Cdiv,
there exists Q′ in Cdvot such that Q ⊆ Q′. Thus Cdvot

dominates Cdiv. ✷

Theorem 4 means that Cdvot dominates Cdiv if
(n/k+ 1) mod 2 �= 0. (Note that Cdiv exists only when
n mod k = 0, and Cdvot is equal to Cdiv if (n/k + 1)
mod 2 = 0.) Thus it is guaranteed that the availability
of Cdvot is always higher than or at least equal to that
of Cdiv.

To prove Cdvot is a nondominated k-coterie, we first
introduce a theorem given in [12].

Theorem 5: Let {V1, V2, · · · , Vk} be a partition of V
into k nonempty sets. Let C = C1∪C2 ∪· · · ∪Ck, and Ci

be a nondominated coterie under Vi(1 ≤ i ≤ k). Then
C is a nondominated k-coterie under V . ✷

Theorem 6: Cdvot is nondominated.
Proof: By definition, Cdvot = C1∪C2∪· · ·∪Ck where Ci

is the 1-coterie under Vi(1 ≤ i ≤ k) that is constructed
by scheme VOT. By Theorem 3, Ci(1 ≤ i ≤ k) is a
nondominated coterie. Thus, by Theorem 5, Cdvot is
nondominated. ✷

5. Experimental Evaluation

In Sects. 3 and 4, we proved that the new constructions
VOT and D-VOT provide higher level of availability
than MAJ and DIV, respectively. Here, for the purpose
of quantitative analysis, we perform experimental eval-
uation of the four constructions, VOT, D-VOT, MAJ
and DIV.

As a measure for evaluation, we consider (k, r)-
availability. As mentioned above, (k, r)-availability is
a generic measure to evaluate the availability of a k-
coterie, and it is defined as the probability that at least
r(1 ≤ r ≤ k) nodes can enter the CS simultaneously.

Table 1 shows the (k, r)-availabilities of k-coteries
constructed by VOT, D-VOT, MAJ, and DIV when
14 ≤ n ≤ 17, 2 ≤ k ≤ 4, and p =0.9. First, con-
sider VOT and MAJ. When (n, k) = (15, 4), no MAJ
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(a1) 4 ≤ n ≤ 30 and p = 0.9. (a2) 4 ≤ n ≤ 30 and p = 0.95.

(b1) n = 16 and 0 ≤ p ≤ 1. (b2) n = 40 and 0 ≤ p ≤ 1.

Fig. 1 Computation availabilities of VOT, D-VOT, MAJ, and DIV when k=4.

k-coterie exists. When (n, k) = (14, 2), (14, 4), (15, 3),
and (17,2), VOT is equivalent to MAJ since (n + 1)
mod (k + 1) = 0. If (n + 1) mod (k + 1) �= 0, the
(k, r)-availability of a VOT k-coterie is higher than
that of an MAJ k-coterie. Especially, as the value
of r increases, the difference of the availabilities be-
tween VOT and MAJ becomes larger. For exam-
ple, when (n, k, r) =(16,4,4), the difference of (k, r)-
availabilities is lager than 0.6. Next, consider D-VOT
and DIV. DIV k-coteries exist only when (n, k) =
(14, 2), (16, 2), (15, 3) and (16,4). When (n, k) = (14, 2)
and (15,3), D-VOT is equivalent to DIV since (n + 1)
mod 2 = 0. In other cases, D-VOT outperforms DIV
in (k, r)-availability. Like the relations between VOT
and MAJ, as the value of r increases, the difference
of the availabilities between D-VOT and DIV becomes
larger. As a result, when r is small, VOT provides the
highest (k, r)-availability among the four constructions,
whereas VOT achieves the highest (k, r)-availability
when r is large.

Although (k, r)-availability is a useful and well
accepted measure, it may be difficult to compare k-
coteries based on this measure only, since r can take
any value up to k. For that reason, we introduce com-
putation availability[2] as a unified measure for evalua-

tion. Computation availability has been used for eval-
uating gracefully degradable systems in terms of both
availability and performance. Here we define the com-
putation availability of a k-coterie as follows:

Computation availability =
k∑

r=1

αr × r-availability

where αr denotes the computation capability when
r nodes can enter the CS simultaneously, and r-
availability† denotes the probability that the maximum
number of nodes that can enter the CS simultaneously
is exactly r[8]. Assuming that αr is proportional to r,
we set αr to r/k in the evaluation.

Figure 1 shows the computation availabilities of 4-
coteries constructed by VOT, D-VOT, MAJ, and DIV.
Figures 1 (a1) and (a2) show the results when 4 ≤ n ≤
30, and p =0.9 and 0.95, respectively. As the number of
nodes increases, the (k, r)-availabilities of VOT and D-
VOT become steadily larger. The results thus show the
scalability that the proposed schemes exhibit. In the

†r-Availability is easily obtained from the (k, r)-availa-
bilities. If r=k, then r-availability = (k, r)-availability;
otherwise, r-availability=(k, r)-availability−(k, r+1)-avail-
ability.
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case where p = 0.9, VOT provides the highest computa-
tion availability when 4 ≤ n ≤ 10, and D-VOT provides
the highest computation availability when 11 ≤ n ≤ 30.
In the case where p = 0.95, VOT provides the high-
est computation availability when 4 ≤ n ≤ 11, while
D-VOT has the highest computation availability when
12 ≤ n ≤ 30. Figures 1 (b1) and (b2) show the re-
sults when 0 ≤ p ≤ 1, and n = 16 and 40, respec-
tively. We selected the two values of n because the four
schemes construct different k-coteries when n has these
values†. In both cases, when 0 < p < 0.5, VOT pro-
vides the highest computation availability, while when
0.5 < p < 1, D-VOT provides the highest computation
availability. Interestingly, the computation availabil-
ity of VOT and D-VOT is exactly equal to 0.5 when
p = 0.5.

6. Conclusion

In this paper, we have proposed two new schemes VOT
and D-VOT of constructing k-coteries. In scheme VOT,
k-coteries are constructed by using weighted voting. In
scheme D-VOT, k-coteries are constructed by using the
partition of nodes and scheme VOT. We have shown
that the k-coteries constructed by VOT and D-VOT
dominate those by MAJ and DIV, respectively. We
have also shown that the k-coteries constructed by both
VOT and D-VOT are nondominated, which means that
the new k-coteries provide higher availability than any
of their dominated coteries. Furthermore, we have eval-
uated the four schemes in terms of (k, r)-availabilities
and the computation availabilities. The superiority of
the new k-coteries has been also shown by the results.
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