u

) <

The University of Osaka
Institutional Knowledge Archive

Tl e Three-Mode Failure Model for Reliability
Analysis of Distributed Programs

Author (s) $§E$Eiya, Tatsuhiro; Kakuda, Yoshiaki; Kikuno,

IEICE transactions on information and systems.

Citation 11997 £gg-D(1), p. 3-9

Version Type|VoR

URL https://hdl. handle.net/11094/27250

Copyright © 1997 The Institute of Electronics,

FI8NS | 1 formation and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. | JANUARY 1997

[PAPER _Special Issue on Fault-Tolerant Computing

Three-Mode Failure Model for Reliability Analysis of

Distributed Programs

Tatsuhiro TSUCHIYA?!, Yoshiaki KAKUDA', and Tohru KIKUNO', Members

SUMMARY The distributed program reliability (DPR) is a
useful measure for reliability evaluation of distributed systems. In
previous methods, a two-mode failure model (working or failed)
is assumed for each computing node. However, this assumption
is not realistic because data transfer may be possible by way of
a computing node even when this node can neither execute pro-
grams nor handle its data files. In this paper, we define a new
three-mode failure model for representing such a degraded op-
erational state of computing nodes, and present a simple and
efficient analysis method based on graph theory. In order to rep-
resent the degraded operational state, a given graph expressing
a distributed system is augmented by adding new edges and ver-
tices. By traversing this augmented graph, the reliability measure
can be computed. Examples show the clear difference between
the results of our proposed method and those of the previous
ones.

key words: distributed system, distributed programs, reliability,
3-mode failure, file spanning tree

1. Introduction

In distributed systems, the increase in reliability and
fault-tolerance is achieved not only through the redun-
dancy in computing nodes and communication links
but also redundant distribution of programs and data
files. In order to capture its effects, Kumar et al. pro-
posed a reliability measure called Distributed Program
Reliability (DPR)[8]. The DPR is defined as the prob-
ability that a given program can run while accessing all
the required files in spite of failures among the nodes
and the links.

Several methods of computing the DPR have been
proposed [2],[3],[6]-[10]. These methods assume that
each component is either fully operational or com-
pletely failed. However, the assumption is not realistic
and results in an underestimate of reliability because
data transfer may be possible by way of a computing
node even when this node can neither execute programs
nor handle its data files. The reason is that communica-
tion protocols usually have a layered structure. Among
these layers, application programs and protocols for ac-
cessing remote files are working at the highest layer,
while relay of data is done at lower layers.

For example, OSI reference model is composed of
seven layers [5]. In this model, the function of each layer
depends on its lower layers but not on its higher layers,

Manuscript received May 1, 1996.

TThe authors are with the Department of Informatics
and Mathematical Science, Graduate School of Engineer-
ing Science, Osaka University, Toyonaka-shi, 560 Japan.

and data transfer on intermediate nodes is performed
by the third layer and its lower layers. Hence, even
when intermediate nodes are not fully operational, two
distinct operational nodes can communicate mutually
via intermediate nodes if they can still correctly transfer
data.

For exact evaluation, we introduce a new three-
mode failure model for computing nodes in this paper.
That is, we consider a degraded operational mode in ad-
dition to an operational mode and a failed mode. We
assume that when a node is in this degraded operational
mode, programs and files that reside at the node are not
available, but data transfer via the node is possible.

To evaluate the DPR under the assumption of
three-mode failure, we augment a given graph express-
ing a distributed system by new vertices and edges. Ad-
ditionally, we introduce the notion of state for each ver-
tex or edge, and assume that the state is either up or
down. By translating the failure modes of the com-
ponents into the states of vertices and edges in the aug-
mented graph, we can compute the DPR based on graph
theory and probability theory.

2. System Model

The topology of the distributed system is specified by
an undirected graph G = (V,E), where each ver-
tex x; € V represents a computing node and each
edge r;; € E represents a bidirectional communi-
cation link between node z; and node z;. We as-
sume that there exists no self loop in graph G. In
the following, we denote V = {z1,z2,---,2v|} and
E = {&ay b1, Tagbyr "> Tayp by ;- T he set of programs
that can run on node z; is denoted by PRG;, while the
set of files that are available at x; is denoted by F'A;.
The set of files required for successful execution of pro-
gram P; is given by F'N;. Figure 1 shows an example
of distributed systems, where FNy = {Fy, F3, F3}.

As mentioned earlier, we assume a three-mode fail-
ure model for computing nodes in this paper. These
three modes are defined as follows:

e Fully operational mode.

e Degraded operational mode: If a node is in this
mode, programs cannot run on this node and files
residing at the node cannot be accessed, but data
transfer via this node is possible.

PRG, = {P,,P3}
FAy={F3)

PRG, = {P;} %, PRGi=(Py}
FAy = (Fu el 24 FA = (FoF)
PRG, = {P3}
FAq = (Fy,Fg)

Fig. 1 Example of distributed systems.

o Completely failed mode.

On the other hand, for communication links, we assume
a conventional two-mode failure model, i.e., each link
is either operational or failed. Failures of nodes and
links are assumed to be independent of others.

For each node z;, the probability of being in the
fully operational mode is given by p;. Similarly, that of
being in the degraded operational mode is given by ¢;.
For each link z; ;, the probability of being operational
is given by r; ;. The previous model based on the as-
sumption of two-mode failure is a special case of our
model in which ¢; = 0 for every node z;.

Let m; € {f_opr,d_opr, fail} denote the mode of
node z;, where f_opr,d_opr, fail denote the fully op-
erational mode, the degraded operational mode and
the completely failed mode, respectively. Similarly, let
m; ; € {opr, fail} denote the mode of link x; ;. Then,
the status of the system S is represented by

§= (m17m27 o .7m|V|7ma1,b17ma2,b2’ e ’maiE|vb|E|)'

According to this failure model, we assume that
program P; can run successfully if and only if there
is at least one tree t = (V;, E;) of G such that all the
following conditions are satisfied.

C1 For any node z; € V4, its mode m; = f_opr or
d_opr.

C2 For any link z; ; € E,, its mode m; ; = opr.

C3 t includes a node in the fully operational mode
that can execute P, ie., for certain i, P; €
PRG; and m; = f_opr.

C4 All required files can be provided by the fully op-
erational nodes of ¢, i.e.,

U F A,

{z:€Vi|mi=f_opr}

FNjC

3. Augmenting the Original Graph

Under the assumption of three-mode failure, it is dif-
ficult to estimate the probability of a program being
operational in a straight manner. To solve this prob-
lem, we augment the original graph G = (V, E) and get

[EICE TRANS. INF. & SYST., VOL. E80-D, NO. | JANUARY 1997

PRG = {P,,Pg}
FAY = {Fy)

PA, =0
FAy =0

PRGYg = (Py}
FAg = (FpF3)

PRGY = ¢
FAY =0

PRGY = {Py}
FA's = {Fy,Fo)

PRG3=¢
FAY=¢

PRG" = {P3}
FAY5 = (Fy,Fy}

Fig. 2 Augmented graph G’.

a new graph G’ = (V’, E’) which can represent three-
mode failure.

The augmenting procedure is as follows: if node
z; neither holds any file nor is able to execute any pro-
gram, the fully operational mode of z; is not taken into
account. On the other hand, if node z; holds some
files or can execute programs, three failure modes must
be distinguished clearly. For each of such vertices, i.e.,
z; € V such that PRG; % ¢ or FA; + ¢, we add a new
vertex |y |4; and a new edge z; |y |1;. Consequently we
obtain a new undirected graph G’.

Intuitively, in the augmented graph G’, vertex z; €
V' represents the data transfer function of node x;, while
vertex Ty |4; € V' represents the function for handling
data files and processing programs. As a result, node °
z; in G is represented by tree ({x;, Zv |4}, {Zi v|+i})
of G’. (Edge Z; |v|+:; has no physical meaning.) Ad-
ditionally, PRG] and F A} are defined for each vertex
x; € V' as follows.

,_fe i< |V
PRGi_{PRG,-_,V, i> V]
,_fo iz
FAi_{FAi_,V, i> V|

For example, the graph illustrated in Fig. 1 is trans-
formed as shown in Fig.2.

By assigning either the up state or the down state to
each vertex and edge of G, G’ can represent the status of
the system .S. For this purpose, we associate functions
fi(S) and f; ;(S) with each vertex z; € V' and each
edge x; ; € F’, respectively. These functions determine
the states of all the components of G’.

r={

down

m; € {f_opr,d_opr}
otherwise

‘ _fuwp migv=fopr
Fori>|V|, fi= { down otherwise

Fori < |V,

fii= up m;; = opr
" 71 down otherwise

fij =up

Forz; ; € E,

For Tij € E — E,

TSUCHIYA et al: THREE-MODE FAILURE MODEL FOR RELIABILITY ANALYSIS OF DISTRIBUTED PROGRAMS

Xielv1 Xirin1 Xyvt
X, iVt X irlV1 Xiirlvt
Xi Xj \ Xi
(a) Fully (b) Degraded (c) Completely
operational operational failed

Fig. 3 Representation of three-mode failures.

O Fully operational
® Degraded operational
@ completely tailed

X4
—— Operational
--- Failed

O Up Xg
. Down X2,6
— Up X5

--- Down X122 T X4

Fig. 4 (a) Status of the system, and (b) its representation.

According to these functions, the mode of node =; is
represented as shown in Fig.3. In the figure, a white
circle represents a vertex in the up state, while a black
circle represents a vertex in the down state. A solid
line connecting two circles represents an edge in the up
state. Figure 4 (a) shows an example of the status of the
distributed system in Fig. 1. Its corresponding represen-
tation in the augmented graph is shown in Fig.4(b),
where an edge in the down state is denoted by a dotted
line connecting two circles.

Lemma 1: There is a tree t of G = (V, E) satisfying
conditions C1, C2, C3 and C4 for program P; if and
only if there is a tree t’ = (V{, E;) of G’ such that the
following conditions hold.

CY’ All vertices and edges of ¢’ are in the up state.

C2 If ¢ includes vertex x; with i > |V, then t' also
includes vertex x;_|y|.

C3 t includes a vertex where program P; is available,
i.e., for certain i, P; € PRGj.

C4# All the required files can be available at the ver-
tices of t/, i.e.,

FN;c | FAL
.’t,‘EVt/

Proof: Assume that tree t = (V, E¢) of G satisfies con-
ditions C1, C2, C3 and C4. Then for any vertex z; € V;
with m; = f_opr such that PRG; + ¢ or FA; #+ ¢, both
vertex ;4 |v| in the up state and edge ; ;4|v| in the up
state exist in G’. Let V44 and E,qq be sets defined by

{ziq|vilzi € Vi Amy = fopr
A(PRG; ¥ ¢V FA; £ ¢)}, and

Euaa = {xi,i+|V||l'i eViAm; = fopr

ANPRG; # ¢V FA; + ¢)}.

By definition, for any z; € Va4q, PRG; = PRG;_ v
and FA, = FA;_v|. Then, for certain z € Vodds
PRG;c = PRGk—|V| =] Pj, and

U rai- U

z;€Vada {z:€Vi|mi=f_-opr}

Vadda =

FA; D FN;.

Hence, tree (V; U Vaaa, Bt U Eqqq) is a tree of G’ that
satisfies conditions C1°, C2’, C3’ and C#4'.

Next, assume that tree t' = (V}/, E}) of G’ satisfies
conditions CI’, C2’, C3 and C4'. Let V,; be the set of
all vertices which are in V/ but not in G, i.e,,

vaa = {zi € Vi > [V}

Then any vertex z; € V., is adjacent only to z;_|v|,
and z;_|y| exists int'. From this, a subgraph of t’ which
is obtained by removing all vertices in V,;; and their
adjacent edges is a tree of G. Let T denote this tree, i.e.,
T = (V/ = V]4g» Bt — Epqq), where Eq gy = {zi_v)lzi €
V/,4}. Then, any components (nodes and links) of T' is
not in the completely failed mode. Moreover, since tree
({zioyvp, @i} {ziv)i}) with z; € Vi, is up, comput-
ing node z;_y| is fully operational. Hence, for certain
T € Va{dd’ PRG]C_W‘ = PRG;c > Pj, and

U FA; =

{@:€V, =V lmi=f-opr}

\J FA;>FN;

€V 4

Hence, tree T is a tree of G that satisfies conditions Cl,
C2, C3 and C4. |

Consider tree ({x1,z3,%4},{z1,3,%34}) in Fig. 4
(a) as an example. Since this tree satisfies condi-
tions from C1 through C4 for program P;, it can en-
able execution of this program. This tree corresponds
1o tree ({331, x3,T4,ZTs5, 1‘3}, {$1’3, T1,5,T3,4, 1:4,8}) of G’
shown in Fig. 4 (b), which satisfies conditions from CI’
through C4.

In this paper, we say that a subgraph of G’ is up
if and only if it satisfies condition C1’, that is, all of
its components are in the up state. From Lemma 1 and
the assumption on program execution, when there is an
up tree of G’ satisfying conditions C2’,C3’ and C#4’ for
a program, the successful execution of the program is

possible. We define a file spanning tree (FST) of the
augmented graph G’ as a tree of G’ satisfying condi-
tions C2’, C3’ and C’4. This definition is similar to the
definition in the previous work, except that there is no
condition corresponding to C2’. By Lemma 1 and the
definition of FST, the following theorem is obtained.
Theorem 1: A program can run successfully if and
only if there is at least one up FST for that program in
the augmented graph G’.

As shown later, the DPR can be computed based
on this Theorem 1 and probabilities of the components
of G’ being up. Let u; be the event that vertex z; is up
and let u; ; be the event that edge z; ; is up, respectively.
Then, these probabilities are obtained as follows.

For i< |V, Pr{w)=pi +¢
For i>|V], { Pr (uzl_uz—|V|) _ e
Pr(u;|@;"v)) =

For z;;€E, Pr(u;)=r;
For z;; € E' — E, Pr(u;) =1

4. Evaluation of Reliability

As mentioned earlier, the distributed program reliabil-
ity (DPR) is defined as the probability that a given pro-
gram can run successfully. According to Theorem 1, the
DPR is written as follows.

DPR = Pr(For the program, at least one up FST
exists in the augmented graph G’).

Like in[4], we introduce the notion of minimal
file spanning tree (MFST) for efficient evaluation. An
MFST is defined as an FST such that no FST which
is a subgraph of that FST exists. Since we assume that
each vertex or edge in G’ is either up or down, an up
MEFST exists if an up FST exists. Its reverse also holds.
Hence the DPR can be written as follows.

DPR = Pr(For the program, at least one up MFST
exists in the augmented graph G’).

This probability can be computed by the following
two steps:

Step 1. Find all MFST’s for the program of interest in
the augmented graph G’.

Step 2. Calculate the probability that at least one
MFST is up by applying a terminal reliability al-
gorithm. This probability is equal to the DPR.

4.1 Enumeration of MFST’s (Step 1)

For MFST enumeration, we can apply an algorithm
in[8], which is based on the two-mode failure model,
with modification. The algorithm generates all the
MFST’s in nondecreasing order of their size, where the
size is defined as the number of links in an MFST. In

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. | JANUARY 1997

the two-mode failure model, possible sizes of MFST’s
range from O up to [V| —1.

On the contrary, under our definition of MFST,
any tree of size 0 never be an MFST because any tree
consisting of only vertex z; with ¢ > |V| does not sat-
isfy C2’, and any tree consisting of only vertex x; with
i < |V satisfies neither C3’ nor C4’. In addition, if
a tree of G’ does not satisfy C2’, this tree is a vertex
z; with ¢ > |V because x; is adjacent only to Ti_|v)|.
In other words, any tree whose size is more than zero
satisfies C2’,

Therefore if the previous algorithm is modified so
as to begin with determining MFST’s of size 1, it can
be applied for enumeration of MFST’s in G’. The al-
gorithm is as follows.

/* Step 1.1: Initialization */
TRY := ., p,eprcy tree ({zi, ziyjvi b {iip vy })
FOUND :=¢
/* Step 1.2: Generation of all MFST’s %/
While (TRY # ¢) do
/* 1.2.1 Checking step */
For allt ¢ TRY do
If (¢ has all needed files) Then
If (¢ is not a superset of any tree in
FOUND)
Then
add t to FOUND
remove ¢ from TRY
Else
remove t from TRY
END_If
END_If
END_For
/* 1.2.2 Expanding step x/
NEW :=¢
For all t = (V;, E;) € TRY do
AE := set of all adjacent edges to ¢
For all (z; ; € AE,i € V, Aj ¢ V;) do
newt := (V; U {z;;}, E, U{z;})
add newt to NEW
END_For
END_For
TRY := NEW
END_While

4.2 Terminal Reliability Algorithms (Step 2)

Once all the MFST’s have been found, the next step is
to find the probability that at least one of them is up.
In[8],[10], terminal reliability evaluation algorithms
based on path enumeration, such as Abraham’s one[1]
and SYREL [4], are used for this purpose. From given
subgraphs, these algorithms can derive the probability
that at least one subgraph remains operational based on
the two-mode failure model.

In the algorithms, it is also assumed that the event

TSUCHIYA et al: THREE-MODE FAILURE MODEL FOR RELIABILITY ANALYSIS OF DISTRIBUTED PROGRAMS

of any component being operational is independent of
those of other components. On the contrary, as shown
in Sect.3, the event that vertex z; with ¢ > |V| is in
the up state is dependent on the state of vertex x;_jy|.
In spite of this discrepancy, we can use the terminal re-
liability algorithms to compute the DPR without any
modification. This reason is explained as follows.

Let M = {MFST,,MFST,,---,MFST|)} be
the set of all MFST’s, and let U; be the event that
MPFST; is up. Clearly the following equation holds.

DPR=Pr (U, VU,V --VUp)

Now, let z; denote an arbitrary vertex which is in G’
but not in G, and let M,, be the set of all MFST’s in-
cluding z;. By definition, ¢ > |V, and any MFST in
M, also includes vertex z;_y|. For MFST; € My, let
U]’« be the event that all components of M F ST} except
for x; are in the up state. Note that u; denotes the event
that z; is in the up state. Then, the DPR can be written
as follow.

DPR = Pr \V U;
MFST;€ M —M;n

+Pr V U A U,

MFSTjEMin MFST]‘EM—M,',L

Pr \/ Uj

MFSTjEM—Min

+Pr| u; A \/ U; A /\ Uj
MFST;€Min, ~ MFST;€M—Min

Since any M F'ST; € M;,, includes x;_|y|, whenever U]f
with MFST; € M, occurs, x;_jy| is in the up state.
Hence, this equation can be transformed as follows.

DPR = Pr U; | + < Pr(uilu;—v)

MFST;€M—Mi,

wl Vous AT
MFST;€M;n, MFST;e M~M;,

Clearly, both any U;(U;) with MFST; € M — M,
and any UJ’- with MFST; € M;, are independent of u;
because none of their corresponding subgraphs include
x;. The above equation implies that the DPR has no
relation to the probability of «; being up when z;_ v,
is known to be down. Hence, even if Pr (u;|[@;—v]) =
Pr (uilui—jv|)(= ;&5-), the DPR would not change.
Notice that Pr (u;|[@;jv]) = Pr(u;|u;_jvy) implies that
u; and u;_|y| are mutually independent. Thus, the
terminal reliability algorithms can compute the DPR
without any modification. (In the computation, we
can choose Pr(u;lu;_jyv|) as the reliability of z; with
i>1V].)

4.3 Time Complexity

Both in the conventional two-level failure model and in
the proposed three-level failure model, the DPR can be
computed by executing the corresponding MFST enu-
meration algorithm and a terminal reliability algorithm
sequentially. In the two-level failure model, the first step
is known to be dominant in terms of the time needed for
DPR calculation[7], and this is true of the new failure
model. This can be explained by the fact that in the
first step (|V| — 1)(¢~Y intermediate trees are generated
in the worst case, where e is the maximum degree of a
vertex in G [7]. Hence, in the three-mode failure model,
the number of generated intermediate trees is bounded
by (|[V’] — 1)(¢'=1, where ¢’ is the maximum degree of
a vertex in G'. When €’ is fixed, since the number of in-
termediate trees is polynomial in terms of [V|, the time
complexity of the first step is also polynomial. Concern-
ing terminal algorithms, their complexities are different
with each other.

5. Numerical Examples

In this section, we present the results obtained by apply-
ing the proposed method to example systems. For sim-
plicity, we assume here that for any 4, j,p; = pj, ¢ = ¢;
and Tij = 0.9.

To evaluate the effects of the degraded operational
mode, we define parameter o when p; < 1 as follows.

_ Pr (A node is degraded operational) ¢

“T Pr (A node is not fully operational) T 1-p
By definition, the value of o ranges from 0 to 1.0.
Since ¢; becomes zero if and only if a = 0, the results
obtained when o = 0 are the same as those of the tra-
ditional two-level failure model. On the other hand, as
the value of o becomes close to 1.0, the probability of
being degraded operational, i.e., g; becomes larger.
Example 1: Consider the simple system depicted in
Fig.1. We applied the proposed method to evaluate
the DPR of program P; with FN; = {Fi, F3, F3}.

Xg Xs

X X MFST, ()%
X3 X4 Xg
X5 X MrsT, Oxg MFST, X5 X1 MFST3 X4 X3 X5 X4 X

Xs X . %a X8

MFSTg

X2

X5 X L X4 %

MFST,

Fig. 5 All MFST’s for program P; in Example 1.

8
Table 1 DPR of program P; in Example 1.
] [»i=080] 085 [090 | 095 | 1.00 |
a=0 0.8405 0.8972 | 0.9442 | 0.9790
0.25 0.8558 0.9083 | 0.9510 | 0.9819 | 0.9989
0.50 0.8691 0.9181 | 09572 | 0.9847
0.75 0.8805 0.9266 | 0.9627 | 0.9874
PRG, = ¢ PRG, = {P,,P3}
FA, = {F1,F5) FA, = {Fa.Fs}
PRG, = (P} %8 PAG, = (P,}
FA; = {F;,Fs} FAy = {F,Fy}
PRG; = {Py,P3) PRGg=¢
FA3 = {F3,F,} FAg = {F3,F¢}
Fig. 6 Another example of distributed system.
Table 2 DPR of program P; in Example 2.
[Il pi=080] 085 [090 | 095 | 1.00 |
a=20 0.7993 0.8758 [0.9378 [0.9806
0.25 0.8271 0.8943 | 09476 | 0.9838 | 0.9995
0.50 0.8497 0.9093 | 0.9557 | 0.9865
0.75 0.8668 0.9209 | 0.9621 | 0.9887

Step 1 enumerated 10 MFST’s as shown Fig.5. Us-
ing the terminal reliability algorithm in[1], Step 2 de-
rived an expression corresponding to the DPR of pro-
gram P, from the MFST’s. The resultant expression is
DPR = 0.9p74-0.9p7(1—p; —q;)+1.062p% (p; +¢;) (1 —pi —
;) + 1.06929p2q; (p; + ¢;) +0.98577p2q2 + 1.08549p2¢? +
0.09891p}. (The details of process for deriving the DPR
is omitted here.) Table 1 shows the values of DPR with
various p; and «. This table implies that the previous
methods result in an underestimate of DPR, and that
considering the degraded operational mode of nodes
is indispensable for exact evaluation. (Notice that the
DPR with @ = 0 is equal to that in the conventional
two-mode failure model.)

Example 2: Consider the distributed system shown in
Fig.6, where F'N; = {F}, F5, F3}. This example is also
studied in[3] and [8]. Fifty four MFST’s for program
Py are found, and the values of DPR of P, shown in
Table 2 are obtained. Compared with Example |, the
value of o affects the DPR more explicitly. The main
reason is that the program is executed via a larger num-
ber of intermediate nodes than the previous example.

6. Conclusion

For exact reliability estimation, we have proposed a
three-mode failure model for computing nodes in dis-
tributed systems. Based on this model, we present a
method to compute the DPR. This method consists of
three stages, i.e., augmenting the given graph that repre-
sents a system, enumerating MFST’s, and computing the

IEICE TRANS. INF. & SYST., VOL. E80-D, NO. 1 JANUARY 1997

probability that one of them is up. Numerical examples
show the clear difference between the estimation based
on our model and that on the traditional two-mode fail-
ure model. As future work, we are planning to examine
field data to obtain actual values of parameters, such as
p; and g;.

References

[1] J.A. Abraham, “An improved algorithm for network re-
liability,” TEEE Trans. Reliab., vol.R-28, no.l, pp.58-61,
1979.

[2] D.-J. Chen and M.-S. Lin, “On distributed computing
systems reliability analysis under program execution con-
straints,” IEEE Trans. Comput., vol.43, no.l, pp.87-97,
1994.

[3] D.-J. Chen and T.-H. Huang, “Reliability analysis of dis-
tributed systems based on a fast reliability algorithm,”
IEEE Trans. Parallel and Distributed Systems, vol.3, no.2,
pp-139-154, 1992,

[4] S. Hariri and C.S. Raghavendra, “SYREL: A symbolic
reliability algorithm based on path and cutset methods,”
IEEE Trans. Comput., vol.C-36, no.10, pp.1224-1232,
1987.

[5] ISO, “Open Systems Interconnection—Basic Reference
Model,” ISO 7498, 1984.

[6] A.Kumar and D.P. Agrawal, “A generalized algorithm for
evaluating distributed-program reliability,” IEEE Trans.
Reliab., vol.42, no.3, pp.416-426, 1993.

[7] A. Kumar, S. Rai, and D.P. Agrawal, “On computer com-
munication network reliability under program execution
constraints,” IEEE J. Select. Areas Commun., vol.6, no.8,
pp.1393-1399, 1988.

[8] V.K.P. Kumar, S. Hariri, and C.S. Raghavendra, “Dis-
tributed program reliability analysis,” IEEE Trans. Soft-
ware Eng., vol.SE-12, no.1, pp.42-50, 1986.

[9] Noé Lopez-Bentiz, “Dependability modeling and analy-
sis of distributed programs,” IEEE Trans. Software Eng.,
vol.20, no.5, pp.345-352, 1994.

[10] C.S.Raghavendra, V.K.P. Kumar, and S. Hariri, “Reliabil-
ity analysis in distributed systems,” IEEE Trans. Comput.,
vol.37, no.3, pp.352-358, 1988.

Tatsuhiro Tsuchiya received the M.E.
degree in computer science from Osaka
University, in 1995. He is currently a
research associate in the Department of
Informatics and Mathematical Science,
Graduate School of Engineering Science,
Osaka University. His research interests
are in the areas of distributed and fault-
tolerant systems and real-time systems.

TSUCHIYA et al: THREE-MODE FAILURE MODEL FOR RELIABILITY ANALYSIS OF DISTRIBUTED PROGRAMS

Yoshiaki Kakuda received the B.S.
degree in electronic engineering from
Hiroshima University in 1978. He also
received the M.S. and Ph.D. degrees in
system engineering from the same univer-
sity in 1980 and 1983, respectively. He is
currently an associate professor in the De-
partment of Informatics and Mathemat-
ical Science, Graduate School of Engi-
neering Science, Osaka University. His re-
search interests include responsive systems
and protocol engineering. He is a member of IEEE. He received
the Telecom. System Technology Award from Telecommunica-
tions Advancement Foundation in 1992.

Tohru Kikuno received the B.E., M.S.
and Ph.D. degrees in electrical engineer-
ing from Osaka University in 1970, 1972
and 1975, respectively. He joined Hiro-
shima University from 1975 to 1987. He
is currently a professor in the Depart-
ment of Informatics and Mathematical
Science, Graduate School of Engineering
Science, Osaka University. His research
interests include analysis and design of
fault-tolerant systems, design of testing
procedure of communication protocols and quantitative evalua-
tion of software development processes. He is a member of IEEE
and ACM. He received the Paper Award from Institute of Elec-
tronics, Information, and Communication Engineers of Japan in
1993.

