u

) <

The University of Osaka
Institutional Knowledge Archive

Ti SAT and SMT Based Model Checking of Concurrent
itle S
ystems

Author(s) |Tsuchiya, Tatsuhiro; Kikuno, Tohru

Citation | BT BEBESZREMHMEME, CST, AVHL Vb
T2, 2009, 109(73), p. 19-23

Version Type|VoR

URL https://hdl. handle.net/11094/27252

rights Copyright © 2009 by IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Institute of Electronics,

HEEBEA BFERBEES
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

I nf ormation, and Conmuni cation Engi neers

FFEH
IEICE Technical Report
CST2009-4 (2009-6)

SAT and SMT Based Model Checking of Concurrent Systems

Tatsuhiro TSUCHIYAT and Tohru KIKUNOf

7 Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0851
E-mail: {{t-tutiya,kikuno}Qist.osaka-u.ac.jp

Abstract We discuss model checking that uses a SAT (satisfiability) or SMT (satisfiability modulo theory) solver.

The basic idea behind this model checking approach is to reduce the model checking problem to the satisfiability

problem of a formula of some logic. Recent advances in SAT and SMT solvers make this particular approach sig-

nificantly attractive. However, it does not work effectively in verification of concurrent systems, because the size of

the formula blows up if the system has high concurrency. To overcome this challenge, we propose a new semantics

for concurrent systems. The new semantics allows a compact formula representation of the behavior of concurrent

systems. In this paper, we first introduce this new semantics and bounded model checking based on it, in the context

of a general model of concurrent systems. Then we apply it to two specific concurrent system models, namely Petri

nets and concurrent programs using unbounded integer variables.

Key words Model checking, concurrent systems, SAT, SMT

1. Introduction

Model checking is a popular formal verification technique.
In this paper we discuss the application of model checking to
concurrent systems. Specifically we consider model checking
that uses a SAT (satisfiability) or SMT (satisfiability mod-
ulo theory) solver. The basic idea behind this type of model
checking is to reduce the model checking problem to the sat-
isfiability problem of a formula of some logic. In a decade,
algorithms for SAT and SMT solving have been significantly
improved. These recent advances make this particular model
checking approach very attractive.

In verification of concurrent systems, however, SAT or
SMT-based model checking does not work effectively. The
reason for this is that the size of the formula to be checked
blows up if the system has high concurrency.

The purpose of our work is to make SAT and SMT-based
model checking a practically feasible approach to verifica-
tion of concurrent systems. To this end, we propose a new
semantic of the behavior of concurrent systems. The new se-
mantics allows one to very compactly represent the behavior
of concurrent systems.

In the following sections, we first introduce this new se-
mantics in the context of a general model of concurrent sys-

tems. Then we discuss the application of it to two particular

instances of concurrent systems: Petri nets and concurrent

systems with unbounded integer variables.
2. Preliminaries

2.1 Concurrent Systems

We use a TLA [3]-like logic to specify concurrent systems.
A predicate is a boolean-valued formula over variables. We
denote as val[P] the value of a predicate P when val is the
value assignment to the variables occurring in P.

We define a concurrent system as a triple C £ (V, 1, A},
where

® V is a finite set of system variables.

e] is the initial condition of the system.

¢ A is a finite set of actions.

A state is a values assignment to the variables in V. T'is a
predicate over V such that s[I] = TRUE iff s is an initial state
of the system. An action a € A is a predicate over V U V',
where V' is a set of next state variables. For brevity, we let
sla]s’ £ (s, s')[a], where s and s’ are a state and a next state.

We denote by ENABLED a the condition that the action a
is enabled. That is, ENABLED a = TRUE for state s iff there
is some state s’ such that s[a]s’ = TRUE.

The transition relation T is a predicate over V and V' that
holds for and only for a state pair (s, s’) iff (i) there is some

action a € A such that s[a]s’ = TRUE or (ii) there is no such

QOPYE @200 1% FRer vi ce

Institute of Electronics,

action and s = s’. We have:

TA \/av (/\ ENABLED @ = FALSE A /\v'zv)

acA aEA veV

A run is an infinite sequence of states sg,s1, 82, -+ such

that:

e] holds for s;; that is, s1[/] = TRUE.

¢ 5;[T)siy+1 = TRUE for any (s;, si41),% = 0.

2.2 Ordinary Bounded Model Checking of Safety

Properties

For simplicity, we limit our discussion to the verification of
reachability of the states where a predicate P holds. In the
ordinary bounded model checking, this is done by checking
the satisfiability of the following formula ®:

Preg 2 I(Vo/VYANT(Vo/V,Vi/VYA - AT(Vier [V, Vi / V)

P2 P(Vo/VYV .-V P(Vi/V)
&y & Prex A Pi

where V; is a set of variables representing the state after ¢
steps and (V;/V') means replacing variables in V with those
in V5.

Clearly, (s, 81, ,sk)[Prex] = TRUE iff 50,81, - , 8k is a
prefix of a run. Hence @y, is satisfiable iff some state where
p holds is reachable from one of the initial states in at most

k steps.
3. Proposed Approach

The problem with using the above formula is that its size
blows up when a large number of concurrent actions are pos-
sible. Our approach overcomes this problem by introducing
a new semantics of concurrent behaviors.

Let O: A — {1,...,n} be a one-to-one map that maps an
action to an integer ranging between 1 and n. We denote by
a; the action a such that O(a) = i.

In our proposed semantics, a run is defined as an infinite

sequence of states sg, s1,--- such that:
e] holds for sq.
® For (sj,s;41),5 = 0, either s;jla;]sj4+1 = TRUE or

8j = 8j+1, or both, where ¢ = (§ mod n) + 1.

It is straightforward to show that for the two semantics, a
run in one semantics always has a stuttering equivalent run
in the other. It has been shown that any LTL_x property is
invariant under stuttering [8]. Reachability is a LTL_x prop-
erty (written as OP); thus reachability holds in the ordinary
semantics iff it does so in the new semantics.

For an action a € A, we define:

a 2 av /\ =
%
It is easy to see that s[a]s’ = TRUE iff s[a|s’ or s = s’. Hence

the prefix of a run of length n * k can be represented as:

I nf ormation, and Conmuni cation Engi neers

prek B

I(Vo/V)

A ar(Vo /V,ViJVYA - Aan(Va-1/V, Vo / V)
ANar(Va/ViVas1/VYA - Nan(Van-1/V, Var /V")

A a1(Vig—1yen/Vs Vik=1ysns1/VINA
EERIAN an(Vk*n~1/Vy Vk*n/vl)

Note that in the new semantics, if sps1-+-8:8i41--- is a
run, then sps1 - - - 848:8; - - - is also a run. Hence, if a state can
be reached in exactly ¢ steps, then for any j = 4, a run always
exists where that state is reached in exactly j steps. Conse-
quently, bounded reachability checking can be performed by

checking the satisfiability of the formula &y
'i’k = IST'ek A P(Vk*n/V)

The crucial property of our semantics is that it allows &,
to be transformed into a very compact representation. Let
V' be the set of variables that never change their value in ac-
tion a;. Thus a; can be written in the following form: Then

we have:

I
a; =a; \ /\ v =0

vEV\V

where a; is @; with v’ = v removed for all v € V\V*. In turn

we have:

&iz(ai\//\v':v)/\ /\ v=u

vEVE veEV\VE

For each @;(V;/V,V;41/V’) in &, term v;11 = v; can
be removed for all v € V\V’ since vj+1 can be quan-
tified away as follows: Note that i)k can be written as
dr = &} Avjp1 = v;. Because the term v;41 = v; occurs as
a conjunct, ¢y evaluates to true only if v;11 and v; have the
same value. Hence ®; with v;41 being replaced with v; has
the same satisfiability as ®x. The other terms remaining in

®; can also be removed in the same way.

4. Petri Nets

Syntactically, a Petri net is a 4-tuple (P, 7, F, Mo) where
P = {p1,p2,-
{ti,t2,--- ,tn} (PNT = 0) is a finite set of transitions,
FC(P xT)U (T x P) is a set of arcs, and Mp is the ini-

tial state (marking). The set of input places and the set of

,Pm} is a finite set of places, 7 =

output places of t are denoted by *t and t°, respectively.

A Petri net is said to be I-bounded or safe if the number of
tokens in each place does not exceed one for any state reach-
able from the initial state. Note that no source transition
(a transition without any input place) exists if a Petri net is

safe. For example, the Petri net shown in Figure 1 is safe.

NI | -El ectronic Library Service

Institute of Electronics,

Ps Ts

Figure 1 A safe Petri net

Here we show how our proposed approach can apply to a
safe Petri net. To this end we first show that a safe Petri net
can be described by the general model (V, I, A) presented in
Section 2.

First we let:

‘/é {'Ul;"' 71;771,}

where v; is a boolean variable that takes TRUE iff place p;
has a token. Any marking can be uniquely represented by a
valuation of these n variables.

My is the only initial state; thus we have:

= /\ v; = TRUE A /\ v; = FALSE

Pi€P p; €P\Po
where Py is the set of places marked with a token in M.
Each action corresponds to a transition in 7. Let a; be

the action representing transition ¢. We have:

AN
at =
/\ v; = TRUE A /\ v; = FALSE
pi€°t piESE\L®

A /\ Vi = TRUE A /\ Vi = v

pict® pi EP\(®tUt®)
For t; in the Petri net in Figure 1, for example, we have:

L
Qg =

v1 = TRUE A] = FALSE A v = TRUE A v} = TRUE

AVl = v4 AUE = v5 A vg = Ve AV = vr
Accordingly, d: is defined as follows:

A A !
ar = ar V /\ V; = U4

PiEP
E((/\ v A /\ ﬂvz"/\/\vé)\/ /\ U;:vi)
Pi€E%t piEvt\t piEte pi€vtULe
AN /\ U;; =V
pi€P\(*tUt®)

To make the formula concise, v = TRUE and v = FALSE are
denoted as v and —v. For the Petri net shown in Figure 1,
for example, we have:

ey 2

(('01 A=) Avh A)V (v{ =vi Avh)=v2 Avg = vs))

Ay =va AvE =5 Avg = vs AV = vy

I nf ormation, and Conmuni cation Engi neers

Below is the formula to be checked for the example Petri
net and k= 1.

I(Vo/V)
/\((U1,o A =11 Avz Avg)

V((v1,o =v1,1) A (V2,0 = v2,1) A (V3,0 = Us,l)))
/\((v1,1 A =012 A vaz A Us2)

V(v =v1,2) A (va0 = va2) A (vs,0 = U5,2)))

Al (v2,1 A w23 A vs3) V (('UZ,I =v2,3) A (vg0 = Us,s)))
At (v, A 3,4 Av7a) V ((U3,1 =v3,.4) A (V7,0 = v7,4))
A (a2 A =015 Aves) V ((vaz = vas) A (ves = vs,5))
Al (vs,2 A —ws.6 A vre) V ((Us,z = vs,6) A (V7,4 = U7,6))
A

(ve,5 AN vre A ws,r A —r 7 Avir)
V((vi,2 = v1,7) A (ve,5 = ve,7) A (v7,6 = U7:7)))

/\P(U1,7/’U1, 112,3/1)27 U3,4/U3, U4,5/’U4, U5,6/U5, ’06,7/1)6,

vr,7/v7)

This resulting formula is much smaller than ® —the for-
mula used in ordinary bounded model checking. a; contains
at least m(= |P|) literals, while its counterpart in our ap-
proach (that is, é; with some terms removed) only contains
at most 4[*¢t| + 3|t*| literals. The difference becomes larger
if the number of places that are neither input nor output
places increases for each transition.

It should also be noted that in this particular case, k = 1
is enough to explore all the reachable states. On the other
hand, ordinary bounded model checking needs k& = 3.

Since only boolean values are involved, a propositional
SAT solver can be used to determine the satisfiability. In[9],
Yu, Ciardo, and Liittgen conducted a comprehensive com-
parison with their BDD-based model checking approach with
two SAT-based bounded model checking methods: ours[7]
and that by Helajanko and Niemeld [2]. The results show
that different methods work best for different problems and

that there is no clear winner.
5. Systems with Integers

A problem with proportional SAT based model checking is
that software programs generally deal with integer variables
rather than boolean variables. Because in ordinary sym-
bolic model checking, all data types are encoded as boolean
variables, it is hard to handle integer variables, especially
unbounded ones.

In this section, we propose a bounded model checking
method that can handle integer variable directly to achieve
efficient verification for such software systems.

To represent such systems, we use unbounded integer vari-
ables. To make the formula decidable, we limit any formula

specifying the system to boolean combinations of linear arith-

NI | -El ectronic Library Service

Institute of Electronics,

metic formulas. We define a linear arithmetic formula as a

formula of the form:

chwi +d° opP ZC}:M +d' (Vj,z; € 2)

T4 T4

where z; is an integer variable and cf, ¢} are integer coeffi-
cients, and OP is one of the binary operators: <,<,=,>, 2.

Figure 2 represents a program for the bounded-buffer
producer-consumer problem. This problem is a well know
concurrency problem and illustrates the need for synchro-
nization in systems where many processes share a resource.
This particular program is an instance with one producer
and one consumer. The action aproduce produces an item and
puts it in the buffer, while the other action aconsume consumes
an item from the buffer.

This system has a parameterized constant size which de-
termines the size of the buffer. This system should be cor-
rectly work for any value of size. For simplicity, we assume
that size is just a positive integer in this paper; it is easy
to perform parameterized model checking, though. As a
correctness criteria, consider that produced — consumed =
size — available must hold invariantly. This property can be
verified by checking reachability of states where the following
predicate holds:

P & —(produced — consumed = size — available)

Figures 3 and 4 show respectively ®; and &, with some
terms removed the way described in Section 3.

Off-the-shelf SMT solvers, such as Yices[1], can be used
to check satisfiability. Performance results will soon be re-

ported.
6. Conclusion

In this paper, we proposed a new bounded model checking
method for verification of concurrent systems. By exploiting
concurrency, our method generates much more succincet for-
mulas than ordinary bounded model checking. We applied
the proposed approach to safe Petri nets and concurrent sys-
tems with unbounded integers.

There are many possible directions for extending the pro-
posed methods.

a) Transition ordering

In this paper we did not discuss how O, the function for
ordering actions, should be determined. In fact the perfor-
mance of the proposed model checking approach depends
critically on this ordering function. As for safe Petri nets,
we proposed a heuretic algorithm for this task in[7]. The
algorithm traverses the net structure in a depth-first manner

and puts early encountered transitions forward.

I nf ormation, and Conmuni cation Engi neers

b) Model checking against temporal logic formulas

Our approach can be extended so that a general class of
temporal logic formulas can be verified. For example, in [6]
an extension that allows verification of a subset of LTL_x
formulas is proposed.

¢) Unbounded model checking

It is known that bounded model checking can be extended
to unbounded model checking by making use of Craig’s in-

terpolants [5]. When only Boolean variables are involved,

such as the case for safe Petri nets, interpolant-based un-
bounded model checking can be adapted to our semantics.
In [4] we show that our approach significantly improves the
performance of verification through the application to fea-
ture interaction detection for telecommunication services.

Acknowledgments

We would like to thank Takahiro Tanaka for his work
in our laboratory. This research was supported in part by
the MEXT Global COE program (Center of Excellence for
Founding Ambient Information Society Infrastructure).

References

[1] B. Dutertre and L. M. de Moura. A fast linear-arithmetic
solver for DPLL(T). In Proc. of 18th Conf. on Computer
Aided Verification (CAV 2006), volume 4144 of LNCS,
pages 81-94, Seattle, USA, Aug. 2006. Springer.

[2] K. Heljanko and I. Niemeld. Answer set programming and
bounded model checking. In A. Provetti and T. C. Son,
editors, Answer Set Programming, 2001.

3] L. Lamport. Specifying Systems: The TLA+ Language
and Tools for Hardware and Software Engineers. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[4] T.Matsuo, T. Tsuchiya, and T. Kikuno. Feature interaction
verification using unbounded model checking with interpo-
lation. IEICE Transactions on Information and Systems,
E92-D(6), 6 2009.

5] K. L.McMillan. Applications of craig interpolants in model
checking. In N. Halbwachs and L. D. Zuck, editors, TACAS,
volume 3440 of Lecture Notes in Computer Science, pages
1-12. Springer, 2005.

[6] S.Ogata. PhD thesis, Dept. of Info. Syst. Eng., Osaka Univ.

[7] S. Ogata, T. Tsuchiya, and T. Kikuno. Sat-based verifica-
tion of safe petri nets. In Proceedings of 2nd International
Symposium on Automated Technology for Verification and
Analysis (ATVA 2004), pages 72-92, 11 2004.

[8] D. Peled and T. Wilke. Stutter-invariant temporal proper-
ties are expressible without the next-time operator. Infor-
mation Processing Letters, 63(5):243-246, 1997.

[9] A. J. Yu, G. Ciardo, and G. Liittgen. Decision-diagram-
based techniques for bounded reachability checking of asyn-
chronous systems. Journal on Software Tools for Technol-
ogy Transfer, 11(2):117-131, 2009.

NI | -El ectronic Library Service

Institute of Electronics, Infornmation, and Conmunication Engi neers

V£ [available, produced, consumed}
I %2 produced =0 A consumed =0 A available = size
A &
Gproduce + 0 < available A produced’ = produced +1 A available’ = available —1
Qconsume 1 available < size A consumed’ = consumed +1 A available’ = available +1
}
Figure 2 A program for bounded-buffer
producedy = 0 A consumedo =0 A availableg = size I(W/V)

A ((0 < availableg A produced, = producedy +1 A available; = availableg —1)
V (produced; = producedy N available; = availableg))
A (consumed; = consumedg) Gproduce(Vo/V, V1/V")
A ((avaslable; < size N\ consumeds = consumedy +1 A availables = available; +1)
V (consumeda = consumed, A availablex = availabley))
A (produced, = produced) Geonsume(V1/V, V2 /V")
A ((0 < availablez A produceds = producedy +1 A availablez = availablez —1)
V (produceds = produced, N availablez = availables))
A (consumeds = consumeds) Gproduce Va/V, V3 /V")
A ({availableg < size A consumeds = consumeds +1 A availables = availables +1)
V (consumedy = consumeds A availables = availables))
A (produced, = produceds) Gconsume(Va/V,Va/V")
A =(produced, — consumeds = size — availables) P(Vy/V)

Figure 3 &, for the bounded-buffer program (k = 2,n = 2)

producedy =0 A consumedo =0 A availableg = size I(Vp/V)
A ((0 < availableg A produced, = producedg +1 A available; = availableg —1)

V (produced, = produced, N available1 = availableg)) Gproduce(Vo/V,V1/V')
A ((available: < size A consumeds = consumedo +1 A availables = available; +1)

V (consumedy = consumedo A availables = availablet)) Gconsume(V1/V, Vo /V")
A ((0 < availables A produceds = produced; +1 A availablez = availabley —1)

V (produceds = produced, A availables = available)) Gproduce(V2/V, V3/V")
A ((availables < size N consumeds = consumeda +1 A available4 = auailablesz +1)

V (consumeds = consumeds A availables = availables)) Gconsume(Va/V,Va/V")
A —(produceds — consumedy = size — availables) P(Vy/V)

Figure 4 A concise formula derived from $,

NI | -El ectronic Library Service

