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SUMMARY Model checking is a technique that can make
a verification for finite state systems absolutely automatic. We
propose a method for automatic verification of fault-tolerant con-
current systems using this technique. Unlike other related work,
which is tailored to specific systems, we are aimed at providing
an approach that can be used to verify various kinds of systems
against fault tolerance. The main obstacle in model checking is
state explosion. To avoid the problem, we design this method so
that it can use a symbolic model checking tool called SMV (Sym-
bolic Model Verifier). Symbolic model checking can overcome the
problem by expressing the state space and the transition relation
by Boolean functions. Assuming that a system to be verified is
modeled as a guarded command program, we design a modeling
language and propose a translation method from the modeling
language to the input language of SMV. We show the results of
applying the proposed method to various examples to demon-
strate the feasibility of the method.
key words: symbolic model checking, fault tolerance, SMV, con-

current systems, guarded command

1. Introduction

In recent years, the growing demand for high availabil-
ity and reliability of computer systems has led to a
formal verification for fault-tolerant systems [12], [15],
[17], [19]. Methods for formally verifying fault toler-
ance are classified into deductive verification and model
checking.

The term deductive verification normally refers to
the use of axioms and proof rules to prove the correct-
ness of systems. The importance of deductive verifica-
tion is widely recognized by computer scientists. There
are some examples where the fault tolerance was ver-
ified by deductive verification [15], [19]. However, de-
ductive verification is a time-consuming process that
can be performed only by experts who are educated
in logical reasoning and have considerable experience.
The proof of a single protocol or circuit can last days
or months. Moreover deductive verification cannot be
performed fully automatically; thus the use of it is rare.
An advantage of deductive verification is that it can be
used for reasoning about infinite state systems. How-
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ever, no limit can be placed on the amount of time or
memory that may be needed in order to find a proof.

Model checking is an automatic technique for ver-
ifying concurrent systems. That can be performed ab-
solutely automatically in stead of restriction that it can
verify only finite state systems. Because of this prop-
erty, it is preferable to deductive verification, whenever
it can be applied. There are also some examples where
fault tolerance property of concurrent systems was ver-
ified by model checking [4], [14], [20]. However, these
methods for verification are specialized for specific sys-
tems, and a general approach does not exist.

In this paper, we propose for automatic verification
of fault tolerance of concurrent systems using model
checking. Our aim is to provide a single method that
can be applied to various kinds of systems. We achieve
this goal to adopting a model of fault-tolerant systems
that is proposed by Arora and Gouda [2]. In recent
years, the model has been accepted as a fundamentals
for building and reasoning about fault-tolerant systems.

Of course, there are always situations where
problem-specific properties, which cannot be handled
by our method, need to be verified. This is most likely
when the designs to be verified are detailed. However,
we believe that our method is still useful especially in
early stages of development, where designs are in highly
abstract level.

This method uses a symbolic model checking tool
called SMV (Symbolic Model Verifier) [18]. SMV is a
tool for checking that finite-state systems described by
the input language of SMV satisfy specifications given
in CTL (Computation Tree Logic) [9].

In this paper we assume that a system to be veri-
fied is given in the form of a guarded command program
[2]. We design a modeling language suited for describ-
ing guarded command programs, and then we propose a
translation method from the modeling language to the
SMV language. We present the CTL formula that de-
scribes fault tolerance. Finally we apply the proposed
method to some examples to demonstrate the useful-
ness of the method.
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2. Model of Fault-Tolerant Systems

2.1 Guarded Command Programs

To describe systems to be verified, we adopt the model
proposed in [2]. A system is described as a program that
consists of a set of variables and a finite set of processes.
Each variable has a predefined nonempty domain. Each
process consists of a finite set of actions. Each action
consists of a guard and a statement, where the guard is
a Boolean expression over program variables, and the
statement is a set of assignments that updates zero or
more program variables and always terminates upon
execution. The action is described in the form

〈guard〉 → 〈statement〉.

A state of the system is defined as a valuation val-
ues of the program variables. Therefore a Boolean ex-
pression over the program variables describes a set of
states where that expression evaluates to true, and a
state transition is described by assignments that up-
date the program variables.

An action is enabled at a state iff its guard eval-
uates to true at that state. At each state, a process
is selected non-deterministicly, and if there exist en-
abled actions in the process, one of them is also selected
non-deterministicly and then the statement updates the
program variables. State transitions thus occur by ex-
ecution of actions.

We assume that the sequence of state transitions
is process-fair; that is, any process is infinitely often
chosen for execution.

2.2 Faults

A formal approach to defining the term “fault” is usu-
ally based on the observation that systems change their
state as a result of two quite similar event classes: nor-
mal system operation and fault occurrences [11]. Thus,
a fault can be modeled as an unwanted (but neverthe-
less possible) state transition of a process. By using
additional (virtual) variables to extend the actual state
space of a process, various kinds of faults, such as, crash
faults, omission faults, or some type of Byzantine faults,
can be represented [1], [2], [13], [23].

In this model, we describe the occurrences of faults,
that is, the unwanted transitions, by a set of actions,
F , over the variables of the program.

We refer to actions in F as fault actions. These
three types of faults are modeled by actions as follows.

(1) Crash faults

First, we add a Boolean variable up to the process and
set the initial value of up to true. In addition, the
guard of each action of the process is modified to the

conjunction of the guard and up, as shown below.

up ∧ 〈guard〉 → 〈statement〉.

This means that no action is selected when up = false.
Finally the fault action

fault : true → up := false

is added to the process. If the action is selected, up
is set to false and no action becomes selectable from
then. We thus can represent a crash fault.

(2) Omission faults

A fault that causes a process to not respond to some
inputs is called an omission fault. This type of a fault
can be represented in the same way as crash faults,
except that an additional action

up → up := false

is needed to represent that the process behaves incor-
rectly intermittently.

(3) Byzantine faults

Byzantine fault refers to fault which causes the process
to behave in totally arbitrary manner. Incorrect com-
putation faults are an important subset of the Byzan-
tine fault. With this type of fault, a process simply
produces an incorrect output. Consider the following
action

〈guard〉 → v := valk.

Where v is a variable that has the range of values
{val1, · · · , valn}(1 5 k 5 n).

In the case, we can represent an incorrect compu-
tation fault by adding the fault action

fault : 〈guard〉 → v := {val1, · · · , valn}

to the process. If the action is selected, the value of v
changes arbitrarily.

2.3 Fault Tolerance

In the model, the fault tolerance of the system is for-
mally defined as follows. We assume that a Boolean
expression S that represents legal states is given. In
addition, we assume that S is never invalidated by non-
fault actions. This property is referred to as the closure
property.

These assumptions stem from the following ob-
servation. A well-established method for verifying
fault-free systems is to detect a predicate that is true
throughout system execution. Such an invariant pred-
icate identifies the legal states of system and asserts
that the set of legal states is closed under system exe-
cution without fault. For example, Arora and Kulkarni
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Fig. 1 Schematic overview of the fault tolerance property.

proposed a methodology for constructing fault-tolerant
systems systematically [3]. In the methodology, fault-
tolerant programs are incrementally constructing from
non-fault-tolerant systems and each step of the con-
struction, an invariant property is required to be identi-
fied and verified. Following this observation, we require
that for each fault-tolerant system there exists a pred-
icate S that is invariant throughout fault-free system
execution.

Let c be any legal state, that is, any state of the
program where S holds. If S is not invalidated in c
by any action in the set F of fault actions, then the
program is said to be tolerant to F . (This type of fault
tolerance is referred to as masking fault tolerance.)

Otherwise, executing an enabled action in F in c
may yield an illegal state, where ¬S holds. If continu-
ous execution of a sufficiently large number of actions
that are not in F always yields a legal state from any
illegal state, then the program is also said to be toler-
ant to F . (This type of fault tolerance is referred to as
nonmasking fault tolerance.) Figure 1 illustrates this
concept.

3. Model Checking

Model checking is an automatic technique for verifying
finite state concurrent systems. Model checking meth-
ods search the finite state space to determine if some
specification is true or not [10]. One benefit of the re-
striction to finite state systems is that verification can
be performed automatically. Although this restriction
may seem to be a major disadvantage, model check-
ing is applicable to several very important classes of
systems. For example, hardware controllers are finite
state systems, and so are many communication proto-
cols. In many cases errors can be found by restricting
unbounded data structures to specific instances that are
finite state. For example, programs with unbounded
message queues can be debugged by restricting the size
of the queues to a small number like two or three.

3.1 Symbolic Model Checking

The main challenge in model checking is dealing with
the state explosion problem. The problem occurs in sys-
tems with many components that can interact concur-
rently. To cope with the problem, a method has been
proposed that expresses the state space and the transi-
tion relation by Boolean functions, and verifies systems
by processing the Boolean functions. This method is
called symbolic model checking [7], [18].

In symbolic model checking, a Boolean function
is expressed by using OBDDs (Ordered binary deci-
sion diagrams) [6]. OBDDs provide a canonical form
for Boolean functions that are often substantially more
compact than conjunctive or disjunctive normal form,
and very efficient algorithms have been developed for
manipulating them. Therefore, it achieves the concise-
ness to express the state space and the transition rela-
tion, and enables the avoidance of the state explosion
problem.

In model checking, it is necessary to describe the
properties that the system must satisfy as a specifica-
tion. The specification is usually given as a formula in
some logic. For concurrent systems, it is common to
use temporal logic, which can assert how the behavior
of the system evolves over time. A well-used temporal
logic is CTL [9]. Time is not mentioned explicitly in
CTL; instead a formula might specify that eventually
some designated state is reached, or that an error state
is never entered. Properties like eventually or never are
specified using special temporal operators. These op-
erators can be combined with Boolean connectives or
nested arbitrarily.

CTL formulas describe properties of computation
trees. The tree is formed by unwinding the execution
sequences into an infinite tree with the designated ini-
tial state at the root. The computation tree shows all of
the possible executions starting from the initial state.
In CTL, formulas are composed of path quantifiers and
temporal operators. The path quantifiers are used to
describe the branching structure in the computation
tree. There are two such quantifiers; one is A (“for
all computation paths”) and another is E (“for some
computation path”). These quantifiers are used in a
particular state to specify that all of the paths or some
of the paths starting at that state have some property.
The temporal operators describe properties of a path
through the tree. There are four basic operators, X
(“next time”), F (“in the future”), G (“globally”), U
(“until”). In this paper, we use only AF and AG. The
formula AGp holds in state s if p holds in all states
along all sequences of states starting from s, while the
formula AFp holds in state s if p holds in some states
along all sequences of states starting from s. An atomic
proposition is a CTL formula. If f and g are CTL for-
mulas, so are ¬f , f ∧ g, f ∨ g, AFf , and AGf .
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MODULE main
VAR request:boolean;

state:{ready, busy};
INIT state = ready
TRANS (state = ready & request)

& next(state) = busy
SPEC AG(request -> AF state = busy)

Fig. 2 SMV program.

3.2 Symbolic Model Verifier (SMV)

SMV is a software tool that implements symbolic model
checking [18]. It is based on a language for describing
hierarchical finite-state systems. Programs described in
the language contain specifications expressed by CTL.
The model checker extracts a state space and a tran-
sition system from a program in the SMV language
and uses an OBDD-based search algorithm to deter-
mine whether the system satisfies its specification. If
the system does not satisfy the specification, the verifi-
cation tool will produce an execution trace that shows
why the specification is false.

Figure 2 is an example of an SMV program. A
state of the transition system is represented by a col-
lection of state variables. The variables may be of
Boolean, integer subrange, or enumerated type. The
keyword VAR is used to declare variables. The variable
request is declared to be a Boolean in the program,
while the variable state can take on the symbolic val-
ues ready or busy.

In the SMV language, the transition relation is de-
scribed by specifying changes of the values of variables
with ASSIGN declaration, or by using a Boolean-valued
function with TRANS declaration. When using ASSIGN,
the change of the value is individually described for
every variable. This is not appropriate for describing
guarded command programs in which each action up-
dates multiple variables and selection of actions can
be non-deterministic. We therefore use TRANS and de-
scribe the transition relation as a Boolean formula over
the program variables. Similarly, initial states are de-
scribed by a Boolean formula.

Specifically the transition relation is a set of the
pairs of the current state and the next state that sat-
isfy the Boolean formula defined in the TRANS state-
ment. Also the initial states are a set of states where the
Boolean formula defined in the INIT statement holds.
The expression next(x) is used to refer to the variable
x in the next state.

The specification is described as a formula in CTL
under the keyword SPEC. SMV verifies whether all pos-
sible initial states satisfy the specification. In this case,
the specification signifies that invariantly if request is
true, then eventually the value of state will be busy.

In model checking, only the correctness along fair

computation paths is interested in many cases. For
example, we do not consider a computation where a
certain process has never selected as an object of ver-
ification. Such properties are expressed by keyword
FAIRNESS in SMV. The keyword FAIRNESS and a CTL
formula force SMV to verify only computation paths
where the associated CTL formula becomes true in-
finitely often.

4. The Proposed Modeling Language

To describe and verify fault-tolerant systems, we pro-
pose a modeling language for describing guarded com-
mand programs. By translating programs written in
this language into the SMV language, it becomes possi-
ble to model check fault tolerance. Using this proposed
language, we need not describe the non-determinism of
systems, the fairness property of the selection of pro-
cesses and the fault-tolerance property explicitly. We
note that because of the lack of flexibility of the SMV
language, it is difficult and tedious to represent these
properties by hand. By representing a given system as
a guarded command program and the legal states as
a Boolean formula, we can verify fault tolerance auto-
matically. In this section, we show the syntax of the
modeling language and explain how to translate it to
the SMV language.

4.1 Syntax

The program is described in the following form.

program :: "program"

macros_definition

legal_states_description

process_description1

process_description2

...

The set of legal states is specified as a Boolean
formula.

legal_states_description :: "spec" expression

The processes are described in the following form.

process_description :: "process" process_name

"begin"

var_declaration

macros_definition

action_description

fault_description

"end"

The variables of a process are declared with two
elements. One is the type of the variable, while the
other is a set of the initial values of the variable.

The type associated with a variable declaration can
be either Boolean, a set of integers, or enumeration of
symbols. An integer type is defined either by upper
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and lower bounds like {1 . . . 5} or by an enumeration of
elements like {1, 2, 3, 4, 5}.

Actions (including fault actions) which specify the
transition relation of the system are described in the
following form.

action_description :: "action" seq_of_actions

fault_description :: "fault" seq_of_actions

seq_of_actions :: action1 ";"

action2 ";" ...

action :: guard ":>" statement ";"

guard :: expression

statement :: assignment1 ","

assignment2 "," ...

assignment :: left ":=" right

left :: variable_name

| process_name "." variable_name

right :: expression

| "{" val1 "," val2 "," ... "}"

The left hand side of an assignment denotes the
variable that will change by the action. If the right
hand side is an expression, the assignment means that
the variable changes to the value of the right hand
side. On the other hand, if the right hand side is a
set, the variable changes to one value of the set non-
deterministicly.

4.2 Translation Method to the SMV Language

4.2.1 Action

As stated above, an action is represented in the pro-
posed language as follows.

P :> x1:=expr1, x2:=expr2, · · · , xn:=exprn

The changes of the variable values caused
by the action can be represented as a Boolean
formula next(x1)=expr1 & next(x2)=expr2 & · · · &
next(xn)=exprn. Note that the action can be selected
only in the states represented by a Boolean formula P.
Consequently, the state transition by the action is de-
scribed as the following formula.

P & next(x1)=expr1 & · · · & next(xn)=exprn
& next(y1)=y1 & · · · & next(ym)=ym

Here y1,· · · ,ym are the variables that do not
change in the next state. The formula holds iff this
action is enabled and the value of each variable in the
next state is assigned as designated by this action. The
formula thus represents that this action is selected. A
fault is expressed as an action and can be described
similarly.

Let ai be this formula for an action. Then the
transition of a process that has N actions is expressed
as formula A = a1 ∨ a2 ∨ · · · ∨ aN .

4.2.2 State Transitions

Let Ai be a formula that expresses the transitions of
process i. Since only one process is selected simultane-
ously, the transitions of the system that has m processes
is represented as formula (A1 ∧ run1) ∨ (A2 ∧ run2) ∨
· · · ∨ (Am ∧ runm), where a Boolean variable runi rep-
resents that a process i is selected. The constraint that
only one process is selected can be expressed by setting
only one element in run1, run2, · · · , runm to true.

Consequently the transition relation of the system
is represented as the following formula.

(A1 ∧ run1) ∨ (A2 ∧ run2) ∨ · · · ∨ (Am ∧ runm) ∧
((run1 ∧ ¬run2 ∧ · · · ∧ ¬runm) ∨ (¬run1 ∧ run2 ∧
· · · ∧ ¬runm) · · · ∨ (¬run1 ∧ ¬run2 ∧ · · · ∧ runm))

We assume the fairness for selection of processes;
that is, each process must be selected infinitely often.
Thus, only execution sequences where each runi holds
infinity often are verified. This can be specified using
FAIRNESS as follows.

FAIRNESS run1
...

FAIRNESS runm

The set of initial states is also described by a
Boolean formula. When a variable x has initial values
x0, x1, · · ·, the set of states where x has the initial val-
ues is described by a formula (x = x0)∨ (x = x1)∨ · · ·.
Since the initial states are those where such a formula
holds for each variable, the conjunction of each formula
represents the set of the initial states.

4.2.3 Specifying Fault Tolerance

To use SMV, we have to express the property to be
verified as a formula of a temporal logic called CTL.

So far we have shown the method for expressing
the transition relation of a system in the SMV language,
without considering verification of fault tolerance. In
order for verification to be carried out, it is necessary
to describe the fault tolerance property explicitly. For
this purpose, we introduce a Boolean variable f and
modify guards of fault actions such that they can be
selected only when f = 0. When f = 1, only non-fault
actions are selected.

We let the value of f to change as follows. If the
system is in the legal states, the value of f is always
false. If the system is not in the legal states, the value
of f changes to true or false non-deterministicly. Once
the value of f has changed to true, it remains true in-
variantly in the illegal states. This is intended to rep-
resent the fact that faults will stop occurring. If the
system has come back to the legal states, the value of
f changes to false.
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The guard of each fault action is modified as fol-
lows. Suppose that a fault action is given in the mod-
eling language as shown below.

P :> v1:=expr1, v2:=expr2, · · ·, vn:=exprn

Then the condition of execution is modified to P ∧¬f ,
and another action is obtained as follows.

P ∧ ¬f → v1 := expr1, v2 := expr2, · · · , vn := exprn

Note that the only difference between the two actions
is that the latter is not enabled when f is true. In
addition, we do not exclude the possibility that f is
always false. Thus this modification does not deviate
the resulting transition system from the behavior of the
given program.

The change of the value of f is described as the
following formula F . Here S is a Boolean formula that
represents the set of legal states.

F = S & next(f)=0
| !S & !f & (next(f)=1|next(f)=0)
| !S & f & next(f)=f

(! represents negation.)
The value of f changes independently from the ex-

ecutions of actions. So by adding F to the formula that
represents the behavior of the whole system as a con-
junctive, the changes of the value of f are incorporated
into the transition relation. Thus the TRANS statement
becomes as follows.

TRANS
(A1 & run1 | A2 & run2 | · · · | Am & runm)
& ( ( run1 & !run2 & · · · & !runm)

...
| (!run1 & !run2 & · · · & runm))

& F

Using f , the property to be verified, that is, the
fault tolerance, is expressed in CTL as follows.

AG(f → AF (S))

This CTL formula expresses the property that if
f holds, then S will always hold eventually. The CTL
formula holds iff the system is either masking fault-
tolerant or non-masking fault-tolerant. In the case
of nonmasking fault-tolerant systems, even though the
system falls into the illegal state where S does not hold
by a fault action, if f changes to true and faults stop
occurring, then S will hold eventually by execution of
non-fault actions. In the case of masking fault-tolerant
systems, S always holds. Thus AF (S) always holds, so
does this CTL formula.

The proposed method focuses on checking the fault
tolerance property. Using different CTL formulas, how-
ever, other properties can also be verified. For example,
the closure property can also be checked by using an-
other CTL, as explained below.

Remark

As stated in 2.3, we assume that the closure property
holds; that is, S is never invalidated by non-fault ac-
tions. It should be noted that we can also check the
closure property as follows. First, with the method
described in this section, a given guarded command
program is translated into an SMV program by con-
sidering non-fault actions only. Second, CTL formula
AG(S → AG(S)), which represents the closure prop-
erty, is checked by the SMV tool.

5. Case Studies

In this section, we show the results of applying the pro-
posed method to several examples. These examples are
known to be fault-tolerant and all verification results
coincided completely. The first two examples, namely
atomic commitment and Byzantine agreement proto-
cols are masking fault-tolerant, while the third one is
non-masking fault-tolerant. All experiments were per-
formed on a Linux machine with a 500MHz Pentium
III processor and 256Mbytes of memory.

5.1 Atomic Commitment Protocol

The first example is the atomic commitment protocol
[2], [5]. In the protocol, each process casts one of two
votes, Yes or No, then reaches one of two decisions,
Commit or Abort. If no faults occur and all processes
vote Yes, all processes reach a Commit decision. A
process reaches a Commit decision only when all pro-
cess voted Yes. And all processes that have reached a
certain decision reach the same decision. We consider
using the two-phase commit protocol to implement the
atomic commitment protocol. We assume that faults
may stop processes.

In the first phase, each process casts its vote and
sends the vote to a distinguished coordinator process
c. In the second phase, the coordinator process reaches
a decision based on the votes received from other pro-
cesses and broadcasts the decision to all processes.

The coordinator process c has the following two
phases and can be described as three actions.

Phase 1: Process c casts its vote, enters the second
phase, and starts waiting for the votes of
other processes (the first action).

Phase 2: If c detects that all processes have voted Yes
and not stopped, it reaches a Commit de-
cision (the second action). If c detects that
some process has voted No or has stopped,
it reaches an Abort decision (the third ac-
tion).
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Fig. 3 Example of atomic commitment.

process c

begin
var
ph : {0...2}{0};
up : boolean{true};
d : boolean{true, false};

action
up & ph=0 :> ph:=1, d:={false, true}, up:=up ;
up & ph=1 &
((up & ph=1 & d) & (p1.up & p1.ph=1 & p1.d)
& (p2.up & p2.ph=1 & p2.d) & · · · )
:> ph:=2, d:=true, up:=up ;

up & ph=1 &
((!up | (ph>=1 & !d)) | (!p1.up | (p1.ph>=1 & !p1.d))
| (!p2.up | (p2.ph>=1 & !p2.d)) | · · · )
:> ph:=2, d:=false, up:=up ;

fault
true :> ph:=ph, d:=d, up:=0;

end

Fig. 4 The coordinator process.

Each process other than the coordinator has fol-
lowing two phases and can be described as three or
more actions.

Phase 1: If the process detects that c has voted and
entered the second phase, it casts its vote,
enters the second phase, and starts wait-
ing for the vote of some process (the first
action). If the process detects that c has
stopped, it reaches an Abort decision (the
second action).

Phase 2: If the process detects that some process
has not stopped and completed its second
phase, reaches the same decision as that
process has (the third or other actions).

Using Fig. 3, we illustrate how the protocol works.
We assume that the number of processes is 3.

Phase 1: (Step 1) The coordinator process c casts
its vote and the value of ph is set to 1. Here we assume
that c votes Yes (d = true). (Step 2) Process p1 and p2

check that c has not stopped and voted (c.up∧c.ph = 1),
and cast their votes. The value of p1.ph and p2.ph are
set to 1.

Phase 2: Now suppose a crash fault occurs in pro-
cess p2. (Step 3) Since p2 has stopped, c reaches an
Abort decision. The value of ph is set to 2 and c com-
pletes the phase. (Step 4) Process p1 checks that c
has not stopped and has completed the second phase

const

condition1 :=
c.ph=0 ->
(c.ph=0 | (c.ph=2 & !c.d))
& (p1.ph=0 | (p1.ph=2 & !p1.d)) & · · · ;

condition2 :=
c.ph=1 ->
(c.ph!=2 | !c.d) & (p1.ph!=2 | !p1.d) & · · · ;

condition3 :=
c.ph=2 & c.d ->
(c.ph!=0 & c.d) & (p1.ph!=0 & p1.d) & · · · ;

condition4 :=
c.ph=2 & !c.d ->
(c.ph!=2 | !c.d) & (p1.ph!=2 | !p1.d) & · · · ;

spec
condition1 & condition2 & condition3 & condition4

Fig. 5 Legal states of atomic commitment.

(c.up ∧ c.ph = 2) and reaches the same decision as c
(d = false). The value of p1.ph is set to 2 and p1

completes the phase.
Finally all processes has completed or stopped. At

this stage, the processes that have not stopped (that is,
c and p1) have reached an Abort decision.

The coordinator process can be described by using
the proposed input language as shown in Fig. 4. The
variable ph represents the current phase of the process.
The value of ph is 0 initially, 1 after the process has cast
its vote and entered phase 2, and 2 after the process has
reached a decision and completed phase 2. The variable
d represents (depending upon the current phase) the
vote or the decision of the process. The value of d is
true if the vote is Yes or the decision is Commit, and
false if the vote is No or the decision is Abort. The
variable up represents the current status of the process.
The value of up is true if the process is being executed,
and false if the process is stopped. Other processes
can be described similarly.

We assume that if the following four conditions are
satisfied, the system is in the legal state. (1) If c has not
voted (c.ph = 0), then each process has either not voted
or (detected that c had stopped and) reached an Abort
decision. (2) If c has voted but not reached a decision
(c.ph = 1), then each process has either not reached a
decision or (detected that c had stopped and) reached
an Abort decision. (3) If c has reached a Commit deci-
sion (c.ph = 2∧c.d), then each process has either voted
Yes (and not reached a decision) or reached a Com-
mit decision. (4) If c has reached an Abort decision
(c.ph = 2 ∧ ¬(c.d)), then each process has either not
reached a decision or reached an Abort decision. Thus
the legal states can be described as shown in Fig. 5.

By applying the translation method to this exam-
ple described above, we verified the fault tolerance by
SMV. We applied the method to the systems where
the number of processes were 3, 4, 5, and 6. When
the number of processes was 6, the time required for
verification was about 0.65 seconds and the number of
reachable states was about 225. Figure 6 shows the out-
put of SMV in case the number of processes was 6. The
performance of verification is shown in Table 1.
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% smv -r 2phase.smv

-- specification AG (f -> AF S) is true
resources used:
user time: 0.65 s, system time: 0.03 s
BDD nodes allocated: 38479
Bytes allocated: 1900544
BDD nodes representing transition relation: 9391 + 14
reachable states:
3.10518e+07(2^ 24.8882) out of 3.82206e+08(2^ 28.5098)

Fig. 6 Verification result produced by SMV (atomic
commitment).

Table 1 Performance of verification.

Protocol (� of processes) Time States
(sec) Reachable Total

Atomic Commit (3) 0.03 5312 ≈ 215

Atomic Commit (4) 0.08 91392 ≈ 219

Atomic Commit (5) 0.21 ≈ 220 ≈ 224

Atomic Commit (6) 0.65 ≈ 225 ≈ 229

Leader Election (3) 0.04 11664 11664
Leader Election (4) 0.26 ≈ 221 ≈ 221

Leader Election (5) 2.27 ≈ 229 ≈ 229

Leader Election (6) 9.68 ≈ 238 ≈ 238

Byzantine Agreement(4) 315.89 ≈ 225 ≈ 281

5.2 Byzantine Agreement

The second example is the Byzantine agreement prob-
lem [2]. Each process is either Reliable or Unreliable.
Each Reliable process reaches one of two decisions,
false or true. One process g is distinguished and has
associated with it a Boolean value B. It is required
that:

1. If g is Reliable, the decision value of each Reliable
process is B.

2. All Reliable processes reach the same decision.

We assume authenticated communication; mes-
sages sent by Reliable processes are correctly received
by Reliable processes, and Unreliable processes cannot
forge messages on behalf of Reliable processes [8], [21].

Agreement is reached within N +1 rounds of com-
munication, where N is the maximum number of pro-
cesses that can be Unreliable. In each round r, where
r 5 N , every Reliable process j that has not yet reached
a decision of true checks whether g and at least r − 1
other processes have reached a decision of true. If the
check is successful, j reaches a decision of true. If j
does not reach a decision of true in the first N rounds,
it reaches a decision of false in round N + 1.

Let dr be a Boolean value denoting the tentative
decisions of a process up to round r, and let cr.k be a
Boolean value that is true iff the process knows that
process k has reached a decision of true in round r.
We assume that the system is in legal states when the
following four conditions are satisfied. (1) The number
of Unreliable processes is at most N . (2) Before the first
round, the tentative decision of each Reliable process
j is false, and for each k, cr.k of j is false. (3) In
each round q, the tentative decision of each Reliable

process j is set to true iff its previous tentative decision
is true or j knows g and at least q − 1 other processes
have reached a decision of true, and cr.j of each other
process k is set to true only if dq of j is true. (4) In
each round q, for any two Reliable processes j and k, if
the current tentative decision of j is false then cq.k of
j is true iff the previous tentative decision of k is true
or some process knows k has reached a decision of true.

We can show that each computation of the proto-
col that starts at a state in the legal states satisfies
the Byzantine agreement specification as follows. If
the tentative decision of g before the first round was
true, because the third and fourth conditions of legal
states stated above hold, c1.g of each Reliable process
becomes true and the decisions of the Reliable processes
become true as well as g. If the tentative decision of g
before the first round was false, because of the third
condition, the decisions of the Reliable processes never
change true. Thus the Reliable processes reach the
same decision as process g.

Figure 7 illustrates how the protocol works. We
assume that the number of processes is 4 and N = 1.
The program variables in round 0 (that is, the initial
state) have the values as shown in Fig. 7(a). Now sup-
pose a fault has occurred in the process p2 and p2 has
become Unreliable.

In round 1, each process acts as follows. First, each
process sets the values of c1.k (k = g, p1, p2, p3). The
value of c1.k is set to true when d0 is true for process
k or there exists a process such that c0.k is true. For
example, for p1 c1.g is true, c1.p1 is false, c1.p2 is false
and c1.p3 is false, while each c1.k of Unreliable process
p2 is false.

Next, each process sets the value of d1. The value
of d1 is set to true when d0 is true or c1.g is true. For
example, d1 for p1 is true, while d1 for p2 is false.

When round 1 has been completed, the program
variables have the values as shown in Fig. 7(b).

In round 2, each process acts as follows. First, each
process sets the values of c2.k similarly as in round 1.
For example, for p1 c2.g is true, c2.p1 is true, c2.p2 is
false and c2.p3 is true, while each c2.k of Unreliable
process p2 is false.

Next, each process sets the value of d2. The value
of d2 is set to true when d1 is true or c2.g and at least
one of (c2.p1, c

2.p2, c
2.p3) are true. For example, d2 for

p1 is true, while d2 for p2 is false.
When round 2 has been completed, the program

variables have the values as shown in Fig. 7(c), and each
Reliable process reaches the same decision.

We described the Byzantine agreement problem as
a program in the language that we proposed. Figure 8
describes process g. Here we consider the case which
the number of processes is 4 and N is 1. The variables
d0,d1,d2 denote dr for round 0, 1, 2. The variables
c0k,c1k,c2k denote cr.k for round 0, 1, 2. The vari-
ables b is a Boolean value that is true iff the process
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Fig. 7 Example of Byzantine agreement.

process g

begin
var r,rr:{0,1,2}{0}; b:boolean{true};

d0,d1,d2:boolean{true,false};
c0g,c0p1,c0p2,c0p3:boolean{false};
c1g,c1p1,c1p2,c1p3:boolean{false};
c2g,c2p1,c2p2,c2p3:boolean{false};

const csum1:=true;
csum2:=(c2p1|c2p2|c2p3);

action
r=0 & rr=0 :> rr:=1,

c1g:=d0 | (c0g|p1.c0g|p2.c0g|p3.c0g),
c1p1:=p1.d0 | (c0p1|p1.c0p1|p2.c0p1|p3.c0p1),
c1p2:=p2.d0 | (c0p2|p1.c0p2|p2.c0p2|p3.c0p2),
c1p3:=p3.d0 | (c0p3|p1.c0p3|p2.c0p3|p3.c0p3);

r=0 & rr=0 & !b & p1.b & p2.b & p3.b :> rr:=1,
c1g:={true,false},c1p1:=false,
c1p2:=false,c1p3:=false;

r=0 & rr=0 & !b & !p1.b & p2.b & p3.b :> rr:=1,
c1g:={true,false},c1p1:={true,false},
c1p2:=false,c1p3:=false,
· · ·

r=0 & rr=1 & p1.rr=1 & p2.rr=1 & p3.rr=1
:> d1:=d0|csum1&c1g,r:=1;

r=0 & rr=1 & p1.rr=1 & p2.rr=1 & p3.rr=1 & !b
:> d1:={true,false},r:=1;
· · ·

fault b & p1.b & p2.b & p3.b :> b:=false;
end

Fig. 8 Process g of Byzantine agreement.

is Reliable. The variables r and rr denote the current
round. If rr is 1, then it means that the current round
is 1 and that c1.k of each k has been set to some value.
Similarly when r is 1, the current round is 1 and d1

has been set to some value. The variables csum1 and
csum2 denote whether the process knows that g and at
least q − 1 other processes have reached a decision of
true for q = 1 and 2 respectively. Other processes can
be described similarly. The legal states are described
as shown in Fig. 9.

The time required for verification was about 316
seconds and the number of reachable states was about
225. The performance of verification is shown in Ta-
ble 1.

5.3 Leader Election

The third example is the leader election problem on

const

condition1 := g.b & p1.b & p2.b & p3.b
| !g.b & p1.b & p2.b & p3.b
| g.b & !p1.b & p2.b & p3.b
| g.b & p1.b & !p2.b & p3.b
| g.b & p1.b & p2.b & !p3.b;

condition2 := (g.b -> (g.d0 = g.b) & !g.c0g)
&(g.b -> (g.d0 = g.b) & !g.c0p1)
&( · · · );

condition3 :=
((g.r>=1 & g.rr>=1 & p1.r>=1 & p1.rr>=1
& p2.r>=1 & p2.rr>=1 & p3.r>=1 & p3.rr>=1)
-> ( (g.b -> (g.d1<>(g.d0|c1g&g.csum1)))

&( · · · )
&(g.b -> (g.c1g -> g.d1)&(p1.c1g -> g.d1)

&(p2.c1g -> g.d1)&(p3.c1g -> g.d1))
&( · · · )))

&( · · · );
condition4 :=
((g.r>=1 & g.rr>=1 & p1.r>=1 & p1.rr>=1

& p2.r>=1 & p2.rr>=1 & p3.r>=1 & p3.rr>=1)
-> ( (g.b & g.b & !g.d0

-> (g.c1g<>
(g.d0|g.c0g|p1.c0g|p2.c0g|p3.c0g)))

&(g.b & p1.b & !g.d0
-> (g.c1p1<>
(p1.d0|g.c0p1|p1.c0p1|p2.c0p1|p3.c0p1)))

&( · · · ))
&( · · · );

spec condition1 & · · · & condition4

Fig. 9 Legal states of Byzantine agreement.

rings. The leader election problem is the problem of
selecting one process as a leader on a ring where no dis-
tinguished process initially exists. This problem orig-
inally arose in the study of token ring networks. In
such a network, a single “token” circulates around the
network. Sometimes, however, the token may be lost
due to faults, and it becomes necessary for the pro-
cesses to execute an algorithm to regenerate the lost
token. This regeneration procedure amounts to electing
a leader. We consider a ring consisting of N processes,
p0, p1, · · · , pN−1, that are connected in this order. The
process pi−1 is said to be a predecessor of the process pi

in the ring. The processes are assumed to have unique
ids. The id for process pi is denoted by idi.

Here we consider a leader election algorithm pro-
posed in [16]. In the algorithm, the process with the
maximum id is selected as the leader. Each process pi
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Fig. 10 Example of leader election.

has two variables, maxi and disti. maxi means the
maximum id the process i knows, and disti means the
distance to the process pj where idj is maxi.

Each process pi has the following three actions:

1. If idi is larger than maxi, maxi is set to idi and
disti is set to 0. While if disti is 0 and maxi is
not equal to idi, maxi is set to idi. And if maxi is
equal to idi and disti �= 0, disti is set to 0.

2. If disti−1 +1 < N and idi is smaller than maxi−1,
maxi is set to maxi−1 and disti is set to disti−1+1.

3. If disti−1+1 = N , or if idi is larger than the idi−1

and idi is equal to or larger than maxi−1, maxi is
set to idi and disti is set to 0.

Let K be the maximum id of any process in the
ring. The leader is successfully elected if the system
reaches the state that satisfies the following conditions.

1. For all processes i, maxi = K.
2. If j is the process with id K, then distj = 0. For

any other process i �= j, disti = 1+ dist(i−1)modN .

Since each process pi only have the two variables, maxi

and disti, there is exactly one such state. Clearly, this
state is the only legal state. We consider transient
faults. A fault changes the values of the variables of
a process arbitrarily.

Using Fig. 10, we explain the protocol. We assume
that the number of processes is 3 (K = 2) and that
some faults have occurred at the initial state and the
program variables have the values as shown in Fig. 10.

As an example, suppose that p1, p2, p0, and p1 are
selected to be executed in this order. First, the process
p1 executes the first action and sets max to 1 and dist
to 0. Next the process p2 also executes the first action
and sets max to 2 and dist to 0. Then the process p0

executes the second action and sets max to 2 and dist
to 1. Finally the process p1 executes the second action
and sets max to 2 and dist to 2 and the system has
reached the legal state.

When N is 4, each process is described as shown in
Fig. 11. The variable max denotes maxi. Similarly, the
variable dist denotes disti. The legal state is described
as shown in Fig. 12.

We apply the method to the systems where N =
3, 4, 5, 6. In case N = 6, the time requires for ver-
ification was about 9.68 seconds and the number of

process p1

begin
var
max:{0,1,2,3}{3};
dist:{0,1,2,3}{2};

const
id := 1;

action
(id>max) | (id != max & dist=0)
| (id=max & dist != 0)
:> max:=id,dist:=0;
(p0.dist+1<N) & (id<p0.max)
& !(max=p0.max & dist=p0.dist+1)
:> max:=p0.max,dist:=p0.dist+1;
((p0.dist+1>=N) | ((id>p0.id) & (id>=p0.max)))
& !(max=id & dist=0)
:> max:=id,dist:=0;

fault
true :> max:={0,1,2,3},dist:={0,1,2,3};

end

Fig. 11 A process of leader election.

const

condition1 := p0.max=K & · · · & p3.max=K;
condition2
:= (p0.id=K -> p0.max=K & p1.dist=1+p0.dist

& p2.dist=1+p1.dist & p3.dist=1+p2.dist)
& · · ·
&(p3.id=K -> p3.max=K & p0.dist=1+p3.dist

& p1.dist=1+p0.dist & p2.dist=1+p1.dist);
spec
condition1 & condition2

Fig. 12 Legal states of leader election.

Table 2 Performance of verification of the closure property.

Protocol (� of processes) Time States
(sec) Reachable Total

Atomic Commit (3) 0.01 552 13824
Atomic Commit (4) 0.03 4432 ≈ 218

Atomic Commit (5) 0.11 37920 ≈ 223

Atomic Commit (6) 0.25 ≈ 218 ≈ 227

Leader Election (3) 0.01 8 5832
Leader Election (4) 0.01 16 ≈ 220

Leader Election (5) 0.03 32 ≈ 228

Leader Election (6) 0.05 64 ≈ 237

Byzantine Agreement(4) 59.52 ≈ 220 ≈ 280

reachable states was about 221. The performance of
verification is shown in Table 1.

To our knowledge, there is no other research that
can be directly compared to ours; however, since the
time required for verification was only approximately
5 minutes even for the largest example, we think that
the proposed verification method is practical, at least
for systems with small number of processes. From our
experience, design errors may often be observed even
when the number of processes is rather few [22]. Thus
we think that the proposed method is useful especially
in early stages of system development.

5.4 Other Results

Closure property As stated in 4.2.3 we can check the
closure property of the system by extending the pro-
posed method. We checked the closure property for the
three examples. Table 2 shows the performance of the
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Table 3 Quantity of description.

Protocol (� of processes) � of tokens
Proposed language SMV

Atomic Commit (3) 771 2500
Atomic Commit (4) 1107 4499
Atomic Commit (5) 1459 7445
Atomic Commit (6) 1875 11440
Leader Election (3) 613 1768
Leader Election (4) 845 2662
Leader Election (5) 1095 3826
Leader Election (6) 1363 5200
Byzantine Agreement(4) 9575 77315

verification of the closure property. Since this property
can be checked without considering faults, the state
space to be explored is significantly smaller than the
case of fault tolerance verification.
Length of programs As stated before, we developed
the modeling language and its translation method to
facilitate describing the system to be verified. To sup-
port our claim, we compared the length of the program
described in the proposed language and the resulting
SMV program. Table 3 compares both programs in
terms of the total number of tokens encountered in the
parsing process. This result clearly shows that using
the proposed language significantly reduced the quan-
tity of description.

6. Conclusions

In this paper, we proposed a formal method for veri-
fication of fault tolerance of concurrent systems. We
use a model checking method to carry out the verifica-
tion automatically. Differing from other related work,
which is tailored to specific systems, we are aimed at
providing a single approach that can be applied to var-
ious systems. Specifically, we proposed a method that
can deal with any system if it is given as a guarded
command program based on the model proposed in [2].

We designed this method so that it can use a sym-
bolic model checking tool called SMV, which can avoid
the state explosion problem. Automatic verification of
fault tolerance is performed by translating the program
to the SMV language. For this purpose, we first pro-
posed a modeling language suited for describing fault-
tolerant systems in the form of guarded command pro-
grams. We then proposed a translation method from
the modeling language to the input language of SMV.

In the case studies, we demonstrated that various
fault-tolerant systems can be automatically verified by
the proposed method. The results showed that the ver-
ification was completed with practical time.
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