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PAPER

Error Models and Fault-Secure Scheduling in

Multiprocessor Systems

Koji HASHIMOTO†, Tatsuhiro TSUCHIYA††, and Tohru KIKUNO††, Regular Members

SUMMARY A schedule for a parallel program is said to be
1-fault-secure if a system that uses the schedule can either pro-
duce correct output for the program or detect the presence of
any faults in a single processor. Although several fault-secure
scheduling algorithms have been proposed, they can all only be
applied to a class of tree-structured task graphs with a uniform
computation cost. Besides, they assume a stringent error model,
called the redeemable error model, that considers extremely un-
likely cases. In this paper, we first propose two new plausible er-
ror models which restrict the manner of error propagation. Then
we present three fault-secure scheduling algorithms, one for each
of the three models. Unlike previous algorithms, the proposed
algorithms can deal with any task graphs with arbitrary compu-
tation and communication costs. Through experiments, we eval-
uate these algorithms and study the impact of the error models
on the lengths of fault-secure schedules.
key words: multiprocessors, fault-secure scheduling, task
graphs, error models, tests

1. Introduction

This paper focuses on fault-secure multiprocessor
scheduling. The goal of fault-secure scheduling is to de-
tect errors in computation of parallel programs carried
out on multiprocessor systems. The basic approach to
achieving fault security is to duplicate every task of a
program and compare outputs of copies to ensure that
either the output of the program is correct or at least
one of the comparisons reports the existence of errors.

The concept of fault security was originally intro-
duced in logic circuit design [16]. A circuit is fault-
secure if for any single fault within the circuit, the cir-
cuit either produces correct output or produces a non-
codeword. Banerjee and Abraham [4] first applied this
concept to multiprocessor scheduling. Gu et al. [12]
have further investigated the formal characterization
of fault-secure multiprocessor schedules by introducing
the concept of k-fault-secure scheduling. In a k-fault-
secure schedule, the output of a system is guaranteed
to be either correct or tagged as incorrect for up to
k processor faults. In their model, a parallel program
is composed of a set of tasks and represented by a di-
rected acyclic graph, and the number of processors is
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unlimited. Some scheduling algorithms for achieving
1-fault-security have been proposed in [12]. More re-
cently, Wu et al. [29] proposed an optimal fault-secure
scheduling algorithm. Given the number of processors,
the algorithm generates a 1-fault-secure schedule with
the minimum schedule length.

In both [12] and [29], the fault-secure scheduling
technique has been used to make a computation fault-
secure against redeemable errors [13] in a system. How-
ever, different applications may require different de-
grees of fault security. For that reason, we intro-
duce two more error models in addition to the re-
deemable error model. By restricting the manner of
error propagation, these new models exclude unlikely
errors that are assumed in the redeemable error model.
We present three scheduling algorithms for achieving
1-fault-security, one for each error model. Of the three
algorithms, the two that assume the new models are
designed so as to exploit the restriction on errors to
shorten schedule length. By conducting simulations, we
study the effects of the error models on 1-fault-secure
schedules in multiprocessor systems.

The previous algorithms proposed in [12] and [29]
assume that communication costs are negligible and
all tasks have a uniform unit execution time. More-
over, these algorithms can only be applied to a class
of tree-structured task graphs. In contrast, we con-
sider parallel programs represented by directed acyclic
graphs with arbitrary computation and communication
costs. Multiprocessor scheduling for most precedence-
constrained task graphs is an NP-complete problem in
its general form [9]. The algorithms we propose in this
paper are heuristic; that is, schedules they produce are
not necessarily optimal.

It is well known that inter-processor communica-
tion makes serious effects on the performance of paral-
lel processing. Task duplication [19], [20] is an effective
technique to reduce overheads of the communication
and improve the performance. In this technique, a du-
plicated task is allocated to the same processor as one
of its succeeding tasks so that it can send data to the
successor without communication delay. Task duplica-
tion thus improves the start times of tasks that need
to wait for their preceding tasks, and also improves the
finish time of the given program consequently.

In our approach to achieving 1-fault-security, ev-
ery task in a given task graph is replicated, and equal-
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ity tests are carried out between the copies. Our algo-
rithms schedule copies of tasks based on the task dupli-
cation technique for achieving better performance while
maintaining the 1-fault-secure property.

The remainder of this paper is organized as follows.
The system model assumed in this paper is described
in Sect. 2. In the section, the three error models are
also described, and for each model we formally define a
fault-secure schedule. In Sect. 3, 1-fault-secure schedul-
ing algorithms are proposed under the models. The
correctness proof of the algorithms is given in Sect. 4.
The results of simulation studies are shown in Sect. 5.
In Sect. 6, related work in the field is overviewed. The
paper concludes with Sect. 7.

2. Preliminaries

2.1 System and Task Model

We consider a multiprocessor system that consists of
n identical processing elements (PEs) and that runs
one application program at a time. All PEs are fully
connected with each other via a reliable network. A PE
can execute tasks and communicate with another PE
at the same time. This is typical with dedicated I/O
processors and direct memory access.

A parallel program is represented by a weighted di-
rected acyclic graph (DAG) G = (V,E,w, c), where V
is the set of nodes and E is the set of edges. Each node
represents a task v, and is assigned a computation cost
w(v), which indicates the task execution time. Each
edge < v, v′ >∈ E from v to v′ corresponds to the
precedence constraint that task v′ cannot start its ex-
ecution before receiving all necessary data from task
v. Given an edge < v, v′ >, v is called an immediate
predecessor of v′, while v′ is called an immediate suc-
cessor of v. If there exists a path from v′ to v, v′ is
called a predecessor of v. A task that has no imme-
diate successors is called an output task. Each edge is
assigned a communication cost c(v, v′), which indicates
the time required for transferring necessary data be-
tween different PEs. If the data transfer is done within
the same PE, the communication cost is zero. In the
following, we call such a weighted DAG a task graph.
Various applications are known to be represented by
weighted DAGs (e.g., [24]). Figure 1 shows examples
of task graphs. In the figure, the number adjacent to
each node indicates the execution time of the task rep-
resented by the node, and the number on each edge is
the communication cost for data transfer.

We introduce some definitions and terminology as
in [15]. For a path in a task graph, its length is defined
as the summation of task execution times along the
path excluding communication delays. The level of a
task is defined as the length of the longest path from
the node representing the task to a node that has no
successor nodes. In Fig. 1 (a), for example, the levels of

Fig. 1 Task graphs.

v6 and v7 are 9 and 2, respectively. Finally, the height
of a task is defined as

height(v) =

{
0, U = ∅,
1 + max

u∈U
{height(u)}, U �= ∅,

where U is a set of immediate successors of v. In
Fig. 1 (a), for example, the heights of v6 and v7 are 3
and 0, respectively.

2.2 Scheduling

In general, multiprocessor scheduling refers to the pro-
cess in which tasks in a task graph are assigned to PEs
and the time slots in which the tasks are executed are
determined. When more than one copy is allowed to be
scheduled for each task, it is also necessary to specify
from which copies to which copies data are transferred.

Since as discussed below, not only copies of tasks
but also tests may be scheduled for the purpose of fault
security, a schedule S we consider here is a tuple (σ, φ)
where σ is a set of scheduled copies of tasks and tests,
and φ is a mapping function that determines for a given
element of σ its corresponding task or test, assigned PE,
time slot, and the subset of σ from which the element
receives data.

To distinguish between a task v ∈ V and its copies
scheduled actually, we call the latter the instances of
v. We represent by D(s) = (α1, α2, . . . , αr) the fact
that the instance s of v receives necessary data from
α1, α2, . . . , αr, which are instances of the immediate
predecessors of v. By definition, r is equal to the num-
ber of immediate predecessors. We always write αi’s
in ascending order of the indices of their corresponding
tasks.

Fault-secure scheduling, as discussed here, refers to
producing a schedule such that even if any single fault
occurs, the system can produce the correct result or
detect the fault. We call such a schedule a 1-fault-secure
schedule [12]. The goal of our research is to minimize
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the schedule length while achieving 1-fault-security.
In our approach to achieving the 1-fault-secure

property, every task v ∈ V is replicated to produce
at least two copies of its output and equality tests are
carried out between different copies of tasks. To do so,
we need to allocate tests to PEs, in addition to the nor-
mal tasks of V . A test reports either “equal ” or “not
equal ” according to the equality of the outputs of the
copies compared. A fault is detected when a test re-
ports “not equal ”. We assume that the outcome of a
test carried out on a fault-free PE is always correct.

We use the notation τ(α1, α2, . . . , αm) to indi-
cate a test that compares the outputs of instances
α1, α2, . . . , αm of the same task. Each test requires
time for execution and receiving data for comparison
also incurs a communication delay. In this paper, we
do not introduce notations to represent these costs, in
order to prevent them from deteriorating readability. In
the rest of the paper, we will carefully proceed without
them, while keeping the correctness of discussions.

2.3 Error Models and 1-Fault-Secure Schedules

We assume that a fault in a PE can result in errors
in the outputs of an arbitrary set of instances of tasks
and tests allocated to the PE. We call such a set a fault
pattern if it is not empty; that is, a fault pattern is a
non-empty subset of instances of tasks and tests that
consists of all instances whose outputs can be made
erroneous directly by a fault in the system.

If a task receives erroneous outputs of other tasks,
then the task itself may or may not become erroneous.
That is, an error in an instance of a task causes a (pos-
sibly empty) subset of instances that receive data from
that instance to become erroneous. The three error
models we consider are different in their assumptions
regarding the values that can be taken by erroneous
output. The first error model is the most general, and
is equivalent to the redeemable error model in [13]. This
model does not impose any assumption on the output
values of tasks that have received erroneous values. By
adding an assumption that restricts the output values
of such tasks, we define another error model called the
Type A error model. By imposing another assumption,
we define more benign errors. We refer to this error
model as the Type B error model.

In the following, we describe these error models
precisely, and then give a formal definition of 1-fault-
secure schedules under the error models. First, as
in [12], [13], we introduce the notion of interpretation,
which represents a possible scenario.
Definition 1 (Interpretation): Given a schedule S,
an interpretation I for S is a set Σ = {c, e, n, µ1, µ2, . . .}
of labels, with distinguished labels “c”, “e”, “n”, to-
gether with an assignment of a label to each instance
in S such that:

1. each instance of a task is assigned a label from

Σ − {e, n}, and
2. each instance of a test is labeled either “e” or “n.”

In the definition, “c” means “correct ,” whereas µi rep-
resents an erroneous value of an output. Therefore, an
instance of a task labeled “c” produces a correct out-
put value, while an instance assigned a label µi outputs
an erroneous value. The labels “e” and “n” represent
the two possible outcomes of a test, “equal ” and “not
equal ” respectively. In the following, we use LabelI(s)
as the label assigned by an interpretation I to an in-
stance s in S.

Under different error models, a given fault pattern
may induce different scenarios. The following definition
specifies the three error models, and gives the rule for
producing scenarios for a given fault pattern under a
given error model.
Definition 2 (Consistency of Interpretation): Supp-
ose that a schedule S and a fault pattern P ′ are given.

[Redeemable error] An interpretation I of S is con-
sistent with P ′ under the redeemable error model if and
only if the following conditions are satisfied:

(A) for an instance s of a task, if LabelI(s) �= “c,” then
either s ∈ P ′ or there is at least one instance α in
D(s) such that LabelI(α) �= “c.”

(B) for an instance t of a test τ(α1, α2, . . . , αm),
if LabelI(t) = “e,” then either t ∈ P ′ or
LabelI(α1) = LabelI(α2) = · · · = LabelI(αm).

(C) for an instance t of a test τ(α1, α2, . . . , αm),
if LabelI(t) = “n,” then either t ∈ P ′ or
LabelI(αi) �= LabelI(αj) for some αi and αj (i �=
j, 1 ≤ i, j ≤ m).

(D) for two instances, s and s′, of a task, with D(s) =
(α1, α2, . . . , αr) and D(s′) = (α′

1, α
′
2, . . . , α

′
r), if

s, s′ /∈ P ′ and LabelI(αq) = LabelI(α′
q) for all q

(1 ≤ q ≤ r), then LabelI(s) = LabelI(s′).

[Type A error] An interpretation I of S is consistent
with P ′ under the Type A error model if and only if
conditions (A), (B), (C), (D), and the following condi-
tion are satisfied:

(E) for two instances, s and s′, of a task, with D(s) =
(α1, α2, . . . , αr) and D(s′) = (α′

1, α
′
2, . . . , α

′
r), if

s, s′ /∈ P ′ and there exists at least one αq (1 ≤
q ≤ r) such that LabelI(αq) �= LabelI(α′

q), then
LabelI(s) �= LabelI(s′).

[Type B error] An interpretation I of S is consistent
with P ′ under the Type B error model if and only if
conditions (A), (B), (C), (D), (E), and the following
condition are satisfied:

(F) for two instances, s and s′, of a task, if s /∈ P ′,
s′ ∈ P ′ and LabelI(s) �= “c”, then LabelI(s) �=
LabelI(s′).

Condition (A) implies that in any scenario for a
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fault pattern P ′, the output of s can be erroneous only
if either s is computed on the faulty PE or one of the in-
stances of the immediate predecessors of v is erroneous.
Conditions (B) and (C) indicate that the outcome of a
test carried out on a non-faulty PE is determined by
the labels of instances participating in the test, and
that a valid scenario may assign “e” or “n” arbitrarily
to tests carried out on the faulty PE. Condition (D)
states that different instances of a task computed on
non-faulty PEs with identical input values must have
the same output value. Condition (E) is the assump-
tion corresponding to the Type A error model, which
means that instances of a task computed on non-faulty
PEs with different input values must have different out-
put values. Finally, Condition (F) corresponds to the
Type B error model. For two instances of a task, say s
and t, the erroneous output value of s that is caused by
the erroneous inputs of s is different from the erroneous
output value of t that is caused directly by a fault in
the PE assigned to t.

As stated before, the redeemable error model does
not impose any restrictions on erroneous values. For ex-
ample, consider two instances of a task that multiplies n
input values. Suppose that one of the instances receives
an erroneous zero value as the ith input, and the other
instance receives an erroneous zero as the jth (i �= j)
input. In this case, the outputs of the two instances
are both zero which may be an erroneous value. This
case is modeled by the redeemable error model. How-
ever, for numerical computing in various fields such as
fluid mechanics, chemistry, physics, design, and signal
processing, each task handles a large volume of numer-
ical data. In such a situation, it is extremely unlikely
that two instances of a task output exactly the same
erroneous result when they receive different inputs. It
is also unlikely that an erroneous output value caused
directly by a processor fault agrees with the erroneous
output value of another instance that is caused by er-
roneous inputs. Type A and Type B error models ex-
clude these unlikely situations from the redeemable er-
ror model.

Finally, based on the concept of interpretation, we
formally define a 1-fault-secure schedule as follows.
Definition 3 (1-Fault-Secure schedule): A schedule
S is 1-fault-secure under an error model if and only
if for every fault pattern P ′(�= ∅) and for every inter-
pretation I that is consistent with P ′ under the error
model, LabelI(s) = “c” for every instance s of every
output task, or there exists at least one instance t of a
test such that LabelI(t) = “n.”

3. 1-Fault-Secure Scheduling Algorithms

In this section, we present three scheduling algorithms
to achieve the 1-fault-secure properties under the error
models. For the redeemable error model, we develop an
original algorithm STR, since previously proposed al-

gorithms can only handle tree-structured task graphs.
Algorithms FSAE and FSBE are proposed for the
Type A error model and the Type B error model, re-
spectively. STR is described in Sect. 3.1, while FSAE
and FSBE are both described in Sect. 3.2.

These algorithms tag each instance with either “0”
or “1,” which we call the version number, such that
every task has its instances with different numbers. The
algorithms schedule tasks in such a way that each task
communicates almost exclusively with tasks with the
same version number, in order to avoid contaminating
data and to allow a fault to be detected.

3.1 Algorithm for the Redeemable Error Model

If Condition (E) in Definition 2 is not met, instances
with different version numbers cannot be allocated to
the same PE. This is because, given a fault pattern
P ′ and an interpretation I consistent with P ′, two in-
stances of an output task can have the same label not
equal to “c,” which means that the error cannot be de-
tected by comparison. In order to achieve the 1-fault-
secure property under the redeemable error model, it
is therefore essentially necessary to simply duplicate a
non-fault-secure schedule.

We refer to this straightforward algorithm as
STR. Algorithm STR produces a fault-secure sched-
ule by applying DSH [19], [20] twice. DSH (Duplica-
tion Scheduling Heuristic) is a normal (i.e., non-fault-
secure) scheduling algorithm proposed by Kruatrachue
in [19], [20]. It adopts a conventional heuristic, called
list scheduling, which is a two-step approach. That is,
in the first step, all tasks are prioritized, and in the
second step, tasks are scheduled one by one according
to the priority. DHS assigns priorities to tasks based
on their level, and then it schedules each task by us-
ing a procedure called TDP , which will be explained
later. Although we uses DSH as a subroutine in STR,
it should be noted that STR would work if DSH were
replaced with any other scheduling algorithm.

Below STR is described. Function TST (TQ, S),
which will be described later, schedules tests that check
the tasks in queue TQ, after the schedule S of tasks has
been determined. TQ, which will be referred to as a test
queue, keeps tasks in descending order of their priority.

Algorithm STR
Input: G, a task graph;

P , a set of PEs {p1, p2, . . . , pn} (n ≥ 2)
Output: S, a 1-fault-secure schedule
Begin

Generate a partial schedule S0 for p1, p2, . . . , p�n
2 �

by applying Algorithm DSH .
Tag every instance in S0 with “0”.
Generate a partial schedule S1 for p�n

2 �+1, p�n
2 �+2,

. . . , pn by copying instances from S0.
Tag every instance in S1 with “1”.
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Put all output tasks into TQ.
S := TST (TQ, S1 ∪ S2)
/* Schedule tests for tasks in TQ */

End

In a schedule generated by STR, every instance
tagged with “0” exchanges necessary data only with
other instances within S0, while every instance tagged
with “1” does so with other instances within S1. In
other words, each instance tagged with “0” never re-
ceives any data from instances tagged with “1,” and
vice versa. Clearly, therefore, the system needs to com-
pare only the results of the output tasks. The method
of scheduling tests is explained in the following subsec-
tion because it is common to Algorithms FSAE and
FSBE. In Sect. 4.1, we prove that the schedules STR
generates are 1-fault-secure under the redeemable error
model. Figure 2 shows an example of applying STR.
In the figure, vi denotes an instance of v tagged with
“i,” and t(v) denotes a test in which all instances of v
participate.

The time complexity of DSH is known to be
O(|V |4) [19], where |V | denotes the number of tasks
in the task graph. As explained in Sect. 3.3, the com-
plexity of scheduling one test is O(|V |2). Therefore, the
complexity of STR is O(|V |4).

3.2 Algorithms for Type A and Type B Error Models

Condition (E) in Definition 2 is met in both Type A
error model and Type B error model. Condition (E)
allows instances with different version numbers to be
allocated to one PE. In addition to output tasks, how-
ever, it may be necessary to test other tasks. In this sec-
tion, we present two fault-secure scheduling algorithms,
FSAE and FSBE, which correspond to Type A error
model and Type B error model, respectively. These al-
gorithms examine whether a test is needed or not when
each instance of a task is scheduled. Tests are scheduled
after all the instances of tasks have been scheduled. All
procedures except for that which determines the neces-
sity of tests are common to both algorithms.

Fig. 2 Illustrative example of algorithm STR.

The algorithms schedule each task based on task
duplication [19], [20], which can improve performance.
The concept of task duplication is explained in detail
in Sect. 3.4. The algorithms also tag every instance
with either “0” or “1,” and allocate tests by using this
information. The common outline of the algorithms is
as follows.

Algorithm FSAE(FSBE)
Input: G, a task graph;

P , a set of PEs {p1, p2, . . . , pn} (n ≥ 2)
Output: S, a 1-fault-secure schedule
Begin

S := empty; TQ := empty
Partitioning:

Partition the set of tasks in G into task groups
G1, G2, . . . , Gm according to height.
/*Task groups are arranged in descending order
of height.*/

Apply Basic algorithm BA to each task group:
For i = 1 to m do

S := BA(Gi, TQ, S)
End For
Put all output tasks into TQ

Schedule tests for tasks in TQ:
S := TST (TQ, S)

End

3.2.1 Partitioning

In both algorithms, a given set of tasks is first parti-
tioned into subsets according to their heights in such a
way that all tasks with the same height will belong to
one subset. We call each subset a task group. For ex-
ample, consider the task graph in Fig. 1 (a). The set of
all tasks is partitioned into five task groups as follows.

G1: v1 G2: v3 G3: v3, v6

G4: v5, v8 G5: v9, v10 G6: v2, v7, v11, v12

3.2.2 Basic Algorithm

Once the program has been partitioned into task
groups, the Basic algorithm described in this section
is applied to each task group. This algorithm consists
of two steps.

In Step 1, all tasks in a given task group are sched-
uled and tagged with “0.” The tasks are scheduled one
by one according to their priorities (the task with the
highest priority is scheduled first). Priorities are as-
signed in descending order of level. Tasks at the same
level are prioritized according to the number of their im-
mediate successors (the task with the greatest number
of immediate successors is given the highest priority).

Now suppose that v ∈ Gi is the task to be sched-
uled. Note that all tasks in G1, G2, . . . , Gi−1 have been
already scheduled, i.e., a partial schedule S′ already ex-
ists. In Step 1, v is scheduled to one of the n PEs by



640
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.5 MAY 2001

adding its instance, say s, to S′. All instances sched-
uled in Step 1, including s, are tagged with “0.” The
PE onto which s will be placed is determined by re-
peating the following process for every PE.

First, the earliest start time of s is computed, given
that s runs on the PE. This can be done by calling
Procedure TDP [19]. Allowing predecessor tasks to be
duplicated, TDP (Task Duplication Procedure) deter-
mines the earliest time when a given task can start its
execution on a designated processor. TDP also deter-
mines which tasks need to be duplicated (For details,
see the appendix).

Once the start time of s on that PE has been ob-
tained, instances from which s receives data are deter-
mined. Since every task in Gj with j < i is replicated,
for each immediate predecessor ip of v, there often ex-
ists more than one instance of ip that can send data to
s so that s can receive the data before the earliest start
time determined by TDP . For each ip, the algorithm
checks whether or not an instance of ip exists that is
tagged with “0” and can send data to s before the start
time. If there is such an instance, it is chosen; other-
wise, another instance of ip which is tagged with “1” is
chosen.

If predecessors of v are duplicated by TDP in the
process of scheduling s, instances which provide data
to those predecessor instances are also determined as
described above.

Scheduling the new instance may necessitate test-
ing some other tasks. Based on the state of data ex-
changes between instances, the algorithm determines
which tasks, if any, need to be tested. Such tasks are
put into test queue TQ. The details of how these tasks
are determined are shown for each algorithm in the next
subsection.

After repeating this process for all PEs, the task is
scheduled to the PE that can execute it earliest among
all the PEs. If there is more than one such PE, then a
PE is chosen such that the number of tasks that need
to be tested is minimized.

In Step 2, all tasks in the task group are duplicated
and tagged with “1”. The newly duplicated copies are
scheduled in the same order as in Step 1. The PE
to which each is scheduled is determined in the same
way as in Step 1, except that (1) an instance is never
scheduled to the same PE where its corresponding task
was scheduled in Step 1, and (2) instances tagged with
“1” rather than “0” are chosen first as instances for
receiving data. Consequently, every task is allocated to
at least two different PEs.

The pseudo-code of the Basic algorithm is given
below.

Basic algorithm BA(Gi, TQ, S′)
Input: Gi, a task group;

TQ, a test queue;
S′, a partial schedule

Output: S, a partial schedule
Begin

Arrange tasks in Gi according to their priorities
Step 1:

For each task v in Gi do
For each PE p in P do

DT lst[p] := NULL /*DT lst is a list
containing duplicated predecessors of v.*/
TT lst[p] := NULL /*TT lst is a list
containing tasks that need to be tested.*/
ST [p] := TDP (v, p,DT lst[p]) /*ST [p] is
the earliest start time of v on p.*/
TT lst[p] := CKT (v, p,DT lst[p], S′) /*Find
tasks that need to be tested, and put them
into TT lst[p].*/

End For
pt := the PE whose ST [pt] is the smallest
Schedule v0 with DT lst[pt] to pt at time ST [pt]
Put tasks in TT lst[pt] into TQ.

End For
Step 2:

For each task v in Gi do
pa := the PE to which v has been scheduled
in Step 1
For each PE p in P − {pa} do

DT lst[p] := NULL; TT lst[p] := NULL
ST [p] := TDP (v, p,DT lst[p])
TT lst[p] := CKT (v, p,DT lst[p], S′)

End For
pt := the PE where ST [pt] is the smallest
Schedule v1 with DT lst[pt] to pt at time ST [pt]
Put tasks in TT lst[pt] into TQ.

End For
End

3.2.3 Necessity of Tests

Algorithms FSAE and FSBE are different only in the
method used to check the necessity of tests.

For each algorithm, the tasks to be tested are de-
termined as follows. Suppose that an instance s of a
task v is scheduled on a PE p. Let i be the version
number of s (i = 0, 1).

• FSAE tests every predecessor α of v that satisfies
one of the following two conditions:

(i) α is an immediate predecessor of v and s re-
ceives data from an instance of α that is
tagged with “1 − i”, or

(ii) α is a predecessor of v and an instance of α
that is tagged with “1− i” is already assigned
to p.

• FSBE tests every immediate predecessor α of
v that satisfies only the condition (i) described
above.

Under the Type B error model, even if tasks exist
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that satisfy Condition (ii), no tasks need to be tested
because of Condition (F) in Definition 2. Therefore, one
can easily expect that in most cases, FSAE requires the
testing of more tasks than does FSBE.

Because of the similarity between these two meth-
ods, we show below only the pseudo-code for the check-
ing algorithm used in FSAE.

Algorithm for checking the necessity of tests
CKT (va, pa, DT lst[pa], S′)
Input: va, an assigned task;

pa, a candidate PE for assignment;
DT lst[pa], a list of duplicated tasks;
S′, a partial schedule

Output: TT lst[pa], a list of tasks that need to be tested
Begin

For each instance v in DT lst[pa] ∪ {va} do
Check whether Condition (i) holds or not:

For each immediate predecessor α of v do
flag := NECESSARY
If α is in DT lst[pa] Then

flag := UNNECESSARY
Else

For each instance αi of α in S′ do
If (the arrival time of data from αi to v

≤ the start time of v on pa) and
(the version number of αi = that of v)

Then
flag := UNNECESSARY; Break

End If
End For

End If
If (flag = NECESSARY) Then put v into
TT lst[pa]

End For
Check whether Condition (ii) holds or not:

For each predecessor x of v do
If (x is assigned to pa) and

(the version number of x �= that of v)
Then

put x into TT lst[pa]
End IF

End For
End For

End

3.2.4 Scheduling of Tests

After the instances of all tasks have been scheduled,
tests for the tasks in TQ are scheduled. A test for a
task v is assigned to a PE p such that neither instances
of v nor instances of its predecessors are assigned to
p. If there is more than one qualifying PE, the one on
which the test can be executed earliest is selected.

If there is no such PE, the test is duplicated and
scheduled in such a way that each of the two copies is
executed on a different PE.

All the instances of v in S participate in the test.
Note that there may be more than two instances of v in
S, because v may be duplicated by Procedure TDP as
successors of v are scheduled. Therefore, tests are not
necessarily binary equality checks, unlike in [12], [13],
[29].

Scheduling Algorithm for Tests TST (TQ, S′)
Input: TQ, a test queue;

S′, a partial schedule
Output: S, a 1-fault-secure schedule
Begin

For each task v in TQ do
Find PEs to which no instances of v or its
predecessors are assigned, and put them into AP .
If (AP �= NULL) Then

For each PE p in AP do
ST [p] := the earliest start time of the test τ
on p.

End For
pt := the PE where ST [pt] is the smallest
Schedule τ to pt at time ST [pt]

Else
For each PE p in P do

ST [p] := the earliest start time of the test τ1
on p.

End For
pt1 := the PE whose ST [pt1] is the smallest
Schedule τ1 to pt1 at time ST [pt1]
For each PE p in P − {pt1} do

ST [p] := the earliest start time of the test τ2
on p.

End For
pt2 := the PE whose ST [pt2] is the smallest
Schedule τ2 to pt2 at time ST [pt2]

End If
End For

End

3.3 Time Complexity

The complexity of task level and height calculation is
O(|E|), where |E| denotes the number of edges in the
task graph. Each instance of a task is scheduled by
applying Procedure TDP to n PEs both in Step 1 and
in Step 2 of the Basic algorithm. The computational
complexity of Procedure TDP is known to be O(|V |3)
[19], [20], where |V | denotes the number of tasks in the
task graph. Therefore, the complexity of scheduling
one instance is O(n|V |3). When calculating the start
time of an instance on each PE, Algorithms FSAE and
FSBE check whether its predecessors need to be tested
or not. The complexity of this checking is O(n|V |2) for
both algorithms. Also, the computational complexity
of scheduling of one test is O(|V |2). Since |E| < |V |2
and the number of tasks is |V |, the complexity of the
algorithms is O(|V |4), given that n is fixed.
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Fig. 3 Illustrative example of basic algorithm.

3.4 Illustrative Example

Figures 3 and 4 illustrate how Algorithms FSAE and
FSBE work. In this example, we assume that the num-
ber of PEs, n, is four and that the task graph shown in
Fig. 3(a) is given. The set of tasks is partitioned into six
task groups G1, G2, . . ., G6. Tasks in each task group
are ordered according to their priorities as follows.

G1: v1 G2: v2 G3: v3, v4

G4: v5, v6 G5: v7, v8 G6: v9

These task groups are ordered according to their
heights. Then the Basic algorithm is applied to each
task group in order. The task group whose height is
the largest is selected first.

Now suppose that task groups G1 and G2 have
been scheduled. Then the Basic algorithm is applied
to G3. In Step 1, each task in G3 is scheduled, and its
instance is tagged with “0”. This is done by applying
Procedure TDP to each PE. For example, an instance
of v4, which is indicated by v0

4 in Fig. 3, is scheduled as
follows. As shown in Fig. 3 (b), an instance of v3 (indi-
cated by v0

3) has already been assigned to p1. It can be
seen that the start times of v0

4 on p1 and on p2 are 10
and 7, respectively. The start time of v0

4 would be 6 on
p3 if no instances were duplicated, as shown in Fig. 3 (c)
(Note that v4 must receive necessary data from v1). In
order to improve the start time of v0

4 , TDP applies task
duplication. Figures 3 (c) and (d) illustrate the concept
of task duplication. In this case, TDP duplicates v1

and schedules another instance to p3 at time 0 (All in-
stances generated in Step 1 are tagged with “0”). As a
result of this duplication, v0

4 can receive necessary data
directly from v1 without any communication delay, and
the start time of v0

4 on p3 becomes 4. As a result, p3 can
start execution of v0

4 earlier than p1 and p2. Therefore,
v0
4 is scheduled to p3 as shown in Fig. 3 (d).

In Step 2, each task in G3 is duplicated and sched-
uled to one of the n PEs other than the PE to which

Fig. 4 Schedules obtained.

its instance is already scheduled. For example, since an
instance of v4 (v0

4) is already scheduled to p3 in Step
1, TDP is applied to p1, p2, and p4. As a result, an
instance tagged with “1” (v1

4) is scheduled to p4 (All
instances generated in Step 2 are tagged with “1”).
Similarly, each remaining task is scheduled so as to be
executed on two different PEs as shown in Fig. 3 (e).

The Basic algorithm is applied to the remaining
task groups G4, G5 and G6. As a result, Algorithms
FSAE and FSBE generate the schedules shown in
Figs. 3 (f) and (g), respectively. The difference of the
two schedules results from the fact that when more than
one PE can run a task earliest among all the PEs, dif-
ferent PEs may be selected by the two algorithms. As
stated in Sect. 3.2.2, in such a case, a PE is selected
such that the number of tasks that need to be tested is
minimized.

When TDP calculates the start time of an instance
on a PE, both algorithms check whether the predeces-
sors of the instance need to be tested or not, as ex-
plained in Sect. 3.2.3. For example, when an instance
of v7 with version number “0” (v0

7) is scheduled to p2,
FSAE decides to test four tasks; namely, v1, v2, v3
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and v5, whereas FSBE decides to test only v5. In each
of the two algorithms’ schedules, v0

7 receives data di-
rectly from v1

5 , whose version number is different from
v0
7 (Condition (i) in Sect. 3.2.3). FSAE further decides

to test v1, v2, v3, which are predecessors of v7, because
the instances of these tasks that are tagged with “1”
are already assigned to p2 (v1

1 , v1
2 , v1

3) (Condition (ii)
in Sect. 3.2.3). In the schedule for FSBE, on the other
hand, the instances v1

1 , v1
2 and v1

3 on p2 do not need to
be tested. In this case, TQ becomes as follows.

FSAE : TQ = {v1, v2, v3, v5, v9}
FSBF : TQ = {v5, v9}

Finally, tests for the tasks in TQ are scheduled.
In this example, since v1, which is a common pre-

decessor to the tasks in TQ, is assigned to all PEs,
every test is duplicated and assigned to two distinct
PEs. As a result, 1-fault-secure schedules are obtained
by FSAE and FSBE as shown in Figs. 4 (a) and (b),
respectively.

4. Correctness Proofs of Algorithms

In this section, we prove that the three algorithms
we proposed in Sect. 3 generate 1-fault-secure sched-
ules correctly under their corresponding error models.
The correctness proof of Algorithm STR is presented
in Sect. 4.1. The proofs of FSAE and FSBE are pre-
sented in Sects. 4.2 and 4.3, respectively.

In the following proof, we let S denote a schedule
generated by any of the algorithms. As in [12], [13], we
introduce an MVC DAG G′ = (V ′, E′) for S, where
V ′ is the set of nodes and E′ is the set of edges. G′ rep-
resents the state of data exchanges between instances
in S. Thus G′ is unique to S. Each node represents an
instance of a task in S. If an instance s′ receives nec-
essary data from another instance s, then there is an
edge from s to s′. If there exists a path from s′ to s, we
call s′ an ancestor of s. Figure 5 (c) shows an example
of an MVC DAG for the schedule in Fig. 5 (b).

First, we show some lemmas that are common to
all the algorithms.

Fig. 5 Example of MVC DAG.

Lemma 1: For each task v ∈ V , there exists in S a
pair of instances of v that have different version num-
bers (“0” and “1”) and are assigned to different PEs.
Proof: It is clear from the definition of the algorithms.

✷

Lemma 2: For every fault pattern P ′ and for every
interpretation I consistent with P ′, if an instance s is
not contained in P ′ and LabelI(s) �= “c,” then there is
an ancestor t of s such that t ∈ P ′ and LabelI(α) �= “c”
for every instance α on a path from t to s.
Proof: Due to Condition (A) in Definition 2, there
exists at least one instance α in D(s) such that
LabelI(α) �= “c.” Since this argument can also apply
to α if α /∈ P ′, the lemma follows. ✷

Lemma 3: For every fault pattern P ′ and for every
interpretation I consistent with P ′, if a task v is tested
in S, then the following conditions hold:
Case 1: If there exists only one instance t of the test
in S, the following two conditions hold for every pair
of instances s and s′ of v, where s and s′ have different
version numbers.

1. if LabelI(s) �= LabelI(s′), then the test reliably
reports “not equal ”, i.e., LabelI(t) = “n.”

2. if the outcome of the test is unreliable, then
LabelI(s) = LabelI(s′) = “c.”

Case 2: If there are two instances of the test in S,
the following condition holds for every pair of instances
s and s′ of v, where s and s′ have different version
numbers.

1. if LabelI(s) �= LabelI(s′), then one of the two in-
stances of the test, t1 or t2 reliably reports “not
equal ,” i.e., LabelI(t1) = “n” or LabelI(t2) = “n.”

Proof: If LabelI(s) �= LabelI(s′), then by Lemma 2
there exists at least one ancestor of s or s′ in P ′. In Case
1, the algorithms never assign the test to PEs where s,
s′, or their ancestors have been scheduled. Therefore,
t /∈ P ′, that is, the outcome of t is reliable. Conse-
quently, t reliably reports “not equal .” If t is not reli-
able, i.e., t ∈ P ′, then for the same reason mentioned
above, the labels of all the instances of v and its an-
cestors must be “c.” That is, LabelI(s) = LabelI(s′) =
“c.”

In Case 2, there are two instances of the test in S.
Each of them has been assigned to a different PE. Since
only one PE is assumed to be faulty, it is obvious that
either t1 /∈ P ′ or t2 /∈ P ′. Therefore, if LabelI(s) �=
LabelI(s′), then either t1 or t2 reliably reports “not
equal .” ✷

4.1 Algorithm STR

Since Algorithm STR duplicates a whole schedule for
n/2 PEs, all instances assigned to each PE are tagged
with the same version number. Again, we assume a
single faulty PE. From the definition of a fault pattern,
therefore, we get the following lemma.
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Lemma 4: Given a fault pattern P ′, every instance
of tasks in P ′ is tagged with the same version number,
“0” or “1.”
Theorem 1: Schedules that Algorithm STR gener-
ates are 1-fault-secure under the redeemable error
model.
Proof: As mentioned before, each instance tagged
with “i” (i = 0, 1) never receives any data from in-
stances tagged with “1 − i.” By Lemma 4, therefore,
every task instance that has a label other than “c” is
tagged with a common version number. That is, for
any output task v, either LabelI(s) = LabelI(s′) =“c”
or LabelI(s) �= LabelI(s′) clearly holds where s and s′

are the two instances of v. Since every output task is
tested, by Lemma 3, schedules generated by STR are
1-fault-secure under the redeemable error model. ✷

4.2 Algorithm FSAE

Let S be a schedule generated by FSAE.
Lemma 5: Let s and s′ be two instances of a task v,
each with a different version number, and let D(s) =
(α1, α2, . . . , αr) and D(s′) = (α′

1, α
′
2, . . . , α

′
r). For ev-

ery fault pattern P ′ and for every interpretation I
consistent with P ′ under the Type A error model, if
LabelI(s) = LabelI(s′) �= “c,” then the following con-
ditions hold.
Case 1: If s /∈ P ′ and s′ /∈ P ′, then LabelI(αq) =
LabelI(α′

q) for all q (1 ≤ q ≤ r) and there exists at least
one p (1 ≤ p ≤ r) such that LabelI(αp) = LabelI(α′

p) �=
“c.”
Case 2: If s ∈ P ′ and s′ /∈ P ′, then LabelI(α′

p) �= “c”
holds for some p (1 ≤ p ≤ r) (Note that s, s′ ∈ P ′ never
holds by Lemma 1).
Proof: In Case 1, from Conditions (A), (D) and (E)
in Definition 2, it is clear that LabelI(s) = LabelI(s′) �=
“c” if and only if the condition described above holds.
In Case 2, it is clear from Condition (A) in Definition
2 that if LabelI(s′) �= “c,” then LabelI(α′

p) �= “c” for
some p (1 ≤ p ≤ r). ✷

Lemma 6: Let s and s′ be two instances of a task
v, each with a different version number. For every
fault pattern P ′ and for every interpretation I con-
sistent with P ′ under the Type A error model, if
LabelI(s) = LabelI(s′) �= “c,” then there exists an in-
stance t of some test in S such that LabelI(t) = “n.”
Proof: We prove this by induction.

[Base Step] From the definition of height, no tasks in
the task group G1 have immediate predecessors. By
Lemma 1, therefore, if v ∈ G1, then LabelI(s) =
LabelI(s′) = “c” or LabelI(s) �= LabelI(s′) holds.

Next, suppose v ∈ G2 and LabelI(s) =
LabelI(s′) �= “c.” When s, s′ /∈ P ′, by Lemma 5, there
is an instance α such that LabelI(α) �= c and α is in
both D(s) and D(s′). In this case, whichever version

number α is tagged with, FSAE guarantees that the
task corresponding to α is tested. Lemma 3 also en-
sures that the test for α reliably reports “not equal .”
When s ∈ P ′ and s′ /∈ P ′, s′ receives data from an
instance assigned to the same PE as s. Due to the rule
of assigning tests, a test is assigned for this instance,
and by Lemma 3 it reliably reports “not equal .”

[Induction Step] Assume that the lemma holds if v ∈
G1 ∪ G2 ∪ · · · ∪ Gk(k ≥ 2). Now suppose v ∈ Gk+1

and LabelI(s) = LabelI(s′) �= “c.” Let D(s) =
(α1, α2, . . . , αr) and D(s′) = (α′

1, α
′
2, . . . , α

′
r). Then

two cases must be considered:
Case 1: [s /∈ P ′ and s′ /∈ P ′]
By Lemma 5, LabelI(αq) = LabelI(α′

q) for all q (1 ≤
q ≤ r) and LabelI(αp) = LabelI(α′

p) �= “c” for some p
(1 ≤ p ≤ r). There are two cases to be considered.

Case 1-1: [αp and α′
p have different version numbers]

In this case, the task corresponding to αp and α′
p

is in Gj(j ≤ k). Due to the assumption, there is a
test that reports “not equal .”

Case 1-2: [αp and α′
p have the same version number

“i”]
In this case, either s or s′ receives data from an
instance that is tagged with a version number dif-
ferent to i. Then FSAE guarantees testing of
the task corresponding to αp and α′

p. By Lemma
1, there is another instance of this task, say α′′

p ,
with a version number “i − 1.” If LabelI(αp) =
LabelI(α′

p) = LabelI(α′′
p) �= “c,” then due to

the assumption, there is a test that reports “not
equal .” If LabelI(αp) = LabelI(α′

p) �= LabelI(α′′
p ),

then also, by lemma 3, there is a test that reports
“not equal .”

Case 2: [s ∈ P ′ and s′ /∈ P ′]
Let i denote the version number of s′. Since
LabelI(s′) �= “c,” from Lemma 2 there exists an an-
cestor x of s′ in G′ such that x ∈ P ′ and all instances
on a path π from x to s′ have labels other than “c.”
There are two cases to be considered:

Case 2-1: [x is tagged with “i”]
In this case, there exist on π two instances, y
tagged with “i” and z tagged with “1−i,” such that
an edge from y to z exists (y may be x itself). Since
z receives data from y and their version numbers
are different, the task corresponding to y is tested.
Let y′ be an instance of the same task as y that has
version number “1− i.” If LabelI(y) �= LabelI(y′),
then the test reliably reports “not equal ” (Lemma
3). If LabelI(y) = LabelI(y′) �= “c,” then due to
the assumption, there is some other test that re-
ports “not equal .”

Case 2-2: [x is tagged with “1 − i”]
Since s ∈ P ′, x is assigned to the same PE as
s. When s is assigned to the PE, FSAE de-
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cides to test x because x is tagged with a differ-
ent version number from that of s. Let x′ be an
instance of the same task as x that has version
number “i.” If LabelI(x) �= LabelI(x′), then the
test reliably reports “not equal ” (Lemma 3). If
LabelI(x) = LabelI(x′) �= “c,” then due to the
assumption, there is some other test that reports
“not equal .”

Thus, in both Case 1 and Case 2, a test exists that
reports “not equal .” Hence the lemma holds for any
v ∈ Gk+1, and the lemma follows. ✷

Finally, we arrive at the following theorem.
Theorem 2: Schedules FSAE generates are 1-fault-
secure under the Type A error model.
Proof: Suppose that an instance of an output task v
is labelled with an erroneous value. Then, by Lemma
6, there is either a test that reports “not equal,” or
another instance of v that is labelled with “c.” In the
latter case, by Lemma 3, there is a test that reliably
reports “not equal ,” since all output tasks are tested.
Thus the theorem follows from the definition of a 1-
fault-secure schedule. ✷

4.3 Algorithm FSBE

Let S be a schedule generated by FSBE. Since Con-
ditions (A), (D) and (E) are met in the Type B error
model, we get the following lemma.
Lemma 7: Let s and s′ be two instances of a task v,
each with a different version number, and let D(s) =
(α1, α2, . . . , αr) and D(s′) = (α′

1, α
′
2, . . . , α

′
r). For ev-

ery fault pattern P ′ and for every interpretation I
consistent with P ′ under the Type B error model, if
LabelI(s) = LabelI(s′) �= “c,” then the following con-
ditions hold.
Case 1: If s /∈ P ′ and s′ /∈ P ′, then LabelI(αq) =
LabelI(α′

q) for all q (1 ≤ q ≤ r) and there exists at least
one p (1 ≤ p ≤ r) such that LabelI(αp) = LabelI(α′

p) �=
“c.”
Case 2: If s ∈ P ′ and s′ /∈ P ′, then LabelI(α′

p) �= “c”
holds for some p (1 ≤ p ≤ r).
Lemma 8: Let s and s′ be two instances of a task
v, each with a different version number. For every
fault pattern P ′ and for every interpretation I con-
sistent with P ′ under the Type B error model, if
LabelI(s) = LabelI(s′) �= “c,” then there exists an in-
stance t of some test in S such that LabelI(t) = “n.”
Proof: The proof is omitted as it is similar to the
one for Lemma 6. The complete proof is presented in
[14]. ✷

Theorem 3: Schedules FSBE generates are 1-fault-
secure under Type B error model.
Proof: Suppose that an instance of an output task v
is labelled with an erroneous value. Then, by Lemma
8, there is a test that reports “not equal,” or there is
another instance of v that is labelled with “c.” Also in

the latter case, there is a test that reliably reports “not
equal ” by Lemma 3, since all output tasks are tested.
Thus the theorem follows from the definition of 1-fault-
secure schedules. ✷

5. Experimental Evaluation

By using a large number of task graphs as a work
load, we performed simulations for comparison studies
of the three proposed algorithms with respect to sched-
ule length. In this section, we present the results and
discuss the respective effects of the three error models
on schedule length.

5.1 Simulation Environment

In the simulation studies, we used task graphs for
two practical parallel computations: Gaussian elimina-
tion [21] and LU-decomposition [22]. These task graphs
can be characterized by the size of the input matrix be-
cause the number of tasks and edges in the task graph
depends on the size. For example, the task graph for
Gaussian elimination shown in Fig. 1 (a) is for a matrix
of size 3. The number of nodes in these task graphs
is roughly O(N2) where N is the size of matrix. We
varied the matrix sizes so that the graph sizes ranged
from about 100 to 400 nodes.

The communication-to-computation ratio (ccr) is
defined as follows [1], [21]:

ccr =
average communication delay between tasks

average execution time of tasks

For each task graph size, we generated six different
graphs for ccr values of 0.1, 0.5, 1.0, 2.0, 5.0 and 10.0
by varying communication delays.

In practice, the value of ccr varies over a very large
range, depending on architectures of multiprocessors
and the granularity of tasks. For finest-grain cases,
the value can exceed 1000 even in modern parallel ma-
chines, such as Fujitsu AP-1000 or NEC Cenju-3 [3].
However, such fine-grain tasks are not usually used in
practice, since the number of tasks becomes so huge
that scheduling cannot be completed in a reasonable
time. Thus we exclude such extreme cases in the sim-
ulation.

We assume that the execution time required by ev-
ery test is identical, and that the communication delay
needed for each test to receive data from the partici-
pating instances is identical. For each task graph, the
execution time of a test is set to the smallest execu-
tion time among all tasks, and the communication cost
between a test and tasks is set to the average commu-
nication delay between tasks.

As a baseline, we used the finish time of a (non-
fault-secure) schedule generated by DSH . All results
presented in this section are normalized to this length.
In the studies, we considered two cases: the number of



646
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.5 MAY 2001

Fig. 6 Results for Gaussian elimination task graphs with ccr = 5.0.

Fig. 7 Results for LU-decomposition task graphs with ccr = 5.0.

PEs n = 8 and n = 16.

5.2 Evaluation Results

Figures 6 and 7 show the simulation results for Gaus-
sian elimination and LU-decomposition task graphs, re-
spectively. The value of ccr is fixed to 5.0, and the ma-
trix size is varied so that the number of tasks in the
corresponding task graph ranges from 100 to 400. The
results show that both FSAE and FSBE outperform
STR. As the matrix size increases, the difference be-
tween the performance of FSAE(FSBE) and that of
STR increases. The following reason is conjectured.
In general, as the size of the task graph increases, its
parallelism also increases (here, parallelism means the
maximum number of tasks that can be executed in par-
allel at a time). We can exploit the parallelism only if
we have a sufficient number of PEs. In this simula-
tion, the number of PEs n is fixed regardless of the size
of task graph. Therefore, as the matrix size increases,
FSAE(FSBE) can extract more parallelism than STR
because STR can essentially use only n/2 PEs.

In the case of ccr = 5.0, the difference in perfor-
mance between FSAE and FSBE is not clear. The
number of tests FSAE requires is usually larger than
that of FSBE. For example, for a Gaussian elimination
task graph with matrix size 24, we found that the num-

ber of tests that FSAE required was 335, whereas that
of FSBE was only 164. However, when communication
overhead is large, the number of idle time slots between
tasks (i.e., the time slots available for scheduling tests)
for FSAE to avoid a performance degradation.

Figures 8 and 9 show, respectively, the simulation
results for Gaussian elimination and LU-decomposition
task graphs with ccr = 0.5. The matrix size is varied in
the same way as in the case of ccr = 5.0. In the case of n
= 8, the difference in performance between FSAE and
FSBE is observed more clearly. In addition, FSAE
has worse performance than STR. This is because,
as mentioned above, when communication overhead is
small, the number of idle time slots is small.

Figures 10 and 11 show the simulation results when
the matrix size is 24. In this simulation, we varied the
value of ccr from 0.1 to 10.0. In both kinds of task
graphs, when the value of ccr is small (e.g., ccr < 1.0),
STR shows better performance than FSAE. Addition-
ally, as the value of ccr is decreased, FSBE exhibits
better performance than FSAE. In most cases, the
number of tests in a schedule obtained by STR is much
smaller than FSAE or FSBE because STR requires
tests for the output tasks only. Note that as communi-
cation delays decrease, the amount of idle time, which
can be used to schedule tests by FSAE or FSBE, de-
creases. As a result, FSAE and FSBE have worse
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Fig. 8 Results for Gaussian elimination task graphs with ccr = 0.5.

Fig. 9 Results for LU-decomposition task graphs with ccr = 0.5.

Fig. 10 Results for Gaussian elimination task graphs.

Fig. 11 Results for LU-decomposition task graphs.
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performance than STR when ccr is small.
Compared with the non-fault-secure scheduling al-

gorithm DSH , FSAE and FSBE achieved 1-fault-
security at the cost of a small increase in schedule
length. For example, in the case where n = 16 and
ccr ≥ 1, the algorithms achieved 1-fault-security with
less than 20% overhead. (Note that each result is nor-
malized to the schedule length of DSH .)

All schedules generated by the three proposed al-
gorithms are 1-fault-secure. However, since the fault
models that are assumed by these algorithms are dif-
ferent, the degrees of fault security achieved are also
different. In the following subsection, we discuss the re-
sults from the viewpoint of both performance and fault
security.

5.3 Discussion

Since the number of tests scheduled by Algorithm
FSBE is smaller than that of Algorithm FSAE,
FSBE has better performance than FSAE, particu-
larly when communication overhead is small. When
communication overhead is large, FSAE and FSBE
show better performance than Algorithm STR, al-
though the performance of FSBE is close to that of
FSAE. However, in some cases, STR outperforms
FSAE and FSBE. In this simulation, the execution
time of a test is set to the smallest execution time of
tasks in the given task graph. It can be considered that
as the execution time of a test increases, STR more of-
ten outperforms FSAE and FSBE.

As defined in Sect. 2.3, the Type B error model is a
subclass of the Type A error model, while the Type A
error model is a subclass of the redeemable error model.
Therefore, schedules that Algorithm FSAE generates
are 1-fault-secure under the Type A error model and the
Type B error model, whereas schedules that Algorithm
STR generates are 1-fault-secure under the redeemable
error model, the Type A error model and the Type B
error model. Therefore, in situations where the number
of idle time slots is not sufficient to assign instances of
tests, STR can be chosen even if the redeemable error
model is too pessimistic for the required fault-security
level.

In the paper, we have restricted our discussions to
1-fault-security. However, when multiple PE failures
are considered, the situation becomes much complex,
since 1-fault secure schedules may tolerate failures of
more than one PE. In the case of multiple PE failures,
STR is more robust than the other two algorithms, be-
cause faults can be detected as long as failures center
on one half of the PEs. (Note that STR duplicates a
whole non-fault-tolerant schedule.) With FSAE and
FSBE, this is not the case, since these algorithms dis-
tribute tasks among all PEs irrespective of their version
numbers, aiming at shortening schedule length. Thus
when fault probability is high or correlated faults [27]

can occur, the use of STR is suggested. Although prob-
abilistic analysis is beyond the scope of the paper, it
definitely deserves further work.

6. Related Work

In recent years, much research has been developed on
methods for achieving fault tolerance in parallel and
distributed systems through task scheduling. These
methods have received much attention as a cost effec-
tive means of high reliability, since no hardware dedi-
cated for fault tolerance is required.

These methods assume a variety of system and
fault models. Methods that deal with independent
tasks include [6], [7], [10], [23], [28]. Most of them as-
sume that tasks arrive at the system dynamically (ex-
ceptions include [6]). Each arriving tasks is replicated
and scheduled to more than one processors in order to
detect processor failures and/or to produce correct re-
sults.

Fault-tolerant scheduling methods that can deal
with tasks with constraints are also well studied. These
methods assume that tasks have mutual dependency,
and the relations are usually specified by a directed
graph. In [18], [25], methods for scheduling communi-
cating tasks onto distributed systems are presented.

Scheduling task graphs onto multiprocessors is dis-
cussed in [4], [5], [12], [13], [15], [29]. As stated in the
introduction, fault-secure scheduling is studied in [4],
[12], [13], [29]. The previous research deals with tree-
structured task graphs only and does not consider com-
munication overheads. On the other hand, the algo-
rithms proposed in this paper can handle arbitrary task
graphs with communication delays.

In [5] and [15], much more benign failure models
are assumed than the three error models presented in
the paper. More specifically, [5] assumes that fault can
be detected by specialized tasks, while fail-stop proces-
sors [26] are assumed in [15]. Scheduling algorithms
proposed in these papers are aimed at masking faults,
instead of detecting them.

Other related research includes [11], which pro-
poses an algorithm for scheduling loops in parallel pro-
grams to detect faults.

It should be noted that fault tolerance of VLSIs
can also be achieved through scheduling in high-level
synthesis. Research in this direction is, for example, [8]
and [17].

7. Conclusions

In this paper, we introduced three error models (the
redeemable, Type A, and Type B error models), and
investigated the respective effects of the different error
models on the fault security of a multiprocessor sched-
ule. The Type B error model is a subclass of the Type
A error model, whereas the Type A error model is a
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subclass of the redeemable error model.
To achieve the 1-fault-secure property under the

redeemable error, Type A, and Type B error models,
we proposed algorithms STR, FSAE and FSBE, re-
spectively. We proved that these algorithms produce
1-fault-secure schedules with time complexity O(|V |4),
where |V | is the number of tasks in a given task graph.

In order to study the impact of the error models
on schedule length, we performed simulation studies.
As a result, it was found that in a situation where
communication overhead is large (ccr ≥ 1), FSAE
and FSBE outperform STR, but the difference in per-
formance between FSAE and FSBE cannot be seen
clearly. On the other hand, when communication over-
head is small (ccr < 1), STR exhibits better per-
formance than FSAE and FSBE in some cases. In
such cases, STR should be chosen even though the
redeemable error model is more pessimistic than the
required fault-security level. Compared with a non-
fault-secure scheduling algorithm DSH , the proposed
algorithms achieve 1-fault-security at the cost of a small
increase in schedule length.

Acknowledgements

The authors would like to thank Dr. Noriyuki Fujimoto
and Mr. Aaron Stokes for their helpful suggestions. The
authors also thank the anonymous referees for their
helpful comments on how to improve this paper.

References

[1] I. Ahmad and Y.-K. Kwok, “A new approach to scheduling
parallel programs using task duplication,” Proc. Interna-
tional Conference on Parallel Processing, pp.II-47-51, 1994.

[2] I. Ahmad and Y.-K. Kwok, “On exploiting task duplication
in parallel program scheduling,” IEEE Trans. Parallel and
Distributed Systems, vol.9, no.8, pp.872–892, 1998.

[3] T. Baba, T. Hashimoto, N. Fujimoto, and K. Hagihara, “A
task scheduling algorithm with consideration to communi-
cation property on a distributed memory parallel machine,”
IEICE Technical Report, COMP98-72, 1999.

[4] P. Barnerjee and J.A. Abraham, “Fault-secure algorithms
for multiple processor systems,” Proc. 11th International
Symposium on Computer Architecture, pp.270–287, 1984.

[5] S. Chabridon and E. Gelenbe, “Failure detection algorithms
for a reliable execution of parallel programs,” 14th IEEE
International Symposium on Reliable Distributed Systems,
pp.229–238, 1995.

[6] V. Cherkassky and C.-I.H. Chen, “Redundant task-
allocation in multicomputer systems,” IEEE Trans. Reli-
ability, vol.41, no.3, pp.336–342, 1992.

[7] A. Dahbura, K.Sabnani, and W. Hery, “Space capacity as
a means of fault detection and diagnosis in multiprocessor
systems,” IEEE Trans. Comput., vol.38, no.6, pp.881–891,
1989.

[8] B.P. Dave and N.K. Jha, “COFTA: Hardware-software co-
synthesis of heterogeneous distributed embedded systems,”
IEEE Trans. Comput., vol.48, no.4, pp.417–441, 1999.

[9] H. El-Rewini, H.H. Ali, and T. Lewis, “Task scheduling
in multiprocessing systems,” IEEE Comput., vol.28, no.12,
pp.27–37, 1995.

[10] S. Ghosh, R. Melhem, and D. Mossé, “Fault-tolerance
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Appendix: TDP (Task Duplication Procedure)

Procedure TDP (vi,Pc,DT lst)
Input: vi, assigned task;

Pc, assigned PE candidate;
DT lst, a list of duplicated tasks;

Output: STi, vi’s start time;
Begin

DT lst′ := DT lst
Repeat

DT lst := DT lst′

flag := UNSUCCESSFUL
STi := Start Time(vi,Pc,DT lst′)
/*STi is the start time of vi on Pc, given that
tasks in DT lst′ are duplicated.*/

IF (vi has predecessors) Then
LIP := Find LIP(vi,Pc,DT lst′)
/*LIP is an immediate predecessor of vi that
directly causes the start time of vi (i.e., STi)
[19].*/

If (LIP is not assigned to Pc) and
(LIP is not duplicated in DT lst′) Then

STLIP := TDP (LIP ,Pc,DT lst′)
If (Start Time(vi,Pc,DT lst′)≤STi) Then

flag := SUCCESSFUL
End If

End If
End If

Until (flag = UNSUCCESSFUL)
Insert vi into DT lst at ST

End
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