
Title Effective Scheduling of Duplicated Tasks for
Fault Tolerance in Multiprocessor Systems

Author(s) Hashimoto, Koji; Tsuchiya, Tatsuhiro; Kikuno,
Tohru

Citation IEICE transactions on information and systems.
2002, E85-D(3), p. 525-534

Version Type VoR

URL https://hdl.handle.net/11094/27259

rights Copyright © 2002 The Institute of Electronics,
Information and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

IEICE TRANS. INF. & SYST., VOL.E85–D, NO.3 MARCH 2002
525

PAPER

Effective Scheduling of Duplicated Tasks for Fault

Tolerance in Multiprocessor Systems

Koji HASHIMOTO†, Tatsuhiro TSUCHIYA††, and Tohru KIKUNO††, Regular Members

SUMMARY In this paper, we propose a new scheduling al-
gorithm to achieve fault tolerance in multiprocessor systems.
This algorithm first partitions a parallel program into subsets
of tasks, based on the notion of height of a task graph. For each
subset, the algorithm then duplicates and schedules the tasks in
the subset successively. We prove that schedules obtained by
the proposed algorithm can tolerate a single processor failure
and show that the computational complexity of the algorithm is
O(|V |4) where V is the set of nodes of a task graph. We conduct
simulations by applying the algorithm to two kinds of practi-
cal task graphs (Gaussian elimination and LU-decomposition).
The results of this experiment show that fault tolerance can be
achieved at the cost of small degree of time redundancy, and
that performance in the case of a processor failure is improved
compared to a previous algorithm.
key words: multiprocessors, fault-tolerant scheduling, task
graph, heights, task groups

1. Introduction

Making use of multiple components for fault tolerance
is a common idea in parallel and distributed comput-
ing. Many researchers have developed multiprocessor
scheduling algorithms to achieve high reliability, assum-
ing various system models.

For example, Gu et al. [6] have investigated formal
characterization of fault-secure multiprocessor sched-
ules. A schedule is said to be fault-secure if either the
system produces correct outputs for the program or it
detects the presence of faults in the system. In their
model, a parallel program is composed of a set of tasks
and represented by a directed acyclic graph. All tasks
have a uniform execution time and communication de-
lays between processors are not taken into account. In
[6], [17], some scheduling algorithms are proposed under
this model. However, these algorithms can be applied
only to a class of tree-structured task graphs.

Chabridon et al. [2] have developed a scheduling
algorithm which ensures that the program can run cor-
rectly if at least one of the processors is operational.
Since the fault tolerance is achieved by rescheduling
and re-execution of tasks upon fault detection, consid-
erable decrease in the performance is inevitable even
when only a single fault occurs.

Manuscript received March 26, 2001.
†The author is with Hitachi Laboratory, Hitachi Ltd.,

Hitachi-shi, 319–1292 Japan.
††The authors are with the Department of Informatics

and Mathematical Science, Graduate School of Engineering
Science, Osaka University, Toyonaka-shi, 560–8531 Japan.

Gong et al. [5] have studied duplication of opera-
tions for fault detection. They consider loop iterations
called regular loops, which are perfectly nested and con-
tain no branches, and thus the method they propose is
restricted to program structures which include only reg-
ular loops. A recent survey of such related work can be
found in another paper of ours [9].

In this paper, we propose a new scheduling algo-
rithm to tolerate a single processor failure in multipro-
cessor systems with a distributed memory architecture
where processors communicate with each other solely
by message-passing. We consider parallel programs
represented by a directed acyclic graph with arbitrary
computation and communication costs. By duplicating
every task of a given program, the algorithm ensures
that the system can complete the program without
rescheduling even if a single processor failure occurs.
With this scheduling algorithm, fault tolerance can be
achieved at the cost of small degree of time redundancy
without requiring any additional hardware.

To the best of our knowledge, there has been no
previous algorithm to the same problem discussed in
this paper, except ours [7] (a part of [7] is also pub-
lished with additional results as [8]). In the previous
algorithm, a parallel program is partitioned equally into
several subsets of tasks in the first phase, and then tasks
in each subset are duplicated and scheduled succes-
sively. In this paper, we focus on the structure of task
graphs and propose to use the structural information
for task partitioning more directly than the previous al-
gorithm. Specifically, we introduce a notion of heights
[10] of tasks. The proposed fault-tolerant scheduling
algorithm incorporates height-based task partitioning.
Through simulation studies, we show that the proposed
algorithm can achieve better performance than the pre-
vious algorithm particularly in the case of a processor
failure.

The remainder of this paper is organized as follows.
The system model assumed in this paper is described
in Sect. 2. Also, fault-tolerant schedules are defined in
this section. The previous scheduling algorithm is ex-
plained in Sect. 3, while the new proposed algorithm
is described in Sect. 4. The correctness proof of the
proposed algorithm is given in Sect. 5. The results of
the simulation studies are shown in Sect. 6. The paper
concludes with Sect. 7.

526
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.3 MARCH 2002

Fig. 1 Task graphs.

2. Preliminaries

2.1 System and Task Model

We consider a multiprocessor system that consists of n
identical processing elements (PEs) and runs one appli-
cation program at a time. All PEs are fully connected
with each other via a reliable network. A PE can ex-
ecute tasks and communicate with another PE at the
same time. This is typical with I/O processors and di-
rect memory access. In addition, all PEs are assumed
to be fail-stop [15].

A parallel program is represented by a weighted di-
rected acyclic graph (DAG) G = (V, E, w, c), where V
is the set of nodes and E is the set of edges. Each node
represents a task v, and is assigned a computation cost
w(v), which indicates the task execution time. Each
edge < v, v′ >∈ E from v to v′ corresponds to the
precedence constraint that task v′ cannot start its exe-
cution before receiving all necessary data from task v.
Given an edge < v, v′ >, v is called an immediate pre-
decessor of v′, while v′ is called an immediate successor
of v. Similarly, if there is a path from v to v′ on G, then
v is called a predecessor of v′, while v′ is called a succes-
sor of v. Each edge is assigned a communication cost
c(v, v′), which indicates the time required for transfer-
ring necessary data between different PEs. If the data
transfer is done within the same PE, the communica-
tion cost becomes zero. In the following, we call such a
weighted DAG a task graph. Figure 1 shows examples
of task graphs. In the figure, the number adjacent to a
node represents the execution time of its corresponding
task, and the number on each edge is a communication
cost.

We introduce some definitions and terminology as
in [11] For a path in a task graph, its length is defined as
the summation of task execution times along the path
excluding communication delays. The level of a task is
defined as the length of the longest path from the node
representing the task to a node that has no successor
nodes. In Fig. 1 (a), for example, the levels of v6 and v7

are 9 and 2, respectively.

2.2 Fault-Tolerant Scheduling

Multiprocessor scheduling refers to the process in which
tasks in a task graph are assigned to PEs and the exe-
cution order of the tasks assigned to each PE is deter-
mined. Usually, the goal of scheduling is to minimize
the length of the resultant schedules. When more than
one copy is allowed to be scheduled for each task, that
is, task duplication is allowed, a schedule can be for-
mally defined as follows.

Definition 1 (Schedule): Let τ be a set of nonneg-
ative real numbers. Given a task graph T G =
(V, E, w, c) and a set of PEs P , a schedule S is defined
as a finite set of triples S ⊂ V ×P ×τ , such that the fol-
lowing three conditions hold: (1) For each v ∈ V there
is at least one triple (v, p, t) ∈ S. (2) There are no two
triples (v, p, t), (v′, p, t′) ∈ S with t′ <= t < t′ + w(v′).
(3) For each (v, p, t) ∈ S, if v′ ∈ V is an immediate pre-
decessor of v, then there is another triple (v′, p, t′) ∈ S
with t′ < t, or there is another triple (v′, p′, t′) ∈ S such
that p |= p′ and t′+w(v′)+c(v′, v) <= t. A triple (v, p, t)
in S signifies that v is allocated to p and its starting
time is t. A finite set of triples S′ ⊂ V × P × τ is said
to be a partial schedule iff S′ ⊂ S for some schedule S.

This definition is a natural extension of the one in
[14]. In [14] (or in e.g., [1], [4], [11], [12], [16]), task du-
plication is used only to eliminate interprocessor com-
munication to shorten the schedule length. Although
the multiprocessor scheduling problem is known as NP-
hard in its general form, when task duplication is al-
lowed, the problem becomes easier and even tractable in
some cases (e.g., [4]). On the other hand, fault-tolerant
schedules must meet additional constraints, which will
be described in the next subsection, thus making the
scheduling problem more complicated.

Fault-tolerant scheduling, as discussed here, refers
to producing a schedule with which the system can com-
plete the program even if any single PE failure occurs.
We call such a schedule fault-tolerant. The goal of our
study is to minimize the schedule length while achiev-
ing this required level of fault tolerance. Before describ-
ing the formal definition of fault-tolerant schedules, we
present an example to illustrate the basic concept.

Example 1: Figure 2 (b) shows a schedule for a task
graph in Fig. 2 (a). In this schedule, every task is as-
signed to at least two different PEs. To distinguish
between a task v ∈ V and its actually scheduled copies,
we call the latter the instances of v. Now suppose that
p1 failed at time 0 as shown in Fig. 2 (c). Even in this
situation, all remaining instances that are not assigned
to p1 are executed in the same way as if the PE had
not failed. On the other hand, if p3 were to fail at time
0 as shown in Fig. 2 (d), the instances of v12 assigned

HASHIMOTO et al.: EFFECTIVE SCHEDULING OF DUPLICATED TASKS FOR FAULT TOLERANCE
527

Fig. 2 An example of a fault-tolerant schedule.

to p2 and p4 could not be executed at their scheduled
start time. This is because execution of the instance of
its immediate predecessor v9 scheduled on p3 would not
have completed. However, if the instances of v12 on p2

and p4 wait to receive the necessary data from another
instance of v9 on p1, then all instances scheduled onto
healthy PEs can be executed as shown in Fig. 2 (d).

Note that in Example 1, the execution order of the
instances on each PE does not change even when a PE
fails. Although the completion time of program execu-
tion is delayed, all instances on healthy PEs can com-
plete their execution without rescheduling. This mech-
anism can be implemented easily, simply by checking
message arrival at the beginning of execution of each
task. In addition, because all tasks are scheduled re-
dundantly to at least two PEs, for any task at least one
of its instances must be executed. As a result, with this
type of schedule, the program terminates and all of its
tasks are successfully executed even when a single PE
has failed.

2.3 Formal Definition of Fault-Tolerant Schedules

Suppose that a schedule S is given. Also suppose that
pf (∈ P) is a PE that has failed at time 0. Note that
if the schedule can tolerate the failure of one PE at
time 0, it can tolerate the failure of the same PE at
any time t > 0. For each instance (v, p, t) ∈ S, let
start((v, p, t), pf) and finish((v, p, t), pf) be, respec-
tively, the (earliest) start time and the finish time of the
instance when pf has failed. Then, finish((v, p, t), pf)
is equal to start((v, p, t), pf) + w(v). Let ib(v, p, t) de-
note an instance that is scheduled immediately before
(v, p, t) on the same PE p. If (v, p, t) is the instance that
is scheduled earliest on p, then ib(v, p, t) does not exist;
i.e., ib(v, p, t) = ε. Let start(ε, pf) = finish(ε, pf) = 0.

As mentioned before, each instance (v, p, t) can-
not start its execution until it receives all necessary
data from its immediate predecessors. In addition,
if ib(v, p, t) cannot be executed, then (v, p, t) can-
not be executed either. We assume that the start
time of such an instance (v, p, t) is infinite, that
is, start((v, p, t), pf) = ∞. (v, p, t) is executable if

start((v, p, t), pf) |= ∞, whereas (v, p, t) is not exe-
cutable if start((v, p, t), pf) = ∞.

For each instance (v, p, t) with p |= pf , the start
time start((v, p, t), pf) is determined as follows.
Case 1: [v has no predecessors, or all immediate pre-
decessors of v are scheduled on p earlier than t.]

start((v, p, t), pf) = max{t, f inish(ib(v, p, t), pf)}.

Case 2: [ib(v, p, t) is not executable, or there is at
least one immediate predecessor v′ of v such that no
instances of v′ are executable.] In this case, (v, p, t)
cannot start its execution, that is,

start((v, p, t), pf) = ∞.

Case 3: [Otherwise] In this case, there is at least one
immediate predecessor v′ of v such that at least one
of the instances of v′ is executable and none of the
executable instances is allocated to either p or pf . The
instance (v, p, t) has to wait to receive a message from
such an immediate predecessor before starting. Hence,

start((v, p, t), pf)
= max{t, f inish(ib(v, p, t), pf),

max
u∈U

{ min
{(u,p′,t′)
|p′ |=pf}

{finish((u, p′, t′), pf)+ c(u, v)}}}

where U is a set of all immediate predecessors of v
whose instances are all allocated to PEs other than p.

Based on this argument, we obtain a formal defi-
nition of fault-tolerant schedules as follows.

Definition 2 (Fault-tolerant schedule): A schedule S
is fault-tolerant iff the following two conditions hold for
any pf(∈ P).

(1) There is no triple (v, p, t) ∈ S such that p |= pf

and start((v, p, t), pf) = ∞.
(2) For each v ∈ V , there is at least one triple (v, p, t) ∈

S with p |= pf .

The first condition signifies that the program can fin-
ish even if any single PE has failed, while the second
condition stipulates that all tasks of the program can
be executed.

3. Our Previous Work

As stated in Sect. 1, we have proposed a fault-tolerant
scheduling algorithm in a previous paper [7]. In this
section, we explain this previous algorithm.

In [7], we first proposed a set of scheduling algo-
rithms, RSR1, RSR2, RSR3, · · ·, as building blocks.
Each RSRk is an extension of Algorithm DSH (Du-
plication Scheduling Heuristic), which is a non-fault-
tolerant scheduling algorithm proposed by Kruatrachue
in [11]. Algorithm RSRk generates a non-fault-tolerant
schedule for n−k PEs by applying DSH (Step 1), and
then modifies it to be fault-tolerant using n PEs (Step

528
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.3 MARCH 2002

Fig. 3 Illustrative example of PHS3.

2). The schedule obtained in Step 1 usually contains
duplicated instances of tasks, because DSH duplicates
tasks in order to eliminate communication delays and
improve performance. In Step 2, tasks that were not
duplicated in Step 1 are duplicated and scheduled.

In order to achieve better performance, we then
proposed Algorithm GRD which integrates RSRk’s in a
straightforward manner. Algorithm GRD calls RSR1,
RSR2, · · ·, RSR�n

2 � and outputs the shortest schedule
among the schedules generated by RSRk’s.

In the case of a PE failure, however, schedules gen-
erated by GRD tend to be much longer than the no
failure case. The reason can be described as follows.
In Step 2 of RSRk, instances can be scheduled only to
locations that are not occupied by the instances sched-
uled in Step 1. Because of this, the instances scheduled
in Step 2 tend to have later start times than the corre-
sponding instances scheduled in Step 1. Thus instances
scheduled in Step 2 can incur a delay in the completion
of a program when a PE has failed. In order to avoid
such a situation, we introduced the following idea.

In Algorithm RSRk, Step 1 and Step 2 are exe-
cuted only once for all tasks. Instead of this, we now
consider partitioning the set of tasks V into l disjoint
groups. Step 1 and Step 2 are then performed repeat-
edly for the tasks in each group. Consequently, the in-
stances scheduled in Step 2 are likely to be distributed
more equally among all the PEs, and also are likely to
be scheduled into earlier time slots. Incorporating this
idea, we developed Algorithm PHSl. This algorithm
equally partitions the set of tasks V into l disjoint sub-
sets and schedules tasks in each subset by using Algo-
rithm GRD.

Example 2: Consider the case of scheduling the task
graph shown in Fig. 3 (a) onto four PEs by Algorithm
PHS3. Initially, the set of tasks V , in which all
tasks are ordered according to their levels, is parti-
tioned into three subsets: G1 = {v1, v2, v3, v4, v6}, G2 =
{v5, v7, v8, v9, v10}, and G3 = {v11, v12, v13, v14}. (The
number of tasks in G3 is four, since |V |(= 14) is indi-
visible by three.)

First, tasks in G1 are scheduled by Algorithm

GRD. GRD calls RSR1 and RSR2. Using n − 1 PEs,
i.e., p1, p2 and p3, RSR1 generates a partial schedule
as shown in Fig. 3 (b) in Step 1. In Step 2, tasks that
are not duplicated in Step 1 (i.e., v2, v3, v4 and v6) are
scheduled using n PEs as shown in Fig. 3 (c). (v1 on p4

is an instance duplicated to improve the start time of
the instance of v2 on p4.) Similarly, RSR2 is applied
to G1. In this case, the partial schedule generated by
RSR1 is chosen. GRD is iteratively applied to the re-
maining subsets G2 and G3. As a result, a fault-tolerant
schedule is obtained as shown in Fig. 3 (d).

4. The Proposed Scheduling Algorithm

In general, the schedule length depends critically on the
structure of the given task graph. However, Algorithm
PHSl partitions the set of tasks without sufficient con-
sideration of its structure. Additionally, determining
an appropriate value for l is a problem since the value
that minimizes the schedule length is different for differ-
ent task graphs. Another drawback is that the running
time is relatively large. This is because in PHSl, all
of Algorithms RSV1, RSV2, · · · , RSV�n

2 � are applied to
each partitioned subset.

In this section, we present a new scheduling algo-
rithm HBP (Height-Based Partitioning). To cope with
the shortcomings of the previous algorithm, HBP em-
ploys a new partitioning method and a simple schedul-
ing scheme. The outline of HBP is given below.

Proposed Algorithm HBP
Input: T G, a task graph;

P , a set of PEs {p1, p2, · · · , pn} (n >= 2)
Output: S, a fault-tolerant schedule
Begin

S := empty
Partitioning:

Partition the set of tasks in T G into task groups
G1, G2, · · ·, Gm according to height.
/*Task groups are arranged in descending order
of height.*/

Invoke Basic algorithm for each task group:
For i = 1 to m do

S := BA(Gi, S)
End For

End

4.1 Partitioning

We propose the partitioning of a set of tasks according
to their heights. The height of a task v is defined as

height(v) =

{
0, U = ∅,
1 + max

u∈U
{height(u)}, U |= ∅,

where U is a set of immediate successors of v.
Partitioning is performed as follows. Given a task

HASHIMOTO et al.: EFFECTIVE SCHEDULING OF DUPLICATED TASKS FOR FAULT TOLERANCE
529

graph, first the height of each task is calculated. Then,
the set of tasks is partitioned into subsets according
to their heights in such a way that all tasks with the
same height will belong to one subset. We call each
subset a task group. By definition, for any two tasks
v, v′ ∈ V , if v is a predecessor of v′, then the height of
v is larger than that of v′. Since all tasks in each task
group have the same height value, there are no data
dependencies (precedence constraints) among them. As
will be analyzed in Sect. 3.5, this property allows tasks
to be scheduled effectively. In addition, since the height
of a task is determined uniquely, task groups are also
determined uniquely.

Example 3: Consider the task graph in Fig. 1 (a).
The heights of v6 and v7, for example, are 3 and 0,
respectively. The set of all tasks is partitioned into
eight task groups as follows. G1 = {v1}, G2 = {v2},
G3 = {v3, v6}, G4 = {v4, v7}, G5 = {v5, v8, v10},
G6 = {v9, v11}, G7 = {v12, v13}, and G8 = {v14}.

4.2 Basic Algorithm

Once the program has been partitioned into task
groups, the Basic algorithm described here is applied to
each task group. This algorithm consists of two steps.

In Step 1, each task is scheduled to one of n PEs.
The tasks are scheduled one by one according to their
priorities (the task with the highest priority is sched-
uled first). Priorities are assigned in descending order of
level. Tasks at the same level are prioritized according
to the number of immediate successors (the task with
the greatest number of immediate successors is given
the highest priority).

Now let v ∈ Gi be the task to be scheduled. Note
that all tasks in G1, G2, · · ·, Gi−1 have already been
scheduled; i.e., a partial schedule S′ already exists. v
is scheduled to one of the n PEs by adding its instance
to S′. The location of v is determined as follows. For
each PE, the earliest start time of v on the PE is com-
puted under the conditions that new instances of the
predecessors of v are allowed to be scheduled onto the
PE and no new instances (including the instance of v)
are scheduled earlier than any instances that have al-
ready been scheduled on the PE in S′. This can be done
by calling Procedure T DP (Task Duplication Process)
[11] for each of the n PEs. When invoked, it returns
the earliest start time of v and a set of instances of pre-
decessors of v that need to be scheduled to achieve the
start time. Finally v is scheduled to the PE which can
execute v earliest among all the PEs.

In Step 2, all tasks in the task group are dupli-
cated. The newly duplicated tasks are scheduled in the
same order as in Step 1. The location of each task
is determined in a similar way to Step 1, except that
each instance is never scheduled to the same PE where
the corresponding instance was already scheduled in

Step 1. Consequently, every task is allocated to at least
two different PEs. (Note that there may be tasks that
are duplicated in the process of scheduling their succes-
sors, in order to eliminate communication delays.) The
pseudo-code of the Basic algorithm is given below.

Basic algorithm BA(Gi, S
′)

Input: Gi, a task group;
S′, a partial schedule

Output: S, a partial schedule
Begin

S := S′

Arrange tasks in Gi according to their priorities
Step 1:

For each task v in Gi do
For each PE p in P do

(ST [p], DT [p]) := T DP (v, p, DT [p])
/*ST [p] is the earliest start time of v on p.*/
/*DT [p] is a set of instances of

duplicated predecessors of v.*/
End For
pt := the PE whose ST [pt] is the smallest
S := S ∪ {(v, pt, ST [pt])} ∪ DT [pt]
/* Schedule v with DT [pt] to pt */

End For
Step 2:

For each task v in Gi do
pa := the PE to which v has been scheduled
in Step 1
For each PE p in P − {pa} do

(ST [p], DT [p]) := T DP (v, p, DT [p])
End For
pt := the PE whose ST [pt] is the smallest
S := S ∪ {(v, pt, ST [pt])} ∪ DT [pt]

End For
Return S

End

4.3 Illustrative Example

Figure 4 illustrates how HBP works. In this example,
we assume that the number of PEs, n, is four and the
task graph shown in Fig. 4 (a) is given. The set of tasks
is partitioned into eight task groups G1, G2, · · ·, G8.
Tasks in each task group are ordered according to their
priorities as follows.

G1: v1 G5: v10, v5, v8

G2: v2 G6: v9, v11

G3: v6, v3 G7: v12, v13

G4: v4, v7 G8: v14

These task groups are first ordered according to their
heights. Then the Basic algorithm is applied for each
task group in order, such that the task group whose
height is the largest is selected first. Note that Step 1
and Step 2 are applied only once to each task group,
unlike in Algorithm PHSl.

530
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.3 MARCH 2002

Fig. 4 Illustrative example of HBP .

Now suppose that task groups G1 and G2 have
been scheduled. Then the Basic algorithm is applied
to G3. In Step 1, each task in G3 is scheduled to one
of n PEs. This is done by applying Procedure T DP to
each of the three PEs. For example, an instance of v3

is scheduled as follows. The instance of v6 has already
been assigned to p2, as shown in Fig. 4 (b). Taking into
account the immediate predecessor of v3 (i.e., v1), it can
be seen that the start times of v3 on p1 and p2 would
be 3 and 2, respectively. The start time of v3 would
also be 2 on p3 if no instances were duplicated. (Note
that v3 must receive necessary data from v1.) In order
to improve the start time of v3, T DP duplicates the
instance of v1 and schedules it to p3 at time 0. By this
duplication, the communication delay between v1 and
v3 is eliminated and the start time of v3 on p3 becomes
1. As a result, p3 can start execution of v3 earlier than
p1 and p2. Therefore, the instance of v3 is scheduled to
p3 as shown in Fig. 4 (c).

In Step 2, each task in G3 is duplicated and sched-
uled to one of the n PEs other than the PE to which
its instance is already scheduled. The instance of v3

is already scheduled to p3 in Step 1, and thus T DP is
applied to p1, p2 and p4. As a result, an instance of
v3 is scheduled to p4. Similarly, each remaining task is
scheduled so as to be executed on two different PEs, as
shown in Fig. 4 (d).

The Basic algorithm is applied to the remaining
task groups G4, G5, · · ·, G8. Consequently, a fault-
tolerant schedule is obtained, as shown in Fig. 4 (e).

4.4 Time Complexity of Algorithm HBP

The complexity of task level and height calculation is
O(|E|), where |E| denotes the number of edges in the
task graph. Each task is scheduled by applying Pro-
cedure T DP to n PEs both in Step 1 and in Step
2 of the Basic algorithm. The computational com-
plexity of Procedure T DP is known to be O(|V |3).
Therefore, the complexity of scheduling one task is
O(n|V |3). Since |E| < |V |2 and the number of tasks
is |V |, the complexity of Algorithm HBP is O(|V |4),

given that n is fixed. This complexity is similar to
many of non-fault-tolerant scheduling algorithms that
use task duplication. For example, the complexity of
DSH [11], BT DH (Bottom-Up Top-Down Duplication
Heuristic) [3], LCT D (Linear Clustering with Task Du-
plication) [16], and the algorithm in [14] is O(|V |4),
O(|V |4), O(|V |3 log |V |), and O(|V |2(|E|+ |V | log |V |)),
respectively.

5. Correctness Proof of HBP

This section proves the correctness of Algorithm HBP .
Correctness in this section means that the algorithm
generates a fault-tolerant schedule. The correctness of
HBP depends on the property of T DP that it never
schedules instances earlier than those already sched-
uled. Although it is clear that the correctness of HBP
depends on the correctness of T DP , we do not include
the proof for T DP , since it is out of scope of our paper.
Interested readers are referred to [11].

Without loss of generality, we discuss the case
where a certain PE pf ∈ P failed at time 0 as
in Sect. 2.3. Let S denote a schedule generated by
HBP , and let S1, S2, · · · , Sm denote sets of the in-
stances scheduled by applying the Basic algorithm to
task groups G1, G2, · · · , Gm, respectively (i.e., S =
S1 ∪ S2 ∪ · · · ∪ Sm).

Lemma 1: For each task in Gi(1 <= i <= m), there
exists at least one instance in Si that is not assigned to
pf .

Proof: Immediate from the fact that HBP assigns
each task to at least two different PEs. ✷

Lemma 2: There is no instance (v, p, t) ∈ S such that
p |= pf and start((v, p, t), pf) = ∞. (That is, all in-
stances on all PEs except pf are executable even if pf

fails.)

Proof: We prove this by induction.
Base Step: By the definition of height, all tasks

in G1 have no predecessors. Thus S1 contains only

HASHIMOTO et al.: EFFECTIVE SCHEDULING OF DUPLICATED TASKS FOR FAULT TOLERANCE
531

instances of tasks in G1 and they can start their execu-
tion without receiving any data from other instances.
Due to the above property of T DP , for every instance
(v, p, t) ∈ S1, other instances that are not in S1 are
never scheduled earlier than the instance on p. Hence,
every instance in S1 is executable even in the case of
the failure of pf .

Induction Step: Assume that all instances in
S1 ∪ S2 ∪ · · · ∪ Sk are executable in the case of the
failure of pf . By Lemma 1, at least one instance of
each task in Gi(1 <= i <= k) that is not on pf exists in
Si, and the assumption implies that all tasks that have
larger values of height than any task in Gk+1 have at
least one executable instance in S1 ∪ S2 ∪ · · · ∪ Sk that
is not scheduled to pf . In addition, on each PE, all in-
stances in S1∪S2∪· · ·∪Sk have been scheduled earlier
than any instance in Sk+1. Therefore, every instance in
Sk+1 can receive all necessary data from its immediate
predecessors (which, it should be noted, all have larger
values of height than the instance in question), unless
it is not on pf . This means that all instances in Sk+1

that are not scheduled onto pf are executable even in
the case of the failure of pf .

Consequently, all instances that are not on pf in
the schedule are executable; i.e., there is no instance
(v, p, t) ∈ S such that p |= pf and start((v, p, t), pf) =
∞. ✷

Lemma 1 implies that schedules obtained by HBP
meet condition (2) in Definition 2 (in Sect. 2.3), whereas
Lemma 2 implies that the schedules meet condition (1).
Therefore, we obtain the following theorem.

Theorem 1: HBP generates a fault-tolerant sched-
ule.

6. Experimental Evaluation

In this section, we present an experimental evaluation
of the proposed algorithm. We performed simulation
studies using a large number of task graphs as a work-
load. We coded the proposed algorithms in the C++
language and conducted the simulation on a COMPAQ
XP1000 workstation running Digital UNIX.

6.1 Simulation Environment

In the simulation studies, we used task graphs for
two practical parallel computations: Gaussian elimina-
tion [12] and LU-decomposition [13]. These task graphs
can be characterized by the size of the input matrix be-
cause the number of tasks and edges in the task graph
depends on the size. For example, the task graph for
Gaussian elimination shown in Fig. 1 (a) is for a matrix
of size 3. The number of nodes in these task graphs
is roughly O(N2), where N is the size of matrix. In
the simulation, we varied the matrix size so that the
graph size ranged from about 100 to 400 nodes. For

each task graph size, we generated six different graphs
for ccr values of 0.1, 0.5, 1.0, 2.0, 5.0 and 10.0 by
varying communication delays. The communication-to-
computation ratio (ccr) is defined as follows [1], [12]:

ccr =
average communication delay between tasks

average execution time of tasks

As described before, the length of a fault-tolerant
schedule may increase in the case of a PE failure. For
the fault-tolerant schedule obtained, therefore, we cal-
culate its length under two scenarios: the case of no
PE failure, and the worst-case single PE failure. The
schedule length in the worst case is calculated as fol-
lows. For each PE pf , the schedule length in the case
where pf failed at time 0 is calculated. Then the largest
value obtained is taken as the worst-case value.

As a baseline, we used the finish time of a (non-
fault-tolerant) schedule generated by DSH . All results
presented in this section are normalized to this length.

6.2 Comparison between HBP and PHSl

In this study, we investigate the performance of HBP
and PHSl. For PHSl, we selected 2, 3, and 5 as the
values of l. Due to space limitations, we only present
the results for the worst case scenario in this section.
The omitted results show that HBP has almost the
same performance as PHSl in the case of no PE failure.

Figure 5 shows the results for (a) Gaussian elimina-
tion task graphs and (b) LU-decomposition task graphs
with the value of ccr = 5.0 and the number of PEs =
16. As shown in this figure, HBP considerably im-
proves the worst case performance.

As explained in Sect. 3, the delay of the comple-
tion time of program execution is mainly caused by
instances scheduled in Step 2. The delay can be de-
creased by partitioning a set of tasks into small subsets,
because this allows the instances scheduled in Step 2 to
have similar start times to the corresponding instances
scheduled in Step 1. Besides, HBP partitions a set
of tasks according to their height, unlike PHSl which
simply partitions the set into l subsets of the same size.
By the definition of height, each task group has the
property that all its tasks have no data dependencies
(precedence constraints) among them. Therefore HBP
can exploit the maximum parallelism both in Step 1
and in Step 2. As a result, the instances scheduled
in Step 2 tend to be assigned into earlier time slots
than PHSl, thus decreasing the degree of degradation
in performance in the case of a PE failure.

6.3 Comparison between HBP and ST R

In the previous subsection, we show that HBP outper-
forms our previous algorithm. Here we discuss the use-
fulness of our approach. To the best of our knowledge,

532
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.3 MARCH 2002

Fig. 5 Results for # of PEs = 16 and ccr = 5.0.

Fig. 6 Results for # of PEs = 16 and ccr = 5.0.

no fault-tolerant scheduling algorithms have been de-
veloped by other researchers that can deal with general
task graphs with arbitrary computation and communi-
cation costs. To show the usefulness of HBP , therefore,
we introduce a straightforward fault-tolerant schedul-
ing algorithm ST R and conduct a comparison between
the two algorithms.

Algorithm ST R
Input: T G, a task graph;

n, the number of PEs (n >= 2)
Output: S, a fault-tolerant schedule
Begin

Generate a schedule S′ for �n
2 PEs by applying a

non-fault-tolerant scheduling algorithm DSH [11].
Generate a fault-tolerant schedule S by duplicating
S′.

End

The time complexity of ST R is O(|V |4) since DSH is
of complexity O(|V |4).

In the following, we present the simulation results
for the case of no PE failure. These results show that
HBP achieve substantial improvement over ST R for a
large range of parameter values. Unfortunately, omit-
ted results show that the performance of HBP in the
worst case is poorer than that of ST R. However, we
do not think of this as a serious disadvantage of HBP ,

because in practice, the gain in performance in no fail-
ure case is more significant than than in failure case.
In addition, the difference in performance was within
10% on average,

Figure 6 shows the results for Gaussian elimination
task graphs and LU-decomposition task graphs, when
the value of ccr and the number of PEs are fixed to
5.0 and 16, respectively. The results show that HBP
outperforms ST R for almost every size of matrix. Fur-
thermore, as the matrix size increases, the difference
between the performance of HBP and that of ST R
increases. The following reason is conjectured. In gen-
eral, the increase in task graph size also increases the
maximum number of tasks that can be executed in par-
allel at a time. We can exploit such parallelism only if
we have a sufficient number of PEs. In this simula-
tion, the number of PEs n is fixed regardless of the
size of task graph. Therefore, as the matrix size in-
creases, HBP can take advantage of more parallelism
than ST R because ST R can essentially use only n/2
PEs.

Figure 7 shows the results when the matrix size is
24 and the number of PEs is 16. In this simulation,
we varied the value of ccr from from 0.1 to 10. In both
kinds of task graphs, HBP exhibits better performance
than ST R for a large range of ccr values.

Finally, Fig. 8 shows the results obtained by vary-

HASHIMOTO et al.: EFFECTIVE SCHEDULING OF DUPLICATED TASKS FOR FAULT TOLERANCE
533

Fig. 7 Results for # of PEs = 16 and matrix size = 24.

Fig. 8 Results for matrix size = 24 and ccr = 5.0.

Table 1 Running times (sec) of the algorithms.

Matrix sizes HBP PHS2 PHS3 PHS5 STR
12 0.17 1.25 1.28 1.48 0.02
14 0.23 1.91 1.95 2.21 0.03
16 0.28 3.07 3.33 4.00 0.03
18 0.37 6.27 8.03 9.15 0.05
20 0.52 13.4 20.6 23.8 0.08
22 0.65 39.7 59.6 83.4 0.10
24 0.90 121 175 276 0.12
26 0.98 469 640 995 0.15

ing the number of PEs. The matrix size and the ccr
value are fixed to 24 and 5.0, respectively. From the
figure, it can be seen that for both HBP and ST R,
as the number of PEs is increased, the degradation in
performance, which is inevitable in achieving fault tol-
erance, is reduced (note that the results are normalized
to the length of non-fault-tolerant schedules generated
by DSH .)

6.4 Comparison of Running Times

HBP has much better running times than PHSl. Ta-
ble 1 shows a comparison of the running times of the
algorithms needed to schedule a task graph when the
number of PEs is 16. The Gaussian elimination task
graphs with the matrix size ranged from 12 (the num-
ber of tasks = 102) to 26 (the number of tasks = 403)
were used as inputs.

In Table 1, one can easily see that the running time

of HBP is much shorter than that of PHSl, although
the time complexity of PHSl is also O(|V |4) [7]. This
is due to the simplicity of HBP . As shown in Sect. 3,
PHSl invokes all RSR1, RSR2, · · ·, RSR�n

2 � for every
task group. On the other hand, HBP applies the Basic
algorithm to each task group only once. The reason
for the short running time of ST R (which is also of
complexity O(|V |4)) is that it only needs to consider a
half of the PEs.

7. Conclusions

In this paper, we addressed the problem of fault-
tolerant scheduling for general task graphs. We pro-
posed a new scheduling algorithm, which we refer to
as HBP , to tolerate a single PE failure. We gave the
correctness proof that any schedule generated by HBP
is fault-tolerant. The time complexity of the proposed
algorithm is O(|V |4), where |V | is the number of tasks
in the task graph.

HBP employs the partitioning of a set of tasks
according to their heights. Each task group generated
by this partitioning has the property that all its tasks
have no mutual data dependencies. HBP can achieve
high performance, because, due to this property, HBP
can exploit the maximum parallelism to schedule tasks.
This property also allows the scheduling algorithm it-
self to be simple, thus resulting in speedup in running

534
IEICE TRANS. INF. & SYST., VOL.E85–D, NO.3 MARCH 2002

time. By conducting simulation studies, we empirically
demonstrate these characteristics of the proposed algo-
rithm.

Acknowledgements

The authors are grateful to Mr. Aaron J. Stokes for a
close reading of an earlier draft of this paper and many
helpful suggestions on how to improve the presentation.

References

[1] I. Ahmad and Y.-K. Kwok, “A new approach to scheduling
parallel programs using task duplication,” Proc. Interna-
tional Conference on Parallel Processing, vol.2, pp.47–51,
Aug. 1994.

[2] S. Chabridon and E. Gelenbe, “Failure detection algorithms
for a reliable execution of parallel programs,” Proc. 14th
International Symposium on Reliable Distributed Systems,
pp.229–238, Sept. 1995.

[3] Y.C. Chung and S. Ranka, “Application and performance
analysis of a compile-time optimization approach for list
scheduling algorithms on distributed-memory multiproces-
sors,” Proc. Supercomputing’92, pp.512–521, Nov. 1992.

[4] S. Darbha and D.P. Agrawal, “Optimal scheduling algo-
rithm for distributed-memory machines,” IEEE Trans. Par-
allel and Distributed Systems, vol.9, no.1, pp.87–95, Jan.
1998.

[5] C. Gong, R. Melhem, and R. Gupta, “Loop transformations
for fault detection in regular loops on massively parallel
systems,” IEEE Trans. Parallel and Distributed Systems,
vol.7, no.12, pp.1238–1249, Dec. 1996.

[6] D. Gu, D.J. Rosenkrantz, and S.S. Ravi, “Construction and
analysis of fault-secure multiprocessor schedules,” Proc.
21th International Symposium on Fault-Tolerant Comput-
ing (FTCS-21), pp.120–127, June 1991.

[7] K. Hashimoto, T. Tsuchiya, and T. Kikuno, “A new ap-
proach to realizing fault-tolerant multiprocessor schedul-
ing by exploiting implicit redundancy,” Proc. 27th Inter-
national Symposium on Fault-Tolerant Computing (FTCS-
27), pp.174–183, June 1997.

[8] K. Hashimoto, T. Tsuchiya, and T. Kikuno, “A new ap-
proach to fault-tolerant scheduling using task duplication
in multiprocessor systems,” J. Systems & Software, vol.53,
no.2, pp.159–171, 2000.

[9] K. Hashimoto, T. Tsuchiya, and T. Kikuno, “Experimental
evaluation of fault-secure scheduling under different error
models in multiprocessor systems,” IEICE Trans. Inf. &
Syst., vol.E84-D, no.5, pp.635–650, May 2001

[10] T.C. Hu, “Parallel sequencing and assembly line problems,”
Operations Research, vol.9, no.6, pp.841–848, June 1961.

[11] B. Kruatrachue, Static task scheduling and grain packing
in parallel processing systems, PhD Dissertation, Electrical
and Computer Eng. Dept., Oregon State Univ., Corvallis,
1987.

[12] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path schedul-
ing: An effective technique for allocating task graphs to
multiprocessors,” IEEE Trans. Parallel and Distributed
Systems, vol.7, no.5, pp.506–521, May 1996.

[13] R.E. Lord, J.S. Kowalik, and S.P. Kumar, “Solving lin-
ear algebraic equations on an MIMD computer,” J. ACM,
vol.30, no.1, pp.103–117, Jan. 1983.

[14] C.H. Papadimitriou and M. Yannakakis, “Toward an
architecture-independent analysis of parallel algorithms,”
SIAM J. Computing, vol.19, no.2, pp.322–328, 1990.

[15] R.D. Schlichting and F.B. Schneider, “Fail-stop processors:
An approach to designing fault-tolerant computing sys-
tems,” ACM Trans. Computer Systems, vol.3, no.1, pp.222–
238, March 1983.

[16] B. Shirazi, H. Chen, and J. Marquis, “Comparative study
of task duplication static scheduling versus clustering and
non-clustering techniques,” Concurrency: Practice and Ex-
perience, vol.7, no.5, pp.138–153, June 1990.

[17] J. Wu, E.B. Fernandez, and D. Dai, “Optimal fault-secure
scheduling,” Comput. J., vol.41, no.4, pp.208–222, 1998.

Koji Hashimoto received the M.E.
and Ph.D. degrees in computer engineer-
ing from Osaka University in 1997 and
2000, respectively. He is currently with
Hitachi Laboratory of Hitachi Ltd. He is
a member of IEEE.

Tatsuhiro Tsuchiya received the
M.E. and Ph.D. degrees in computer en-
gineering from Osaka University in 1995
and 1998, respectively. He is currently an
assistant professor in the Department of
Informatics and Mathematical Science at
Osaka University. His research interests
are in the areas of automatic verification
and distributed computing. He is a mem-
ber of IEEE.

Tohru Kikuno received M.E. and
Ph.D. degrees from Osaka University in
1972 and 1975, respectively. He was with
Hiroshima University from 1975 to 1987.
Since 1990, he has been a professor in
the Department of Informatics and Math-
ematical Science at Osaka University. His
research interests include the quantitative
evaluation of software development pro-
cesses and the analysis and design of fault-
tolerant systems. He served as a pro-

gram co-chair of the First International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC ’98) and the
Fifth International Conference on Real-Time Computing Systems
and Applications (RTCSA ’98). He also served as a general co-
chair of the Second International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC ’99).

