

Title	ウオルシュ変換の性質とその応用に関する研究
Author(s)	福井, 郁生
Citation	大阪大学, 1983, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/2726
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ウォルシュ変換の性質とその応用に 限する研究

R N 57 4 12 R

ゥォルシュ変換の性質とその応用に 関する研究
昭和57年12月
福井郁生

A Study on the Properties of the Walsh Transform and its Applications

Ikuo FUKUI

Abstract

The Walsh transform is a kind of integral transform at mathematics and a useful technique for information processing by computer. This report is about research on a fundamental theory for systematizing the Walsh transform, its properties, applications of it to image processing, and presents two models of a Walsh transforming device.

First, mathematical structures necessary for Walsh functions and the Walsh transform are introduced; second, some of their properties are either analyzed or clarified, and third, an idea obtained through the above investigation is applied to image processing. Then, two models of devices for the Walsh transform are presented.

[Base]—(i) We adopt a residue class ring R_m of polynomials over GF(2) module x^m , where $m=1,2,3,\cdots$.

(ii) We map the residue polynomial R_m onto a decimal set $D_m = \{ 0, 1, 2, \dots, a, \dots, 2^m-1 \}$, which is here named a dyadic ring!. Hence we can introduce multiplication to the Walsh transform theory in a natural way, which is different from the conventional one.

(iii) To deal with the Walsh function and Walsh transform easily, a dyadic scalar product and a pseudo-division are defined on D_m .

(iv) We use the dyadic scalar product as the first power of - 1, and define the Coleman-type Walsh function as $(-1)^{a \cdot x}$, which has explicit variables. This form make it possible to develop the theory of the Walsh transform, since we can carry out the multiplication operation among variables. The multiplication can not de derived an other way.

(**Properties and formulas**) —First, fundamental properties are introduced ;

(i) Mutual relations between the \oplus and + operations.

(ii) Transforming formula for obtaining
'sequency' which is an expanded frequency.
(iii) Relations with respect to cross-terms between input and output.

(iv) In the Walsh space, effects due to a dyadic trasfer or dyadic phase change in the input space.

(v) Dyadic *n*-th order correlation and convolution.

Next. higher properties are that;

(vi) We assume that a multiplication in the dyadic ring D_m corresponds to an extension or reduction in geometry, which is here named a 'dyadic similarity transform'. We investigate how the dyadic similarity transform in original space influences the Walsh transform space.

(vii) In the Fourier transform theory, the Poisson's sum formula is well known We introduce the same formula to the Walsh transform theory. On the basis of this formula, we further introduce a sampling theorem in the Walsh transform theory and get the following results ; A) When a function G has no more than N/T sequency where N is the number of original sampling data and T is the sampling period, then we can completely determine or reconstruct the original function G, using only every T period data. This is similar to the Fourier transform theory, but it is different in that data within each T period take a certain constant value.

B) When more than the N/T sequency of a function is cut, the function changes into another one such that values within a Tperiod are exchanged for the average value of the original data within the same period. The function then takes on a stair like shape with width T.

(viii) Topologically, we change a two dimensional dyadic transfer with Cartesian coordinates, into a transfer with polar coordinates. We call this coordinate system a pseudo-polar coordinate system. The Walsh transform using the above system can analyze two dimensional patterns, or detect the features of a pattern with such directional or rotational characteristics as the Fourier spectrum and the correlation pattern of images.

(ix) We introduce the indefinite sum formula of a Coleman-type Walsh function, which is most fundamental for investigating the Walsh transform. This formula will provide a clue for obtaining the general forms of sum(or integral)functions of the Walsh transform. Furthermore, the form of the indefinite sum is composed of dyadic triangular-wave functions, and has partially complete orthogonal systems.

[Applications] - (i) On the basis of the dyadic transfer, a dyadic difference is introduced here. We can easily get a filter in the Walsh space to correspond to the dyadic difference. Applying the above filter to the Walsh space, we get a difference image from an original one. This filter has characteristics different to conventional high-pass filter.

(ii) The Walsh transform formula is essentially suitable for devising hardware; nevertheless, it is difficult to use the transform as it is. By making a slight change in the formula, we present two types of analog devices which can easily be formed;

A) The FFT type : a circuit that can perform the fast Fourier transform algorithm and carry out parallel processing of onedimensional input data. According to this algorithm, the number of wire lines connecting terminals to $\log N/N$.

B) The lattice type : When we design a device using the IC technique. we decrease as many parts of the subtraction circuit as possible and increase proportionally the parts of the addition circuit. The total structure of the circuit consists of two parts; the major is the lattice addition-part where the input line-group perpendicularly intersects to the output line-group, and the minor is the circuit where subtraction is performed only at the last stage.

ウォルシュ変換の性質とその応用に関する研究

概

本研究は、計算機による画像処理技術の一つで あり、数学的には積分変換の一種であるウォルシ ュ変換の体系化を目指した「基礎理論」と「画像 処理への応用」および「ウォルシュ変換装置のモ デル」について考究したものである.まず「ウォ ルシュ関数」や「ウォルシュ変換」に必要な数学 を基礎づけして、これから導かれる諸性質を解明 し、応用として「画像処理」や「変換装置の提案 」を以下の項目にわたって考察している.

〔基礎〕(i) 基本になる数学の系として GF(2)の上の多項式の剰余類としての環を採用する.(ii) 法を x^m (mは任意の正整数)として分類した m-1次の多項式に x=2 を代入して,10進の正整数 (0~2^m-1)の上へ写像する.この環を「2進環」 と名付ける.(iii)「2進スカラ積」と「擬似除法」 を導いて、ウォルシュ関数やウォルシュ変換を扱いやすくするための基礎付けを行う.(iv)「コー ルマン形のウォルシュ関数」を「2進スカラ積」 の関数として表現することにより、変数を陽の形 でウォルシュ関数やウォルシュ変換を自由に展開 できるようにした.(i)は既知のものであり、(ii)

(iii) (iv) は本研究での独自のものである. この2 進環を用いることにより,他の方式では見い出さ れなかった「積」を自然な形で導入することがで き,数式を自由に扱えるようになった.

〔**性質・公式**〕(I)以上のことから直ちに次の 諸性質が導かれる.

(i)⊕演算と+演算との関係式 (ii)周波数の拡張 である「交番数」を求める変換式 (iii)クロス項につ いの関係式 (iv) 2 進移動・2 進位相変化のウォル シュ面での影響 (v)2 進 n 重相乗定理(相関関数, たたみこみ).(『)(1)に基づいて,さらに次の諸 公式が導かれる.(i)2 進相似変換-2 進環の「積」 を幾何における拡大縮少に対応すると考え,これ

要

を「2進相似変換」と呼ぶことにする. この変換 に対するウォルシュ面での影響を調べた.(ii)ポア ソンの和――フーリエ変換では「ポアソンの和の 公式」が知られているが、この関係をウォルシュ 変換について調べた、これを基にして、ウォルシ ュ変換におけるサンプリング定理について考究し た. これにより次の結果を得た. (A) 関数 g_i が N/T(Nは全標本点数)以上の交番数を含まない とき、区間 T ごとの g_i の値によって、すべての gi が決定される. これはフーリエ変換の場合と 同じであるが 各区間内は同一の値 をとる. (B) 関 数 gi があって、この関数の N/T 以上の交番数 を遮断した関数 g_i は,区間 Tの g_i の平均値を その区間の値としたものに等しい.(iii) 擬似極座標 形式によるウォルシュ変換―― 直角座標系による 「2次元2進移動」をトポロジカルに極座標系に 対応させたのが「擬似極座標系」である、このウ ォルシュ変換は、径方向特性や回転特性をもって いる2次元パターンの解析や特徴抽出を行うこと ができる. (iv) ウォルシュ関数の不定和分-----ウ ォルシュ変換にとって基も基本的なウォルシュ関 数の「不定和分公式」を求めた.これは一般的な ウォルシュ変換公式を得る手がかりとなる、この 不定和分関数は「2進三角波関数」であり、部分 的に完備な直交系となっている.

〔**応用**〕(i)2進差分と画像処理への応用—2 進移動に基づいた2進差分を導入した.容易に2 進差分(演算子)のウォルシュ面でのフィルタを 得ることができる.このフィルタにより画像の差 分形を得た.このフィルタはハイパスフィルタに 似た特性をもつ.(ii)アナログ形ウォルシュ変換装 置——ウォルシュ変換はハードウェア化するのに 好都合な性質をもっている.変換式そのままでは 困難であるので,実現可能な二種類の方式を提案 している. (A) F F T 形 ウォルシュ変換装置:高速 ウォルシュ変換アルゴリズムを装置化するもので ある. このアルゴリズムは並列処理の可能な構成 になっており, アナログ変換装置として実現する. 従来のものと比較すると,入力データ N にたい してコード数が log N / N にまで減る. (B) 格子 状集積回路によるウォルシュ変換装置:ウォルシ ュ変換の減算回数を最小にして大部分を加算回路 として, IC化技術により実現する.全体の構成 は入力コード群と出力コード群が直交した「格子 状の加算回路」と,最終段階で減算を行うための 「加算回路」から成っている.

本研究に関連する発表論文

- 福井郁生: "ガロア体 GF (2) による Walsh 変換の性質",電子通信学会論文誌(D). J 59-D, 7, pp. 496-503 (昭51-07).
- 福井郁生: "擬似極形式による Walsh 変換",電子通信学会論文誌(D). J 59-D, 10, pp.743-744 (昭51-10).
- 福井郁生: "Dyadic 相似変換の Walsh 面で の影響",電子通信学会論文誌(D). J60-D, 4, pp.314-316(昭52-04).
- 福井郁生: "ウォルシュ変換における Dyadic 差分フィルタ",電子通信学会論文誌(D),J 60-D,7,pp.555-556(昭52-07),
- 福井郁生: "二次元フーリエおよびアダマー ル変換装置",電子通信学会論文誌(D). J 55-D, 3, pp.226-227(昭47-03).
- 福井郁生: "ウォルシュ変換のサンプリング に関する性質",電子通信学会論文誌(D). J 60-D, 11, pp.1011-1013 (昭52-11).
- I. Fukui: "Difference and indefinite sum of Walsh function", IEEE on Pattern Analysis and Machine Intelligence (投稿中).
- 8. I. Fukui: "Analysis and application of dyadic difference in the Walsh Transform", IEEE on Pattern Analysis and

Machine Intelligence (投稿中).

- I. Fukui: "Two-dimensional Walsh transform device using an integrated optical circuit", IEEE dircuit and Systems, 29, May, pp.336-339 (1982).
- I.Fukui: "TV image processing to determine the position of a robot vehicle", Pattern Recognition, Vol. 14, Nos.1-6, pp.101-109 (1981).
- 福井郁生: "見込み角測定による位置決めと その応用",電子通信学会論文誌(D),J65-D,4,pp.427-434(昭57-04).
- 特許出願: "ウォルシュ変換装置",出願番号 161308,昭和56年10月(出願中).
- I. Fukui: "Two-dimesional Walsh transform device using an integrated optical circuit", Trans. IECE Japan, E65, 1, pp.61-62(1982).
- 14. 福井郁生: "ウォルシュ変換におけるポアソンの和,標本化定理,入出信号の関係",電子通信学会論文誌(D)(印刷中).
- 福井,清水: "二次元フーリエおよびアダマ ール変換装置",機械試験所所報,25,2, (1971).

Key Words: Walsh transform wave-analysis, triangular wave function, sequency, image processing, dyadic ring, Poisson's sum, sampling theorem, information engineering.

ウォルシュ変換の性質とその応用に関する研究

Ξ 次 第1章 序 ウォルシュ関数およびウォルシュ変換に関する歴史的背景…………… 1 1•1 1.2 1•3 1•4 第2章 2.1 潍 2.2 2.3 $2 \cdot 4 \oplus \rightarrow + および + \rightarrow \oplus \land の変換 \cdots 12$ 第3章 3.1 3.2 3.3 3•4 3.5 3.6 3.7 第4章 4.1アナログ形ウォルシュ変換装置…………………………………………………………42 4.2第5章 結

第1章 序 論

はじめに

本研究は、コンピュータによる画像処理技術の 一つであり、数学的には積分変換の一種であるウ ォルシュ変換の体系化を目指した「基礎理論」と 「画像処理への応用」および「ウォルシュ変換装 置のモデル」について考究したものである.

1・1 ウォルシュ関数およびウォルシュ変換に 関する歴史的背景

最近のコンピュータの発展と普及に伴い,画像 情報のディジタル処理技術がますます重要なもの となってきた、しかし、基本となる手法、たとえ ば、増幅、強調、変調、特徴抽出、情報圧縮、評 価,予値(予測)等を行うための手法は,以前から 開発されてきたものであり、現在でもなおかつ有 効なものである.これらの代表的なものとして, 微分,相関(関数,係数),固有値,エントロピー, 平均,分散,積分変換などがある.これらのうち, 積分変換の一種であるフーリエ変換やラプラス変 換はよく知られており, 重要な処理技術の一つと なっている.近年、この積分変換の一つであるウ * ルシュ変換の手法が新たに注目されるようにな ってきた. この変換論の基礎になるものはかなり 以前から現れているので、これについて少し振返 ってみよう.

まず、アダマール行列と名付けられた、各元素 が+1または-1で、かつ、任意の二つの行ベク トルが直交する正方行列の研究がJ.J.シルベスタ -(1852)により始められた.この変換行列の特別 の場合としてJ.L.ウォルシュによるウォルシュ 変換が現れた(1923).これと独立にJ.J.バレット による裸線交差理論が実際に適用され(1905)、以 来、主に交差技術として今日に至っている.とこ ろが近年(1960年代)になってから交番数(零交差 周波数)解析の手段として利用することに着目さ れ、1970年代になって爆発的とも言えるほどの多 くの研究発表が行われた[1].60年代までは主と して数学的(組合せ論的)分野および回路綱分野 に限られていたのが、情報処理の手段として改め て見なおされたからである。実際はフーリエ変換 が適用されている分野のウォルシュ変換への応用 が多く試みられている[2].

では、なぜこのように興味が持たれるようになったのだろうか.主たる理由は次の3点である.

(1) ウォルシュ関数系は三角関数系に似ていること. ――特に直交性および周波数性の類似点が重要である. **表 1・1** を参照. 三角関数系(フーリエ変換を含む)は多岐にわたって応用されている手法であり,その長所短所もよくわかっている. そこでまず,三角関数系での短所を補い,あるいは,三角関数系では得られなかった結果(特徴)を得るために,三角関数系の応用されている分野への適用である. 三角関数系の重要な応用は周波数解析である[8]. これに対応してウォルシュ関数系においても交番数(sequency)解析がある. そこでこれを基本として,

(i) シーケンシ・スペクトル分析

- (ii) 信号処理への応用
- (1)通信への応用

の三つが試みられている. 本研究では特に(i),(ii) を主たる対象とし,そのための理論の体系化と応 用を目指している.

(2) ウォルシュ関数が +1 または -1 の2値 のみをとる矩形周波関数であること. ---フーリ エ変換は、まず入力データを正弦波関数によって 変調して(掛けて)から積分する.従って変調す るときに誤差が入り,積分によってさらに誤差が 累積する. ところがウォルシュ変換では +1 ま たは -1 のみであるから,生のデータをそのま ま加減することになるので,累積誤差を最小にす ることができる.また,掛算を実行しなくてもよ いので処理時間も短かい.さらに、フーリエ変換 の場合はデータは複素数として出力するが、ウォ ルシュ変換は実数のみを出力する.これはメモリ 一 ウォルシュ変換の性質とその応用に関する研究 —

	ウォルシュ変換	フ ー リ エ 変 換
共通点	直交関数系	直交関数系
周波数	交番数(零交差周波数),Sequency, 拡張された周波数	Frequency
波形	短形波(周期性,非周期性)	正弦波(周期性)
偶·奇関数	sal, cal (ここでは対象としない)	sin, cos
值域	+1または-1	$-1 \leq \thicksim \leq +1$
起源	mod 2, 論理的	弦の波形解析
信号の移動	①移動に対して不変、オクターブ	スペクトル不変
	和が不変	
信号の回転	全く予想がつかない	一対一に対応
適用対象	コンピュータによる情報処理	広範囲な自然現象,情報処理
装置	電子回路により可、自然現象に基	光学系により可(2次元)
	づく装置はない	1次元装置は電気回路により可(2次元の場合は困難)
和分核	$(-1)^{a \cdot x}$	$e^{-ax\sqrt{-1}}$
スペクトル分析装置	巡回形アダマール分析器	格子形,プリズム形分析器
単位	Hm (ハルム)	H _z (ヘルツ)

表1・1 ウォルシュ変換とフーリエ変換の比較

-の節約をも意味する.

(3) ウォルシュ変換装置の製作が容易である. --- フーリエ変換装置は、2次元の場合は光学系 によって、また1次元の場合はアナログ電気回路 によって容易に実現できる.このためにオンライ ン使用も可能である.しかし、ウォルシュ変換に ついては、それに対応する自然の性質を利用した 装置がないので、ディジタル回路によりつくらな ければならない、ウォルシュ関数は +1 または -1の値のみしかとらないから、この性質が回路 製作上、都合がよいため装置化が容易である.

1・2 ウォルシュ変換についての問題点

80年代になって研究発表件数も落着きはじめた . 反省期に入ったと思われる. この原因は以下の ようなものであろう.

(1) シーケンシ・スペクトルは入力データの平 行移動および回転によって変化する. このため に、フーリエ変換の場合と比べた場合、ウォルシ ュ変換の有用性が減る(ただし、ウォルシュ関数 を変形することで平行移動不変のウォルシュ変換 を行うことができる[23][27][28]).

(2) これまでの方法では数学的取扱いが込み入っていたので,見通しよく式を展開することがで

きない.

(3) ウォルシュ積分公式が得られていない.

ウォルシュ変換は mod 2 が基本になっている ので,(1)を避けることはできない.従って,この ことを念頭においてデータの処理を行う必要があ る.入力データの前処理として「平行移動不変」 「回転不変」の性質に正規化(変換)しておくのも 一方法である.本研究では,(1)は対象としないで, (2),(3) に重点を置いている.

1・3 本研究の目的

本研究では次の三つの項目を対象としている.

- (1) ウォルシュ変換を行うのに計算しやすい系や
 表現の導入,および、ウォルシュ変換につい
 ての諸性質(公式)の解明(導入・証明)
- (2) 画像処理への応用
- (3) ウォルシュ変換装置のモデルの提案

表1・2 ウォルシュ関数の定義

Kroneckor待(直待)	
MIONECKEI 很(但很)	例えば又献[10]
差分方程式	Harmuth[6]
Rademacher 関数	
	Helm[4]
	Coleman[5]
	Kronecker積(直積) 差分方程式 Rademacher 関数

-2 -

(1)については、これまでウォルシュ関数の導入 には種々の方法が行われてきた. これらを整理分 類すると **表 1・2** になる. これらには一長一短が あるので、以下の(i),(ii),(iii)の考察に重点を置 いてウォルシュ関数を新たに定義している.

(i) 見通しよく展開できる表現形式

表 1・2 の(a), (b), (c) は特色のある方法でウォル シュ関数を導入しており、これらはコンピュータ を使用すれば容易に得られる.しかし、ウォルシ ュ関数やウォシュ変換についての性質を考察する 場合,いつも定義に戻って式を展開しなければな らず、特に他の式や関数と関連させる場合には手 続きが非常に込み入ってくる.表現式を簡単にす ることにより、一般的な性質が導きやすくなるこ とは歴史的にも明かなことである.たとえば、行 列・ベクトル, 複素数, sin • cos よりも指数関数, 演算子, 微分方程式などの表現がそうである. 本 研究でのウォルシュ関数の定義は表 1・2の(d) に 近い形式を採用している.(d)はウォルシュ関数を 導くのも容易であり、また式の展開にも(a), (b), (c)のように定義式に戻る必要もない.表面(陽)に 出ている記号・式のみを対象とするので、自由に 数式を扱うことができる.ただ一つの難点をいえ ば、 交番数(seqeuency)が陽の形で変数として表 れていないことであろうか.

(ii) 定義域での, 自然な形の加算・乗算の導入

 $ウ_* ルシュ関数の性質は mod 2 に基づいてい$ $る. これにより集合 <math>K=\{0,1\}$ での演算を定義す ると.

0+0=0, 0+1=1, 1+0=1, 1+1=0 となる. これを,

 $i \oplus j = k$, $i, j, k \in K$

と表す. この K はガロア体 GF (2) と呼ばれてい るものである. さらに,集合:

 $D_m = \{ 0, 1, 2, \dots, a, \dots, N-1 \mid N=2^m, \}$

 $m=0,1,2,\cdots$

に対しても拡張すると,まず, a を2進表示して その各桁ごとの加法の ① 演算を行ってから,ふ たたび,10進表示に戻す演算とする.これは群と なり,いわゆる (加法の)2進群(dyadic group) として知られているものである.ところが,これ には乗法が定義されていない.文献のなかには通 論一

常の意味での乗算を行って式を展開しているもの もあるが、①演算と整合しないので実り多いもの とは言えない、ただし、2の巾乗倍の場合のみは、 ①演算と矛盾しなくて「自然な乗算」として実行 できる.というのは、桁(ビット)を左にずらす(シ フト)だけでよいからである(ただし、これは2進 表示されていることを前提としている).また、

 D_m の mod N の性質も考慮しなければならない. では,

 ① 演算, mod N, 2ⁱ (*l* は整数)倍の積
 の三つの性質を保存するような乗算はできないだろうか.ここで従来の掛算を次のように考えてみよう.いま, m=2 として, すなわち, 変数を2進表示したとき2ビットして表わされる.そこで, a,b の各々の2進表示をa₁a₀, b₁b₀ とすると, a×b は 表 1·3 の (a) のような手順で実行される.表 1·3 の (a) の最下行を10進表示に直したものが従来の掛算の答えであった(ただし,ここでは桁上りは考慮外とする).上記の三つの条件を 満たす演算として次の二つの条件を定める.

(4) 掛算をして得られた結果の mod N をとる. すなわち, m より大きい桁(ビット)を0とする.

(中) 従来の + 演算を ⊕ 演算に置き換える.
 この乗算を2進(dyadic) 乗算と呼ぶことにする.
 表 1・3 の (a) の従来の乗法であると.

 $a \times b = (a_1 b_0, a_1 b_0 + a_0 b_1, a_0 b_0)$ であったのが、2進乗算では、

 $a \times b = (a_1 b_0 \oplus a_0 b_1, a_0 b_0)$

と定義する.表 1·3 の (b) を参照. ここで導入し た 2 進乗算は従来の乗算を①演算に合うように修 正したものであるが,実はこれは「ガロア体 GF(2)の上の多項式の剰余類(環)」の一つの表現とし て,加算および乗算が統一的に導きだせることが わかった*. 従って, D_m が環になっていることが わかった.

○ 「形式」よりも「明瞭さ」・「使いやすさ」の 優先

連続関数は扱わない. ---- 定義域 (domain) は、0または正の整数の上で定義され、値域 (range)、すなわち、関数値は複素数まで含むも のとする. 得られた結果は容易に有理数域まで拡

* 喜安善市氏の指摘に負う

表 1・3 (a) 従来の掛算

(ここでは桁上りはないと仮定している) $a \times b =$

		$a_1 a_0$
	<u>x)</u>	$b_1 \ b_0$
	$a_1 b_0$	$a_0 b_0$
+) $a_1 b_1$	$a_0 b_1$	
$a_1 b_1$	$a_1b_0 + a_0b_1$	$a_0 b_0$
(b) modulo	4 による掛算	:
(*はmod	14のために	0 となる) a1 a0
	<u>x)</u>	$b_1 b_0$
_	$a_1 b_0$	$a_0 b_0$

$\begin{array}{c} \textcircled{) } \underbrace{a_1 \ b_1}{*} \quad \underbrace{a_0 \ b_1} \\ * \quad a_1 b_0 \textcircled{ } a_0 b_1 \ a_0 \ b_0 \end{array}$

張できる.しかし,実数まで拡張できるかどうか はわからない.実際問題としては,計算機にかけ る場合でも筆算を行う場合でも,整数,すなわち ディジタル形式のほうが曖昧さがない.

形の「きれいさ」にはこだわらない. ---- これ まで導入されてきたウォルシュ関数 (*a*), (*b*) の定 義域の多くは連続関数として

 $0 \leq \sim \leq 1$ または $-1/2 \leq \sim \leq +1/2$ であった. この理由は三角関数の sin 関数, cos 関数に対応させるためである. sin 関数に対して は sal 関数があり, cos 関数に対しては cal 関 数がある. これにより三角関数系で知られている 諸公式が成立する. これは sal, cal 関数を用い る立場からは便利である. しかし, 本 研究 では sal, cal 関数を使用していない[7]. これを導入 すると, ウォルシュ関数を取扱うのにかえって複 雑となり, 見通しが悪くなるからである.

-1の巾乗. --- 今までのウォルシュ関数の定 義は主として(a)または(b)が使われていた. これら は、変数がそのままの形で表面に出ないので, 形 を変形したり, 他の式と関連づけたりする場合に 繁雑になった.その点、(d)は変数とウォルシュ関数とが直接、結びついているので、式の展開に都合がよい.したがって、本研究では(d)形式を採用している.

1·4 本論文の構成

これらの方法により,他の方式では得られなか った諸結果が得られている(第2章,第3章). 主なものとして,

(i)サンプリング定理における平均化

(ii)ウォルシュ関数の差分と和分

前節の(2)については、入力データをウォルシュ 変換して得られるウォルシュ変換面で、フィルタ をかけて信号処理する方法がある.いままでの方 法では通常の算法に基づいた方法を適用している ために予想のつかない結果か、もしくは、およそ の見当しかつけられなかった.本研究では2進フ ィルタを導入することにより理論解析が可能とな った.この応用として入力画像の差分形を示した.

前節の(3)については、ウォルシュ変換はデータ の加減のみの操作であるから、装置化が容易な性 質を持っている.ところが大量のデータを扱う装 置となると多数の結線回路を必要とするので、実 際上, 製作が不可能である, 本研究では結線数の 少ない二つのウォルシュ変換装置のモデルを見い だした.一つは高速ウォルシュ変換法(FWT: fast Walsh transform)のアルゴリズムに基づ いたものである. 通常の方法では結線の数が N× N本を必要としたが、この方法によると $N \times \log$ N本に減る. これは N の値が大きいほどその効 果が著しい、もう一つのモデルは、できるだけ減 算部分をなくし、大部分を格子状の加算回路とし て実現するものである.この格子状回路は特定の 交点のみで入力から出力へ信号が伝わる回路とな っている.最終段階で減算回路を設けてあり、装 置全体がコンパクトになる(第4章).

第2章 数学的背景

2.1 準 備[31]

標数2のガロア体: $GF(2) = \{0,1\}$ を K と表 す. x を変数とする K の上の任意の多項式 P (x)を,法F(x)により剰余類に分類する. 商を Q(x),剰余をR(x)として次式が成立する.

P(x) = F(x)Q(x) + R(x) (2.1) R(x)の集合 {R(x)} は「GF(2)の上に多項式の 剰余類環」と呼ばれている. さて,ここで,F(x)を次のように定める.

F(x) = x, ただし $m = 1, 2, 3, \dots$ (2.2) 従って, R(x) は次のように表現できる. $r_i \in K$ として.

$$R(x) = \sum_{i=0}^{m-1} r_i x^i$$
 (2.3)

ここで, R(x) に二通りの写像を行って, 2 種類の 表現を得る.一つは10進表示したもの(i)であり, もう一つは, ベクトル・行列表現したもの (ii)であ る.

(i) 10進表示への写像

R(x) に、x=2を代入する.従って、{R(2)}は
 2^mを法(mod)とする0~2^m-1の整数の10
 進数の上への同形写像となる.これを改めて次のように記す.

 $D_m = \{0, 1, \cdots, a, \cdots, N-1 | N=2^m, m = 1, 2, 3, \cdots\}$ (2.4)

これを「2進環 (dyadic ring)」と呼ぶことにし よう. {R(x)} は環であるから,加法と乗法が成 りたつ.この演算を D_m に対応させる.まず加法 について,

 $a_i, b_i, c_i \in K, A(x), B(x), C(x) \in \{\mathbb{R}(x)\}$ $\geq \bigcup \subset, (2.3) \downarrow \emptyset,$

$$A(x) = \sum_{i=0}^{m-1} a_i x^i, \quad B(x) = \sum_{i=0}^{m-1} b_i x^i$$
$$C(x) = \sum_{i=0}^{m-1} c_i x^i$$

さらに、a,b,c
$$\in$$
 D_m として、
 $A(x)+B(x)=C(x) \rightarrow A(2)+B(2)=C(2)$
(2.5)

となる.ビット単位で考えると、これは、

$$\sum_{i=0}^{n-1} (a_i \oplus b_i) 2^i = \sum_{i=0}^{m-1} c_i 2^i$$
 (2.6)

に等しい. (2.5) を D_m に対応させて表現した通 常の加法+と区別するために, \oplus 記号が一般的に 使われている. すなわち.

$$A(2) + B(2) = C(2) \xrightarrow{10} a \oplus b = c$$
 (2.7)

と表すことにする. この D_m の加法は「2進(加) 群 (dyadic group)」と名付けられている[19]. D_m の加法の記号 ① と Kにおける加法の記号 ① とは同じものであるが,変数がいずれに属してい るかは容易にわかるので,気をつければ混同する ことはない.

次に乗法について,加法と同様に,

$$A(x)B(x) = C(x) \rightarrow A(2)B(2) = C(2) \qquad (2.8)$$

$$\rightarrow^{10} a b = c \quad (2.9)$$

となる. $a_i, b_i \in K$ であることを考慮して,(2.8) の第1式を実行すると,序論の表 1・3 (b)と同じ ものになる. 乗法の表現としては(2.9)の方式を 採用する. 乗法として特別の記号は使わない. と いうのは,後でスカラ積の記号も導入するので, 数式の繁雑さを避けるためである.

さて、以上は、m を任意として一般的に説明し てきたが、直感的に理解するために例を示す.m= 3 とすると、 $F(x) = x^3$ となり、(2.1) は、

 $r_2, r_1, r_0 \in K \& UC$,

 $P(x) = x^3Q(x) + r_2x^2 + r_1x + r_0$ (2.10) となる. これらの多項式の算法は昔から知られて おり,例えば法を x^2+1 , m=2 とした場合は文 献[26]になる. この場合の加法と乗法は、それぞ れ 表 2・1,表 2・2 となる. さらに、x=2 を代 入すると、 D_3 の加法と乗法は 表 2・3,表 2・4 と

	ウォルシェ	・変換の性質とその応用に関する	研究 一
--	-------	-----------------	------

C(x)	0	1	x	x+1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	1	x	x+1	<i>x</i> ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
. 1	1	0	x+1	x	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
x	x	x+1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
x+1	x+1	x	1	0	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	<i>x</i> ²
x^2	x ²	$x^2 + 1$	$x^{2} + x$	$x^2 + x + 1$	0	1	x	x+1
$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x+1	x
$x^{2} + x$	$x^{2}+x$	$x^2 + x + 1$	<i>x</i> ²	x+1	x	x+1	0	1
$x^2 + x + 1$	$x^{2}+x+1$	$x^2 + x$	$x^{2}+1$	x ²	x+1	x	1	0

表 2・1 {R(x)} の加法, m=3, A(x)+B(x)=C(x)

表 2・2 {R(x)} の乗法, m=3, A(x)B(x)=C(x)

C(x)	0	1	x	x+1	x2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
0	0	0	0	0	0	0	0	0
1	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
x	0	x	x^2	$x^2 + x$	0	x	<i>x</i> ²	$x^2 + x$
x+1	0	x+1	$x^{2} + x$	$x^2 + 1$	x^2	$x^2 + x + 1$	x	1
<i>x</i> ²	0	<i>x</i> ²	0	x^2	0	<i>x</i> ²	0	x^2
$x^2 + 1$	0	$x^2 + 1$	x	$x^2 + x + 1$	x^2	1	$x^2 + x$	x + 1
$x^2 + x$	0	$x^2 + x$	x^2	x	0	$x^2 + x$	x^2	x
$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + x$	1	<i>x</i> ²	x+1	x	x ² +1

なる.表 2・4 は (乗法の)群となっていないこと がわかる. この理由は一般的に法 $F(x) = x^m$ は既 約多項式ではないからである.従って, D_m は「体」 にはなり得ない[13].

(ii) ベクトル・行列への写像まず, K の上のベクトル写像として

表 2・3 D₃ の加法

$a \oplus b$	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	0	3	2	5	4	7	6
2	2	3	0	1	6	7	4	5
3	3	2	1	0	7	6	5	4
4	4	5	6	7	0	1	2	3
5	5	4	7	6	1	0	3	2
6	6	7	4	5	2	3	0	1
7	7	6	5	4	3	2	1	0

$$R(x) = \sum_{i=0}^{m-1} r_i x^i \xrightarrow{v} r = \begin{pmatrix} r_{m-1} \\ r_{m-2} \\ \vdots \\ r_i \\ \vdots \\ r_0 \end{pmatrix}$$
(2.11)

と表すことにする. このベクトルのすべての集合 $\{r\}$ を V_m とする. さらに, K の上の, 次のよ

表 2・4 D3 の乗法

a b	0	1	2	3	4	5	6	7
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	5	4	7	2	1
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	1	4	3	2	5

うな三角行列の中への写像を,

$$r'_{ij} = \begin{cases} 0 , i > j \\ r_{i-j}, i \leq j \end{cases}$$

$$r_{ij}, r_{i-j} \in K$$

として,

$$R(x) = \sum_{i=0}^{m-1} r_i \, x^i \xrightarrow{T} R = (r'_{ij})$$
 (2.12)

$$R = \begin{pmatrix} r_0 \cdots r_k \cdots r_{m-2} & r_{m-1} \\ r_0 \cdots r_k \cdots r_{m-2} \\ \cdots \cdots r_k \cdots \\ r_0 \cdots r_k \cdots \\ r_0 \cdots r_k \\ 0 & \cdots \cdots \\ r_0 & r_1 \\ r_0 \end{pmatrix}$$
(2.13)

と表すことにする. この三角行列全体の集合 $\{R\}$ を T_m とする.

以上をまとめると、 $V_m \ge T_m$ によって $\{R(x)\}$ の加法と乗法は次のように写像される.

$$A(x) + B(x) = C(x) \xrightarrow{v} \boldsymbol{a} \oplus \boldsymbol{b} = \boldsymbol{c} \qquad (2.14)$$

 $A(x)B(x) = C(x) \xrightarrow{v,r} A \boldsymbol{b} = \boldsymbol{c} \quad \text{stat} \quad B\boldsymbol{a} = \boldsymbol{c}$ (2.15)

ただし、加法記号: ①. $a, b, c \in D_m$, $a, b, c \in V_m$, $A, B \in T_m A(x), B(x), C(x) \in \{R(x)\}$

以上により、 $\{R(x)\}, D_m, (V_m, T_m)$ の相互 に次の対応関係がなりたつ.

 ${R(x)}$ から D_m への写像および ${R(x)}$ から (V_m, T_m) への写像は一対一の対応関係があるの で, $D_m \geq (V_m, T_m)$ の間にも一対一の対応がな りたつ.手続きは, $r \in D_m$ を2進表示した各桁 の数字を(2.11)のベクトル,または,(2.12)の三 角行列に対応させる.逆に(2.11)または(2.12)の 行列を10進表示に変換すれば, $r \in D_m$ が得られ る. $D_m \geq (V_m, T_m)$ の使いわけは, D_m は一般 的な数式や議論を行うときに便利で,(V_m, T_m) は具体的な数値を求める場合や証明問題を扱うと きに便利がよい. $D_m \geq (V_m, T_m)$ の対応の表現 は,次のようにする.

$$a \oplus b = c \longleftrightarrow a \oplus b = c$$
 (2.17)

 $ab=c \leftrightarrow Ab=c$ または Ba=c (2.18) ただし, a, b, c $\in D_m$, a, b, c $\in V_m$, A, B $\in T_m$

(iii)2進スカラ積

Vm はベクトル集合であるから,スカラ積を定 義することができる.これを2進スカラ積と呼ぶ ことにしよう.

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}^* \boldsymbol{b} = \boldsymbol{b}^* \boldsymbol{a} = \sum_{i=0}^{m-1} \oplus a_i \ b_i \in K \quad (2.19)$$

ただし、*は転置記号.
$$a, b \in V_m$$
、 $a_i, b_i \in K, a, b \in D_m$

この表現の D_m 表示への対応は、

$$\boldsymbol{a} \boldsymbol{\cdot} \boldsymbol{b} \leftarrow \boldsymbol{\rightarrow} \boldsymbol{a} \boldsymbol{\cdot} \boldsymbol{b} \in K \tag{2.20}$$

と示す.従って、 D_m における二つの積の分配則 は、次のように表現される.

$$a(b \oplus c) = ab \oplus ac \in D_m \tag{2.21}$$

$$a \cdot (b \oplus c) = a \cdot b \oplus a \cdot c \in K \tag{2.22}$$

(2.22)は後述の定理 2·3 の (ii) に関連している. D_m の 2 進スカラ積は **表 2·5** にある.

以上により、ウォルシュ関数およびウォルシュ 変換を扱うための準備が整った.

表 2・5 D3 のスカラ積

$a \cdot b$	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	0	1	0	1	0	1
2	0	0	1	1	0	0	1	1
3	0	1	1	0	0	1	1	0
4	0	0	0	0	1	1	1	1
5	0	1	0	1	1	0	1	0
6	0	0	1	1	1	1	0	0
7	0	1	1	0	1	0	0	1

2・2 コールマン形ウォルシュ関数と交番数

表1・2にあるようなウォルシュ関数の定義は、 ここで用いられているものと比較すると、

- (i) 部分的に関数の符号が反転している[20].
- (ii) 変数の定義域が連続で,

 $0 \leq \sim \leq 1$ または $-1/2 \leq \sim \leq +1/2$ となっている.

(iii) 交番数を通常の周波数と対応させるために、
 ここで用いられている値の半分として定義されている(奇数の場合は1を引いた半分).

- 7 --

しかし、関数の基本的パターンとしては(図を描 くと)全く同じである。ここでは、コールマンが 提案した -1 の巾乗によるウォルシュ関数を、 D_m の要素を変数として、以下のように定義する。 以後、これを(コールマン形)ウォルシュ関数と 呼ぶことにする。図 **2-1** を参照。

$$s, i \in D_m \ge \cup \zeta, \\ W_s(i) = (-1)^{s \cdot i} = \begin{cases} 1, s \cdot i = 0 \\ -1, s \cdot i = 1 \end{cases}$$
(2.23)

s は交番数に関連している係数で,これを「係数 表現」または「係数順位」と名づけることにしよ う. 交番数とは,いままでの周波数の概念を拡張 したもので,単位時間内,または,単位空間内で 波形が(零)軸(または横軸)と正から負,あるいは, 負から正へ変化(交差)する回数を表している.零 交差周波数,あるいは,シーケンシ(sequency) とも呼ばれている.(2.23)によって得られたウォ ルシュ関数 $W_s(i)$ の交番数 s' は次式によって得 られる.

$$s' = \sum_{i=0}^{N-2} |W_s(i) - W_s(i+1)|/2 \qquad (2.24)$$

ところで,係数 s から s' が得られないだろうか. すでに, s から s', あるいは, s' から s を得る 手続きは,文献 [3] により, アダマール行列と の関係において詳しく述べられているが, ここで は, 直接定義式 (2.24) から導こう. なお, この s は次節にでてくるシルベスタ形アダマール行 列の「行の順位」を表している.

〔定理 2・1〕 コールマン形ウォルシュ関数 W_s (*i*) の交番数を s' として, s から s' あるいは s' から s を得る変換行列: A, および, A^{-1} は 次のようにして得られる.

 $s, s' \in D_m, s \stackrel{v}{\longleftrightarrow} s \in V_m, s' \stackrel{v}{\longleftrightarrow} s' \in V_m,$ A を K の上の行列として(A は三角行列であ るが、 T_m には属さない)、

s' = Asまたは、 $s = A^{-1}s'$ (2.25) ただし、 $A = (a_{ij}), A^{-1} = (b_{ij}), i, j \in \{1, 2, 3 \cdots \dots, m\}$

$$a_{ij} = \begin{cases} 1, & i \geq m - j + 1 \\ 0, & i < m - j + 1 \end{cases}$$

行列表現にすると, A および, A^{-1} は次のよう になる.

$$A = \begin{pmatrix} 1 \\ 0 \\ 111 \\ 1 \\ 1 \\ 1 \\ 111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 1111 \\ 111 \\$$

〔証明〕交番数の(2.24)の定義より, s' は, $(-1)^a = 1 - 2a, a \in \{0,1\}$ として,

$$\sum |W_{s}(i) - W_{s}(i+1)|/2 = \sum |(-1)^{s \cdot i} - (-1)^{s \cdot (i+1)}|/2 = \sum |s \cdot i - s \cdot (i+1)|$$
 (2.26)

となる. $a, b \in K$ のとき,

$$|a-b| = a \oplus b \tag{2.27}$$

であることから,

$$s' = \sum s \cdot [i \oplus (i+1)]$$
 (2.28)

となる. ここで $i \oplus (i+1) = I \rightarrow I \in V_m$ とする. 後述の例 2•2 の式を使うと I の成分 I_k は, i の 2 進表示を i_{m-1} …… i_n … i_0 として,

$$I_{k} = \begin{cases} i_{k-1} \cdots i_{n} \cdots i_{0}, \ k \ge 0 \\ 1 & , \ k = 0 \end{cases}$$
(2.29)

となっている.そして, i_n のうちで0の値をも つものの最下位の桁のものを $i_i(=0)$ とすると, I_k はさらに次のように書き換えられる.

$$I_{k} = \begin{cases} 0, & k = \ell + 1, \dots, m - 1 \\ 1, & k = 0, 1, 2, \dots, \ell \end{cases}$$
(2.30)

このときの **I** の値は k が ℓ +1 以上の桁 i_{l+1} , …, i_{m-1} , の値とは無関係に定まるので, i が 0 か らN-2 までを順次変化していく間に同一の値を 持つ **I** が, i_{l+1} , ……, i_{m-1} の組み合せの数だけ, すなわち, 2^{m-l-1} 回発生する. また (2.30) の **I** は, $\ell = 0 \sim m-1$ であることから, m 種類の異 なった値(パターン)を持つ. これより

$$s' = \sum_{i=0}^{N-2} \{i \oplus (i+1)\} \cdot s = \sum_{i=0}^{N-2} I^* S$$
 (2.31)

$$s' = \sum_{l=0}^{m-1} 2^{m-l-1}(0, \dots, 0, 1, 1, 1, \dots, 1) S (2.32)$$

(↑ は行行列表現である)
= $\sum 2^{m-l-1}(s_l \oplus \dots \oplus s_0)$ (2.33)

ここで, $k=m-\ell-1$ と置き換えると,

$$s' = \sum_{k=0}^{m-1} 2^k (s_{m-k-1} \oplus \cdots \oplus s_0)$$
 (2.34)

となる.ここで、 $s' \xrightarrow{v} S' \in V_m$ としてS'の第 k 成分を s' k とすると上式は成分に関して,

 $s'_k = s_{m-l-1} \oplus \cdots \oplus s_0$ (2.35)となる. これを行列とベクトル表示にすると定理 の第一式がでてくる. det | A | = 1 であるから逆 行列が存在する. S'=AS を成分ごとに書き下し たものを連立方程式とみなして Sの成分を順次, 求めていくと, A⁻¹ が得られる.

[証明終]

なお、A-1 は文献 [10] からでも得られる. s と s' の関係の具体例は 表 2.6 にある.

さて、 $W_s(i)$ の例として、m=3の場合を表2 5 を参照しながら描くと 図 2・1 になる. この 図を見てもわかるように、係数 S を定めると、コ ールマン形ウォルシュ関数が定まり、さらに(2. 25) によって、その交番数も定まる、ところが、 表 1・2 の(a)にあるハルムスの漸化式によるウォ ルシュ関数の導入法では、交番数 s' によって、 順次, ウォルシュ関数を求めていく. この漸化式 を(2.23)のコールマン形の表現に書き換えてみ ると、次のようになる.

〔定理 2・2〕漸化式によるウォルシュ関数の定 義

a.s を交番数順として,

 $W_a(i) = (-1)^{i_{m-1} \ s_{m-1}} \ W_s(2i)$ (2.36) ただし, $s,i \in D_m$, s, i の 2 進表示をそれぞれ

Si	n-1	$\cdot \cdot s_0$	およ	び	i_{m-1} ····· i_0	
また,	p = 0	また	:は1	と	して,	

$$a = (p \oplus \sum_{i=0}^{m-1} s_i, s_{m-1}, s_{m-2}, \cdots, s_3, s_2, s_1 \oplus s_0)^*$$

である.

〔例 $2 \cdot 1$ 〕m=4, N=16 とすると,

$$W_{a}(i) = (-1)^{i_{3}s_{3}} W_{s}(2s)$$

$$t_{c}t_{c}t_{c}t_{c}, a = \begin{pmatrix} a_{3} \\ a_{2} \\ a_{1} \\ a_{0} \end{pmatrix} = \begin{pmatrix} p \oplus s_{0} \oplus s_{1} \oplus s_{2} \oplus s_{3} \\ s_{3} \\ s_{2} \\ s_{0} \oplus s_{1} \end{pmatrix}$$

となり、これによって求められるウォルシュ関数 Ws(i), m=4は, s=0から始めて,係数単位とし て表 2.7 (a) が得られる. (b) はそれに対応した 交番数 s' を表している. この漸化式(2.36)は, 形式はハルムスのものより少し簡単な表現となっ ている.

さて、ウォルシュ関数についての性質はよく知 られているが、変数が D_m に基づいていること、 また、あとで証明に使うので定理としてあげてお く.

〔定理 2・3〕
$$s, t, i \in D_m, N=2^m$$
 として,
(i) $W_s(i) = W_i(s)$
(ii) $W_{s\oplus t}(i) = W_s(i) W_t(i)$
(iii) $\sum_{i=0}^{N-1} W_s(i) = N \delta_s$
ただし, $\delta_s = \begin{cases} 1, s=0 \\ 0, s \neq 0 \end{cases}$

(a)	m =	-3,	$N^{:}$	=8										(b)	m=	=4	, 1	V=	=16	5										
s	0	1 2	2 3	4 5	56	7	s	0	4	62	37	51		\boldsymbol{s}	0]	l 2	3	4	5	6	7	8	9	10	11	12	13	14	15
s	0	7 3	34	16	52	5	 s'	0	1	23	4 5	67	-	s'	0	1	57	8	3	12	4	11	1	14	6	9	2	13	5	10
														s	0	8	12	4	6	14	10	2	3	11	15	7	5	13	9	1
														s'	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

表 2・6 係数順位 s と交番数 s'の関係

(c) m=4, N=32

\$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
s'	0	31	15	16	7	24	8	23	3	28	12	19	4	27	11	20	1	30	14	17	6	25	9	22	2	29	13	18	5	26	10	21
5	0	16	24	8	12	28	20) 4	6	22	30	14	10	26	18	2	3	19	27	11	15	31	23	7	5	21	29	13	9	25	17	1

s' 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2・3 ウォルシュ変換

前章で定義したコールマン形ウォルシュ関数に よるウォルシュ変換は次のようになる.

 $s,i \in D_m, N=2^m, \& U$ C,

$$F_{s} = \sum_{i=0}^{N-1} f_{i} (-1)^{s \cdot i}$$
 (2.37)

後述の便宜のため、この変換をつぎのように表す ことにする.

$$f_i \xrightarrow{W} F_s \tag{2.38}$$

逆ウォルシュ変換は,

 $F_s \xrightarrow{W} Nf_i, N=2^m$ (2.39) となる.別の表現として、この変換を通常の算法 としての行列ベクトルの表現で表すと、次のよう になる.

$$\boldsymbol{F} = H\boldsymbol{f} \tag{2.40}$$

ただし、
$$f = (f_{N-1}, \dots, f_i, \dots, f_0)^*$$

 $F = (F_{N-1}, \dots, F_s, \dots, F_0)^*$
 $H = (h_{ij}), h_{ij} = +1$ または -1,
ただし、 $i, s \in \{0, 1, \dots, N-1\}$

この $N \times N$ の変換行列 H を次数 2^m のシルベ スタ形アダマール行列という[21]. 例として, m=3, 4, 5 の場合のアダマール行列をそれぞれ**表 2・8**. 表 **2・9**, 表 **2・10** にあげておく [10]. 上式 の s は行の順序を表していることになる. 参考の ために巡回形(ペーリー形)アダマール行列もあげ ておく[22]. 表 **2・11** を参照. このタイプの行列 は、すべて(今の場合は、 $0 \sim 11$)の交番数が現わ れないので交番数解析には使えない.

ところで,(2•37)の定義は,1次元ウォルシュ 変換式であったが,次のように k 次元ウォルシュ 変換式に拡張することができる.

 $F(q_1, \dots, q_i, \dots, q_k)$

$$=\sum_{p_{1}=0}^{N-1}\cdots\sum_{p_{k}=0}^{N-1}f(p_{1}, \dots, p_{i}, \dots, p_{k})$$

 $\times (-1)^{q_1 \cdot p_1 \oplus \cdots \oplus q_i \cdot p_i \oplus \cdots \oplus q_k \cdot p_k}$

(2.41)

ただし, $q_i, p_i \in D_m, f(\bullet), F(\bullet)$ は k 次元表 現である.

この式は後述の「2進n 重相乗定理」の証明の ときに使われる.以下にでてくるウォルシュ変換 はすべて1次元,もしくは,2次元として扱って いるが,(2•41)に従えば,容易に多次元表現に拡 張できる.

表 2·9 m=4, N=16

表 2·8 m=3, N=8

以下の行列は、+は+1を、-は-1を表す. s' は交番数である.

--+-++-+-+-+--+

s'

s'

表 2·10 m=5, N=32

- 11 -

s'

表 2・11 巡回形(ペーリー形)アダマール行列, N=12

2・4 ⊕ → +および + → ⊕への変換

ウォルシュ関数やウォルシュ変換を扱うと, ⊕ 演算がよくでてくる. そこでこの演算と通常の+ 演算との関係を知っておくと便利がよい.

〔定理 2・4〕 ⊕演算から + 演算への変換

 $a, x \in D_m$ として, a, x の2進表示をそれぞれ,

 $a_{m-1}\cdots a_i \cdots a_0$ および $x_{m-1}\cdots x_i\cdots x_0$ とする.

$$x \oplus a = x + \sum_{i=0}^{m-1} 2^{i} a_{i} (-1)^{\chi_{i}}$$
(2.42)

ここで、
$$b=2^{i}$$
 と置き換えると、
 $x \oplus a = x + \sum_{i=0}^{m-1} a_{i} b W_{b}(x)$ (2.43)

(証明)
$$x = \sum 2^{i} x^{i}, a = \sum 2^{i} a^{i},$$
 であるから,
 $x \oplus a = \sum 2^{i} (x_{i} \oplus a_{i})$ (2.44)

となる. ところで、 x_i , $a_i \in K$ とすると、

$$x_i \oplus a_i = x_i + a_i(-1)$$
 (2.45)

$$x \oplus a = \sum 2 \{x_i + a_i(-1)\}$$
(2.46)
= $x + \sum 2 a_i(-1)$ (2.47)

となる. さらに,
$$b=2^{*}$$
とすると,

$$x \oplus a = x + \sum b \ a_i(-1)^{i \cdot x} \tag{2.48}$$

$$\boldsymbol{x} = +\sum a_i \ \boldsymbol{b} \ W_b(\boldsymbol{x}) \tag{2.49}$$

この定理によると ① 演算が直接, ウォルシュ 関数と結びついていることがわかる. この具体例 は **表 2·12** にある.

次にこの定理の逆変換として、+演算から ⊕ 演算への変換を考えてみよう. ⊕を2進表示の演

表 2・12 ① 演算の + 表示

x, y, a	$\in D_3$ として、 $a heta 2$	2 進表示を a ₂ a ₁	ao とする.
x⊕a	$x + 4a_2 (-1)^{4 \cdot x}$	$+2a_{1}(-1)^{2 \cdot x}$	$+a_0(-1)^{1,x}$
x⊕0	x		
x⊕1	x		$+ (-1)^{1 \cdot x}$
x⊕2	x	$+2 (-1)^{2 \cdot x}$	
x⊕3	x	$+2 (-1)^{2 \cdot x}$	$+ (-1)^{1 \cdot x}$
<i>x</i> ⊕4	$x + 4 (-1)^{4 \cdot x}$		
x⊕5	$x +4 (-1)^{4 \cdot x}$		$+ (-1)^{1 \cdot x}$
x⊕6	$x + 4 (-1)^{4 \cdot x}$	$+2 (-1)^{2 \cdot x}$	
x⊕7	$x +4 (-1)^{4 \cdot x}$	$+2 (-1)^{2 \cdot x}$	$+ (-1)^{1 \cdot x}$

算とすると,桁上りなしの加法である.従って, これは高速加算回路の一種類である carry-lookahead 加算回路と等価となっている*[11].2進 演算に都合のよい表現に書き換えて次の定理とす る.

〔定理 2・5〕 + 演算から \oplus 演算への変換 $x+a=y \pmod{N}, x, a, y \in D_m$ として、こ れらの2進表示の第 i 成分をそれぞれ x_i, a_i, y_i と する.

$$y_{i} = x_{i} \oplus a_{i} \oplus \sum_{k=0}^{i-1} \oplus a_{k} x_{k}(a_{k+1} \oplus x_{k+1}) \cdots \times (a_{i-1} \oplus x_{i-1})$$
(2.50)

ただし, *i*=0,1,2,……,*m*-1

[証明] x, a, y の2 進表示をそれぞれ,

 $x_{m-1}\cdots x_i\cdots x_0,$ $a_{m-1}\cdots a_i\cdots a_0,$ $y_{m-1}\cdots y_i\cdots y_0,$

として, x+a を通常の加算として実行する. このときの桁上りの値を b_i として, b_i , b_{i-1} , a_i , x_i および y_i の間には次のような関係がある.

$$\mathbf{y}_i = a_i \oplus \mathbf{x}_i \oplus \mathbf{b}_{i-1} \tag{2.51}$$

$$b_i = a_i x_i \oplus (a_i \oplus x_i) b_{i-1} \tag{2.52}$$

b-1=0 として, **b**i について順次もとめていくと, 定理が得られる. [証明終]

[例 2・2]
$$a=1$$
. $x \oplus (x+1) = I \rightarrow I \in V_m$,
 $x \rightarrow x \in V_m$ として,

$$I = \begin{pmatrix} I_{m-1} \\ \cdot \\ \cdot \\ I_k \\ \cdot \\ I_1 \\ I_0 \end{pmatrix} = \begin{pmatrix} x_{m-2} \ x_{m-3} \cdots x_k \cdots x_1 \ x_0 \\ x_{m-3} \cdots x_k \cdots x_1 \ x_0 \\ \vdots \\ x_k \cdots x_1 \ x_0 \\ \vdots \\ \vdots \\ x_0 \\ 1 \end{bmatrix}$$

表 2・13 y= ⊕(x+a) の成分表示

 $y, x, a \in D_3, x+a=x' \mod 8$ として, $y, x \in D_2$ 進表示をそれぞれ, $y_2 y_1 y_0, x_2 x_1 x_0, と する.$

ただし、 $\overline{x_i} = x_i \oplus 1$

y	y ₂	<i>y</i> 1	<i>Y</i> 0
$x \oplus (x + 0)$	0	0	0
$x \oplus (x + 1)$	$x_1 x_0$	x_0	1
$x \oplus (x + 2)$	x_1	1	0
$x \oplus (x + 3)$	$x_1 \oplus \widetilde{x_1} x_0$	$\overline{x_0}$	1
$x \oplus (x + 4)$	1	0	0
$x \oplus (x + 5)$	$\overline{x_1 \ x_0}$	x_0	1
$x \oplus (x + 6)$	$\overline{x_1}$	1	0
$x \oplus (x + 7)$	$\overline{x_1 \oplus \overline{x_1} x_0}$	$\overline{x_0}$	1

ただし、右辺の成分は x_k の積になっていること に注意. なお. これと同じ内容のものを ギブス も得ているが[18],非常に複雑な表現になってい る. 例として, m=3, N=8 の場合の 表 2-13 を 参照.

[例 2・3] m=5. ベクトルと行列で表現 すると,表 2・13 の形式より見通しがよく, m が定まれば機械的に書き表すことができる.

 $x+a=x \oplus a \oplus \Delta$ (2.53) とすると、

	ſ 0	1	$x_3 \oplus a_3$	$(x_3 \oplus a_3)$	$(x_2 \oplus a_2)$
	0	0	1	(.	$(x_2 \oplus a_2)$
$\Delta =$	0	0	0		1
	0	0	0		0
	0	0	0		0
	(x ₈ (+)a ₃)	$(x_2 \oplus a_2)$	$(x_1 \oplus a_1)$	$\begin{pmatrix} a_4 & x_4 \end{pmatrix}$
			$(x_2 \oplus a_2)$	$(x_1 \oplus a_1)$	$a_3 x_3$
				$(x_1 \oplus a_1)$	$a_2 x_2$
				1	$a_1 x_1$
となる	5.			0 /	$(a_0 x_0)$

* 喜安善市氏の指摘による

第3章 ウォルシュ変換に関する理論的考察

3・1 ウォルシュ変換に関する若干の性質

〔定理 3・1〕 クロス項について、 $f_i \rightarrow F_s, g_i \rightarrow G_s, N=2^m, i, s \in D_m$ として、 $\sum_{i=0}^{N-1} f_i \ \overline{g_i} = (1/N) \sum_{i=0}^{N-1} F_s \ \overline{G_s}$ (3.1)

ただし, g, G のそれぞれの共後複素数を \overline{g} , \overline{G} , とする.

[証明]

$$F_s = \sum_{i=0}^{N-1} f_i(-1)^{s \cdot i}, \ G_s = \sum_{j=0}^{N-1} g_j(-1)^{s \cdot j}$$

として,

これらを (3.1) の右辺に代入すると, 定理 2·3 の (1)より,

$$\sum_{s=0}^{N-1} F_s \,\overline{G_s} = \sum_{s=0}^{N-1} \{\sum_{i=0}^{N-1} f_i(-1) \sum_{j=0}^{s \cdot i} \overline{g_j}(-1)^{s \cdot j}\}$$
$$= \sum_{i=0}^{N-1} f_i \sum_{j=0}^{N-1} \overline{g_j} \sum_{s=0}^{N-1} (-1)^{s \cdot (i \oplus j)}$$
$$= N \sum_{i=0}^{N-1} f_i \sum_{j=0}^{N-1} \overline{g_j} \,\delta_{i \oplus j} = N \sum f_i \,\overline{g_i}$$

[証明終]

[例 3・1] *f_i=g_i* とすると,「パーシバルの法 則」が成立する.

$$\sum |f|^2 = 1/N \sum |F|^2$$
 (3.2)

次に移動について考える.入力データが平行移 動(シフト)した場合は,フーリエ変換面では位相 だけが変化するが,ウォルシュ変換面では複雑な 変化を起す.これは(数学)構造が mod 2 に基づ いているからである.ウォルシュ変換では平行移 動のかわりに 2 進 (dyadic) 移動がそれに対応す る.この 2 進移動に対してウォルシュ面では,形 式的にフーリエ変換の場合と同じような結果が得 られる.2 進移動とは数学的には,①演算に相当 する. 〔定理 3・2〕 2進移動 および 2進位相変化 に対するウォルシュ面での影響

$$f_{i} \xrightarrow{W} F_{s} \geq \bigcup \subset,$$

$$f_{i \oplus b}(-1) \xrightarrow{a \cdot i} \xrightarrow{W} F'_{s} = F_{s \oplus a}(-1) \xrightarrow{b \cdot (s \oplus a)}$$

$$(3.3)$$

[証明] 題意より,

$$F'_{s} = \sum_{i'=0}^{N-1} f_{i'\oplus b} (-1)^{a \cdot i'} (-1)^{s \cdot i'}$$
(3.4)

$$F'_{s} = \sum_{i=b}^{(N-1)\oplus b} f_{i}(-1)^{(i\oplus b)\cdot(a\oplus s)}$$

$$= (-1)^{b\cdot(a\oplus s)} \sum_{i=0}^{N-1} f_{i}(-1)^{i\cdot(a\oplus s)}$$

$$= (-1)^{b\cdot(a\oplus s)} F_{s\oplus a} \qquad (3.5)$$

[証明終]

画像処理技術においては,フーリエ変換に関し て,相関・たたみ込み (convolution) 理論があ る.これに対するのが次の n 次の 2 進相関定理で ある.

〔定理 3·3〕 2進 n 重相乗定理

n次相関を次のように定義する.ただし、変数 : $i, s_p, t_p \in D_m$, (ディスクリートな) 複素 関数: a_i, b_i, \dots, z_i として、

$$r(t_1, \dots, t_p, \dots, t_n) = \sum_{i=0}^{N-1} a_i \ b_{i \oplus t_1} \cdots \ k_{i \oplus t_p} \cdots z_{i \oplus t_n}$$
(3.6)

ウォルシュ変換面において,次の関係がある.

$$R(s_1, \dots, s_p, \dots, s_n) = \overline{As_1 \oplus \dots \oplus s_p \oplus \dots \oplus s_n} \cdot Bs_1 \dots Zs_n \qquad (3.7)$$

$$\stackrel{W}{\uparrow_{\mathbb{C}}} \stackrel{W}{\uparrow_{\mathbb{C}}} \stackrel{W}{\downarrow_{\mathbb{C}}} \stackrel{W}{\to} As_p, \quad b_i \rightarrow Bs_p, \dots, z_i \rightarrow Zs_p,$$

 $R(\cdot)$ は $r(\cdot)$ を n 次元ウォルシュ変換した ものであり、 \overline{a} 、 \overline{A} はそれぞれ a、A の共役複素 数である.

- 14 --

[証明] (2.41) を参照して,式 (3.6)の両辺 の n 次元ウォルシュ変換をとると,

$$R(s_1, \dots, s_n) = \sum_{i} \overline{a_i} \sum_{\substack{t_1, t_2, \dots, t_n \\ s_1 \cdot t_1 \oplus \dots \oplus s_n \cdot t_n}} b_{i \oplus t_1}$$

$$\cdots z_{i \oplus t_n} (-1)^{s_1 \cdot t_1 \oplus \cdots \oplus s_n \cdot t_n}$$
(3.8)
= $\sum_i \overline{a_i} \sum_{t_2, \cdots, t_n} c_{i \oplus t_2} \cdots z_{i \oplus t_n} (-1)^{s_2 \cdot t_2 \oplus \cdots \oplus s_n \cdot t_n}$

$$\times \sum_{t_1=0} b_{i\oplus t_1}(-1)^{s_1\cdot s_1} \tag{3.9}$$

定理 3・2 より,

$$=Bs_{1}\sum_{i}\overline{a}_{i}(-1)\sum_{t_{3}\cdots,t_{n}}d_{i\oplus t_{3}}\cdots z_{i\oplus t_{n}}$$

$$\times (-1) \sum_{t_2=0}^{s_3 \cdot t_3 \oplus \cdots \oplus s_n \cdot t_n} c_{i \oplus t_2} (-1)^{s_2 \cdot t_2}$$
(3.10)

以下, 同様にして,

$$= \cdots = Bs_1 Cs_2 \cdots Zs_n \sum \overline{a_i} (-1)^{i \cdot (s_1 \oplus \cdots \oplus s_n)}$$
$$= \overline{As_1 \oplus s_2 \oplus \cdots \oplus s_n} Bs_1 Cs_2 \cdots Zs_n \qquad (3.11)$$
$$[in III] [in III]]$$

この定理は相関についてであったが、たたみ込 みについてはどうであろうか。実は定理の式のな かで共役複素数を表す文字の上の一記号を除いた 場合がたたみ込についての関係式になっている。 2進環 D_m の ① 演算は加法と減法を兼ねた性質 を持っているので、変数に関して相関とたたみ込 みとの相違はないが、入力データは複素数値をと り得るので区別しなければならない。すなわち、 定理 3・3 から - (bar 記号)を除いたものが、 「2進n重たたみ込み」に関する定理である。デ ータが実数であるときのみ完全に一致する。

3.2 2進相似変換[33]

第2章において導入した2進環 D_m の「積」を通 常の演算の拡大・縮小に対応するものと考える. これにより,座標における変数の拡大または縮小, すなわち,相似変換のウォルシュ面における影響 を調べることができる. D_m に基づく積を「2進拡 大・縮小」あるいは「2進相似変換」と呼ぶこと にしよう.ここでもう一度,表 2・4 の D_m の乗 法をながめてみる.積abについて左端の縦列を a,上端の横列をbの掛算と考えると,次のよう になっていることがわかる.

(i) *a*=奇数. 逆元 *a*⁻¹が存在して, *a b* は *b* の

順序の入れ替ったものになっている.

(ii) a=偶数. $p=2^{\circ}p(p$ は素数の積)の素因数分 解としたとき、a bは、 2° 回数くり返して、bの 部分数列が現れる.

次に,新たにもう一つの記号を導入する.いま, $a, i \in D_m, A \in T_m, i \in V_m$ とする.

$$a i \rightarrow A i$$

である. この A に対して転置行列 A^* を定義す る. もちろん, $A \in T_m$ であり, また, $A \rightarrow a \in D_m$ であるが, これと形式的に合わせるために,

$A^* \rightarrow a^* \oplus D_m$

と表すことにする. これは次の定理を表すのに簡 単になるからである. 演算としては除法に近い性 質をもっている. D_m は「環」であるから除法は 定義されていないが,上式の定義は,これに代り 得る. ただし, A^* は10進表示には変換できない ので,たとえば, a=2 に対して, $a^*=2^*$ と表す ことにする.しかし, A^* *i* の結果は10進表示可 能である.ここで,簡単な演習を行おう.

[例 3・1] $a^*=3^*$, $i \in D_3$ として, $b=3i \delta$ 求める.まず, ベクトルと行列に変換する.

*	
$\left(\begin{array}{c} b_2 \end{array} \right) \left(\begin{array}{c} 1 \ 1 \ 0 \end{array} \right) \left(\begin{array}{c} i_2 \end{array} \right) \left(\begin{array}{c} 1 \ 0 \ 0 \end{array} \right) \left(\begin{array}{c} i_2 \end{array} \right) \left(\begin{array}{c} i_2 \end{array} \right)$)
$\mid b_1 \mid = \mid 0 1 1 \mid \mid i_1 \mid = \mid 1 1 0 \mid \mid i_1 \mid = \mid i_2 \oplus$	<i>i</i> 1
$egin{array}{c} b_0 \end{array} egin{array}{c} b_0 \end{array} egin{array}{c} b_0 \end{array} egin{array}{c} c_{001} & c_{011} \end{array} egin{array}{c} i_0 \end{array} egin{array}{c} c_{11} \oplus c_{11} \oplus c_{11} \end{array}$	i_0
この結果, bは, i が 0~7 の変化に応用じて,	,
(0) (0) (0) (0) (1) (1) (1) (1	.)
(0), (1), (1), (0), (0), (1), (1), (0)	

表 3・1 $a^{*i} \xrightarrow{V,T} A^* i$ の演算 ただし, $a, i \in D_3, A \in T_3, i \in V_3$

a* i	0	1	2	3	4	5	6	7	
0*	0	0	0	0	0	0	0	0	
1*	0	1	2	3	4	5	6	7	
2*	0	0	1	1	2	2	3	3	
3*	0	1	3	2	6	7	5	4	
4*	0	0	0	0	1	1	1	1	
5*	0	1	2	3	5	4	7	6	
6*	0	0	1	1	3	3	2	2	
7*	0	1	3	2	7	6	4	5	

をとる. *m*=3の結果は **表 3**•1 にある. 一般に 次の性質がある.

(i) *a* が奇数のときの *a**: 逆元 *a*⁻¹が存在して, *ai*は *i*の順位が入れ替ったものである.

(ii) a が偶数のときの a* : i÷ a に近い傾向
 になる.とくに、2の巾乗のときは、通常の除法
 と同じである.

〔定理 3・4〕
$$f_i \xrightarrow{W} F_s$$
 として、
(i) $f_{ai} \xrightarrow{W} F'_s = \begin{cases} F_{(a^{-1})} *_s & a : 奇数 \\ & (3.12) \\ \sum_{k=0}^{N-1} F_k \, \delta_u *_{k \oplus s} & a : 偶数 \\ & (3.13) \\ & (F_a^{-1}_s & a : 奇数(3.14) \end{cases}$

(ii)
$$f_a *_i \xrightarrow{W} F'_s = \begin{cases} \sum_{k=0}^{N-1} F_k \, \delta_{ak \oplus s} & a : \text{ (B3.15)} \end{cases}$$

ただし、
$$\delta_s = \begin{cases} 1, s = 0\\ 0, s \ge 0 \end{cases}$$
〔証明〕

(i)
$$\sharp J', F'_s = \sum f_{ai'}(-1)^{s \cdot i'}, \sharp t, ai' = i$$

する, *a* が奇数のとき, *a*⁻¹ が存在して, *i'=a⁻¹i* となる. これを上式に代入すると, $F'_{s} = \sum_{i=0}^{a(N-1)} f_{i}(-1) = \sum_{i=0}^{N-1} f_{i}(-1)$ (3.16)

$$\begin{array}{c} \varepsilon \cdot \varepsilon \\ \varepsilon \cdot \varepsilon \\ s \cdot [a^{-1}i] \xrightarrow{v,r} s^* A^{-1}i = [(A^{-1})^*s]^* i \\ \xrightarrow{10} \varepsilon (a^{-1})^*s] \cdot i \end{array}$$

$$(3.17)$$

従って,

$$\sum f_i(-1)^{[(a^{-1})^*s]\cdot i} = F_{(a^{-1})^*s} \qquad (3.18)$$

となって,(i)の前半は証明された. aが偶数のと き, *i=ai*'を逆ウォルシュ変換式(2.39)に代入 すると,

$$f_{ai'} = (1/N) \sum_{k=0}^{N-1} F_k(-1)^{k \cdot ai'}$$
(3.19)

となり, さらにこの両辺をウォルシュ変換すると,

$$F'_{s} = (1/N) \sum_{k=0}^{N-1} F_{k} \sum_{i'=0}^{N-1} (-1)^{k \cdot ai' \oplus s \cdot i'} \quad (3.20)$$

ととなる.ふたたび、巾乗の部分は、

表 3・2 2進相似変換のウォルシュ変換面での影響,ただし、 $f \rightarrow F_s$, f_{ai} および $f_{a^{*}i} \rightarrow F'_s$, s は係数順位. (a) a: 奇数

F's	F′ ₀	F'_1	F'_{3}	F'_3	F'_4	F'_{5}	F'_{6}	$\dot{F'}_7$
1	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7
3	F_0	F_1	F_3	F_2	F_7	F_6	F_4	F_5
5	F_0	F_1	F_2	F_3	F_5	\mathbf{F}_4	F_7	F_{6}
7	F_0	F_1	F_3	F_2	F_{6}	F_7	F_5	F_4
1*	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7
3*	F_0	F_7	F_{6}	F_1	F_4	F_3	F_2	F_5
5*	F_0	F_5	F_2	F_7	F_4	F_1	F_{6}	F_3
7*	F_0	F_3	F_6	F^5	F_4	F_7	F_2	F_1

(b) a:偶数

F's	F'_0	<i>F</i> ′ 1	F'_2	F'_3	F'_4	$F'_{\mathfrak{d}}$	F'_{6}	F'_{7}
0,0*	$\begin{array}{r} F_{0}+F_{1}+F_{2}+F_{3}\\+F_{4}+F_{5}+F_{6}+F_{7}\end{array}$	0	0	0	0	0	0	0
2	$F_0 + F_1$	$F_2 + F_3$	$F_4 + F_5$	$F_{6} + F_{7}$, O	0	0	0
4	$F_0 + F_1 + F_2 + F_3$	$F_4 + F_5 + F_6 + F_7$	0	0	0	0	0	0
6	$F_0 + F_1$	$F_2 + F_3$	$F_{6} + F_{7}$	$F_4 + F_1$	5 0	0	0	0
2*	$F_{0} + F_{4}$	0	$F_1 + F_5$	0	$F_2 + F_6$	0	$F_3 + F_7$	0
4*	$F_0 + F_2 + F_4 + F_6$	0	0	0	$F_1 + F_3 + F_5 + F_7$	0	0	0
6*	$F_{0} + F_{4}$	0	$F_3 + F_7$	0	$F_2 + F_6$	0	$F_1 + F_5$	0

- 3. ウォルシュ変換に関する理論的考察 -

表 3・3 表 3・2 を交番数順に並び換えたもの

$$W$$

ただし、 $f_i \rightarrow F_s$ 、 f_{ai} および $f_{a^*i} \rightarrow F's$ 、 s は交番数順位

(a) a: 奇数

<i>a F's</i>	F'_0	F'_1	F'_2	F'_{3}	F'_4	F'_{5}	F'_{6}	F'_7
1	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7
3	F_0	F_5	F_1	F_4	F_3	F_6	F_2	F_7
5	F_0	F_6	F_5	F_3	F_4	F_2	F_1	F_7
7	F_0	F_2	F_6	F_4	F_{3}	F_1	F_5	F_7
1*	F_0	F_1	$\overline{F_2}$	F_3	F_4	F_5	F_6	F_7
3*	F_0	F_1	F_3	F_2	F_7	F_6	F_4	F_5
5*	F_0	F_1	F_2	F_3	F_5	F_4	F_7	F_6
7*	F_0	F_1	F_3	F_2	F_6	F_7	F_5	F_4

(b) a: 偶数

F'_{s}	F' 0	F'_1	F'_2	F'_3	F'_4	F'_{5}	F'_{6}	F'7
0,0*	$F_0 + F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + .$	0 F ₇	0	0	0	0	0	0
2	$F_0 + F_7$	0	0	$F_1 + F_6$	$F_2 + F_5$	0	0	$F_3 + F_4$
4	$F_0 + F_3 + F_4 + F_7$	0	0	0	0	0	0	$F_1 + F_2 + F_5 + F_6$
6	$F_0 + F_7$	0	0	$F_2 + F_5$	$F_1 + F_6$	0	0	$F_{3} + F_{4}$
2*	$F_0 + F_1$	$F_2 + F_3$	$F_4 + F_5$	$F_{6} + F_{7}$	0	0	0	0
4*	$F_0 + F_1 + F_2 + F_3$	$F_4 + F_5 + F_6 + F_7$	0	0	0	0	0	0
6*	$F_0 + F_1$	$F_2 + F_3$	$F_6 + F_7$	$F_4 + F_5$	0	0	0	0

$$k \cdot (ai') \oplus s \cdot i' \xrightarrow{v,r} k^* A i' \oplus s^* i'$$
 (3.21)

$$= (A^* k \oplus s)^* i' \xrightarrow{10} (a^* k \oplus s) \cdot i' \qquad (3.22)$$

$$\sum_{i'} (-1)^{(a \quad k \oplus s) \cdot i'} = N \ \delta_a *_{k \oplus s} \tag{3.23}$$

となって(i)は証明された.(ii)は(i)の両式の a に a* を代入して,

 $(a^*)^{-1} = (a^{-1})^*$

を考慮して証明される. [証明終]

表 2•4, 表 3•1 を参照すると, *m*=3 の場合 は 表 3•2, および, 表 3•3 となる.

ここで、フーリエ変換の場合を示すと、 $f_i \rightarrow F_s$ として、

$$f_{ai} \rightarrow (1/a) F_{s/a}$$

F

である[48]. 定理 3・4 はこれと比較すると複雑な 形式となっている. 法として既約多項式を選ぶな らば, D_m の積の逆元も存在して, 奇偶の区別は なくなり, 定理 3・4 はもう少し簡単な表現にな る. 根本的な問題は, この D_m の積が 2 進加群ほ ど, 幾何的・情報論的な意味がはっきりしないこ とである. ただし, 2[°]および (2[°]), ($\alpha = 0,1$, 2,3,…)の場合は, mod N を考慮すれば通常の 算法(乗法または除法)と同じ性質を持つ.

3·3 ポアソンの和^{[36][44]}

フーリエ変換において、「ポアソンの和の公式」 が知られている[49]. ウォルシュ変換においても 、これに対応するのが、次の定理 $3\cdot 5$ および 定 理 $3\cdot 6$ である. なお、 $Tk \cdot s = (Tk) \cdot s = s \cdot (Tk) =$ $s \cdot Tk$ とする.

〔定理 3・5〕 標本化関数 $i, k, s \in D_m, T=2^i, (i=0,1,2,\cdots m), N=2^m,$ $(m=0,1,2,\cdots),$ $\delta_s = \begin{cases} 1, s=0 \\ 0, s \neq 0 \end{cases}$

(i) $T \sum_{k=0}^{N/T-1} \delta_{i \oplus Tk} = \sum_{k=0}^{T-1} (-1)^{k \cdot i}$ (3.24)

(ii)
$$\sum_{k=0}^{N/T-1} (-1)^{T_{k+s}} = N/T \sum_{k=0}^{T-1} \delta_{s \oplus k}$$
 (3.25)

[証明] 標本化関数は,

$$s(i) = \sum_{k=0}^{N/T-1} \delta_{i \oplus Tk}$$
 (3.26)

と表わされる. これをウォルシュ変換すると,

$$S(s) = \sum_{k=0}^{N/T-1} (-1)^{Tk \cdot s}$$
(3.27)

となる. 巾乗の部分は,

 $Tk \cdot s \xrightarrow{V,T} (Tk) * s = k * T * s \xrightarrow{10} k \cdot (T * s)$ (3.28) となること、および、定理 2·3 の (iii) および和分 範囲が $k = 0 \sim N/T - 1$ であのことを考慮する と、

$$S(s) = \sum_{k=0}^{N/T-1} (-1)^{k \cdot (T^*s)} = N/T \ \delta_T^*s \qquad (3.29)$$

となる.再び、上式の両辺の逆変換をとると、

$$N s(i) = N/T \sum_{s=0}^{N-1} \delta_T *_s (-1)^{i \cdot s} \qquad (3.30)$$

となるから. $T^*s=0$ となる場合のみ $(-1)^{is}$ が 残り,この条件を満たすsを調べればよい. 表 3 •1 をみると,Tが偶数の場合, T^* はsに対し て除数のようにふるまう. $T=2^m$ であるから,

 $T^*s \rightarrow s/T \rightarrow s \ 2^{-m}$ (3.31) となる. これは、s を右に m ビットだけシフト することを表しており、上式が 0 となるのは、

 $s=0 \sim 2^m - 1 = 0 \sim T - 1$ (3.32) である。従って、(3.30) は

$$S(i) = 1/T \sum_{s=0}^{T-1} (-1)^{i \cdot s}$$

となる. さらに, (3.26) と, *s=k* と置き換えるこ とにより, (i) は証明された. (ii) は (i) の両辺をウ ォルシュ変換することにより得られる. [証明終] **表 3・4** を参照. なお, (ii) の右辺に,

$$\delta_{s \oplus k} = (1/N) \sum_{i=0}^{N-1} (-1)^{i \cdot (s \oplus k)}$$
(3.33)

を代入して変形すると,次の系が得られる.

[系 3・1] 変数 T. i の分離

$$T_{i=0}^{N/T-1} (-1)^{Ti \cdot s} = \sum_{i=0}^{N-1} (-1)^{i \cdot s} \left\{ \sum_{k=0}^{T-1} (-1)^{k \cdot i} \right\}$$
(3.34)

〔定理 3・6〕 ポアソンの和 $f_i \rightarrow F_s, s$ は係数順位, $T=2^l, (l=0,1,2,...,m)$

(i)
$$T \sum_{k=0}^{N/T-1} f_{Tk}(-1)^{s \cdot Tk} = \sum_{k=0}^{T-1} F_{k \oplus s}$$
 (3.35)

(ii)
$$\sum_{k=0}^{N/T-1} F_{Tk}(-1)^{s \cdot Tk} = N/T \sum_{k=0}^{T-1} f_{k \oplus s}$$
 (3.36)

(jij)
$$\sum_{k=0}^{N/T-1} F_{Tk\oplus i} = N/T \sum_{k=0}^{T-1} f_k(-1)^{i \cdot k}$$
 (3.37)

(iv)
$$\sum_{k=0}^{N/T-1} f_{Tk \oplus i} = \sum_{k=0}^{T-1} F_k(-1)^{i \cdot k}$$
 (3.38)

[証明] 定理 3•5 の(i)の両辺に f_i あるいは F_i を掛けると,

$$\sum_{k=0}^{N/T-1} f_i \ \delta_{i \oplus Tk} = \sum_{k=0}^{T-1} f_i (-1)^{k \cdot i}$$
(3.39)

$$\sum_{k=0}^{N/T-1} F_i \ \delta_{i \oplus Tk} = \sum_{k=0}^{T-1} F_i (-1)^{k \cdot i}$$
(3.40)

となり、和分核を $(-1)^{5''}$ として、これらの式の 両辺をウォルシュ変換すると、それぞれ(i)、(ii)と なる、同様に 定理 3.5 の(ii)の両辺に f_s, F_s を 掛けてウォルシュ変換すると、(iii)、(iv) が得られ る.

定理 3•5 の (i) を拡張したのが,定理 3•6 の (ii), (iv) であり,定理 3•5 の(ii) を拡張したのが, 定理 3•6 の (i), (ii) となっている. **表 3•5** を参 照. また,この定理の (i), (ii) に対して, *s*=0, あるいは,同じことであるが, (ii), (iv)に対して, *i*=0 とおくと,次のような簡単な関係式が得ら

れる.表 3・6 を参照.

[系 3・2]

(i)
$$T \sum_{k=0}^{N/T-1} f_{Tk} = \sum_{k=0}^{T-1} F_k$$
 (3.41)

(jj)
$$\sum_{k=0}^{N/T-1} F_{Tk} = N/T \sum_{k=0}^{T-1} f_k$$
 (3.42)

また,表3•5の(jj)をみると,次の性質のあることがわかる.

[性質] 次の関数 G_i は周期 T を持つ. ただ

し、
$$T=2, (l=0,1,2,..., m)$$
として、
 $G_i = \sum F_{Tk \oplus i}$ (3.43)

Т	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\{=T s(i)\}$							-]
-	$\delta_i + \delta_{i \oplus 1} + \iota \oplus 2 + \delta_{i \oplus 3} + \delta_{i \oplus 4} + \delta_{i \oplus 5} + \delta_{i \oplus 6} + \iota \oplus \tau$	$(-1)^{0.4}$	Ţ	Ħ	Ч	H	1		1	
73	$2(\delta_i + \delta_{i\oplus 2} + \delta_{i\oplus 4} + \delta_{i\oplus 6})$	$(-1)^{0.4} + (-1)^{1.4}$	2	0	5	0	5	0	0	_
4	$4(\delta_i + \delta_{i\oplus 4})$	$(-1)^{0\cdot i}$ $+(-1)^{1\cdot i}$ $+(-1)^{2\cdot i}$ $+(-1)^{3\cdot i}$	4	0	0	0	4	0	0	_
œ	8 õ _š	$egin{array}{llllllllllllllllllllllllllllllllllll$	œ	0	0	0	0	0	0	_
T	$\widetilde{x}\widetilde{w} s \qquad \text{(ii)} \frac{8/T-1}{k=0}(-1)^{k\cdot Ts} = 8/T \sum_{k=0}^{T-1} \delta_{s \oplus k} \{=8,$	(T ρ(s)}								
-	$egin{array}{llllllllllllllllllllllllllllllllllll$	8 õ _i	œ	0	0	0	0	0	0	-
7	$(-1)^{6.6}$ +(-1) ^{2.8} +(-1) ^{4.6} +(-1) ^{6.8}	$4(\delta_s+\delta_{s\oplus 1})$	4	4	0	0	0	0	0	_
4	$(-1)^{0.8} + (-1)^{4.8}$	$2(\delta_s+\delta_{t\oplus 1}+\delta_{s\oplus 2}+\delta_{s\oplus 3})$	73	73	73	27	0	0	0	_
80	$(-1)^{\circ.s}$	$\delta_{s}+\delta_{s\oplus1}+\delta_{s\oplus2}+\delta_{s\oplus3}+\delta_{s\oplus4}+\delta_{s\oplus5}+\delta_{s\oplus6}+\delta_{s\oplus7}$	-			-	1	н	1	. [

- 3. ウォルシュ変換に関する理論的考察 -

表 3・4 標本化関数に関するポアソン和($N=8,\ T=1,2,4,8$), ただし, $f_i operatornow F_s,\ i,\ s,\ k\in D_3.$

-19-

ま $3 \cdot 5$ ウォルシュ変換に関するポアソンの和(N=8, T=1,2,4,8. F_s ねよび s は 係数順位である). ただし, $f_i o F_s$, $i,s,k \in D_s$. 左から第2欄を入力とし て(k を変数として書きかえてある),(i)ではウォルシュ変換したものが,(ii)では逆ウォルシュ変換したものが第3欄に示されている.また,第3欄を入 力として(k を変数として書きかえてある), 価) では逆ウォルシュ変換されたものが, (iv) ではウォルシュ変換されたものが第2欄に示されている.

	F_{T}	$_{3}+F_{7}$	$+F_5$ $_3+F_7$	$egin{array}{c} 0+F_1\ 2+F_3\ 1+F_5\ 3+F_7\end{array}$		8 f ₇	$4 \ (f_6 + f_7)$	$2 (f_4 + f_5 + f_6 + f_7)$	$f_0 + f_1$ $+ f_2 + f_3$ $+ f_4 + f_5$ $+ f_6 + f_7$
	F_6	$r_6 + F_7 = F_1$	$r_4 + F_5 = F_i$ $r_6 + F_7 = + F_i$	$egin{array}{c} F_0 + F_1 & F_1 \\ T_2 + F_3 & + F_3 \\ T_4 + F_5 & + F_4 \\ T_6 + F_7 & + F_6 \end{array}$		8 <i>f</i> 6	${4\ (f_6+f_7)}$	$\begin{array}{c} 2 (f_4 + f_5 \\ + f_6 + f_7) \end{array}$	$f_0 + f_1$ $+ f_2 + f_3$ $+ f_4 + f_5$ $+ f_6 + f_7$
	F_5	$F_4 + F_5$ 1	$F_4 + F_5 = I$ - $F_6 + F_7 = +I$	$F_0 + F_1$ I $F_2 + F_3 + H$ $-F_4 + F_5 + H$ $-F_6 + F_7 + H$		8 f 5	$4 (f_4 + f_5)$	$\begin{array}{c} 2 \ (f_4 + f_5 \\ + f_6 + f_7) \end{array}$	$f_0 + f_1$ $+ f_2 + f_3$ $+ f_4 + f_5$ $+ f_6 + f_7$
	F_4	F_4+F_5	$F_4 + F_5$ + $F_6 + F_7$ +	$egin{array}{c} F_0 + F_1 \ + F_2 + F_3 \ + F_4 + F_5 \ + F_6 + F_7 \ $		8 <i>f</i> 4	$4 (f_4 + f_5)$	$2 \ (f_4 + {f f}_5 \ + f_{6} + f_7)$	$f_0 + f_1$ $+ f_2 + f_3$ $+ f_4 + f_5$ $+ f_6 + f_7$
	F_3	F_2+F_3	$egin{array}{c} F_0+F_1\ +F_2+F_3 \end{array}$	$F_0 + F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7$		8 f ₃	$4 (f_2 + f_3)$	$2 \ (f_0 + f_1 + f_2 + f_3)$	$f_0 + f_1$ $+ f_2 + f_3$ $+ f_4 + f_5$ $+ f_6 + f_7$
	F_2	F_2+F_3	$egin{array}{c} F_0 + F_1 \ + F_2 + F_3 \end{array}$	$egin{array}{c} F_0 + F_1 \ + F_2 + F_3 \ + F_4 + F_5 \ + F_6 + F_7 \end{array}$		$8 f_2$	$4 \ (f_2 + f_3)$	$\begin{array}{c} 2 \ (f_0+f_1 \\ +f_2+f_3) \end{array}$	$f_0 + f_1$ $+ f_2 + f_3$ $+ f_4 + f_5$ $+ f_6 + f_7$
	F_1	F_0+F_1	$egin{array}{c} F_0+F_1\ +F_2+F_3\end{array}$	$egin{array}{c} F_0+F_1\ +F_2+F_3\ +F_4+F_5\ +F_6+F_7\end{array}$		8 <i>f</i> 1	$4 (f_0 + f_1)$	$2 \ (f_0 + f_1 + f_2 + f_3)$	$f_0 + f_1$ $+ f_2 + f_3$ $+ f_4 + f_5$ $+ f_6 + f_7$
$= \sum_{k=0}^{T-1} F_{k \oplus s}$	F0	$F_0 + F_1$	$egin{array}{c} F_0+F_1\ +F_2+F_3 \end{array}$	$egin{array}{c} F_0+F_1\ +F_2+F_3\ +F_4+F_5\ +F_6+F_7\end{array}$	$8/T \sum_{k=0}^{T-1} f_{k\oplus s}$	8 f ₀	$4 (f_0 + f_1)$	$2 (f_0 + f_1 + f_2 + f_3)$	$f_0 + f_1$ $+ f_2 + f_3$ $+ f_4 + f_6$ $+ f_6 + f_7$
$f_{Tk}(-1)^{s\cdot Tk}$	fr	{ 0	{ 0	{ 0	$k(-1)^{s.Tk} =$	F_{T}	0	0	0
$\sum_{k=0}^{8/T-1}$	5 <i>f</i> 6	f_6	0	0	$\sum_{j=0}^{T-1} F_j$	F_6	F_6	0	0
(i) 1	f4 f	$f_{4} = 0$	f4 0	0) 8 (II)	F_5	0	0	0
	f3 .	0	0	0		3 F4	F_i	F_4	0
	f_2	f_2	0	0		72 F	72 0	0	0
	0 f1	0 0	0 0	0.0		F_1 I	<i>I</i> (0	0
変数 s	7	2 { /	4 {	8 {	変数。	F_0	F_0 (F_0 (F_0 (
Т	1	73	4	œ	Т	н	5	4	œ

ー ウォルシュ変換の性質とその応用に関する研究 ー

	{ 0	{ 0	{ 0	f_7		0	0	0	F_{7}
	0	0	0	5 f6		0	0	0	F_6
	0	0	0	f₄ f		0	0	0	F_5
	0	0	f_3	f3.		0	0	0	F_4
	0	0	f_2	f_2		0	0	F_{3}	F_3
	0	f_1	f_1	${f_1}$		0	0	F_2	F_2
	{ fo	{ <i>f</i> 0	$\{f_0$	f_0			0 F1	0 F1	0 F1
	∞	4	2			E.	F	Н	F
	$F_0 + F_1$ $-F_2 + F_3$ $-F_4 + F_5$ $-F_6 + F_7$	F_1+F_3 - F_5+F_7	F_3+F_7	F_7		$f_0 + f_1$ $+ f_2 + f_3$ $+ f_4 + f_5$ $+ f_6 + f_7$	$\begin{array}{l} 2(f_1+f_3\\ +f_5+f_7)\end{array}$	$4(f_3+f_7)$	8 fr
	$egin{array}{c} F_0 + F_1 \ + F_2 + F_3 \ + F_4 + F_5 \ + F_6 + F_7 \ + \end{array}$	F_0+F_2 + F_4+F_6 +	$F_2 + F_6$	F_6		$f_0 + f_1 + f_2 + f_2 + f_3 + f_4 + f_5 + f_7 + f_6 + f_7$	$2(f_0+f_2+f_4+f_6)$	$4(f_{2}+f_{6})$	8 f ₆
	$F_0 + F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7 - F_6 + F_7 - F_7 - F_6 + F_7 - F_7 $	$F_1 + F_3 + F_7$	F_1+F_5	F_5		$f_{0} + f_{1} + f_{2} + f_{3} + f_{4} + f_{5} + f_{6} + f_{7}$	$2(f_1+f_3+f_5+f_7)$	$4(f_1+f_5)$	8 f ⁵
$f_k(-1)$	$F_0 + F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_7$	$egin{array}{c} F_0+F_2\ +F_4+F_6 \end{array}$	$F_0 + F_4$	F_4	$F_k(-1)$	$f_{0} + f_{1} + f_{2} + f_{3} + f_{4} + f_{5} + f_{7} + f_{6} + f_{7}$	$2(f_0+f_2+f_4+f_6)$	$4(f_0+f_4)$	$8 f_4$
$k \oplus i = 8/T \sum_{k=0}^{T-1}$	$egin{array}{c} F_0 + F_1 \ + F_2 + F_3 \ + F_4 + F_5 \ + F_6 + F_7 \end{array}$	$egin{array}{c} F_1 + F_3 \ + F_5 + F_7 \end{array}$	$F_3 + F_7$	F_{3}	$f_{Tk\oplus i} = \sum_{k=0}^{T-1} f_{k=0}$	$f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7$	$2(f_1+f_3+f_5+f_7)$	$4(f_3+f_7)$	8 f ₃
$\lim_{k=0} \sum_{k=0}^{8/T-1} F_{T_I}$	$egin{array}{c} F_0 + F_1 \ + F_2 + F_3 \ + F_4 + F_5 \ + F_6 + F_7 \end{array}$	$egin{array}{c} F_0+F_2\ +F_4+F_6 \end{array}$	F_2+F_6	F_2	iv) $T \sum_{k=0}^{8/T-}$	$f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7$	$\begin{array}{c} 2(f_0+f_2\\+f_4+f_6)\end{array}$	$4(f_2+f_6)$	8 f2
9	$egin{array}{c} F_0 + F_1 \ + F_2 + F_3 \ + F_4 + F_5 \ + F_6 + F_7 \end{array}$	$\begin{array}{c} F_1 + F_3 \\ + F_5 + F_T \end{array}$	F_1+F_5	F_1		$f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_7 + f_6 + f_7$	$2(f_1+f_3+f_5+f_7)$	$4(f_1 + 4_5)$	8 <i>f</i> 1
変数 i	$egin{array}{c} F_0 + F_1 \ + F_2 + F_3 \ + F_4 + F_5 \ + F_6 + F_7 \end{array}$	$egin{array}{c} F_0+F_2\ +F_4+F_6 \end{array}$	F_0+F_4	F_0	変数 i	$f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_5 + f_6 + f_7$	$2(f_0+f_2+f_4+f_6)$	$4(f_0 + f_4)$	8 f ₀
Т	1	77	4	80	T		2	4	8

- 3. ウォルシュ変換に関する理論的考察 -

(前貢に続く)

-21 -

ー ウォルシュ変換の性質とその応用に関する研究 ー

[証明]
$$G_{i+T} = G_{i\oplus T} = \sum F_{Tk\oplus T\oplus i}$$

= $\sum F_{T(k\oplus 1)\oplus i}$
ここで、 $k\oplus 1 \to k \ge j \le \xi$,
 $G_{i+T} = G_i$ [証明終]

3・4 ウォルシュ変換における標本化定理

ポアソンの和の公式を用いて標本化定理につい て調べてみよう.標本化周期(間隔)を $T=2^{i}$, $(l=0 \sim m-1)$,および, δ 関数の場合,i+Tk $=i \oplus Tk$ となることに注意すると、標本化関数 *s* (*i*)は定理 3.5 の(i)から次のように表すことが できる.

標本化関数:
$$s(i) = \sum_{k=0}^{N/T-1} \delta_{i \oplus Tk}$$
 (3.44)

データ関数を f_i とすると、この標本値関数 f'_i は、

$$f'_{i} = f_{i} \cdot s(i)$$
$$= f_{i} \sum_{k=0}^{N/T-1} \delta_{i \oplus Tk} \qquad (3.45)$$

である.和分(または積分)核を(-1)として, この両辺の ウォルシュ 変換をとる.これは 定理 3・5 の(i)から 定理 3・6 の(i)を得るのと同じ手 続きを経ていることになっている.この定理の 表 3・5 は係数順位(係数表現)になっているから,交 番数表現に書き直すと,表 3・7 の(a)となる,こ れをみると標本周期とスペクトルとは簡単な関係 にはなっていない.そこで,ウォルシュ・スペク トルのある特定以上の成分を0としたとき,入力 での標本化法をみると,この様子は 定理 3・6 の (ii) すなち,表 3・5 の(ii)をみると判りやすい. これを交番数表現に書き直したものが,表 3・7 の (b)であるこれより,周期 Tを定めた期間 { $kT\sim$

表 3.6 N=8. T=1,2,4,8.

(a) 係数順位によるもの

Т	(i) $T \sum_{k=0}^{8/T-1} f_{Tk} =$	$=\sum_{k=0}^{T-1}F_k$	(ii) $\sum_{k=0}^{8/T-1} F_{Tk} =$	$8/T\sum_{k=0}^{T-1}f_k$
1	$f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_6$	$F = F_0$	$ \begin{vmatrix} F_{0} + F_{1} + F_{2} + F_{3} \\ + F_{4} + F_{5} + F_{6} + F_{6} \end{vmatrix} $	$f_7 = 8 f_0$
2	$2(f_0+f_2+f_4+f_6)$	$=F_0+F_1$	$F_0 + F_2 + F_4 + F_6$	$=4(f_0+f_1)$
4	$4(f_0+f_4)$	$=F_0+F_1+F_2+F_3$	$F_{0} + F_{4}$	$=2(f_0+f_1+f_2+f_3)$
8	8 f ₀	$=\!F_0\!+\!F_1\!+\!F_2\!+\!F_3\\+\!F_4\!+\!F_5\!+\!F_6\!+\!F_7$	F_0	$= f_0 + f_1 + f_2 + f_3 \\ + f_4 + f_5 + f_6 + f_7$

(b) 交番数順位によるもの

1	$\begin{array}{c} f_0 + f_1 + f_2 + f_3 \\ + f_4 + f_5 + f_6 + f_7 \end{array}$	$=F_0$	$F_0 + F_1 + F_2 + F_3 + F_4 + F_5 + F_6 + F_6$	$F_7=8 f_0$
2	$2(f_0+f_2+f_4+f_6)$	$=F_0+F_7$	$F_0 + F_1 + F_2 + F_3$	$=4(f_0+f_1)$
4	$4(f_0+f_4)$	$=F_0+F_3+F_4+F_7$	$F_{0} + F_{1}$	$=2(f_0+f_1+f_2+f_3)$
8	8 f ₀	$=\!F_0\!+\!F_1\!+\!F_2\!+\!F_3\\+\!F_4\!+\!F_5\!+\!F_6\!+\!F_7$	F_0	$= f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7$

k(T+1) -1 の標本平均を、この区間のデータ として入力する方法となっていることがわかる、 すなわち、もとの標本値を、

 $f_0, f_1, \dots, f_{kT}, \dots, f_{N-1}, (k=0 \sim m-1)$

として, *kT*~(*k*+1)*T*-1 の区間の標本の平均 値:

 $g_{kT} = \{f_{kT} + f_{kT+1} + \dots + f_{kT+T-1}\}/T \qquad (3.46)$ $\overset{\circ}{\approx},$

 g_{kT} , 0, 0,, 0

ではなく,

gĸエ、gĸエ、gĸエ、・・・・、gĸェ として入力する方法である.

〔定理 3・7〕 平均値入力のウォルシュ変換 ウォルシュ・スペクトルの N/T 以上の交番数 成分をもたない関数は、もとの入力関数の区間 T の標本値を、その平均値に置き換えたものに等し い、すなわち、

 $f_{i} \stackrel{"}{\to} F_{s'}$, (s': 交番数)として,標本化周期 $T=2^{l}(l=0\sim m)$ とする.標本(時間)間隔

 $kT \sim (k+1)T-1$, $(k=0 \sim N/T-1)$ の平均値を, この区間の入力データとしたウォル シュ・スペクトル $F'_{s'}$ は,

 $F'_{s'} = \begin{cases} F_{s'}, \ s' = 0 \quad \sim N/T - 1 \\ 0, \ s' = N/T \sim N - 1 \end{cases}$ (3.47)

である.

[証明] 定理 3・6 の (ii) はすでに証明済 みで あるから、左辺の式の F_{Tk} を交番数に並び換える と、定理が得られることを示せばよい、そこで、 $k=0\sim N/T-1$ のときの F_{Tk} の交番数順位を調 べる.なお、kの範囲を $0\sim N-1$ としてもよい が、mod Nのために重複した値を生ずる、定理 2・1 の交番数順位への変換行列 A_m 、(m=0,1,2, …)を使うと、s'を交番数として、

$$\boldsymbol{s}' = A_m T \boldsymbol{k} \tag{3.48}$$

となる. $T=2^{l}$, $(l=0 \sim m)$ であるから. k'=Tkはkを高位の桁にlビットシフトすることになる. s', k, Tの2進表示をそれぞれ.

> $s'_{m-1}\cdots s'_{j}\cdots s'_{1} s'_{0},$ $k_{m-1}\cdots k_{j}\cdots k_{1} k_{0},$ $0\cdots 0 t_{t} 0\cdots 0,$

として、式(3.48)を行列表示にすると、

となる. $k'_0 \sim k'_{l-1}$ は 0 であるから,上の行列 の計算は,行列 A_m の $1 \sim m-l$ 列のみが計算に 関与する.従って,これはm-1次の行列計算と 等価となる(ただし,上記の $j=0 \sim m-l-1$ に対 してのみ).すなわち,

8′	A_{m-l}	$m{k}'$	
(s' _{m-l-1})	(1)	$\langle k_{m-l-1} \rangle$	
•	11	•	
•	_ 0 11	•	(3.50)
•		•	
•		•	
s'o	(1111)	$\langle k_0 \rangle$	

となり、これは、m次の行列係数順位から交番順 位への変換式の代りに、m-l次のそれへの変換 式である.従って、s'の値域は、

$$0 \sim 2^{m-l} - 1 = 0 \sim N/T - 1$$

となり, F_{Tk} の交番数は, この範囲に集中している. これ以上の交番数は0である. [証明終]

次に, この 定理 3•7 を"たたみ込み(コンボ リューション)"による立場でながめてみよう. まず, 定理 3•5 の(ii)の関数を改めてパルス列関 数と名付けて次のように記す. この関数は, 連続 関数の場合の幅Tを持つ単一矩形波関数あるいは パルス(デルタ)関数と呼ばれているものに対応 する.

$$T=2^{l}, (l=0~m) として,$$

パルス列関数: $\rho(i) = \sum_{k=0}^{T-1} \delta_{k\oplus i}$ (3.51)

-23 -

	左から第2欄を人力として	C, (a) Ci	ばウォルシュ炎	突ざれたも0.	うか, (b) で	は逆ウォル	〈シュ 変換され	たものが第34	慮に示されてい	·S.
Т	(8)標本値(fi)				ウォル	で て、 よ ん	$\not > arrow (F_{s'})$			
П	fo f1 f2 f3 f4 f5 f6 f7	F_0	F_1	F_{2}	63	F_3	F_4	F_{δ}	F_6	F_7
73	$f_0 \ 0 \ f_2 \ 0 \ f_4 \ 0 \ f_6 \ 0$	(F_0+1)	$F_7)/2 (F_1+F_6)$	$()/2 (F_2 +$	$(F_5)/2$ (F	$r_3 + F_4)/2$	$(F_3 + F_4)/2$	$(F_2 + F_5)/2$	$(F_1 + F_6)/2$	$(F_0+F_7)/2$
4	f_0 0 0 0 f_4 0 0 0	(F_0+L+F_4+L)	F_{3} ($F_{1}+F_{2}$ $F_{7})/4$ $+F_{5}+F_{ ext{ heta}}$	$(F_1 + F_5 + F_5$	F_2 (F_6)/4 $+F$	$r_0 + F_3$ $r_4 + F_7)/4$	$(\ F_0+F_3 \ +F_4+F_7)/4$	$(F_1+F_2+F_5+F_6)/4$	$(egin{array}{c} F_1 + F_2 \ + F_5 + F_6)/4 \end{array}$	$(F_0 + F_3 + F_4 + F_7)/4$
8	fo 0 0 0 0 0 0 0	$(F_0+J_1+F_2+J_2+F_2+J_3+F_4+J_4+J_4+J_4+J_4+J_4+J_6+J_4+J_6+J_4+J_6+J_4+J_6+J_6+J_6+J_6+J_6+J_6+J_6+J_6+J_6+J_6$	$egin{array}{cccc} F_1 & (&F_0+F_1\ F_3 & +F_2+F_8\ F_5 & +F_4+F_8\ F_7)/8 & +F_6+F_7 \end{array}$	$(F_{0} + F_{2} + F_{2} + F_{4} + F_{6} + F_{$	$egin{array}{c} F_1 & (\ F \ -F_3 & +F \ -F_5 & +F \ -F_7)/8 & +F \end{array}$	$r_0 + F_1$ $r_2 + F_3$ $r_4 + F_5$ $r_6 + F_7)/8$	$(F_0 + F_1 + F_2 + F_2 + F_3 + F_4 + F_5 + F_7)/8$	$(F_0 + F_1 + F_2 + F_2 + F_3 + F_4 + F_5 + F_7)/8$	$(F_0 + F_1 + F_2 + F_2 + F_3 + F_4 + F_5 + F_7)/8$	$(F_0 + F_1 + F_2 + F_3 + F_4 + F_7)/8$
T	(b) $\vartheta \neq \mathcal{N} \otimes \exists \cdot \exists \mathcal{A} \otimes \beta \neq \mathcal{N}$ ($F_{s'}$	<u> </u>			颠	本	重 (fi)			
-	$\{ F_0 \ F_1 \ F_2 \ F_3 \ F_4 \ F_5 \ F_6 \ F$	8/{ 2	fo	fı	f_2	f3	f4	fs	f6	fr
73	$\{ \ F_0 \ F_1 \ F_2 \ F_3 \ 0 \ 0 \ 0 \ 0$	8/{	$(f_0+f_1)/2$ ($(f_0 + f_1)/2$	$(f_2 + f_3)/$	$2 (f_2 + f_3)$	$)/2 (f_4+f_5)$	$/2 (f_4+f_5)/f_5$	2 $(f_6+f_7)/2$	$(f_6+f_7)/2$
4	$\{ F_0 \ F_1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	3/8	$(f_0+f_1) + f_2+f_3)/4 +$	$f_0 + f_1$ $f_2 + f_3)/4$	$(f_0+f_1+f_2+f_3)/_{\ell}$	$(f_0+f_1$ (f_2+f_3)	$(f_4 + f_5)/4 + f_6 + f_7)$	$(f_4 + 5f)/4 + f_6 + f_7)/.$	$(f_4 + f_5 + f_7)/4$	$(f_4+f_5+f_6+f_7)/4$
œ	$\{ F_0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \$	3/8	(f_0+f_1) + f_2+f_3 + + f_4+f_5 + + $f_6+f_7)/8$ +	$f_0 + f_1$ $f_2 + f_3$ $f_4 + f_5$ $f_6 + f_7)/8$	$(f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_4 + f_5 + f_7)/(5$	$(f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_4 + f_5$ $(f_0 + f_4 + f_5 + f_7)$	$(f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_5)/8 + f_6 + f_7)$	$(f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7)/(8 + f_6 + f_7)/(8$	$(f_0 + f_1 + f_2 + f_3 + f_4 + f_5$ $+ f_4 + f_5$ $8 + f_6 + f_7)/8$	$(f_0 + f_1 + f_2 + f_3 + f_4 + f_5 + f_7)/8$

麦 $3 \cdot 5$ の (ii) を (b) に交番数表現に直したもの. ただし, $f_i \longrightarrow F_{s'}$, s' は交番数. -------2017 . the Letter 1.1 表 3・7 表 3・5 の (i) を (a) に、 たかで発い菌キュモレーク

-24 -

ー ウォルシュ変換の性質とその応用に関する研究 ー

である.

ただし、
$$\delta_i = \left\{ egin{array}{ccc} 1, & i = 0 \\ 0, & i 0 \end{array}
ight.$$

となる. さらに, $f_i \rightarrow F_s$ (s':交番数) とする と,標本値関数をウォルシュ変換した関数 $F'_{s'}$ は、もとのウォルシュ・スペクトル F' と ρ との 積として表すことができる. すなわち (以下にで てくる大きなスペースではさまれた記号 '・'は通 常の意味での積である),

 $F'_{s'} = F_{s'} \cdot \rho(s')/N$ (3.52) となる. これを係数順位に直すと, 定理 3.6 の(ii) に等価になることはすでに述べた. 一般にウォル シュ面での積は,入力面で2進(dyadic)たたみ 込みになっていることは定理 3.3 で述べたが, 具体的に定理 3.6 の(ii)が平均値標本とパルス列 関数との'たたみ込み'になっていることを(1), (I)によって示そう.

(I) 平均值関数

関数 $f_{i,i}(i=0 \sim N-1)$ があって、これより、 区間 T の平均値を入力とする「平滑化された関数 g_{i} 」は一般に次のように表される、すなわち、

$$T = 2^{i}, \quad (l = 0 \sim m) \geq \bigcup \subset,$$
$$g_{i} = 1/T \sum_{\substack{l=1\\ l=1}}^{i+T-1} f_{l} = 1/T \sum_{\substack{l=0\\ l=1}}^{T-1} f_{l+i} \qquad (3.53)$$

である. ところが, 上記の $t+i \in t \oplus i$ に置き換えると, g_i は次の性質を持つ.

[性質]
$$T=2$$
, $(l=0 \sim m)$ として,
平均関数: $g_i=1/T\sum_{i=0}^{T-1} f_{t\oplus i}$ (3.54)

は、ここで、 $k=0 \sim m-1$ として、区間: $kT \leq i \leq (k+l)T-1$ (3.55)

において一定の値をとる.

[証明] ある区間での*i*のとり得る最大値と最 小値の差は,

$$\{(k+1)T-1\}-kT=T-1$$

である. $T=2^{l}$ から, この2進表示は,

0, 0, …, 0, 0, t_{l-1} , 0, …, 0 (3.56) となり, T-1は, lビットの大きさである. ところで,

$$0 \leq t \leq T - 1$$
であるから,この t も最大 l ビットしか変動しな

い. これと, \oplus は桁上りなしの演算であることを 考えると, $t \oplus i$ もまた, l ビット以内の変動しか $行わないから, <math>i \oplus t \ge i$ は同じ範囲をとる. 従っ て,

 $kT \leq i \oplus t \leq (k+1)T-1$ (3.57) となって、 $\sum f_{i\oplus i}$ は、(3.55)の条件のもとでは、 \sum 内の f_i の和分順序が変化しただけのものとなっている、従って、i=kT、 $k=0 \sim m-l$ 、として、

$$g_i = 1/T \sum_{t=0}^{T-1} f_{t \oplus i} = 1/T \sum_{t=0}^{T-1} f_{t \oplus Tk}$$
(3.58)

[証明終]

実際,この性質より,定理 3・6 の(ii)の右辺は 区間 Tの平均値をとりながら,s=kT,(k=0~m-1)ごとに階段状に変化していることがわかる. 表 3・5 の(ii)を参照.(3.58)の両辺をウォルシ ュ変換すると,

$$G_{s} = \sum_{t=0}^{T-1} F_{s}(-1)^{s \cdot t} / T$$
$$= F_{s} \sum_{t=0}^{T-1} (-1)^{s \cdot t} / T \qquad (3.59)$$

となり、さらに定理 3.5 の (i) より、

$$G_s = F_s \sum_{n=0}^{N/T-1} \delta_{s \oplus Tn}$$
(3.60)

となる. ここで, g_i をウォルシュ変換した G_s と, 次の「たたみこみ」関数のウォルシュ変換したも のは等しいことを示す.

(Ⅱ) 標本値関数とパルス関数とのたたみ込み
 周期Tの(3.44)の標本化関数 s(i) および(3.
 54)の平均値関数 gi から、

標本値入力関数: $S(i) = g_i \cdot s(i)$

$$=g_i\sum_{k=0}^{N/T-1}\delta_{i\oplus Tk} \qquad (3.61)$$

となる. この S(i) と (3.51) のパルス列関数との 'たたみ込み'関数 h が, また, g_i に等しいこと を示せばよい. すなわち,

$$h(i) = \sum_{n=0}^{N-1} S(n) \rho(n \oplus i)$$
 (3.62)

に (3.51), (3.61) を代入すると,

$$h(i) = \sum_{n=0}^{N-1} \{ g_n \sum_{k=0}^{N/T-1} \delta_{n \oplus Tk} \} \{ \sum_{l=0}^{T-1} \delta_{l \oplus n \oplus i} \}$$

(3.63)

となり, さらに,

$$h(i) = \sum_{k=0}^{N/T-1} \sum_{l=0}^{T-1} \sum_{n=0}^{N-1} g_n \ \delta_{n \oplus Tk} \ \delta_{l \oplus n \oplus i}$$
$$= \sum_{k=0}^{N/T-1} \sum_{l=0}^{T-1} g_{Tk} \ \delta_{l \oplus i \oplus Tk} \qquad (3.64)$$

となる、和分核を $(-1)^{iss}$ として、両辺のウォル シュ変換をとると、 $h(i) \xrightarrow{W} H(s)$ として、

$$H(s) = \sum_{k=0}^{N/T-1} \sum_{l=0}^{T-1} g_{Tk} \sum_{i=0}^{N-1} \delta_{l \oplus i \oplus Tk} (-1)^{i \cdot s}$$
$$= \sum_{k=0}^{N/T-1} \sum_{l=0}^{T-1} g_{Tk} (-1)^{(l \oplus Tk) \cdot s}$$
$$= \sum_{l=0}^{T-1} (-1)^{i \cdot s} \cdot \sum_{k=0}^{N/T-1} g_{Tk} (-1)^{Tk \cdot s} \quad (3.65)$$

となる.上式の積の第1項については定理 3.5 の (i)を,第2項については $g_i \rightarrow G_s$ および定理 3 -6 の(i)を参照すると,

$$H(s) = \sum_{l=0}^{N/T-1} \delta_{s \oplus Tl} \cdot \sum_{k=0}^{T-1} G_{k \oplus s}$$
(3.66)

となる.次に(3.60)を(3.66)に代入すると,

$$H(s) = \sum_{l=0}^{N/T-1} \delta_{s \oplus Tl} \cdot \sum_{k=0}^{T-1} F_{s \oplus k} \{ \sum_{n=0}^{N/T-1} \delta_{s \oplus k \oplus Tn} \}$$
$$= \sum_{l=0}^{N/T-1} \delta_{s \oplus Tl} \cdot \sum_{k=s}^{s+T-1} F_k \{ \sum_{n=0}^{N/T-1} \delta_{k \oplus Tn} \}$$

(3.67)

となる、右辺の積の第1項より、s=Tlのみをと り得る、従って、第2項の和分の範囲 $s \leq k \leq s$ +T-1では、k=Tlのみが残る、これより、 Σ をとり除くことができるので、

$$H(s) = \sum_{l=0}^{N/T-1} \delta_{s \oplus Tl} \cdot F_s \left\{ \sum_{n=0}^{N/T-1} \delta_{s \oplus Tn} \right\} \qquad (3.68)$$

となる. 第1項と {・} とは同じもので, 値は1 しかとらないから,

$$H(s) = F_{s} \left\{ \sum_{n=0}^{N/T-1} \delta_{s \oplus Tn} \right\}^{2}$$
$$= F_{s} \sum_{n=0}^{N/T-1} \delta_{s \oplus Tn}$$
(3.69)

となり、これは(3.60)に等しい.

結局. (3.52) は、ウォルシュ・スペクトルのN/T 以上の(交番数の)高交番数遮断したことを表 しているが、これは平均値入力関数の (3.54) に 等しく、このウォルシュ変換が (3.60) である. 一方、標本値入力関数 S(i) すなわち (3.61) にパ ルス列関数 (3.51) をたたみその関数 h(i) のウォ ルシュ変換したものが (3.69) となり、(3.60) に 等しくなっている. これより(I)、(I)をまとめ ると、次の定理を得る.

〔定理 3・8〕 ウォルシュ変換の標本化定理
 (i) 関数 gi が N/T 以上の交番数を含まないと

-26 -

き,区間 T ごとの g_i の値から,すべての g_i が決 定される(実は, ウォルシュ変換による場合,各区 間内は同一の値をとる).

(ii) 関数 f_i の N/T 以上の交番数を遮断した場合,標本区間 $\{kT \sim (k+1)T-1\}, (k=0 \sim m)$ の標本値を, f_i のその区間の平均値に置き換えたものに等しい.

(i) はフーリエ 変換に基づいている 標本化定理 と形式的にほとんど同一のものであり,すでに文 献[14],[16]で述べられている.(ii) は,もとの 関数とその関数の特定の交番数を遮断した関数と の関係を述べており,交番数遮断の影響が直ちに 計算できるのが特徴である.図 3-1 を参照.

3.5 擬似極形式によるウォルシュ変換^{[24][32]}

ウォルシュ関数やウォルシュ変換は、数学構造 が2進環に基づいているので、並進運動とか平行 移動(シフト)という概念をもたない、移動量(距 離)が $\frac{k}{2}$, (k=0, 1, 2, ...)のときのみ、部分的・ 局所的に通常の平行移動の現象が起る、平行移動 を2次元に拡張すると、回転(運動)を行わせるこ とができる、フーリエ変換の場合、入力面の回転 は、出力面では線形に対応(移動)する、すなわち、 入力データが回転したのと同じ角度だけ、もとの 出力データもまた回転する、ところが、ウォルシ ュ変換を用いた場合の回転に対しては、ウォルシ ュ面でのもとのパターンとは異った状態となり、

(現在のところ)予想不可能で理論解析が行えない、次善の策として、入力パターンが、2進移動した場合を基準にして考える、2進移動とは、① 演算のことであるから、これを幾何的(図形的)に 考えてみる、データ f_i 、($i=0 \sim N-1$)をaだけ 2進移動させると、 $a \in D_m$ として、

$f_i \longrightarrow f_{i \oplus a}$	(3.7 0)

となる、そこで、 $i \longrightarrow i \oplus a$ (3.71)

の遷移をグラフ化すると,図 3・2 の(a) となる. 図の矢印の相互の向きは,基本的に「ねじれ」と 「並進」から成りたっている. *a*=2,4 の場合, 部分的に平行移動になっていることに注意.この 2進移動を(半)径方向と回転方向に適用して,そ れぞれを「2進径移動」および「2進回転」と呼ぶ ことにする. 極座標形式を導入するため変数を, 径方向としてrを, 偏角として θ を用いると次の ようになる. $a,b \in D_m$ として,

径移動: $r \in D_m$

回転(角): $\theta \in D_m$ (3.72) 径方向移動のウォルシュ関数:

$$W_a(r) = (-1)^{a \cdot r}$$
 (3.73)

回転方向のウォルシュ関数:

$$W_b(\theta) = (-1)^{(3.74)}$$

となる. (3.73), (3.74)の具体例は,それぞれ図 3・2 の (b), (c) となって, a, b が 2^{l} , ($l=0 \sim m$ -1)のとき上記の関数は周期的となる. これは 円形の膜振動の解析の際に現れるベッセル関数の モードパターンと同じものである. $a, b \ge 2^{l}$ のと き,すなわち,非周期的な場合はウォルシュ関数 による独自のパターンを示す. ところで,従来の 直角座標系による 2 次元ウォルシュ変換は次のよ うに表される.

$$F_{st} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{ij}(-1)^{s \cdot i \oplus t \cdot j}$$
(3.75)

これを、(3.74)の変数 r, θ によって、関数 f_{ij} , F_{si} をそれぞれ、次のように対応させる、

$$f_{ij} \longrightarrow f(r, \theta)$$
 (3.76)

$$F_{st} \longrightarrow F(R, \Theta)$$
 (3.77)

ただし、径方向のウォルシュ面での交番数:

$$R \in D_m$$

回転方向のウォルシュ面での交番数: $\Theta \in D_m$

これより、(3.75)を極座標形式のウォルシュ変換 に対応させると、

$$F(R,\theta) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f(r,\theta) (-1)^{R \cdot r \oplus \Theta \cdot \theta}$$
(3.78)

と書き換えられる. これはいわゆる変数変換を行っているのではなく、トポロジー的な対応関係により変数を置き換えているのにすぎないので、(3. 78)を「擬似極座標形式によるヴォルシュ変換」と 名付けることにしよう.上式の和分核 $(-l)^p, p = R \cdot r \oplus \theta \cdot \theta$ 、を図示すると、図 **3 · 3** になる^[51].

[例] $f(r, \theta)$ が径方向に r_0 だけ 2 進移動し, θ_0 だけ 2 進回転することを,

- ウォルシュ変換の性質とその応用に関する研究 -

- 3. ウォルシュ変換に関する理論的考察 -

擬似極形式のウォルシュ関数 f(r,0) X

 $f(r, \theta) \xrightarrow{w} f(r \oplus r_0, \theta \oplus \theta_0)$ (3.79) と表すと、この2次元2進移動のウォルシュ変換 は次のようになる.

 $\begin{aligned} f(r \oplus r_0, \theta \oplus \theta_0) &\xrightarrow{w} F'(R, \theta) = F(R, \theta)(-1) \\ & \quad \text{ただし}, \ p = R \cdot r_0 \oplus \theta \cdot \theta_0 \qquad (3.80) \\ & \quad \text{実際の適用には}, \ \& \text{Z方向と回転}(角) \\ & \quad \text{方向の標本} \end{aligned}$

点を各々 N として、極座標形式で標本化を行ったのち、標本点を $N \times N$ の直角座標系の各点に トポロジカル的に対応させて、これまで通りの2 次元ウォルシュ変換を行えばよい.

この擬似極座標形式によるウォルシュ変換によ り, 径特性や回転特性をもっている2次元パター ンの解析や特徴抽出を行うことができる. 例えば フーリエ変換面あるいは相関関数面での特徴抽出 やフィルタとして応用できる[28][29][45].

3・6 ウォルシュ関数の差分と和分[27]

一般に関数 f_x の n 階差分は次のように定義されている.

$$\int_{a}^{n} f_{x} = \sum_{k=0}^{n} (-1)^{k} {n \choose k} f_{x+k}$$
(3.81)

ただし, $n, x, k \in D_m$, $\binom{n}{k}$: 2項係数

ここで、 $W_a(x) = (-1)^{**}$ に適用すると、ウォ ルシュ関数の差分は次のようになる.ただし、そ の前に次の性質をあげておく、

[性質1]
$$(-1)^{a}=1-2a, a \in \{0,1\}$$
 (3.82)
(定理 3・9) ウォルシュ関数 $(-1)^{a \cdot x}$ の差分は

次のようになる.

$$\Delta^{n}(-1)^{a\cdot x} = -2\sum_{k=0}^{n} \binom{n}{k} \{a \cdot (x+k)\} (-1)^{k}$$
(3.83)

[証明]

$$\int_{k=0}^{n} (-1)^{k} \left(\frac{n}{k}\right) - 2\sum_{k=0}^{n} (-1)^{k} \left(\frac{n}{k}\right) (-1)^{n} \left(\frac{n}{k}\right) = \sum_{k=0}^{n} (-1)^{k} \left(\frac{n}{k}\right) - 2\sum_{k=0}^{n} (-1)^{k} \left(\frac{n}{k}\right) \{a \cdot (x+k)\}$$

となり、第1項は恒等的に0に等しい.[証明終] この公式を用いると,ウォルシュ関数から直接, 差分を求めるよりも計算が容易になる.なお、こ の定理と直接関係はないが、n=1,2の場合、以

下のような簡単な表現を得る.
[例] n=1

$$\mathcal{A}(-1)^{a\cdot x} = (-1)^{a\cdot x} - (-1)^{a\cdot (x+1)}$$

 $= (-1)^{a\cdot x} \{1 - (-1)^{a\cdot (x+1) \oplus x}\}$
ここで、「性質1]より、
 $\mathcal{A}(-1)^{a\cdot x} = 2a\{x \oplus (x+1)\}(-1)^{a\cdot x}$ (3.84)
[例] n=2
 $\mathcal{A}^{2}(-1)^{a\cdot x}$
 $= (-1)^{a\cdot (x+1)} + (-1)^{a\cdot (x+2)}$
 $= (-1)^{a\cdot (x+1)} + (-1)^{a\cdot (x+2)}$
 $= (-1)^{a\cdot (x+1)} + (-1)^{a\cdot (x+2)}$
 $= (-1)^{a\cdot (x+1)} - 2 + (-1)^{a\cdot ((x+1) \oplus (x+2)]}$
 $= -2\{a\cdot [x \oplus (x+1)] + a\cdot [(x+1) \oplus (x+2)]\}$
 $\times (-1)^{a\cdot (x+1)}$ (3.85)

以上のように, n=1, 2 に対する差分は振幅と 位相(符号)を分離することができたが, 一般的に はむずかしい.

次に和分について考えよう.その前の準備として、以下の諸性質をあげておく.[性質2]~[性質 4] は自明である. $a, x, y \in D_m$ の2進表示を、それぞれ次のように記す.

表すことにすると.例 2•2 より,次のようになる.

$$(x+1)_{i} = \begin{cases} x_{i} \oplus x_{i-1} x_{i-2} \dots x_{1} x_{0}, & i \ge 0 \\ x_{0} \oplus 1 & , & i = 0 \end{cases}$$

$$[\text{ Let } G] \quad y = a \cdot \{(x+1) \oplus x\}$$

$$= \sum_{i=0}^{m-1} \oplus a_{i} x_{i-1} x_{i-2} \dots x_{0}$$

[証明] [性質 5] より,

$${x \oplus (x+1)}_i = x_{i-1} \cdots x_0$$
となり、これを定義式(2.19):

-30 -

 $a \cdot y = \sum \oplus a_{i}y_{i}$ に代入すると得られる. [証明終] [性質 7] $(x_{i} \oplus x_{i-1} \cdots x_{1}x_{0})\overline{a_{i-1}} \cdots \overline{a_{0}}$ $\times \{a \cdot [x \oplus (x+1)]\}$ $= a_{i}(x_{i} \oplus 1)x_{i-1} \cdots x_{0} \overline{a_{i-1}} \cdots \overline{a_{0}}$ [証明] [性質 3] と [性質 6] より, $a_{i-1} \cdots a_{0} \{a \cdot [(x+1) \oplus x)]\}$

$$=\sum_{j=0}^{m-1} \oplus a_i \ \overline{a_{i-1}} \ \overline{a_{i-2}} \cdots \overline{a_0} \ x_{j-1} x_{j-2} \cdots x_0$$

となり、a について、j > i-1、すなわち、 $j \ge i$ だ けが残る($a_i \overline{a_i} = 0$ であるから)、次に、

$$(x_i \oplus x_{i-1} \cdots x_0) \sum_{j=0}^{m-1} \oplus a_j x_{j-1} \cdots x_0$$
$$= \sum_{j=i}^{m-1} \oplus \{a_j x_i x_{j-1} \cdots x_0 \oplus a_j x_{j-1} \cdots x_0\}$$

 $j-1 \ge i$ に対しては、 x_i は $x_{j-1}...x_0$ に含まれ ているので、 $\{\cdot\}$ の中の最1項は第2項に等しく なって、 $\{\cdot\}$ は0となる、結局、j=iの項だけが 残る、よって、[性質4]より、

$$(x_{i} \oplus x_{i-1} \cdots x_{0}) \overline{a_{i-1}} \cdots \overline{a_{0}} \{a \cdot [(x+1) \oplus x]\}$$

= $(x_{i} \oplus x_{i-1} \cdots x_{0}) \overline{a_{i-1}} \cdots \overline{a_{0}} a_{i} x_{i-1} \cdots x_{0}$
= $a_{i}(x_{i} \oplus 1) x_{i-1} \cdots x_{0} \overline{a_{i-1}} \cdots \overline{a_{0}}$ [証明終]
次に不定和分の定義を行う.

$$S_{k} = \begin{cases} 0 , k = 0 \\ \sum_{x=0}^{k-1} (-1)^{a \cdot x}, k = 1 \sim N-1 \end{cases}$$

〔定理 3・10〕 ウォルシュ関数 $(-1)^{5}$ の不定和 分 S_x は次のように表される.

$$S_x = (y \oplus a - a)(-1)^{u_x}$$
 (3.86)
ただし、 \oplus は +, - に優先する、 $y \in D_m$ の 2
進表示は、 $i=0 \sim m-1$ として、

$$y_i = x_i \ \overline{a_{i-1}} \ \overline{a_{i-2}} \cdots \overline{a_0} \tag{3.87}$$

である.

[証明]前もって、(3.86)の両辺の差分をとっておく.すなわち、

$$(-1)^{a \cdot x} = (y' \oplus a - a)(-1)^{a \cdot x} - (y \oplus a - a)(-1)^{a \cdot x} \quad (3.88)$$

さらに, [性質5] より, y' を x'=x+1 の第 i -+1 ビットの成分で表すことにする.

$$y' = x'_{i} \quad \overline{a_{i-1}} \quad \overline{a_{i-2} \cdots a_{0}}$$

= $(x+1)_{i} \quad \overline{a_{i-1}} \quad \overline{v_{1-2} \cdots a_{0}}$
= $(x_{i} \oplus x_{i-1} \cdots x_{0}) \overline{a_{i-1}} \quad \overline{a_{i-2} \cdots a_{0}}$ (3.89)

次に [性質1] をより, さらに, (3.88) を次のよ うに変形する.

$$(-1)^{a \cdot x} = (-1)^{a \cdot x} \{ (y' \oplus a - a) (-1)^{a \cdot [(x+1) \oplus x]} - y \oplus a + a \} \quad (3.90)$$

これより,

$$1 \equiv -2\{a \cdot [(x+1) \oplus x]\}(y' \oplus a - a) + y' \oplus a - y \oplus a$$
(3.91)

となり,(3.91)を証明すればよいことになる.ま ず.(2.42)を考慮して、上式の右辺は,

$$-2\{a \cdot [(x+1) \oplus x]\} \sum_{i=0}^{m-1} 2^{i} y'_{i} (-1)^{a_{i}} + \sum_{i=0}^{m-1} 2^{i} (y'_{i} - y_{i}) (-1)^{a_{i}}$$
(3.93)

となり、(3.89) および [性質7] より、(3.93) の第1項は次のようになる.

m_1

$$(93-1): -2\sum_{x=0}^{m-1} 2^{i} \{ a \cdot [(x+1) \oplus x] \}$$
$$\times (x_{i} \oplus x_{i-1} \cdots x_{0}) \overline{a_{i-1}} \cdots \overline{a_{0}} (-1)^{a_{i}}$$
$$= -2\sum_{i=0}^{m-1} 2^{i} a_{i} (1 \oplus x_{i}) x_{i-1} \cdots x_{0}$$

×
$$\overline{a_{i-1}}\cdots \overline{a_0}(-1)^{a_i}$$
 (3.94)
さらに、「性質1」と「性質3」から、

$$(93-1): -2\sum_{i=0}^{m-1} 2^{i} (1-x_{i}-2a_{i}+2a_{i}x_{i})$$

$$\times a_{i} \ x_{i-1}\cdots x_{0} \ \overline{a_{i-1}}\cdots \overline{a_{0}}$$

$$= \sum_{i=0}^{m-1} 2^{i} (-2a_{i} \ x_{i-1}\cdots x_{0} \ \overline{a_{i-1}}\cdots \overline{a_{0}}$$

$$+2a_{i} \ x_{i}\cdots x_{0} \ \overline{a_{i-1}}\cdots \overline{a_{0}}$$

$$+4a_{i} \ x_{i-1}\cdots x_{0} \ \overline{a_{i-1}}\cdots \overline{a_{0}}$$

$$-4a_{i} \ x_{i}\cdots x_{0} \ \overline{a_{i-1}}\cdots \overline{a_{0}}$$

$$(3.95)$$

となる.

次に (3.87) と (3.89) を (3.93) の第2項に 代入して, さらに [性質1], [性質2] から次式 を得る.

$$(93-2): \sum_{i=0}^{m-1} 2^{i} (x_{i} \oplus x_{i-1} \cdots x_{0} - x_{i})$$
$$\times \overline{a_{i-1}} \cdots \overline{a_{0}} (1-2a_{i})$$

$$=\sum_{i=0}^{m-1} 2^{i} (x_{i-1} \cdots x_0 \ \overline{a_{i-1}} \cdots \overline{a_0})$$
$$-2 x_{i} \cdots x_0 \ \overline{a_{i-1}} \cdots \overline{a_0}$$
$$-2 a_{i} x_{i-1} \cdots x_0 \ \overline{a_{i-1}} \cdots \overline{a_0}$$

+4 a_i x_i....x₀ a_{i-1}...a₀) (3.96) (3.95) と(3.96) すなわち,(93-1) と(93-2) が合計される.その結果,(93-1)の第1項と第3 項,および,(93-2)の第3項が互に打消す.(93 -1)と(93-2)のそれぞれの第4項が同じく打消 す.そこで,(93-1)の第2項と(93-2)の第1項 と第2項が残って整頓すると,

(3.93):
$$\sum_{i=0}^{m-1} 2^i (2 a_i x_i \cdots x_0 \overline{a_{i-1}} \cdots \overline{a_0} + x_{i-1} \cdots x_0 \overline{a_{i-1}} \cdots \overline{a_0} - 2 x_i \cdots x_0 \overline{v_{i-1}} \cdots \overline{a_0}$$
)(3.97)
なる、さらに、上式の(・)の第2項が変形さて、
 $\sum_{i=0}^{m-1} 2^i x_{i-1} \cdots x_0 \overline{a_{i-1}} \cdots \overline{a_0} = -1 + \sum_{i=0}^{m-2} 2^{i+1} x_i \cdots x_0 (1 - a_i) \overline{a_{i-1}} \cdots \overline{a_0}$

と

n

$$=1+\sum_{i=0}^{m-2}2^{i}(2x_{i}\cdots x_{0}\ \overline{a_{i-1}}\cdots \overline{a_{0}})$$

i=0

 $-2a_i x_i \cdots x_0 \overline{a_{i-1}} \cdots \overline{a_0}$) (3.98) となる、(3.98) を (3.97) に代入すると、i=m-1 項だけが残り、次のようになる。

$$(3.93): 1+2^{m}(a_{m-1}x_{m-1}\cdots x_{0} \ \overline{a_{m-2}}\cdots \overline{a_{0}})$$
$$-x_{m-1}\cdots x_{0} \ \overline{a_{m-2}}\cdots \overline{a_{0}})$$
$$(3.99)$$

2^m=0 (mod N), であるから, 上式の第2項は 0となり, (3.93)=1となる. これは, (3.91)の 左辺に等しい. [証明終]

[系] S_x は以下のように書き表すことが で き て、計算するときに便利である.

$$S_x = (-1)^{a \cdot x} \sum_{i=0}^{m-1} 2^i y_i (-1)^{a_i}$$

[証明] (2.42) を考えると明らかである.

[例] *m*=4. *a*, *x* ∈ *D*₄ の 2 進表示をそぞれ れ,

a₃a₂a₁a₀,および, x₃x₂x₁x₀

 $x \rightarrow 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12 \ 13 \ 14 \ 15$ 部 $\sum_{x=0}^{x} ($ -1)分直交系 **交番数** 1 $\Sigma(-1)$ 8• x $\sum (-1)$ 1 $^{12}_{-1}$ Σ(2 Σ (3 Σ -1) 5 -1) -1) -6 $\sum_{i=1}^{2 \cdot x} \frac{x}{2}$ $\sum_{x=1}^{3 \cdot x} \frac{1}{x}$ 8 -1)9 10 11 5·x 1 12 13 Σ 14 $(1 \cdot x)$ 15

図 3・4 ウォルシュ関数の不定和分(2進三角波 関数系)

と表す. 表 3・8, 図 3・4 を参照. $S_{\omega} = (-1)^{a \cdot x} \{8x_3 \overline{a_2} \overline{a_1} \overline{a_0} (-1)^{a_3} + 4x_2 \overline{a_1} \overline{a_0} (-1)^{a_2} + 2x_1 \overline{a_0} (-1)^{a_1} + x_0 (-1)^{a_0})\}$

3・7 2進三角波関数の部分的に完備な直交性[87]

不定和分関数を図示すると三角波をもっている ことがわかる(図 3・4 を参照). これを指数 mの 2進三角波関数系と呼ぶことにしよう. 2進三角 波は、これまで使われている三角波関数とは異な って、非周期的な三角関数をもっているのが特徴 である.厳密にいうと、ディスクリート表現の関 数であるから、 $N \rightarrow \infty$ のときに三角波に近づく. 図 3・4 は、(-1) を連続関数とみなして積分 したものを描いた.この関数系は完全直交系では なく、部分的に直交系となっている.表 3・9 の 破線内を参照.

- 3. ウォルシュ変換に関する理論的考察 -

表 3・8
$$S_x = [y \oplus a - a](-1)$$
 , $m = 4$, $N = 16$ の場合.

 $a, x, y \in D_4$ の2進表示をそれぞれ、 $a_3a_2a_1a_0, x_3x_2x_1x_0, y_3y_2y_1y_0$ とする. 最右端の欄は[・]を列行列で表現したものである.

係数順位					交番数	¢				$y \oplus a - a$	(y3⊕a3	1	(a3)
a	<i>a</i> ₃	<i>a</i> ₂	<i>a</i> ₁	<i>a</i> 0	s	y3	3 Y2	y 1	<i>y</i> 0	(-1) ^{a.#}	$\begin{vmatrix} y_2 \oplus a_2 \\ y_1 \oplus a_1 \\ y_0 \oplus a_0 \end{vmatrix}$	-	$a_2 \\ a_1 \\ a_0 \end{pmatrix}$
0	0	0	0	0	0	x3	; x ₂	x_1	x0	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{bmatrix} x_3\\ x_2\\ x_1 \end{bmatrix}$	-	000
					1					+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1			0
8	1	0	0	0	1	<i>x</i> 3	<i>x</i> ₂	<i>x</i> 1	x ₀	0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1	$\begin{bmatrix} x_3 \oplus 1 \\ x_1 \\ x_2 \end{bmatrix}$	-	$\begin{bmatrix} 1\\0\\0\end{bmatrix}$
<u> </u>										+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		i 	씄
12	1	1	0	0	2	0	<i>x</i> 2	<i>x</i> ₁	x 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x_2 \oplus 1$	-	
) 	1				+1 $+1$ $+1$ $+1$ $+1$ -1 -1 -1 -1 -1 -1 -1 $-$, 	$\frac{(0)}{(0)}$
4	0	1	0	0	3	0	<i>x</i> 2	<i>x</i> ₁	x _o		$x_2 \oplus 1$ x_1	-	100
					<u> </u>	1				<u>+1 +1 +1 +1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1</u>		, 1	*
6	0	1	1	0	4	0	0	<i>x</i> 1	x ₀	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c}1\\x_1\oplus1\\x_2\end{array}$	-	
						İ			_		$\overrightarrow{1}$	1	Ť
14	1	1	1	0	5	0	0	<i>x</i> ₁	x ₀	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1\\ x_1 \oplus 1\\ x_0 \end{bmatrix}$	-	
						Í							Ť
10	1	0	1	0	6	0	0	x 1	r _o	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 0\\ x_1 \oplus 1\\ x_0 \end{bmatrix}$. — .	
						[$\left(\begin{array}{c} 0 \end{array}\right)$		$\overline{0}$
2	0	0	1	0	7	0	0	x_1	r _o		$x_1 \oplus 1$	-	1
					(+1 $+1$ -1 -1 $+1$ $+1$ -1 -1 $+1$ $+1$ -1 -1 $+1$ $+1$ -1 -1	$\begin{pmatrix} x_0 \end{pmatrix}$		$\frac{(0)}{(0)}$
3	0	0	1	1	8	0	0	0	¥.a	$0 \ -1 0 \ -1 0 \ -1 0 \ -1 0 \ -1 0 \ -1 0 \ -1 0 \ -1$			0
		-		_	_	-			- 0	$\underline{+1} \ \underline{-1} \ \underline{-1} \ \underline{+1} \ \underline{+1} \ \underline{-1} \ \underline{-1} \ \underline{-1} \ \underline{+1} \ \underline{-1} \ \underline{-1} \ \underline{-1} \ \underline{+1} \ \underline{-1} \ -1$	$x_0 \oplus 1$		<u>(i)</u>
71	1	0	-	1	•	0	•	0		$0 \ -1 \ -1$		_	
	1		1	1	9	U	U	U .	t0	+1 -1 -1 $+1$ $+1$ -1 -1 $+1$ -1 $+1$ $+1$ -1 -1 $+1$ $+1$ -1	$\left(x_{0} \oplus 1\right)$		<u>(i)</u>
			_	_						0 - 1 $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$	$\left(\begin{array}{c}1\\1\end{array}\right)$		$\begin{pmatrix} 1\\ 1 \end{pmatrix}$
15	1 	1	1	1	10	0	0	0.	x0	+1 -1 -1 $+1$ -1 $+1$ $+1$ -1 -1 $+1$ $+1$ -1 $+1$ -1 $+1$ -1 $+1$	$\begin{bmatrix} 1 \\ x_0 \oplus 1 \end{bmatrix}$		
										0 - 1 $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$	$\begin{pmatrix} 0\\1 \end{pmatrix}$		$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
7	0	1	1	1	11	0	0	0.	¢0	+1 -1 -1 +1 -1 +1 +1 -1 +1 -1 -1 +1 -1 +1 -1 +1 -1	1	-	
		•••											衒
5	0	1	0	1	12	0	0	0	¢0	0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1	1	-	
									_	+1 -1 $+1$ -1 -1 $+1$ -1 $+1$ $+1$ -1 $+1$ -1 $+1$ -1 $+1$ $+1$	$x_0 \oplus 1$		
10	1	1	^		10	•	^	^		$0 \ -1 0 \ -1 0 \ -1 0 \ -1 0 \ -1 0 \ -1 0 \ -1 0 \ -1 0 \ -1$			$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- 10	1	T	U	1	10	U	U	•	¢0	+1 -1 +1 -1 -1 -1 +1 +1 -1 +1 +1 -1 +1 +1 +1 -1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	$x_0 \oplus 1$		$\left(\frac{\mathbf{i}}{\mathbf{i}}\right)$
										0 - 1 $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$ $0 - 1$	$\begin{bmatrix} 1\\0 \end{bmatrix}$		$\overline{(b)}$
9	1	0	0	1	14	0	0	0	r _o	+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1	$\begin{bmatrix} 0\\ r, \oplus 1 \end{bmatrix}$	-	
l				ĺ					Ī			-	ক্টাঁ
1	0	0	0	1	15	0	0	0	x0	<u>v -1</u> <u>v -1</u> <u>v -1</u> <u>v -1</u> <u>v -1</u> <u>v -1</u> <u>0 -1</u> <u>0 -1</u>	0		0
1										+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1	\xa ⊕ 1/		(1)

〔定理 3・11〕次数 m のコールマン形ウォルシ ュ関数の不定和分関数系は, m 個の部分直交関数 系をもつ. すなわち, ウォルシュ関数の交番数を s とすると,

 $2^{k} \leq s \leq 2^{k+1} - 1$, $0 \leq k \leq m-1$ (3.100) となる k が定まり,上式の範囲内の交番数の 2 進 三角波関数は完備な直交関数系をつくる.

[証明] 交番数 s が, $2 \sim 2^{k+1} - 1$ の値をとるとき, s の 2 進表示を, $s_{m-1} \cdots s_k \cdots s_1 s_0$, とすると,

 $s_{m-1} = s_{m-2} = \dots = s_{k+1} = 0$ $s_k = 1$ (3.101) $s_{k-1}, \dots, s_k, \dots, s_1, s_0 = 0 \notin t \in 1$

は明らかである. 交番数から係数順位を求める変 換行列 (2.25) によって, (3.101) の条件が係数 順位ではどのような条件となっているか調べてみ る. (3.101) を (2.25) の右の変換行列の式に代 入すると, 以下の *a* を得る.

$$\left. \begin{array}{c} a_{m-1}, a_{m-2}, \cdots, a_{m-k} = 0 \text{ \ddagger t t 1} \\ a_{m-k-1} = 1 \\ a_{m-k-2} = \cdots = a_1 = a_0 = 0 \end{array} \right\} (3.102)$$

次に (3.87) の y_i について調べるために,次 の z_i を考えてみる.

$$y_i = x_i \overline{a_{i-1}} \cdots \overline{a_0}$$

$$z_i = \overline{a_{i-1}} \overline{a_{i-2}} \cdots \overline{a_1} \overline{a_0}$$
(3.103)

$$t \ge t \ge 0$$
, $a_i = a_i \oplus 1 = 1 - a_i$

a_k ∈ { 0,1 } であることから,次の不等式は自明 である.

 $\overline{a_0} \geq \overline{a_1} \ \overline{a_0} \geq \overline{a_2} \ \overline{a_1} \ \overline{a_0} \geq \cdots \geq \overline{a_{i-1}} \cdots \overline{a_0} \ (3.104)$ $\widetilde{\mathcal{U}}_{2} \subset \mathcal{C},$

 $z_0 \ge z_1 \ge z_2 \ge \cdots \ge z_i$ (3.105) となる. $a_{i-1} = a_{m-k-1} (=1)$, から i = m-k とな り, $\overline{a_{i-1}} = 0$ である. (3.102), (3.103), (3.105) より,

 $z_{i} = \begin{cases} 1, & i = 0 \sim m - k - 1 \\ 0, & i = m - k \sim m - 1 \end{cases}$ (3.106) $\geq z_{k} \geq_{i}, & y_{i} = x_{i} \geq_{i} \leq_{i} > 0, \end{cases}$

$$y_{i} = \begin{cases} x_{i}, i=0 \sim m-k-1 \\ 0, i=m-k \sim m-1 \end{cases} (3.107)$$

となる. このことは、 y_{i} について、 $i \ge m-k$ の

場合を考慮する必要がないことを示している.

以上の準備のもとで,任意の二つの2進三角波 関数 *I_a, J_a* の直交性を調べる.

$$\delta(I, J) = \sum_{x=0}^{N-1} I_x J_x$$

$$= \sum_{x=0}^{N-1} \{(-1)^{a \cdot x} \sum_{i=0}^{m-1} 2^i y_i(x) (-1)^{a \cdot i} \}$$

$$\times \{(-1)^{b \cdot x} \sum_{j=0}^{m-1} 2^j y_j(x) (-1)^{b \cdot j} \}$$

$$= \sum_{x=0}^{m-1} (-1)^{(a \oplus i) \cdot x} \{ \sum_{i=0}^{m-1} 2^i y_i(x) (-1)^{i} \}$$

$$\times \{ \sum_{j=0}^{m-1} 2^j y_j(x) (-1)^{b_j} \} \qquad (3.108)$$

ここで、 $c=a \oplus b$ として、c の2進表示を、 $c_{m-1} \cdots c_0$ 、とすると、

 $c_{m-k-1} = c_{m-k-2} = \dots = c_0 = 0$ (3.109) となる.というのは、(3.102)より $i \leq m-k-1$ のとき、 a_i 、 b_j は一意的に決っていて、 $a_i = b_j$ と なっているからである.このことは、また、cの 値は xの方向に関して、 2^{m-k} を単位として、+1 または -1の値をとる(変化する)ことを表してい る.次に、 a_i について、(3.102)では、 $i \geq m-k$ のとき不定であるが、 y_i が掛っているので、 (3.107)より、iがm-k以上を考える必要はな い.また同時に $\{i(\cdot)\} = \{j(\cdot)\}$ となる、 $y_i(-1)^{a_i}$ も 2^{m-k} の周期をもち、従って、 $\{\cdot\}$ は c と同期 となる(ただし、(3.100)の条件のもとでのみ).こ れより、

$$\delta(I,J) = \sum_{x=0}^{N-1} (-1)^{c \cdot x} \left\{ \sum_{i=0}^{m-k-1} 2^{i} y_{i}(x) (-1)^{a_{i}} \right\}^{2}$$
(3.110)

上式の $(-1)^{c_x}$ は、x 方向に 2^{m-k} を単位として、 +1 または -1 に変化するウォルシュ関数であ り、かつ、 $\{\cdot\}$ は 2^{m-k} を周期とする関数であるか ら、次のようになる、ただし、 $T = 2^{m-k}$ である。 $\delta(I,J) = \begin{cases} C, c=0 \ fxb \ b \ a=b \\ O, c \ge 0 \ fxb \ b \ a \ge b \end{cases}$

ただし, $C = (N/T) \sum_{x=0}^{T-1} \left\{ \sum_{i=0}^{m-k-1} 2^i y_i(x) (-1)^{a_i} \right\}^2$ [証明終]

- 34 ---

[演習] m=4, N=16 の2進三角波関数. 交 $a_0=0$, $a_0=0$, and $a_0=0$, $a_0=0$,

$$C = 4 \sum_{x=0}^{3} \left\{ \sum_{i=0}^{1} 2^{i} y_{i}(x) (-1)^{a_{i}} \right\}^{2}$$
$$= 4 \sum_{x=0}^{3} \left\{ y_{0}(x) (-1)^{a_{0}} + 2y_{1}(x) (-1)^{a_{1}} \right\}^{2}$$

となる.表 3•8 を参照すると,

 $a_0=0, a_1=1, y_0(x)=x_0, y_1(x)=x_1$ であるから、

$$C=4\sum_{x=0}^{3} (x_0-2x_1)^2$$

=4{(0-2•0)²+(1-2•0)²+(0-2•1)²
+(1-2•1)²}=24
となる、表 3•9 を参照.

表 3・9	$\delta(I,J) = \sum_{x=0}^{15} I_x J_x,$	ただし,	I_x ,	J_x は任意の 2 進三角波関数である.
-------	--	------	---------	---------------------------

交番数	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1240	512	-128	256	-32	0	-64	128	8	0	0	0	16	0	-32	64
1	512	344	0	128	0	-32	0	64	0	8	0	0	0	-16	0	32
2	-128	0	88	0	0	0	32	0	0	0	-8	0	0	0	16	0
3	256	128	0	88	0	0	0	32	0	0	0	8	0	0	0	16
4	- 32	0	0	0	24	0	0	0	0	0	0	0	8	0	0	0
5	0	-32	0	0	0	24	0	0	0	0	0	0	0	8	0	0
6	- 64	0	32	0	0	0	24	0	0	0	0	0	0	0	8	0
7	128	64	0	32	0	0	0	24	0	0	0	0	0	0	0	8
8	- 8	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0
9	0	-8	0	0	0	0	0	0	0	8	0	0	0	0	0	0
10	0	0	-8	0	0	0	0	0	0	0	8	0	0	0	0	0
11	0	0	0	-8	0	0	0	0	0	0	0	8	0	0	0	0
12	- 16	0	0	0	8	0	0	0	0	0	0	0	8	0	0	0
13	0	16	0	0	0	8	0	0	0	0	0	0	0	8	0	0
14	- 32	0	16	0	0	0	8	0	0	0	0	0	0	0	8	0
15	64	32	0	16	0	0	0	8	0	0	0	0	0	0	0	8
1																

第4章 ウォルシュ変換の応用

4・1 2進差分の解析と画像処理への応用[84][88] 3・6 節でウォルシュ関数の差分について考察し たが、この差分は平行移動に基づいた差分であっ た、これは、入力面での扱いは比較的簡単であっ たが、ウォルシュ面での挙動や影響を調べるのに は困難である、そこで、ウォルシュ面で理論的に 扱いやすい形の差分を新たに導入する.すなわち, 平行移動を 3・5 節の擬似極形式に用いた「2 進移 動」に置き換える. この2進移動については 図 3・2 に示してあるが、平行移動と対照比較するた めに,新ためて 図 4・1 に描いた.一見すると, *i* 0 1 2 3 4 5 6 7 ρα ρα ρa $i + 1 \sigma$ h h 000 Ω 00 000000000 $i\oplus 2$ of the o $i + 2 \sigma$ ь \cap 0000 *i*⊕3 0 0 0 000 222222222 ααααρρρρ $i \oplus 4$ of of of o b b b *i*+40000000 ααααρρρρ 00000 i+5000000 000 Q Q Q Q Q Q 000 Ω i+6000000 'n $i \oplus 7 0 0 0 0 0$ i + 7 0999990 (b) (a) 図 4・1 2 種類の遷移図. (a) 2 進移動 (b) (巡回形)平行移動

平行移動と2進移動とは全く異なる遷移状態を示 しているが、定性的な傾向をみるために評価関数 を設けて定量的に比較すると、それほどでもない、 ここで、評価関数あるいは測度として「相関係数」 を採用する、一般に相関係数は次のように定義さ れている.

$$\sigma = \frac{\sum_{i=0}^{N-1} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=0}^{N-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{N-1} (y_i - \bar{y})^2}} (4.1)$$

$$\frac{1}{\sqrt{\sum_{i=0}^{N-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{N-1} (y_i - \bar{y})^2}} (4.1)$$

 $\overline{x}, \overline{y}$ はそれぞれ, x_i, y_i の平均値を示す.

ここで、もとの座標点と移動を受けたあとの座 標点との相関をとることにする、上の変数は次の ようになる.

もとの座標 :
$$x_i = i$$

移動量 : a
平行移動後の座標: $y_i = i + a$ (4.2)
2進移動後の座標: $y_i = i \oplus a$

 $\sigma = \sigma(a)$ として,2種類の相関係数をプロット したものが **図 4-2** である. 破線が平行移動によ

4・2 2 種類の座標を動量に対9 る相関係数の変化。 実線:iとi⊕a の相関係数.破線:iとi +a (mod 32)の相関係数.

るもので,移動量が最大(N近傍)に近づくと1に なる、すなわち、もとに戻るのは、mod N によ るのであるが、むしろ、移動量が「負」になって いると考えるほうが自然である、すなわち、平行 移動の場合は、前に a だけ進むのと後に a だけ 戻るのとは測度としては等価であることを示して いる、従って最大の半分の (=N/2 近傍) が最も 遠い距離ということになる.

次に、実線部分の2進移動については、移動量 が最大(N 近傍)に近づくと、a に関して非線形 的に相関係数が -1 に近づいていくのが特徴で ある.移動の大きさが最大の半分(N/2 近傍)で 両者の相関係数は一致している.この座標点は、 平行移動の場合の「最遠」測度でもあるが、この 座標点を2進移動の場合の最遠測度のNの点に 対応させて考えるのが自然なように思われる.す なわち、両者を、

平行移動量: $a=0 \sim N/2-1$ (4.3) 2 進移動量: $a=0 \sim N-1$

の範囲として対応させ、相関係数という測度を用 いると、移動量 a が大きくなるにつれて測度も大 きく(遠方に)なる、符号理論で使われる 2 進表示 のハミング距離は各ビットを対等(同じ重み)に扱 っているが[25]、ここでは高位ビットになるに従 って倍の重みがかかっている.

以上の考察により,2進移動(数学的には⊕演算)を、一種の距離変位とみなすことができる.これを差分に適用する.すなわち、平行移動の概念に基づいた(通常の)高階差分公式(3.81)に2進移動を置き換えると次のようになる.(3.81)と区別

するために、2進差分記号を \mathcal{A}_{\oplus} と記すことにすると、

$$\mathcal{A}_{\oplus}^{n} f_{x} = \sum_{k=0}^{n} \left(-1\right)^{k} \binom{n}{k} f_{x \oplus k}$$

$$(4.4)$$

となる.

$$[\emptyset] \quad n=1, \ \Delta_{\oplus}^{1} f_{i}=f_{i}-f_{i\oplus 1}$$
 (4.5)

$$n=2, \quad a_{\oplus}^2 f_i=f_i-2 f_{i\oplus 1}+f_{i\oplus 2}$$
 (6.6)

これを図示したものが 図 4・3 である. これに よると, 遷移の状態が分割されているのがわか る.

[性質1] n 階の2進差分について、n が定まると、次のkを求めることができる.

$$2 \le n \le 2 - 1$$

これより,入力でデータは N/2^k 個に分割されて, 各分割された範囲内で2進差分が行われる.従っ て,異なった分割領域の相互に差があっても検出 されない差分である.

[系] (3.81)の逆変換式は次のように定義さ れている.

$$f_{i+r} = \sum_{k=0}^{r} \binom{r}{k} (-1)^{k+r} \overset{k}{\varDelta} f_i \qquad (4.7)$$

これにより, f_{i+r} , f_{k+r} をそれぞれ $f_{i\oplus r}$, $f_{k\oplus r}$ に 置きかえても, また成りたつ. すなわち, (4.4) の逆変換式は次のようになる.

$$f_{i\oplus r} = \sum_{k=0}^{r} \binom{r}{k} (-1)^{k\oplus r} \overset{k}{\mathcal{A}_{\oplus}} f_i$$
(4.8)

次に定義式 (4.4)=0 とおいて, $A_{\oplus}^{''} f_i$ の性質を調べてみよう. すなわち,

図 4・3 2進差分の遷移とその分割状態. $A_{\oplus}^{i} f_{i} = f_{i} - f_{i\oplus_{1}}, A_{\oplus}^{j} f_{i} = f_{i} - 2f_{i\oplus_{1}} + f_{i\oplus_{2}}.$ 破線は入力データ f_{i} の符号が反転して加えられることを示す.

$$\sum_{k=0}^{n} \left(-1\right)^{k} \binom{n}{k} f_{x \oplus k} = 0 \qquad (4.9)$$

となり、これは2進差分方程式となっている. 一般的にこれを論ずるのは困難なので具体例を調べてみよう. $n=1\sim9$ に対する一般解は **表 4・1** に示した. これをみると、解の自由度が多いので偏微分方程式の解を思わせる. これらは帰納的に得られたものであるが証明は容易である. 図として描いたのが **図 4・4** である. 逆のいい方をすると、この図のパターンをもつ関数の2進差分は0になる.

以上は入力面での解析であったが、2進差分(の 演算子)はウォルシュ面では次のような2進フィル タ D_s となる.

$$D_{s}^{n} = -2\sum_{k=1}^{n} (-1)^{k} {\binom{n}{k}} (k \cdot s)$$
(4.10)

[証明] 和分核を $(-1)^{*i}$ として, (4.4)の両 辺をウォルシュ変換すると,

$$\sum_{i=0}^{N-1} \mathcal{A}_{\oplus}^{n} f_{i}(-1)^{i \cdot s} = \sum_{k=0}^{n-1} (-1)^{k} {n \choose k} F_{s}(-1)^{k \cdot s}$$

となる. (-1)^{n^{**}}=1-2(k•s) より, 右辺=F_s { $\sum_{k=0}^{n-1} \binom{n}{k}$ (-1)^k-2 $\sum_{k=0}^{n-1}$ (-1)^k $\binom{n}{k}$ (k•s)} {•} の中の第1項は恒等的に 0 である. また k

=0 のときは, k•s=0 となるから, k=1 から始 じまる. [証明終]

$$\begin{bmatrix} \emptyset \end{bmatrix} \quad D_{s}^{1} = -2 \left\{ -\binom{1}{1}(s \cdot 1) \right\} = 2(s \cdot 1)$$

$$D_{s}^{2} = -2 \left\{ -\binom{2}{1}(s \cdot 1) + \binom{2}{2}(s \cdot 1) \right\}$$

$$= 4(s \cdot 1) - 2(s \cdot 2) \qquad (4.12)$$

図 4・5 の (a) に, n=1~7, m=3, N=8 の例 を示した. 比較のために フーリエ 変換による(通 常の) 差分フィルタのスペクトルを (b) に示した. フーリエ変換式は次のように定義している.

$$F_s = \sum_{i=0}^{7} f_i(-1)^{2\pi i s \sqrt{-1/8}}$$
(4.13)

ただし, *s*:周波数, *i*,*s* \in {0,1,…,7} これによると,フーリエ面の低周波側の半分のス ペクトルを,ウォルシュ・スペクトルに対応させ ると,両者ともハイパスフィルタとしての傾向を 示している.

[性質2] n 階の2進差分によるウォルシュ面 でのフィルタは、単調増加関数ではないが、ハイ パスフィルタの性質をもつ.

u	$\sum_{r=0}^{n} (-1)^{r} \binom{r}{n} f_{t \oplus r} = 0, \ \binom{n}{r} : : : : : : : : : : : : : : : : : : :$	解(i は任意の正整数と考えてもよい)
-	f_{i-} $f_{i\oplus 1}=0$	$f_i=f_{i\oplus 1}$
0	$f_i {-}2 \; f_{i\oplus 1} {+} \; f_{i\oplus 2} {=} 0$	$f_i = f_{i\oplus 1} = f_{i\oplus 2} = f_{i\oplus 3}$
က	$f_i-3\;f_{i\oplus 1}+3\;f_{i\oplus 2}-\;f_{i\oplus 3}\!=\!0$	$f_i{=}f_{i\oplus 3},\;f_{i\oplus 1}{=}f_{i\oplus 2}$
4	$f_{i}-4$ $f_{i\oplus 1}+6$ $f_{i\oplus 2}-4$ $f_{i\oplus 3}+f_{i\oplus 4}=0$	$f_i = f_{i\oplus 1} = f_{i\oplus 2} = f_{i\oplus 3} = f_{i\oplus 4} = f_{i\oplus 5} = f_{i\oplus 6} = f_{i\oplus 7}$
വ	$f_i-5\;f_{i\oplus1}+10\;f_{i\oplus2}-10\;f_{\oplus3}+5\;f_{i\oplus4}-f_{i\oplus5}=0$	$f_i = f_i \oplus_1 = f_i \oplus_4 = f_i \oplus_5$, $f_i \oplus_2 = f_i \oplus_3 = f_i \oplus_6 = f_i \oplus_7$
9	$f_i-6\;f_{i\oplus 1}+15\;f_{i\oplus 2}\!-\!20\;f_{i\oplus 3}\!+\!15\;f_{i\oplus 4}\!-\!6\;f_{i\oplus 6}\!+f_{i\oplus 6}\!=\!0$	$f_i = f_{i\oplus 1} = f_{i\oplus 2} = f_{i\oplus 3} = f_{i\oplus 4} = f_{i\oplus 5} = f_{i\oplus 6} = f_{i\oplus 7}$
2	$f_{i}-7 f_{i\oplus 1}+21 f_{i\oplus 2}-35 f_{i\oplus 3}+35 f_{i\oplus 4}-21 f_{i\oplus 5}+7 f_{i\oplus 6}-f_{i\oplus 7}=0$	$f_i=f_{i\oplus 1},\ f_{i\oplus 1}=f_{i\oplus 6},\ f_{i\oplus 2}=f_{i\oplus 5},\ f_{i\oplus 8}=f_{i\oplus 4}$
8	$\begin{array}{l} f_{i}-8 \ f_{i\oplus 1}+28 \ f_{i\oplus 2}-56 \ f_{i\oplus 3}+70 \ f_{i\oplus 4}-56 \ f_{i\oplus 5}+28 \ f_{i\oplus 6}-8 \ f_{i\oplus 7} \\ +f_{i\oplus 8}=0 \end{array}$	$f_{i} = f_{i\oplus 1} = f_{i\oplus 2} = f_{i\oplus 3} = f_{i\oplus 4} = f_{i\oplus 5} = f_{i\oplus 6} = f_{i\oplus 7} = f_{i\oplus 7} = f_{i\oplus 9} = f_{i\oplus 10}$ $= f_{i\oplus 11} = f_{i\oplus 12} = f_{i\oplus 13} = f_{i\oplus 14} = f_{i\oplus 15}$
5	$\begin{array}{l} f_{i}-9 \ f_{i\oplus 1}+36 \ f_{i\oplus 2}-84 \ f_{i\oplus 3}+126 \ f_{i\oplus 4}-126 \ f_{i\oplus 5}+84 \ f_{i\oplus 6}-36 \ f_{i\oplus 7}\\ +9 \ f_{i\oplus 8}-f_{i\oplus 9}=0 \end{array}$	$f_i = f_{i \oplus 1} = f_{i \oplus 3} = f_{i \oplus 5} = f_{i \oplus 3} = f_{i \oplus 9} = f_{i \oplus 12} = f_{i \oplus 13},$ $f_{i \oplus 2} = f_{i \oplus 3} = f_{i \oplus 6} = f_{i \oplus 7} = f_{i \oplus 10} = f_{i \oplus 11} = f_{i \oplus 14} = f_{i \oplus 15}$

表 4・1 2 進差分方程式 $J^n_\oplus f_i=0$ の解, $n,i\in\{1,2,3,4,5,6,7,8,9\}$

- 4. ウォルシュ変換の応用 -

- ウォルシュ変換の性質とその応用に関する研究 -

図 4・5 2 進差分フィルタ.(a) 2 進差分フィルタ.s は交番数を表す.(b)フーリエ変 換による通常の差分フィルタ.ただし, −1=7 mod 8.(a) の s=0~7 が (b) の交番数 0~3 に対応する.

図 **4・6** 3 種類の 2 次元 2 進差分フィルタ. 白:1, 黒:0. s', t': 交番数. (a) $D_{s,t}^1$ = (s・1). (b) $D_{s,t}^1$ = (\overline{s} ・1) (\overline{t} ・1), \overline{s} = s⊕1, \overline{t} = t⊕1. (c) $D_{\varepsilon,t}^1$ = (s・1) ×(t・1). ただし, s, t: 係数順位.

- 4. ウォルシュ変換のの応用 -

図 4・7 2 進差分のフィルタによる画像の差分 (a), (e) は入力画像. (b) は図4・6 の(b)フィルタによる. (c) は図4・6 の(a)フィルタによる. (d) は図4.6 の (c) はフィルタによる. (f)は図4・6 の(a)フィルタによる.

4・2 アナログ形ウォルシュ変換装置

ウォルシュ変換は入力データの加減だけで処理 が行えるのであるが、このことがまた、ウォルシ ュ変換を装置化(ハードウエア化)するのにも都合 のよい性質となっており[28]、必然的にデータの 歪みや誤差の累積をも最小にすることになる、こ こでは、2 種類の装置化法を提案する.

(I) 高速変換アルゴリズム形のウォルシュ変 換装置[46][50][35][47]

ウォルシュ変換は装置化しやすい性質をもって いることは既に述べたが、それでも、このままの 形で装置化することは容易でない、というのは、 入力端子群と出力端子群を結ぶ結線コードの本数 が、入力データの自乗に比例するからである、入 力データ数N=9の場合が試作されているが[30], たとえば N=1000 の大きさの標本の場合, 百万 本のコードが必要となる. そこで, すでに開発さ れている「高速ウォルシュ変換アルゴリズム」(F WT) [17]を利用することになる. これは高速フ ーリエ変換アルゴリズムとよく似ており、異なる のは「位相項」がないだけである.本来,計算機 用アルゴリズムは時系列処理で空間的な見方から すると、0次元処理である、ところが、高速ウォ ルシュ変換アルゴリズムの流れ図(フローチャー ト)をみると、各入力点(端メモリ)に同時にアナ ログ・データを入力しても可能な構成になってい る. 従って, 同期させることやメモリを必要とし ない. クロネッカー積を利用すると容易に高速ウ ォルシュ変換アルゴリズムを導くことができるが ここではその変換アルゴリズムを以下のように して導く. 説明を容易にするため, m=3, N=8 の場合の1次元(同時・並列)ウォルシュ変換つ いて考えてみよう. s, $i \in D_3$ として,

$$F_s = \sum_{i=0}^{7} f_i(-1)^{s \cdot i} \tag{4.14}$$

s,i の2進表示をそれぞれ, *s*2*s*1*s*0, *i*2*i*1*i*0 と する.上式をこれによって表現して式を展開する と,

$$F_{s} = \sum_{i=0}^{7} f_{i}(-1)^{s_{2}i_{2} \oplus s_{1}i_{1} \oplus s_{0}i_{0}}$$
$$= \sum_{i=0}^{8} f_{i}(-1)^{s_{2}i_{2} \oplus s_{1}i_{1}} \times (-1)^{s_{0}i_{0}}$$

$$+ \sum_{i=4}^{7} f_{i}(-1)^{s_{2}i_{2} \oplus s_{1}i_{1}} \times (-1)^{s_{0}i_{0}}$$

となる. i が順次変化していくと,

{i=0, 1, 2, 3のとき, $i_0=0$ i=4, 5, 6, 7のとき, $i_0=1$

であるから, さらに展開して,

$$F_{s} = \sum_{i=0}^{3} f_{i}(-1)^{s_{2}i_{2} \oplus s_{1}i_{1}} + (-1)^{s_{0}} \sum_{i=0}^{3} f_{i \oplus 4}(-1)^{s_{2}i_{2} \oplus s_{1}i_{1}}$$

$$(4.15)$$

となる. 同様にして, $s_2 i_2$, $s_1 i_1$ についても, 逐 時展開していくと, 最終的に次のようになる.

$$F_{s} = \{ [f_{0} + (-1)^{s_{0}} f_{1}] + (-1)^{s_{1}} [f_{2} + (-1)^{s_{0}} f_{3}] \}$$
$$+ (-1)^{s_{2}} \{ [f_{4} + (-1)^{s_{0}} f_{5}] + (-1)^{s_{1}} [f_{6} + (-1)^{s_{0}} f_{7}] \}$$
$$(4.16)$$

上の右辺には3種類の括弧があるが,同じ種類の 括弧は同じパターンの数式表現となっており(添 字だけが異なっている),さらにこれらをまとめた 上位の括弧についても同じことがいえる.すなわ ち,漸化式として一般に次のように表現できる.

 $l=0 \sim m-1 \& \cup \zeta$,

$$\begin{aligned} & L^{(l+1)}_{ki} = \stackrel{(l)}{I_{ki}} + (-1) \stackrel{S_i}{I_{k(i+1)}} & (4.17) \\ t \gtrsim t \gtrsim 0, \ k = i, \ i = 0, 2, 4, \cdots, N/k - 2, \end{aligned}$$

 $ki : \mod N (=2^m)$ として計算する. また, $I_j^{(0)}$ = f_j である.

[例] *m*=3, *N*=8の場合として, (14.4) は次 のようになっている.

l=0, k=1, i=0, 2, 4, 6

$$\begin{array}{c} \stackrel{(1)}{I_{0}} = \stackrel{(0)}{I_{0}} + \left(-1\right)^{s_{0}} \stackrel{(0)}{I_{1}}; \stackrel{(0)}{I_{0}} = f_{0}, \stackrel{(0)}{I_{1}} = f_{1} \\ \stackrel{(1)}{I_{2}} = \stackrel{(0)}{I_{2}} + \left(-1\right)^{s_{0}} \stackrel{(0)}{I_{3}}; \stackrel{(0)}{I_{2}} = f_{2}, \stackrel{(0)}{I_{3}} = f_{3} \\ \stackrel{(1)}{I_{4}} = \stackrel{(0)}{I_{4}} + \left(-1\right)^{s_{0}} \stackrel{(0)}{I_{5}}; \stackrel{(0)}{I_{4}} = f_{4}, \stackrel{(0)}{I_{5}} = f_{5} \\ \stackrel{(1)}{I_{6}} = \stackrel{(0)}{I_{6}} + \left(-1\right)^{s_{0}} \stackrel{(0)}{I_{7}}; \stackrel{(0)}{I_{6}} = f_{6}, \stackrel{(0)}{I_{7}} = f_{7} \\ \end{array} \right)$$

$$\begin{array}{c} (4.18) \\ I = 1, \quad k = 2, \quad i = 0, \quad 2 \\ \stackrel{(2)}{I_{0}} = \stackrel{(1)}{I_{0}} + \left(-1\right)^{s_{1} \stackrel{(1)}{I_{2}}} \\ \stackrel{(2)}{I_{4}} = \stackrel{(1)}{I_{4}} + \left(-1\right)^{s_{1} \stackrel{(1)}{I_{6}}} \\ \end{array} \right\}$$

$$(4.19)$$

-42 -

I=2, k=4, i=0

$$I_{3} = I_{0} + (-1) I_{6}$$

$$(4.20)$$

$$I_{3} = I_{0} + (-1) I_{0}$$

これを図示すると 図 4・8 になり, s (係数順位) が 0~15 まで, 順位増加につれて,

- (i) *l*=0, *s*の1桁目(*s*₀ビット)のくり返しパ ターン.
 - 0, 1 : \boxtimes 4.8 (a)
- (ii) *l*=1, sの2桁目(s₁ ビット)のくり返しパタ
 −ン.
 - 0, 0, 1, 1 : 🖾 4•8 (b)
- (iii) *l*=2, s の3桁目(s₂ビット)のくり返しパタ
 ーン.

0, 0, 0, 0, 1, 1, 1, 1 : 図 4・8 (c) と変化する. これが高速ウォルシュ変換アルゴリ ズムで,入力データを N としたとき, N×m (= N×log N) に比例した結線コード数をもつ. こ の説明の図では,右端から入力して左端で出力と なっているが,逆に左端を入力に右端を出力とし ても同じであることがわかっている.

さて、2次元ウォルシュ変換については、図 4• 8 の多数の1次元変換回路を基にして、これを短 冊状に並べ、さらに、これらに直交するように並 べた、もう一群の短冊状回路を結合させると、図 4•9 のような空間回路網になる.

(I) 格子状集積回路によるウォルシュ 変換装置^{[39][43]}

2次元ウォルシュ変換を次のように定義する.

$$F_{st} = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{ij}(-1)^{i \cdot s \oplus j \cdot t}$$
(4.21)

ただし, $N=2^{m}$, $m=0,1,2,3,\cdots$

入力データ: f_{ij} ,出力データ: F_{st} ,s,t,i, $j \in D_m$ ウォルシュ関数について、 $(-1)^a = 1 - 2a$ を上式 に適用すると、

$$F_{st} = F_0 + (-2) \sum_{i,j=0}^{N-1} f_{ij}(i \cdot s \oplus j \cdot t) \qquad (4.22)$$

ただし,
$$F_0 = \sum_{i,j=0}^{N-1} f_{ij}$$
で入力の直流成分.

 $f_{ij} \ge 0$, {(I)の場合は負でも可であった} となる. (4.22)が装置化のための基本式となって いる. さて, この式の(•)について,

$$i \cdot s \oplus j \cdot t \in \{0, 1\} \tag{4.23}$$

図 4・8 アナログ1次元ウォルシュ変換回路網. ……… は入力信号を反転させて次段に送る結線. ○: 端子. *i*,*s* の2進表示をそれぞれ, *i*₂*i*₁*i*₀, *s*₂*s*₁*s*₀ とする.

変換回路網となっている.

図 4・9 アナログ2次元(8×8) ウォルシュ変換回路網. $f_{ij} \rightarrow F_{st}$, i, j, s, t $\in D_3$ とする.

表 4・2 i・s@j・t の計算. i, j, s, t ∈ {0, 1, 2, 3}. i, j, s, t, の2進表示をそれぞれ, iii0, jij0, s1s0, t1t0 とする. 値が1(下線を引いた箇所)のとき, 図 4・10 の黒丸の交点に対応する. ただし, 最左端の欄については逆転している.

	<i>t</i> _0	<i>i</i> ,	.0), 1), 2), 3	l. 0	l, 1	l, 2	l, 3	°, 0	2, 1	2, 2	s, 3	°,	3, I	3, 2	
•	t_1		Ť	-	-	-							_		_		_	
S	s 1 S 0	i0. j1j	00, 00	00, 01	00, 10	00, 11	01, 00	11, 01	01, 10	01, 11	10, 00	10, 01	10, 10	10, 11	11, 00	11, 01	11, 10	11, 11
			- 8	징	<u> </u>) 	 &		~	- 	~	175	8	찌	8	THE REAL	8	10
3, 3	11,11		Đ0⊕0⊕(Đ0⊕0⊕	<u>⊕0⊕1</u>	€1⊕0⊕0	0⊕1⊕0	0⊕1⊕0	0⊕1⊕1€	0⊕1⊕1€	1⊕0⊕0€	1⊕0⊕0€	1⊕0⊕1€	1 <u>⊕0⊕1</u> (1⊕1⊕0€	1⊕1⊕0€	I⊕I⊕I	I⊕I⊕I
5	10		0⊕0	0 ⊕0⊕0	01⊕0	₿I⊕0	000	0⊕0⊕	⊕1⊕0 C	€1⊕0	E0⊕0∃	0⊕0⊕	⊕I⊕0	⊕1⊕0]	0⊕0⊕	0⊕0€	€1⊕0	<u>⊕1⊕</u> 0
ຕັ	Η,		ě	Ŭ⊕0	Ð	0⊕0	0⊕1	0⊕1€	0⊕1(0⊕1(100	Ē	100	1⊕0€	1⊕I(101	1⊕1	<u>1⊕1(</u>
3, 1	11,01		0⊕0⊕0⊕0	1⊕0⊕0⊕0	0⊕0⊕0⊕0	<u>0⊕0⊕0</u>	0⊕1⊕0⊕0	0⊕1⊕0⊕1	0⊕1⊕0⊕0	1⊕0⊕1⊕0	1⊕0⊕0⊕0	1⊕0⊕0⊕1	1⊕0⊕0⊕(1⊕0⊕0⊕1	1⊕1⊕0⊕0	1⊕1⊕0⊕1	1⊕1⊕0⊕(<u>1⊕1⊕0⊕1</u>
3, 0	11,00		0⊕0⊕0	0⊕0⊕0€	0⊕0⊕0€	0⊕0⊕0¢)1⊕0⊕ <u>0</u>	0⊕0⊕0)1⊕0⊕0	0⊕0⊕1€	0⊕0⊕0€	0⊕0⊕0€	0⊕0⊕0€	<u>0⊕0⊕0</u> €	0⊕0⊕0	0⊕0⊕0	0⊕0⊕1	0⊕0⊕0
			₩ E	€ €	₩ A	Ð1 0€	Đ0 0 0	ÐI ÐI	1 B I B) E	Ð0 16	1 1 1 1	l⊞I ⊛	Ð	Ð0 16	⊕I ⊕I	Đ0 1	ÐI IÐ
2, 3	10, 11)⊕0⊕0	0⊕0⊕0	0⊕0⊕1(0⊕0⊕1(0⊕0⊕0	0⊕0⊕0	0⊕0⊕1(0⊕0⊕1(1⊕0⊕0	1⊕0⊕0	1⊕0⊕1	<u>1⊕0⊕1</u> (1⊕0⊕0	1⊕0⊕0(1⊕0⊕1	<u>1⊕0⊕1</u> (
. 2	.10		Û⊕ÛÆ	0⊕0Œ	Ð1⊕0	⊕1⊕0	0⊕0€	0⊕0€	€I⊕0	Ð1⊕0	0⊕0⊕	0⊕0⊕	⊕1⊕0	⊕I⊕0	0⊕0Œ	0⊕0⊕	⊕1⊕0	⊕1⊕0
2	10		ð⊕ 0	0⊕0	0⊕0 (<u>0</u> ⊕0	0⊕0	Ĵ⊕ I	9	Ð	0 1⊕0	₫ 	Ē	Î⊕0	0⊕I 0	₫ -	1 1 1 1	0⊕ I
2, 1	10,01		0⊕0⊕0⊕0	0⊕0⊕0 0	0⊕0⊕0⊕0	I⊕0⊕0⊕1)⊕0⊕0⊕0	i⊕0⊕0⊕1)⊕0⊕0⊕0	I⊕0⊕0⊕0	1⊕0⊕0⊕(1⊕0⊕0⊕1	1⊕0⊕0⊕(1⊕0⊕0⊕1	1⊕0⊕0⊕(1⊕0⊕0⊕1	1⊕0⊕0⊕(1⊕0⊕0⊕1
2, 0	10,00		0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	$1 \oplus 0 \oplus 0 \oplus 0$	1⊕0⊕0⊕0	1⊕0⊕0⊕0	1⊕0⊕0⊕0	1⊕0⊕0⊕0	1⊕0⊕0⊕0	1⊕0⊕0⊕0	<u>1⊕0⊕0⊕0</u>
1, 3	01, 11		0⊕0⊕0⊕0	0⊕0⊕0⊕1	0⊕0⊕1⊕0	0⊕0⊕1⊕1	0⊕1⊕0⊕0	0⊕1⊕0⊕1	0⊕1⊕1⊕0	$0 \oplus 1 \oplus 1 \oplus 1$	0⊕0⊕0⊕0	0⊕0⊕0⊕1	0⊕1⊕0	0⊕0⊕1⊕1	0⊕1⊕0⊕0	0⊕1⊕0⊕I	0⊕1⊕1⊕0	$0 \oplus 1 \oplus 1 \oplus 1$
1, 2	01,10		0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕1⊕0	0⊕0⊕1⊕0	0⊕1⊕0⊕0	0⊕1⊕0⊕0	0⊕1⊕1⊕0	0⊕1⊕1⊕0	0⊕0⊕0⊕0	0⊕0⊕0 0	0⊕0⊕1⊕0	0⊕0⊕1⊕0	0⊕1⊕0⊕0	0⊕1⊕0⊕0	0⊕1⊕1⊕0	0⊕1⊕1⊕0
1, 1	01,10		0⊕0⊕0⊕0	0⊕0⊕1	0⊕0⊕0⊕0	<u>0⊕0⊕0⊕1</u>	0⊕1⊕0⊕0	0⊕1⊕0⊕1	0⊕1⊕0⊕0	1⊕0⊕1⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕1	0⊕0⊕0⊕0	0⊕0⊕0	0⊕1⊕0⊕0	0⊕1⊕0⊕1	0⊕1⊕0⊕0	0⊕1⊕0⊕1
1, 0	01,00		0⊕10⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕1⊕0⊕0	0⊕1⊕0⊕0	0⊕1⊕0⊕0	0⊕1⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕1⊕0⊕0	0⊕1⊕0⊕0	0⊕1⊕0⊕0	$0\oplus 1\oplus 0\oplus 0$
0, 3	00, 11		0⊕0⊕0⊕0	0⊕0⊕1	0⊕0⊕1⊕0	0⊕0⊕1⊕1	0⊕0⊕0⊕0	0⊕0⊕1	0⊕1⊕0	0⊕0⊕1⊕1	0⊕0⊕0⊕0	0⊕0⊕1 1	0⊕0⊕1⊕0	0⊕0⊕1⊕1	0⊕0⊕0⊕0	0⊕0⊕0⊕1	0⊕1⊕0	0⊕0⊕1⊕1
0, 2	00, 10		0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕1⊕0	0⊕0⊕1⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕1⊕0	0⊕0⊕1⊕0	00000000	0⊕0⊕0⊕0	$0 \oplus 0 \oplus 1 \oplus 0$	0⊕0⊕1⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕1⊕0	0⊕0⊕1⊕0
0, 1	00,01		0⊕0⊕0⊕0	0⊕0⊕0⊕1	0⊕0⊕0⊕0	<u>1⊕0⊕0⊕1</u>	0⊕0⊕0⊕0	0⊕0⊕0⊕1	0⊕0⊕0⊕0	<u>0⊕0⊕1</u>	0⊕0⊕0⊕0	0⊕0⊕0⊕1	0⊕0⊕0⊕0	<u>1⊕0⊕0⊕0</u>	0①①①①	0⊕0⊕0⊕1	0⊕0⊕0⊕0	<u>0⊕0⊕0</u>
0,0	00,00	-	0⊕0⊕0⊕0	0①①①①	0⊕0⊕0⊕0	0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	0⊕0⊕0⊕0	00-00-00-00-00	0⊕0⊕0⊕0	000000000	0⊕0⊕0⊕0

ー ウォルシュ変換の性質とその応用に関する研究 ー

であるからで、この値が0のときは、信号は出力 側には伝達されないで、1のとき伝播すると考え ると、

$$\sum_{i,j=0}^{N-1} f_{ij}(i \cdot s \oplus j \cdot t)$$
(4.24)

は加算のみの回路となっている. -2 すなわち引 算については、(4・24)の演算のあとで実行する. (4.22) を図にすると図4・10となる.4×4の場 合の(4.23)を表 4-2 に示した.(4.23)の値が1 のとき, 図中の黒丸に対応している. 図 4・10 に ついて少し詳しく説明しよう.最右端の列が入力 端子群で,信号はまず,ここに入る.これらの各 々は左水平方向にのびたコードにつながっている . この中の一本に信号が入ると、コード内を信号 が伝播し垂直方向にのびた出力コード群と(黒丸 の部分で) 交差する. この交差点で出力側に信号 が伝播する.出力側からみると,各交差点(黒丸の 部分)から信号が流入(伝播)してきて加算が行わ れて素子 G に入る. この素子の利得は-2で、つ いで信号は加算回路 A に入る. 直流成分 Go から の信号が A で加えられ、最終的に(4・22)が出 力される.

次に、信号が入力コードから出力コードへ伝播 するごとに入力側のパワーが減衰する. ところが 、一本の入力コード内では交差点での出力側への 伝播量は同じでなければならない. そこで、以下 のようにして調整しておく. これにより、入力側 から出力側への信号の流入量は自動的に一定量に なる. 図 4・10 において、右から第 k 番目の黒 丸の交差点の信号の伝播率を $x_{k+1}(<1)$ とする. この点でのパワーをPとして、

第 k+1 番目の出力コードへの伝播量: P x_{k+1} (4.25)

第 k+2 番目の交差点への伝播量:P(1-x_{k+1}) (4.26)

となる. 第 *k*+2 番目の黒丸の交差点において, 上と同様の議論により,

となり, (4.25) と (4.27) とは等しくなければな らないから,

$$Px_{k+1} = P(1-x_{k+1})x_{k+2}$$

となって、これより、
 $x_k = x_0/(1-kx_0)$ (4.28)
ただし、 $\sum_{k=0}^{N/2} x_k = 1$

となる. この x_k に比例するようにコードの交差 点の伝播率を定める. このようにして, 図 4・10 のようにほとんど規則正しい格子状回路と最小限 の引算回路により,大量の入力データ処理可能な IC による装置の製作を容易にすることができる.

ところで、ここでは 2次元変換装置を一枚の平 面回路として扱っているのが特徴であるが、大量 のデータを処理するためのものであれば、やはり 大掛りとなる. たとえば、1000×1000 の 2次元 データを処理するとなると、ユード間隔を 10 μ m として、(1000×1000×10 μ =) 1 m 四方の平面 回路となって実用的ではない. そこで、(I)の 図 4・9 で示したように、まず、1次元変換回路綱つ くってから空間回路を組みたてれば小型化するを ことができる.

図 4・10 格子状集積回路による 4×4 の 2次元ウォル シュ変換装置. G は利得-2の光電変換素子. G₀ は +1 の素子. A は加算素子. $f_{ij} \rightarrow F_{sl}$. 格子状回路の中の黒 丸は,入力コードから出力コードへ信号が伝播する箇所 である.

第5章 結 論

「ウォルシュ関数」や「ウォルシュ変換」の研 究手法である数学の導入を,基本として以下の四 つのことがらに依っている.

- (a) ガロア体 GF(2), mod 2
- (b) x^m を法とする多項式の剰余類環の導入
- (c) 10進表示と行列・ベクトル表現への採用
- (d) コールマン形(-1の巾乗)のウォルシュ関数の採用

すなわち、2進環 Dm による数学体系とコールマ ン形ウォルシュ関数の採用により、ウォルシュ変 換の理論展開が見通しのよいものとなり、今後の 発展への有力な手段となる.ただ、Dm は環(す なわち割算ができない)であって、「体」でないの が残念である.(b)の法として、既約多項式を選ぶ と体になり得るが、果してこれが情報工学的な立 場から意味があるかどうかわからない.主として 以下の結果が得られた.

(i)ウォルシュ関数やウォルシュ変換を扱うのに 必要な数学構造を導いた.これにより自然な形で 「積」を導入することができて、ウォルシュ関数や ウォルシュ変換において掛算を行うことができる ようになった.

(ii)コールマン形のウォルシュ関数,および,ウ ォルシュ変換を導入した.これは変数が陽の形に なっているので曖昧さがなく,かつ,見通しよく 式を展開できるようになった.

以上の基本構造を定めたあと,フーリエ変換で 得られている諸性質がウォルシュ変換ではどのよ うな形で表現できるかを一つの目標として,主と して次の結果を得た.

(副標本化定理については,帯域幅と標本間隔と の関数はフーリエ変換と同一であることは確認し たが,重要なことは,帯域制限を行う前と後の入 力面における変化が,「平均効果」として予想でき ることがわかった.

(iv)ウォルシュ関数の不定和分の公式は,変数が

陽の形で現れていることで、今後の「ウォルシュ 積分」の出発点になるだろう.

(V)2進差分を導入することにより、ウォルシュ 面でのフィルタを定めることができて、逆に入力 面の変化量を予想できるようになった.これを画 像処理に応用してみた.

(vi)ウォルシュ関数,および,ウォルシュ変換は 「装置化」が容易な性質をもっているが,これを 二種類の変換装置として提案している.一つは, 高速ウォルシュ変換アルゴリズムに基づいた空間 回路形の平面回路としての2次元ウォルシュ変換. もう一つは,格子状集積回路を用いた2次元ウォ ルシュ変換回路である.これは途中の演算をでき るだけ加算演算とし,最後の段階で引算を行って いる.以上の二つの方式は,現在,急速に発展し つつある IC 技術によって非常に小型化できる可 能性をもっている.

以上ここで得られた結果のなかには、フーリエ 変換で得られているものと形式的に似たものがあ るのは興味深い.というのは、本研究では対象と している目的・手法をフーリエ変換のそれとでき るだけ似たものにしようと努めているにもかかわ らず、数学構造が基本的に異なるので、今後、見 出されるであろう諸々の結果はウォルシュ関数あ るいはウォルシュ変換独自の形式あるいは形態に なることが予想されるからである.

今までのウォルシュ関数やウォルシュ変換を扱っている人々は、少しオーバーな表現をすると、 各人各様の方法で、それらを導いたり定義したり して論じている、共通していえることは、変数を 「陽」の形で扱っていないか、あるいは、その形 (たとえば、一1の巾乗)であっても、単にウォ ルシュ関数の一表現にしか使わないで、発展させ ていない、本研究で得られた諸結果は、それらの 方法では見つけ難く、証明するのにも 囲 難 であ る、よく行われているのは、単に、フーリエ変換 一結

からの類推による「結論の目標設定」とか「証明 手順の借用」である.従来の方法に従えば,フー リエ変換によるものと「同じである」あるいは「 異なっている」というもので,どのように異なっ ているかについては無力で,数式を自由に展開で きないから緻密な議論ができなかった.ここで導 入した方法は,簡単な表現で,しかも,変数が陽 に現われているので,潜在的発展性を秘めている といえよう.すこし煩わしいのは,交番数が陽に 出ていないため,係数順位から交番数に変換しな ければならないことである.線形の変換行列であ るから数式的に扱うのには問題ないが,「表・図 式」に表す場合,交番数順に並びかえるのがすこ し面倒である.

いずれにしても、一時期,流行した感があるに もかかわらず,理論的にはめざましい成果を得た とはいい難い.一つの原因は「表現形式」が整っ ていなかったのが大きな原因である.当研究の手 法は、「曖昧さ」を避けるために定義域での変数は ディスクリートなものとしたが、今後,数学的に は差分から微分へ,和分から積分へと発展させな ければならないし,工学的にはフーリエ変換、ラ プラス変換と同等の各種の公式を求めなければな らない.応用としては、当然,通信理論・(画像) 情報処理・パターン認識等へ適用し、さらにはオ 論一

ンライン使用を目指した実用的な回路実現へと発 展させねばならない.本研究はこれらの「出発点 」あるいは「糸口」になるものと考えている.

謝 辞

本研究を行うにあたり,終始,親切なる御指導 と激励を賜った大阪大学田中幸吉教授ならびに 本論文に有益な教示や助言をいただいた大阪大学 高島堅助教授,藤沢俊男教授,嵩忠雄教授,都 倉信樹教授にたいし深く感謝を申しあげます.

また,この研究に多くの貴重な助言や示唆を賜 った 足利工業大学 喜安善市教授ならびに 松下技 研専務取締役 研野和人氏,千葉工業大学 常包辛 吾教授に深く感謝を申しあげます.

さらに日頃,貴重な助言や指導をいただいてい る大阪大学 田村進一助教授,貴重な 文献資料を いただいた田中 稔氏ならびに国際電信電話研究 所 芝田好章氏に厚くお礼申しあげます.

また当初から支援をいただいた機械技術研究所 金井実徳所長,木村 誠次長,システム部清水嘉 重郎部長,光学情報課河野嗣男課長ならびに日頃 ,貴重な助言や協力をいただいた同研究所元職員 渡辺 譲氏,同研究所システム部中村達也氏,数 理工学課,バイオメカニクス課,光学情報課の方 々に厚くお礼を申しあげます.

参考文献

- [1] "Applications of Walsh functions", Symposium Proc. (1970), (1971), (1972), (1973).
- [2] 田中幸吉:"空間フィルタリングによるパタ - ン認識", 画像技術 6, pp. 42-50 (1972).
- [3] 喜安善市: "Hadamard 行列とその応用",p.93, 電子通信学会(昭54).
- [4] H. A. Helm : "Group codes and Walsh functions", in "Application of Walsh functions", Proceedings, pp. 78-83 (1971).
- [5] R. P. Coleman : "Orthogonal functions for the logical design of switching circuits", IRE Trans. Electronic. Comput. pp. 379-383(Sept. 1961).
- [6] H. F. Harmuth : "Sequency theory -foundations and applications", Academic Press, New York, p. 32(1977).
- [7] F. Pichler : "Das system der sal-und cal-functionen und Fourier transformation", ph.D. thesis, Innsbruck University, Austria(1967).
- [8] H. F. Harmuth: "A generalized concept of frequency and some application", IEEE Trans. IT-14, 3, p.375 -382 (1968).
- [9] J. A. Decker, Jr., : "Hadamard transform image scanning", Applied Optics, Vol. 9, pp.1392-1395, No. 6, June, 1970.
- [10] W. K. Pratt, J. Kane and H.C. Andrews : "Hadamard transform image coding", Proc. IEEE, 57, 1, pp.58-68 (1969).
- [11] 情報処理学会編:"情報処理ハンドブック"3, p.14—16, オーム社.
- [12] T. Tamir and H. Kogelnik : "Integrated Optics", Berlin, Springer-Verla gp. 73 and p. 120(1979).
- [13] 宮川洋, 岩垂好裕, 今井秀樹:"符号理論",p.90. 昭晃堂(昭48).
- [14] 河村匡彦,田中末雄:"拡張ウォルシュ関数

による交番数解析における標本化定理の証明",電子通信学会論文誌(D),J61-D, 9, pp. 621-626 (昭53-9).

- [15] F.O'Gorman : "Edge detection using Walsh function", Artificial Intelligence, 10, pp.215-223 (1978).
- [16] 文献 [3] の p.160-162.
- [17] J. L. Shanks: "Computation of the fast Walsh-Fourier transform", IEEE Trans. Comput., 18-5, p.457 (May, 1969).
- [18] J. E. Gibbs : "Discrete complex Walsh function", Proc. of Application of Walsh functions, pp. 107 (1970).
- [19] 文献 [6] の p.34.
- [20] 文献 [6]の p.21.
- [21] 文献[3]の p.45.
- [22] 文献[3]の p.82.
- [23] 田中(稔),小沢,田中(幸):"文字識別の ための変形ウォルシュパワースペクトル", 電子通信学会論文誌(D),J56-D,7, p. 441-443(昭48-07).
- [24] 文献 [6] の p.60-61.
- [25] 田中幸吉 : "情報工学" p.124, 朝倉書店 (昭44).
- [26] 文献 [13] の p.90.
- [27] 田中(稔),小沢,田中(幸): "変形ウォル シュスペクトルとその文字識別への応用", 電子通信学会論文誌(D), J 58-D, 3, pp.135-142 (昭50-03).
- [28] 田中(幸),田中(稔):特許"文字識別方法 及び装置",特許第1089962 特許公報 (昭56-31633).
- [29] K. Tanaka and K. Ozawa: "A new type of feature extraction of patterns using coherent optical systems",Pattern Recognition, Pergammon Press, Vol. 4, pp.251-262 (1972).
- [30] S. Tamura and K. Tanaka : "Integral transform and Fourier transform by fiber optics network", Applied Optics, 11, 1, pp.199-200 (1972).
- [31] 福井郁生:"ガロア体 GF(2)による Walsh

変換の性質",電子通信学会論文誌(D), J 59-D, 7, pp. 496-503 (昭51-07).

- [32] 福井郁生: "擬似極形式による Walsh 変換",電子通信学会論文誌(D),J59-D, 10, pp.743-744(昭51-10).
- [33] 福井郁生: "Dyadic 相似変換の Walsh 面 での影響", 電子通信学会論文誌 (D), J 60-D, 4, pp.314-316 (昭52-04).
- [34] 福井郁生: "ウォルシュ変換における
 Dyadic 差分フィルタ",電子通信学会論文
 誌(D), J60-D, 7, pp.555-556 (昭52 -07).
- [35] 福井郁生: "二次元フーリエおよびアダマ ール変換装置",電子通信学会論文誌(D), J 55-D, 3, pp.226-227(昭47-03).
- [36] 福井郁生: "ウォルシュ変換のサンプリン グに関する性質",電子通信学会論文誌
 (D), J60-D, 11, pp.1011-1013 (昭52 -11).
- [37] I. Fukui: "Difference and indefinite sum of Walsh function", IEEE on Pattern analysis and machine intelligence (投稿中).
- [38] I. Fukui: "Analysis and application of dyadic difference in the Walsh Transform", IEEE on Pattern analysis and machine intelligence(按稿中).
- [39] I. Fukui : "Two-dimensional Walsh transform device using an integrated optical circuit", IEEE circuit and systems, 29, May, pp.336-339(1982).
- [40] I. Fukui: "TV image processing to determine the position of a robot

vehicle", Pattern Recognition, Vol. 14, Nos. 1-6, pp.101-109 (1981).

- [41] 福井郁生: "見込み角測定による位置決め とその応用",電子通信学会論文誌(D), J65-D,4, pp. 427-434 (昭57-04).
- [42] 特許出願:"ウォルシュ変換装置",出願番 号 161308,昭和56年10月(出願中).
- [43] I. Fukui : "Two-dimesional Walsh transform device using an integrated optical circuit", Trans. IECE Japan, E 56, 1, pp.61-62 (Jan. 1982).
- [44] 福井郁生: "ウォルシュ変換におけるポア ソンの和,標本化定理,入出信号の関係", 電子通信学会論文誌(D)(印刷中).
- [45] 小沢,田中(幸):" Ø 空間フィルタ法によ る文字図形の特徴抽出",電子通信学会論文 誌(C), J 54−C, 2, pp.109−115 (昭46−02).
- [46] 福井, 清水: "二次元フーリエおよびアダ マール変換装置", 機械試験所所報, vol. 25, 2 (1971).
- [47] 文献 [6]の p.155—157.
- [48] A. Papoulis : "System and transform with application in Optics". McGraw-Hill, p.65 (1968).
- [49] 文献 [48] の p.117—119.
- [50] H. F. Harmuth : "Transmision of information by orthogonal functions", second edition, Springer-Verlag, p. 130 (1972).
- [51] "Applications of Walsh functions and sequency theory", in Symposium 197 4, Proc. 表紙のデザイン(1974).