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One-Dimensional Many Boson System. 1

——Fxact Solution in Field Theoretical Form——

Shosuke SASAKI and Takeji KEBUKAWA

Department of Phvsics, College of Gencral Education
Osaka University, Toyonaka 560

(Received October 21, 1980)

The eigenvalue problem in a one-dimensional many boson system with a repulsive delta-
function potential has been solved exactly from the standpoint of field theory. All eigenstates
are expressed in a simple and compact form by introducing appropriate quantum numbers for
their specification. The energv eigenvalue and eigenstate are determined by solutions of
simultaneous equations. It is verified that the simultaneous equations have unique solutions.

§1. Introduction

Several microscopic theories! ™% for an interacting many boson system have
recently succeeded in deriving the definite form of the interactions among ele-
mentary excitations and the observed elementary excitation spectrum of He-11.%
These developments encourage us to intend to make clear, for example, the
unknown mechanism of the A-transition from a microscopic point of view. For
this achievement it is necessary to clarify at least qualitatively the whole struc-
ture of energy levels involving not only the low-lying excitation but also the
multiple excitation, since the level structure of the multiple excitation is indi-
spensable for understanding the mechanism of the A-transition. The whole
structure, unfortunately, has not been clarified on account of the fact that the
interactions among elementary excitations are obliged to be treated by the pertur-
bation method. Here is an interesting model, proposed by Girardeau,” Lieb and
Liniger,” in the following sense: Their model has a merit that the eigenvalue
problem can be solved exactly, and the solvability suggests that it is possible to
make clear the whole structure of energy levels. As being one-dimensional,
however, this model is oversimplified concerning dimensionality. Nevertheless it
can be expected that clarification of whole structure of energy levels in their
model may give a clue for the analysis of whole structure in a three-dimensional
many boson system. This expectation leads us to the further investigation of the
above model in the present and forthcoming papers.® 19

The Lieb and Liniger model 1s a one-dimensional svstem of many bosons
Interacting via a repulsive delta-function potential with strength ¢ which involves
the Girardeau model as the case ¢~ 0. They have shown that the exact eigen-
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function and eigen-energy are determined by the solutions of simultaneous equa-
tions, and have precisely investigated the behavior of ground state energy as a
function of ¢g. In their work, however, there are some remaining problems: (i)
How are determined concretely the solutions of their simultaneous equations?
(ii) Does the state called the ground state by them have certainly a minimum
energy? (iii} Do all of their eigen-functions form a complete orthonormal set?
(iv) How is it possible to investigate systematically the whole structure of energy
levels? Particularly, it is a serious obstacle to solving the above third problem
that their eigen-functions are composed of tremendously many terms, namely,
(#n1)? terms (#n indicates the total number of particles).

In this paper, the eigenvalue problem for the Hamiltonian (see (2-1)) in Lieb
and Liniger's model” is solved exactly from the standpoint of the field theory (this
standpoint is different from the one of the first guantization formalism in the
works of Girardeau, Lieb and Liniger). Consequently, every eigenstate is expres-
sed in a simple and compact form by introducing appropriate quantum numbers for
its specification. This dissolves the obstacle mentioned above, and we can give
the answers about the above remaining problems.

In § 2, the eigenvalue problem is solved exactly, and it is shown that the
eigenstates and energy eigenvalues are determined by the solutions of simulta-
neous transcendental equations. Section 3 is devoted to the solution of the
problem (i), namely, we will give the successive method to obtain approximate
solutions of simultaneous equations that approach closely the exact solutions as
much as one wishes. In a subsequent paper,” other problems (ii) and (iii) will be
discussed on the basis of the results obtained in the present paper.

The following further development will be given in forthcoming papers.
We can construct explicitly such a unitary transformation U that transforms the
free states to the exact eigenstates in the interacting system. On the basis of
the unitary transformation I/, new operators A, and A, are introduced, and it
is shown that these indicate the creation and annihilation operators of new bose
particles dressed exactly with interaction cloud. When being expressed in terms
of the new operators, the ground state | &> proves to be the condensed state of all
exactly dressed particles with zero momentum. This gives a remarkable result
(Gl AT Aol GY/n=11n contrast to the result <G|ao™wo| G>/n =0 obtained by Lenard
et al.*?? i{n the case of infinitely large g. We can investigate the whole structure
of the energy levels in terms of the number distribution of the exactly dressed
particles, especially the excitation energy ¢, which is defined as the energy in-
crease of the system when the momentum of an exactly dressed particle is
changed from zero to p in the sea composed of the other many dressed particles
with the number distribution {#.}. Then, we have such a remarkable result that
the excitation energy €, does depend upon the number distribution {#4}, especially
strongly upon the number no of exactly dressed particles with zero momentum.
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In other words the excitation energy &p does “lose the phonon character
drastically” when the ratio no/n (# indicates the total number of particles) tends
to zero. On the basis of the properties of the exactly dressed particles we will
discuss some characteristic properties in Liquid He-II in forthcoming papers.'”
Such a fact should be noted here that the unitary transformation U cannot be
expanded in a power series of the coupling constant g, although it approaches the
identical transformation in the limit ¢—0. This means that we cannot reach
the above results by the perturbation method.

§ 2. Eigenvalue problem
We consider a system of many bosons of mass m interacting via a repulsive

delta-function potential with a positive strength ¢ in a one-dimensional region of
length L. This system is described by the Hamiltonian

pz
m

H=2%7

a;;*a;ﬁ-p%}r “g%d?+r(lzfraqdp , (2°1)

where a»® and a» indicate creation and annihilation operators of a bose particle
with momentum p=2xhi/L{![; integer), and are subjected to usual commutation
relations

[as, as*1=8pa, lav, asl=0, lav*, as*]1=0.

2a. Two-boson system

In order to obtain the clue for searching the exact eigenstates of many boson
system, we will investigate a system of interacting two bosons. The eigenstate
for the two-boson system is expressed by the following form:

| ¥o>=3 c{—p, p+ Q)a*»a}0l0>, (2-2)
where [0> indicates the vacuum state, that is, ap|0> =0 for all p, and @ denotes the

total momentum of the system. The expansion coefficient c(—p, p+ Q) is
assumed to have the symmetric property

c(—=p,ptQ)=c(p+Q, —p), (2-3)
due to bose nature of the system. The eigen-energy E and the coefficient ¢(— p,

p+ Q) are determined by the equation (H — E )| ¥¢>=0, and one has

{E*ﬁ(ﬁszwL Q>2>}c(—p, PTQ=7 S c(~q,q+Q), (2-4)

q
by making use of (2-3). From this equation, one gets

c(—p, p+ Q) =a(Q/{E—(p*+(p+ Q) 2m}, (2-5)
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where a( Q) indicates a normalization constant. Then the equation to determine
the eigenenergy E is given hy

g 1 ~
LE E—(Fra+QD2m

1. (2-6)

By expressing the momenta ¢ and Q as 2xhj/L and 2xhM/L (j, M ;integer),
respectively, Eq.(2-6) is rewritten as

+§ 1 _L 1 /27m>2
e (L2702 4mE —M*)—(2;+M)?* g 4m\ L ) -

(2-7)

Since the right-hand side of (2-7) is always positive for the positive coupling
constant g, the quantity {(L/2z%)*4mE — M*} must be positive to ensure the
existence of solutions of Eq. (2-7), and hence can be denoted by &2,

E*=(L/27h)*4mE— M?* . (£x0) (2-8)

The summation over 7 on the left-hand side of (2-7) gives

cot{zé/ 2)=2nxh*E/ mgL for even integer M (2-9a)
and

cot(m(E+1)/2)=2nh*E/ mgl for odd integer M , (2-9b)
where we have made use of the formula

*2“’ 1 :lc0t< ﬂ'x> te 1 :icot( 7r(x+1))
e 12— (27 2x 2 ) e 2P (2741} 2x 2 .
Equations (2-9a, b) can be solved by the graphical method. As readily seen from
the intersecting points in Fig. 1, the eigenvalues of & are given by two sequences:

The one denotes positive eigenvalues of £, and the other negative ones.

P
Bl e
= = S 2nh g
' 3 19 I A
| | |
\ \‘ {/ Fig. 1. The solutions of Egs. (2-9a, b) by the graphi-
\\\ \\ { i\\ cal method. The schematic behaviors of the
\ UANAS functions cot(7&/ 2) and cot(z(£+)/2) are drawn
~ PANE] \\ E
N2\ -1 4 Co]“?:.zz’l:za \\z. by the dotted and solid curved lines, respectively.
\ \‘ \ The straight line indicates 2x%2&/mgl. The
\| ‘l \I solutions of Eqs. (2-9a, b) are determined from
! ! the intersecting points between the straight line
and the curved lines, where the point £=0 is
excluded due to £2>0.
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2nAE+3)mgl

cot (B-2)

27558 2)/mgl.

2r#%T)/mgl

2nh%/mgl Fig. 2. The graphical solutions of Eq. (2-11). The
behaviors of the function 2xh*(/+&.)/mgLl are

drawn by the straight lines. The curved line
indicates cot(x{/2). The intersecting points

!

|

Il
o Loy Lo between the curved line and the straight ones
determine the solutions (. &, &,*) of Eq.

(2-11).

Both sequences give the same result for the energy eigenvalues from (2-8) and for
eigenstates from (2-2) and (2-5). In the following, therefore, we adopt the
sequence of positive eigenvalues of £ for avoiding the double specification of the
energy eigenvalues and eigenstates. Then the eigenvalues of & are given by

E=1+E, 0<é=1 (2-10a)
and
(=27, (7=0,1,2-) for even integer M ,
[=27+1,(;=0,1,2) for odd integer M |, (2-10b)

where the quantity ¢; indicates the deviation of the eigenvalue &; from an integer
[(20), and takes unity in the case of infinitely large ¢g. For a given integer /(=0)
the deviation &; is determined as a root of the equation

cot{x&/2)=2xh*([+ &)/ mgL , (2-11)

in the region 0< & =1. The graphical solution of (2-11) is shown in Fig. 2. As
readily seen from Fig. 2, for a given integer [(=0) Eq. (2:11) has a unique solution
within 0< & =1. From (2-8), the energy eigenvalues are given by

Evo=(ah/L{(M—1— &Y +(M+1+8)% 2m, ([=0,1,2,) (2-12)

and the eigenstates are expressed as

W

- , a(Q) B o .

= e (R L = T— G P e (M I+ T =(p+ Q] & »ab+al®,
(1=0.1.2, ) (2-13)

from (2-2), (2-5) and (2-12). In this way the eigenvalue problem for a two-boson
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system has been solved.

At first sight it seems impossibleto extend the form of the eigenstate (2-13)
in a two-boson system to the case of an n-boson system. As will be seen later,
however, this difficulty can be overcome by rearranging the expression (2-13) to
a simple form with the help of introduction of new quantum numbers. This 1s due
to the fact that an appropriate choice of the variables is essential for the
treatment of many body system. Noting that the quantities (M=*1)/2 are in-
tegers from (2-10a, b), let us introduce

g =27h(M—1)/2L and qz=27xh(M+1)/ 2L, (2-14a)

as new quantum numbers instead of / and @ =27hM/L. These new quantum
numbers ¢ and ¢ are subjected to

h= Q2 (2-14b)
due to I=0. Furthermore, instead of ., we define the guantity 42

klzz“ﬂ'hgl/l,. (2‘15)

If one makes use of the new variables g1, gz and 412, Eq. {2-11) can be rewritten
as

COt(Lklz/2h):h(2k12+611_02)/mg (2168)
within the region
—(xh/L)=Z k<0 . (2-16b)
Then the energy eigenvalue (2-12) is expressed in terms of the root iz of (2-16a)
as .

Eaqva, =1/ 2m){( kit @) +(— Faz+ g2)*} (2-17)

for given quantum numbers ¢ and ¢.. On the other hand, the eigenstate (2-13)
is rearranged as follows:

2ma( Q)
+q )+ =kt @) (pTtataq)—p

_ 2ma(Q) .
%’ (k12+41)2+(‘k1z+(12)2"(l)+(11)2*(*AD+QZ)2 [lp+q1(l—P+q2|0>

‘ w‘hﬂz>:§ (klz

* *
2 (lp+q1+qzﬁl—pm>

_ ma(Q) 5 %
; _(p_k12)(ﬁ+k12+611*Q2) (lp+<11(1~p+q2]0>
_ —ma(Q) [ 1 1
P (2k12+£]1*(12)1l)—k12 prhta—q

}a;+q,(1*p+qz’0>
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:Bql.qzEﬁai,ﬁqla%qulm, (2+18)
where 84,4, Indicates a new normalization constant, and we have replaced the
variable p of the second term in the curly bracket of the fifth expression hy
—p—aq+q:. Thus the eigenstate (2-13) has been rewritten in such a simple
form as (2-18).

The coefficient in (2:13) has the symmetric property for exchange of the
momenta —p and p+ Q. On the other hand, the coefficient d(pi2; kiz) =(— bi2)
/ (p12—Fkiz) in (2+18) has no such a symmetric property (although this sacrifice is
recovered by taking the sum over pi2 and by using bose nature of the operators in
(2-18)). In compensation for the sacrifice of the symmetricity of the coefficient
d(piz; ki2), we have been able to obtain the simple expression (2-18) of the
eigenstate. In the rearranged state (2-18), the new quantum numbers ¢ and g
mean the momenta attached to two bosons, respectively, and the momentum pi:
denotes a transferred momentum between them. This significance of the new
variables and the simple form of the expansion coefficient d(pi2; £i2) In a two-
boson system give the clue for searching the exact eigenstates of many boson
system.

2b.. wm-boson system

By the aid of the clue mentioned above, we assume that the eigenstate for
n-boson system is given by the following form,

I Yararman> = Baragan w0 12‘ =n) 1 H d(l)i,j; ki,j),Hl d*ép,-,j+qi'0>, (2-19)
iilsi<jsn si<jsn = i=1
J*i

where the factors d(p.;; k:.;) are defined as
d(pig; kis)=(— ki) (pis— ki), (2-20)

and Bay.a,--a, indicates the normalization constant. The » momenta g: = (integer)
xX2xh/L (i=1,2, -+, n) indicate the quantum numbers corresponding to the
momenta ¢: and ¢z in (2-18). Similarly p.,= (integer) X 2zh/L and k:;(1=i<j<n)
have been introduced as the generalized ones from pi» and Az in (2-18), where
k. (1=7<j=mn) are the quantities to be determined by the eigen-equation for the
state (2-19). For convenience of notations, — p.; and —%:; (1=7/<;=<#x) have
been expressed as ps.: and k;,; in the suffixes of the creation operators in (2-19),
respectively,

Dii ™ — big, k= —kiy . (1£7<j=n)

In order to show that the state (2-19) is really the exact eigenstate of (2-1), we
operate the Hamiltonian (2-1) to the state (2-19), and have
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H| V400900 = Bavasan o015 <sam {21 ﬁ(ha pa,ﬂ+qa)21§iI<Ij§nd(Z)i,j; ki)
+1sa§sn % Z d(r; kas) e IJS d(pis; k”)}]':lx {7 ,+q,»|0>,
- B (AJ a_ - il
(2-21)

where the symbol (7, j)*(a,B) indicates that the factor d(pas; #as) should be

excluded. For brevity let us here introduce the following variables defined by
=2 piitai; ki=2 kista:. (i=1,2,, n) (2-22)

o J5i
Then the first term in the curly bracket of (2-21) is rewritten as

SN past el 2m= 2 (e~ ke’ + ka')/ 2m

:2 2/2m+ Z(Da+ka)2<paﬁ ka.ﬁ)/Zm
:Zf] 2/2m+ 2 (pa.ﬁ‘ka,ﬁ)(pa‘pﬂ"’ka*k;?)/zm-
(2-23)

Substitution of this final form in (2-21) gives

(H_él kaz/ZWZ)' wa,qZ,---,qn>
> [(—kas/ 2mN(pa— Ds)

:601 d2,9n
e P lSi<jsn}lza<pf=n

(myg/h)cot(Lkas/ 2h)}

+(ka—ks)—
X I d(pes; k)11 a%pe,4a 00, (2-24)
(FHEah -t
where we have made use of the formula
+ o0 1 B .
l:,wlfﬁ—”COt(ﬂx)' (2-25)
This can be seen in the
— Pas— qat ga

The first term in the curly bracket of (2-24) vanishes

following way. Replacement of the summation variables pas by [

b Zj¢a,ﬂ(pa,j — Da.g )] gives

(pﬂ’ipﬂ) 1= HS d(szy 11) 1:[ * Zlﬁa.j+[’a,ﬁ+q,x CZ* 2 Psi—Destds |0>
EHa i¥as iras S

P 1si<jsn}
Y+(a,B)
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- 2 '(Pa-pﬂ) H d(pi.j; ki,j)
{Piilsi<isn} l=i<j=n
(2,7)+(a.B)

1 =1

n 7 n

ES

x Hl @™ S par—popras @D puypasrda 107
= j = C—
i*a,p a8 ke

=0,

where the last equality is due to the bose nature of the operators. Then, if one
demands that the unknown 4:; are determined as the roots of the simultaneous
equations
L/\ﬁ%‘l .
cot( Lt )= )
= ot S (ki h) Vg @, (1=i<jZn) (2-26)
mg L+17,7

one can see that (2-19) becomes really the eigenstate for n-boson system and the
energy eigenvalue 1s given by

Eqvanan= 23 k¥ 2m . (2-27)

The use of all roots of the simultaneous equations (2:26) in (2-19) and (2:27)
vields redundant eigenstates and eigen-energies. Similar situation has appeared
in the case of the two-boson system and the redundant solution for (2-16a) has
been excluded by the restrictions (2:14b) and (2-16b). In analogy with these
restrictions, we adopt™ the restrictions

N=E@= =g, (2-28)
—ah/L=Ek;<0, (1£{<j=<5n) (2-29)

for eliminating the redundant eigenstates and eigenenergies in our many boson

system.
The case of infinitely large ¢ is so simple that the equations (2-26) can be
easily solved under the conditions (2-28) and (2-29), and the results are given by
nh

kis=—"7 (1=i<j=n); ki

/27[12<. ntl
L o \'" 2

z . >+qi. (i=1,2. 1) (2:30)

In the general case, however, the simultaneous equations (2+26) cannot be solved
analytically, since they are transcendental equations. In spite of this difficulty,
C. N. Yang and C. P. Yang'® have verified that the equations (2-26) have unique

*) Tn fact it can be shown that the eigenstates corresponding to the roots outside the restricted
regions (2-28) and (2-29) are necessarily involved in the eigenstates in the regions (2-28) and (2-29).
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solutions, but the procedure to obtain concretely the solutions has not been given
in their work. In the next section, therefore, we will show a successive method
by which the solutions can be obtained numerically.

§3. Successive method to solve simultaneous equations

In this section we will give a successive method to obtain approximate
solutions of Egs. (2-26) which approach closely the exact solutions as much as one
wishes. On the basis of this new method, we will prove that the equations (2-
26) have unique solutions k.; under the restrictions (2-28) and (2-29), where the
method of this verification is different from C. N. Yang and C. P. Yang’s one.
Here the term “unique solutions” means that for any set of quantum numbers (g,
gz, -+, gn) satisfying (2-28), there necessarily exists only one set of the solutions
k:; of the equations within the regions (2+29).

For convenience of later discussion, let us regard the definitions of 4&; in (2-22)

and the conditions (2-26) for k.; as the coupled equations

o 2h -x[ﬁ, o ] e i< X
Bi; 7 cot mg(kj i), (1=i<;=n) (3-1)
kizzlki,j+Qi, (Z.:LZ,"‘,%) (3'2)

to determine %; and k;.; as the functions concerning given quantum numbers ¢1, ¢,
--gn, where the region of the function cot™ (x) for x =0 has been taken as

0<cot ™M x)=xn/2, (xr=0) (3-3)

due to the restrictions (2-29). Eguations (3:1) indicate that #(7»—1)/2 unknown
ki, are determined from unknown differences (k;—4.:). From this fact it be-
comes easy to treat the coupled equations (3-1) and (3-2) if one can obtain the
closed equations for the differences (k;—k&:). This aim is accomplished by in-
troducing (»—1) parameters 4, in the following way,

Ai:ki+likiil¢z+lki+l,l_l§4 ki,z‘f'Qz’H*Qi , (3'4)
which are nonnegative from (3-1) and (2-29) as

o WZQ Lki,i*l) =
A= a co‘[<72/,7 =0. (3-5)

By noting that a difference (&;— k) can be expressed by
kj‘ki:ﬂj71+djfz+“'+ﬂi, (1§7.<].§M) (36)

the right-hand side of Egs. (3-1) can be rewritten as
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__2h v )
ki,j— T cot [ mg i ;AL] (3 7)
in terms of the parameters 4,. Substitution of (3:7) in (3-4) gives the equations
for the parameters 4,,

i—1 n

Ai = *2ki,i+1‘l§(/€z,i+1 ‘lfz,i)"’FZH(/?:'H,Z*:Ii?i,z)’lL di+1— (g

=17

_4n 4(& >L*[ —I{L A Al -1<i )]
I cot mgA 7 g cot mg(derXl,L)} cot mgXl,z

n

+% 2 [Cotil{mig(di+Xl,z‘+1)}*C0t71<7n%Xl,i+l>:l+Si ,

(i=1,2,,n—1) (3-8)
where
Xi=di+ A+ +4dia, (1S <iZn)
Xpim=dini+dize+-+4-0, (1=i+1<[Zn) (3-9)
and
si=qn—qz0. (i=1,2,-,n—1) (3-10)

The last inequality is due to (2-28). If one defines the functions Fi(4:, ds,
Y An—l) by

E(Al," s An 1) 4d:— ZZl{ cot 41< L A)

i~1

+3 [cot‘l{;?g—(di + X )} —cot-l(mlgxi,l)]

=1

+ i [Cotfl{l(di + Xz,z'+1)}*CO'Eq(iXL,iH)],
2 mg

=71+
(7=1,2,-, n—1) (3-11)
Eqgs. (3-8) are rewritten as
E(AI,AZ,"',Ai,"',An»l):Si. (z':1,2,---,n~1) (312)

Thus the coupled equations (3:1) and (3-2) are decomposed into n(n—1)/2
equations (3-7) to determine £k:; and (n—1) equations (3-12) for parameters 4,
under the restrictions (3+5) and (3-10). Hence if one can obtain the solutions 4;
of Egs. (3-12), the parameters k;,; are determined from (3-7) by making use of the
solutions 4:. As the solutions 4; give the differences (k:+1— %:), the magnitudes
of k: themselves seem at a glance to remain undetermined. However, if one
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makes use of the relation

n

EhR=Z btz a=2a (3-13)

*J
which is due to antisymmetricity of 4., all k; themselves can be determined.
As readily seen from the above argument, our purpose is to prove that the
simultaneous equations (3-12) have unique solutions under the conditions (3-5) for
given Si, Sz, ~*-S» satisfying (3-10). This will be accomplished in the following
way: First the existence of one set of the solutions 4; will be verified, and next
the uniqueness of the solutions will be established.
Let us first note that the function cot 'x is a monotonically decreasing one in
x, and the function (cot '(x +y)—cot 'y) is a monotonically increasing one in y
for x =0 and y=0. On the basis of these facts, the schematical behaviors of the
functions Fi(dy, da, -+, d:, -+, dn-y) are shown in Fig. 3. As readily seen from
this figure, the function F;(4, -+, 4:, -+, dn-1) has two characteristic properties
within the regions 4,=0:
(i) The first is that the function Fi(4., -, di, -+, dn-1) is a monotonically
increasing one of the variable 4;.
(ii)  The second is that the function Fi{(d:,---d;: -+, d»_1) is a monotonically
decreasing one for other variables A«(£+{) than 4..

Fig. 3. The schematical behaviors of the function
Fi(dy, -+, 4;, -+, dn-1) concerning the variable J;
are drawn by curved lines for fixed values 4.
=A41"Y(/%4,[=1,2, -, n—1) in the case of Step
a (a=1,2,---). The dotted lines indicate the
asymptotic ones of the function Fi(4,"“™V, -,
48N, 4;, 490, -, 483Y) in the limit 4:— oo,
The function Fi{(d, 4, -+, 4,-1) i1s a monotoni-
cally increasing function in 4; and a monotoni-
cally decreasing one in 4.(/%:). Hence the
lower bound of the function F:i(4i, 42, 45, -,

Si An-1) is given as

F(d, 4z, -, dn-v)

Zlim-- lim lim - lim F:(4, -, du-i)

Ay~ -1~ Agyy—0  Ang_j—oo

_ 4. AR 71<~@; _>> _2zh
4, A; 7 cot mgdl =4, T

and 1s denoted by the straight line. The solution
A8 of Eq.(3-16)is determined from the intersect-
ing point between the flat line and the curved
line Fi(4{* ", . Aﬂ;”, A, 455:11), e, A,
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In virtue of these characteristic properties (i) and (ii), we can show the existence
of the solutions J:(si, sz, ***, sn-1) of the simultaneous equations (3+12) within the
regions (3-5) and (3-10) by the following successive procedure.

(Step 1) Firstly let 4:(i=1,2, -, n—1) to be zero, and write them by 4,(=0).
(Step 2) Secondly write the solutions of the equations

FA(0,0,--,0, 42,0, ---,0)=s:, (1=1,2,, n—1) (3-14)
as 4.,
(Step 3) Similarly the quantities 4:%(i=1,2, -+, n—1) denote the solutions of

the equations
Fildy®, - A2 4,9 42, - AP0 =s; . (1=1,2,,n—1) (3:15)

(Step @) Generally we denote the solutions of the following equations by A8
(;=1,2,-, n—1):

Fi(ﬁjl(ail), dz(ail), e Ag‘iil), Ai(a), Agiil), . d(a 1)) S (7=1,2, -, n—1)
‘ (3-16)

Repeating the above procedure infinitely, we have the (72—1) infinite sequences
(4,9, 42, 4%, ---Hi=1,2,3,, n—1).

Now note that the solutions 4% of Egs. (3-14) are given by the intersecting
point of the curved lines Fi(0, 0,-,0,4;, 0,---,0) and the flat line of 5,20 in
Fig. 3. This intersecting points give positive values for the solutions A% due to
the property (i). Hence one gets

42>49=0. (i=1,2,, n—1) (3-17)

According to the property (ii), these inequalities yield

Fi(®, 4,2 - A3, A, A8, - A2 )< F:(0,0,--,0,4:,0,-+-,0) (3-18)
for any positive value 4;. Then, from the property (i) and (3- 18) the intersecting
point between the curved line F:(4'?, 4,7 - 4%, 4;, A8, -+, 4iP1) and the
flat line of s:=0 gives the inequality '

49> 4,9 (i=1,2,,n—1) (3-19)
Generally if one gets
440> gle2 (i=1,2,-,n—1) (3-20)

in Step (@ —1), the inequality

Fz‘(dl(ail), Ty AE"—I;I), Ai, Agill)y Ag&l”)
CEA(D P, e 48P Ay, AERD - A, (3-21)

holds for positive value 4; due to the property (ii). In the same way as in the
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derivation of (3:19), one can find
49> 4,047 (7=1,2,-, n—1) (3-22)

Thus, by mathematical induction, we can conclude that the infinite sequences
(4:2,. 42 42, ) i=1,2,--, n—1) are monotonically increasing ones. Mean-
while the infinite sequences have upper bounds given by

gz F Ry, (=12, 0= D) (3-23)

as readily seen from Fig. 3. Hence, from a well-known theorem in mathematics,
the infinite sequences converge and have definite limiting values, that is,
lim Ai(a)(81, S2, ", Sn—l):Ai(Sl, Sz, "7, Sn—1)>0 . (Z':l, 2, tee n‘l) (3'24)

a—oo

In (3-24), the positive nature of 4. is due to (3-17), namely, the limiting values
satisfy the restrictions (3-5). This means that

ki< ke <lky<r"<kn, (3-25)

hold from the definitions (3-4).

Now do the limiting values 4:(si, sz, ***, s»—1) obtained above satisfy the
simultaneous equations (3-12)? This is verified as follows. According to the
procedure to obtain 4%, Egs. (3-16) hold for any integer @¢{(=2). Note here that
the functions Fy(4., 4z, -+, 4, -+, 4,_1) are continuous ones concerning all 4; in
the regions 4:=0. Then taking the limit of @~ in Eqgs. (3-16) gives

E(Al(Sl, A Sn-l), N Ai(SI, oy Sn-l), oy An~1($1, S2, **, Sn—l)):si .
(i=1,2,-,n—1) (3-26)

Thus, the limiting values 4:(s1, sz, **, S»n—1) are certainly the solutions of the
simultaneous equations (3-12) under the restrictions (3+5) and (3-10).

Here let us consider the case in the finite Step ¢ mentioned above. From
(3-16), the 4 can be determined numerically and they are seen to be the
approximate solutions of (3-12). Moreover, when « is increased to be large, the
approximate solutions 4.'¥ approach closely the exact solutions of (3-12) as much
as one wishes (the evaluation of 4{°, however, is very tedious). In this way we
have founded the successive method to solve the simultaneous equation (2-26)

numerically.
Next let us verify the uniqueness of the solutions 4:(s1, sz, *, sn-1). If there
exist different two sets of the solutions, (Ji(s1, . snu-1), da(s1, ", Sn-1)",

ﬁnﬂ(Sl, T, Sn—l)) and (41,(81, Tty Sn—rl), Az’(Sl, Ty Sn—l), Tty A;l—l(sl, ey Sn—l))
which satisfy the simultaneous equations (3-12), the relations between magni-
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tudes of the solutions in the two sets are given either by

(Case 1) A1, 52,7, Sn-1)<di,(s1, 82, ", sn1), (G=1,2, ki ksn—1)
(3-27a)

and

Ai(s1, Sz, Sno1) 240081, S2, o, Sne1), (XN, by, Iz) (3-27b)
or by
(Case 2) Ad:(s1, sz, 7, Sn-1)24:(s1, S2,°**, sn—1). (i=1,2,-, n—1) (3-28)

In Case 1 let us consider the function Gi,ipi(h, 42, -+, dn-1) defined by
k
Gz,,zz,m,zk(ﬁl, Az, tey An—l): Z}l Ej(dl, Az, ety dz,-, Ty, An—l). (329)

According to Lemma A in the Appendix, the function Giyip-i,{d1, -, dn-1) is the
increasing function of 4.,(;=1, 2, -+, k) and the decreasing one of 4,({* /i, l», -,
lx). Using these properties of the function Gy, (dy, A2, -+, dn-1), we have the
inequality

Gz,,zz,--~‘2k(dl, Az An1)< Guyigeet Ay, o, A1y, 0 ALy, o, drey)
= Gyt (41, 0, dry),

where for brevity, the solutions 4:(s:, sz, ", Sn-1) and 4;(s1, S2, ", $n-1) are
denoted by 4. and 4, respectively. This inequality is incompatible with the fact
that G-y, 0, Ano1) and Gipipei (41, 43, -+, 4n-1) must have the same
value s:;,+ si,+--+ s, from the equations (3-12). Hence in Case 1 one can
conclude that there do not exist such two sets of the solutions. In Case 2 one has

Gl,2,---,n~1(dl, Az, tt, An—l)g Gl,z,m,n—l(dll, Az,, ety A;z—l), (330)

where Gl,z,---,n—l(dl, dz, ey An—l): ?:1 Fi(dl, ey, Az’, Tty An—l). The equality n
(3-30) holds only in the case 4:=4; for all i=1,2,---, n—1. The inequality in
(3-30) is inconsistent with the fact that both Giz..n-1(d1, 42, -+, 4rn-1) and
Graona(di, A3, -+, A5-1) take the same value si+s:+-++s,-1 from (3-12).
Thus it has been verified that there do not exist different two sets of the
solutions for the simultaneous equations (3-12). Namely, the uniqueness of the
solutions in (3-12) has been established.

In this way it has been proved that the simultaneous equations (3+12) for the
(n—1) parameters 4; under the restrictions (3:5) have unique solutions for
arbitrarily given nonnegative momenta s;. From this result we can conclude that
the simultaneous equations (2:26) under the restrictions (2:29) have unique

solutions k:; for any set of quantum numbers (¢, g2, =**, ¢») satisfying the condi-

tions (2-28), because the solutions 4, are obtained by substituting the solutions
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A:(s1, S2,**, sn—1) obtained above in Eqs. (3+7).
In closing this section let us point out the following Lemma B of which proof
is given in the Appendix.

Lemma B
Ai(SI, S2, """, Sn—1)>di(si, Sé, T, 5;1—1), (l.:l, 2, Tty 77—1) (331)
where J:(s1, 82, -, sa—1) and 4:(si, sz, -, sn—1) indicate the solutions of the

simultaneous equations (3-12) for such two sets of nonnegative momenta {s.;} and
{s7}, respectively, as

Si= S, ([=k [=1,2,,n—1)
and (3+32)
s >0, $x=0.
On the basis of Lemma B, we can readily see that
Ai(s1, sz, Sn1)>4:(0,0,--,0), (i=1,2,-,n—1) (3-33)

for (s1, sz, -, $2-1)%(0,0,---,0). This inequality means evidently that the quan-
tity 4;(s1,s2, =+, s»—1) takes the minimum value only for the case s;,=0(/=1, 2, -+,
n—1). This important fact will be used in the discussion about the ground state
energy in § 3 of a subsequent paper.
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Appendix

Lemma A: Let the function Gipipei,(dh, 2, -+, dn-1) to be given by
k
Gll,Lz,u-,lk(Aly AZ, Yy An—l)zjzj1 Flj(dly Az, st An—]), (A‘l)

where [;(7j=1,2, -+, k) take integers among 1,2,3,---, n—1, and are ordered
as h< lh<-+</[le. Then, the function G, i.(d1, A2, -+, An_1) is a monotonical-
ly increasing function of 4.,(; =1, 2, ---, #) and a monotonically decreasing one of
Aixh, by, D).

This can be proved as follows. Let any one among the variables 4,,(;=1,
2, -+, k) to be 4,,. Then, picking out the terms involving the variables 4,, in the
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function Giyip-(dr, A2, -+, An-1), we have

(g ) ot |
A, Ll:ZCOt <mgdz,- +[§ cot mg(ﬂz,-‘f‘XL,-,/)

+l:;+2CO 1{ L (AL+)&11+1)}:|
L2y o R bcot |
L jx%l ,; [COt mg(dl’+Xl"') cot mg le'I}]
i—1 n

— 4 af h
= L 2 [cot <%Xzi+1.1)
&
+ Z {Cot_l<le,-+1,l>—COt_l<le,-,1>}]
J=i+1 mg mQ
*% i [Cotﬂ(iXu,-)
I=1;+1 mg

i-1 , T
=+ . {Cotﬂ(’—‘h X/,l,—)“COt_l(*“h Xl,lj+l>}J
j=1 mg mg

&
+ ] M 1{CO 71<LX1(, RESH l> C0t71<mLZgXLJ-,1>}]

J=i+
_2h < —1(L >
T 1:‘?+1[C0t mgX”‘
-1
+ 5 {cot*(i)@.m,)—cot-l(lx,,w)" } (A-2)
7=1 mg mg J

where we have used the following facts,
4= X,
it X = Xooru
and

Az,-+ X1,L,-+1 — XJ,L,»

to derive the first equality. Noting here that
[(j,1)+ ] g Ij
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and
livn=2L+1,

we can see that all terms in the curly brackets in the final expression of (A-2) are
monotonically decreasing functions of 4;, or zero. Hence the function
Giotmtal A1, A2, An_1)is a monotonically increasing function of 4. (7=1,2,-- k).
On the other hand, the function Guiyipei(di, d2, -, dn-1) is a monotonically
decreasing one of A,(/* 1, [, -+, {x), since all functions Fi,(;=1,2,--, k) are
decreasing ones concerning the variables 4,(/=/;). Thus Lemma A has been
established.

Lemma B mentioned at the end of §3 can be verified as follows. The
solutions in the simultaneous equations (3-12) for sets of momenta, {s.} and {s:}
of which the relation is given by (3-32), are denoted by J:({s.}) and 4.({s:}),
respectively. Now let us find the solutions 4;({s:}) of (3-12) for the set of
momenta {s:} in the following method.

(Step 1) Let 4:7({s:}) to be 4:({s:}) for i=1,2, -+, n—1.
(Step /) In a general Step J(J=2), take 4,({s.}) to be the solutions of the
equations

Fo( 4V ({si)), oo, 49530 s )), 4P se}), 4830 sad), o, A2 se))) =50
(B-1)

By this method, we have the (z—1) infinite sequences (4"({s.}), 4:%({s.}), :-+).
Using a similar discussion to the one in verifying the existence of solutions of
Eqgs. (3+12), in Step 2, one gets

4:P{seH=d{si})  (i+k) (B-2a)
and
AiP({s.}) > du{52}). (B-2h)
In Step 3, the following relations hold:
42U s ) >4PUsH=d:i({si))  (ixk) (B-3a)
and
({5} = AP s ) > dul{ 51}), (B-3b)

where (B-3a) is due to the inequality (B-2b) and the property (ii) of the function
Fi(dy, -+, di, -+, Any). Generally in Step J(J =4) one can verify that
di(j)({31}>>di(171)({S[})>Ai({32}). (izl, 2, AN n“l) /B4)

As readily seen from the discussion in § 3, there exist the limiting values ;({ si))
in the (#—1) infinite sequences {4:V({s:}), 4:2({s:}), 4P se ), )
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lim 45D =Au(50), (i=1,2,, 1) (B-5)

which are the unique solutions of the simultaneous equations (3:12). The com-
bination of (B-4) and (B-5) yields

di({s})>di({s1}). (7=1,2,-,n—1) (B-6)

Thus Lemma B has been established.
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