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—— Unitary Transformation and Exactly Dressed Bose Particle——
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Department of Physics, College of General Education
Osaka University, Tovonaka 560
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A unitary operator, which transforms free states into the exact eigenstates for a one-
dimensional many boson system with repulsive delta-function potential, is explicitly constructed.
By the unitary operator, original bare creation and annihilation operators are transformed into
new operators which are shown to create or annihilate the exactly dressed bosons with the
interaction cloud. The total Hamiltonian, total number and total momentum in the system are
expressed in the diagonalized form in terms of the dressed operators. It is shown that the exact
ground state is the condensed state of all exactly dressed bosons with zero momentum.

§1. Introduction

In a previous paper'? (hereafter referred to as I and II) the eigenvalue
problem in a one-dimensional system composed of # bosons interacting via repul-
sive delta-function potential has been solved exactly from field theoretical point of
view.

The system is described by the Hamiltonian

HZ; (Z)Z/Zm)ap*dpﬂLp%fr(g/ 2L)d;+rdz—rdqap . (1'1)

For arbitrary quantum numbers 1= ¢ =< =¢» (g:=(27h/L) Xinteger), the ei-
genstate of (1:1) for n-boson system is given as
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L] a z":pi,j+qi|0> , (1-2)

[t
iFi

| w“h;‘lz“ﬂ‘?n> :BQn'“q" 2 H d(pi,j 5 ki,j) 4

(pisi15T<isn}Si<isn :
where Bq,.-.4, indicates a normalization constant, and
d(pis; ki) =(— ki) (prs—kis), Dii=—Dii, k= kiy, (1=5i<j=n)

(1-3)
in which k., have been proved to be uniquely determined by (2-26) in . By using

k. ;, the eigenenergy is obtained by

qu,m,q,,:é:lkﬁ/ 2m:é<1/ Zm)[éllki,j-i— na (1-4)

J*i
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It has been verified in § 3 of II that the ground state is given by the state
| ¥oo.-0> where all momenta qi, gz, ***, gn in (1-2) are taken as zero. This means
that the ground state is a condensed state of dressed bosons with zero momen-
tum. The main purpose of this paper is to make clear the nature of the dressed
bosons. In § 2 we will first construct a unitary transformation U, which trans-
forms the eigenstates for noninteracting #-boson system into the exact eigen-
states (1-2). On the basis of the unitary operator U,, we will construct,in § 3, a
unitary operator U which works on the system composed of arbitrary number of
bosons. We will show in § 4 that the total Hamiltonian, total momentum and
total number operator can be expressed in diagonalized forms by making use of a
new creation operator A,* and an annihilation operator A, produced by the
unitary transformation . This fact indicates that the operators A,* and As
are the creation and annthilation operators of an exactly dressed particle which
involves all effects of the interactions among bosons. The ground state | %o0,-,0>
is represented by (1/vn!)(A0*)?|0>, which evidently shows that the ground state
is the condensed state of #-dressed bosons with zero momentum. In § 5 we will
investigate the limiting properties of U in g—0.

§ 2. Unitary transformation for n-boson system

The purpose of this section is to construct a unitary transformation U (in a
system with the fixed total number ») which transforms the free states in a
noninteracting #-boson system to the exact eigenstates (1:2).

2.1. Unitary transjformation Un

Any eigenstate for the noninteracting #-boson system is expressed as
n
lar, a2, @n> = @arasean 11 @205 (2-1)

under the condition ¢ = g2-* = ¢» which is required to guarantee that a set of all
states given by (2+1) is a complete orthonormal set. The factor aq,,.q, indicates
a normalization constant,

a’ql,---,qn:jljl(l/v 7,1 );

7
G1=""=qn {qnis1 =" =@, +n, < @nyret 417 T Gyt Zl%j:n .
i=

(2:2)
The transformation operators U, and U,* defined by

n n
d(pis; ki) H1 a* S v Hl Qq,
i= J i=

J*

U'l = 2 z }quqb"',qna‘h-"',Qn

91595 qn by 1si<isn 1si<jsn

(2-3a)
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and
Un™= G15d5=aqn by 1§!<j§n)Bgl'qz'm’q"a;w’qn 1§11<_IJ'§" dpis; ki’j)ll’jl a;iiﬂl azél.piﬁqi

(2-3b)

satisfy the equations
| ararand = Unl@r, @2, >, 2> . < Caranman =<a, @2, -, a2l Un* . (2-4)

If one can verify that
Un* Unlas, @2, *, an>=laq1, gz, qn> , (2-5a)
UnUn*lar, @z, -+, qu> =1, @2, ", qn> (2-5b)

for any free eigenstate in noninteracting »-boson system, then the operator U, is
a unitary one, since all free eigenstates (2-1) form a complete orthonormal set for
n-boson system.

2.2. Unitarity of Un in the case of infinitely large g

Now we begin to verify (2:5a) and (2-:5b) in the case of infinitely large g.
(a) Proof of (2-5a)
From (2-30) of I in the case g— 0, k., are given by

bij=(—7rh/L)ei;; ews=—0/1j—il. (iFj)

—-n(n-1)/2

In this case the normalization factor Bq,..q, is (7/2) as will be seen later.

The left-hand side of (2-5a), then, becomes

U Unlar, qn>= 2 (7/2)""" Vagan

n
qySqy"Sqy b 15, 15i<jsn}

X T d(pis;(—xh/L)ei)d(pis;(—ah/L)eis)

l=si<j=n

B

RIS

7
J

n n
1D ot q e ngpz',j +q: )l_I;[ld al0>

i KEZ]

0

(2-6)

where the symbol 2!, indicates the summation over all permutations g
:(mlyf;y'ﬁ.':,’j,ﬂ), and the function §(p’, p) denotes Kronecker’s deltafunction &pp.
Noting the relation d(p:;:(—ah/LYe:;)=d{(p}.:;(—nh/L)e;:) which can be
seen from the definitions (1-3), we have
d(prs(—nh/L)ei;)= 11 d(pupus;(—7h/L)Epuny) (2-7)

1=i<j=n 1=i<jzn

for any permutation . Then the expression (2:6) can be rewritten as
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Un*Unlqy, @z, -, gn>= \ D (7 2) M Vg an

<92 ~=2qn"

X3 N I d(Duus;(— T/ L)Ewon;)

B ADwpy PilSi<isn)isi<jsn

X d(pei;(—ah/L)e:s) ,:18(12119 Bkt

J¥i

+qu,, ngﬁi,j+ q:) ]

FE)

aas|0>. (2-8)

=1

Let us here introduce such abbreviated notations as
D)= pusns s @i () =qu, and &, (1) = Eppu; (2-9)
for a fixed permutation #. Then one gets

Un*Uﬂ|q1, qz, ", Qn>: Z ,(71’/2)_'1("71)&/‘71',""‘771'; I(qn(ﬂ)) q);l;[l aZ,»IO> ,

(2-10)
where
I(qg" (1), )= > 1T d(pii(p)(—xh/L)eis(1))

(P70, pilsi<ijsnilsi<jsn

Xd(pusi(—ah/L)ei) I8 (X pis()+ ai (1), 2 pes+ as).

i

FE] FE )
(2-11)
The introduction of new variables 7;; defined by
rig=prip)—pi; (1=2i<j=n) (2:12)
vields
(e (.= % A d(pest (= xh/L)e L)
Xd(pis;(—rxh/L)e:;) ljlé\é Tt as (), (2-13)

The multiple summations over p.; in (2-13) can be carried out by using the
formula

pz:_d(pi,j-O— v (—rh/L)ei ) d(pisi(—mh/L)ew;)=(n/ 2)° €l ;€050 rip-nniels-cin s
(2-14)

since
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E{iEi 1 = 1 1
| 2 { - }:O ’
4 L?’i,j“?%(sg,j*éi,j)lz‘w l+%€i,j [+ L +i€;‘,j

2rh ok T2

(Lh.s.)= for n,ﬁ’fﬁf(egrad):ﬁo,

€is€is 31 Y S o/ B
4 L:z—m(l+(1/2)6i,j)2 - 4 i,7€4,5 5 fOF 7l'j+ L Eij 61‘,.]')‘0 -

Taking the summations over p.; and next over »;; in (2-13), one has

n
I(qg”(p), q):(7(/2)"("‘”1 11 né‘;':j(/l)&i,jlll@q,»”(yn SR Esi— el (AN -

Li<y= j=1
(2-15)
Substitution of (2-15) in (2-10) produces
Un* Un|q17 gz, """, qn>: . Z ,aqlrqu’y'“y‘h;/z{ H 6;':j(ﬂ)6i,j
g1'=2q93"-=2gn B o l=i<jsn
n n n
X iI;Il5qi"<u),qi+ gl(ﬂ’h/l-)(é‘z,’,'j(l‘)wE,;j)}i];[l as]0>. (2-16)

J*i

Now let us show that there is no contribution in (2:16) from any nonidentical

permutation. For a nonidentical permutation g, there necessarily exists an in-

teger I for which
/ll>/l1+1. (2'17)

Under this permutation, the restriction for the summations in (2-16), namely, ¢’
g = =g gives

a7 ()= @ Z Quyy = qra (). (2-18)

On the other hand, one can derive the incompatible inequality with (2-18) in the
following way. From Kronecker’'s symbols in (2-16) one obtains

ar () —a (w)=q,,—q— Qrah/L)(el () —1)

+ 3 (/L) fora(p) — e 1a(40))

[=]1+2

+ 3 (/e Gl = € Gra(), (2-19)

where one has used e;,n=1 (1= /<m=n). By using the following relations:

Me— Mivy - M My
pe— e el

57+1,l(#)"5},.l(/1): I
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0 (,Uz<ﬂ1+1</11)
=1 2 (praa<pa<pr)
0 (o <pr<ptr)

—Hi My T M
ﬂl‘ ‘/J1+1*#l‘

611(/1)—611+1(/J)— |

0 (/-lt<#1+1<#1)
=4 2 (/l1+1<#z<ﬂ1)
0 (pr <pr<iyo)

(2-19) becomes
ara()—al (W) zq g —q— Qan/L) (el i(p)—1)Z4xh/L (2:20)

where we have made use of e/;+:1(2)=—1 and ¢,,,=¢q,. The inequality (2-20) is
evidently incompatible with (2:18). Thus there are no contributions from noni-
dentical permutations in (2:16). In the case of identical permutation o, #n
Kronecker’s symbols in (2-16) give

g’ =q¢'()=q:, (=12, n) (2-21)

because €i/m{to)=1 (1= /< m=n). Hence we have
Un*Unlar, @2, -+, a2>= Qapan 11 @310 =, g2, -, @n> . (2-22)

In this way, (2-5a) has been established in the case g—oo.
(b) Proof of (2-5b)
From (2-3a, b) one has

U U;’SI,SZ, "',Sn>

= 2 ST (x/2) " Vagy gn Qaran
929" +=2qn" q1=9254n {D;j.Ps51Si<jsn}

X I1 d(prs;(—ah/L)ew;)d(pisi( —xh/L)e:;)

1=i<jsn
n n n n * »
H o H H aa, ]—IlajzlplﬁqJSl Sz, Sny . (2-23)
i=1 4= i=1 =1 i= j=
F*i JEL

Noting that
n no n
aql'v"',qn'a(hw".lInil;Il aqi,i];Il aqi|0> - 11;[1 8qi’1qz’!0> ’

which is valid under the restriction for the summations in (2-23), one has
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X

n n n n
aqlr,...,q,,raq,,...,qn_Hlaq,.r' laZ,.Hlapi S1, 7, Sn)= I—Ilaq,.',q,.l_[lap,. S1, 0, Sny
i= i i= i= =

(2-24)
for i’ £g’'= =g, and = g2=-"=gn. Use of (2:24) in (2:23) gives

UnUn*|Sl,"', SpY>= 2 (ﬂ./2>4n(n—1)

q124924qn Wi 1si<isn)

X I d(pis(—ah/L)ew;)d(pisi(—xh/L)eis)

1=i<j=n

n n
Xﬂld*f pi-ﬁq,»l_lld_zn‘.lp,-,ﬁq,- S, Sn (2-25)
i= 1 i=1 4=

i= =1
JEi F#i

According to the formula A in the Appendix the expression (2+25) can be rewritten
as

Un Un*|31, T, Sn>:(7r/2)7"("_1)(1/7/l! )q 2

,
Ludn AP, Py g 1=i< =0

X 1§i13i§n{d(p;'j (—rh/L)e:)d(pi;;(—nh/L)eis)}

X I:—[la*épgj+qii1;[ldélpi,,»+q,~|81, AN Sny .
J¥i EE23 (2'26)
Now let us change the summation variables in (2:26) as
(]i+]§ﬁi,j"l‘i, (i=1,2,"',n) (2'27)
JFi
and introduce the new variables given by
Vig= Dri— Di . (1=/i<j=n) (2-28)
Then, the expression of (2-26) is rewritten as

Un Un*lSI, "'Sn>:(7f/2)7n(nil)(1/n!) 2

tytn {Ps s 1Si<jsn}

X 1§ig]'gn{d(p"‘j+ vigi(—ah/L))d(pis;(—7rh/L))}

n n
><l—Ila*ﬁr,-‘,-u,-_Hlat,.lsl,32,---,sn>, (2-29)
i= =1 i=

where we have used ¢;;,=1 (1=7<j=wun). Carrying out the sums over the varia-

bles pi; (1=27<j=n) in (2-29) with the aid of the formula (2:-14), we have

UnUn*|31, Sz, """, Sn>:(1/7/l')t 2

Lestn {r; 5 1Si<jsn}

n n
X T1 671:1301_[161*% r,-,,-+t,~Hlélt,-‘81, Sz, ", Sny
n = Ji=1 =
FEX

1=/<j=
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:(1/n!)t Z‘,t ]_;Ildt;l]_;[latJSl, S2, 0, Sn) .
Here noting the formula B in the Appendix for /=0, one gets
UnUn*lShSz,”',Sn>:|81,82,”‘,8n>. (230)

Thus the equality (2-5b) has been justified for infinitely large g.

In this way, we can conclude that the transformation operator (2-3a, b) for
n-boson system is unitary operator in the case g— o0, and that the normalization
factor Bayapan is (x/2)7*"* D% in this case.

2.3. Unitarity of Ur in the case of finite coupling constant

In § 2 of I, we have established the orthogonality of the exact eigenstates in
the case of finite coupling constant g. From this result, one has

< wa’,qz’,n-.qn'l Usragmany = z':l_I1 Oata; (2-31)

Substitution of (2+4) in (2-31) gives

n
<41,, qz/y Yy inlUn* Un|£]1, gz, """, q">: Lllaqi's‘h' (2'32)
for any two free eigenstates |q.’, g2, -, g=’> and |q, gz, ***, g»>. Thus the equali-

ty (2-5a) holds in the case of finite coupling constant g.

On the other hand, the condition (2-5b) for completeness of the set of the
exact eigenstates (1-2) unfortunately cannot be verified for finite coupling con-
stant g. If one notes that all eigenstates (1-2) for finite g approach continuously
their limiting ones for g — o0, it may be plausible to conclude that the completeness
condition

<CII,, (]2/, Tty qn,lUn Uﬂ*‘qu gz, oty q”>:iI;Ilaqi"qi y (2'33)

is valid even for the case of finite g.
From (2-32) and the plausible conjecture (2-33), we may regard the operator
U for any positive g to be unitary operator in #n-boson system.

§ 3. Unitary transformation for the system
with arbitrary number of bosons

The purpose of this section is to construct the unitary operator U for the
system composed of arbitrary number of bosons, on the basis of the unitary
operator Ux for n-boson system, given by (2-3a, b). The conditions which should
be imposed on this unitary operator UU are given as follows:
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Ulsi, s2, %, sa>= Unlsi, S2, ", $n>, (n=2) (3-1a)
Uloy>=|0>, Uaslod> = a3l0y (3:1b)

where the conditions (3+1b) come from the facts that the free states |0> and a3|0>
themselves are the eigenstates of the total Hamiltonian (1-1).

Now we assume that the unitary operator U can be expressed in the following
form:

U=1+ 3 X» (3-2)
and
n—1
Xn:Un+mZ:2hn(m)p > @b @remUnap, Qonm

2 Pn-m

+hn(0)p Z‘,p a5, Apnlp, Ay . (3-3)

Then it can be readily seen that the operator U satisfies the conditions (3-1b).
The expansion coefficients 4.(m) can be determined by the condition (3-1a) in the
following way. First observe that X.|si, -, s»>=0 for /=2#n+1. Then, using
(3-2) in (3-1a), one gets the relation

n—1
Xn‘Sl,"',Sn>:(Un_1_§Xl)‘Sl,"',Sn>. (3'4)
Substitution of (3+3) in the left-hand side of (3-4) gives

n—1
anSl, Ty S">:{ Un+7r§2hn(M)p 2 a;1”'a;n—mU7naP1.“aPn»m

1 Pn-m

+hn(0)P 21) Ay Apnlpy " pn}lS1, 0, $n) (3-5a)
and introduction of (3+3) into the right-hand side of (3-4) yields

n-1
(Un“l_lZ:ZXz)lSh Tty Sn)

n—1

-1
={U,—1— ZZZ [Urf-”,?‘;,zhz( m)p Zp} ) as; @b Unats, aprm

+ hl(O)P Zp a;f“aZlaPl"'aPz]}lSly T, S71>

={Un—(1/n)) 2 ab, - abn ap,"*" apn
plﬂ"'vpﬂ

n—1
- lzz(l/(i’l— [)! )p > azl”'d;ndplUzapl”'apn-l

1 Proy

n—1:2-1
D3 (m)1/ (n—=0") 2 ap, @benUnaoy " QGonm
[=2m=2 ProD

“Pn-m
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D 2 ah e donan aspllst, 0, Sd (3-5b)

SE RO/ (= D)D),

=2

where the second equality is due to the Formula B

aq,dqz"'aql|51, cery Sn)
“@q,ap, Apn | S1, t, SnY (3-6)

=(1/(n—01) 2 ab - ap.,aq
PrvPnog
Comparison of (3:5a) and (3-5b) gives the

which is verified in the Appendix.

relations:
hn(n—1)=—(1/11),
ha(m)=—(1) (n=m))= ST (1 (n=DDhu(m) for 22 m=n—2,
Jon(0) = —(1/n = "Z(1/ (1= DD 0). (3+7)
The solutions of Egs. (3-7) are given by
() =(—10"""/ (n=m)!  for 2= mSn—1, (3-8a)
(3-8b)

hn(0)={(—=1)""" /(=D +H(=1)"/n!.
The fact, that the solutions (3-8a) and (3-8b) satisfy Eq. (3-7) certainly, can be
confirmed in the following way:

Y (=D} +1/(n—m)! =

=D/ (= D= m)!}]

{[:%H]’h
=(1-D" "/ (n—m)!=0, (2=m=n—1) (3-9a)
(30(0)/ (n= D1} +1/n 1= R [(= D/ (= DI(I=D1}]
(3-9b)

+ 3 (=1 (=01 1 1)]=0,

In this way the operator U is completely determined as

where 0! denotes 1.
Apny

o n—1{
U:1+HZ{UH+ Z (( )l) 2 a,f?] a;rp[ Ulaﬂl'

_(;%(_’”__Q Z,, aﬁ,"'dznflpl”‘(lpn}.

(3-10a)

The hermite conjugate operator U™ is
* s ( - 1)71 ¢ * *
Ur=1+2% Un™+ Z—*_ 2 apape, Ul apcap,.,
n=2 ( 7 Z) ! ProPn-g
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D 5 gt (3+100)

Unitarity of the operator U is verified in the following way. First note that
U*o>=10>, U™ ap™0>= ap*|0> (3-11)
U*ls1,++, sn>=Un*Is1, ", 50>, (3-12)

which are readily confirmed by using (3:6), (3-8a, b) and (3-9a, b). Hence, the
combinations of (3-1b) and (3-11) and that of (3-1a) and (3-12) give

U*Uloo=10>, Uu*o>=10>, (3-13a)
U* Uap*|0> = ap*0> | UU* ap*10>= an*[0> | (3-13b)
U*Ulsy, -, sa>= Un*Unlsy, >+, se>=|s1, ", sn>, (n=2)

UU* 51, sn>=UnUn*|$1, ", sn>=|51, ", s>, (n=2) (3-13¢)

respectively where unitarity of the operator UU. for n-boson system has been used
in (3-13c). The relations (3:13a, b, ¢) clearly mean that

U*U=1 and Uuvu*=1, (3-14)

since all of the states |07, a»*[0> and |s1, -+, s»> (2=2) form a complete set for the
states of the system with arbitrary number of bosons.

In closing this section, we should point out that the operator U satisfies the
following commutation relations:

[U,N]:O, [U,Pwt]:o, (3'15)

where N and Pt indicate the total number operator and the total momentum
operator defined, respectively, by

N:; apap , Ptot:; pap*ap. (3-16)
The relations (3-15) can be easily confirmed by using (2-3a), (3-10a) and (3-16).
§4. Exactly dressed particles and condensation

In § 3 the unitary operator U has been successfully constructed to be given by
(3-10a). The unitary transformation produced by the operator U leads to the
introduction of the creation and annihilation operators A,* and A, defined by

At=Uas U™, Ap=UapU* . (4-1)

These operators Aj and A, obey evidently the canonical commutation relations:

102 ‘c |1Udy uo usbuiN nxebreq exesQ e /Bio'sfeulnolpioxo-did//:dny woly papeojumoq
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[As, A3)=Ulap, a3]1U* =0,

[A4p, Aq]=0, [A3, A3]=0. (4-2)

Furthermore, the following commutation relations are easily derived from (3-15)
[N)Aq*]:U[Nvaq*]U*:Aq*’ [N,Aq]:_Aq, (4'3)
[Ptot, Aq*]: U[Ptot, ﬂq*] U*:(]Aq* y [Ptot, Aq]: ‘(]Aq . <4'4)

Now let us consider the vacuum state 0> defined by
Al0>=0  for all ¢. (4-5)

Then, it is easily seen that
lo>=l0>, (4-6)

because the bare vacuum state }0> satisfies (4:5) from (4-1) and (3-11). Multi-
plying the state |0> by the operators A.*, one can construct a complete orthonormal
set as

{105, Ad*0%; @a,0nAl - ASI0> . (022, = ge="=gn)}, (4-7)

which are readily seen to be the exact eigenstates of the Hamiltonian (1-1). This
is due to the following equations:

| w“h.“';‘ln> = anly"‘an dzl' o Cl;nl(» )
ZQQD“‘:QHAEI‘.. 2n|0> . (4'8)

If we operate Aq* to any eigenstate (4-8), we have again the eigenstate of the
total Hamiltonian (1-1) in which the particle number is increased by one and the
total momentum is increased by ¢ as readily seen from (4:3) and (4-4). From
this fact, one can give the following interpretation for the new operators A," and
Aq. “The operators A" and Aq ave the creation and annithilation ones of
a bose particle (with momentum q) which has been dressed exactly with the
intervaction cloud.” Hence the bose particles produced by the operator A,* can
be called “the exactly dressed bosons.” In this way it can be seen that the
gquantum numbers ¢, -**, g» introduced to specify the eigenstate | ¥q,..q,> in I
indicate the momenta of the exactly dressed bosons, and they are in this sense
certainly appropriate quantum numbers.

Here let us reexpress the total number operator N, the total momentum
operator Pior and the total Hamiltonian (1-1) in terms of the new operators Ag*
and A,. By virtue of (3-15), the operators N and Pie: are expressed as

NZ? a;*;ap:U;aZapU*:g ArAp (4-9)
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Ptot:; pafaap:U%]pazapU*:%‘, l)AZAp (4'10)

Next we intend to rewrite the original total Hamiltonian (1:1) in terms of the
operators A% and A¢. By denoting the exact eigenstate | ¥g,..¢,> as

“qu CIz, Y, qn>>:dq1,-»-,qnll;[1A*i[0>:l w‘Q\v"'an> s (CI1§"' gCIn) (4'11)
the eigenequation becomes
ﬁ(A*) A)”qu T Qn>>:Eq,,~--,q,,"C]1, o qn>> . (4'12)
in which
H(A*, A)=H=U*UH(a*, a)U"U=U*H(A*, A)U , (4-13)

where H(a*, a) indicates the functional form of the total Hamiltonian (1+1) with
respect to the operators a¢* and aq. The functional form H(A*, A) of the total

Hamiltonian can be easily obtained by the same method as that for the construc-

tion of the unitary operator [/ in § 3. For this purpose, let us introduce such
operators Hx(n=1) that

H=3p*2m)As™ Ay, Hn=(1/n1) 2 EpppndbiAbnAp Ap,, (n22)
(4-14)

in which Ep,..», is defined by making use of the eigenenergy Eq,.-q, of (1-4) as

Epl’pZ""'pﬂ:Eﬁ#np#z,"',ﬁ#n s (4.15)
where the permutation #=(,'27."% ) indicates the rearrangement of the momenta
b1, b2, =+, pn to the nondecreasing order of magnitude of the momenta, namely,

P, EPu, == Do R
Now we assume that the total Hamiltonian H{A*, A) is expanded in the
following form:

H(A*, A= Ya, (4-16a)
n—1
Vo= Hot YLD 5 A Abe HiApw Ap,, (4-16b)

The expansion coefficients U .([) are determined by the conditions,
H(A*, Dla, -, an>=Hallgr, -, gn>, (n=1) (4-17)
and the results are given by

Y D=(=D""*/(n—1D! . (4-18)
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From (4-18) and (4-16a, b) Eq. (4-17) is derived as follows:
A", Dlas, -, an>= 2 Vi, -+, a2
=(H A S HA 3 S (D (= m)])

X 2 Azl'"A;l,mHmApl'“Aﬂz—m}HCIb o qn>>

brPrm

. n-1 1 ”n (_l)l—m
‘[H”El{(n»m)z N R U (=D }

X 27 Azf“At’nmemApl'”APn—m]”qu T er>>

PiPn

:H""qlx A qn>>:qu,---,qn”01,_'”, Qn>> s (4.19)

where we have used (3:9a) and the formula (3-6) in which the operators a»* and
ap» are replaced by the operators A,* and Ap, respectively. In this way, the
explicit form of the Hamiltonian H(A*, A) expressed in terms of the creation and
annihilation operators A,* and A, of the exactly dressed bose particles is written
as

H(A* A)ZEP_ZA*A +i (=t
’ 7 2m P o T S (n— 1)1
X Epypi Ay AbuA oy Apy . (4-20)

It should be noted that the Hamiltonian H(A*, A) has the diagonalized form
which is constructed by the terms of the products of the number operator A,* As.

As has been shown in detail in § 3 of 11, the ground state in our interacting #-
boson system has been given by | ¥o,..-0>, and then the expression of the ground
state indicates the existence of zero-momentum condensation. Now this can be
exhibited explicitly as

| qfo,o,-~,o>:(1/\/1’1_!_)(140*)'11(» y (4'21)

thanks to the successfull introduction of the operators A,* of the exactly dressed
bose particles. Thus we can conclude that the ground state in our interacting »-
boson system is the condensed state of # exactly dressed bose particles with zero
momentum.

§5. Limiting properties for g—0

In this section we first investigate the limiting property of k4:; for g—0.
From the limiting property we will find that the unitary operator U approaches the
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identity operator in the limit ¢g—0. Secondly we will prove that k.; cannot be
expanded in the power series concerning g when g¢: = g;.
We start to verify the limiting properties

lgi_I'lgki,i:O, (1§z<]§n) (5’1)

for any set {g:} of the momenta, where &:,; are given by (3:7) in 1.
Proof

It has been proved in § 3 of I that the (»#—1) simultaneous equations ((3-12)
in I) determine uniquely the (#—1) parameters 4., and then the #n(n—1)/2
quantities k:; are obtained from the parameters 4.. In order to prove (5-1),
hence, we need to clarify the limiting behaviors of 4; for ¢g— 0. This is accom-
plished as follows. First note the inequalities

Fia, a,-, a)=a—(28/L)[cot " ((h/mg)ia)+cot ™ {{h/mg)(n—i)a}]

<a—4h/L)cot ' {{B/mg)na}, (for a=0, i=1,2,--, u—1)
(5-2)

where the first equality has been derived from substitution of a(=0) for all 4; in
the function F; (4, 42, *++, 4n-1) (see (3-11)in I). Here noting that the inequality

cot 7 x>(x+1)t, (for x =0) (5-3)

holds due to the restriction for the region of the function cot™ x given in (3-3) of
I, we have

Fia, a, -, a)<a—4h/L)Y{(h/mg)na+1}"" . (5-4)

Since the right-hand side of (5-4) becomes zero when

a=a1=(mg/ 2nh)/{V1+(16nh*/mgl) — 1}, (5-5)
one gets
E(Cl’l,(l’x,"',(l/l)<0‘. (izl, 2,"',%*1) (56)

Here remember the method by which it has been proved that there exist the
solutions 4:(s1, sz, **, s»-1) in the simultaneous equations (3-12) in I, and change
the Step 1 in the method into the following statement.

(Step 1') Let 4 (i=1,2,--, n—1) be a.

The other steps can be accomplished in the same way as in I owing to the
inequalities (5-6). The monotonically increasing sequences {4, 4? ---} are,
therefore, obtained and converge to the limiting values 4.:(s1, Sz, -**, s»—1) which
prove to be the roots of the simultaneous equations. The monotonically increas-
ing properties of the sequences {4, 4%, ---} produce the inequalities
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A:> AP = (mg/ 2nh)W{V1+(16nk*/mgl) —1}. (5:7)

Consequently we have

gfrg(di/g)%gpg(m/2nh){/1+(16nh2/mgL) ~1}=00, (5-8)

which vields the limiting properties (5-1):
hmk” (—Zh/L)hmcot W #/mg) Z‘.A} 0, (1£i<j<n)

where we have used (3:-7) in I. Thus the proof of (5-1) has been established.
Now taking account of the limiting properties (5-1) in the functions d{(p:;;
k:;) in (1-3), one has

gizr‘}d(pi,j; kii)=08p.s0, (5-9)

since the momentum p:,; has discontinuous values ((2z%/L) X integer). Substitu-
tion of (5-9) in (2-3a) gives

n n n n
llmUn: 2 (aq1,~~~,q")2HaZiH a‘h‘:(]-/n ') Z Ha;;]:[ aq; ,
g0 91593=-5qn i=1 i=1 qromdni=1 i=1

(5-10)

which yields such a limiting property of X. in (3-3) as

thn 2{(— ) (n— m)'m‘} Z Hap,Hap— (n=2) (5-11)

DDy Dni=
Thus we find from (3-2)
limU=1. (5-12)

g-0
This means that the exactly dressed operators A,* and A, do approach the bare
operators a»* and ap, respectively, in the limit ¢—-0:

IimA,*=lim(Uat U*)= a3, limAs=ap. (5-13)
g-0 g-0 g-0

We next show that %:; cannot be expanded in the power series concerning g
when ¢g:=¢q;. From (2-26) in I,

cot( Lk ] 20)=(h/mg){2k:;+ Z(k” ki)l (5-14)

where use of gi=g¢g; has been made. Let us, now, assume that ks. can be
expanded in the following form:
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ks,t:lgoc‘s‘.’tg‘, (1=s<t=n) (5-15)
where ¢} indicate the expansion coefficients. From the limiting property (5-1) in
g— 0, one can see that ¢>=0. Hence substitution of (5-15) in the right-hand side
of (5-14) gives the convergent result as

lgifrol(r.h.s. of (5-14))=(h/m){2%)+ é (M — D} (5-16)

(2275

On the other hand, the left-hand side of (5-14) is divergent due to (5-1) as

lim cot (5-17)

g-0

(Hr)<fF 20

These facts (5:16) and (5-17) contradict with each other, and therefore %:, can
be never expanded in the form of the power series of ¢ when ¢:= g;.

From the above result, it seems that the unitary operator U cannot be
expanded in the power series concerning ¢, because the summations with respect
to g: and ¢, in the expression (2-3a) of U, include the case ¢g:=¢g;. Therefore one
does not reach the concept of the exactly dressed operators A, and A, by the
perturbation method.

The above fact can be explained by the following physical consideration. Let
the plural momenta q:,, qs,, ***, ¢;, among the momenta i, gz, ***, g» of n bare bose
particles take the same value ¢;,(=¢:;,=--=g¢;). Then, the kinetic energies of
these plural bare particles at the coordinate system with the velocity g:,/m become
zero, and hence the interaction energies among them cannot be neglected even if
the coupling constant ¢ is negligibly small. This implies the impossibility of the
expansion of Ur concerning g.
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Appendix

[Formula A]
{d(prs; —ah/L)d(p:is; —nh/L)}

1= Eqn (P, PuilSi<jsn) 1Si<jsn

n n

* no, no,

XHCZ zpi_,+q;H£l2p,~_,+qi

i=1 i=1 =1 j=1
Jxi J*I
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=1/nH) = , X I1 {d(pis; —ah/L)d(pis; —xh/L)}
qyln (PigDijlSi<jsn} 1Si<ijsn
XEI é u+qf£llaélm.j+qi. (A-1)

Prior to the verification of (A-1), let us prove the following Lemma.
Lemma
When g¢: is equal to g1 +27h/L,
{d(pi;; —rh/L)d(pis; —7h/L)}

(Pls.Lislsi<isn) 1Si<isn

n n
X 111(2* Z"TP;',ﬁqfl_Ila Spira;=0. (A-2)
i= J=1 i= =1

FES] Jxi

Consider such a permutation ¢ as

A< 1,2, n ) ui=17 fori+!, [+1 (A-3)
# M1, M2, 77y Mn w=I1+1, pea=1,
and denote the transformed variables pi,n, by
D)= pusn; . (for 1£i=n, 1=;<n) (A-4)
Note that
I d(piy;; —ah/L)= Ak, d(pii(u); —ah/L)d(— plo(p); —xh/L),
1=i<jsn G j f ?+U
(A-5)
then the left-hand side of (A-2), referred to as B, is expressed as.
B= , X I d(pes; —xh/L) 11 d(pip); —xh/L)
(bis(mpiplsi<isnt 1si<jsn 1si<isn
F)E(L,L+1)
X{*d(l)f,ul(#)_zml/l/[f; —nh/L)}
X I_I d*ﬁ' Pi; (m+aq; a* EPHAJ(II) pLivi(pe)+a;
z;LTLlH 35 Jeni
X a* };p“ (#)+Pu+x(#)+ql+.l—[de,ﬁq, , (A'6)
in terms of the variables pi;(#), where we have used
o L mh\_ zh/L
d( piap); L )_ — pleni(p)+zh/L
:“d<l)u+1(#) 27h _LZQ> (A?)

The relation ¢:=qi+1+2xh/L and the replacement of pi+1(x) by
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pria(p)+2xh/L give
B=-— = 1 {dpis(w);, —xh/L)d(pis; — nh/L)}

Plienpilsi<isnylsi<isn

XHd EPW(/:Hq,Hde,,Jrq,- (A-8)

i=1
J¢z

Rewriting here the summation variables p7;(x) by pi;, we can find the Lemma
(A-2).

Now we turn to the verification of (A+1) on the basis of the Lemma (A-2).
The Lemma (A-2) leads to

A=

915Gy SSqu 1 S5Gp +2AAILSQreo+2 R R/ LS Sqn+2T /L

X 2

q; (P;J‘Pi,j;1§i<.i§n}
911595 G +2mk/L

XlgiIJjgn{d(p;’j; —rh/L)d(p:is; — ﬂh/L)}H a Zle+qIH a ZPUHI, ,

J*! (A'g)
where A indicates the left-hand side of (A-1). Consider here a permutation w

given by
1,2, 0—1, I, I[+1,-,n—1,
”:<1, 2, -1, [+1, 1Z+21 nn,l 1;) (A-10)
and denote the momenta pi.r;, Puar; and ge, by
L= Dy s DL = Py, @7 =qu,. (1=i=m, 1=j=n) (A-11)
Here note that
D= Dis and pi;=Dpii, (1=i<j=[-1)
pii=pii1 and  pi;=piia, (1=i=[—1,[+1=7=n)
pri=piiim1 and  pi;=pi-ri, ([F1=2i<j=n)
Dii=pin and  pii=pin, (1=/=/[-1)
pui=—pi"in and pus=—pin . ({+1=7=n) (A-12)
Rewriting (A-9) in terms of pi;, pi; and ¢ by using (A-12), one has

9] 1S9, Sq/ 2T AL

x I Ad(pis; —xh/L)d(pis; — nh/L)}

X H{d(ﬁi"n; mh/L)d(pin; —ah/L)}X
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jI:I{ (pyn—21h/L: —ah/L)d(pjn—270/L; — 7h/L)}

f:I % W“’f"ll;lldéf L, (A-13)
where the same relation as (A-7) has been used. The replacement of p/» and pj.»
(j=1, 141, n—1) by pin+2xh/L and pj.+2xh/L (=1, [+1, -*n—1), res-
pectively, gives

A=

Q7 sqy sw=q]_ ) £q] F2nhILSSqn 1 +2RRIL q/15q S, +2TRILAP T Pi i 1Si<isn}

{—1
XTI {d(pis; —ah/Lyd(phs; — ahlDYILa* Epizar

n—1

* 7 I
X 11 a* Zp Yiraiteznnil @ N pritqn—(2naiLin-1)
=t e IEn
=1 n—1
XHICZZp”M Hﬂzp,_,+q +2mAlL deann —@rhr/l)Xn-1t) . (A'14)
iz
KEYS J$l Jtn

The change of summation variables in (A+14) given by
bii—big, pii—= i, (1=i<jEn)

gi—q: (for 1=7=]-1), ¢/ +2xh/L—q: (for [=i<n—1)

g —2rh/L)(n—1)— gn (A-15)
leads to
A= > ,
9159352 qn n P s 1si<isny

g 12rhilXn—1)=qnsq,— (2R R/ L)(n—L)

Xléigén{d(p;,j; _”h/L)d(Pu, _7Z'Z>l/l/)}11;[1 a* _é}lp;'.i+<]£zl;[la_§1pi,j+qi .
(A-16)
The above result (A-16) means that the original region (which is gn—1—27h/L
<gn) of the variable g» in the left-hand side of (A-1), has been transformed
into

[gi1—Q2an/LYn— (- D}<gn=q—(2xh/L)(n—1), (A-17)
where we have made use of the fact that ¢.=(27%/L)x integer. Adding all
regions of (A-17) for /=1, 2, .-+, »—1 to the original region produces

—C0= g =00, (A-18)

Hence we obtain

A=(1/n) éZ > > II_{d(pis; —xh/L)X

q1=9 =qn-1 9n all (P p;lsi<jsn} l£i<j=n
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Y

X d(pi’j ;T ﬂ.h/L)}lI:]l CZ* é:l.ﬂ;',i +qii];[la élpi,j+‘1i - (A. 19)

A similar extension of the region for all variables ¢; leads to the establishment of
the formula A. '
[Formula B]

For any state |si1, sz, ***, s> In noninteracting »-boson system

Aq, " AaylS1, S2, 00, SnD

:[(n*l)!]_lp th azl"'aZn-zalh"'athaﬂx"'dpn-IISI,"'y5n>, (I<n)
oo S

B-1
holds. ( )
proof
The state |s1, sz, ***, S»> can be written as
v

[s1, S2, ", sn>:as,,SZ,---,sng(a?i)Mfl0> ., (v=w)

M+ M+ +M=n and H<HL<--<{y, (B-2)
where the momenta /: indicate different ones to each other among si, sz, ***, S».
If any one of the momenta qi, ¢z, ***, q: is not equal to all of the momenta #, f, -,

tv, then, both sides of (B-1) vanish, namely, the equality of (B-1) holds in this
case. In other case,

Qqy" " Aa, = Ij(at )E
holds. Then the left-hand side of (B+1) becomes
[Lh.s. of (B’l)]:asl,-n,snljl{Mi Y (M:i— L) ai )™ 0>, (B-3)

and the right-hand side is
[rhs. of (B-D)]=as,wsnl(n—10)1]"

M; !
X _Mi i s yme-L
Pl.'gn zapl al’n Ap," T Apy zH (M L ) ( ae; ) IO>
(B-4)
In the summations over pi, p2, -, pn—: on (B-4), the nonvanishing contributions
come from the following cases, where
ap, " Appy— I:I ( ) —h (B.5)

holds, and the number of the cases is

(n— DU [(Me—= L] (B-6)
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Substituting (B-5) and (B-6) in (B-4), we have

[r.h.s. of (B-1)}]=as,msal(n— 1T (n—1)! iljl[(Mi—Li)!]“zljl(a?i)M"‘Lf
X I (ae) ™ I1[M: H(Mi— Lot} (at)™ 000>

= oy LLICM: = L1 T (a) "~ T M 110 (B-7)

This result (B-7) is equal to (B+3), namely, the left-hand side of (B-1). Thus
Formula B has been established.
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