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A unitary operator, which transforms free states into the exact eigenstates for a one­
dimensional many boson system with repulsive delta-function potential, is explicitly constructed. 
By the unitary operator, original bare creation and annihilation operators are transformed into 
new operators which are shown to create or annihilate the exactly dressed bosons with the 
interaction cloud. The total Hamiltonian, total number and total momentum in the system are 
expressed in the diagonalized form in terms of the dressed operators. It is shown that the exact 
ground state is the condensed state of all exactly dressed bosons with zero momentum. 

§ 1. Introduction 

In a previous paperl),Z) (hereafter referred to as I and II) the eigenvalue 
problem in a one-dimensional system composed of n bosons interacting via repul­
sive delta-function potential has been solved exactly from field theoretical point of 
vIew. 

The system is described by the Hamiltonian 

(1.1) 

For arbitrary quantum numbers ql-;;'qz-;;, .. ·-;;'qn (qi=(27rhIL) x integer), the ei­
genstate of (1.1) for n-boson system is given as 

n 

IlJfqjoq,,,·,qn> = /3qjo·"qn ~. .IT d( Pi,j; ki,j) IT a* ~ pi,j+Q,lo> , 
{PiJ; l;§!;i<J;;;;;;n}l~l<J~n l=l i=1 

(1'2) 
j*i 

where /3Q].,,·,qn indicates a normalization constant, and 

d(p;,j; ki,j) = (- ki,j)1 (Pi,j- ki,j), Pj,i = - Pi,j, kj,i= - ki,j, (1-;;' i < j-;;' n) 

(1'3) 

in which ki,j have been proved to be uniquely determined by (2·26) in I. By using 
ki.f, the eigenenergy is obtained by 

n n n 
E q,.",qn= ~ ki z I 2m= ~ (11 2m)[~ ki,j+ q;)2 . 

i=1 i=l j=l 
(1-4) 

i-4:-i 
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One-Dimensional Many Boson System. III 1799 

It has been verified in § 3 of II that the ground state is given by the state 
1 lJfo.o .... ,o> where all momenta ql, q2, ... , qn i~ (1. 2) are taken as zero. This means 
that the ground state is a condensed state of dressed bosons with zero momen­
tum. The main purpose of this paper is to make clear the nature of the dressed 
bosons. In § 2 we will first construct a unitary transformation Un which trans­
forms the eigenstates for noninteracting n-boson system into the exact eigen­
states (1'2). On the basis of the unitary operator Un, we will construct, in § 3, a 
unitary operator U which works on the system composed of arbitrary number of 
bosons. We will show in § 4 that the total Hamiltonian, total momentum and 
total number operator can be expressed in diagonalized forms by making use of a 
new creation operator Ap * and an annihilation operator Ap produced by the 
unitary transformation U. This fact indicates that the operators Ap * and Ap 
are the creation and annihilation operators of an exactly dressed particle which 
involves all effects of the interactions among bosons. The ground state IlJfo,o, ... ,o> 
is represented by (1/ /nT)( Ao *)n 10>, which evidently shows that th~ ground state 
is the condensed state of n-dressed bosons with zero momentum. In § 5 we will 
investigate the limiting properties of U in g -> O. 

§ 2. Unitary transformation for n-boson system 

The purpose of this section is to construct a unitary transformation Un (in a 
system with the fixed total number n) which transforms the free states in a 
noninteracting n-boson system to the exact eigensta tes (1. 2). 

2.1. Unitary transformation Un 

Any eigenstate for the noninteracting n-boson system is expressed as 
n 

Iql, q2, ... , qn>=a'q»q' .. ··,qnIT a~;IO>, 
i=l 

(2 .1) 

under the condition ql ~ q2'" ~ qn which is required to guarantee that a set of all 
states given by (2'1) is a complete orthonormal set. The factor a'q' .. ··'qn indicates 
a normalization constant, 

n 

ql = ... = qn, <qn,+1 = ... =qn,+n,<'" <qn'+"'+nl-,+I = ... = qn'+"'+n" ~ nj = n . 
;"=1 

(2'2) 
The transformation operators Un and Un * defined by 

n n 

Un = ~ ~ Pq"q" ·,qna'q»· .. ,qn IT d( Pi,j; ki,J) IT a* ~ PiJH; IT aq, 
ql;;;;.q2···~qn {PiJ; l,;:ii<j~n} l:ii<J2.n i=l j=! i=l 

J*i 

(2·3a) 
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1800 S. Sasaki and T. Kebukawa 

and 
n n 

Un * = ~ ~. /3J"q2,··,qn a J,,···,qn n d( Pu; ki,j)IT a~i II a :£; PU+Qi 
ql~q2···;;;;,qn {PiJ; l~z<J;;;;,n} l~l<J;;;;,n 1=1 z=1 j=l 

j*i 

(2'3b) 

satisfy the equations 

I IJfQ"Q2, .. ,qn> = Unlql, q2, ... , qn>, < IJfQ"Q2,",Qnl=<ql, q2, ... , qnIUn*. (2'4) 

If one can verify that 

(2'5a) 

(2'5b) 

for any free eigenstate in noninteracting n·boson system, then the operator Un is 
a unitary one, since all free eigenstates (2'1) form a complete orthonormal set for 
n·boson system. 

2.2. Unitarity of Un in the case of infinitely large g 

N ow we begin to verify (2' 5a) and (2' 5b) in the case of infinitely large g. 

(a) Proof of (2'5a) 
From (2' 30) of I in the case g --> =, ki,j are given by 

In this case the normalization factor /3Q"''',Qn is (TC/2)-n(n-I)/2 as will be seen later. 
The left·hand side of (2'5a), then, becomes 

n n n n 

X ~ II 0 ( ~ P ~;.I'j + q~" ~ Pu + qi ) II a ~(Io> , 
p. i=1 j=1 ;"=1 i=l 

J*i J*i 
(2'6) 

where the symbol ~" indicates the summation over all permutations fl 

=C::I:;::::";,J, and the function o(p', p) denotes Kronecker's delta function op"P. 
Noting the relation d(p~,d-TCh/L)Ei,j)=d(pj,i;(-TCh/L)Ej,i) which can be 

seen from the definitions (1'3), we have 

for any permutation fl. Then the expression (2'6) can be rewritten as 
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One-Dimensional Many Boson System. III 1801 

n n 

X d(p;.j;( - Jrh/ L)c;,j) IT o( ~ P ~i'l'j 
i=1 j=l 

j*i 

n n 

+q~i' ~p;,j+q;)n a ~/Io>. 
J=1 l=l 

(2-8) 
i*i 

Let us here introduce such abbreviated notations as 

(2-9) 

for a fixed permutation fJ. Then one gets 

(2-10) 
where 

n n n 

X d(p;,j;( - Jrh/ L)c;,j) IT o( ~ p~,j(fJ) + qi'(fJ), ~ p;,j + q;). 
i=1 j=1 j=1 

j-=f=.i j=t-i 

(2-11) 

The introduction of new variables Y;,j defined by 

(2-12) 

yields 

n 

X d(p;,j;( - Jrh/ L)ci,j) IT o~ ruH/'(I'),q,· 
i=1 j=l 

(2-13) 
j*i 

The multiple summations over Pu in (2-13) can be carried out by using the 
formula 

P~d(P;,j + Y;,j;( - Jrh/ L )c;',j) d(p;,j;( - Jrll/ L )c;,j) = (Jr/ 2)2 c;:jC;,jO riJ,(-rr hIL)(' :r<u) , 
"J 

(2-14) 
sInce 

 at O
saka D

aigaku N
ingen on A

pril 3, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/
http://ptp.oxfordjournals.org/


1802 S. Sasaki and T. Kebukawa 

1 } 

(l.h.s.)= 

Taking the summations over Pi,j and next over Yi,j in (2-l3), one has 

n 
I( q" (tJ), q) = (lr/ 2 )n(n~l) n C~,j(tJ )Ci,j IT 0 q;,,(l'l+ 'i:. ("h/L)(EiJ~ E7,j(I')),q, . 

l~l<J~n z=l j=l 
i"Fi 

Substitution of (2-15) in (2-10) produces 

n n 

X D Oq('(I'),q,+ 'i:.("hIL)(E;:j(I')~EiJ)} D a~'.I0> . 
1=1 j=l 1=1 

j*i 

(2-15) 

(2-16) 

N ow let us show that there is no contribution in (2 -16) from any nonidentical 
permutation. For a nonidentical permutation tJ, there necessarily exists an in· 
teger I for which 

tJl > tJ1+1 . (2-17) 

Under this permutation, the restriction for the summations in (2-16), namely, q/ 
~ q2' ~ ... ~ qn' gives 

(2-18) 

On the other hand, one can derive the incompatible inequality with (2-18) in the 
following way. From Kronecker's symbols in (2 -16) one obtains 

q;~l (tJ) - q;' (tJ) = ql+l - ql- (2lrh/ L)( C7,/+1 (tJ) -1) 

n 

+ ~ (lrh!L)(c 7+l,I(P)-C 7,I(tJ» 
1~/+2 

I~l 

+ ~ ( lr h / L ) (c ;',J ( tJ ) - C ~I+ I (tJ) ), 
l~l (2-19) 

where one has used Cl,m= 1 (l~ l< m~ n). By using the following relations: 

tJl - tJI+l 
ItJl- tJl+d 
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One-Dimensional Many Boson System. III 

1 
0 (f-/i < f-/l+1 < f-/I) 

= 2 (f-/l+I<f-/i<f-/I) 

o (f-/l+1 < f-/I < f-/z) 

f-/l+I-f-/i 
if-/l+I- f-/ii 

o (f-/i < f-/l+1 < f-/I) 
2 (f-/I+I<f-/i<f-/d 

o (f-/l+I<f-/I<f-/z) 

q;~1 (f-/) - q;'(f-/) ~ q'+1 - qI - (2TCh/ L)( E/,J+I (f-/) -1) ~ 4TCh/ L , 

1803 

(2'20) 

where we have made use of E;:l+I(f-/) = -1 and qI+1 ~ qI' The inequality (2,20) is 
evidently incompatible with (2·18). Thus there are no contributions from noni­
dentical permutations in (2'16). In the case of identical permutation f-/o, n 
Kronecker's symbols in (2'16) give 

(i=1,2,"',n) 

because E;'.m(f-/o) = 1 (1 ~ I < m~ n). Hence we have 

n 

Un* U"iql, q2, "', qn>=a% .. ·.qnIT a~iiO>=iql, q2, "', qn>. 
i=l 

In this way, (2'5a) has been established in the case g--->=. 

(b) Proof of (2'5b) 
From (2'3a, b) one has 

Un U~iSI, S2, .. , ,Sn > 

n n n n 

X D a* i:. P;,jH/ D aq/ D a~i D a ~Pi.iH,iSI, S2, ... s,,> . 
l=l j=l t=l z=l z=l ~=~ 

i*i .1*! 

Noting that 

n n " 
aq,'.···.qn'aq .. · ... qnIT aq( IT a~,iO>= IT Qq/,qiio> , 

i=l i=l i=l 

(2·21) 

(2·22) 

(2'23) 

which is valid under the restriction for the summations in (2'23), one has 
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1804 S. Sasaki and T. Kebukawa 

n n n n n 

aqj,,. .. ,qn,aq,, ·,qn IT aq( IT a~i IT aPil 5" ... , Sn> = IT Oq(,qi IT aPil 5" ... , Sn> , 
i=l i=l i=l i=l i=l 

(2-24) 

for q,'-:£q2'-:£"'-:£qn' and q,-:£q2-:£···-:£qn. Use of (2-24) in (2-23) gives 

UnUn*ls" ... , Sn>= ~ (Jr/2tn(n-') , ~ .. 
ql~q2···:;£qn {Pi,j.Pi,j;l~l<J;:,in} 

n n 

X IT a*~ P;.jHiIT a~PiJHils" ... , Sn>. 
i=l ~~} i=l ~;~ , 

(2-25) 

According to the formula A in the Appendix the expression (2 -25) can be rewritten 
as 

n n 

X D a*~p;.j+qiD a~PiJ+qils" ... , Sn>. 
1=1 j=l z=1 j=l 

j*i }*i 

Now let us change the summation variables in (2-26) as 

n 

qi+ ~Pi,j--> ti , 
j=l 
J*i 

(i=1,2, .. ·,n) 

and introduce the new variables given by 

(1-:£i<j-:£n) 

Then, the expression of (2 -26) is rewritten as 

UnUn*ls" "'Sn>=(Jr/2)-n(n-1)(1/n!) ~ ~ 
tb···,tn {pi,j,ri.i; l~i<j~n} 

n n 

X D a* ~riJ+tiIT atils" 52, ... , Sn>, 
1=1 j=l 1=1 

j,h 

(2-26) 

(2- 27) 

(2-28) 

(2-29) 

where we have used E i,j = 1 (1-:£ i < j -:£ n). Carrying out the sums over the varia­
bles pi,j (1-:£ i<j-:£n) in (2-29) with the aid of the formula (2-14), we have 

UnUn*ls"52,"', Sn>=(1/n!) ~ ~ 
t1.· ... t n {riJ;l~i<j;;;;n} 

n n 

X IT OriJ,oITa*~riJ+tiITatils"S2,"',Sn> 
l;;;;.i<};;;;,n i=l j=l i=l 

J*i 
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One-Dimensional Many Boson System. III 1805 

n n 

=(1/n!) ~ IT at, IT adsl' S2, "', Sn>. 
tl .. ··.tni=l ;=1 

Here noting the formula B in the Appendix for 1=0, one gets 

(2-30) 

Thus the equality (2· 5b) has been justified for infinitely large g. 

In this way, we can conclude that the transformation operator (2'3a, b) for 
n-boson system is unitary operator in the case g-->=, and that the normalization 
f t (3 . ( /2)-n(n-I){2' thO ac or ql.q •. ···.qn IS 7r In IS case. 

2.3. Unitarity of Un in the case of finite coupling constant 

In § 2 of II, we have established the orthogonality of the exact eigenstates in 
the case of finite coupling constant g. From this result, one has 

n 

< l[I'ql·.q2 ... ·.qn·il[l'qloq ... ··.qn> = IT 0 q/.q, . 
i=l 

Substitution of (2'4) in (2'31) gives 

n 

<q/, q2', "', qn'i Un * Uniql, q2, "', qn> = IT Oq/.q, 
i=1 

(2'31) 

(2'32) 

for any two free eigenstates iq/, q/, "', qn'> and jql, q2, "', qn>. Thus the eQuali­
ty (2'5a) holds in the case of finite coupling constant g. 

On the other hand, the condition (2·5b) for completeness of the set of the 
exact eigenstates (1· 2) unfortunately cannot be verified for finite coupling con­
stant g. If one notes that all eigenstates (1·2) for finite g approach continuously 
their limiting ones for g --> =, it may be plausible to conclude that the completeness 
condition 

n 

<ql', q2', "', qn'iUn Un*/ql, q2, "', qn>= ITOq/.q" 
i=l 

is valid even for the case of finite g. 

(2·33) 

From (2'32) and the plausible conjecture (2'33), we may regard the operator 
Un for any positive g to be unitary operator in n-boson system. 

§ 3. Unitary transformation for the system 
with arbitrary number of bosons 

The purpose of this section is to construct the unitary operator U for the 
system composed of arbitrary number of bosons, on the basis of the unitary 
operator Un for n-boson system, given by (2'3a, b). The conditions which should 
be imposed on this unitary operator U are given as follows: 
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Ulo)=lo) , 

S. Sasaki and T. Kebukawa 

Udlo)= aplO) , 

(3·1a) 

(3'lb) 

where the conditions (3·1b) come from the facts that the free states 10) and aplO) 
themselves are the eigenstates of the total Hamiltonian (I. 1). 

Now we assume that the unitary operator U can be expressed in the following 
form: 

00 

U=l+~Xn (3'2) 
n=2 

and 
n-I 

Xn= Un+ ~ hn(m) ~ aPI"'aPn-mUmaPI"'aPn-m 
m~2 PJ,P2 .. ··.Pn-m 

(3'3) 

Then it can be readily seen that the operator U satisfies the conditions (3·lb). 
The expansion coefficients hn( m) can be determined by the condition (3'la) in the 
following way. First observe that xllsI, ''', Sn)=O for l~n+1. Then, using 
(3·2) in (3'la), one gets the relation 

n-I 

Xnlsl, "', Sn) =( Un -1- ~ Xl)lsl, "', Sn) . 
1~2 

(3'4) 

Substitution of (3'3) in the left-hand side of (3'4) gives 

n-I 

XnISI, "', Sn>={ Un+ ~ hn(m) ~ aPI'''aPn_mUmaPI'''aPn_m 
m=2 Pv··,Pn-m 

(3'5a) 

and introduction of (3'3) into the right-hand side of (3'4) yields 

n-I I-I 
={ Un -1- ~ [Ul + ~ hl( m) ~ aPI'''aPl-m UmaPI'" apl-m 

1~2 m~2 PJ,· ... Pl-m 

n-) 

-~(I/(n-t)!) ~ aPI'''apnaPIUlaPI'''apn_l 
1~2 PI ... ·.Pn-l 
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One-Dimensional Many Boson System_ III 1807 

n-1 
- ~ hl(O)(l/ (n-l)!) ~ apl--- aPnaPl--- aPn}IS1, ---, Sn> , 

1=2 Pj,···,Pn 
(3·5b) 

where the second equality is due to the Formula B, 

which is verified in the Appendix. Comparison of (3·5a) and (3·5b) gives the 
relations: 

hn ( n -1) = - (l/ 1 !), 

n-1 
hn(m)=-(l/(n-m)!)- ~ (l/(n-l)!)hl(m) for 2~m~n-2, 

l=m+l 

n-1 
hn(O)=-(l/n !)- ~(l/(n-l)!)hl(O). (3.7) 

1=2 

The solutions of Eqs. (3.7) are given by 

hn(m)=(_1)n-m/(n-m)! for2~m~n-l, 

hn(0)={(_l)n-1/(n-l)1}+(-l)n/n 1, 

(3·8a) 

(3·8b) 

The fact, that the solutions (3·8a) and (3·Sb) satisfy Eq. (3·7) certainly, can be 
confirmed in the following way: 

n n 

{ ~ hl(m)/(n-l)!}+l/(n-m)!= ~ [(_1)I-m/{(n-l)!(l-m)!}] 
l=m+l l=m 

(3·ga) 

n n 
{~hl(O)/(n-l)!}+I/n !=~[(_1)1-1/{(n-l)!(l-1)!}] 

1=2 1=1 

(3·9b) 

where 0 ! denotes 1. In this way the operator U is completely determined as 

(3·10a) 

The hermite conjugate operator U* is 
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1808 S. Sasaki and T. Kebukawa 

Unitarity of the operator U is verified in the following way. 

U*IO>=lo> , U* ap *10> = ap *10> , 

u*ls1, "', Sn> = Un *ls1, "', Sn> , 

(3'10b) 

First note that 

(3'11) 

(3'12) 

which are readily confirmed by using (3'6), (3'8a, b) and (3'9a, b). Hence, the 
combinations of (3'lb) and (3'11) and that of (3'la) and (3'12) give 

U* ulo> = 10> , UU*IO> = 10> , 

U* Uap *10> = ap *10> , UU* ap *10> = ap *10> , 

(3'13a) 

(3'13b) 

(3 '13c) 

respectively where unitarity of the operator Un for n-boson system has been used 
in (3·13c). The relations (3'13a, b, c) clearly mean that 

U*U=l and UU*=l, (3'14) 

since all of the states 10>, ap *10> and lSI, "', Sn> (n ~ 2) form a complete set for the 
states of the system with arbitrary number of bosons. 

In closing this section, we should point out that the operator U satisfies the 
following commutation relations: 

[U,N]=O, [U, Ptot]=O, (3'15) 

where N and ?tot indicate the total number operator and the total momentum 
operator defined, respectively, by 

N=~ ap*ap, 
p 

Ptot=~ pap*ap. 
p 

(3'16) 

The relations (3'15) can be easily confirmed by using (2'3a), (3'10a) and (3·16). 

§ 4. Exactly dressed particles and condensation 

In § 3 the unitary operator U has been successfully constructed to be given by 
(3·10a). The unitary transformation produced by the operator U leads to the 
introduction of the creation and annihilation operators Ap * and Ap defined by 

At;= Ua'PU*, (4·1) 

These operators At; and Ap obey evidently the canonical commutation relations: 
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One-Dimensional Many Boson System. III 1809 

[Ap, Ap]= U[ap, ap]U*=O'p,q, 

[A p, A~]=O. (4'2) 

Furthermore, the following commutation relations are easily derived from (3'15) 

(4'3) 

(4'4) 

Now let us consider the vacuum state 110:3> defined by 

(4'5) 

Then, it is easily seen that 

110:3>= 10> , (4'6) 

because the bare vacuum state 10> satisfies (4'5) from (4'1) and (3'11). Multi­
plying the state 10> by the operators Aq *, one can construct a complete orthonormal 
set as 

(4'7) 

which are readily seen to be the exact eigenstates of the Hamiltonian (1.1). This 
is due to the following equations: 

(4'8) 

If we operate Aq* to any eigenstate (4'8), we have again the eigenstate of the 
total Hamiltonian (1'1) in which the particle number is increased by one and the 
total momentum is increased by q as readily seen from (4'3) and (4'4). From 
this fact, one can give the following interpretation for the new operators Aq * and 
A q. "The operators Aq * and Aq are the creation and annihilation ones of 
a bose particle (with momentum q) which has been dressed exactly with the 
interaction cloud." Hence the bose particles produced by the operator Ap * can 
be called" the exactly dressed bosons." In this way it can be seen that the 
quantum numbers ql,"', qn introduced to specify the eigenstate IlJfq,,.··,qn> in I 
indicate the momenta of the exactly dressed bosons, and they are in this sense 
certainly appropriate quantum numbers. 

Here let us reexpress the total number operator N, the total momentum 
operator Ptot and the total Hamiltonian (1.1) in terms of the new operators Aq * 
and A q . By virtue of (3'15), the operators Nand Ptot are expressed as 

(4'9) 
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1810 S. Sasaki and T. Kebukawa 

(4·10) 

Next we intend to rewrite the original total Hamiltonian (1·1) in terms of the 
operators A~ and A q. By denoting the exact eigenstate IlJfq .. ···'qn> as 

n 

Ilql, qz, "', qn?>=aq".··,qnnA~,io>=llJfq,,.··,qn>' (ql~"'~qn) 
i=l 

(4·11) 

the eigenequation becomes 

(4·12) 

in which 

H(A*, A)=H= U*UH(a*, a)U*U= U*H(A*, A)U, (4·13) 

where H( a*, a) indicates the functional form of the total Hamiltonian (1.1) with 
respect to the operators aq* and aq. The functional form H(A*, A) of the total 
Hamiltonian can be easily obtained by the same method as that for the construc­
tion of the unitary operator U in § 3. For this purpose, let us introduce such 
operators Hn(n~1) that 

(4·14) 

in which EP1"",Pn is defined by making use of the eigenenergy Eq,,.··,qn of (1·4) as 

(4·15) 

where the permutation /1=C.\:;::.:J indicates the rearrangement of the momenta 
PI, P2, "', pn to the nondecreasing order of magnitude of the momenta, namely, 

PI'1~PI'2~"'~Pl'n' 
Now we assume that the total Hamiltonian H(A*, A) is expanded in the 

following form: 

H(A*, A)= ~ Yn, (4·16a) 
n=l 

The expansion coefficients C/}n( Z) are determined by the conditions, 

H(A*, A)lIql, ... , qn?>=Hnllql, ... , qn?>, (n~1) 

and the results are given by 

(4·16b) 

(4·17) 

(4·18) 
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One-Dimensional Many Boson System. III 1811 

From (4 ·18) and (4 ·16a, b) Eq. (4 ·17) is derived as follows: 

n-l n l-1 

= { H n + ~ HI + ~ ~ « ~ 1) 1- m / (l ~ m) ! ) 
l~l 1~2m~1 

n-l{ 1 n (~l)l-m } 
=[Hn+ ~l (n~m)! +l~~+l(l~m)!(n~l)! 

(4·19) 

where we have used (3·9a) and the formula (3·6) in which the operators ap* and 
ap are replaced by the operators Ap * and A p, respectively. In this way, the 
explicit form of the Hamiltonian ii(A*, A) expressed in terms of the creation and 
annihilation operators Ap * and Ap of the exactly dressed bose particles is written 
as 

(4·20) 

It should be noted that the Hamiltonian iJ(A*, A) has the diagonalized form 
which is constructed by the terms of the products of the number operator Ap * A p. 

As has been shown in detail in § 3 of II, the ground state in our interacting n­
boson system has been given by 1 lJfo.o ..... o> , and then the expression of the ground 
state indicates the existence of zero-momentum condensation. Now this can be 
exhibited explicitly as 

IlJfo•o ..... o> = (1/ /llT)( Ao *)n 10> , (4·21) 

thanks to the successfull introduction of the operators Ap * of the exactly dressed 
bose particles. Thus we can conclude that the ground state in our interacting n­
boson system is the condensed state of n exactly dressed bose particles with zero 
momentum. 

§ 5. Limiting properties for g--->O 

In this section we first investigate the limiting property of k i •j for g ---> O. 
From the limiting property we will find that the unitary operator U approaches the 
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1812 S. Sasaki and T. Kebukawa 

identity operator in the limit g -> O. Secondly we will prove that ki,j cannot be 
expanded in the power series concerning g when qi = qj. 

We start to verify the limiting properties 

limki,i =0, 
g-O 

for any set {q;} of the momenta, where ki,j are given by (3·7) in 1. 
Proof 

(5' 1) 

It has been proved in § 3 of I that the (n-1) simultaneous equations «3·12) 
in I) determine uniquely the (n - 1) parameters L1 i, and then the n ( n - 1) / 2 
quantities ki,i are obtained from the parameters L1 i. In order to prove (5'1), 
hence, we need to clarify the limiting behaviors of L1i for g-> O. This is accom­
plished as follows. First note the inequalities 

Fi(a, a, "', a) = a - (2h/ L)[cot- I« h/mg)ia )+cot- I{( h/mg)( n - i)a}] 

:;;;'a-(4h/L)cot- I{(h/mg)na}, (for a~O, i=l, 2, "', n-1) 

(5'2) 

where the first equality has been derived from substitution of a( ~O) for all L1i in 
the function Fi (L1I, L12, "', L1n-d (see (3·11) in I). Here noting that the inequality 

cot-I x> (x + 1)-1 , (for x ~O) (5·3) 

holds due to the restriction for the region of the function cot-I x given in (3'3) of 
I, we have 

Fi(a, a, ''', a)<a-(4h/L){(h/mg)na+I}-I. (5'4) 

Since the right-hand side of (5·4) becomes zero when 

(5'5) 

one gets 

(i=1, 2, "', n-1) (5'6) 

Here remember the method by which it has been proved that there exist the 
solutions L1 i (51, 52, "', 5n-d in the simultaneous equations (3·12) in I, and change 
the Step 1 in the method into the following statement. 

(Step n Let L1P) (i=1, 2, "', n-1) be al. 
The other steps can be accomplished in the same way as in lowing to the 

inequalities (5·6). The monotonically increasing sequences {L1P), L112), ... } are, 
therefore, obtained and converge to the limiting values L1i( 51, 52, "', 5n-d which 
prove to be the roots of the simultaneous equations. The monotonically increas· 
ing properties of the sequences {L1P), L112), ... } produce the inequalities 
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One-Dimensional Many Boson System. III 1813 

(5·7) 

Consequently we have 

lim(Lld g) ;;::;:lim( m/ 2nh){ )1 + (16nh 2 
/ mgL) ~ l} == , 

g~O g~O 
(5·8) 

which yields the limiting properties (5·1): 

where we have used (3·7) in I. Thus the proof of (5·1) has been established. 
N ow taking account of the limiting properties (5·1) in the functions d( Pu ; 

ku) in 0·3), one has 

limd( Pi,j; ki,j) = 0 Pi,j,O , 
g~O 

(5·9) 

since the momentum Pi,j has discontinuous values «27rh/L)xinteger). Substitu­
tion of (5·9) in (2·3a) gives 

(5·10) 

which yields such a limiting property of Xn in (3·3) as 

n n n 
limXn=~{(~1)n-m/(n~m)! m!} ~ Dap,Dap,=O. (n;;::;:2) 
g-...o m=O Pt>P2.···,Pnl=1 1=1 

(5·11) 

Thus we find from (3·2) 

limU=l. (5·12) 
g~O 

This means that the exactly dressed operators Ap * and Ap do approach the bare 
operators ap * and ap, respectively, in the limit 9 --> 0: 

limAp*=lim (Uap U*)= ap, limAp= ap. 
g~O g~O g~O 

(5·13) 

We next show that ki,j cannot be expanded in the power series concerning 9 

when qi=qj. From (2·26) in I, 

n 

cot(Lki.)2h)=(h/mg){2ki,j+ ~ (ki,l~kj,d}' 
1=1 

l*i,j 

(5·14) 

where use of qi = qj has been made. Let us, now, assume that ks,t can be 
expanded in the following form: 
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1814 S. Sasaki and T Kebukawa 

(l~s<t~n) (5'15) 

where dn indicate the expansion coefficients. From the limiting property (5'1) in 
g -> 0, one can see that d~~ = O. Hence substitution of (5 '15) in the right-hand side 
of (5'14) gives the convergent result as 

n 

lim(r.h.s. of (5'14))=(h/m){2c~:)+ ~ (d:l~d:l)}. (5'16) 
g-O l~l 

l*i,j 

On the other hand, the left-hand side of (5'14) is divergent due to (5'1) as 

I· t(Lki,j)~{+oo, lmco -- ~ 

g-O 2h ~OO . 

(i> j) 

(i<j) 
(5'17) 

These facts (5'16) and (5·17) contradict with each other, and therefore ki,i can 
be never expanded in the form of the power series of g when qi = qi. 

From the above result, it seems that the unitary operator U cannot be 
expanded in the power series concerning g, because the summations with respect 
to qi and qj in the expression (2· 3a) of Un include the case qi = qi. Therefore one 
does not reach the concept of the exactly dressed operators A/ and Ap by the 
perturbation method. 

The above fact can be explained by the following physical consideration. Let 
the plural momenta qil> qi" ... , qil among the momenta ql, q2, ... , qn of n bare bose 
particles take the same value qil ( = qi, = ... = qiJ. Then, the kinetic energies of 
these plural bare particles at the coordinate system with the velocity qi.! m become 
zero, and hence the interaction energies among them cannot be neglected even if 
the coupling constant g is negligibly small. This implies the impossibility of the 
expansion of Un concerning g. 
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Appendix 

[Formula A] 

~ . ~ n {d(p;,i; ~J[h/L)d(Pi,j; ~J[h/L)} 
Ql:;a···;£Qn {Pi..i,Pi,j;l~i<j-;;;;n} l~l<J~n 

n n 

X n a*:E P;..j Hi IT a:E P;..jHi 
1=1 i=l t=1 j=l 

j*i J*i 
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(A-I) 

Prior to the verification of (A -1), let us prove the following Lemma. 

Lemma 
When ql is equal to ql+l + 2J[h/ L, 

n n 

X JI a* ~P;J+q,JI a I:Pu+q,=O. 
1=1 j=l 1=1 }=l 

i*i i*i 

Consider such a permutation fi as 

( 
1,2, "', n ) 

fi= , 
fil, fi2, "', fin 

fii=Z for i*l, l+1 

fil = 1+1, fil+l = I , 

and denote the transformed variables p~,,f'j by 

Note that 

II d(p;,J; -J[h/L) = II 
l;;;'i<j;;;:;,n (i,j)oFU,l+1) l;i;.i<i;5,n 

then the left-hand side of (A-2), referred to as B, is expressed as. 

n 
X JI a*~p7.J(p)+q,a*I:p;'+l.J(f.<)-P;:I+dP)+ql 

t=1 j=i j=i 
i*l,l+l i*i i*l,l+l 

n 

X a* I: pL (p)+PZ.I+I (P)+ql+l JI a£: Pu+q, , 
j=l 1=1 j=l 

i*l,l+l j*i 

in terms of the variables P~,Afi), where we have used 

J[h/L 

The relation ql=ql+l+2J[h/L and the replacement of P~,l+l(fi) by 

(A -2) 

(A-3) 

(A -4) 

(A-5) 

(A -6) 

(A-7) 
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1816 S. Sasaki and T Kebukawa 

n n 

X D a* ~ P:J(p)+qiD a ~PiJ+qi' 
z=l i=l z=l j=l 

(A '8) 
j*i }*i 

Rewriting here the summation variables p~,AfJ.) by p~,j, we can find the Lemma 
(A ·2). 

Now we turn to the verification of (A'1) on the basis of the Lemma (A, 2). 
The Lemma (A, 2) leads to 

A= L: 
ql~q2~···~ql-l~ql+l +21l' hI L;;:;'Ql+2+21C hI L~ .. ·;aqn+21C hI L 

xL:. L: 
ql {Pi.i.Pi,j;l~i<j;£n} 

Ql-l';;;;:Ql;;;iQl+l+27rk/L 

(A '9) 

where A indicates the left-hand side of (A·1). Consider here a permutation fJ. 
given by 

fJ.=C,2 •... ,t-1, t, l+1, ... ,n-1,n), 
1,2.''', l-l, 1+1,l+2,''', n, I 

and denote the momenta P~i'p;, Ppi,p; and qpi by 

Here note that 

p~,j = P;:j and p;,j = P;,j , (1:£ i < j:£ l-l) 

P;'.l == P;::n and P;,l = P7.n , 

Rewriting (A·9) in terms of P;:j, p~,j and q;' by using (A'12), one has 

A = "" .. "L:.. ~. m .. L: . . 
ql ;5.Q2 ;£···&.ql-l;£ql +21ChIL:a"';£Qn_l+ 21Ch / L q~'_1;;;;.q;;~ql'+27rh/L {PiJ'Pi,J ;l;£z<J;£n} 

1-1 

X I1{d(p;:n; -lfh/L)d(p~,n; -lfh/L)} x 
i=l 

(A'10) 

(A'11) 

(A'12) 
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One-Dimensional Many Boson System. III 1817 

n~l . 

x IT {d(p7:n-2Jrh/L; -Jrh/L)d(pj,n-2Jrh/L; -Jrh/L)} 
j~l 

n n n 

X na*~pt,j+Q{,na~p;:,j+'4'" 
1=1 ~;~ 1=1 :}~} (A -13) 

where the same relation as (A -7) has been used. The replacement of pj:n and PJ.n 
(j= 1, 1+1, '''n-I) by pj:n+2Jrh/L and pj,n+2Jrh/L (j= 1, 1+1, "'n-I), res­
pectively, gives 

A="" ""~ " ""~" "'''~ .. ql ~q2 ~"':aql-l ;;;,ql +2TCh/L;;;'···;;;'Qn_l+2Trh/L ql-l~qn ;;;,qt+27rh/L{Pi.J .Pi.,i;l:az<J;;i,n} 

n-l 
X IT a* ~p7~ +q7+27rhIL a* .!},p;:,j+q~-(27rhIL)(n-l) 

i=l .i=l }=1 
J*i i*n 

[-1 n-l 

X n a.!}, p!,j+q 7 n a.!}, p7,j +q! +27rhIL a :f;P~,j+q ~ -(27rhIL)(n-l) , 
t=1 J=l z=l ;==1 j=l 

J*l i*i j*n 

(A -l4) 

The change of summation variables in (A -14) given by 

q;; -(2Jrh/ L)( n-l)--> qn (A -15) 

leads to 

n n 

X n {d(P~.J; -7rh/L)d(Pi.J; -Jrh/L)}na*~p;,j+QiITa:f;PU+Qi' 
l;;i,z<J:an 1=1 j=l 1=1 j=l 

j*i j*i (A-16) 

The above result (A -16) means that the original region (which is qn-l - 2Jrh/ L 
<qn) of the variable qn in the left-hand side of (A-I), has been transformed 
into 

where we have made use of the fact that qn=(2Jrh/L)x integer. Adding all 
regions of (A-I7) for 1=1,2, ''', n-l to the original region produces 

-=~qn~=, (A-IS) 

Hence we obtain 

 at O
saka D

aigaku N
ingen on A

pril 3, 2014
http://ptp.oxfordjournals.org/

D
ow

nloaded from
 

http://ptp.oxfordjournals.org/
http://ptp.oxfordjournals.org/


1818 S. Sasaki and T. Kebukawa 

n n 
X d(pi,j; - 7rh/L)} IT a* f:P;,j+q,IT a f:PiJ+q,. 

i=1 j=l i=1 j=l 
i*i i*i 

(A'19) 

A similar extension of the region for all variablt:;,s qi leads to the establishment of 
the formula A. 
[Formula B] 

For any state 151, 52, "', 5n> in noninteracting n-boson system 

holds. 
proof 

The state 151, 52, "', 5n> can be written as 
II 

151,52, "', 5n>=Q's"s2,,,,,snIT(a;,)M'lo> , (y;;:;;; n) 
i=1 

(l< n) 

(B'l) 

(B·2) 

where the momenta ti indicate different ones to each other among 51,52, "', 5n. 
It anyone of the momenta ql, q2, "', ql is not equal to all of the momenta tl, t2, "', 

til, then, both sides of (B.l) vanish, namely, the equality of (B'l) holds in this 
case. In other case, 

II 

aq,'" aql = IT (at,)L, 
i=1 

holds. Then the left-hand side of (B.l) becomes 

II 

[l.h.s. of (B'l)]=Q'S""',SnIT{Mi !/(Mi-L)!}(aUM'-L'iO> , 
i=l 

and the right-hand side is 

[r.h.s. of (B·l)]=Q's, ... .sn[(n-l)!]-1 

(B'3) 

X ~ * * IT
n 

Mi ! (* )M.-L·lo> 
L....J ap,···aPn-Iap,"·aPn_l. (M.-L.)! at, " . 

Plo···.Pn-l 1 = 1 Z l. 

(B'4) 

In the summations over PI, P2, "', pn-l on (B, 4), the nonvanishing contributions 
come from the following cases, where 

II 

ap,'" apn-l = IT (at,)M,-L, 
i=l 

holds, and the number of the cases is 

II 

(n-l)! IT [(Mi- L)!]-I . 
i=1 

(B'5) 

(B'6) 
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Substituting (B-S) and (B-6) in (B-4), we have 

lJ lJ 

X n(at,)Mi-Lin[Mi 1{(Mi-L;)!}-1(aiJMi- LiJlo> 
i=l i=l 

This result (B-n is equal to (B-3), namely, the left-hand side of (B-l). Thus 
Formula B has been established. 
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