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Elastoplastic Description for Friction Behavior of Interaction of 

Solids† 

 
HASHIGUCHI Koichi*, TSUTSUMI Seiichiro** 

 
Abstract 

The subloading surface model is capable of rigorously describing the friction phenomenon between solids. In 
addition, it provides high efficiency in numerical calculation since the stress is attracted automatically to the yield 
surface. The model possesses the high capability of describing uniformly and rigorously the elastoplastic 
deformation and interaction of solids. This fact is analyzed and deliberated in this article. 
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1. Introduction 
    A subloading surface model in the framework of the 
hypoelastic-based plastic constitutive equation is shown, 
which is based on the natural postulate that the plastic 
strain rate develops as the stress approaches the yield 
surface, describing pertinently the plastic strain rate 
induced by the rate of stress inside the yield surface. In 
addition to that, the pertinence and the generality for 
descriptions of elastoplastic deformation/sliding behavior 
of solids and the adaptability to the numerical calculation 
are materialized in the subloading surface model. 
Therefore, the subloading surface model would be 
regarded as providing the basic structure of interaction and 
has been studied briefly in this article. 
 
2. Subloading-friction model 

It is historically widely known that a friction 
resistance exhibits first a high friction, called the static 
friction, and thereafter tends to a low friction, called the 
kinetic friction. Further, it is also recognized that the static 
friction recovers if sliding commences again after the 
sliding ceases for a while.  

The above-mentioned fundamental phenomena in 
friction can be described pertinently by extending the 
concept of the subloading surface which has been applied 
to the elastoplastic constitutive equation.  
 
2.1 Decomposition of sliding velocity 

The sliding velocity v  is defined as the relative 
velocity of the counter body to the main body and is 
additively decomposed into the normal part nv  and the 

tangential part tv  to the contact surface as follows : 
= =n n vtt v vv v v n t    (1) 

where 
= ( ) = ( ) =

(= = ) =
n

n t

n

vt

v
v

v v n n n n v
n nv v v I v t

n
   (2) 

whilst n is the unit outward-normal vector of the main 
body and 

=

|| ||,    ( ,  || || 1)= = =0|| ||t

n

v v v

n

t
t t

v

v

n n

nt t t

v v
vv v

   (3) 

The minus sign is added for nv  to be positive when the 
counter body approaches the main body. 

Here, it is assumed that v  is additively decomposed 
into elastic sliding velocity ev  and plastic sliding 
velocity pv , i.e. 

= e pvv v    (4) 
Then, nv  and tv  are expressed by the elastic and the 
plastic parts as follows: 

= =,    
p p

n nn e ett tv vv v v v    (5) 
and thus 

= = ntn vt
e e ee e v vv v v n t    (6) 

= = pp p pp ntn vtv vv v v n t    (7) 

where 
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The contact traction vector f acting on the body is 
expressed by the normal traction vector fn and the 
tangential traction vector ft as follows: 

== fn n tf ftf nf f t    (12) 

where 
=

(= ) =

( ) ( )=

f

n n

nt t

f
f

n

f f f I n n f t

f n f n n n f
   (13) 

|| ||,    ( ,  || || 1 )= = =0|| ||t f f f

n

t
t t

f

f

n

nt t t

f
ff f

   (14) 

The minus sign is added for fn to be positive when the 
compression is applied to the main body by the counter 
body. 

Now, let the elastic sliding velocity be given by the 
following isotropic hypo-elastic relation. 

= ,   =e ee ev f f vC C    (15) 
where the second-order tensor Ce is the contact elastic 
modulus tensor given by 
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n and t are the contact elastic moduli in the normal and 
the tangential directions to the contact surface. 
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2.2 Normal sliding-yield and sliding-subloading 
surfaces 

Assume the following Coulomb-type sliding-yield 
surface with the isotropic hardening/softening, which 
describes the sliding-yield condition. 

( ) =f f    (18) 
 is the isotropic hardening/softening function denoting 

the variation of the size of the sliding-yield surface.  
In what follows, we assume that the interior of the sliding-

yield surface is not a purely elastic domain but that the 
plastic sliding velocity is induced by the rate of traction 
inside that surface. Therefore, let the sliding-yield surface 
be renamed as the normal-sliding surface. 

Then, based on the concept of the subloading surface 
described in the preceding sections, we introduce the 
subloading-sliding surface, which always passes through 
the current contact traction point f and retains a similar 
shape and orientation to the normal sliding-yield surface 
with respect to the origin of contact traction space, i.e. f =0. 
Let the ratio of the size of the sliding-subloading surface 
to that of the normal sliding-yield surface be called the 
normal-sliding ratio, denoted by  (0 1)r r . Then, the 
sliding-subloading surface is described by 

( ) =f rf    (19) 
The material-time derivative of Eq. (19) leads to 

( )
=

f
r r
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2.3 Evolution rules of sliding-hardening function and 
normal-sliding ratio 

Evolution rules of the isotropic hardening function 
and the normal sliding-yield ratio are formulated so as to 
reflect experimental facts. 
 
2.3.1 Evolution rule of sliding-hardening function 

The followings might be stated from the results of 
experiments. 
i ) The friction coefficient first reaches the maximal value 

of static-friction and then decreases to the minimum 
stationary value of kinetic-friction. Physically, this 
phenomenon might be interpreted to result from 
separations of the adhesions of surface asperities 
between contact bodies because of the sliding. Then, let 
it be assumed that the plastic sliding causes the 
contraction of the normal sliding-yield surface, i.e., the 
plastic softening. 

ii ) The friction coefficient recovers gradually with the 
elapse of time and the identical behavior as the initial 
sliding behavior exhibiting the static friction is 
reproduced if sufficient time has elapsed after the 
sliding ceases. Physically, this phenomenon might be 
interpreted to result from the reconstructions of the 
adhesions of surface asperities during the elapsed time 
under a quite high contact pressure between edges of 
surface asperities. Then, let it be assumed that the 
recovery results from the viscoplastic hardening. 

Taking account of these facts, let the evolution rule of the 
isotropic hardening/softening function  be postulated as 
follows: 

= 1 1)( ( )p
k sv    (21) 

where s and ( )k k  s  are the maximum and 
minimum values of for the static and kinetic frictions, 
respectively. is the material constant influencing the 
decreasing rate of under the plastic sliding, and  is the 
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material constant influencing the recovering rate of  by 
the elapse of time, whereas  is a function of absolute 
temperature in general. 
 
2.3.2 Evolution rule of sliding-hardening function 

Analogously to the evolution rule for the normal-
yield ratio R in the subloading surface model, we assume 
the evolution rule of the normal sliding ratio r as follows: 

|| ||( ) for = p prUr v 0v    (22) 
where ( )rU  is a monotonically decreasing function of   
r fulfilling the following condition. 

( )   for  = 0,
( ) 0       for   = 1,=

( ( ) 0     for  1).

r rU
r rU
r rU

   (23) 

 The function ( )rU  satisfying Eq. (23) can be simply 
given by 

( ) cot( )= 2r u rU    (24) 
 
2.4 Relation of contact traction rate and sliding velocity 

The substitution of Eqs. (21) and (22) into Eq. (20) 
leads to 
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Assume that the direction of plastic sliding velocity is 
tangential to the contact plane and outward-normal to the 
curve generated by the intersection of the sliding-yield 
surface and the constant normal traction plane  

= const.nf , leading to the tangential associated flow rule 
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by specializing p
vt  in Eq. (11) as 
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 ( )> 0  is a plastic multiplier describing the magnitude 
of plastic sliding velocity. 
The substitution of Eqs. (22) and (26) into Eq. (20) reads: 
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It is obtained from Eqs. (26) and (29) that 
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Substituting Eqs. (15)1 and (32) into Eq. (4), the sliding 
velocity is given by 
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The plastic multiplier in terms of the sliding velocity, 

denoted by the symbol , is given from Eqs. (33) as  
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The rate of contact stress vector is derived from Eqs. (4), 
(15)1, and (34) as follows: 
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     Therefore, the loading criterion is given as follows: 
( ):  > 0

=  :  otherwise

fp e cm

p

fv 0 C vf

v 0
   (36) 

 
3. Concluding remarks 

The constitutive equations based on the subloading 
surface concept are formulated within the framework of 
the hypoelastic-based plasticity and the applications to the 
descriptions of sliding phenomena of solids are shown. 
The salient features of the concept and the constitutive 
equations based on this concept are summarized as 
follows: 
1 ) It is capable of describing rigorously and concisely the 

friction phenomena between solids, describing the 
smooth reduction from the static to the kinetic friction by 
the sliding and the recovery of friction by the stop of 
sliding. 

2 ) It possesses the distinctive advantage that the stress is 
automatically attracted to the yield surface. Therefore, it 
enables us to adopt rather large incremental steps in the 
forward Euler numerical calculation without the 
incorporation of particular algorithms to pull back the 
stress to the yield surface. Further, the plastic strain is 
automatically attracted to the isotropic hardening 
stagnation surface for metals, for which it is difficult for 
the return-mapping projection to be exploited. These 
advantages would be activated in large scale finite 
element analyses solving a big global stiffness matrix. 
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Needless to say, infinitesimal increments must be input 
for the deformation analyses in the curved loading 
process and under a material rotation in numerical 
calculations not only by the forward-Euler method but 
also by the return-mapping scheme. 

Consequently, the physical and the mathematical 
pertinences and the numerical convenience are 
materialized in the subloading surface model. It is capable 
of describing the finite deformation and rotation under an 
infinitesimal elastic deformation. 
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