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Elastoplastic Description for Friction Behavior of Interaction of

Solidsf

HASHIGUCHI Koichi*, TSUTSUMI Seiichiro**

Abstract

The subloading surface model is capable of rigorously describing the friction phenomenon between solids. In
addition, it provides high efficiency in numerical calculation since the stress is attracted automatically to the yield
surface. The model possesses the high capability of describing uniformly and rigorously the elastoplastic
deformation and interaction of solids. This fact is analyzed and deliberated in this article.
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1. Introduction

A subloading surface model in the framework of the
hypoelastic-based plastic constitutive equation is shown,
which is based on the natural postulate that the plastic
strain rate develops as the stress approaches the vyield
surface, describing pertinently the plastic strain rate
induced by the rate of stress inside the yield surface. In
addition to that, the pertinence and the generality for
descriptions of elastoplastic deformation/sliding behavior
of solids and the adaptability to the numerical calculation
are materialized in the subloading surface model.
Therefore, the subloading surface model would be
regarded as providing the basic structure of interaction and
has been studied briefly in this article.

2. Subloading-friction model

It is historically widely known that a friction
resistance exhibits first a high friction, called the static
friction, and thereafter tends to a low friction, called the
kinetic friction. Further, it is also recognized that the static
friction recovers if sliding commences again after the
sliding ceases for a while.

The above-mentioned fundamental phenomena in
friction can be described pertinently by extending the
concept of the subloading surface which has been applied
to the elastoplastic constitutive equation.

2.1 Decomposition of sliding velocity

The sliding velocity V is defined as the relative
velocity of the counter body to the main body and is
additively decomposed into the normal part Vn and the

tangential part V¢ to the contact surface as follows :
V=Vn+Vt = n+Vity Q)
where
Vnh =(Ven)n = (N®N)V = —VpN
Vi =V -V, :(I—n®n)v=\7ttv} @
whilst n is the unit outward-normal vector of the main
body and
Vh=—nNeVy=-neV

- v (3)
V= [Vl te= g @ tv= 0 litvll=1)

The minus sign is added for ¥n to be positive when the
counter body approaches the main body.

Here, it is assumed that V is additively decomposed
into elastic sliding velocity V® and plastic sliding
velocity VP, i.e.

V=ve+vp (4)
Then, Vn and Vi are expressed by the elastic and the
plastic parts as follows:

Vn =VR+VE v =VE+VP (5)
and thus

V& = V§ + VE = SN+t (6)

VP =R +vP = ViPn+4t) @)
where
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VE = (V& «en)n = (n®@n)ve = —ven
Vf =v& —V§ = (I-n®n)ye :Vtets} ®)
Y = (VP n)n = (Nn®N)yP = -V’ N
VP =VP —VR = (1-n®n)yP :W’t&’} ©)
setting
VS =—ne Vi=-neVe
e (10)

e o v
ve =V, tSngW(ﬂ-tS: 0. [It7ll=1)

VP =—ne VP =-neyP

v (11)
Il¥f’|| (ety= 0 [it}l=1)

The contact traction vector f acting on the body is
expressed by the normal traction vector fn and the
tangential traction vector ft as follows:

VP =[P, t) =

f:fn +ft = nt’H- fttf (12)
where
fo=(nef)Nn=(N®N)f =— fyn
(13)

fi=f-fh=(-n®n)f = fttf
fn E—n0f

) e ) (14)
fo =Nl ts =TFT (nets=0, |Itsll=1)

The minus sign is added for fn to be positive when the
compression is applied to the main body by the counter
body.

Now, let the elastic sliding velocity be given by the
following isotropic hypo-elastic relation.

ve=Ct'f, f=C%v® (15)
where the second-order tensor C® is the contact elastic
modulus tensor given by

Ct=ann@n+ g (1-ne@n)

e-1-_1 1
Col=grnen+ a—t(l—n®n)

(16)
on and o are the contact elastic moduli in the normal and
the tangential directions to the contact surface.

ve = ainf'n +b:!’.t_?t’ f = an\_/ﬁ -f-O(t\_/E3 (17)

2.2 Normal
surfaces

Assume the following Coulomb-type sliding-yield
surface with the isotropic hardening/softening, which
describes the sliding-yield condition.

f()=u (18)
4 is the isotropic hardening/softening function denoting
the variation of the size of the sliding-yield surface.
In what follows, we assume that the interior of the sliding-

sliding-yield and sliding-subloading
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yield surface is not a purely elastic domain but that the
plastic sliding velocity is induced by the rate of traction
inside that surface. Therefore, let the sliding-yield surface
be renamed as the normal-sliding surface.

Then, based on the concept of the subloading surface
described in the preceding sections, we introduce the
subloading-sliding surface, which always passes through
the current contact traction point f and retains a similar
shape and orientation to the normal sliding-yield surface
with respect to the origin of contact traction space, i.e. f =0.
Let the ratio of the size of the sliding-subloading surface
to that of the normal sliding-yield surface be called the
normal-sliding ratio, denoted by r (0<r <1). Then, the

sliding-subloading surface is described by

fE)=ru (19)
The material-time derivative of Eq. (19) leads to
of o

0 b= rie (20)

2.3 Evolution rules of sliding-hardening function and
normal-sliding ratio

Evolution rules of the isotropic hardening function
and the normal sliding-yield ratio are formulated so as to
reflect experimental facts.

2.3.1 Evolution rule of sliding-hardening function

The followings might be stated from the results of
experiments.
i ) The friction coefficient first reaches the maximal value
of static-friction and then decreases to the minimum
stationary value of Kkinetic-friction. Physically, this
phenomenon might be interpreted to result from
separations of the adhesions of surface asperities
between contact bodies because of the sliding. Then, let
it be assumed that the plastic sliding causes the
contraction of the normal sliding-yield surface, i.e., the
plastic softening.
) The friction coefficient recovers gradually with the
elapse of time and the identical behavior as the initial
sliding behavior exhibiting the static friction is
reproduced if sufficient time has elapsed after the
sliding ceases. Physically, this phenomenon might be
interpreted to result from the reconstructions of the
adhesions of surface asperities during the elapsed time
under a quite high contact pressure between edges of
surface asperities. Then, let it be assumed that the
recovery results from the viscoplastic hardening.
Taking account of these facts, let the evolution rule of the
isotropic hardening/softening function x be postulated as
follows:

A= (=) vl £ (-

(1)

where u and # (#s 2 H 2 1) are the maximum and
minimum values of x for the static and Kinetic frictions,
respectively. xis the material constant influencing the
decreasing rate of x under the plastic sliding, and ¢ is the



material constant influencing the recovering rate of u by
the elapse of time, whereas & is a function of absolute
temperature in general.

2.3.2 Evolution rule of sliding-hardening function
Analogously to the evolution rule for the normal-
yield ratio R in the subloading surface model, we assume
the evolution rule of the normal sliding ratio r as follows:
f=UMIIVP| forvP =0 (22)
where U(r) is a monotonically decreasing function of
r fulfilling the following condition.
U(r) >+ for r=0,
u(r)=0
U(r)<o
The function U(r) satisfying Eg. (23) can be simply
given by

U(r) =dcot(5 )

forr =1, (23)

for r >1).

(24)

2.4 Relation of contact traction rate and sliding velocity
The substitution of Egs. (21) and (22) into Eq. (20)
leads to

N

(-4} amnve

Assume that the direction of plastic sliding velocity is
tangential to the contact plane and outward-normal to the
curve generated by the intersection of the sliding-yield
surface and the constant normal traction plane

(25)

fn = const., leading to the tangential associated flow rule
VP = jt) MevP=0) (26)
by specializing t{ inEq. (11) as
(1-nem )
L= (27)

||<'—n®n>afT(I)||

/% (>0) is a plastic multiplier describing the magnitude
of plastic sliding velocity.
The substitution of Egs. (22) and (26) into Eqg. (20) reads:

St

(28)
ve(- ) o s u
i.e.
aag)'?:i mP+mc¢ (29)
where
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mP = (f--1) r + g(r)u (30)

m¢ Eg(l—ﬁ—s)r(zo) (31)
It is obtained from Eqgs. (26) and (29) that

. 6f(f) of _mc afT(p.?_mC

A= mp , VP = =7 td (32)

Substituting Egs. (15): and (32) into Eq. (4), the sliding

velocity is given by
of
#’f —mC

_ ~e-1
=ctf+ mPp

tP (33)
The plastic multiplier in terms of the sliding velocity,

denoted by the symbol A , is given from Egs. (33) as

HE) e
of *Cv-m¢

af(f)

1= (34)

mP+—22" e COt)
The rate of contact stress vector is derived from Egs. (4),
(15)1, and (34) as follows:

HE) o
C*V—m
f= ce( of ) (35)
<mp+3f(f) etp>

Therefore, the loading criterion is given as follows:

P _qn. OfF(f)
v ¢O'_6*f—

ctv-mc>0

(36)
vP =0: otherwise

3. Concluding remarks

The constitutive equations based on the subloading
surface concept are formulated within the framework of
the hypoelastic-based plasticity and the applications to the
descriptions of sliding phenomena of solids are shown.

The salient features of the concept and the constitutive

equations based on this concept are summarized as

follows:

1) Itis capable of describing rigorously and concisely the
friction phenomena between solids, describing the
smooth reduction from the static to the kinetic friction by
the sliding and the recovery of friction by the stop of
sliding.

2 ) It possesses the distinctive advantage that the stress is
automatically attracted to the yield surface. Therefore, it
enables us to adopt rather large incremental steps in the
forward Euler numerical calculation without the
incorporation of particular algorithms to pull back the
stress to the yield surface. Further, the plastic strain is
automatically attracted to the isotropic hardening
stagnation surface for metals, for which it is difficult for
the return-mapping projection to be exploited. These
advantages would be activated in large scale finite
element analyses solving a big global stiffness matrix.
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Needless to say, infinitesimal increments must be input
for the deformation analyses in the curved loading
process and under a material rotation in numerical
calculations not only by the forward-Euler method but
also by the return-mapping scheme.

Consequently, the physical and the mathematical
pertinences and the numerical convenience are
materialized in the subloading surface model. It is capable
of describing the finite deformation and rotation under an
infinitesimal elastic deformation.
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