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CHAPTER O

INTRODUCTION

The failure of statistical-mechanical ideas to make much headway in biology
has some bearing on the notions of reductionism which are prévalént in biology.

—

For statistical mechanics is one of the rare examples of a successful
reductionist theory in physics; it allows us to explain phenomené‘ét'a»highe;
dynamical level (the'gas level, say)rin termsrof dynamical eVents at a lower
level (the molecular level). The current postulate of‘redu¢ti9nism i? biology
is.that all.biological phenomena are ultimately éxplainable in molecular terms,
‘which means in particular that we must be able to pass both ﬁpward and down-
ward from any biological level to any other biological level.‘ Statistical
mechanics allows such a transition in physics between a.particular pair of
levels. The lack of success of these studies (e.g. between the molecular
aﬁd the epigenetic level; between the neural and behavioral level;.between
the population level and what may be called ﬁhe biotic leﬁel) may indicate
that the implementation of reductionism between pairs of biological levels
is, at the very least, a far more challenging problem thanAthé more sanguine
postulants of reductionism has believed (Rosen, 1970). Manf important aspects'
of biological activity are certain to be refractory to feductioﬁist techniques,
and must be treated holistically and relationally (Rosen, 1968);

In this thesis we develop a phenoﬁenological and holistic épproach to
_ the problem of biologcial rhythms. In some senée it is similar to thermo-
dynamics rather than statistical mechanics. We lean on topolog? and dynamical
system theory, which Has been developed dfamatically in theée two decades.

There are many biological OScillatoré at varioﬁs biological levels.
Circadian oscillators, biochemical oscillators; pacemaker neurons, bursting

neurons and the neural networks which discharge periodic outputs are used as
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examples. We do not try to study biochemical or molecular mechanism of these
oscillators. Rather we examine interactions between multiplersqillators,

" hierachical structures of oscillators and the synchronization.effect of external
forces. interactions between biological oscillators can be classified into }
three categories according to their temporal structure. Each of three is
studied in the following chapter.

Chapter 1 (Instantaneous Interaction). The durétion of interaction is
much shorter'than the periods Qf oscillatofs. In other words, an interna;
state variable of the oscillatoi is chopped into the output by.avvéry narrow
‘window of the émplitudef Interaction throwﬁxchemicalsynapses is an exampie;'

Chapter 3 (Diffusion Interaction). Interactionsbare diffusions of Some
internal state variables of the oscillator. Temporal structure of interactions
 is uniform. Interaction through electrical.synapses is én example. |

Chapner 2 kIntermediate Interaction). In chaptér 2 wé examine the
interaction which is neither instantaneous nor diffusion. Almost all

interactions in biology may belong to this category.



CHAPTER 1

TRANSIENT AND STEADY STATE PHASE RESPONSE CURVES OF BIOLOGICAL OSCILLATORS

1. 1 Ihtroductipn
The analysis of phase shifts resulting ffom discrete perturbatién of bio-
logical rhythms was devéloped and exploited by Pittendrigh and Bruce (1957)
and by Perkel and co-wofkers (1964). By these methods, they achieved
important insights into the entrainment behavior of circadian and neural
'rhyfhms, respectively. A phase response curve is a plot of a phase shift
against the phase when the perturbation is applied. Phase response curves
have been measured on various biological oscillators (e.g. circadian
pacemakers, biochemical oscillators (Winfree, 1975), pacemaking néurdns,
Abursting neurons (finsker, 1977) and human finger tapping neural networks
" (Yamanishi, Kawato and Suzuki, 1979)). |

There are two kinds of phase response curves according to as we measure
the phase shifts immediateiy or long after the perturbationf The former is
the firsf transient phase responée curve and fhe latter is the steady state
phase response curve. The steady state phase reéponse curves are utilizea
for sﬁudying'entraihment behavior of biological oscillators by external
forces or studying synchronization of the oscillators whiéh interact with
each‘other. Winfree (1970) pointed out that two differéﬁt types of steady
‘'state phase response cufves (i.e; Type O curve énd Type 1 curve) were
bmeasured in the phase resetting experiments of circadién rhyghms. Especially,“
he got the Type O curve in response to strong perturbation and got the Type 1
curve iﬂ response to weak perturbation for the Drosophila eclosion rhythm.
Moreover hevfound that thg medium perturbation which was applied at an
appropriate phase stopped the oscillation. Winfree (1967, 1970, 1973a) and

Pavlidis (1973) defined the phase response curves mathematically and éxplained
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the two tyées of steady.state phase response curves in a simple, speciél two-
dimensional dynamical system. We define the phase response curves in a
general way, and explain the difference between the two typgs by the homotopy
theory in sections 1.2 and 1.3. (Kawato 5nd Suzuki, 1978). We also prove |
fhat if a Type O curve is obtainea at a certain magnitude of pérturbation,
there exists at least one lower magnitude for which.the phase résponse curve
is not defined.

By the way, can wé examine the inner structure of a biologiéalescillator
by measurement of its phase response curve? If it is poséible, the quite
.phenomenological phase resetfing experiment can tell us about innerxr structurés.
-The steady state phase response curves are continuousvand have haiVe proper-— |
*ties. Oh the other génd, the transient phase response éurves are sometimes
‘discontinuous and have complex.properties. So, the steady‘staté éhése
response cﬁrves arereaSier to study than the transient phase response curves.
We examine whether or'not we can obtéin some informations or restriétions
about thé model equations which describe a biological é;cillator using only
its steady state and transient phase response curves. For an arbit:ary
limit cycle oscillator we can obtain an arbitrary steady staté phase'response
curﬁe by choosing a perturbea cycle appropriately. So, the steady state
phasé fesponse curve alone does not determine the aescribing equétions
althoﬁgh every part of the phase reséonse cufve can be informative»about
stages of the cycle. We must compare both kinds of phasé response curves to
get some information about inner structures. In séctions 1.6 and 1.7 we
study the phase response curves of Drosophila which were measufed by
Pittendrigh & Minis (1964) and prove that its circadian oscillator is not
a single oscillator with two variables. Moreover we show that a two limit

cycle oscillator model can simulate the Drosophila's phase response curves

(Kawato, 198l1a).



1. 2 Definition of phase response curves

Let us consider the biological oscillator which periodically causes some
referenee event (e.g; emergence of frﬁitflies Drosophila, spikes ef pace-
making neurons) with a period Tt (see Fig. 1). At the time of reference event{'
we set the phase 0§ zero. In the phase resetting experiment we apply the
perturbation, which iasts for duration T and ends at the'phase 0=¢ (T<1).
This phase ¢’is called an old phese. In consequence of the perturbation,
the i-th reference event after the pefturbation advances ot delays compared
with the i-th reference event in the unperturbed cese. We express this
.delay or advance by phese and call it the i-th phaee shift; A¢i, where A¢i
is positive for the phase advance. If the oscilletor ie stable, its period'
returns to 1 after a leng duration. So, A¢i has its limit A¢=}im Aéi; We
call A¢ a phase shift. Both A¢i and A¢ depend on the old phasel¢.‘ The i~th
.phase shift and the phase shift as functions of the old phase, A¢i(¢) and
A ($), are called the i-th transient phase response curve (transient PRC)
and the steady state phase;response curve {steady state PRC) respectively.
Next, we define the ieth fransient phase transition eurve (transient PTC),
-¢£(¢), and the steady state phase transition curve (steady staterPTC), ' (),

-as follows.

b1 (9)=6+00, (§) -  (mod 1)
- ()
B (8)=6+06 (9) | (mod 1)

¢' is the "new" phase caused by an application of the perturbation at the

old phase ¢.
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1. 3 Mathematical formulation of PRC and PTC

We redefine PRC and PTC within the framework of dynamical system theory. our
formulation is an extension of those by Winfree (1967; 1970, i973a) and
Pavlidis (1973). We assume that the oscillator in its free runﬁing state can
be described by thé following system of ordinary differential equatiohé (2)

on a sﬁooth n-dimensional manifold M or be described by its‘equivalent flow

¥ MxR->M.
o
dx/dt=F (x,0) (2) :WO(X,t):

where x is the n-dimensional vector which represents the inner state of the
-oscillator. We assume that the oscillation is stable against ﬁoise aﬁd
perturbation. Moreover wé assume the structural stabilityvof the system
(2). ‘So, the flow WO is assumed to have an elementary (hyperbolib)»stable
limit cycle vy with-a period t. Let 0 denote the Poinéaré map ofvthg limit
cycle f. The eigenvalues of DOX_,first partiél derivatives. of © at x on Y
.are often called the characteristic multipliers of Y; One says thaf Y is
an elementary {or hyperbolic) limit cycle if there are no characteristic
'multipliers of absolute value one.
Next, the oscillator under the perturbation of magnituderu is described

by the following equation (3) or its equivalent flow Wu:MXR+M.
dx/dt=F (x,1) . (3) ;‘i’u (x,t),
where p is magnitude of the perturbation. We assume that F(k,p) satisfies

appropriate regularity conditions with respect to (x,u). Note that (3)

‘coincides with (2) when U is zero. We assume that the perturbation lasts for



duration T and ends at the old phase ¢.

Definition 1, 1. If S is an arbitrary subset of M, then the stable set of S,

denoted WS(S), is defined as follows.

WO (S)={xeM; lim dis(¥ (x,t),¥ (S,t))=0},
0" 0
tHo M

where ‘PO(S,t)#{‘PO(y,t);y_éS}° The distance dis is the distance function for
M ) .
some metric on M. If the stable set is also a manifold, it is called a stable

manifold.,

Definition 1. 2. Let a phase map 6:y+sl be a homeomorphism such that for each
XEY, G(Wo(x,t))=e(x)+t/r(mod 1), where S1 is a circle of length 1. We set

. 8=0 at the time of the reference event.
The eventual phase map Ge:WS(Y)—>Sl can now be defined as follows.

Definition 1. 3. For an arbitrary yGWS(y), ee(y)=6(x) fbr x such tbat XeY
and yew® (x). That is lim dis(¥,(y, ), ¥, (x,£))=0.
tro M '

eé is a natural extension of 6. 'The existence of Ge.is ﬁot triviai.
It exists because y is an elementary stable limit cycle. See Hirsh and
Smale (1974) for the proof of existence. From the definition, for arbitrary
xéY, WS(X)ﬁ{yéM;ee(y)=9(x)}. The following tﬁeorem reéarding.the stable set
of each point x on y is well known (Guckenheimer, 1975). The‘stable manifold

of each point x on ¥y was ofiginally called "isochron" by Winfree (1967).



Theorem 1. 0. The stable set W° (x) of each xeyis i) a cross section of vy,
ii) a manifold diffeomorphic to euclidean space. Moreo&er, the union of the
stable manifolds Ws(x), x¢y, iIs an open neighborhood of y'and the stable

manifold of vy.

Definition 1. 4. An event surface ES is an (n-1)-dimensional cross section
of the flow in M, and is defined as follows. When the state point of (2)

crosses ES, the reference event is triggered.

In phase resettiﬁg experiments we define some reference poinﬁ in the cycle
of an oscillator andvdetermine phase of the oscillator by that special refer-
ence event, .So, one who is doing experiments determines the event surface
ES. For example, lét us assume that conéentratién of a chemical substance
has three peaks during one cycle of a biochemical oscillator. If we choose
some medium thfeshold for theAconcentration, there are six crossings of the
threshold during.one cyclé. Once we select the first upper crossing‘of the
threshold for the reference, we can easily extend this definition from limit
cycle (free running oscillation) to other orbits (perturbed oscillétions).
So, event surface ES corresponds to measurementvof the time by the man who
-does experiments.

The crucial'property of ES here is that it cuts the limit éycle Y only
once. For example, let us consider the Droséphila case. We assume that the
circadian oscillator controls the eclosion and it emits the gating signal
once in its period T. When we describe the oscillator by a system of ordinary"
differential equations, free funning oscillation corresponds to a limit
cycle y.  Because the oscillator emits the signal only once in itsAcycie,

the event occurs only at one poiht of y. Along other trajectories than the



limit cycle vy (thaf is, if free running oscillation is perturbed by séme
light or temperature stimulus) the event still occurs if these trajectories
are.sﬁfficiently close to the limit cycle y.' The points on these trajectories
where the event occurs constituté the event surface ES. So, ES cuts the
limit cycle y only once. ES may seem to be artificial. 'Howevei, ES is
eésentiai to the formulation of the tfansient PRC becausé it corresponds to méésur—
ement.ofbthe time when the reference event occurs.
From Definitions 1.1 and 1.4, ES dnd vy meet only once at the point of
phase zerd 9_1(0). Both ES and Ws(e*l(o)).are (n—l)—diﬁensional curﬁed _V
surfaces and both meet y at 9'1(0). ES and WS(G_l(O)) meet at 6-1(0); .But
of coﬁrse ES and Ws(e—l(O)j are not the same. Let us illustrate ES and
S ¢ '

W e~l(0)) for FitzHugh's (1961) BVP equation which is a model of a pacemaking

neuron.

dx/dt=C (y+x-x-/3) ,

dy/dt=— (x-A+By) /C, ' | (4)

0<B<1, >0, B<C2

where x corresponds to.mémbrane potential and y to refractoriness, For some
parameter region (4) has a stable limit cycle (Hadeler et él., 1976). If we
chdose maximal excitation as the reference event, ES is a set of points for
which dx/dt=0 and dzx/dt2>0 (maximum of the membrane potential). Sé, ES is_i
the left part of the curve y=—x+x2/3 to the equilibrium point (see the solid.
iine in Fig. 2). The broken line in éig. 2 is the stable manifold of 8_1(0),7
Ws(G_l(O)) obtained by computer simulation. Fig. 2 is the phase plane of the

‘BVP model (4). (xe,ye) is the unstable equilibrium point. The chain line

is the limit cyéle Y. The parameter values A=0.1, B=0.75 and C=1.0 are chosen.



In this case both ES and Ws(e—l(O)) are l-dimensional surfaces (i.e. curves)
‘as M is 2-dimensional.

lxR+—>M is defined as follows. Here R%=[O,w).

C((l)'u) : S
Definition 1. 5. Clo,m)=¥ (o™t (4~T/7t),T). C is the range of C for fixed
u

u, that is Cﬁ={C(¢,u);¢ESl}.

Clp,u) is tﬁe state point at the end of the'perturbation of magnitude p
which starts at the phase ¢-T/T. C# is a set of state points at the ending
of perturbation. Cu is.a simple closed arc in M because of continuity of the
solution of (3) with respect to initial conditions and because of the

uniqueness of solutions to (3). We call C11 a perturbed cycle.

Definition 1. 6. The timing sequence of an old phase ¢ is defined as the
sequence of times'{ti(¢)} (i=1,2, ...) such that WO(C(¢,u),ti(¢))éES. Here

- >
ti(¢%ﬂ7andti+l(¢)>ti(¢).

ti(¢) is the time elapsed from the end of perturbation to the i-th
reference event when the perturbation is applied at the old phase ¢. If
' P s _
C(¢5u)<w (vy), then }1m (ti+l(¢) ti(¢))—r.
: .o ] >0
. Definition 1. 7. If C;EWs(y), then the i-th transient PRC, A¢i(¢):Sl+Sl

and the i-th transient PTC, ¢'(¢):SI+SJ are defined as fbllows

MY, (d)=1-p~t (¢)/T (mod 1)
1 1 (5)
1 (9)=1-t_ () /T _ (mod 1)

-10~
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' ' ' » 1.1
Definition 1. 8. If Cﬁsws(y), then the steady state PTC, ¢'(¢):S »S is

defined as follows.

¢'(¢)=Ge(c(¢,u))-

Cleérly Definition 1.8 is compatible with Definition 1.7, that is lim ¢i(¢)=
: oo

¢'(¢). The new phase ¢' as a function of both the old phase ¢ and the

- stimulus magnitude 1, i.e. ¢'(¢,u)=ee(c(¢,u)), is called the phase tran it-

ion surface (PTS). The term "surface" implies that the magnitude of the

stimulus is also varied.

1. 4 Topological properties of PRC and’PTé

‘in this section, we examine general, topological prdpertiés bf steady state
and transient PTCs. Winfree (1970) classified steady state PTCs and PRCs
into two types according to their’average slopes. The PTC with an avefage
slope of unity and the correspoﬁding PRC with an average slbpe'of zZero are
called Type 1. -The PTC with an average slope of zeré and the corresponding
-PRC with an average slope of minus one are célled Type 0 (see Fig. 3). We
can prove the following topological properties of the steady state PTC using

Definition 1.8 and Theorem 1.0.
Lemma 1. 1. The steady state PTC,'¢'(¢) is a continuous function.
’ -1, : .
Proof., From Definition 1.2,,97 is continuous. The regularity of (3)
guarantees the continuity of Tu. From Theorem 1.0 we can show that ee is a

continuous function at the sufficiently small neighborhood of Yy, U(Y). For

-11-
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an arbitrary yéWS(Y), %U(y), there exists s>0 such that ¥g(y,s)eU(y) because
v is an'asymptotically stable limit cycle. Here the equation ee(y)=ee(?o(y,s))
~-s/1t (mod 1) holds. Because Wo(x,s):M+M is continuous, ee(x) is continuous

in Ws(y). Because ¢'(¢)=ee(wu(e—l(¢—T/T),T)); we completed the proof.

Theorem 1. 1. 1) If and only if C is homotopic to vy in Ws(y),'then the

u ’ :
steady state PTC, ¢'(¢) for the stimulus magnitude u is Type 1. 2) If and
onlg if Cﬁ is homotopic to a constant mapping in Ws(y), then ¢'(¢p) for p is

Type 0.

Proof. .Because the steady state PTC depends on the stimulus magnitude u,‘we
express it explicitly as follows,>¢‘(¢,p)=6ekc(¢,u)):Slngesl.

Let us prove the sufficient condition of the first half 1). ¢'(¢,0)=¢,
Y=Co. For convenience, we write C(¢,1) instead of Cp' .Because-of the
assumption there exists a’homotopy G:SlxI+WS(Y); G(¢,d)=¢(¢,0),.G(¢,1)=C(¢,u)
anaAfor fixed veI=[0,1]1, G(¢,v) is a closed path in Ws(y). For each Vei, weA
define a continuous function H((b,v):Sl—>Sl as we have aefiﬁed a PTC in Définition
1.7. That is, H(¢,v)=ee(G(¢;V)). Because G gnd Gé are continuous, H is a
homotopy.between $'($,0) and ¢*(¢$,n).  That is, H:Slxlésl; H(¢,O)é¢,
H(¢,1)=¢"($,n). This iﬁplies that ¢'(¢,ﬁ) is homotopic'to the‘Type 1;9'(¢,0)=
$. So, ¢'(¢,uf is Type l; The proof of the sufficient condition of 2) is
éimilar. |

For the proof of thé necessary conditions we musf érove the fact that ¥y
is a deformation retract of Ws(y). " Theorem 1;0 guarantées the existence of
smooth and sufficiently small neighborhood U(y) of ¥y whdée boundary integral
curves of (2) cross transversally and inwardly. Y is a deformation ietract

of U(y). The rest to be proved is that U(y) is a deformation rétract of

Ws(y). Because y is asymptotically orbitally stable, for every yéWs(Y);<%U(Y)

=12~



there exists continuous T(y)>0 such that Wo(y,T(y)) is on the boundary of
U(y). We define a homotopy {rv}:Ws(y)XI+WS(Y): If y<U(y) then rv(y)=y and
if y%U(Y) then rv(y)=WO(y,vT(y)). Because both T(y} and Wo are continuous

and ry (v)=y,

l:WS(y)+U(Y), rV is the required retraction. It follows that

WS(Y) is homotopy equivalent to y. So, the fundamental -group of WS(Y) is
isomorphic to the integer group Z and its generator is a closed path C(¢,0).
- o 0+, .
If C({¢,u) is in W (y), then C(¢,mw)>*nC(¢$,0) (n=0,-1,-2,...). ZIf C(¢,n) is
homotopic to nC(¢,0) we can prove that the corresponding PTC is Type n (i.e.
with an average slope of n) by similar discussion to the proof of the
sufficient conditions. Since all types of PTCs have beeh listed up, we

completed the proof of the necessary conditions.

-Theorem 1. 2. If there exists a stimulus magnitude uo such that the

. corresponding steady state PTC is Type 0, then there exiété at least one p*
(0<pf<po) such that Cu* is not contained in Ws(y), in other words the PTC fo?
this magnitude ﬂ* cannot b2 defined. That is, when we apply the perturbation
of magnitude u* at an appropriate phase to the oscillétor, it does not

return to the unperturbed cycle.

Proof. We pfove the theorem by contradictibn. We assume that for all yu;
b<p<po, cﬁcws(y). Since ¢'(¢,u) is continuous with respect to (¢,n)
because of continuity<ﬁf?ﬁ(x,t) with respec? to (p,x), ngcan define a
homotopy J(¢,V):Sl><I—>S1 as féllows. J(¢,v)=¢'(¢,vuo); J(¢,0)%¢f(¢,0)=¢,
J(¢,l)=¢'(¢,uo). This implies that ¢'(¢,0) is homotopic to ¢f(¢,uo) but

$'($,0) is Type 1 and ¢'(¢,u0) is Type 0. This is a contradiction.

For the understanding of the discussion in the foliowing sections, we

explain intuitive meanings of Theorems 1.1 and 1.2 in a simple two-dimensional
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dynamical system. Let us assume that the phase space of (2) is R2, (2) hés
an unstable equilibrium point E and a stable limitvcyclé f which surrounds E
and there is no other periodic sqlution or equilibrium péint {see Fig. 4).
stabie manifélds of five points on y are drawn by broken lines. A stable -

manifold@ of a point on y is a curve and all stable manifolds concentrate on

E. When Cu is close to v and surrounds E (i.e. Cu is homotopic to #) in the
case of the weak perturpation, then the PTC is Type 1 because Cu crosseé
every stable manifold of xcv, W (x) (see Fig. 4a). In Fig. 4 the clésed cﬁr#e
of chain i; the set of points perturbed from v, Cp.‘ Oﬁ thé bther haﬁd,
if Cu is far apart from y and does not go around the éonfluence éf staple
manifolds E (i.e. Cu is hbmotopic to a constant mappingriﬁ Ws(y)),'theh_the
PTC is Type 0O becaqse all of new phases values ¢f fall within é'limitéd
range (see Fig. 4c). va Cn, which is pe;turbed from vy by a medium perturb-
ation, exactly contains the equilibrium point E, then the PTC cannot be
defined for this magnitﬁde of pertuxbation. Especially in this casé, the
perturbation of this magnitude which bégins at the phaser¢*—T/T.in Fig. 4b
stops the oscillation. The dotted line in Fig. 4b isAtheborbit of the

system (3) starting from the point 9—1(¢*—T/T).

Proposition 1. 1. Let us assume that CG:WS(y), that is the steady state
PTC exists and is continuous. If there exists the old phase £ such that

C(E,u)C€ES, then the i-th transient PTC, ¢£(¢) is discontinuous at ¢=E.

Proof. We can assume that ES is transverse to Cp at C(&,u) in generic
cases. We assume that [F(C(&,u),0),dC(E,u)/d¢1>0 where [ , ] is the inner

product. In this case 1im‘tl(¢)=0 and lim tl(¢)>0 hold. If the inner

¢—~>E+0 ¢>E~0
- product is negative, then lim t_ (¢)=0 and 1lim t_ (¢)>0. Since we can treat
’ o>E+0 » ¢$>£-0 )

-14-—



the latter case similarito the former case, we only study the former. There
exists zgy such that C(Eru)GWs(z). Since for any subset S, WS(WO(S,t))=

¥, w° (s),t) holds, ¥ (C(E,1) ,kTIEWS (2) (k=1,2, ...). Since W (z) does not
correspond to.ES, WO(C(g,u),kT)¢ES in generic cases, that is ;i§+g (¢)#kr.

Consequently ¢i(¢)=l_tl(¢)/T {mod 1) is discontinuous at ¢=f. Similarly we

can show that all ¢£(¢) (i=1,2, ...) have their disconinuity at ¢=g.

From Lemma 1.1 we know that the steady state PTC ¢'(¢) is a coﬁtinﬁous
function of ¢. The discontinuity in Pfoposition 1.1 tends to zero as i
goes to infinity. In Fig. 5a a simple two dimensional dynamical system is
illustrafed. In Fig.VSb,‘the steady stafe ?TC (bquen iine) and the first
transient PTC (solid line) are shown; For éxample, fhe'dynamical system;
dr/dt=r(l—r2), de/dt=1 in the polar coordinates (r,é):has a limit cycle and
stable manifolds such like those in this figure. The solid, closed path is
fhe liﬁit cYcle Yoo The.broken lines are 10 stable manifolds of 10 points on vy.
For example, abbreviation. 0.1 denotes the stable manifold of a point of phase
0.1 on v, ws(e'l(o.l)). The dotted curve is.the event surface ES. vThe chain,
closed curve is the set of points perturbed from v, Cu.- for example,
abbreviation 0.5 indicates the point which is perﬁufbed.from the ?oint of
phase 0.5 on v, C(O.5,ﬁ)=?0(e_l(0.5),T). The first fransiénf PTCAié dis-
continuous as an example of Propdsition 1.1. We call this discontinuity of
the transient PTC the first kind of discontinuity;

Let 9(ES) denote the boundary of ES. Existence‘of t>0 and £ such that
WO(C(g,M),t)éa(ES) is another reason of discoptinuity ofv¢£(¢) (for ivsuch;
that t,(€)>t) at ¢=£. We call this the second kind of discontinuity.

| For many blologlcal 0501llators ES may be a smoothrand connected surface.

‘In this case if A—{W (Cp,u), t ($)); ¢cS } is a closed arc 1n ES and if the
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. . . -1
Poincaré map © of A in ES with image in ES associated with y and 8 —(0)
can be defined then ¢é(¢) is continuous. Similarly if the k-th iteration

: k ' . .
of O for A, © (A) can be defined, ¢i+l(¢) is continuous.

1. 5 Applications of theoretical'iesults to neurobiology

Some neural oscillators must be switched on and off by the central neivous
sy§tem(CNS). In thése éontrols two modes. are possible. The‘one mode is a
phasic control (P) and the other is a tonié control of an oscillatof (t). 1In
case of the phasic control, the starting signal and the stopping signal
from>the CNS to the oscillator are phaéic signals. In the tonic:contkol the
CNS must keep sending a pulse train to the oscillator to maintain its
oscillation or to keep it in the resting state. We can decide whether a
certain neural oséillator is controlled uﬁder the phasic mode or under the
tonic mode by examining the PTS of that oscillator. We define a singulér
set SS of stimulus magnitude and the old phase as follows. Ssﬁ{(u,¢)éR+XSl:
C(¢,P)¥WS(Y)}. SS may Ee a point or may be a (un)conﬁected domain(s). In

the former case, Winfree called SS as a Singular axis. In case of P, SS of

PTS is a domain with finite extension, and in case of T it is a point (see

Fig. 6a and b). For simplicify we explain these two‘modes of coﬁtrols in
the two dimensional dynamical system (see Fig. 6c). 1In the case of the
phasic control, the state point is on the stable equilibrium point E in the
resting state. It is driyen out of the inside of anAunstable limit cycle y2‘
by the starting signals from the CNS, and it keeps roundiﬁg élong a stable
limit cycle'yl until it is driven into the ips;dé of Yo by tﬁe stopping
signals from the CNS. CNS can switch on and off the-oscillator quickly.

The period of the oscillation is inherent in the oscillator, and stable
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1. 6 Drosophila's PTC and inner structures of its ciréadian QSCillator
We have mathematically formulated PRC and PTC and clarified‘their topological
properties. All steady state PRC which were measured in biolégy are either
Type O or Type 1. We can get any steady state PRC_(Type 0 and Type 1) for
an arbitrary dynamical system (2)‘with an elementary stable limit cfcie if
only the closed path Cﬁ is appropriately chosen in Ws(f).« Sé; the steady
- state phése response curve alone imposes no restrictions on the equétions
which describe the oscillator although eQeryvpart of the phas§~#ésponse curve
can be informative about stages of the cycle. We must compére the'transient.
PTCs with the steady state PTIC in order to study the innér strﬁcﬁure;
?ittendrigh andiBruce (1959) measﬁred the transient and steady state
PRCs of Drosophila's emergence rhythms. They used a 15 minutes Iightrpulse
as a perturbaﬁion. Fig. 7 is the first transient PTC (splid line) aﬁd the
steady state PTC (broken line) which‘are redrawn from Pittendrigﬁ (1965).
The abscissa is the old phase ¢ multiplied by 24. The ordinate isreither
the first transient new phase ¢i or the steady.state new phase'¢' multiplied
" by 24.‘ The transient PTCs almost converge to the steady sfate PTC for i=6
in this case. The refefence event is emergence of fruitflies. The first
. transient PTC has a big discontinuity at ¢=15.5/24. It seems to be continuous
at all other phasgs. Hereafter fractional phases such. as §=3/24vof'17.5/24
will be used frequently because Pitténdrigh used the subjective circadian
tiﬁe (SCT) scale in their original drawings. vPittendrigh proposed_a_twoé
oscillator (Master-Slave) model of the circadian paqemaker of Droéophila to
acéount for the transient resetting pattern. His model>isbcomposed of the
light—sensitive master oscillator and the slave oscillator which airectly
controls the emergence (see Fig. 8). The model has been.examined by maﬁy

kinds of experiments and now its validity has been established. However,
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here we would like to study the problem using only'PTCs.

As shown in the preceding sections we cannot conclude that the system is
composed of two oscillators on account of the discontinuity of the transient
PTC. For example, the éimple two-variablerdynamical system in Fig. 5 has
a discohtinuous transient PTC. We can érove, however, the following Theorem
1.3 which tells us something abbut the inner struétures of the Drosophiiahs |

oscillator since the transient PTC in Fig. 7 has the big discontinuity of the

second kind.

. Theorem 1. 3. The first transient and steady state PTCs of Drosophila cannot
be explained by a single oscillator with two variables. In other words, the
circadian oscillator of Droéophila does not consist of a single oscillator

-of two degrees of freedom.

Proof. We pro?e»the theorem by reductio ad absurdum. We assume that
VDrosophila's circadian pacemaker is a single oscillator which is described
" by a two dimensional dynamiéal system. (2) in the free—running state.

'The first transient PTC in Fig. 7 shows ‘¢i(0/24)=0/24. When the light
pulse is applied at phase $=0/24, fhe emergénce of flies occurs immediately
..and irrelevantly to theupe;turbation. Because this m;ans that tl(0/24)=0,

Cl1 crosses ES (Event Surface: a set of points where the emergence. occurs in
this case) at C(0/24,ﬁ). If tl(¢) is a continuous function of ¢ for ¢&J,

then {WO(C(¢,ﬁ),tl(¢));¢eJ} is a continuous curve in ES, where J is an

interval in sl=[o,1]. ¢i(¢) is continuous for <1se'(15.5/24,0/24]U[0/24,15.5/2'4)=
leJz. Consequently, {WO(C(¢’U)'t1(¢));¢6ijJ2} is a connectéd suﬁset of the
 one-dimensional ES. Let {WO(C(¢,u),tl(¢));¢éJi be denoted by ESl. If ES

crosses Cu at C(&,u), eithervtl(gfo) or tl(€+0) must be 0. That is either
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¢i(£—0) or ¢i(g40) must be 0. As Fig. 7 shows, ¢i(¢) has its zero point
only at ¢=0. ES crosses Cu only once. ES1 hés its endpoint'WO(C(O/24,u),
tl(0/24))=WO(C(O/24,p),O)=C(O/24,p).on Cu. Since Cu is a simple ciosed path
in two-dimensional M, ES1 must»be either inside or outside pﬁ. .Let us
consider the two cases'separatgly.
| (case 1) The case that ESI is inside C. ‘Since 3} (16/24)=16/24, t1(16/24{;
8hr (in subjective circadian time). Because ¢'(16/24)=2/24, Wé(c(l6/24,ﬂ),8)€i
¥O(WS(6"1(2/24)),8)=ws(e‘l(10/24)). WO(C(16/24,ﬁ),t1(16/24)) is on ESl.
Because the range of o' (¢) is [23/24,8.5/24]; Cﬂ is contained in the setr

U ' Ws(é_1(¢)). The éoint WO(C(16/24;n),t1(16/24)) isroutside

23/23%4%8.5/24
C . This is contradiction.

H

{(Case II) The case that ES1 is outsidé Cﬁ. Because of Theorem 1.0, the
set K;{WS(6q1(¢));O/24§¢§7/24} is divided into two subsets Kl and K2 by a
part of cu,'{c(¢,u),23/24§¢§7/24}. Ki}KSd{C(¢,u);23/24§¢§7/24}=K. Kf\Kz%{¢}.
‘K2 contains a part of the interior of Cu_(see Fig._9); The subse# of ES1,
SES] is defined as SESl={WO(C(¢ru),t1(¢));l7/24é¢§0/24}. ¥, (Clos) st ()
is on WS(B"l (¢' (¢)+tl(¢)/'r))=WS(e—l(¢' (¢)—¢i(¢)). 9’ (¢)—¢i(¢) is a decreasing
function of ¢ for 17/24§¢§0/24, wo(c(17/24,p),tl(17/24)ﬁiws(e‘1(7/24))
(for, ¢i(l7/24)=17/24; t1(17/24)=7hr (in subjective circadian time),¢'(l7/24)=
0/24). Consequently SES1 is contained in K, moreover it is contained in Ki
because of the assumption. The orbit O={WO(C(l7/24,u),t);O§t§t1(17/24)} is
contained in K because of commutability of WO and Ws. Onerenapoint of 0, 
C(l7/24,ﬁ) is in Kz,‘another endboint of 0O, WO(C(17/24,p),tl(l7/24)) is in
Kl. So, O must cross‘{C(¢,p);23/24§¢§7/24} at some point C(Z,u). This
implies that tl(£)=tl(l7/24)-r.¢'(£). That is ¢'(£)=¢i‘£)+7/24 (mod 1) for
23/24§£§7/24.' This is a contradiction (see Fig. 7). Fig. 2 is an illuétra—

tion of the proof in Case II. The closed path of chain is a set of points
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perturbed from v, Cu. The left broken liné‘is Ws(6—1(0/24)). The right
broken line is Ws(e_l(7/24)). The region between these tWo lines is K=
{Ws(e~l(¢));0/24§7/24}. K is divided into two regions-Kl (upper) and_K2
(lower) by a part of Cu, {C(¢,p);23/24§¢§7/24}. The dotted curve is a part
of fhe event surface, SESl1. The bold and solid curve.is a orbit of (2)

. starting from the point C(17/24,yu).

Here, C# crosses ES at C(0/24,u). So, the transient ?TCs_are discqnt-
inuous at ¢=0/24 from Proposition 1.1. But, in this cése the phase shiff
at the old phaée $=0/24, Ad(0/24), ié very smali. Consequeﬁtly, diécon£i;
nuity of the first kind at ¢=0/24 is very small. But rigérously ¢i(0/24—0)=0
and ¢i(0/24+0)$0._ Note that we used cohtinuity of ¢i(¢)~for only the intérval
Ji safely. Our proof does not depend on the minute vélues of PTCs. For
example, if ¢'(l6/24)¥1.5/24, our proof is valid as before. The reason is

that we used only rough and topological properties of the measured PTCs in

the proof.

1. 7 Two-oscillator model for Drosophila's PTC

The éssumption that the phase space is two dimensional is essential in the |
proof of Theorem 1.3. A single oscillator with three variables can have

both transient and steady state PTCs of ﬁrosophila if wé choose the
appropriate flows WO, Wu and the appropriate event surface ES very ékillfﬁllyf
However, construction of such artificial and unnétural dynamical system does_
not seem to contribute to understanding. Mathematicallf speaking, there is
no difference between two-oscillator models and one—oscilléto£ models because
the two-oscillator system which has a stable limit cycle is itéélf a single

limit cycle oscillator. So, we must choose between the models on the basis
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. of their biological and ph?sical utility. We tried to develop a one-

oscillator model with three variables in order to simulate‘the transient
resetting pattern before we adopted two-oscillator interpretation. However,

such a onefoscillator model is hard to understand and does not seem to contribute
to understanding and designing new expe;iments of the circadian oscillator. N
In this section we mathematically formulate Pitténdrigh's'two osqillator_
(Master-Slave) model (see Fig. 8) as generally as possible. Then we éxamine
wheﬁher it can explain Drosophila's PTCs ortnot. We assumé that the ﬁaster
oscillator and the slave oscillator are describéd by thé followingrtwo

dynamical systems (6) and (7) with two degrees of freedom when they are -

uncoupled and the fly is in DD condition.

dp/dt=£f (p,q)
. (6)
dg/dt=g(p,q)

dr/dt=h(r,s)"

: (7)
ds/dt=i(r,s)

The éyéﬁem (6) has an elementary stable limit cycle Yy of a period_TM. Tbe'
system (7) has an elementary stable limit cycie YS of a period TS. Becau#e
the slave oscillator controls the emergence, the systém (7) has an event ,
surface (event curve in this case) in its phase plane. We denote it ES .
The experimental faét'that the convergence of the'advancing phase shifts
takes as long as 6 cycles impliés thaﬁ the connection from the masﬁerbl
osciilator to the slave oscillator is weak. Winfree (1973b) showed that
the state poiﬁt of fly's clock does not revert toward the limit cycle for
several days after a weak pulse (Tﬁo—pulse experiment). His Weak pulse is

in some sense close to his singular stimulation (T%,S*) (Winfree, 1970). On
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the other hand both Winfree (1973b) and Pittendrigh‘(l974) showed that‘_

thé state point immediately returns to y after a strong‘pulse (for example,

15 minutes light pulsei. Because we examine the PRC for 15 minutes light
pulse in this chapter, from the two pulsé experiment we can assﬁme that there
is no feedback from the slave oscillator to the maéter oscillator. Sé, when
the fly is in DD we can describe the system of two coupled oscillators as

follows.

dg/dt=g(p,q) .
: . (8)
dr/dt=h(r,s)+esalp,q,x,s)

ds/dt=i(r,s)+e+b(p,q,r,s),

where ¢ is a Very small parametgr. The two-pulse experiment»shdws that

the stability of the limit cycle of the master oscillator; YM' can 5e
considered to be very strohg. Note that "stabiiity strength of é limit
cycle oscillator“.cannot be independent of the strength of stimulus. Because
evéry limit cycle oscillator in R” can be stopped by an apprbpriate stimulus
as Winfree first pointed out (1970) and we rigorously prqved, eve?y oscillator
is weak for this stimulus. The state point, which is perturbed from YM'
returns quickly to YM. So, we may consider the phasé of the master oscillator,
n, as only onevstate variéble of the master oscillator. Then wé can reduce

(8) to the following equation.
dn/dt=1/1
/ M
dr/dt=h(r,s)+e+c(n,r,s) ' (9)

ds/dt=i (r,s)+e-d(n,xr,s),
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‘wheré neSl. The system (9) has the two-dimensional ihvariant torus which is
close to Slxysbin its three aimensional phase space (n,r,é)=slxR2 (Levinson,
1950). The éircadian‘rhythm of Drosophila persits in DD. So, the master
oscillator synchronizes the slave oscillator in DD cénaition. In our model,
“this fact implies that the system (2) has a stable limt cycle y with a
period éf TM on the invériant torus. A stable manifold of a point on vy
whbse n—coordinate is o, is a set, {(n,r,s); n=a}. Because we assume that
the slave oscillator is insensitive to the light pulse and duration of
perturbation (15 minutes) is very short compared with the period of osciilat—
ion, the state point (n,r,s) of (9) is perturbed to (h+A¢(n),r,s)=(¢'(n),r,s)
. by the light pulse, where A¢(n)rand ¢'{n) are the éteady state PRC and PTC
of Drosophila. That is, the light pulse has no immediate influence on the
slave oscillator. The event surface of the two coupled oscillators, i.é.
(9),.is close té SleSS, because ¢ in (9) is small.

‘Let us illustrate £he invariant torus, the event surface ES, the limit
,cycie vy and the set of points perturbed from v, Cp of the system (9) in Fig.
iO. Fig 10.a is the phase plane of (7). For simplicity of the illusﬁration,
we assume that thé limit cycle of the slavenqscillator (7), Ys-is a circle
and its event surfaée, ESS is a semi-infinite iine. Vof course this assumption
is not essential fo the following devélopment. In fig.lOb we draw the three
dimensional phasé spaée of (9). The abscis;a is n. The verfical planeris
the (r,s);plane whose n coordinate is constant. Since.n i§ the phase,'we
identify the right vertical plane {(n,r,s);n=1} wiﬁh thevléft vertical plane
{(n,x,s); n=0}. The.¢y1inder and the vertical plane, which are drawn with
dottéd lines, are stsl and Essxsl respectively. From Levinson's Theorem
(1950) there exists invariant torus which is élose to YSXS1 in the phase
space; We figure it with bold and solid linés. The even£ surféce of (9),

which is close to ESSXSl, is also drawn with bold and solid lines. The
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invariant torus and ES in Fig. 10b are drawn arbitrarily as an example.

In Fig. 10c the limit cycle y is drawn with a solid line and a broken
line (hidden part). vy coils itself round the invariantv.torus. v is
expressed as a set {e'l(¢);¢gsl}. In this case the map Q_l can be expressed

-1_,.-1 _-1 -1

as follows in the (n,r,s)-coordinates. 8 ~=(§ n,e ,0 ). The light pulse
C r - s

‘does not change (r,s)-coordinates. The stable manifold of 6—1(¢), Ws(e—l(¢))

is the set {(n,x,s); n=6—l(¢)}. Consequently, if we neglect the short
n

1 1 ls(¢));¢651}.

duration of perturbation, Cu is a"sét{(¢'(ef n(¢)),6— r(¢),9-
It can be determined from y and the steady state PTC ¢'(¢). Since g is.
small, C# is nearly on‘the invariant torus (see Fig. 10c, a chain line and_a.‘
dotted line for a hidden part). In Fig. 104 we show how.the big aiscontinuity-i
‘of the first transient PTC occurs. Four orbits of (9) starting from»four
points én Cu, c(15/24,y), C(15.5/24,ﬁ), C(l6/24,ﬁ) and C(17/24,u) are shown.
- The left diagram is its projection on (r,s)-plane. The orbit which starts
~ from C(15.5/24,y) crosses the boundary of ESf This is the second kind of
discontinuity. Consequently, a quite general Master-Salve model is consistent
with the Drosophila's PTCs. |
Pittendrigh, Bruce and‘Kaus (1958) and Kaus (1976) explained the transienté
measured by Pittendrigh using one oscillator and a linear oscillator. In
section‘l.6 we éroved that at least 3rd variable is necessary for modelling
the fly clock using the data of transients. VThe two references cited abbve
explained the real data using a specific model. Thé séction 1.6 imposes
restrictions on the possible model of Droséphila's_clock qsing the experimén—
tal data. These two approaches are opposite in £heir directions énd
supplement each other. 1In this section we adopt a two-oscillator inter-

pretation which consists of two loosely coupled limit cycle oscillators and

explained the big discontinuity in the transient phase response curve. Our
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model is different from those of the two references cited above in the second

(slave) oscillator and our discussion is purely analytical and topological.

1. 8 Notes for phase response curves

We studied the properties of the human finger tapping neural network psycho-
légicallyrusing PTC. We éssume that an 6scillatory neurai networkvcontrols
the human finger tapping (Yamanishi, Kawato and Suzuki, 1979). Two kindsrof
experiments wefe performed. In the first experiment, we éhowed thét the PTC
- was available to estimate the degree of functional interaction betweéﬂ the
finger tapping neural network and that which controls anothef task. Three
tasks (rapid key-pushing, rapid voicing and pattern discriminafion) were
.choéen as the perturbétion of the phase resetting_exéeriment. Analyzing
shapes of PTCs, it was found that the interaction with the key-pushig
network was‘the largest, and that with the pattern recognition network was
the smallest of the three. In the second experiment, we modified’the

first task as perfurbation of the phase resetting experiments to investigate
- further the interactions between the left and the right hand motor éystéms.
Coﬁsequently the following results were revealed. Firét, shapes Qf PTCs are
very different according as subject's experiences of finger tapping. Second,
the type of PTC for some subjects changes from Type O to Type 1 by learning.
Third, the PTC tends to become Type 0 for shorter tapping perioas. Fourth,
neither changes of motor 1oads.(the necessary force to push the key) nor an
alternation of the tapping hand and the key—pushing.hand affects tﬂe shape of
PTCs. In the paper (Yamanishi, Kawato and Suzuki, 1980), we investigate thé
control mechanism of the coordinated finger tapping by both hands. First,
the éubjects were instructed to coérdinate the finger tappiné by both hands

80 as to keep the phase difference between two hands constant. The performance
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was evaluated by a systematic error and a standard deviation of phase
_differences. Second, we propose two coupled neural oscillators as a model
for the coordinated finger tapping. Dynamical behavior of the mpdel system
is analyzed by using phase transition curves which were measured on one hand
finger tapping in the previous ekperiment.‘ Prediction by the model_is in
good agreemént with the results of the experiments. Therefore, it is
suggested that the neural mechanism which controls the coordinated fingér
tapping may be composed of a coupled system oftwo neural oscillators each of
which controls the right and the left finger tapping respectively.

A skeleton photoperiod consists ofvtwo short pulses which are appliedv
on nhe circadian oscillator at times'corresponding to the beginning and to
the end of a continuous light stimulus. To étudy several problems in
entrainment of circadian rhythms by skeleton-photoperiods, we develop a
simple, diagrammatic solution of the steady state éntrainment making uée of
phase transition curves whicn are directly gotten from phése responsebcurves
(Kawato and Suzuki, 1981). The graphical method is simple and systematic
fo study entraimment by light cycles with various day léngtns._.AS the
method is also intuitive, we can easily examine three problems. (1) In
Drosophila the phase relation () between rhythm and light cycle is a
continuous function of day length of skeleton photoperiods up tn about 12
hours, but a marked discontinuity (y-jump) sets in between 13 and 14 hours.
By—the diagrammatic method we £ind that y~jump is matnematically‘é bifurcation
phennmenon. (2) The'actidn‘qf photoperiods up to about 12 honrs is fully
simulated by two 15-minute skeleton pulses. Do 3-minute skeleton pulseé
imitate the complete photoperiéds? Wé find that pulse width is'arbitrary
to some extent. (3) Why skeleton photnperioas up to about 12 honrs are
good models of complete photoperiods? The reason is the small amplifudé

and the nearly symmetrical form of phase response curves in the subjective
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CHAPTER 2

TWO COUPLED NEURAL OSCILLATORS AS A MODEL OF THE CIRCADIAN PACEMAKER

2. 1 Introduction

There is much‘experimental evidence to suégest that two coupled oscillators’
may constitute the circadian pacemaker system. Two_coﬁpled oseillatOrs were )
originaily proposed.to account for transient resettiﬁg patterns in the
circadian rhythm of Drosophila (Pittendrigh and Bruce; 1959). .Many phenomena
(e.g. the transient resetting patterns,‘the two—pulee experiment, the rhythm
splitting results, the spontaneous disappearance of ihytﬁmicity and its
reappearance} the non—monetonic transients) have been explained by the two-
oscillator model. But most of these are noﬁ decisive‘evidence for the tﬁo—

. oscillator system. For example, the transient period'of phase response

curves can be explained by a simple one oscillator (Kawato and Suzuki, 1978;
Kawato,'l981a). The most compelling evidence for the_t&oeqsciiiator system

in vertebrates'is the occurrence of "splitting"” of free-running activity
rhythms into two.distinct coﬁponents. These twovéomponents fypically run for
a number of cycles with different frequencies before locking onrtoithe

stable condition where they are 180° anti-phase to one another. “Splitting"
was first encountered as a response of the arctic ground squrrel free-running
in constant light (?ittendrigh, 1960). Splitting occurs frequently in the
goiden hamster exposed to constant bright light (Piﬁtendrigh; 1974; Pittendrigh
and Daan, 1976). Hoffman (1971) reported that the splitting phenomenon was
even more reproducible in the small diurnal primate Tupeia. In Tupaia rhythm
splitfing Qas induced by a drop in light intensity. Moreover it is not the
magnitude of the step down in light intensity that initiates splitting, but

rather the reduction of illumination below a certain lewvel. A free-running
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. period of the splitting rhythﬁ is longer than that of the single rhythm.

- Hoffman found an evident hysteresis phenomenon. A single pattern of circadian
Vactivity persisted fdr'increése of the light intensity. If the illumination
was reduced below a certain level (about 1 or 0.1 lux depending on individ-
uals), the rhythm spliﬁ into two components. A”furtﬁer réduction in iight
intensity did not essentially change this pattern. When the light inﬁensity )
was again increased fusionAof two components took pléce. But higher intensi-
tiés (about 100 lux) were neceésary in order to fuse theAtwo components. So,
it is easier to maintain the single pattern or the split pattern than'to
initiate fhem.

Winfree (1967) proéésed populations of coupled oscillators as a model
for circadian rhythms. Hé found a'splitfing—like vhenomenon on tﬁe beha&ior
of 71 nearly identical électronic oSciilators, each weaklybinteracting with-
all the others. Pavlidis (1973) has suggested a scheme of elastié coupling
thereby'two stable periodic solutions can be obtained by couﬁling n oécilla—r
tors. In one.solufion, all units oscillate in Synchrony'énd in phase. 1In
another solutioﬁ the oscillators form two groups withroéposite phése. The
former may correspond to a single pattern of locomotor activity and the
latter may corréspond-to a splitting pattern. VHowevef, hi§ proof of stability
is incomplete. Mathematical anélysis of many oscillators, each interacting
with all the others, seems fo be difficuit.

A model for circadian pacemakers consisting of twoicoupled oécillators
has been proposed in qualitative terms by Pittendrigh (1974) . Pavlidis
(1978) summarized the major properties of coupled oscillators which relate
to circadian rhythms in a non-mathematical way. Daan and Berde.(l978)
déveloped and expanded the phenomenological model proposed by Pittendrigh

using an explicit quantitative structure. Their algorithm is based on two
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oscillators defined entirely in terms of their time course (period length,
phase and phase shifts). -They assumed that the interaction between two
oscillators is by instantanecusresets similar to Pavlidis' (1973) analysis
of firefly synchronization. Their model system can simulate several
qualitative features in the experimental data. However, first their assumptioh
of instantaneous resets seems to be unnatural. For example, if the.multiple h
circadian pacemakers are tonic paéemaking neurons, the interaction between them
‘can be treated as instantaneoﬁs resets. However, if they are bursting

neurons, it cannot be. Anyway, the continuous representation of the coupling
by the system of aifferéntial equations includes the»fepresentation of
instantaneous resets. Second, it is dangerous tb use phase response curves

in thé study of mutual synchronization without evidence that a state point

of oné osciilator retﬁrns quickly to its iimit cycle after perturbation by
another oscillator. So we study the two limit cycle osciliators which

interact with each other in a continuous manner. In this framework we

must use differential equation models.

Iif we assume that the circadian pacemaker of Tupaia is composed of two
coupled oscillators énd the coupled system is déscribed by a system of
oxdinary differehtial egautions, Hoffman's experiment is interpretéd as
follows. At the high intensity‘of illumination (>100 lux) the only stable
solution of the coupled sytem is the in-phase. solution where fhé two
components are in phase and create a single pattern of activity. At the low
intensity of illuminafion (<1 or 0.1 lux) the only stable solution is the
anti-phase solution where the two components are 180° out of phase and
create a splitting pattern. At the medium intensity (1 or 0.1 lux <light
intensity<100 lux) the coupledsysﬁenfhas two stable solutions, the'in—phése

solution and the anti-phase solution (see Fig. 11). Which of the two
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solutionsvis actually realized depénds on fhe initial condition, i.e. the
initial phase difference between the two oscillators. At the high intensity
the anti-phase solution may be unstable or may noﬁ exist. Similarly the
in~phase solution may be unstable or may not exist at tﬁe low intensity. We
étudy whether the. two interacting limit-cycle oscillators exhibit sﬁch

behavior as in Fig. 11.

270° -

Anti-phase sotution

180°

90+

o l-—————-

Phase dlfference

In-phase solution

2o o0 1 100 _ 10000
Light intensity {lux)

i i V f Tupaia as a function of the

Ficll Stable phase difference between the two osgxllators o 7aia as :
light intensity. A solid line is a stable phase relationship. A das'hed line is etther an unstable
piase difference or non-existence of the phase difference. This figure shows a remarkable

hysteresis phenomenon.

2. 2 Assumptions and descriptions of the general model

There have been several mathematical works on the two iimit cycle oscillafors,
which are coupled to each other. Ruelle has geneially considered a
synchronization effect between two interacting oscillating systems. When

the two system are nearly identical, the interaction befween the.tWO systems
Imake their periods equal. One may then wonder about the phase difference
between the two synchronized oscillators. In general,bthere nay be severél

. phases corresponding to different solutions of the.coupled system. If there
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is only one solution then, by symmetry, the phase difference mﬁst be either’
0° or 180° (Ruelle, 1973)., Linkens (1977) studied ﬁwo van der Pol oscillatofs
coupled with a parallel RLC network as a model for intestinal electrical
rhythms by the method of harmonic Balance. He found that one region in the
" RLC parameter space give the two stable solutions, the in;phase and the |
anti-phase solutions, and another parameter region givesbonly the stable
in~phase solution. So, he has proved the simultaneous stability of the

two alternative solutions. However, his model is inappropriate for.coupled
circadian oscillators. Firstly, in neural or circadian modelling we muét
not think of "condensers" or "coils" in eguivalent circuit format. Instead
the.coupling terms can be rates of chaﬁge, i.e. lsﬁ or 2nd derivatiyes

terms. However, wedo not know what physiological (neurai ér hormonal etc.)
-mechanism corresponds to "condenser-" or "coil—f coupling between constituent
.circadian oscillators. Sebondly,.there is no .evidence that the constituent
oscillator is a weakly non-linear oscillator. Thirdly and most cqnclusively,
‘the anti—phasé solution cénhot be achieved by changing only the parametérv
because the in—phése solution- is always stable. This is not in agreement
-with Hoffman's experiment. | |

By computer simulation, in the system consisting of two Brusselators

coupled by diffusion Tyson and Kauffman (1975) found’the two stable non-
uniform periodic solutions, where the two oscillators oscillate asynchro-
ﬁouély with small phase difference; In the same system Ashkenaji and Othmer
(1978) proved the coexistence of the stable non-uniform periodic solutions
and the stable in-phase solution by the method of the secondary bifufcation.
However, their non-uniform solution is quite different frém.the énti—phase
~solution. As far as the phase difference is concerned, the non~uniform‘
solution is almost the same with the in—phasé solution bécéuse the phase

differences between the two oscillators in the non-uniform solutions is
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almost 0°.

We studied two BYP-model neurons coupled by diffusion as a modél of elec-

trotonically couﬁled neurons {(Kawato, Sokabe and Suzuki, 1979). We showed

the simultaneous stability of the two alternative solutions (in-phase and
anti-phase) by the fheory of Hopf bifurcation and computer simulafion.
Recently we proved it analytically.by the method of secondary bifurcation
(Kawato, 1981b). But again the diffusion éoupled model is inappfopfiate for .
a circadian pacemaker because the in-phase solution is always stable‘
Qhenever the anti—phase>solution is stable.

We assume the following five points about the two oscillafor syétem.

(i) The two oécillatbrs are identical.

(ii) The coupling between the two oscillators is stmetrical.

V(iii) The coupling is weak. k
(iv) One oscillator'in a resting state does not affect'apdther oscillatof.
(v} With changing some environmental parameter prf bifurcation occurs
in the differential eqﬁation which describes the single uncoupled
oscillator.
Assumptions (i) and (ii) seem to be too restrictive, but they can be
- weakened to "nearly identical" and "nearly symmetricalﬁ by discussion of
étructural stability. Assumption (iii) is reasonable because it took
several days for the 180° phase difference to be achieved after the first
signs of a.split was oﬁserved in Hoffman's experiment.

For maﬁy animals it was revealed that anatomical loci of circadian
pacemakers are parts of céntral nervous systéms (éfg. ﬁhe lobula region of
the optic lobes for cockroaches, Nishiitsutsuji-Uwo and Pittendrigh, 1968;
Pagé, Caldarola and Pittendrigh, 1977; suprachiasmatic nucleus.(SCN) of the.
hypothalamus for rodents, Moore and Eichler, 1972; Ibuka and Kawamﬁra, 1975;

Inouye and Kawamura, 19279; midbrain for moths, Truman, 1971). Hudson and
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Lickey (1977) found that the phase difference between bilateral ocular
circadian pacemakefs of Aplysia which was released into very dim LL or DD
for 29-62 days came to be 180°. Inhibitory neﬁral connections are known.to
exist between the eyes. In rodents Inouye (?ers. comm.) found that the
phase difference between the bilatéral SCﬁ is not 0° ih a few éasés by
recording multiple unit activity. Recently the direct synaptic connections -
between bilateral SCN have been found. Consequently, we suppose .that the
interactions between two constituent circadian pacemakers are long-range.
Because the diffusion coupliﬁg between neural oscillators (electroténic coup-
 ling, intercellular commﬁnication through gap junctién eté.) must‘be short-
range, we considér that the diffusion cOupling may be.ﬁnnatural. In the
" case of long~range interactipns by axons‘and chemicalvsynépses, one neural
oscillator in a resting state does not affect another oscillator [assumption
(iv) 1. |

As assumption (v) is critical, we must explain it in detail. In many
animals an overt circadian rhythm can berdiscerned in DD but it is not
discernible (or it soon damps out) in LL. There maf be.many interpretations
for the damp dut.of the overt rhythmicity, but we assume thét the oscillations
of the two constituent oscillators really damp out. Our assumption is as
follows. fhe differential egation whichvdescribes the single uncoupléd
oscillator has a stable equilibrium point in one environmental condition (e;é.
'LL). The stable equilibrium corresponds to the damp out of the oscillation.
. With ch;nging some environmental factér the équilibrium point 5ecomes unstable
and a stable limit cycle appears via Hopf bifurcation. The 1imit cycle
corresponds to the regular oscillation in another énvironmental condition
(e.g. DD).

Each of our two oscillators (designated 1 and 2) is deséribed by:the

following nth order differential equation, when the oscillators are un-—
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coupled.

Oscillator 1 dxl/dt=f(xl,p) ' (2.1)

Oscillator 2 dx2/dt=f(x2,p) ' (2.2)

xl and x2 arg'n—dimenéional vectors and represent state variables of the
oscillator 1 and 2 respectively. f is an n-dimensional non-linear vector

: functién and is common for the two oscillators beqause of assumption (i).

ﬁ is a scalér‘parameter, which reprééents some environmental factor such as
a l?ght intensity’br an ambient températpre. £(x,u) has an appropriate
regularity with respect to ﬁ. The pacemaker system coﬁprising the two

coupled oscillators is described by the following equation becasue of

assumption (ii).

dx_/dt=f(x_,u)+
1/ l:lfl g(Xlrxzr")l (2.3)
dxz/dt=f(xz,u)+g(X2,X1:v):

g is an n—dimensiopal non-linear function, which depends on an environmental
parameter v. g represents the coupling betweeﬁ the two oscillators. It has
an appropriate regularity with respect tobv. As bofh f and g contain environ-
mental parameters, our model does not specify whether the effect of light or

tempertature in free-running conditions is on the two oscillators or on

their coupling.

2. 3 Analysis of the general two-oscillator model

In this section by the method of Hopf bifurcation we study whether the general
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two oscillator system (2.3) has the two stqble solutions (in-phase and anti-
phase). Without loss of generality we can assume that an ofigin is an
equilibfigm point of (2.1) [i.e. of (2.2)], that is, £(0,)=0 for all y.
Further we assume that it is stable for <0 and unstable for u>0.- Assumption-
(v) implies that a stable limit cycle appears for ﬁ>0 via a supefcritical

- bifurcation from the origin at p=0 in (2.1) [i.e. in (2.2)]. Assumptions

(iii) and (iv) are expressed as follows:

(iii) g(g,n,v)=8=h(E,n,v) | . (2.4)

(iv) g(£,0,v)=0 ‘ N (2.5) -

where § is a small positive number and h(g,n,v) is a Cl—function (1-times

. continuously differentiable).

3g(&,n,v)/3g| (0,0,v)=0. (2.6)

We can evaluate another derivative of g as follows because of (2.4.).
99(&,n,v)/on] (0,0,v)=8-D(v), (2.7)

where D(v)=ah(g,n,v)/an](O,O,V) is an nxn matrix depending on the parameter v;
Let df(0,u) be a linearization matrix (i.e. Jacobian matrix); df(O,u)jk=
227 (0,1 /3E%) of £(£,1) around (0,1). From assumption (v), d£(0,1) has
two distinct, complex conjugate eigenvalues X(p) ana iTﬂTﬁsﬁch that ReA(p)%O
for p%O. As both. £(0,y) and g(0,0,v) are zero, the origin is én equilibrium

point of (2.3). We investigate the in-phase and anti-phase solutions of

(2.3) by making a change of co-ordinates as z=(xl+x2)/2 and w=(xl—x2)/2. 4
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is a mean of states of the two oscillators and w is their difference. 1In

' the new co-ordinates (2.3) becomes

dz/dt?[df(0,p)+6~D(v)]=z+Rl(z,w,p,v)

(2.8)
dw/dt=[df(0,u)—6°D(v)]°w+R2(Z,Wru,v)' '

because of (2.6) and (2.7). Here, Rl and-R2 contain only highei gfder
terms than the second order. Because the periodic solution which bifurcatesv.
from the origin of (2.3) is unique, it is either the in-phase or the anti-
phase solution, as Ruelle has pointed out (1973). Becéusé z is tﬁe mean, the
in—phase.solution bifurcates from the origin when the matrix [df(O,p)+6~D(v)] :
becomes unstable. |

Let us denote the n eigenvalues of df(0,u) by [A(u)}XTET}k3(p),Aéku)[.;;
,An(p)]. Note that ReAi(u)<O (i=3,...,n) for small p. Similarly denote n
. eigenvalues of [df(O,p)+6°Dtv)] and those of fdf(O,u)—G?D(v)] by [g(u),ZTET,
C3(“)f""cn(“)] and [?(u),§757}y3(u),...,yn(p)] respectively.‘ Because an
eigenvalué is a continuous function of‘elementé of matrices and 5 is small,
£ (u) and vy (y) correspond to A(y) and are close to it. Similarlygi(p)‘and_
yi(u) arg close to Ai(p) 1i=3,...,n). Note that Regi(u)<0 and Reyi(u)<0

(i=3,...,n) for small . z(y) and y(u) can be expressed as follows:

§(u)i[ReA(u)+u(6,u,v)]+i[ImX(u)+B(Gyu,v)]r.

¥ () =Re (1) +a (=8 ,1,) 141 [Tk (1) +8 (=81, 1,

where‘a(a,p,v) and B(§,u,v) are analytic real functions of § and go to zero-

as § goes to zero.
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Theorem 2. 1. (Case I). If 3a(8,u,v)/38|(0,0,v)>0, with increasing y, first
the in-phase solution bifurcates at negative Mo It is stable if the
bifurcation is supercritical. Second the unstable anti-phase solution

bifurcates at positive L

Theorem 2. 2. (Case II). If Ba(d,u,v)/BSl(0,0,v)<0,'firs£ the anti-phasé -
solution bifurcates at negative ué and next the in-phase solution bifurcates |
at positive uI. The anti—phase solution is stable if the bifurcation is
supercritical. The in-phase solution is always unstable near the bifurcation

point (u~uI) regardless of its direction of bifurcation.

Case 1 A Case II

In-phase
solution

Anti-phase
solution

c
°
3 Anti-phase . In-phase 4
° sotution 7 solution .~
rd N 7
- d ’
°© Vg s
° s ,/
/
3 D AU R AV PRI M
I Equitibrium Equilibrium
E
<
M Ma Ma AL
H A L 1 L 1
0 0

Parameter value

F16.12 Bifurcation diagram of the general two-oscillator system. A solid line shows a stable
solution, and a dashed line shows an unstable solution. p; and p4 are primary bifurcation
points of the in-phase and anti-phase solutions respectively.

Proof of Theorem 2.1 When ReZ (i) becomes zero (i.e. tdf(o,p)+6'D(v)]_
becomes unstable), the in-phase solution bifuréates froﬁ’the‘origin. Let
uI denote the parameter Vélue ﬁ at which the in-phase soiution bifﬁrcates.
As § is small,’uI is_close‘to zero. Since f(x,u) and g(&,n,v) are regular
‘with réspect to ¥ and n, o(S,n,n) and B(S,u,v) have regularities with

respect to u and v. As Ba(G,u,v)/BS!(0,0,v) is positive, Bu(S,u,v)/BGI(O,uI,v)
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is also positive. So, a(a,uI,v) is positive for small positive § because
.a(o,ul,v)=0. Because Re;(pI)=O implies that Rex(uI)=-a(6,pI,v)<O, . is.
negative. |

Similarly let Wy denote p at which the bifurcation of the anti-phase
solution from the orxigin occu?s. Because a(-a,pA,v)-is negative, Rek(pA)=
:—a(—S,uA,v)>0 [i.e. Rey(uA)=O]. So, My is positive.

In order to analyze stabilities of the iﬁ—phase and the aﬁtiéphase
solutions, we must examine characteristic (Floquet) expénents of them. (2n-2)
characteristic exponents out of (2n-1) exponents.of the in-phasersolution:
.ére c;ose to [c3(ui),...,cn(uI),Y(uI),;TEET}Y3(uI),...,Yn(uI)j multiplied by
egp(ri) at uqu,where T; is a period of the in-phase solution. vReal pérts of
all these (2n-2) characteristic exponents are negative. First Regi(uI) and
Reyi(uI) (i=3,...,n) are negative as ny is small. Secénd Rey(p1)=Re}(uI)+

- a("Gr‘.J ,\))-———O,(G,u

1 I,v)+a(-6,u1,v) is negative. The rest one characteristic

exponent is negative if the bifurcation is supercriticgl.' It is positive
if direction of the bifurcation is subcriticél,A So,viﬁ the supercritical
case the in—?hase solution is stable.
(2n-2) characteristic exponents of fhe anti-phase solution are close to_
{C(nA)'ZTEXY}C3(uA),...,Cn(uA),Y3(UA),..;,yn(nA)} multiplied by exp(T:).
12 is a period 6f the anti-phase solution. Because Rec(uA)=Rel(gA)+a(6,uA;v)=

-a(—ﬁ,uA,v)+a(6,uA,v)>O, the anti-phase solution is always unstable near

the bifurcation point (i.e. UNMA) regardless of direction of bifurcation.

The proof of Theorem 2.2 is the same as that of Theorem 2.1. Conseguent-
ly, there are two cases for sequence of bifurcations and stability of the
two solutions. Case II is quite contrary to Case I. In Fig. 12 we illustrate

an amplitude of asymptotic solutions of (2.3) as a function of the bifurcation
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parameter p. If a decrease of the light intensity ih Hoffman's experiment
corresponds to decreasing aa(s,u,v)/aal(o,o,v) via changing the environmental
parameter v, then our general model roughly explains Hoffman's experiment.
Concerning the coexistence of the stable in-phase and anti-phase solutions at.
the medium light intensity, therfollowing can be expected. The bifurcation
points UI and UA are continuous~funct;6ns ofiﬁ. ”I<“A for v of Case I, and

u >uA for v of Case II. By the theorem of intermediate value, there exists v'_

I
su ch that the two bifurcation points collapse. Since "multiple eigenvalues
lead to secondary bifurcation" (Bauer, Keller and Reiss,rl§75) we expect
‘'secondary bifurcations of the anti-phase solution in Case i and £he in—phase
solufion in Case II and their stability chaﬁges. Rigoréus proof of this and

study of the hysteresisphenomena need a more concrete model, so in the

‘succeeding sections we analyze a specific model.

2. 4 Two coupled ﬁeﬁral‘oscillator model

Althoﬁgh‘for‘many animalé it was revealed that anatémical ioci of circadian
pacemakefs are parts of central nervous systemé, whéther the pacemaker
consists of a population of neurons, a single néu;on or part of a neuron
remains unknown. Taking accounﬁ of these possibilities, we use the following

system of differential equations as a model of a single oscillator:

3
dx/dt=(u+l1) x-x -y
(2.9)
dy/dt=2x~y,

U is an environmental parameter.

Equation (2.9) is a simplified version of either the Wilson-Cowan

-4]-



equations, FitzHugh's BVP equation or Nagumo's equationi(Wilson and Cowan,
1972; FitzHugh, 1961; Nagumo, Arimoto and Yoshizawa, 1962). Wilson and
Cowan derived the coupled non-linear differential equations for the aynamics
of spatially localized populations containing both excitatory and inhibitory
neurqns.. We redﬁce their equationsto (2.9)by somé‘simplification; Physiclog-
ical implications of the simplification were‘discussed by Nogawa ét al. (1976).
Tet E(t) [I(t)] denote the proportion éf excitatory (inhibitory),cells-firing per

uni£‘time at the instant t. In the transformation of the'origihal Wilson-
Céwan equation into (2.9), we set x(t)=k E(t)+k , y(t)=k I(t5+k' (k K QO).

. 1 2 3 4 1 3
So x(t) and y(t) may be negative. It is known that the Wilson-Cowan equatién-
has a stable limit cyéle for appropriate parameter values."Ermehtrout and _‘
Cowan (1979) showed that the stable limit cycle arises from an equilibrium
éoint via Hopf bifurcation with changing some parameter. VThe BVP mcdelvand
Nagumo's eqguation are considered as a simplified versioh-of the_Hédgkin—
Huxley equation (Hodgkin and Huxley, 1952). We can further reduce them to
(2.9) by some change of variables and paraméters. .In this case x of (2.9)
is the membrane potential.of a neuron aﬁd y is a quantitiy of'refrécforiness.‘
The BVP equation has a stable limit cycle for an apprbpriate stimulus curienﬁ.
Hadeler, an . der Heiden.and Schumacher (i976) showed that the stable limit
cycle appears'as a result of the Hopf bifurcation.A |
éystem (2.9) has an equilibrium point (0,0) for all u- For u<li, there is

no other equilibrium point. Hereaftér we deal with only the parameter réngg
u< 1. We define for any a>d a rectangle Ra=[(x,y):|x|<a,ly|<2a]. Let a>/;f;§.v-
Then ail trajectofies of system (2.9) enter the rectangle R . ‘Two eigenvalues

o

of a linearized matrix around the origin (0,0) of (2.9) are given as follows:

A, NG =lu+/p2-4(1-p) 1/2
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Consequently, the origin is stable for ;<0 and unstable for u>0. For O<y<l,
Poincare-Bendixon's theorem asserts that there exists‘at least one stable
limit cycle in Ra because Ra (a>¢51§3 is invariant and the gnique equilibrium
point (0,0) is.unstable. The Hopf bifurcation theorem tells us much about
the_stable‘limit cycle. The periodic solution whoée expaﬁsion is givenbin_
Kawato and Sﬁzuki (1980) bifurcétes from the origin at p=0.7 it is stable
and exists for y>0 (supercritical bifurcation). A pefiod of the oscillator,
T?’ is almost 27 for u~O. for u<0 there is no périodic solution and this
corresponds to the fact that organisms donot show circaaian rhythm under
'éome environﬁent. |

Consequently (2.9) caﬁ be régarded as a model of eithef a neural.
_network oscillator or a single cell oscillator. However, it is highly déubtful
whetheri(2.9) is a good model for the single consﬁituent circadian oscillatér'
beéause the Wilson-Cowan equation, the BVP equaﬁion aﬁd Nagumo's equation':
were derived for neural rhythms with much shortef peridds than 24h. Héwever,
in fhe absence of information regarding the state variables relevant to-
circadian pacemakers, we use'the abstract model (2.9).

We study the two identical neural oscillators which éie coupled to each
other in a linear form. Quantities of the oscillator 1 are denoted by a
suffix 1 and those of thé oscillator 2 are denoted by a suffix 2. Qur specific

two-oscillator model is described by the following equation.-

' 3
dxl/dt—(u+l)x1—xl—yl+6-x2—any2
dyl/dt=2xl—yl+bnx2-v6.y2 ' (2.10)
3 - )
dxz/dt—(u+l)x2—x2—y2+6.xl-awyl

dyz/dt=2x2fy2+bexl—v6eyl
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b4 and y2 are scalar values. 6§, a and b are small poSitive constahts.

1 Y1 %
Vv is a positive constant of order 1. The parameters p and v depend on
environmental cbnditions. Equation'(Z.lO) satisfies the five assumptions in
section 3.2.

- In the interpretation of (2.9) as a simplified WilsanCowan equation, §
is couplingkstrength of excitatory synaptickconﬂection frém an excitatory )
- subpopulation of one oscillator to an excitatory éubpopulation of aﬁother
oscillator. - a is that of inhibitory synaptic connection from an inhibitory
subpopulation of.one oscillator to an excitatory subpopulation of‘another
oscillator. »b is that from an excitatory subpopulation to an inhibitory .‘
subpopulation.  v§ is that from inhibitory one to inhibitory one (see Fig. 13).
In the interpretation of (2.9) as a simplified BVP equation or a Nagumo's
equation, physical mechanism of the linear coupling is obécure. ‘However, §

is strength of interaction from the quantity of excitation (membrane potential)

of one oscillator to the quantity of excitationof another oscillator. b is

Oscillator 1 ' Oscillator 2

Excitatory

Excitatory
population

population

N Inhibitory |
populat ion

Inhibitory
population

F. 1613 Schex_natic diagram of the two-nucleus oscillators which are coupled to each other by
exc:tato.ry and inhibitory synaptic connections. Each oscillator contains the excitatory sub-’
population and the inhibitory subpopulation.
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that from excitation to inhibition, and v8§ is that from inhibition to

inhibition.

2. 5 Primary and secondary bifurcations of the neural model

In order to study the in-phase and anti-phase solutions of (2.10), we make

the following change of variables as in section 2.3:

p= (xl+x2)/2,
a=(y,+y,)/2,
r=(xl—x2)/2,

S=,‘?1'Y2"/2'

For convenience of calculations, we further transform (2.10) into a canonical

form by the following change of variables,

X 1 ‘ 0 : 0 0 » -1 P
v (1+v8) / (1+a) —QI/(l+a) 0 0 1 g
z 0 0 , 1 0 1 r
w o[ 0 0 (1-v§)/(1+a) -Q,/(1+a) s
where

2
QI=V€—2v6—v 62+2a+b+ab,

QA=/£+2v6—v262—2a—b+ab.
In the new co-ordineates (2.10) becomes,
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x ur(l-v) ¢ QI 0 0 x
y\ QFM@) o0 0 0 Y
a - I
éEw z ! \ 0 o pr{h-Ls @ z
\w / \' 0 :
i 0 —Qz(u) 0 w .
(2.11)

—x(3zz+x2)

- (1+y8) /o_+x (32%+x?)
N I
—z(3x2+z2)

- (1—va)/szA- z (3x%+z2)

where_
Q;(u)=[<1+a)(2+b>—(1+va)<p+1+a)1/nl,

Qz(u)=[(l-a)(2~b)-(l—v6)(p+l-6)]/QA-

Note that Q;[(v—l)6]=QI and QZ[(l—V)5]=QA. The origin (0,0,0,0) is an
equilibrium point of (2.11). Four eigenvalues of a linearized matrix around

the origin of the system (2.11) are,

e g(u>={[u+<1—v)51¢/1u+(1~v)a]2—491-9;(u)}/z,

v, y(u>={[u+(v—1)sli/ﬁu+(v—1)a]2—4QA7Q;<u>}/2.
z(u) and g (u) correspond to the in-phase component (x,Y). v {u) and y(y)
correspond to the anti-phase component (z,w). The function g(§,pu,v) in

section 2.3 is

a(S,u,v)=(1-v)§
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in this case. The in-phase solution of a frequency @ bifurcatesat ; =(y-1)g
, I I
from the origin and the anti-phase solution of a frequency Q Dbifurcates at
: . A '
uA=(l-v)5 from the origin. The bifu;cating in-phase and anti-phase solutions

[XI(t) and X (t)] can be expanded into the convergent analytical series by
’ A

I .
respectively. They are given in Kawato and Suzuki (1980). Both bifurcations

‘standard perturbation procedure when y is sufﬁiciently ¢1ose to g and uAb
are supercritical. Acoording to the classification in section 2.3, tﬁere are
two cases.

Case I. If y<l [i.e. 3a(§,u,v)/36](0,0,9)=(1-y)>0 in section 2.3], with
increasing y, first the stable in-phase solutién bifqréates at negativg uI and. .
neét the unstable anti-~phase solution bifuréa£eé at positive'uA. One |
characteristic exponent of the anti-phase solution is negative becéuse'the
bifurcation is supercritical. Other two complex conjugaﬁe exponents [which
are ciose to ;(UA) and ETE;T‘multiplied bY.eXP(Tz)] are’positive ﬁear the
primary bifurcation point (ubﬂA). Tz is a périod of the antifphase solution.

Case II. If v>1 [i.e. aa(a,u,v)/asl(O,O,v)=(l4v)<0], tﬁe'anti—phase
solution bifurcatipg at negative uAvis stable and thekin—phasé SQlutioh
bifurcating at positive “1 is unstable.

From bifurcation theory we know that only the first bifurcating solution
(the in;pﬁase in Case I and the anti-phase in Case II) is stable. However,
one may wonder whether a stability chanée of the unstable‘bifurcating
solution (the anti-phase in Case I and the in-phase in Case II) can‘take
place leading to a stabie solution. In the present case a Stability change
of these solutions can particularly be éxpected to’appear through ﬁhe two |
complex-conjugate characteristic exponents.

The purpose of this section is to developran apalytical apéroach to
the secondary bifurcations of the in-phase énd the an£i~phase solutions in

the limit where the interaction coefficient § is small. The basic idea of
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our approach is following the works ofIBauer, Kellexr and Reiss (1975) and
Erneux and Herschkowitz-Kaufman (1979), to relate the problem of secondary
stability changes to the coalescence of the two primary bifurcation points.
In our problem, one wéy to relate pI=(v—l)5 and UA=(1~Q)§ in a same.bifur_
cation point is to take §=0. Because of assumption (iii) in section_2.2,:wé
can assume that § is small. vSecondary bifurcation, from the primary bifur-
cating branch X or X , can océur only for values of u=u§(€)‘or u=pZ(€) ét

I A ,
which the linearized problem about X or X has non-trivial solution. Here,

I A

Elis an expansion parameter of the primary bifurcating branch. Hereafter we
use.s as the suffix which indicates the secondary bifurcation point. We
consider the iinearized préblem as aﬁ eigenvaluerproblem in ¢ and solve iﬁ.
by a perturbation expansion in §. This perturbation procedure is giVen-in
Kawato and Suzuki (1980). We omit this becauée a quiie similar procedure
is given in chapter 3. Results of fhe analysis are stated separately in
the twd cases. |

Case I. If v{l, there is a secondary bifurcation point‘bn the unsﬁable
aﬁti—phase solufion. ‘One sees that it is effectivély possible to have>the
stable anti-phase solution for u>uz. At the second order of the perturbatioﬁ
scheme there are no secondary bifurcation points on the stable in~-phase
solution. |

The.fact that real parts of the two complex conjugate characteristic
exponents of the anti~phase solution change thei:_signs at p=u: means that
bHopf bifurcation of a Poincaré map of the anti—phase solution occurs at y=

usS. The Hopf bifurcation theorem for diffeomorphisms poses two possibilities.

A
First, if the Hopf bifurcation of the Poincaré map is supercritical, there

exists a stable. invariant torus for u<us. Second, if the bifurcation is
A .

subcritical, an unstable invariant torus exists for u>us, We illustrate
A
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Supercritical case Subcritical case

MEMG

FiGL14 Phase spaces of the Poincaré map of the anti-phase solution. SF and UF are stable
and unstable fixed points of the Poincaré map. SC and UC are stable and unstable invariant
circles. UCY is the unstable invariant cylinder which is a stable manifold of the unstable circle.
As the phase space of (10) is four-dimensional, a phase space of the Poincaré map is.
three-dimensional. A horizontal plane is the eigenplane of a linearization of the Poincaré map
corresponding to the two complex conjugate characteristic exponents. The line which crosses
the eigenplane at a fixed point is an eigenline corresponding to one negative characteristic
exponent. The fixed point of the Poincaré map corresponds to the anti-phase solution and an
invariant circle corresponds to the invariant torus of (10). :

Supercritical case Subcritical case

Amplitude ot solution

!
M
Parameter value
FIG.15 Bifurcation diagrams of the specific two-oscillator model (10) in Case I. There are
two cases according to the direction of the Hopf bifurcation of the Poincaré map. In both cases,
the in-phase and anti-phase solutions are stable simultaneously for u > 5.1, A, E, STand UT

are the in-phase solution, the anti-phase solution, the equilibrium point, the stable invariant
torus and the unstable invariant torus.



these two cases by the Poincaré maps and bifurcation diagrams in Figs 14 and
15 respectively. 1In the subcritical case, {invariant cylinder}xsl={invariant_

1 may constitute a frontier between two

circle}xﬁlxsl={invariant torus}xR
stable manifolds (regions of attraction) of the in-phase and anti-phase
solutions. As both thé in-phase and anti-phase solutions are‘stableAer p>uz,
in the supercritical case we expect the invariant tofus to switch its )
stability at some u=u*<u; (see supgrcriticai case in Fig. 15) and {resulting
unstable invariant torus}le to constitute a frontierAbetween thé two
stable manifqlds-

Case II; If y>1, there is a secondary bifurcation point -on the unstabie
'ih—phase solution, but there are no secondary bifurcation points on the

stable anti-phase solution. Bifurcation diagrams in Case II are illustrated

in Fig. 16.

Supercriticat case Subcritical case

Amplitude of solution

H

; [ |

H — A

" 0 My MR M ] My 0 I8 M
Parameter value

FIG.:L.6 Bifurcation diagrams of (10) in Case II. The two periodic solutions are stable for -
1> p} The abbreviations are the same as in Fig. 5. ) :
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2. 6 Discussiqn and conclusions

Let us summarize the results of section 2.5 in Pig. 17. There are two
environmental parameters U and V; M represents the effect of light on the
constituent two oscillators and v represents that on their coupling. Primary
and secondary bifurcation points of the in-phase and’ahti~phase solutions
were given as follows.

-UI(V)=(VTl)6 i ‘v*“zux(“),

(2.12)

P H-H®

Hp (V)=(1-v)8  u (V)~2uA(v)
For v<1, the in-phase solution is stable for u>uI(v) and the anti-~phase

: s .
solution is stable for u>uA(v). For v>1, the anti-phase solution is stable
for u>uA(v) and the in-phase solution is stable for u>ui(v).v Cdnsequently,
only the in-phase solution is stable in a striped region of the (u,v)-plane

in Fig. 17. 1In a cross-striped region, both the in-phase and the anti-phase

S. s
Ma M M
1T /
tanasannsys
-, '2——_.—:
N = o il A
My i e L HY
N T e
N NI d:’;.}.'f/ 2
\\\ \'E 2»_,_,/ R IILI
\"\ f;f‘/ 4’,
~/£%m| —
4 .
.'{ ‘/\‘"h\ 121
1 T\4 -
1 Al = . )}
-l
/v// ! \‘\
f””
f”
/””—
|V
32
B
My : ’ M

Ficl? Partition of the parameter plane (u, ») according to asymptotic behavior of the
system (10). . )
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solutions are stable. 1In a laterally striped region, only the anti-phase
solution is stable. There exists no periodic SOlutien in a white region.
In order to explain the hysteresis phenomena, let us change parameter valnesb
(u,v) along a solid curve in Fig. 17 in the sequence of (1+2+3+4535251). When
the parameter values.are on point 1, the phase difference between the two
oscillators is 0°. The phase difference remains to be 0° until the parameter
values reach point 3. At point 3, the phase difference‘changes dramatically
to 180°. The phase difference 180° is preserved until‘the parameter point
reachesbpoint'Z again. Then a drastic change of the'phase difterencerfrom
180° to 0° occurs. These are remarkable hysteregis phenomena. If, for |
-example, point 1 corresponds to 1000 lux of the light intensity, point 2
corresponds to 100 lux, point 3 to 1 lux and point 4 to 0.01 lux; then the
hysteresis phenomenon in Tupaia is fully explained. Note that vy muet be a
decreasing function of the light intensity but the  increase ofrthe light
intensity does not neeessarily imply increase or decrease of the p—ﬁalue.
So, in our model, the light intensity in free-running conditions must effect
the coupling between the two oscillators in orxder to cause splitting. Here,
we assnmed that the bifurcation of the Poincaré map is subcritical for
simplicity of explanation.

The period of the uncoupled constituent oscillator Tu’ the period of 
the coupled oscillator system in the in-phase state.T; and the period of
the coupled oscillator system in the anti-phase state_rz are given as

follows:

u
T =27,

e W/ 1-206 2624 2arbrab, ’ - (2.13)

C
I
T§=2n/vi+2vs—vzsz—za-b+ab.
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Since parameters §, a, b and , are positive, a and b are small and § is very
small, the following inequalities hold

c u c

TR>T 2T
This is in agreement with the data in Tupaia but not with the data in
hamster (Hoffman, 1971; Pittendrigh and Daan, 1976). The possible reasons
for the disagreement with the hamster's data are our assumptions (i), (1ii),
(iv) and (vf. Assumption (i) seems to be the most probable resson'for the
discrepancy. In other words, the two constituent'oscillators of Tupaia may
be nearly identicsl. In the study of the activityvrhytth'bf cockfoaches,
Page (1978) uncoupled the two oscillators by surgical lesion and_fbﬁnd that
Tu>T§. This is in aéreement with our results.

ﬁegardiﬁg the after-effect or thé non—monotsnic traﬁsiests, Qﬁe can
~explain them by the characteristic expsnents of the stable in—phase solution.
Since the phase space is four-dimensional, there aré three cha;acteristic
exponents. One real exponent is. almost the same as that of the liﬁit cycle
of the single uncoupled oscillaﬁor. ‘'So, the absoiute value bf one exponent
is large‘aﬁd the stability in this direction is strong. But ths absolute
value of the real part of the other two exponents is small because the coupling
is weak. thn the environmental parameters are changed,‘a new stabie in-phase
periodi¢ solution is formed instantaneously in a location diffsrent from_that
of an old solution. We expect the after effect since it takes many.cycles (ie.
the transient periods) for the state point to approach the new limit cycle
because of the weak stability. One can assay a period of the circadian’
oscillator only by measuring the timing events which are controlled by the
oscillator (e.g. emergence of fruit flies, onset of locomotor activity in
rodents). We define an "event surface" in chaptér 1. Generslly, a stable

manifold of the point where the event surface meets the limit cycle is
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different from the evenf surface. So, an apparent period in the transient
periods_is different from the period of the new limit cycle. 'Sometimes; the
event surface and the stable manifold meet each other several times (seé Fig.
2). 1In this case the non-monotonic transinet is observed.

Rossler (1976) found non-periodic oscillation (“chaos" ér "turbulence")
in a diffusion-coupled two-oscillator system. The generél system (2.3) may\A
-have such solutions for some types of coupling.b fitténdrigh and Daan (1976)

found apefiodic activity pattern of a hamster in LL and.explainedvitlby
'asynchrony of a much larger'number of constituent components than fhe two.b
But it c?n be expléined‘also by the tWo—oscillator system which exhibits
chaotic behavior.

Mutual excitation and lateral inhibition between neural oscillators

were studied in our paper (Inui, Kawato and Suzuki, 1978) also}
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CHAPTER 3

SYNERGISM AND ANTAGONISM OF NEURONS CAUSED BY AN ELECTRICAL SYNAPSE

3. 1 Introduction

Electricai junctions are often found in the invertébrate nervous system
(Kennedy and Davis, 1977). 1In the vertebrate nervous system,kelectriéal -
syhapses exist between fish motor neurons, pacemaker cells in the heért,
inferior olive neurons apd so on (Bennett, 1977; Llinas et al;, 1974).
Though there are many electrical juﬁctions in the nérvoﬁs system, they
have attracted much less attention thaﬁ chemical junctions. One of the
reasons is because electrical junctions are considered to bring coupled
neuroné in an equél state. Only thesevequaiiZingrfunctidné havevbeen
investigated theoretically (Torre, i976). if electrical coupling haé only
these functions, it is improbable that it plays an important role in the
delicate functioning of the nervous system. .

Taking account of the passage of large molecules-through a ga§>junction
(Kanno and Loewenstein, 1966), we stﬁdy a model system consisting of two
neurons electrically coupled. We investigated the modél system by the
theory of Hépf bifurcafion and numerical integration {Kawato, Sokabe‘and
Suzuki, l979$. The‘general model system has two typés of periodic solutions.{
One is the solution where two neurons oscillate in phése synchfony (in-phase
solution). The other is where the two aré excited 180° ocut of phase.
Especially for two BVP;model neurons coupled by diffusion, numérical
integration showed the simultaneéus stability of the two élternative solutions
for a specific set of parameters. Because the anti—phasevsolution ié unstable
when it bifurcates, there must be its secondaryAbifu;cation.v We study the
stability change of the two solutions by the secéndary bifurcétidnAmethod

(Bauer, Keller and Reiss, 1975). The necessary condition of parametersbfor
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simultaneous stability of the two alternative solutions is obtained. Moreover,
we ascertain that the secondary bifurcation of the_anti¥phase solution really

occurs using a computer algorithm by Kawakami, Matsumura and Kobayashi (1978).

3. 2 A general model system consisting of two neurons electrically coupled
In a simple model system, the role of electrical junctiomns in the nervous 
system is examined. The model system consists of two nearly identical neurons
electrically coupled (see Fig. 18). We assume that eéch neﬁron discharges a

train of impulses or bursts either spontaneously or under the stimulus of

I

chemical synapses.

Fig.l 8A model system consisting of two electrically ‘coupled, nearly
identical, neurons, N1 and N2

We call the left neuron N1 and.the right N2. If there is no electfical
juncéion between two neurons, N1 and N2 discharge trains of impulses or
bursts with different intervals. We wantvto investigate what effect electrical
junction has on the time strﬁcture of impulses or bursts.of two neurons.

Especially, we deal with the case where the stimulus strength, such as the
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magnitudé of a stimulating electric current, is constant to the time. In
such cases the time structure of the input impulses has no effect on that of
: thevoutput of'fhe neuron.

To describe the model system mathematically, let us examine electrical
synapses first. It is known that not only an electric caxrent but also
chemical substanées with 1000 molecular“@iéhtcan pass through the junction\
of electrical éynépses‘(gap junction) (Kanno and Loewenstein, 1966)}. For
simplicity, we assume that the characteristics of both electric resistance
and permeabiiity for chemical substances of the gap junction ére constant
(i.e.‘independent of'the inner states of ﬁeurons, such ds membrane potential).
Membrane potential of N1 is dgnoted by xl. Concentration of the i-th chemicai
substénce in N1 is denoted by xi(i§2). Membrane potentialrand i-th concentra-
tion of N2 are denoted by yl and yi respectively. R represents the elecﬁric
resistance of the junctioﬁ and gi represents permeability of the i-th éhemical
substance through the gap junction. I and Ji stand for the magnitude of’
electric current, and the flow of the i-th chemical substanée from Ni td N2
through the gap juﬂction_respectively. From the above discuséion I=(xl—yl)/R
and J =g, (x -y_ ) hold.-

i 7iiTi

vSecondly, we express a single neuron mathematiéally. As the Stimulus
strength is constant, only the expression of a spike initiation zdne is
necessary. Like axons, the spike initiation zone may be described by the
Hodgkin-Huxley equation (Hodgkin and Huxley, 1952) or by FitZHugh's BVP
equation (FitzHugh, 1961). But here, we do not assuﬁe that the spike
initidtion zone‘is described by a peculiar equation. We assume that the
dynamics of internal states (xl,xz,...,xﬁ) of a neuron is ekpressed by the

following system of ordinary differential equations.
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dxi/dt=Fi(xl,X2,...’Xn;u)’ - i=l,2,...,n
In ve tor notation this is
dx/a fF(x,u)- : ' ' (3.1)

" Where x=(x1,x2,...,kn), and xl is membrane potential. ’F(x,u) is a n—dimen—‘
sional function.  represents the stimulus streﬁgth, such as the mégﬁitudé
of a stimulating electric current or the hormonal statg‘of a neﬁroﬁ.

We use the suffix i for gquantities of N1 and 2 for Quantities of N2. x
stands fér internal states of N1 and y for that of N2. Consequentiy our

model system is described by the following equation,

dx/ac=F_ (x,pu.) +Dt (y-x)
: 1 1 (3.2)

= 2
dy/at=F ,{y,u ) +D" (x-y) .

Where Dl and D2 are nxn diagonal matrices and Dj=diag(di,dg,...,di) (j=lf2)’
The second term of.the right-hand éide of (3.2) represents the influence‘of an
electric current and the diffusion flow of chemical substancés on membrane
potential and chemical concentration of neurons. Bécause two neurons are

not completely identical, generally di#di (i=1,;..,n). di (i=1,2;i=1,2,...,n)
is non-negative, but it may be O for i#l1. For example, if xi and yi represent
éuantities connected with channels of the membrane, then dg=0 (j=1,2). 1If
the gap junctibn does not pass the i-th chemical substance, then di=0 (3=1,2).

— ~ :
Now, we study (3.2)to examine relationship between the time structure of

N1 and N2's discharges. When there is no electricai junction, N1 and N2 are

excited with different intervals. We want to know the following. Are the

discharge-periods of N1 and N2 synchronized by electrical junction? Are
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they excited in phase synchrony, if discharge-periods are the same? What is
the difference of phase between N1 and N2, if the two are excited asynchro-
nously?

To investigate these matters, instead of examining (3.2) we only have to
study the following system (3.3) whére N1 and N2 are perfectly identical.

This comes from structural stability of (3.3).

dx/dt=F (x,u)+D (y-x)
(3.3)
dy/dt=F (y, u)+D (x-y) . S

We call (3;1) an individual system,-(3.2) a model system, and (3.3) a
coupled s&stem herafter. If (3.1) has a periodic solution u(t), then (3.3)
‘apparently has a periodic solution (u(t),u(t)) where N1 and N2 oscillate

perfectly in phase. We call this solution a perfect in-phase solution.

N

Rggarding this, Torre proved that the stability of the Sblutioﬁ (utt),u(t))
of (3.3) is equivalent to the stability bf some nohfaufonomousblinear
differential equations containing u(t) expiibifly,vwhen u(t) is a stable
limit cycle of a 2—dimehsional system (3.1) (Torre,»l975). 'He‘investiéated
the synchronization of electrically cbupled pacemakerrcells in the heart
Iby the same method (Torre, 1976). But determination of stability of the:
nonautonomous system is difficult. o

Neurons have a stable equilibrium state for small stiﬁulus strength y,
and discharge trains of impulses or bursts for iarge e Taking account of
this, we usé the theory of Hopf bifurcation for the analysis of (3.1)—(3.3),
especially for determination of the stability of the’pérfeét in-phase solution

of (3.3).
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3. 3 Stability of a perfect in-phase solution and the existence
of an anti-phase solution

We assume that Hopf bifurcation occurs ét the critical étimultsbmagnitude in
the system of differential egquations deséribing a neuron. It is known that -
the BVP equation and Hodgkin-Huxley equatién havé bifurcating periodic
solutions according to the magnitudé of an eleétric'current as a bifurcatiog
-éarameter‘(Hadeler et al., 1976; Hassard, 1978).

We ~assume that (3.1) satisfiéé assumptions of Hopf's theorem at p=0.

Let u (t) denote the bifurcating solutions of (3.1). Then the following
u _ . : _

theorem can be proved.

- Theorem 3. 1. If the matrix dF(0,0)-2D is stable, then bifurcation of
perfect in-phase solutions (u (t),u (t)) takes place at uy=0 for (3.3) If u (t)
. U u ) Tt U
.is supercritical, (u (t),u (t)) is also supercritical. If u (t) is subcritical,
U H . '

. U
(u (t),u (t)) is subcritical.
23 U

Proof. By making a change of coordinates as z=(x+y)/2 and w=(x-y)/2, we get

the following system,

dZ/dt?dF(O,u)Z-i—G (Z,W,u)
1 (3.3")
dw/dt=(dF(O,u)—2D)w+G2(z,w,u).

Where, G_ and G2 contain only higﬁer order terms than the second order.
(3.3"), accordingly (3.3) satisfies the conditions.bf fhe Hopf's theorem
because of the assumption of the theorem; so periodic‘solutions bifurcate
at. y=0. Let vu(t) be this bifurcating solution of (3;3). Hopf's ﬁheorem»

asserts the existence of a neighborhood U of the origiﬁ in R2DFL, Because
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(uu(t),uu(t),“)cU holds for small pr vV (t) is (u (t),u {(t)). {(n-1) charcter-
. u u u :

istic exponents of vu(t) coincide with (n-1) exponents of u (t)
. H
and the rest n characteristic exponents
of vu(t) are close to n eigenvalues of (aF (0,,)-2D) multiplied by a period of
the solution. The pért concernig the stability éf vu(t) in the Theorem

follows from this.

Corollary 3. 1. On the same hypothesis of Theorem 3.1, a model system (3.2)
has a stable in—phése periodic solution if the difference of two neurons is

small and the bifurcation of (3.1) is supercritical.

Proof. Small difference of two neurons implies the existence of small

positive.g,§ such that

|75 Geru )P G [ | <e (3=1,2)
D30 <s '

hold for F(x,y) and D in Theorem 3.1. .Wheré l! Ill is a C ﬁorm and I [ is
a matrix norm. Because pérfect in-phase solution of (3;3) is hyperbolié and
stable from Theorem 3.1,~it follows that (3.2) has a_stable_limit cycle near
this perfect in-phase solution from the continuance of a periodic attractor'
under éerturbation of.vector fields (Hirsch and Smale, 1974). This means

that N1 and N2 oscillate almost in phase synchrony.

- Even when an electric current and flows of chemicals are different from
diffusion, the existence of a phase synchronous periodic solution for the
model system can. be pro#ed, as in Corollary 3.1, .if the difference between

the real flow and diffusion is small.
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Another generalizétion of Theorem 3.1 is the following Corollary 3.2,
concerning the system consisting of m same neurons coupled via diffusion.

The proof of Corollary 3.2 is the same as that of Theorem 3.1, so is omitted.

Corollary 3. 2. Let us consider a ring system consisting of the m same'

individual systems (3.1), coupled to two neighbors by diffusion, with a

diffusion matrix D. If the bifurcation occurs supercritically at y=0 for ther

individual system (3.1) and the matrix dF(0,0)-2D(l-cos 2¢j/m) is stable for
each j=l,...,m—i, then the perfect synchronous solution; where all m systems

oscillate synchronously, is stable.

A similar result holds for the system consisting of many individual

systems (3.1) which are arranged on the torus and are coﬁpled to four neighbor-

ing systems by diffusion.
The variable z denotes the mean of states of N1 and N2 and w denotes -

difference in (3.3'). When the matrix dF(0,y) corresponding to z loses its

stability, the synchronous periodic solution appears. What happens when the

matrix dF (0,))-2D corresponding to w loses its stabilitY?

Proposition 3. 1. If the two complex conjugate'eigenvalués of dF(0,u)-2D

cross the imaginary axis at y=, and the coupled system (3.3) satisfies the
. C . .

condition of Hopf's theorem, then the bifurcation of an anti-phase solution

where N1 and N2 oscillate 180° out of phase takes place.

‘Proof. As tr(dr(0,0))=0 and txD>0, y is positive. Bifurcation of the
c :

periodic solution takes place at y=y  for (3.3) from Hopf's theorem. Because
c , e ,

N1l is equal to N2, (3.3) has symmetry. From this éymmetry and the uniqueness
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of the bifurcating periodic solution for each ps the bifurcating solution is
either an in-phase solution oy a 180° out of phase solution. As an invariant
manifold which coﬁtains bifurcating sblutions is tangent to the w-hyperplane,
bifurcating solutions are not in~phase because of their.continuity with
respect to u.‘ Therefore, the bifurcating solution is anti—phase.

The aﬁti—phasé bifurcating solution is unstable for uﬁ“c because dF(O,uc)
is unstable, and the n characteristic exponents out of (én—l) are close to
n eigenvalues of dF(O,pC) multiplied by a period of the éblution. Being
interested in the physiological phenomena, we want to knqw wherther this
anti-phase séiution becomes stable ét u>uc. We also want to know the -
concrete conditions on the diffugion coefficients imposed by thevassumption
of Theofem 3.1 or Proposition 3.1. So,vin'the following éection concrete
analysis and computer simulation are carriéd out, with a single neuron

being described by the BVP model.

3. 4 Two BVP model neurons coupled by diffusion

We use FitzHugh's BVP equation (1961) for a model of a single oscillator.

dx/cit=c (y+x-—‘x3 /3+1),
(3.4)
dy/dt=- (x-A+By) /C, -

0<B<l, ©>0, B<C?, 1-2B/3<A<l,

where x is the minus quantity of membrane potential, y is the quantity of

refractoriness and I is magnitude of a stimulating current. System (3.4) has

an unique equilibrium point for all I. This equilibrium point is unstable for
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I_<I<I+f where I+5—A/Bt?§—B/Cé{l/B—2/3—B/(3C2)}. Ac Hadeler et al. showed
(1976), system‘(;.4) has a stéble limit cycle for some range of I. It corres-—
ponds to the repeated excitation of the neuron. The limit cycle bifurcates
from the equilibrium point at I=I+. The bifurcation is supercritical or
subcriticél for C2(2B—l)—B2<O or ;O respectively. Although the method of

Hopf bifurcation tells us about the periodic cclutiocs only for i~I+, we can -
get the bifurcation diagrams in Fig. 19 by combining Hopf-bifurcati;n results
and Poincc:e—Bendixon's tﬁeorem with computer simulation;

Let us consider the syscem of differential’equaﬁionsIWhich describes the
two electrically coupled neurons. For simplicity,'we assume that the
characteristics of bcth electfic resistance and permeability for chemical
substances of thé gap junction are constant. Let D denote the conductance
cf the electrical junction and ¢D denote the permeébility of the junction for :

.the guantity of refractoriness. For identical two neurons we get the following .

equation.

A 3
ix /dt=C(y_+x_-x_/3+I)+D(x_-
dx_ / (v, +%X_-x7/3+1)+D(x_-x_)

dy. /dt=- (x_-A+B +6D(y_-y.)
yl/ (xl v.)/C +8 (y2 yl)

1
3
2

(3.5)

_/dt=C(y_+x_-x_/3+I)+D (x_ -~
Ay /AE=Cly,bx =%,/ 3HI)D (x ) =% )

d dt=-(x_-A+B C +gD - ’

v,/ ( 2™ y2)/ 8 (yl y2)
where quantities of the oscillator 1 are denoted by a suffix 1 and those of
the oscillator 2 are denoted by a suffix 2.
3. 5 Primary bifurcation

Let the unique equilibrium point of (3.4) depending on I be denoted by (x (T),
e
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y (I)). That is, the following holds.
e

y (I)=A/B-x (I)/B
e e

x (I)3/3+(1/B-1)x (I)-A/B=T
e e

Because B is less than 1, x (I) is an increasing function of I. We define a

‘bifurcation parameter y as
u=1-B/C2%-x (I)2,
e

so that the equilibrium point becomes unstable at u=0. Because x (~A/B)=0,
e .
U is an increasing function of I for I<-A/B and a decreasing function for

I>-A/B. For convenience of calculations, we make the following change of

parameters

Ct=t',
B/C2=a,
1/C%=b,

O<a<l, b>0, a<b

We denote t' by t again. We change the coordinates so that the origin is an

equilibrium point.
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In order to study the in-phase and anti-phase solutions which bifurcate from

the equilibrium point, we make the following chaﬁge of variables.

p=(Z +% ) /2,
=g +9,)/2,
r=(% - )/2,

s= (Yl-yz)/Z.

(p,q)'is a mean of states of the two oscillators and (r,s) is their difference.
For convenience of calculations, we further transform (3.5) into a canonical

form by the folloWing change of variables.

[ x 1 0 o0 o\t p
i y -a ¢ 0 0 a
\ Z 0 0 1 0 r
\ w / 0 .0 ~{a+26D) v s ’
where ;=¢£—a2,
v=/é—a2—4aeD—492D2.
In the new co-ordinates (3.5) becomes,
[ x u z o] » 0 X
a vi_ ~gtap/g 0 0 v L ' 0 v
atl , 0 0 u-2(1+9)D v || =z
w 0 0 =~y+(at+20D) {p-2(1+8)D}/v 0 w
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2 2 2 2
(x +2 ) _ x(x +3z )

2 2
a(x2+zz)/§ ax(x +3z )/ '
-y l—a—u -1/3 2 2 (3 '6_)
: 2xz z(3x +z ) :
: 2 2
- 2(a+2gD)xz/y (a+2gD)z(3x +z )}/ .

(x,y) is the in-phase component and (z,w) is the anti-phase component of»the
- system. The origih (0,0,0,0) is an equilibrium point of (3.6). As we can
see from the linear part of (3.6), the in-phase periodic solution of a
frequency r bifurcates at p =0 from the origin (see Marsdenvand McCrackeh,

I
1976). Let W (u) denote the matrix

2

-yt (at2D) (-2 (1+g)D}/y O ,

which is the part of the linearized matrix for (3.6). The in-phase solution
is stable near the bifurcation point if its bifurcation is supercfitical_

and the matrix W (0) is stable. For, its two characteristic exponents out

2
of four are close to two eigenvalues of W (0) multiplied by its period, 2ﬁ/g.
, _ 5
‘The condition that W (0) is stable is as follows.

2

2 2
49D -2agD+2aD+b-a >0

Next, another periodic soclution of a frequency bifurcates ét NA=2(1+9)D>0
from the origin. This is the anti-phase solution becausebof the symmetry of
(3.6) and the unigqueness of the bifurcating periodié éolution. The anti-.

- phase solution_is always unsfable near its bifurcation point because its two

characteristic exponents are close to two eigenvalues of
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: £y 4
W (p)= ;
l \“C'l"au/c 0 r

‘multipled by its period, 24/y. ¢ and D must satisfy following two conditions

in order that the anti-phase soluton bifurcates.

det W (; )s0 that is, gD« (/b-a)/2

1 A
p <l-a that is, (1+g)D<c (1-a}) /2.
A

n is less than l-a from its definition. We want té kno@lwhether the in—pﬁase
solution becomes unstable as p departs from ;; =0 and whether the anti-phase
I o
solution becomes stable as p departs from =2(l+e)b. WeAstudy this in ﬁhe
A
next section using the secondary bifurcation method. For this computation
the two primary bifurcating solutions need fo be expandéd into the convergent

analytical series.

For y sufficiently close to zero, the in—phase solution X (t) can be

. ) I
~expanded as follows:
X\
v 0 21 , '
X (B)= I =g X () +¢ X (0)+ ... o _ , (3‘7a),
z, :
W o |
- 2 o
pTey *e2y + ... | . (3.7p)
e, | | -
w ~CTew +52w + ... o (3.7¢c)
I 1 2 :

xK are 27/w -periodic functions of t. - The standard perturbation procedure
I I . :

up to the third order of ¢ determines the detailed expression for XI as

follows:
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—aJl—a/(2c2)+a¢lea/(6c2)cos 2, t-vl—a/(3€)sin 2, t }
' I . I
1 ‘Jl—a/(ZC)—Vl—a/(6§)cos 20 t—adl—a/(3c2)sin 2, t
' I I

x= (3.82)
\ 0o - -
. |
3,0y T Wzmaea) /)2 | N & I
w =0, 4 =(a=1) (;2+a2)/(6,3). . (3.80)
1 2 | |

Of course, the direction of the bifurcation is as same as that of the single

BVP model.

- The anti-phase solution can be eXpanded similarly by the following

series.
X, |
Ia
“a 0 1 ’
X Aft)= W =X (B) 45X (B)+ ... (3.9a) :
p=2(l+g)D=gy +c2y + ... - (3.9b)
1 2 ‘ , :
o ~vew ety t* --- : (3.9¢c) |
A 1. 2 . é
0 L+Rcos 2, t-Isin 2, t ! . : é
A A _ .
0 MH+Qcos 2, t-Jsin 2,4 t : S |
x0= xl= A A ~ (3.10a) '
A cos , t A 0 '
A .
-sin w E R 0
A :
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i
1=

2(2a(l+e)D—;2),

« [a{4y2=%+2a (1+) D}+8 (1+g) 2D]

R=2[{4y2-;%+2a (1+g)D}%+16 (1+g) D22,

« [y 4y2=2+2a (1+g) D}-2a (1+g) Dy]

T=(4y2-r2%+2a (1+9) D}2+16 (1+g) 2D, 2

,
k=/1-a-2(1+g)D.

¥,=0" Y2=l/4+K{2L+R+(a+2eD)I/zv} , ‘ . (3.10b)

0, =0 w2=—KI{2v2+(a+29D)2}/(4v2): : o g (3.10¢)

If v _ is positive, the bifurcation of the anti-phase solution is supercritical.

Tt is subcritical if Y2<O' For small D, Y2 is evaluated as follows.

lim Y2=(3C2~8a(l—a))/(12€2).

b0 ’ '
Consequently for small D, we get the following conditions for parameters B,
C regarding the direction of bifurcation.

<0 supercritical

c? (8B-3) -582 (3.11)

>0 subcritical

3. 6 Computation of secondary bifurcation by perturbation method

In this section we develop an aﬁalytical approach to theiétability changes

of the in-phase and the anti-phase solutions in the limit where the éonductance
aﬁd the permeability of the gap junction are very low, that is D is vety small.
The basic idea of our approach is following the works of Bauer, Keller and

Reiss (1975), Erneux and Herschkowitz-Kaufman (1979) and Kawato and Suzuki
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(1980); to relate the probleﬁ of secondary stability changes to the
coalescence of the_two primary bifurcation points. In our problem, the way
to relate pI=O and pAf2(1+e)D in a same bifurcation point is to take D=0.

If there is an secondary bifurcation point, which is related to the multiplg ‘
bifurcation point, on the in—phése or the anti—phase solutioﬁ, this point
also coalescesinto the multiple bifurcation point as D-0. Consequently, if -
there exists such an secondary bifurcation.point, it is on the primary
bifurcation branch of sméll amplitude for sméll D. So we can use the series
expansion in section 3.5 in order to make a variational system éf (3.6)
_corresponding to‘the primary bifurcating solutions. When arreal part of

the characteristic exponent, which is obtained from the variational system,
becomes zero, the secondary bifufcation occurs. The seéoﬁdary bifurcation
occurs at sﬁall amplitude € for small D. Moreover, €g tends to zero as D
tends to zero. Consequently we consider an eigenValue problem in ¢ and solve

it by a perturbation expansion in D. Hereafter we use s as the suffix which

indicates the secondary bifurcation point.

‘3. 6. 1 Stability change of the in-phase solution
In this subsection we study the secondary bifurcation of the in-phase
solution. In order to analyze the linear stability of the in-phase solution

XI=(xI,yI,zI,wI) we look for the solutions

;k=exp(ng)uk(r), uk(T)=uk(T+2ﬂ),

T=0_t, k=1, 2, 3,

of the linearized equations of motion around the in-phase solution XI:
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gkuk+w13uk/3T=Muk, : (3;12)

where M is an Jacobi matrix of (3.6) around X . A stability change of the
. I .

in-phase solution can be expected to appear through the two complex-conjugate

characteristic exponents. They become pYrely imaginary,

g s E =%ig (¢ real) at y=,5.
s s : I

us is the secondary bifurcation point of the in—phaée solution. - We want to
I :

_know if there exists some critical value of ¢ (#0) where two of the character-

s
istic exponents become purely imaginary. ¢ is related to y by (3.7b). For
. s - .
some ¢ small we develop the following perturbation expansion for ¢ , gA and
S : s

u valid for D sufficiently small,
s

e =D1/2; 4py + ... - (3.13a)
s 1 2 ) .
=3 1/2 _ . ' :
=i(g +D +Dg + ...) (3.13b)
gs % °177% :
U =y +D1/2y 4Du + ... (3.13c¢)
o 1 2. : . :

Now, we introduce (3.13a) into (3;7b), (3.7¢), (3.8b) and (3.8c) and develop

s s S
I and X° in powers of D.
il I

0 (D)=g+Dy_n2+0 (D3/2) | o (3.13d)
I 2''1
S myen. 24032y A
(D)=D +0(D>/ #) (3.13e)
u Y0y | v .
x5 (D)= (012 +pp_)x%+Dn2x1+0(D3/2)
T 1 27 M1 ‘ -
=p1/2x% 4pxS +0(D3/2), (3.13£)
10 11 :
0

where XI and Xi are given in (3.8a). For simplicity of computation, M is
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decomposed into powers of D. Here we use various relations such as

v=g~-20D/+0 (D2) .

/ 0 z 0 0 1 0 0] 0
-z 0 0 0 a/y 0 0 ©
M= : +u
0O 0 O z 0 0o 1 0 B
0 0 -¢ 0 0 0 a/g O
0 0 0] 0
0 0 0] 0]
+D \ v
\ 0 0 -2(1+e) -28/¢
[ _
\0O 0 =-2a(l+9)/z+206/y O
2.2 S _
-2¥1-ax_~(x_+z_) 0 -2 Yl-az -2x =z 0
I 1 35 R A
~2a/l-a/g-x —a/c;(x2+22) 0 =2a¥l-a/r.-z_-2ax_z 0
+ I I I I _ Iz "
-2/1-az_-2x_z 0 -2V1-ax -(x2+zz) 0
A ¥ I 171 :
» 2,2
- - = - 2 > ) - - < - ’ +
2avl-a/t zI a/g XIZI 0 2avli-a/g xI a/cg (xI ZI) 0

+o(D2)+uo(D)+o(D)oﬁ2(XI)

=T+yT +DL+N1(XI)+O(D )+uO(D)+O(D)N2(XI)

1

By inserting (3.13a)~(3.13f) into (3.12) and equating to zero the coefficients

1/2 ) .
of each power of D / , we obtain the following systems of equations to solve
successively,

c3u0/31+i0 u . ~-Tu_ =0 ’ (3.14a)

00 0]
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C3ul/aT+igoul—Tul=—igluo+Nl(Xs yu )=£ o " (3.14b)

100 1
. s . 2 2 S S S
3u /yrt+ig u -Tu =-ig u-ig u- au /3 T u +Lu N (X ,u ;X° ,u ;X° ,u
T e e e e e P S N S LN
=f ’ (3.14c)
5 ‘
and in general
3u /yr+ic u -Tu =f , n=1,2, ... © 0 (3.144)
» n On n n : )

- The homogeneous system of equations (3.14a) admits two eigenfunctions

-associated with 00=0,

{ cosT' ' 0
_Sin:‘l' . 0
u = u =
01 0 _ 02 cost
0 r v -ginT .

The general solution for uo of (3.14a) can be written as follows,

=8

Su u + (3.15)
0. "1 01 8

2702"
Either Bl or leis not zero. Becausg (3.14a) is:a self—adjoint system, the
two solutions of the adjoint system of (3.14;),'u; and u;, are as samé as
u01 and u02. The inhomogeneous system of equations (3.l4b)m43.14§) have
solutions if and only if each fn satisfies the following orthogonality
conditions (non—resohance condition).

27

S dr(f -u*)=0 (5=1,2) B (3.16)
0 - n j : _ ;
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In general orthogonality conditions (3.16) will be satisfied only for

1 1 2
by (3.13a), (3.13b) and (3.15). At the first order in D

particular values of the unknown parameters n_, g., o._»r Bl and 32 defined
1/2, the orthogonal-

City conditions of f2 give

=0, . : o . (3.17a)

048,70 | | | | (3.17b)

5.=0. ‘ . | - | (3'18,4

At the second-order in Dl/z, the orthogonality conditions of f2 give:

2. . _ s ’ . )
Byn,&=0- | ~ (3.19a)
Bz{niG-(l+e)}=0, ~ , ‘ : (3.19b)
—-1/4+a(1-a) / (b-a?) S R (3.19¢)

. 2 . . ;
Since O<a<l and a <b, G is negative. Becauserbothgl and 32 are not zero,

‘we have

0. | ‘ | 3.20
n, =0 | .20

At the second-order of the perturbation scheme there aré'thus_ho secondary
bifurcation points which may be related to a purely imaginary characteristic

exponent.
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3. 5. 2 Stability change of the anti-phase solution
A similar procedure is applicable to the stability change of the anti-phase
solution. We use the exactly same notation as in the previous subsection

~without fear of confusion. We present only the results because the

1/2

computation is quite similar. At the first order in D , the orthogonality

- conditions of fl give

g.=0. : - : (3.21)

1/2

At the second-order in D , the orthogonality conditions of f2 give:

-Bl{Hni+(1+e)}=o, - | | (3.22a)
8. Hn2=0, : S . (3.22b)
1 o | :

H=y2/2-3/8+a(l4a)/(2;2)—/l—a(aI/2;+L+R/2), -  (3.220)

where I, L and R are given in (3.10a). If H is positive, nl must be zero
because either Bl or 82 is not zero. That is, at the second-order of the
"perturbation scheme there are no secondary bifurcationvpoints on the anti-

phase solution. If H is negative (3.22a) and (3.22b) yield,

B 70, . | . (3.23a)
8,=0, | | . . (3.23b)
ni=- (1+0) /8. S (3.23¢)

That is, the secondary bifurcation occurs on the anti-phase solution at

s . 2 3/2. - r o '
uA—D{nlY2+2(l+e)}+O(D ). o ‘ (3.;4)
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For infinitely small D, the sign of H is evaluated as follows.

<0; H<O
c? (5B-3)-282

>0; » H>0

3. 7 Bifurcation diagram of the coupled systemA

The coupled system (3.5) has six parameters A,FB, C, I, 8 and D. We got
,sevéral conditions‘forbparameter B, C by the primary and the Secondary

" .bifurcation analysis in the preéeding sections. First, the direction of

bifurcation for the in-phase solution is supercritical, if
¢? (28-1)-8%0. ' o (3.25a)

Second, for small D the bifurcation of the anti-phase solution is super-

critical when
2 2 . - }
C”(8B-3)-5B"<«0. (3.25b)

Third, for small D the secondary bifurcation occurs on the anti-phase
solution if

c? (58-3)-28%<0. | . (3.25¢)

These three conditions divide (B,C)-plane into four regions I, II, III, IV
according to the asymptotic behavior of (3.5) (see Fig. 20). For example,

the bifurcation diagram of the system (3.5) for the parameters in region I

is such as in Fig. 21 I, because tlie parameter region I satisfies the three
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conditions (3.25a), (3.25b) and (3.25c). We'attach four signs to various
solutioné in FPig. 21. 1If the solution is an equilibrium point, these are
signs of real parts of four eigenvalues for é linearized‘system around the
equilibrium point. If the solution is a periodic orbit, thesé are signs

of real parts of féur characteristic exponents associated with the periodic
iorbit. The solution which bifurcates secondarily from the anti-phase -
4solutio$ is an almost periodic solution (invariant torus). As (3.23a) in

- the preceding section shows, the almost periodic solution is the anti-phase
solution plus the in—phése solution of small amplitude near thé‘secondary
bifﬁrcation point. We musﬁ develop a perturbatidn précedure for the almbst

periodic solution around U=uz in order to know whether the almost periodic

‘solution exists for U<U§ and is stable (supercritical) or exists for u>u: and

is unstable (subcritical). vThis is one of our future problemg. However,
Fig. 21 shows the subcritical case because we cannot find a stable almost
periodic solution by computer gimulation. In Fig. 21 II, III and IV the
5ifﬁrcati0n diagrams of the'in—phase and anti-phase solutions afe bent{
This implies that bifurcations of birth and death type 6CCur. Thisvis also

-a conjecture inferred from computer simulation.

3. 8 Discussions

The seconaary bifurcation method in sections and 3.7 is wvalid only for

' sﬁall D. Although @he results summarized in section 3.7 is independent

of ¢ (the proportion of conductance to permeability of the gap jﬁnction),
we have got a different result by numericél integration‘of (3;5) usiné an
ordinary Runge-Kutta method. For only large 8 the t&o alternative solutions

seem to be stable at the same time (Kawato, Sokabe and‘SuZuki, 1979;vsee
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Fig. 21 I & II
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Fig. 21 IIT & IV

[1I
N
o
-
l—-_
3
o
=
< |
| 0 My 2(1+8)D
BIFURCATION PARAMETER
IV - | o
g I /H.{O.—) _____
a _\\\ A (,‘—"‘”
) N N
% \\\ \\\ (+.+,0,#)
< N N
0 2(1+6)D

"BIFURCATION PARAMETER



-1

. . i s o

If ig. 2 2Neume€ically integrated solutions of (5) which approach either the in-phase solution (upper) or the anti-phase solution (lower). A solid
line, a b}'oken line, a dotted line and an alternate long and short dash line are x {0, ¥,(8), x,(1), and y,(2), respectively. The absissa is the time. The
left ordinate scales membrane potential (x,,y,) and the right ordinate scales refractoriness (x2,¥2)

Fig. 22). However this is an ambiguous result because the numerical integrat-

ilon cannot determine the stability of the periodic solution rigorously. In

order to compute a hyperbolic periodic solution numerically we need a new
method. Kawakami, Matsumura and Kobayashi found an algorithm to obtain the
hyperbolic periodic solutions on autonomous dynamical system (1978). The

algorithm is a newton method to obtain a fixed point of a Poincaré map of

the required periodic solution. Conveniently we can compute characteristic

mﬁltipliers of the periodic solution by this algorithm at the same time.

We examine the secondary bifurcation of the anti-phase solutioﬁ using this
algorithm. The computef calculation revealed the folldwingrresults. First;
the secondary bifurcation of the anti-phase solution really.occurs. Fig. 23
is the bifurcatidn diagram of the anti-phase solution thch is obtained for
parameters B=0.8, C=1.0, D=0.01 and 6=3.0. Fig. 24 éhqws the movement of.

three characteristic multipliers of the anti-phase solution with the change

‘of the bifurcation parameter y for the same set of parameters. When the two

complex conjugate characteristic multipliers cross the unit circle at pu=0.17,
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the secondary bifurcation occurs. Second, the direcfion of bifurcation

and whether the stability change occurs or not depend on D and §. Table

1 summarizes the result of computer simulation. Although the parametér set
(B=0.8, C=1.0) lies in the parameter region II (that is,‘Y2 of the anﬁi_
phase solution is evaluated as negative for émall D); Yy of (3.105) is.
positive fér >1. This effect of g and D is not predicted by the analytical\
discussioﬁ. Similarly the stability change occurs forgsl 5ut it does not
occur for g=1. In Fig. 25 we illustrate the movement of three'characteristié _
multiélieré for-parameters B=0.8, C=1.0, D=0.01 and e=i;0‘whére there is

. other kina of secondary bifurcation point. 'As p increases, the two complex
conjugate characteristic multipliers cbllide with each‘ofher on the real

axis and two ;eal characteristic multipliers appear. 'Ohe of them increases
and the other_decreases. When the smaller multiplier crosées the unit

circle at ;1=0.06, the secondary bifurcation occurs on the apti-phase solution.
ﬁowever it does not imply the stability changerof,thé anti-phase solution.
Consequéﬁtly, there are no secondary bifurcation points which are related

to a purely imaginary characteristic exponent. In sectionb3.6 we assume

that the stability change can be expected to appear throﬁgh the two éomplexé
conjugate characteristic exponehts. Howevei this assumpfion doeé not hold
always.

Hitherto, we dealt with diffusion of refractorineés oD. The refractériness’
of the BVP model correspond to‘(n—h) of the Hodgkin Huxley equation (FitzHugh,
1961). n represents the activation of gK and corresponds tgvrelatiVe
refractoriness. -h denotes the inactivation of gNa and correqunds to
absolute refractoriness. According to Hodgkin—Huxley'srtheory (1952), n and
h are one of the parametersvof the K channel and the Na channel respectively..

So it is hardly probable that these quantities pass through the junctions of

-80-




Im

a :

. Fig. 25a

1.1

1 0.03i |




Fig. 25b

> Re
> Re




electrical synapses. It implies 6”0. Therefore, the computer simulation in
this section reveals that the electrical synapses have only the réle of
synchronizations of action potentials in case Qf firing. An electrically
coupled system of pacemaker neurons in the heart is an example of this case.

‘Next, let us examine the electrically cogpled éystem.pf neurons with
long excitation periods, such as burster neurons whose EPSP {or IPSP) under-
goes the long period oscillation, or burster neuroﬁs whosevNa—pumps are
periodically activated. Generally excitation rhythms of long periods are
determined by the dynémics of quantities with long time consténts, such as
chemical reactions or the activities of ion-pumps, rather than the quaﬁtities
brelated to channels of the membrane. So, it is probable that the passagev
of chemical substance through the electric jupctiéns plays an ésséntial
role in the electrically éoupled neurons of long‘excitation peribds. ‘Because
this implies that 9 is not small, the‘eleCtrically coupled system of burstef
neurons has a stable anti-phase periodic éolution. That 1s, it is possible
that electrical synapses play é role in antagénism of slow pétentiéls.

Our model systém is regarded as an endogenous ?attern generating circuit
which discharges periodic motor-control patterns. When € (the propdrtion '
of conductance to permeability of the gap junctidn).is not small, the
electrically coupled system can generate both the in-phase éutput pattern
and the anti-phase pattern étably. This implies that oﬁe ﬁeural mechanism
can generate two output patterns as Harmon (1964) énd Suzuki et al. (1971)

have found in a neural network consisting of reciprocally inhibiting neurons.
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