u

) <

The University of Osaka
Institutional Knowledge Archive

%ﬁt%@ﬁ%%hﬂ@

Author(s) | L, BA%E; REEF, J&=; RE, IEX fb

Citation | BT BEHMEEFRIXMMARES. SS, VI bz TH
ATV R, 1994, 94(334), p. 25-32

Version Type|VoR

URL https://hdl. handle.net/11094/27420

rights Copyright © 1994 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Institute of Electronics, Infornmation, and Conmunication Engi neers

HEEA ETHRBEYS B2
THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE.
INFORMATION AND COMMUNICATION ENGINEERS SS94—38(1994—11)

REYRy P EFVERGE
VI by T7 7 aADERE F OS5 EETHIE

W sAk ME = XKEF EX &0 g—

KBEKRFE BETZES HFRIFHR
KERF BT FeskILET 1-3

HB5FL VI I 7T ORRSARREGMETEE, 7O ATORIEEARL T00 OFEATHEEICIMZ, BN EE O
F— Y ORBNEEREEM ORI 2 ZETALENDHS. L L, XFBIFFROZBICER) 2 EET A L iz R
THY, BT DD, Z2 T, ARBTIR, VIM I 27702 AD (Kellner O) BEKFIHEOLEEEZDV T I 2T
T ATITONBEENR L ZNSDETEFOATRBLZ. LT, F0&EERE, VI MY 2 7THRHECLESR
T 7 ANRELE EOBRERE~DGTHREENERD S, KFEREDOT — 5 DRXZEDEALHEREZ, 42T TR
KUZEHECH > TEMNICER L7z, BREFVE LT, BHIBESSRR S, VLIVRAY 2R/RLF— 5 2UETES
E)CWRLARMIAYPOFT 2TFRA (FC Ay b)) 2D, B LKEREOBERBES M)Ay FEFTV
TEHRINL720, HFEHMEZIZ, EOEERED L D RZIEETHHWRIEFICITOR TV A 22 HENICHEEBT 2 2 & 28
TESL. KFEICL), RAPRELZEFATY I I Y2770 LARERTE, TN HHEHTE 5 LD 2EIER
REABEHTELIEIRENS. SR LWV KFEOFERAEI IO LN,

¥—7—K VI7bTxz77avA RMYERy b, AT L, SECGIE

Software Process Description in a Petri Net Model
and Its Distributed Execution

Hirozumi YAMAGUCHI, Kozo OKANO, Teruo HIGASHINO and Kenichi TANIGUCHI

Department of Information and Computer Sciences, Osaka University

Machikaneyama 1-3, Toyonaka, Osaka 560, JAPAN

E-mail : {h-yamagu, okano, higashino, taniguchi}@ics.es.osaka-u.ac.jp

Abstract In order to enact a whole software process description, it is necessary to specify not only the contents of
activities of the software process and their temporal ordering but also the communications among the engineers to
synchronize or to exchange data values. However, it is very complicated for the designers to describe them correctly. .
In this paper, we have described only the whole description of the standard process modelling example problem
(Kellner’s example problem), where only the contents of activities of the software process and temporal ordering of
the activities are specified, in an extended Petri net model with a finite number of registers which can treat data
values. We have also derived each engineer’s individual description including the communications among the engineers
automatically from the whole description and a distributed allocation of the files and documents necessary for the
software development, using the derivation algorithm which we have already proposed. Since the derived individual
descriptions are also described in the same model, each engineer can understand his/her own working flows (including
parallel actions). In our research, it has shown that in our proposed model, the software processes can be described,
and that we can derive the individual descriptions which can be carried out at a distributed control. The usefulness
of our approach is also shown in this example.

Key Words Software Process, Petri Net, Distributed System, Distributed Control

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

1 Introduction

Recently, various approaches have been applied to de-
scribe formally the “Software Processes” [1, 2, 3,4,5,6, 7,
8]. These approaches are useful for reducing the ambiguity
of the software processes, helping to understand the pro-
cesses, developing systems for the Computer-Supported
Cooperative Work {CSCW), and so on.

In general, the above formal description techniques
specify each activity of the software processes and the
temporal ordering of the activities. However, in order to
specify each individual engineer’s process, the description
must include not only his/her activities and their order-
ing but also the communications among the other engi-
neers to synchronize or to exchange data values. Such a
description becomes complex, if there are many communi-
cations. And it is not easy to find errors in it. Therefore,
it is desirable that from a description of activities (with-
out communications) of a whole software process and the
temporal ordering of the activities (we call it a whole de-
scription), each engineer’s process description can be de-
rived automatically, which specifies his/her activities and
communications, and their temporal ordering (we call it
an individual description).

Some process models have been proposed to describe
the whole description and/or the individual description:
(1) the programming models such as APPL/A [9], (2) the
functional models such as HFSP [3] and PDL [10], (3)
the rule-based models such as GRAPPLE [11}, MARVEL
[12, 13], and Merlin [14], (4) the Petri net based models
such as MELMAC [15] and SLANG [16], (5) the LOTOS
based models [5, 8, 17] and so on.

In general, since the software processes contain par-
allel actions and they can be treated as distributed sys-
tems, the Petri net based models and LOTOS based mod-
els are useful. However, most approaches do not con-
sider the derivation of individual descriptions. In [17],
we have proposed a deriving technique using an extended
Full LOTOS model (LOTOS/SPD), which can automati-
cally derive correct individual descriptions including com-
munications from a given whole description of the soft-
ware process. However, in this model, the resources (the
files and documents used in the software development)
can not be allocated in a distributed environment. So in
the model, we assume that all resources are kept in each
engineer’s work space. We also assume that the modi-
fication of resources must be controlled by one engineer
and the changed values of the resources are distributed
to every engineer, i.e., we have adopted the centralized
controlled method. In order to enact software processes
in distributed environments, it is desirable that each re-
source can be allocated to some engineers, and that the
modification of the resources can be carried out at a dis-
tributed control.

In this paper, we adopt a Petri Net model with Reg-
isters (PNR model)[22], in order to treat the distributed
resource allocation and to describe the software processes
naturally. Using the PNR model, we have described a
whole description of the software process modelling exam-
ple problem by Marc Kellner [19]. We have also derived
individual descriptions from the whole description and a

and Conmuni cati on Engi neers

resource allocation. In order to derive the individual de-
scriptions, we have used the derivation algorithm in [22].

Our approach has the following advantages. (1) Work-
ing flows (including parallel actions) can be understood
graphically. Especially in the individual descriptions, each
engineer can understand his/her own working flows. (2)
The resource allocation can be specified freely. This ad-
vantage is very important in application to the software
processes, because software developing environments may
be varied in a short cycle.

In Section 2, we give the definition of our PNR model.
In Section 3, the whole description of Kellner’s example
problem in the PNR model is explained. In Section 4, we
derive individual specifications and compare our approach
with others.

2 Petri Net with Registers

We introduce a Petri Net model with Registers (PNR
model).

Definition 1 (Petri Net with Registers) A Petri Net
with Registers (PNR) is denoted by a pair PNR = (PN, X),
where ¥ 1s defined as a 7-tuple

Y =(Gs,A,G,R,C, 6, Init).

e PN is a Petri net [18], PN = (P, T,F,W, My) (or
simply (N, M) where N denotes (P, T, F,W)), pro-
vided that the net N must not contain isolate tran-
sitions nor places.

e G is a finite set of gate symbols.

e A is a finite set of events, whose gates are the ele-
ments in Gs.

e G is a finite set of guards.
e R is a finite set of registers.
e (is a finite set of register definition statements.

e b is a funclion representing the contents of transi-

tions, § . T — Gx AxC.

e Init is a function specifying the initial values of reg-
isters.

We call the net PN the underlying net of the PNR.

A PNR may have some registers R;,...,R,. Each R;
is called a register variable. Each transition in a PNR has
a label of 3-tuple [a guard, an event, a register definition
statement]. An event in the set .4 must have one of the the
following three forms : a?z, a!F(...) and i. The a7z de-
notes an input event and the variable @ represents an input
value given from the gate a (if more than one input values
are given, it is denoted like a?x,, 9, &3,...). The alE(. .)
denotes an output event and the value of the expression
E is emitted from the gate a. F is an expression which
may contain register variables (more than one output val-
ues may be emitted like a!Ey(...), Ea(...), Ea(...),...).
The event 7 is an internal event which does not execute
any input/output. A guard in the set G is a predicate
which may contain the register variables and/or input

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

variables. A register definition statement in the set C has
the form Ry, «— fi(...), ..., Ra, — fi(...), where each f;
(1 € j <) is a function which may contain the register
variables and/or input variables.

A transition ¢ is enabled in a PNR = (PN,X) iff
t is enabled in the PN and the value of the guard of ¢
is true. If an enabled transition ¢ fires, the event of #
is executed, and then the values of registers are changed
simultaneously based on its register definition statement.
For an enabled transition which executes an input event,
we assume that it can not fire until input data are given.

If (1) the event of a transition ¢ is the internal event i,
(2) the guard of t is “true” and (3) the register definition
statement of ¢ is empty, then we call the transition ¢t an
e-transition.

3 Software Process Example and
Its Whole Description

In this section, we explain the “Software Process Modeling
Example Problem” given by Marc Kellner in [19], and
describe a whole description of the problem in our PNR
model.

3.1 Kellner’s Software Process Modeling
Example

The problem is given by Marc Kellner in [19] as an ex-
ample to specify the software processes formally where
some cooperating work in a distributed environment is
described. The problem contains a lot of parallel and
selective work. This example problem is used by sev-
eral researchers for evaluating their modeling abilities. It
describes the software processes to modify the design of
some software modules, to review the design, to modify
the codes and to test them. It consists of a core problem
and several optional extensions, and in general, the core
problem is used for evaluating modeling abilities. There-
fore, we focus on the core problem in this paper.

The software development organization which treats
the core problem is described as follows. There is a project
team. The project team consists of a Project Manager
(denoted by PM) and software engineers, and the engi-
neers are classified “design engineers” and “quality assur-
ance (QA) engineers”. The Design Engineers (denoted by
DEs) modify the design and the codes, and the QA Engi-
neers (denoted by QEs) modify the test plans and the unit
test package, and test the codes. An additional group,
which consists of a design engineer, a QA engineer and
some software engineers, is needed to review the design
{Design Review team, denoted by DR). And a Configura-
tion Control Board (CCB) provides authorizations from
outside of the project team.

The work which is described by the whole of the core
problem is called “Develop Change and Test Unit”,
which starts when it receives a requirement change from
CCB and ends when the unit testing has been successfully
completed. This process is decomposed into the following
eight processes.

and Conmuni cati on Engi neers

1. Schedule and Assign Tasks, that involves the
decision of a schedule for the work and assignment
of tasks for each engineer.

2. Modify Design, that involves the modification of
the design.

3. Review Design, that involves the formal review of
the modified design.

4. Modify Code, that involves the implementation of
the design modifications into the codes and compila-
tion of the modified source codes into object codes.

5. Modify Test Plans, that involves the modification
of the test plans.

6. Modify Unit Test Package, that involves the
modification of the actual unit test package in ac-
cordance with the modification to the test plans.

7. Test Unit, that involves the application of the unit
test package on the modified codes and analysis of
the results.

8. Monitor Progress, that involves the project man-
ager monitoring progress and status of the work.

3.2 Whole Description in the Petri Net
Model

We have described a whole description for the core prob-
lem in our restricted PNR, model. The restriction to the
PNR model to describe the whole description is explained
in the next section. Fig. 1 shows the whole description.
For the description, we use the gates and registers in accor-
dance with the problem as follows. The gate a represents
CCB which gives a requirements change to the project
team. The gate b represents the database of “software de-
velopment files” which preserves the modified codes, and
the gate ¢ represents the database of “test package file”
which preserves the modified unit test package. The gates
d, e, f represent the working records of DEs, QEs and RD,
respectively. The contents of registers R;, ..., Rg are also
defined in Fig. 1.

As mentioned above, we only treat the core problem:.
However, for the case that we want to make an optional
extension where the integrated test of several softwares
which have been modified and tested by the project teams
can be treated, we should distinguish two types of re-
sources, (1) the resources that only the project team can
use and (2) the resources that other project teams can
also use. In our model, we represent the former type of
resources as registers, and the latter type of resources as
gates.

The transition t; decides a schedule for the work. The
transitions ¢2 and t3 modify and review the design, respec-
tively. The transitions g and tg modify the codes. The
transitions tg and ?7 modify the test plans. The transi-
tion #;9 modifies the unit test package and the transition
t11 tests the units. Some of those transitions can fire in
parallel.

In Fig. 1, if the events are the internal event i, or if the
guards are “true”, or if the register definition statements

NI | -El ectronic Library Service

Institute of Electronics, Infornmation, and Conmunication Engi neers
Software
Test Package
Development h Workin: Workin Workin
Files Datab: File D Recordg Rocordg Rocordg

Configration
Control Board

for DEs

for QEs for DR

1 : Requirements Change R4 : Source
H i R5 : Object Code
R6 : Unit Test Package

Code R7: Test Results
RS : Review Results

R9 : Project Plans

Fig. 1: A Whole Description in the PNR model.

are empty, then they are omitted. The functions used
in Fig. 1 are explained in Table 1. Suppose that all the
functions are called by values. We can define the details
of the functions freely and they do not influence on the
derivation algorithm described briefly in the next section.

4 Derivation of Individual Descrip-
tions and Their Distributed Ex-
ecution

In this section, we explain our derivation algorithm briefly,
and derive the individual descriptions from the whole de-
scription in the previous section and a resource allocation.
For the details of the algorithm, see [22].

4.1 Distributed Environment and Resource
Allocation

Hereafter, for simple representations, we regard each en-
gineers’ group in the project team as one “engineer”. And
we call PM, DEs, QEs and DR by their ID numbers, such
as engineer 1, engineer 2, engineer 3 and engineer 4. Let
IDg (1 < k < 4) denote the individual description for the
engineer k.

We assume that each communication channel from
engineer i to engineer j is modeled as a FIFO queue
{queue;;) whose capacity is infinite. We call both sides
of the channel the gate g;;. If the engineer 7 executes an
output event “g;;!d”, then the data d is enqueued to the
queue;;. If the engineer j executes an input event “g;; 72”
and the first element of the queue;; is d, then the data d is

dequeued from the queue;; and the value of d is assigned
to the input variable z. If there are no elements in the
queue;;, then we assume that engineer j cannot execute
the input event g;;7z.

We also assume that each gate must belong to ex-
actly one of the engineers and that each register may be
allocated to more than one engineers. This means a dis-
tributed allocation of resources. Let © denote such a re-
source allocation. Fig. 2 denotes a resource allocation ©.
It denotes the following resource allocation.

Engineer 1
iPM
1,418
a

Engineer 2 Engineer 3 Engineer 4
(DEs) (QEs) E?RI:E)
s f18
f

Ry, R4, Rs Rs, Re, Ry
b, d c, €

Note that the register R4 is allocated to both engineers 2

and 4.

Since we assume that each gate must belong to one of
four engineers, the engineer who executes the event of each
transition ¢ in the whole description can be determined
uniquely. We call such an engineer a responsible engineer
of the transition ¢, and denote it by RE(t). Also, we call
the responsible engineers of all transitions in ¢t e e nezt
responsible engineers, and denote a set of such engineers

by RE(t e e).

4.2 Derivation Algorithm

Basically, for each transition ¢ in a given whole descrip-
tion, we construct a sub-Petri net SP*(t) for each engineer
k that simulates the transition £. An individual descrip-
tion I Dy is constructed by replacing each transition ¢ in
the whole description with the corresponding sub-Petri

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

and Conmuni cati on Engi neers

Table 1: Functions used in the Whole Description.

| Function f Contents of Calculation and Return Value]
plan(x) That makes a schedule for the project using x, and returns it.
modify(R;, R; ,...R;) | That modifies R; using R,,,... R;, and R;, and returns the modified R,.
compile(R;) That compiles R;, and returns the object codes.
update(R;, R)) That updates R; using R; and R,, and returns the updated R,.
test(R:, R;) That tests R; using R,, and returns the test results.
sizeof(R,) That calculates the size of R,, and returns it.
null() That returns nothing (without any argument).
end() That returns the notice of the completion (without any argument).
Ac(R:) That returns true if R; has been accepted, else returns false.
Fb(R,) That returns true if R, has been rejected , else returns false.
Secondly, RE(t) sends the messages to the related en-
Development Teet Package
Files Database Fils Databese gineers (if neccesary). (a) Each engineer with the registers

Contfigration
Control Board
(CCB)

Project Teamr

Fig. 2: A Resource Allocation.

net SP¥(t). We restrict the class of the PNR model to
describe whole descriptions. We give the following two
essential restrictions, and here, we omit additional three
non-essential restrictions. (a) A whole description must
be modeled as a PNR = (PN,X) and the PN must be
a live and safe free-choice net (FC net) [18] (if the PN
is not connected, then each connected net must be a live
and safe FC net). (b) There are no conflicts of registers
in a whole description. In regard to (a), a FC net has a
simple selective structure and a live and safe FC net has
a useful property for our algorithm. Also, parallel events
and non-deterministic selections can be described in FC
nets naturally. In regard to (b), the conflict of registers
occuers in the case that a transition modifies a register
and another one uses the register in parallel. It causes
the inconsistency of registers’ value between different en-
gineeers. However, Kellner’s example problem assumes
that there are no resource conflicts in the core problem,
as well as in many practical distributed systems.

The implementation principle of each SP*(t) is follow-
ing. Now, suppose that for the transitions in pe of a place
p with a token at the current marking M, the respon-
sible engineer evaluates these guards, and then chooses
non-determinately a transition ¢ to be executed from the
enabled transitions.

First, the responsible engineer of the transition ¢ (RE(%))
executes the I/O event of ¢.

whose values must be changed in the transition ¢ has to
know the values of the registers and inputs necessary for
changing its registers’ values. Those values are sent from
RE(?) as type 1 messages if it has them. If some of those
values are not held in RE(¢), then RE(%) sends the re-
quest messages (type 2 messages) to the engineers who
have those registers. (b) Some engineers can change their
registers’ values by themselves. Type 3 messages are sent
to those engineers from RE(t). (¢) The next responsible
engineers of the transition ¢ (the engineers in RE(Z o o))
should know the values of the registers used in their guards
and output events. RE(t) sends type 4 messages to some
engineers who have such values.

Thirdly, each engineer who has received the messages
works as follows. (a) Each one who has received the type
2 message sends the type 1 messages (including the values
of registers) to the engineers who need them. (b) Each
one who has received the type 4 message sends type 6
messages (including the values of registers) to some of
the next responsible engineers. If such engineers have to
change the values of the registers to be transmitted, the
type 6 messages must be sent after changing the values
of registers. (c) Each one who has received the type 1
or type 3 messages changes its registers’ values. RE(?)
should change its registers’ values after executing the 1/0O
event of the transition ¢.

Finally, each engineer who has changed its registers’
values sends the type b messages to all of the next re-
sponsible engineers of ¢. In addition, if RE(¢) has never
sent the type 1, ..., type 6 messages, then RE(¢) sends
the type 7 messages to the next responsible engineers of
t. These messages are used to inform that the responsible
engineer has been changed.

We construct each SP¥(t) in accordance with the above
principle (if an engineer & is not concerned with the simu-
lation of ¢, SP*(t) is an e-transition). Then, an individual
description 7D is constructed by replacing each transi-
tion # in the whole description with the corresponding
sub-Petri net SP¥(¢). In our algorithm, the total number
of exchanged messages for each simulation of transition
is minimized and each simulation is executed with pos-
sible concurrence. Also, the methed for removing all &-
transitions, which cannot be removed easily for their roles
of synchronous points in the individual descriptions, are
proposed. However, for the limitation of space, they are

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

and Conmuni cati on Engi neers

ID.

IDs

SP (ts)
gaow gramd LOXNRG" | i 92"’"
i H —w=M11
............... SP (‘ 15) R;RO
SP‘t 6) JP (t1s) putd w) (R4, :!t(ROR
= ~ e
I B po—"
i, PUL(RO, W)
|D1 (Rn,%dot(ao.km SP1 ($12) |D4
Ox
=} i
i g SP ()] sl giias
i HiR2 g24IM5 | """""""""""""""""""" "
SP2(t) ’°‘E’0%_d o Ji)
1 rsensnrmnnessre gy oeeeneeed Beeseerpyonsenet
9127w, by SPz(tg) SP (ls) 9327w gzsm?s 9327w 3
"l ?..‘.'.‘.(5.‘.’.3'![...‘.’.‘.?.19!.‘3“" R1) : L w=k22—
52
(ta) SP(t)

Ox

SP¥(t)

e!R6 g32imie

SP (hs)

SP(ty)

%%ﬁ

......................................

WdM%-W

Q? E SP(t:s)
O§ o!lR7 ga2im23 | ! :

RO, w) (get(RO,RE), R5)

g31iM20

g

o!R7

g13%w

Fig. 3: Individual Descriptions, I Dy, 1Dy, ID3 and IDy.

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

omitted (sée [22]).

4.3 Derivation of Individual Descriptions

For the whole description in the previous section and the
above resource allocation ©, we have derived each en-
gineer’s individual description /D using our derivation
technique.

Fig. 3 shows the derived individual descriptions 7D,
1Ds, ID3 and ID,. Here, for example, we focus on the
transition ¢5 in the whole description which represents the
modification of the source codes, and show how the be-
haivour of the transition is practically simulated in the
distributed environment. We simulate the transition i,
by the transitions t,,...,%#; in Fig. 3. (Note that some
of them can fire in parallel.) The transition ¢, simu-
lates the event of £3 and the transitions t; and ¢, simulate
the register definition statement of £3. The rest of them
send/receive the messages including registers’ values or
synchronous messages. Each message used for simulating
a transition t includes its identifier in order to be distin-
guished from other messages which used for simulating
other transitions.

First, the engineer 2, the responsible engineer of 3
(RE(t2)), executes the event of ¢5 (the transition ¢,). Then,
it modifies the source codes (the register R,) and sends
the message M12 (type 5), to notice that the change of
the R4’s value has been finished, to the engineer 3 who
is one of the next responsible engineers (€ RE(t2 ¢ o)) (2,
and t.). In parallel with above change and transmission,
it sends the message M11 (type 1), including the value of
the register R,, to the engineer 4 who has R4. The en-
gineer 3 receives M12 (t.). The engineer 4 receives M11
and modifies the value of R4 (t; and t,;). Then it sends
the messages M13 and M14 in parallel, to notice that the
change of R4’s value has been finished, to the engineers 2
and 3, respectively. Finally, the engineers 2 and 3 who are
the next responsible engineers (€ RE(t; o ¢)) receive the
messages M13 and M 14, respectively (¢; and ;). SP?(t9)
and SP3(t1p) cannot start executing until the firings of all
transitions #4, . ..,%; are completely finished.

In Fig. 3, if the events are the internal event ¢, or if the
guards are “true”, or if the register definition statements
are empty, then they are also omitted.

The properties of liveness and safeness in the whole
description are preserved in each ID;. So it can be said
that each 1Dy is simple enough to implement.

4.4 Discussion

There are several approaches to model software processes
in Petri net based models such as MELMAC [15] and
SLANG [16], and so on. And there are also some ap-
proaches in High-level Petri Nets (HPN) (for survey, see
[20]). Insuch models, (1) the descriptions are readable us-
ing graphical representation of Petri nets, and (2) parallel
actions can be naturally described, although interrupts
can not be described naturally. As for (2), the model-
ing abilities of such models are so surpass as to describe
the whole descriptions (including parallel actions) natu-
rally, however, these approaches do not consider the dis-

and Conmuni cati on Engi neers

tributed execution of the software processes. We focus on
the distributed execution, and in this case, it is neccesary
to consider the balance between the modeling ability and
the simplicity of the derivation. In our derivation algo-
rithm, we restrict the class of the underlying nets to live
and safe FC nets, however, the standard example of the
software process (Kellner’s example problem) can be de-
scribed naturally in this restricted class, and the individ-
ual descriptions are automatically derived from a whole
description and a resource allocation. In addition, they
can be carried out at the distributed control.

The dynamic modification of the processes is impor-
tant in the process development environments. For exam-
ple, MELMAC has such a facility. In our algorithm, such
a facility is not supported. However, from the modified
process, we can derive its individual descriptions mechan-
ically.

The number of all transitions in ID; (1 < k < 4) are
77, and 52 transitions of them are “communication transi-
tions” (transitions for sending/receiving messages). From
the result that the communication transitions are about
twice as many as the transitions for simulating the events
and register definition statements, it is complicated for
the designers to describe such communication transitions.
For more large systems, the derivation becomes more dif-
ficult. Then an automatic derivation is necessary, so our
derivation algorithm is useful.

A method for simulating a transition of a whole de-
scription is given and the number of exchanged messages
simulating the transition is minimized. However, the opti-
mization as a whole description is not considered. There-
fore, one may be able to derive more efficient individ-
ual descriptions. Now we have been investigating the ef-
ficiency of our derivation algorithm using this example
quantitatively. We believe the derived individual descrip-
tions are almost optimal, although we need more investi-
gation.

5 Conclusion

In this paper, we have given a whole description of the
software process modeling example in our Petri Net model
with Registers (PNR model), and derived individual de-
scriptions in the same model. In our method, a resource
allocation can be described freely as a distributed alloca-
tion. By modeling such a standard example of software
process, we have shown the usefulness of our derivation
method.

Some system development methods using HPN are
proposed (see [20]), however, general methods for system
developments are not established. Therefore, our future
work is to make a practical system of computer aided
software engineering and evaluate the usefulness of our
method quantitatively.

References

[1] Curtis, B., Kellner, M. and Over, J. : “Process Mod-
eling,” Commun. ACM, Vol. 35, No. 9, pp. 75-90

NI | -El ectronic Library Service

Institute of Electronics, Infornmation, and Conmunication Engi neers

(1992). [14]

[2] Osterweil, L. J. : “Software processes are software
too,” Proc. of the 9th Int. Conf. on Software Engi-
neering, pp. 2-13 (1987).

[3] Katayama, T.: “A Hierarchical and Functional Soft- (19
ware Process Description and Its Enaction,” Proc.

of the 11th Int. Conf. on Software Engineering, pp.
343-352 (1989). [16]

[4] Kishida, K., et al.: “SDA: A Novel Approach to Soft-
ware Environment Design and Construction,” Proc.

of the 10th Int. Conf. on Software Engineering, pp.
69-79 (1988). [17]

[5] Saeki, M., Kaneko, T. and Sakamoto, M. : “A
Method for Software Process Modeling and Descrip-
tion using LOTOS,” Proc. of the 1st Int. Conf. on
(Software Process, pp. 90-104, Redondo Beach, CA [18]
1991).

[6] Matsumoto, Y. and Ajisaka, T.: “A Data Modeling
in the Software Project Database Kyoto-DB,” Ad- [19]
vances in the Software Science and Technology, Vol.
2, pp. 103-121 (1990).

[7] lida, H., Mimura, K., Inoue, K. and Torii, K. :
“Hakoniwa: Monitor and Navigation System for Co-
operative Development Based on Activity Sequence
Model,” Proc. of the 2nd Int. Conf. on Software Pro-
cess (1993).

[8] Nakayama, T., Higashino, T. and Taniguchi, K. :
“Derivation of Software Process Description for each
Developer from Whole Software Process Description
written in LOTOS,” Technical Report of IEICE of [22]
Japan, COMP 91-65 (SS 91-22), pp. 59-67 (1991) (in
Japanese).

[9] Sutton, S., Heimbigner, D. and Osterweil, L. J. :
“Language Constructs for Managing Change in Pro-
cess Centered Environments,” Proc. of the 4th SIG-
SOFT Symposium on Software Development Envi-
ronments, Software Eng., Notes 15, 6, pp. 206-217
(1990).

[10] Inoue, K., Ogihara, T., Kikuno, T. and Torii, K. :
“A Formal Adaptation Method for Process Descrip-
tions,” Proc. of the 11th Int. Conf. on Software En-
gineering, pp. 145-153 (1989).

(11] Huff, K.E. and Lessor, V.R. : “A Plan-based Intelli-
gent Assistant that Supports the Software Develop-
ment Process,” Proc. of the 3rd Software Engineering
Symposium on Practical Software Development En-
vironments, Software Eng., Notes 13, 5, pp. 97-106
(1989).

[12] Barghouti, N. S. : “Supporting Cooperation in the
MARVEL Process-Centered SDE,” ACM SIGSOFT,
Vol. 17, No. 5, pp. 21-31 (1992).

[13] Kaiser; G. E., Barghouti, N.S. and Sokolsky, M.H.
: “Preliminary Experience with Process Modeling in
the Marvel Software, Development Environment Ker-
nel,” Proc. of the 23rd Annual Hawaii Int. Conf. on
System Sci., Vol. II, pp. 131-140 (1990).

[20]

[21]

Peuschel, B. and Schafer, W. : “Concepts and Im-
plementation of a Rule-based Process Engine,” Proc.
of the 14th Int. Conf. on Software Engineering, pp.
262-279 (1992).

Deiters, W. and Gruhn, V. : “Managing Software
Processes in the Environment MELMAC,” ACM
SIGSOFT, Vol. 15, No. 6 (1990).

Bandinelli, S., Fuggetta, A. and Grigolli, S. : “Pro-
cess Modeling in-the-large with SLANG,” Proc. of
the 2nd Int. Conf. on Software Process, IEEE Press,
pp. 75-83 (1993).

Yasumoto, K., Higashino, T. and Taniguchi, K. :
“Software Process Description using LOTOS and Its
Enaction,” Proc. of the 16th Int. Conf. on Software
Engineering (ICSE-16), pp. 169-179 (May 1994).

Murata, T. : “Petri Nets: Properties, Analysis and
Applications,” Proc. of the IEEE, Vol. 77, No. 4, pp.
541-580 (1989).

Kellner, M. et al. : “ISPW-6 Software Process Ex-
ample,” Proc. of the 1st Int. Conf. on the Software
Process, pp. 176-186 (Oct. 1991).

Aoyama, M., Hiraishi, K. and Uchihara, N. : “Soft-
ware Development Methodologies Based on High-
Level Petri Nets,” Computer Software, Vol. 11, No.
4, pp. 3-19 (July 1994) (in Japanese).

Matsuura, S. and Honiden, S. : “Abstraction for Co-
operation on Software Processes,” Computer Soft-
ware, Vol. 10, No. 2, pp. 48-64 (1993) (in Japanese).

Okano, K., Yamaguchi, H., Higashino, T. and
Taniguchi, K. : “Synthesis of Protocol Entities’ Spec-
ifications from Service Specification in a Petri Net
Model with Registers,” IPSJ SIG Notes, Vol. 94, No.
39, pp. 157-162 (1994) (in Japanese).

NI | -El ectronic Library Service

