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Abstract It has been proved that every disjoint union of level-confluent conditional term rewriting
systems (CTRSs) with extra variables in the conditions of the rewrite rules is also level-confluent. In this
paper, we show that this statement is also valid for CTRSs with extra variables in the right-hand sides of
the rewrite rules.
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1 Introduction

It is well-known that conditional narrowing is com-
plete for level-confluent and terminating conditional
term rewriting systems with extra-variables in the
right-hand sides of the rewrite rules (3-CTRSs)[6].
However, whether level-confluence is a modular prop-
erty of 3-CTRSs has been unknown until now. Here,
a property of CTRSs is said to be modular, if the
property is conserved under merging systems with no
common function symbols and under dividing into
systems with no common function symbols.

We have proved that every disjoint union of level-
confluent 3-CTRSs is also level-confluent[7]. That is,
we have proved the important half of the modularity
of level-confluence for 3-CTRSs. Our proof is based
on the proof of the modularity of level-confluence for
CTRSs with extra variables in the conditions of the
rewrite rules (2-CTRSs)[5]. In this paper, for space
limitation, we omit to describe the part of our proof,
which are essentially the same as the proof for 2-
CTRSs. We present discussions in our proof, which
a character of 3-CTRSs require.

Reduction relation in a CTRS R is defined by the
TRSs Ug>oR: which are constructed inductively by
R. In the proof of the modularity of level-confluence
for CTRSs, for every k& > 0, the union of two TRSs
Ry and Sg, which are in the TRSs to define reduction
relations in R and S respectively, is considered. If R
and S are 3-CTRSs, then Ry and S; are not TRSs
in general: they may be TRSs with extra variables
in the right-hand sides of the rewrite rules, what we
call by eTRSs. This fact causes some problems in the
proof of the modularity of level-confluence. The two
of them are very serious. The first one is as follows:
we want to show confluence of the union Ry & Sk
for confluent Ry and Sk, but we cannot apply the
Toyama’s theorem which states that confluence is a
modular property of TRSs [1, 2]. Fortunately, it has
been proved that confluence is a modular property of
e¢TRSs(3].

We also have proved this fact by another way[7].
The paper [3] has attempted to prove the Toyama’s
theorem for TRSs by using category theory and has
obtained the result which is valid also for eTRSs. The
method in [3] seems to be very strong so that it will
be used to solve other problems, but it is in fact a
difficult method since it employs category theory. To
the contrary, our proof does not require any mathe-
matical tools except those used in usual TRS papers.

The most difficult problem in proving the modu-
larity of confluence for eTRSs is how to deal with
increase of the rank of a term in a reduction. For
example, suppose that two disjoint eTRSs are given
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and one eTRS contains a rule A(x) — B(z,y). Let
us consider the union of them. In the reduction
A(s) = B(s,t) for terms s and ¢, the rank of B(s,t)
may become larger than that of A(s) due to the arbi-
trariness of t. By using this example, we say shortly
the way to treat this problem: we consider another
reduction A(s) — B(s,t’), where B(s,t’) is obtained
from B(s,t) by replacing its all principal subterms.
appearing in t by variables. In A(s) — B(s,t'), the
rank does not increase.

The second problem, yielded by the fact that Ry
and Si are eTRSs, is that collapsing reduction is not
strongly terminating in the union Rx & Si. Of course,
weak termination of collapsing reduction in ¢TRSs
is sufficient for the proof of the modularity of level-
confluence for 3-CTRSs. However, we do not prove
weak termination of collapsing reduction. We take
the following alternative: we introduce a restricted
collapsing reduction and prove strong termination of
this reduction. Furthermore, this reduction is shown
to have the same ability, as ordinary collapsing re-
duction, to prove the modularity of level-confluence.
That is, every normal form w.r.t. reduction which we
introduce is a preserved term. Here, we remark that
some of the notions used in solving the second prob-
lem are due to our argument about the first problem.

The rest of this paper is organized as follows. In
Section 2, we will explain some notions and notations
for TRSs and modularity. In Section 3, we will show
that every disjoint union of two confluent eTRSs is
confluent. The solution for the second problem de-
scribed above will be shown in Section 4.

2 Preliminaries

For space limitation, we write here only notions and
notations which seem peculiar to this paper. Please
refer to for instance [4] and [7] for details.

A term rewriting system (or a conditional term
rewriting system) is a pair (F, R) of a set F of func-
tion symbols and a set R of rewrite rules. The root
occurrence of every term is denoted by A. The symbol
at an occurrence o of a term s is denoted by sym(s, o).
Contexts such as C[,---,] or C[] are sometimes de-
noted by C, simply.

Let (F, R) and (G, S) be disjoint conditional term
rewriting systems (i.e. F UG = §§). We denote the
elements in F' by capital letters and the elements in
G by small letters. We assume that every element
of F has the black “color” and every element of G
has the white “color”. For notions defined for F or
R and symmetrically for G or S, we describe only
the definition for F or R. Let Tr = T(F,V) and
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Te = T(G, V), respectively. A term in T is called a
black term. We call an element of T(FU{O},V) bya
black context or a black layer. Let T = T(FUG, V).
A term in Ty whose root symbol is in F' is called a top
black term. For two symbols a and bin FUG UV,
we denote a ~ b, if ¢ and b are function symbols
belonging to the same set, or at least one of them is
a variable. Otherwise, we denote @ # b. For a term
t € Ty, Tp(t) is defined as follows. If t is a black
term or a variable, then Tg(t) =¢. If ¢ is a top black
term and t = C[ty,---,t,], then Tp(t) = C[,---,]. If
t is a top white term, then Tx(t) = 0.

3 Confluence for disjoint
unions of confluent TRSs
with extra variables (eTRSs)

In this section, we will show confluence of the disjoint
union of two confluent TRSs with extra variables in
the right-hand sides of the rewrite rules.

In the rest of this paper, we call an unconditional
rewrite rule { — r satisfying ! € V and Var(l) D
Var(r), by an ordinary rewrite rule.

Definition 3.1 TRS with extra variables (eTRS)
If a pair of terms denoted by I — r satisfies [ ¢ V
and Var(l) 2 Var(r), then we call it by a rewrite rule
with extra variables, or an e-rule. For this rule, every
element of the set Var(r) — Var(l) is called an extra
vartable, or an e-vartable of the e-rule I = r. A set
which consists of ordinary rewrite rules and e-rules
is called a term rewriting system with extra variables,
or an eTRS. m]

Reduction relation in a eTRS is defined similarly
to that in a TRS.

In this section and the next section, let (F, R) and
(G, S) be disjoint eTRSs and suppose that they are
confluent on Tp = T(F,V) and Tg = T(G,V), re-
spectively. If no further comment, then we assume
that a reduction is on Ty = T(F UG,V). We use
—+ for the abbreviation of - pgs. The word “rewrite
rule” or “rule” means either ordinary rewrite rule or
e-rule.

Suppose that a reduction sequence o : t > ¢’ is
given and a reduction step s — s’ in a is done by
an e-rule. Consider the subterms of s’ which are the
terms substituted for the e-variables of the e-rule. We
give a “mark” for every occurrence of s’, which is at
such subterms. We let every marked symbol in s’
have also the mark through s’ 5 #', if the symbol
remains.

and Conmuni cati on Engi neers

Definition 3.2 e-occurrence

Suppose that a reduction sequence o : t =3 t/ is
given. Let s be a term in o and o be an occurrence
of s. Then, we give a value 0 or 1, called by the e-
value of o of s in o, denoted by eq(s, 0), inductively
as follows.

First (for the basis), if s = ¢, then we let e,4(s, 0) be
0 for every occurrence o of 5. Next (for the inductive
step), suppose that u — s is a reduction step in «
and every occurrence of u has an e-value. Assume
that u|, is rewritten by a rule I — r. Let O, be
the set of the occurrences of r, which are not at the
variables of r, O, be the set of the occurrences at the
variables of r, which are not the e-variables, and O,
be the set of the occurrences at the e-variables of r,
respectively. Then, for every occurrence o of s, we
define the e-value e, (s, 0) as follows.

1. If 0 2 p, then ey(s,0) = ex(u,0).

2. If o = p- ¢ for an occurrence ¢ € O, then
ea(3,0) = eq(u,p).

3. Suppose the case that o > p- ¢ for an occurrence
¢ € O,. By introducing ¢/, we can write o = p-g¢-
o'. Assume that the variable at the occurrence ¢
of r is at the occurrence ¢’ of I. Then, e.(s,0) =
ea(u,p-q¢ -0).

4. If o > p - q for an occurrence ¢ € O, then
ea(s,0) = 1.

If eq(s,0) = 1, then we say that o is an e-occurrence
of s in . o

Definition 3.3 ep-subterm

Suppose that a reduction sequence « : t > t/ is
given and s is a subterm of a term in a, whose root
occurrence is not an e-occurrence in a. A subterm
s|, at an occurrence o of s is an ep-subterm of s in a,
if the following two conditions hold.

o es(s,0) =1.

e Let p be the maximal occurrence which satis-
fies p < 0 and eq(s,p) = 0. Then, sym(s,q) %
sym(s, o) for every occurrence ¢ such that p <

g <o.
If the ep-subterms of s in a are s1,---, sp, then we
denote s = C[s1, -, 53 ]a- m}

Here, we remark that there always exists the oc-
currence p in the second condition of Definition 3.3,
for every e-occurrence o of every term s in «, pro-
vided each eTRS of a union is confluent. We can
prove it by the fact that reduction sequences such as
A(z) = B(z,y) - yis impossible. This impossibility
is due to confluence of each eTRS.
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Proposition 3.1 For every term s in o« : ¢ 5 ¢,
eafs,A) =0. 0o

(Proof) Assume that there exists a term s in o
which satisfies eq(s,A) = 1. Suppose that u — o/
is a reduction step in «, and that this is done by an
erule ! = r. Let w be a term substituted for an
e-variable in 7, which has s as its subterm. With-
out loss of generality, let | = » € R. Considering
the fact that ' = s, the following reduction se-
quence is possible: C[s1,---,8k, -+,5n] =R Sk ON
Ty, where C[s1,---,s,] is a subterm of u/, sk is a
subterm of w and C[,---,] is a black layer which is
the redex (containing r) of the reduction. Further-
more, there exists a black layer u"” = D[,---,] in
u, such that D[,---,] =r C[,---,1 byl = r. We
notice that v’ —g C[,---,,---,] is possible, where
Cl,---,z,---,] is obtained from CJ, - - -, ] by replacing
its kth O from the leftmost by z. Since CJ,---,] is the
redex in the reduction C[sy,---,8k, -, 5n] —R Sk,
C[,---,z,---,] =g x is also possible. Hence, we have
u” 5 g z. For a variable y such that z £y, v’ Sry
is also possible. However, the fact £ < v’ Sg y
contradicts to confluence of R. jm}

Hence, we can determine whether a term s in a has
ep-subterms.

Here, we define notions which are similar to the
notions of outer reduction and inner reduction.

Definition 3.4 e-outer reduction, e-inner reduction

Suppose that a reduction sequence a : t = t' is
given. A reduction step s = s’ in « is distinguished
as follows.

e If s has no ep-subterm in «, then s — s’ is an
e-outer reduction step in o.

e Suppose that s = C[sl,---,sn]a — ¢

— If aredex in C[] is rewritten in s — s’, then
s — s’ is an e-outer reduction step in a.

— If a redex in one of s,,---, s, is rewritten,
then s — &’ is an e-inner reduction step in
.

A reduction sequence u > u’ in « is an e-outer
reduction sequence in «, if every reduction step in
u =3 o' is an e-outer reduction step in a. If a is an
e-outer reduction sequence in «, we say that ¢ is an
e-outer reduction sequence.

A conversion 8 : t; & t is an e-outer conversion, if
every reduction sequence in 3 is an e-outer reduction
sequence. 0

and Conmuni cati on Engi neers

The next proposition is similar to Proposition 1.10
of [2] for outer reductions in TRSs. We omit the proof
since it is also similar to the proof of that proposition.

Proposition 3.2 Suppose that an e-outer reduction

s =C[s1,-,8n]a = C'fur, -, umla =8 ina:
t 5 t'is given. If (s1,--,8,) o (P1,"-*,Pn), then
we can have another reduction p = C[py,---,pn] =

C'lg1,-+,9m) = p'- In this case, if {u;,---,um} —
{s1,---,8n} = {ui,, -, i}, then we can let each of
¢i,," -, be arbitrary terms. ]

Here, we define e-mono reduction and show its con-
fluence.

Definition 3.5 e-mono reduction

For a reduction step s — s, if 8 has no ep-subterm
in s = s/, then s — s’ is called an e-mono reduction
step.

If every reduction step in o : ¢ — ' is an e-mono re-
duction step, then a is an e-mono reduction sequence.

A conversion 3 : t; € 13 is an e-mono conversion, if
every reduction sequence in 3 is an e-mono reduction
sequence. 0

The below proposition states that every e-mono re-
duction step has the same property as the reduction
steps in every disjoint union of TRSs.

Proposition 3.3 Consider an e-mono reduction
step s = s’. Let u be the minimal special subterm
of s, which is rewritten in this reduction. We can
write s = Clu] — C[u'] = ¢, for a context CJ[ ]
and a term u'. Assume that u = Dfuy,---,u,].
Then v’ = D'{(u;,,---,u;, ) for a set of indices
{il)”'?i"l}g{l7"'7m}’ =

(Proof) Suppose that v = D'({t;,---,tn)) and
that some ¢;{1 < ¢ < N) has no identical term in
Uy, - - The root occurrence of u’ is not an e-
occurrence in 8 — s/, and the root occurrence of t; is
an e-occurrence in s — s’. Combining this with the
fact that t; is a principal subterm of u’, ¢; is an ep-
subterm of & in s — s’. This fact contradicts to the
assumption that s — s’ is an e-mono reduction step.
Hence every t; has an identical term in uy,---,u,,
and we have this proposition. m]

- Up.

By the consequence of the above proposition, we
have the following.

., . . *

Proposition 3.4 For every e-mono conversion ¢/ +
* .

t = t””, we have an e-mono conversion t’ } t”. 0o

NI | -El ectronic Library Service



Institute of Electronics,

I nf ormati on,

(Proof) By the consequence of Proposition 3.3, we
can construct completely the same proof as that of
confluence for disjoint unions of confluent TRSs|[2],
by using only e-mono reduction steps to obtain a con-
version t/ } t7. ]

Concerning with e-mono reduction, we append the
following two symmetrical propositions. We need
them to prove confluence of e-outer reduction.

Proposition 3.5 If every term in a : t > # has
no ep-subterm in «, then o is an e-mono reduction
sequence. o

(Proof) Take a reduction step #: s — s’ in o. By
the assumption, s’ has no ep-subterm in . Consid-
ering the definition of e-occurrence, we notice that
every e-occurrence of s’ in 8 is an e-occurrence of s’
in a. Combining this with the fact that s’ has no ep-
subterm in a, s’ has no ep-subterm also in 5. Hence,
B is an e-mono reduction step. m]

Proposition 3.6 If o : ¢ - ¢ is an e-mono re-
duction sequence, then every term in « has no ep-
subterm in a. O

(Proof) See [7]. D

Here, we show confluence of e-outer reduction. The
proof is essentially the same as that of confluence of
“monochrome outer reduction” in TRSs (Proposition
3.1 in [2]).

a, e . *
Proposition 3.7 For every e-outer conversion ¢/ <
* .
t — t”, we have an e-outer conversion ¢’ | t”. ]

{Proof) Let oy and a3z be t 5 ¢ andt 5 t7, re-
spectively. Note that they are e-outer reduction se-
quences. Here, we consider the ep-subterms defined
in a; and ag. Let W = {w),---,wn} be the set of
the ep-subterms appearing in a. We prepare fresh
variables z,,- -, 2, which satisfy z; = z; iff w; = w;
foreveryl <i< j<mn,and welet X = {z1,---,2n}-

Take a reduction step v — u’ in ;. Let v and v’
be the terms obtained from u and u' respectively, by
replacing their every ep-subterm w; € W by z; € X.
. Since © — u’ is an e-outer reduction step in a;, we
have v — v’ by the consequence of Proposition 3.2.
Repeating the corresponding replacement and the ap-
plication of Proposition 3.2 for every reduction step
in @;, we have a reduction sequence o} : s = s’ for
a;1. Since every term in of has no ep-subterm in of,
aj is an e-mono reduction sequence, by Proposition

and Conmuni cati on Engi neers

3.5. Similarly, o} : s - s” which is obtained from a»
by the similar way is an e-mono reduction sequence.

Hence, for the conversion s’ ¢ s = s” obtained by
combining o] and a4, we have two e-mono reduction
sequences ] : s’ = s* and B, : 8" = s* for a term
s*, by Proposition 3.4.

Take a reduction step p — p’ in §{. Let ¢ and ¢’
be the terms obtained from p and p’ respectively, by
replacing their every variable z; € X by w; € W. It
is obvious that ¢ — ¢’ is possible. By repeating this
for every reduction step in i, we have a reduction
sequence ;. Let B2 be the reduction sequence ob-
tained from B} by the similar way. Note that 8, and
B2 are represented by t' = t* and t” 5 t* for a term
t*, respectively. We notice that ] is an e-mono re-
duction sequence, by Proposition 3.6. Consequently,
even if a term in B; has an ep-subterm w in 8y, w
is not rewritten through 3,. Hence, B; is an e-outer
reduction sequence. Similarly, 82 is an e-outer re-
duction sequence. Here, we have obtained an e-outer
conversion 8 : t/ = t* & t” for a. |

In the next proposition, we use a notation such as
(%,7) instead of t; ;.

Proposition 3.8 Suppose that the following two re-
duction sequences are given: (1,1) = (2,1) 5 --- 5
(m, 1), where (i,1) = (i+1, 1) is an e-outer reduction
sequence for every i € {1,---,m — 1}, and (1,1) >
(1,2) 5 --- 5 (1,n), where (1,7) = (1,j+1) is an e-
outer reduction sequence for every j € {1,---,n—1}.

Then, we have the following two reduction se-
quences: (1,n) = (2,n) > --- 5 (m,n), where
(i,m) = (i + 1,n) is an e-outer reduction sequence
for every i € {1,---,m — 1}, and (m,1) 3 (m,2) 5
.-+ 5 (m,n), where (m, ) 5 (m,j+1) is an e-outer
reduction sequence for every j € {1,---,n—1}. O

(Proof) Apply Proposition 3.7 for (m — 1)(n — 1)
times, as the diagram in Figure 3. Every - appearing
in the diagram is an e-outer reduction sequence. O

It is easy to notice that the following fact: every
one step reduction ts an e-outer reduction sequence.
Hence, for a conversion a : ¢/ & t 5 t” by a
union of €TRSs, by corresponding every reduction
step in o to a suitable e-outer reduction sequence in
the premise of the above proposition, we can have a

common reduct of ¢ and ¢".

Theorem 3.1 Let (F,R) and (G,S) be disjoint
eTRSs. If R and S are confluent on TF and Tg re-
spectively, then R® S is confluent on Tg. ]
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1ty — 21 e = m-11) - (m,D)
g |+ I I
12 —- 22 >=— —=(m-12) — (m,2
. l. J. l
l. l. l. l.
a,n-1)—=~2,n-1)—>— > (@m-1, n-1)—~ (mn-1)

* - -

(l!n) —= (2:") e — = (m—lx n) —= (m) n)

Figure 1: The diagram for the proof of Proposition
3.8

{Proof) Suppose that a conversion t' &t S5t by
R® S, which consists of terms in Ty is given. Assume
that ¢ = ¢/ and t = t” have m and n reduction
steps, respectively. By corresponding the ith (1 <
i < m) reduction step of t = t' to (i,1) = (i +1,1)
of Proposition 3.8 and the jth (1 < j < n) reduction
step of t > t” to (1,j) = (1,7 + 1) of Proposition
3.8 respectively, we have t' = t* & t” for a term
t* = (m, n) of Proposition 3.8. ]

4 Collapsing reduction in

eTRSs

The proof of the modularity of level-confluence for
2-CTRSs requires termination of collapsing reduc-
tion in TRSs [6]. Similarly, the proof of it for 3-
CTRSs requires termination of collapsing reduction
in €TRSs. Unfortunately, collapsing reduction is not
strongly terminating in eTRSs. Of course, weak ter-
mination of collapsing reduction in ¢ TRSs is sufficient
for the proof for 3-CTRSs. However, we do not prove
weak termination of collapsing reduction, as we have
mentioned in Introduction. We have said that we in-
troduce a restricted collapsing reduction: we restrict
collapsing reduction to e-mono reduction. Such a re-
duction, called e-mono collapsing reduction, is shown
to be strongly terminating. In this section, we also
show that a normal form w.r.t. e-mono collapsing re-
duction has the same property as that w.r.t. collaps-
ing reduction. That is, a normal form w.r.t. e-mono
collapsing reduction is a preserved term.

Definition 4.1 e-mono collapsing reduction

A collapsing reduction s - t is called an e-mono
collapsing reduction, if s = t is an e-mono reduction
sequence. O

and Conmuni cati on Engi neers

Proposition 4.1 E-mono collapsing reduction is
strongly terminating. m]

(Proof) By Proposition 3.3, we can construct com-
pletely the same proof as termination of collapsing
reduction for TRSs (Proposition 2.5 in [2]). o

Definition 4.2 non-e principal subterm, rank with-
out ep-subterms

Suppose that a term s in « : ¢ 5 ¢ is denoted by
s = C[s1,---,84)- Let s;,---,s;,, be the terms in
$1,---,58n, which are not ep-subterms of s in a. We
call them by the non-e principal subterms of s in .
In this case, we denote s = D|s;,, -, 8i,, |a, Where
Df,---,] is the context obtained from s by replacing
Siys -, 8i,. by holes.

The rank without ep-subterms rank (u) of a term
u in « is defined as follows.

e If u has no non-e principal subterm in a, then
rank,(u) = 1.

o If u = E|uy,---,Uk]a, then rank (u) = 1+
max{rank,(up)|]l < h < k}.

0

Definition 4.3 First, a normal form of u w.r.t. e-
mono collapsing reduction by rules in R is denoted
by Yr(u). Similarly, a normal form of u w.rt. e-
mono collapsing reduction by rules in S is denoted
by s ().

Next, suppose that s is a term in a reduction se-
quence @ : t > t'. Xq(s) is a term obtained from s
by replacing its every top black ep-subterm s in o
by vYr(ss) and its every top white ep-subterm s,, in
o by ¥s(sw), respectively. Note that s 5 xafs). O

Definition 4.4 Suppose that w is a term in a reduc-

tion sequence o' : u S uw and w= Clwi, -, Wy
Then, we say that C[,---,] is the non-ep part of w in
o’ and denote it by Ny (w). o

Definition 4.5 Suppose that s is a term in a se-
quence o :t - t. Let o’ bet 3 5 > Xa(8). Then,
we denote Ny (xa(s)) by Nxafs), for short. a

The notions of non-e principal subterm and rank
without ep-subterms, and the notations x, N and Ny
are for terms in a given reduction sequence. Note that
they can be extended the respective notions and nota-
tions for a subterm of a term in a given reduction se-
quence, whose root occurrence is not an e-occurrence
in the sequence.
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Proposition 4.2 Suppose that a top black term s
in o : ¢t = t’ has no non-e principal subterm and let
s = D[s1, -+, 8n]a- Then, Nxo(s) = D[TB(¥s(s1)),
-+, Tp(¥s(sn))]- =

(Proof) Since s has no non-e principal sub-
term, sq,---,8, are the principal subterms of s.
Hence, they are top white and we have xq(s) =
Dlys(s1),- -, ¥s(sn)]- Let o be t 55D Xa(8).
For a s;(1 < i < m), ¢¥s(s;) may be a top black term.
Since D is a black layer, the non-ep part of x4 (s) in
a' absorbs the topmost black layer of ¥g(s;). Hence,
we have Nx,(s) = D[Tg(¥s(s1)), --,TB(¥s(sn))])-
a

Proposition 4.3 Suppose that s is a term in « :
t 5 t'. Ifs = C|s1, ,50]a, then Nxq(s) =
NXG(C)!.NXQ( sl)!"'fNXOt(sﬂ”a' 0

(Proof) In this proof, we omit to write the suffix o
in expressions. For every i(1 < 7 < n), since the root
occurrence of s; is not an e-occurrence in «, each ep-
subterm of s which is a subterm of s; is an ep-subterm
of s;. Hence, x(s) = x(C)|x(s1),---,x(sn)]- Let o/
bet 5 s x(s). Since x rewrites the ep-subterms
of s in a, the root occurrence of x(s;) is not an e-
occurrence in o', for every i(1 < i < n). Hence,

NX(t)E NX(C)[NX(SI),'--,NX(S,,)J. o

In the below argument, we use the above two
propositions without mentioning explicitly.

Definition 4.6 If s — s’ is an e-mono reduction
step, then we denote it by s —,, s’. (m]

Proposition 4.4 Suppose that s — s’ is a reduction
step in a reduction sequence a : ¢t - t/. Then we have
Nxo(8) 2m Nxals') or Nxa(s) = Nxa(s). |

(Proof) See [7]. o

Proposition 4.5 Every destructive reduction s —
s’ is an e-mono collapsing reduction. a

(Proof) First, every destructive reduction is a col-
lapsing reduction. Next, we show that this is an e-
mono reduction step. Since this is a destructive re-
duction, the form of the rule used in the reduction
must be such as I — z. If we let x & Var(l), then we
have two reductions ! — = and | — y for two different
variables  and y. This contradicts to confluence of
the €TRS to which the rule ! — z belongs. Hence,
we have = € Var(l), that is, the rule used in s — s’
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is not an e-rule. Thus, s — s’ is an e-mono reduction
step. (m]

Proposition 4.6 Suppose that s is a normal form
w.r.t. e-mono collapsing reduction. Then, every re-
duction s — s’ is not a destructive reduction. o

(Proof) Assume that s — s’ is a destructive reduc-
tion. By Proposition 4.5, this is an e-mono collapsing
reduction. However, this contradicts to the assump-
tion that ¢ is a normal form w.r.t. e-mono collapsing
reduction. o

Proposition 4.7 Suppose that a top black term s
ina:t >t is denoted by s = C|s1,---,5n]a, and
let C = Dfuy,---,um}a- Then, there exists a black
layer (may be O) w; for every u;(1 < i < m), and
Te(Nxa(s)) = Tp(s)ws, - -, wm]. o

(Proof) In this proof, we omit to write the suffix
« in expressions. Note that D[,---,] is a black layer
and sy1,---, 8y, U1, - - -, Uy, are top white terms. First,
Tg(s) = T(C) = D. Next, consider Tg(Nx(s)).
Since s,,---, s, are the non-e principal subterms of
s and x rewrites the ep-subterms of s, the top-
most white layer of sy, --, s, is not rewritten by x.
Hence, x(s1),--,x(sn) are still top white terms and
Nx(s1),---, Nx(sn) are also top white terms. We use
this fact to derive the third expression of the following
from the second expression.

Te(Nx(s)) =Ts(Nx(C)|Nx(s1), -, Nx(sn)])
= Tp(Nx(C))
= Tp(D[Tp(Ys(u1)),- -, To(¥s(um))])
= D[Ts(¥s(w1)), - -+, Te(¥s(um))]
= Tp(s)[Te(¥s(u1)), -, To{¥s(um))]

The last expression is derived by Tg(s) = D which
is the first thing we have proved in the proof. Here,
Tg(1¥s(u;)) is a black layer (may be O) for every (1 <
i < m). Hence, we have this proposition. 0O

The following is the result of this section.

Proposition 4.8 Every normal form w.r.t. e-mono
collapsing reduction is a preserved term. 0O

(Proof) Suppose that w is a normal form w.r.t.
e-mono collapsing reduction. Every special subterm
of w is also a normal form w.r.t. e-mono collapsing
reduction. We will show that all of them are root pre-
served terms. Take a special subterm ¢ of w. Without
loss of generality, assume that root(t) € F.
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Suppose that a reduction sequence ¢ Stis given.
We will show that root(s) € F, for every term s
in t 5 t. We use induction on the length N of
t 5 . If N = 0, then it is obvious. Consider
the case that N > 0. Suppose that t = t/ — #
and assume that root(t*) € F for every term t* in
o :t > t”. In the below, we omit to write the suffix
o in expressions. Repeated application of Proposi-
tion 4.4 to each step in t - ¢” yields an e-mono
reduction sequence Ny(t) = Nx(t”). Combining
this with the fact that Nx(t) = t is a normal form
w.r.t. e-mono collapsing reduction, Nx(t"”) is also
a normal form w.r.t. e-mono collapsing reduction.
Hence, by Proposition 4.6, Tg(Nx(t")) is not disap-
pear whichever Nx(t”) is reduced to. By Proposition
4.7, Tg(Nx(t")) = Te(t")[w1, - - -, wm] for black lay-
ers (may be O) w,{1 < i < m). Hence, Tg(t") is
also not disappear whichever t”’ is reduced to. Thus,
we have root(t') € F. Here, we have proved that
root(s) € F for every term s in t = t'. ]

5 Result

By using results obtained in the preceding sections,
we have proved the following theorem[7]. The rest
of the proof has been obtained from the correspond-
ing part of the proof for 2-CTRSs[5], by modifying it
slightly.

Theorem 5.1 Every disjoint union of two level-
confluent join 3-CTRSs is level-confluent. m}

Some future research concerning with this result is
also described in [7].
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