
Title 時間制約を保証するUML/OCL を用いた分散実時間アプ
リケーション開発手法

Author(s) 長井, 栄吾; 牧寺, 彩; 岡野, 浩三 他

Citation 電子情報通信学会論文誌D. 2006, J89-D(4), p. 683-
692

Version Type VoR

URL https://hdl.handle.net/11094/27439

rights © （社）電子情報通信学会 2006

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

論 文 フォーマルアプローチ論文特集

時間制約を保証するUML/OCLを用いた分散実時間アプリケーション

開発手法

長井 栄吾† 牧寺 彩† 岡野 浩三† 谷口 健一†

A Method to Develop Distributed Real-Time Applications Based on UML/OCL

Eigo NAGAI†, Aya MAKIDERA†, Kozo OKANO†, and Kenichi TANIGUCHI†

あらまし 本論文では，UML/OCL を用いた分散環境実時間アプリケーション開発を支援する手法を提案す
る．提案手法により，UML/OCL を用いた開発アプリケーションの設計記述に対する，時間オートマトンを用
いた timeliness QoS の効率良い整合性検証，時間制御コード自動生成が可能となる．設計，検証作業は 2 段階
に分けられ，これにより検証の効率化が図られる．本論文では，提案手法に基づいた検証系及び導出系の実装，
更に例題に対する適用結果について述べる．

キーワード UML/OCL，実時間アプリケーション，Timeliness QoS，時間オートマトン，Java

1. ま え が き

分散実時間アプリケーションにおいては，ユーザに

対して提供される QoS (Quality of Service) を保証

することが極めて重要である．特に，timeliness QoS

に対する要求は非常に高い [3]．そこで，本論文では

timeliness QoSに着目した分散実時間アプリケーショ

ン開発手法を提案する．

一般的に，分散実時間アプリケーションは特定の機

能を有したコンポーネントの集合として構成されるこ

とが多い [4]．また，そのようなアプリケーションの開

発支援を目的とし，UML [5]を代表とする様々なオブ

ジェクト指向技術が提唱されている．UMLには，モ

デルの各要素に対して制約を形式的に与えることがで

きる OCL (Object Constraint Language) [6]が標準

装備されており，各コンポーネントに対する QoS を

OCLを用いて記述できる．

アプリケーションを構成する各コンポーネントやア

プリケーション全体の timeliness QoS に関する検証

手法については，テストオートマトンの概念に基づ

いた形式的アプローチが存在する [7], [8]．これらのア

プローチでは，アプリケーション全体の動作振舞いが

†大阪大学大学院情報科学研究科，豊中市
Graduate School of Information Science and Technology, Os-

aka University, Toyonaka-shi, 560–8531 Japan

拡張時間オートマトンネットワークでモデル化され，

CTL を用いて検証が行われる．ただし，コンポーネ

ント数が多くなったりコンポーネント間の接続関係が

複雑になるにつれ，メモリ使用量の面で検証が困難に

なるという問題をもつ．

本論文の提案する『分散実時間アプリケーション開

発手法』とは，コンポーネントがネットワーク上に配

置されたアプリケーションの UML/OCLを用いた設

計記述から，効率の良い時間制約の整合性検証と整合

性を満たす時間制御コード自動生成を行うものである．

本提案手法では，まず，アプリケーションの全体設計

として，各コンポーネントが提供するTimeliness QoS

は OCLを，コンポーネント間の接続関係は UMLク

ラス図を用いて与える．更に，与えられた Timeliness

QoS 集合とコンポーネント接続関係の条件下におい

てアプリケーション全体として要求される Timeliness

QoS が満たされるかどうかを検証する．検証問題は，

OCL で記述された Timeliness QoS を時間変数を用

いた線形制約式に変換し，それら線形制約式の集合に

対する非可解性判定問題に帰着して判定する [14]．

分散実時間アプリケーション設計及び開発は本提案

手法を用いた以下の手順に従って行える．

（ 1） アプリケーションの外部設計として，各コ

ンポーネントが提供する timeliness QoS（以降，提

供 QoS）は OCL を，コンポーネント間の接続関係

電子情報通信学会論文誌 D Vol. J89–D No. 4 pp. 683–692 c©（社）電子情報通信学会 2006 683

電子情報通信学会論文誌 2006/4 Vol. J89–D No. 4

は UML クラス図を用いて与える．更に，与えられ

た timeliness QoS 集合とコンポーネント接続関係の

条件下においてアプリケーション全体として要求され

る timeliness QoS（以降，要求QoS）が満たされるか

どうかを検証する．検証問題は，OCLで記述された

timeliness QoSを時間変数を用いた線形制約式に変換

し，それら線形制約式の集合に対する非可解性判定問

題に帰着して判定する [14]．このアプローチの利点は，

n 個のコンポーネントから構成されるアプリケーショ

ンの QoS 側面を O(n) 個の線形制約式として抽出す

ることにより，既存の手法のメモリ爆発問題を改善で

きることにある．

（ 2） 内部設計として，各コンポーネントの動作振

舞い仕様を，クロックを付加した拡張 UMLステート

チャートを用いて記述する．同時に，先に与えた各コ

ンポーネントの提供する timeliness QoS を満たして

いるかを，記述した UMLステートチャートを等価変

換した時間オートマトンとテストオートマトンを並行

動作させることにより検証する．コンポーネント間の

接続関係を考慮した検証は全体設計の (1)で済んでい

るため，ここでの検証は各コンポーネントごとの単体

検証を行えばよい．

（ 3） 次はアプリケーションの実装を行う．このと

き，各コンポーネントは (1)，(2)で与えられた time-

liness QoSを満たすようにプログラムコードを記述す

る必要がある．ここで，コンポーネントの timeliness

QoS制御部とアプリケーションの機能処理部の両方を

記述する作業は非常に煩雑である．また，実時間処理

を扱うアプリケーションでは，複数の動作を並行して

実行できる機構や，ある機能処理を指定した時間内に

完了できる機構が必要となる一方，プログラムコード

自動生成は開発者が手作業でプログラムコードを記述

するよりも開発生産性の向上を見込むことができ，開

発されるアプリケーションの品質としても一定以上の

ものが期待できる．そこで提案手法では，timeliness

QoSの保証された動作仕様記述からそれらと等価な状

態遷移を行う Javaプログラムコードを自動生成する．

このとき生成されるプログラムコードは，アプリ

ケーションを構成する各コンポーネントの時間制御及

びその時間制御を各コンポーネントが自律的に行うこ

とを実現し，実行プログラムが異なる複数のクロック

をもつ分散環境に配置された場合でも，全体として動

作仕様記述どおりに時間制御を行う．

本論文では，提案手法に基づいた設計ツールのプロ

トタイプの実装を行い，例題メディアサーバに適用し

た．既存の分散アプリケーションの設計手法 [7] に対

して，手順 (1)及び手順 (2)のようにシステム全体の

Timeliness QoS をコンポーネントレベルの Timeli-

ness QoS に分割することで検証段階における負荷を

軽減している．既存の手法では，状態爆発が起こり検

証を完了させることができない例に対し検証を行うこ

とができる．結果，検証やプログラムコード自動生成

は数秒以内に結果を出力することが確認でき，時間の

観点から見て有用であることが分かった．

以降，2. ではモデルチェックに使用するツール UP-

PAAL [2]の時相論理 CTLを説明し，3. では開発す

る実時間アプリケーション全体の外部設計と検証，4.

では内部設計と検証，すなわち，UMLステートチャー

トから時間オートマトンへの変換系及び各コンポーネ

ントの提供 QoS 整合性検証系，5. ではアプリケー

ションの実装としての時間制御コード生成系について

述べる．6. において提案手法を例題に適用する．最

後に，7. でまとめる．

2. CTL

モデルチェックとは与えられた状態遷移系（モデ

ル）がチェックしたい時相論理式を満たすかを判別す

ることである．UPPAAL では時相論理として CTL

(Computation Tree Logic)のサブクラスが使われる．

分岐時間時相論理である CTLは経路限定子（path

quantifier）と時相演算子（temporal operator）の組

合せによって時相を表現する．経路限定子には A，E

の 2種類がある．

以下に経路限定子A，Eと時相演算子 F，G，X，U

は状態式 φ，経路式 ψ としたとき，次のような意味

をもつ．

Aψ：これ以降のすべての経路で ψ を満たせば真

Eψ：これ以降に ψ を満たす経路が存在すれば真

Fφ：この経路上でいつか φ を満たせば真

Gφ：この経路上で常に φ を満たせば真

Xφ：この経路上の次の時間に φ を満たせば真

φ1Uφ2：この経路上でいつか φ2 を満たし，かつそ

れまで φ1 を満たし続ければ真

この経路限定子と時相演算子によって CTL の構文

は次のように表せる [14]．

φ ::= p|¬φ|φ1 ∨ φ2|EXφ|E(φ1Uφ2)|EFφ|EGφ
|AXφ|A(φ1Uφ2)|AFφ|AGφ

684

論文／時間制約を保証する UML/OCL を用いた分散実時間アプリケーション開発手法

ただし p は原始論理式である

3. 外部設計検証

3. 1 コンポーネント間接続関係の記述

本手法では，コンポーネント間の接続関係を図 1 の

ような UMLクラス図を用いて記述する．

コンポーネントは “component” ステレオタイプ

の付いたクラスを用いて指定する．ステレオタイプ

（Stereotype）とは UML の拡張を実現する機構の一

つであり [5]，モデルの各要素に対してユーザ定義を与

えることが可能となる．

コンポーネント接続関係は UML クラス図の関連

（Assosiation）をもって，それらのクラスに対応する

コンポーネント同士が接続関係にあることを記述する．

本手法で定義する「接続関係」は，何らかのデータ通

信がなされるコンポーネントの組の間で規定される．

関連名として以下の形式をとる．

関連名：= “data flow(” データ送受信群 “)” ;

データ送受信群：= データ送受信群 * ;

データ送受信：= “(” 送信側データ名 “,” 受信側

データ名 “)” ;

例えば，図 1ではコンポーネント Aからデータ a1，

a2 がコンポーネント Bに送信され，コンポーネント

Bはそれらをデータ b1，b2で受信していることが関

連名により，明示されている．

3. 2 コンポーネント及びネットワークに対する

Timeliness QoSの記述

次に，各コンポーネント及びネットワークに対して

timeliness QoSを課す．本手法では，各コンポーネン

ト（“component”ステレオタイプの付いたクラス）及

びネットワーク（“network”ステレオタイプの付いた

関連クラス）に対して QoS 用の変数を保持させ，変

数に対する制約として OCL で timeliness QoS を記

述するという方針をとる．以下，記述方法を説明する．

まず，図 1 のように，各クラスの属性区画に “QoS”

図 1 クラス図によるコンポーネント間接続関係
Fig. 1 A configuration of components in UML class

diagram.

ステレオタイプの付いたQoS用の変数を用意する．本

手法においては，スループット，ジッタ，遅延の 3カ

テゴリーを扱うため，変数の形式は以下の形式とする．

スループット変数：= “throughput(” データ名 “,”

期間 “)” ;

ジッタ変数：= “jitter(” データ名 “,” 期間 “)” ;

処理遅延：= “delay(” 送信データ “,” 受信データ

“)”;

通信遅延：= “network delay” ;

“component” ステレオタイプの付いたクラスにつ

いては，スループット，ジッタ，処理遅延の 3カテゴ

リー，“network”ステレオタイプの付いた関連クラス

については通信遅延の 1カテゴリーを変数として指定

できる．次に，OCL で timeliness QoS を記述する．

1 クラス，つまり，1 コンポーネントあるいは 1 ネッ

トワークに対する timeliness QoS を以下の形式で記

述する．

QoS記述：= “context” クラス名 不変式* ;

不変式：= “inv: self.” 制約式；

制約式：= 変数 演算子 正整数；

変数：= スループット変数 | ジッタ変数 | 処理遅延
| 通信遅延；

演算子：= “>” | “<” | “≥” | “≤” ;

例えば，図 1 の 2コンポーネント及び 1ネットワー

クに対する timeliness QoSをOCLで与えると，以下

のようになる．“--”以降はコメントである．

context A

inv: self.throughput(a1,100) ≥ 20

- - データ a1 を期間 100 ms の間に送信する回数

は 20回以下

context B

inv: self.jitter(b1, 5) < 1

- - 5 ms間隔で受信するとき，ジッタは 1ms未満

inv: self.delay(b2,b3) < 5

- - データ b2を処理して b3に渡すまでの遅延時

間は 5ms未満

context A B

inv: network delay≤ 100

- - コンポーネント Aとコンポーネント Bの間の

ネットワーク遅延は 100 ms以下

OCLによる QoS制約を線形制約で表現すると以下

のようになる [8]．

ある期間 T 内に信号 x が少なくとも K 回発生し

なければならないという制約は次のように表現できる．

685

電子情報通信学会論文誌 2006/4 Vol. J89–D No. 4

∀i ∈ N : xi+K−1 − xi ≤ T

同様に，ある期間 T 内に信号 x が K 回未満発生し

なければならないという制約は次のように表現できる．

∀i ∈ N : xi+K−1 − xi ≥ T

間隔 T で発生する信号 x のジッタ制約は次のよう

に表現できる．

∀i∈N : T −m≤xi+1−xi≤T +M (m,M : 定数)

二つの信号 x，y の遅延関係が T 未満であるとい

う制約は次のように表現できる．

∀i ∈ N : 0 < xi − yi+C ≤ T

OCL制約式と線形制約式との対応関係は例えば次

のようになる．

context A

inv: self.throughput(a1,100) ≥20

- - データ a1 を期間 100 msの間に送信する回数

は 20回以下

となる OCLに対しては次のような線形制約式となる．

∀i ∈ N : ai+20−1 − ai ≤ 100

3. 3 線形計画法を用いた整合性検証手法

ここでは，提供 QoSと要求 QoSの整合性を線形計

画法を用いて調べる方法を述べる．整合性とは，各コ

ンポーネントの提供 QoS とコンポーネントの接続関

係のもとで要求 QoSが満たされることをいう．

これらの制約式は線形制約集合に変換され，制約領

域の有無の判定問題を解くことにより [14]，提供 QoS

が要求 QoSを満たすかを解く．

一般に，QoS 制約式は全称子を含むため線形制約

式が無限個になり得るが，対象とする QoS のクラス

を上記に制限し，コンポーネントに接続関係の制約を

次のようにおくと，線形不等式の数は有限に抑えられ

る [13]．

整合性判定の制限及び，システムの制限として，以

下の四つを課す．

［クラス制限］

（ 1） 要求 QoS にジッタ制約が含まれるとき，ど

こかのコンポーネントでジッタ制約が書かれていなけ

ればならない．

（ 2） 要求 QoS にスループット制約が含まれると

き，どこかのコンポーネントでスループット制約かジッ

タ制約が書かれていなければならない．また，要求ス

ループット制約における定数を K とするとき，提供

QoSのスループット制約の定数は K の約数でなくて

はならない．

（ 3） 要求 QoS に遅延制約が含まれるとき，対象

システムの入出力間を結ぶ経路の中で，遅延関係がす

べて与えられているような経路が少なくとも一つはな

くてはいけない．

（ 4） 対象システムのコンポーネント接続関係につ

いて閉路はない．

制限 (1)をおく理由は，ジッタ制約からスループット

制約を推論することはできるが，逆はできないためで

ある．例えば，∀i ∈ N : m ≤ xi+1 − xi ≤ M から

∀i ∈ N : xi+10 − xi ≤ 10M は容易に推論できるが

（発信間隔が M 以内ならば，10 回目の発信時刻は最

初の発信時刻からは 10M 以内に起こる），逆は推論

できない（10回目の発信時刻が最初の発信時刻からは

10M 以内に起こるからといって，発信間隔がM 以内

であるとはいえない）．制限 (2) は主に提案する変換

法を簡単にするためのクラス制約であり，問題のイン

スタンスによっては緩めることができる．制限 (3)も，

本質的には制限 (1)と同様の理由により設けている．

簡単な場合として，例 1のように，与えられる QoS

が遅延のみ（コンポーネント間遅延とコンポーネント

内遅延）とする．このときクラス制限の (3)，(4)より，

システム全体の遅延は，接続関係にある信号に対する

変数の組に対して等式制約を加え，添字と全称子のな

い有限個の線形制約式で表現することができる．同様

にして要求遅延制約式を得ることができる（例 1）．

ジッタ制約はスループット制約における定数 C が

1である特別な形とみなすことができる．以降ではス

ループットで説明する．一般にQoS式にスループット

制約が含まれている場合は，定数 C が提供 QoS，要

求 QoS ともに共通な場合は xi+C に対応する変数を

新たにおき，それに対して，同様にシステム出力まで

への遅延制約式集合を生成することにより，対応可能

である（例 2）．

［例 1］ 提供 QoS群

∀i : D0 ≤ bi − ai ≤ D1

∀i : D2 ≤ ci − bi ≤ D3

∀i : D4 ≤ di − ci ≤ D5

∀i : D6 ≤ gi − di ≤ D7

∀i : D8 ≤ fi − ei ≤ D9

∀i : D10 ≤ gi − fi ≤ D11

686

論文／時間制約を保証する UML/OCL を用いた分散実時間アプリケーション開発手法

図 2 コンポーネント間遅延関係
Fig. 2 A delay configuration of components.

∀i : D12 ≤ hi − gi ≤ D13

要求QoS

∀i : hi − ai < D14

図 2 のような遅延と上記の提供 QoS 群及び要求

QoSが与えられたとした場合，添字と全称限量子を無

視することで線形制約式集合 P，Qを得る．

提供遅延制約式 P

D0 ≤ b− a ≤ D1, D2 ≤ c− b ≤ D3

D4 ≤ d− c ≤ D5, D6 ≤ g − d ≤ D7

D8 ≤ f − e ≤ D9, D10 ≤ g − f ≤ D11

D12 ≤ h− g ≤ D13 , a = e

要求遅延制約式 Q

h− a < D14

提供 QoSと要求 QoSの整合性は Q ⊇ P か否かに
より判定する．P の補集合を考えれば，線形制約式の

解空間の有無の問題となる．

［例 2］ 図 2 において提供スループット QoS と要求

スループット QoS が次のように与えられたとした場

合，システム出力までの遅延制約集合と提供スルー

プット QoSから P′，Q′ を得る．

提供スループット QoS

∀i : J0 ≤ ai+6 − ai ≤ J1

要求スループット QoS

∀i : J2 ≤ hi+6 − hi ≤ J3

提供遅延制約式 P′

J0 ≤ a′ − a ≤ J1

D0 ≤ b′ − a′ ≤ D1, D2 ≤ c′ − b′ ≤ D3

D4 ≤ d′ − c′ ≤ D5, D6 ≤ g′ − d′ ≤ D7

D8 ≤ f ′ − e′ ≤ D9, D10 ≤ g′ − f ′ ≤ D11

D12 ≤ h′ − g′ ≤ D13 , a′ = e′

要求遅延制約式 Q′

J2 ≤ h′ − h ≤ J3

例 1と同様に P′，Pの解集合を Q′ が含むか否かに

より整合性を判定する．

スループット制約の定数 C（例 2においては 6）が

提供QoS，要求QoSで異なる場合，クラス制限の (2)

より次のように提供 QoS側の制約式集合を得る．

提供スループット制約式が v1 ≤ xi+k − xi ≤ v2 と
する．また，k は要求スループット制約式の定数 n の

約数とすると，提供 QoS側の制約式集合として

v1 ≤ xj+k − xj ≤ v2
v1 ≤ xj+2k − xj+k ≤ v2
v1 ≤ xj+3k − xj+2k ≤ v2

...

v1 ≤ xj+mk − xj+(m−1)k ≤ v2 (mk = n)

を生成する．

4. 内部設計検証

4. 1 UMLステートチャートによる各コンポーネ

ントの動作仕様記述

3. において OCL を用いて定義された各コンポー

ネントの提供 QoS を満たすような動作振舞いを行

う UML ステートチャートを記述する．本手法では，

UML ステートチャートにクロックの概念を追加し，

遷移に関してクロックの制約を付加できるように拡張

する．

また，次節における検証では，ステートチャートを

時間オートマトンに変換するため，遷移ラベルに記述

する内容を次の形式に限定する．遷移ラベルに記述で

きないイベントトリガ，ガード条件，アクションに関

しては，各状態のアクティビティ区画に記述する．

遷移ラベル：= イベントトリガ “[” ガード条件 “]”

“/”アクション；

イベントトリガ：= 受信データ名；

ガード条件：= クロック変数に関する条件式；

アクション：= 送信データ名 | クロック変数の値書
き換え；

受信データ名，送信データ名は最終的に UPPAAL

のチャネルに置き換わる．

4. 2 各コンポーネントの Timeliness QoS 整合

性検証

本節での検証では，3. において OCLを用いて定義

された各コンポーネントの timeliness QoSを 4. 1 で

記述された UMLステートチャートが満たしているか

を確認する．本手法では，テストオートマトンの考え

に基づいて時間オートマトンレベルで検証を行う．検

証ツールにはUPPAAL [2]を用いる．UPPAALへの

入力を生成するため，UMLステートチャートを時間

オートマトンに変換する必要がある．

ステートチャートは階層的構造が記述できるモデ

ルである一方，UPPAAL時間オートマトンは平面的

687

電子情報通信学会論文誌 2006/4 Vol. J89–D No. 4

（Flat）な記述モデルである．一般的に，階層構造を平

面モデルに変換すると，状態数は増加する．階層構造

を保ったまま変換を行う手法も存在する [9] が，変換

後の構造が複雑となり，動作が複雑になるという問題

があるため，timeliness QoSの要求が強い実時間シス

テムに対して階層構造を保ったまま変換する手法を用

いることは好ましくない．したがって，本手法では階

層構造を平面モデルに変換するアルゴリズム [10]を採

用する．ただし，この変換手法は，階層時間オートマ

トン（Hierarchical Timed Automata）を UPPAAL

時間オートマトンへ変換するアルゴリズムであるため，

本手法では階層時間オートマトンを経た 2段階変換を

行う．UMLステートチャートと階層時間オートマト

ンは階層構造であるという類似点を持ち，記述方法も

似ているため，2モデル間の変換は簡単な文法変換に

帰着できる．

また，テスト時間オートマトンに基づいた検証を行

うため，OCLで記述された timeliness QoSから数値

及びデータ名を抜粋し，本手法で扱う 3 カテゴリー

（スループット，ジッタ，遅延）のためのテストオート

マトンを生成する必要がある．本手法では，文献 [7]の

テストオートマトンを採用する．スループット，ジッ

タをテストするためのテストオートマトンは図 3，遅

延については図 4 である．

ジッタはスループットの一種であるため，ジッタと

スループットをテストするオートマトンは同じもの

図 3 ジッタ，スループットのテスト時間オートマトン
Fig. 3 Obligation anchored jitter and throughput.

図 4 遅延のテスト時間オートマトン
Fig. 4 An automaton template for latency obliga-

tion.

となる [7]．データ in がある一定区間 RATE ごとに

発生するという条件のもとで，（期間/スループット）

あるいは（ジッタ）の最小値 MIN，最大値 MAX

を満たしているかを確認しながら状態遷移が行われ

る．RateTooSlowあるいは RateTooFastの状態に到

達するとデッドロックが発生し，与えられたジッタあ

るいはスループットを満たしていないことが分かる．

なお，文献 [8] にも同様のテストオートマトンが 3種

（Anchored，Non-Anchoredの区別も含めて），提案

されている．

また，遅延のテストオートマトンに関しては，デー

タ startが発生してからデータ check が発生するまで

の遅延時間 latency を確認しながら状態遷移が行われ

ている．データは連続して発生するためデータ start

が発生して check が発生するまでの間に次のデータ

start が発生することもある．各々のデータ start の

発生時間を記録するためにクロックは複数用意せねば

ならず，図 4 のテストオートマトンではクロック変数

が配列として宣言されている．LatencyFailed あるい

は QueueTooSmallの状態へ到達するとデッドロック

が発生し，与えられた遅延を満たしていないことが分

かる．

4. 3 検 証 手 法

各コンポーネントの接続関係を考慮したアプリケー

ション全体の検証は 3. 3 で行っているため，各コン

ポーネントごとに単体テストを行えばよい．

検証方法は，テストオートマトンの原理に基づいて，

次のようになる．まず各コンポーネントの動作仕様で

あるステートチャートを時間オートマトンへ等価変換

する．これを単体で動かしデッドロックフリーである

ことを調べる．次に各コンポーネントに与えられてい

る timeliness QoSをテストするためのテストオートマ

トンと各コンポーネントに対応するオートマトンを並

列に動作させる．その際，入力された時間オートマト

ンネットワークがデッドロックを発生させないか（検

証式は “A[] not deadlock”）をUPPAALで検証する．

デッドロックが起こった場合，与えられた timeliness

QoSを満たしていないことが原因である．

5. 時間制御コード生成系

4. 2 での検証により各コンポーネントに対して与え

られた timeliness QoS を満たしていればアプリケー

ションで要求されている timeliness QoSが満たされて

いることが保証できるので，プログラムコード生成時

688

論文／時間制約を保証する UML/OCL を用いた分散実時間アプリケーション開発手法

図 5 メディアサーバアプリケーションのクラス図
Fig. 5 A UML class diagram of media server application.

にこの方針を適用することが可能である．検証により，

整合性が確認された timeliness QoS を満たすような

時間制御が行われる Javaプログラムを生成する [14]．

分散実時間アプリケーションの生成を考慮し，各コン

ポーネントに対して記述された時間オートマトンの時

間制御（クロック監視）は集中管理ではなく，各コン

ポーネントで自律的に行わせる．生成される制御プロ

グラムでは，時間制約を満たせない場合は例外を発生

させるようにしている．このような例外に対応して時

間調整を行うような機能は設けていない．

6. 例 題 適 用

実装した検証系，変換系及びコード生成系に対して例

題を適用した．なお，実験環境はOSがMicrosoft Win-

dows XP Professional，CPUがPentiumIII 600 MHz

及びメモリが 384 MByteである．

6. 1 例 題 概 要

メディアサーバ（Media Server）は，ユーザが指定

した映像データあるいは音声データを，ディジタルテ

レビ（Digital Television）あるいはオーディオシステ

ム（Audio System）に随時配信するアプリケーショ

ンである [11]．各出力機器には指定された timeliness

QoS（出力スループット）を保証することが強く要求

されるため，メディアサーバを例題とし，提案手法を

適用した．アプリケーション全体のコンポーネントの

接続関係を記述した UMLクラス図の概要を，図 5 に

示す．計 12個のコンポーネントから構成されている．

また，メディアサーバ・ディジタルテレビ間及びメディ

アサーバ・オーディオシステム間の接続関係について

は，ネットワークによるデータ送受信の関係を明示す

るために，関連クラスが用いられている．

6. 2 外部設計検証

例題の timeliness QoSの一部として以下を課す．
• コンポーネント MS-Server の出力スループッ

トは 100 frames/s 以上である．
• コンポーネント MS-Storage の処理遅延 5ms

以下である．
• メディアサーバ–ディジタルテレビ間のネット

ワーク遅延は 100 ms以下である．
• メディアサーバ–オーディオシステム間のネット

ワーク遅延は 150 ms以下である．

各々の timeliness QoS に関係する変数をクラス図

に書き足し，それに対する制約として OCLで記述す

ると次のようになる．

context MS-Server

inv: self.throughput(MS-Serve out, 1000) >=

100

context MS-Storage

inv: self.delay(MS-Storage in, MS-Storage out)

<= 5

context MS-Server DT-Receiver

inv: network delay <= 100

689

電子情報通信学会論文誌 2006/4 Vol. J89–D No. 4

context MS-Server AS=Receiver

inv: network delay <= 150

これらOCLで記述された timeliness QoSの制約と

UMLクラス図で記述されたコンポーネント接続関係，

更にアプリケーションに要求されている timeliness

QoSを入力とし，アプリケーション全体の timeliness

QoS の整合性に関して，線形制約式による検証を行

う．例えば，要求されている timeliness QoSとして，

“ディジタルテレビのディスプレイ（DT Display）の

出力スループットは 30 franes/s以上である”が挙げら

れているとし，検証を行った．この際，入力記述から

検証式を生成するツールを作成し，線形計画問題の解

法パッケージを用いた．結果は以下のとおりである．
検証時間 : 76 ms

線形制約式数 : 115個

利用変数 : 29個
6. 3 内部設計検証

6. 2 において，アプリケーション全体の整合性を確

認した後，各コンポーネントの動作仕様を設計する．

動作仕様は UML ステートチャートで記述される．

このとき，6. 2 で与えられた timeliness QoS を満た

すように記述する必要がある．例えば，図 6 はコン

ポーネント MS-Storage の動作仕様である．各コン

ポーネントに関する timeliness QoSの検証のために，

ステートチャートを UPPAAL時間オートマトンネッ

トワークへ，OCLで記述された timeliness QoSをテ

ストオートマトンへ自動変換する．図 7 は，図 6 の

ステート on 内部を変換した結果である．以下は，本

例題における変換時間等の結果である．
変換時間 : 1153 ms

状態数（変換前）: 89個

状態数（変換後）: 179個
次に，各コンポーネントに対応する時間オートマト

ンを単体で動作させることで，システムそのものの誤

りによるデッドロックを起こさないかどうかを検査す

図 6 コンポーネント MS-Storage のステートチャート
Fig. 6 A UML statechart diagram of component MS-

storage.

る．最後に，各コンポーネントごとに，ステートチャー

トの変換結果である時間オートマトンとテストオート

マトンを並列に動作させ，デッドロックが発生しない

かを検査する．後者においてデッドロックが発生した

場合は，テストオートマトンの規定する時間制約に反

することを意味する．

結果，本例題においては，状態爆発を起こすこと

もなく，すべてのコンポーネントに対して数秒以内に

UPPAALを用いて検査を行うことができた．

6. 4 考 察

6. 2 で用いた検証系は，線形制約式の非可解性判定

問題に帰着して検証するため，検証時間は生成される

線形制約式の数に依存する．そこで検証アルゴリズム

では効率化を行い，生成される線形制約式の数を抑え

ている．そのため，入力となる timeliness QoS の数

が変わらなければ，コンポーネントの数や接続関係の

複雑さが異なっている場合でも検証に要する時間はほ

とんど変わることはない．

6. 3 では，テストオートマトンを用いた検証を行っ

ている．既存の手法では，アプリケーションを構成す

るすべてのコンポーネントとそれらに対するテスト

オートマトンを一度に並列動作させる [7] ため，状態

爆発問題が起こる．実際，本論文で用いた例題に対し

て既存の手法で検証を行ったところ，状態爆発問題が

起こり，検証を完了することはできなかった．一方，

提案手法のように各コンポーネントごとにテストオー

トマトンで検証を行うと，状態爆発問題が起こること

はなく数秒で完了した．なお，ステートチャートから

時間オートマトンへの変換，及び時間オートマトンか

らのプログラムコード生成に対する処理時間は数秒で

あるがこれらの大部分は，入力となる XMIあるいは

XMLファイルの解析に費やされている．

本手法における既手法との違いは，アプリケーショ

図 7 コンポーネントMS-Storageの UPPAAL時間オー
トマトン

Fig. 7 An UPPAAL timed automaton of component

MS-storage.

690

論文／時間制約を保証する UML/OCL を用いた分散実時間アプリケーション開発手法

ン全体が満たすべき QoS 制約をコンポーネントレベ

ルの QoS に分割し，それらを個々に検証することに

より，状態爆発の可能性を著しく低下させている点で

ある．QoS制約の分割に際しては，接続関係が閉路に

限られるなどの制限があるものの，本例題のようなシ

ステムの検証としては有用であると考えられる．

また本手法では一般によく知られているUML，OCL

記述を用いて設計することができるので，ユーザは検

証用の中間モデルであり，あまり知られていない拡張

時間オートマトンの知識を必要としない．

以上，例題適用の結果，提案手法は検証時間の観点

から見て有用であるといえる．

7. む す び

本論文では，要求される timeliness QoS を保証す

るための分散実時間アプリケーション開発手法を提案

した．提案手法では，UML/OCLを用いた仕様記述，

timeliness QoS整合性検証，仕様どおりに制御を行う

Javaプログラムコード自動生成が順に行われる．この

開発プロセスを踏むことにより，コンポーネント数が

多く，それらの接続関係が複雑な場合においても効率

的に開発することが可能となると思われる．

今後の課題として，現手法のような真偽判定だけで

なく，検証のトレースを解析することによりフィード

バックを開発者に与えるようにすることや確率時間

オートマトンの解析技術 [12] の応用が考えられる．

謝辞 本学院生として，この研究の初期に従事した

森一夫氏（現シャープ（株））に感謝致します．

文 献

[1] R. Alur and D.L. Dill, “A theory of timed automata,”

Theoretical Computer Science, vol.125, pp.183–235,

1994.

[2] J. Bengtsson, K. Larsen, F. Larsson, P. Petersson,

and W.Yi, “Uppaal – a tool suite for automatic ver-

ification of real-time systems,” LNCS 1066, pp.232–

243, 1996.

[3] A.T. Campbell, G. Coulson, and D. Hutchison, “A

quality of service architecture,” ACM SIGCOMM

Computer Communications Review, vol.24, no.2,

pp.6–27, 1994.

[4] A.W. Brown and K.C. Wallnau, “The current state

of component-based software engineering,” IEEE

Softw., vol.15, no.5, pp.37–46, 1998.

[5] Object Management Group, Unified Modeing Lan-

guage Specification version 1.5, available at http://

www.omg.org/

[6] Object Management Group, UML 2.0 Object Con-

straint Language (OCL), available at http://www.

omg.org/

[7] D. Akehurst, J. Derrick, and A.G. Waters, “Design

and verification of distributed multi-media systems,”

LNCS, vol.2884, pp.276–292, 2003.

[8] B. Bordbar and K. Okano, “Verification of timeli-

ness QoS properties in multimedia systems,” LNCS,

vol.2885, pp.523–540, 2003.

[9] A. Wasowski, “On efficient program synthesis from

statecharts,” Proc. 2003 ACM SIGPLAN Conf. on

Language, Compiler, and Tool for Embedded Sys-

tems, vol.38, no.7, pp.163–170, 2003.

[10] A. David and M.O. Möller, “From HUPPAAL to UP-

PAAL: Translation from hierarchical timed automata

to flat timed automata,” BRICS Technical Report Se-

ries, RS-01-11, 2001.

[11] K. Havelund, A. Skou, K.G. Larsen, and K. Lund,

“Formal modeling and analysis of an audio/video

protocol: An industrial case study using UPPAAL,”

BRICS Technical Report Series, RS-97-31, 1997.

[12] M. Kwiatkowska, G. Norman, and J. Sprotston,

“Symbolic model checking for probabilistic timed au-

tomata,” LNCS, vol.3253, pp.293–308, 2004.

[13] 岡野浩三，森 一夫，谷口健一，“線形制約式を用いた
時間 QoS 一貫性検証法，” 京大数解研講究録，vol.1375,

pp.151–157, 2004.

[14] 牧寺 彩，岡野浩三，谷口健一，“分散環境実時間アプ
リケーション開発支援のための Timeliness QoS 一貫性
検証系および時間制御コード生成系の実装，” 信学技報，
vol.104, no.243, pp.19–24, 2004.

[15] E.M. Clark, O. Gumberg, and D.A. Peled, Model

Checking, The MIT Press, 1999.

（平成 17 年 7 月 15 日受付，11 月 2 日再受付）

長井 栄吾 （学生員）

平 16 阪大・基礎工・情報卒．現在，同
大大学院博士前期課程在学中．分散実時間
システムの設計検証に関する研究に興味を
もつ．

牧寺 彩

平 15 阪大・基礎工・情報中退．平 17 同
大大学院前期課程了．現在，野村総合研究
所勤務．在学中は分散実時間システムの開
発法に関する研究に従事．

691

電子情報通信学会論文誌 2006/4 Vol. J89–D No. 4

岡野 浩三 （正員）

平 2 阪大・基礎工・情報卒．平 5 同大大
学院博士後期課程中退．同年同大助手，平
14 ケント大客員研究員．平 15 バーミンガ
ム大客員講師．現在，阪大情報科学研究科
助教授．工博．フォーマルアプローチによ
るソフトウェア設計開発などの研究に従事．

情報処理学会，IEEE CS 各会員．

谷口 健一 （正員：フェロー）

昭 40 阪大・工・電子卒．昭 45 同大大学
院博士課程了．同年同大・基礎工・助手，同
大基礎工，情報科学研究科教授を経て，平
17より同大名誉教授．工博．この間，計算
理論，ソフトウェアやハードウェアの仕様
記述・実現・検証の代数的手法及び支援シ

ステム，関数型言語の処理系，分散システムや通信プロトコル
の設計・検証法などに関する研究に従事．

692

