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[PAPER Special Section on Formal Approach

QoS Analysis of Real-Time Distributed Systems Based on Hybrid
Analysis of Probabilistic Model Checking Technique and

Simulation

Takeshi NAGAOKA ™, Akihiko ITO, Nonmembers, Kozo OKANO', and Shinji KUSUMOTO', Members

SUMMARY  For the Internet, system developers often have to estimate
the QoS by simulation techniques or mathematical analysis. Probabilistic
model checking can evaluate performance, dependability and stability of
information processing systems with random behaviors. We apply a hybrid
analysis approach onto real-time distributed systems. In the hybrid analy-
sis approach, we perform stepwise analysis using probabilistic models of
target systems in different abstract levels. First, we create a probabilistic
model with detailed behavior of the system (called detailed model), and
apply simulation on the detailed model. Next, based on the simulation re-
sults, we create a probabilistic model in an abstract level (called simplified
model). Then, we verify qualitative properties using the probabilistic model
checking techniques. This prevents from state-explosion. We evaluate the
validity of our approach by comparing to simulation results of NS-2 using
a case study of a video data streaming system. The experiments show that
the result of the proposed approach is very close to that of NS-2 simulation.
The result encourages the approach is useful for the performance analysis
on various domain.

key words: QoS, probabilistic automaton, simulation, model checking

1. Introduction

Nowadays real-time distributed systems like streaming me-
dia systems are widely spreading. These systems require
time based transmission such as QoS control to prevent in-
terruption of packet transmission caused by network delay,
packet loss, and so on. Since the Internet is a best-effort net-
work shared by a number of nodes, there is no guarantee on
the QoS properties such as network bandwidth, delay and
throughput. Therefore, system developers preliminary have
to estimate the QoS by simulation techniques [1] or mathe-
matical analysis [2].

Simulation techniques usually do not guarantee quali-
tative properties such as the maximum throughput and the
minimum jitter, and so on, though they can calculate mean-
values along typical traces. In general, these techniques use
much resources to simulate accurately the target network
systems. On the other hand, mathematical analysis is log-
ically correct, but in many cases the based models are too
ideal; hence it is sometimes hard to apply the mathematical
analysis to realistic applications.

Formal verification techniques, especially model
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checking techniques [3] are considered as promising tech-
niques for information systems developing due to their abil-
ity of exhaustive checking. Among them, probabilistic
model checking can evaluate performance, dependability
and stability of information processing systems with ran-
dom behaviors [4]. PRISM [5] is one of the probabilistic
model checkers. It handles automata with probabilities (dis-
crete and continuous time Markov chains) and time elapse.
Therefore, it is suitable for modeling the network systems.
One of the approaches, which overcomes drawbacks of sim-
ulation approach and model checking approach, seems to be
a kind of a hybrid approach.

In order to find if the hybrid approach is applicable to
real systems, in this paper, we apply a hybrid analysis tech-
nique onto real-time distributed systems, which uses both
of simulation and model checking techniques. In our ap-
proach, we perform a stepwise analysis using probabilistic
models of target systems in different abstract levels. First,
we create a probabilistic model with detailed behavior of the
system (called detailed model), and apply simulation on the
detailed model. Next, based on the simulation results, we
create a probabilistic model in an abstract level (called sim-
plified model). Then, we verify qualitative properties using
the probabilistic model checking techniques.

As the target real-time distributed system, we use an
experimental system shown in Fig.1. The main subsys-
tem of the system is video data streaming which uses RTSP
(Real Time Streaming Protocol) for the streaming protocol.
The system has also ftp servers and clients which exploit
tcp connections, as well as a packet generator that generates
udp packets as background noise. Thus, the system involves
several simultaneous sessions; it may cause congestion.

In Papers [6]—[8], we have given case studies where we
evaluated QoS properties of real-time distributed systems
using both of simulation and model checking functions in
PRISM. Based on the case studies, this paper summarizes
the QoS evaluation technique for real-time distributed sys-
tems in general. Especially, we increase the number of sce-
narios for the example in order to gain degree of accuracy.
The results show that our approach is adaptable to a vari-
ety of network topologies. Also, we increase the number of
simulation samples in order to check the correctness of our
probabilistic models.

As related works, several case studies are performed
using PRISM [9]-[11]. For example, Paper [10] deals with

Copyright © 2011 The Institute of Electronics, Information and Communication Engineers
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Fig.1 A configuration of experimental system.

a network protocol. Few works, however, concern the QoS
analysis of the whole system. Papers[12] and [13] pro-
pose abstraction methods for probabilistic systems based on
an abstraction refinement approach. Papers[14] and [15]
propose verification approach based on the simulation tech-
nique. Paper [12] extracts a number of representative sample
paths on a probabilistic model and decides if the model sat-
isfies a given property using such paths. In Paper[15], they
model a biomedical sensor network as timed automata, and
use the simulation technique to adjust some parameters.

The contribution of the paper includes that we present a
technique to guarantee the QoS of real-time distributed sys-
tems. Our experimental results show the correctness of our
detailed model at least for all of nine scenarios. Also, we can
apply probabilistic model checking on the simplified model
within realistic time without state explosion. It shows that
the proposed method is useful to analyze the network per-
formance. We believe that such analysis is useful for other
kind of network analysis.

The rest of the paper is organized as follows. Section 2
gives some backgrounds as preliminaries. Section 3 gives
our proposed approach to verify real-time distributed sys-
tems without state explosion, and shows an example model
described with a PRISM language. Section 4 shows exper-
imental results and gives discussions. Finally Sect.5 con-
cludes the paper.

2. Preliminaries

This section simply describes the probabilistic model
checker PRISM as well as network protocols for net stream-

ing.
2.1 Probabilistic Model Checker PRISM

Here, we simply describe an overview of the probabilistic
model checker PRISM [5].

A model checking tool usually has two inputs, a model
M and a logical expression p. The model is typically a
transition system which represents behavior of the system
to check while the logical expression is a temporal logic ex-
pression which represents a property to check. The typi-
cal output of the model checking tool is whether the logical
expression is valid on the model (M [ p). Some model
checker outputs a counter example when p is invalid.

The inputs of PRISM include the following three kind
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of transition systems as a model:

e Discrete-time Markov chains (DTMCs);
e Continuous-time Markov chains (CTMCs); and
e Markov decision processes (MDPs).

Each of three systems is a probabilistic transition
system (Markov chain). The inputs of PRISM also in-
clude Probabilistic Computation Tree Logic (PCTL)[16]
for DTMC and MDP, and Continuous Stochastic Logic
(CSL) [17] for CTMC. They are CTL based logics en-
chanted with probability.

PRISM has several analysis modes: a simulation mode,
a numerical analysis mode, and a verification mode. Using
the simulation mode, we can observe the behavior of the
given model system visually. The numerical analysis mode
can evaluate the value of uncertain variable specified with
PCTL or CSL based on the model. Such numerical analysis
is considered as a kind of parametric model checking [18].
PRISM can draw a graph with several trials of such numeric
analysis. The verification mode is like typical model check-
ing except that PRISM cannot output counter examples.

In this paper, we use DTMC’s as the model of the net-
work. Here, we describe more precisely on a DTMC. For-
mally, a DTMC D is a tuple (S, s_init, P, L), where

e § is a set of states (“state space”) ;

e s_init € S is the initial state;

e P:S xS — [0,1] is the transition probability matrix
where Xy P(s,s’) = 1 forall s € S; and

e L: S — 2*7is a function labeling states with atomic
propositions.

PRISM allows a transition to specify an action and up-
dating expressions on D, where D is a set of variables with
finite domains. In other words, a DTMC of PRISM is a kind
of an extended automaton with probabilities. Usually, one
execution of a transition is translated into a unit time of time
elapse (a tick event). Such scheme is known as digital clock
view of a DTMC. Using an integer variable (with the upper-
bound) explicitly as a clock variable, however, we can also
represent a system with discrete time in a DTMC. In this
paper, we use the latter scheme to avoid the state explosion
problem.

In a PRISM description, a model is composed of a
number of modules. Each module is a probabilistic automa-
ton which has some variables and probabilistic transitions.
In the PRISM model, those modules can interact with each
other. In this paper, the word module indicates the module
in the PRISM description.

PRISM accepts a reward model in which certain values
of rewards are assigned to the states and transitions of the
probabilistic model [19]. It allows us to evaluate quantitative
properties. For example, if we assign a reward of one to
all transitions on the model, we can evaluate an expected
number of transitions in the paths to reach a given state from
an initial state.
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2.2 Protocols for Net-Streaming

Here, we simply summarize typical protocols used in the
Internet. Typical protocols used in the Internet have a con-
gestion control mechanism in order to avoid network con-
gestion. For example, TCP (Transmission Control Proto-
col) uses AIMD (Additive Increase Multiplicative Decrease)
type window-flow control as such the mechanism. It con-
trols the data size of sending packets based on the current
available bandwidth. Such scheme has an advantage for the
correct data transmission. It, however, allows delays, which
is not suitable for real-time data transmission. Therefore,
RTSP (Real Time Streaming Protocol) is used for real-time
application. RTSP is a protocol for the Internet streaming of
voice and movies, on TCP/IP network. Famous congestion
control mechanisms for RTSP are RAP (Rate Adaptation
Protocol) [20] and TEAR (TCP Emulate At Receivers) [21].
Recently, TFRC (TCP-Friendly Rate Control) [22] attracts
attention. Hence, this paper models TFRC.

2.2.1 RTSP

RTSP is one of the typical protocols working at end-to-
end. RTSP has five states, called SETUP, PLAY, RECORD,
PAUSE and TEARDOWN. RTP (Real-time Transport Pro-
tocol) is responsible for transmission of stream-data. It
determines the throughput of RTP based on a rate control
scheme of TFRC using the report message of RTCP (RTP
Control Protocol).

2.2.2  TCP Friendly Rate Control TFRC

TFRC is a rate control scheme for fairness between RTP
and TCP. It controls the rate in order to avoid bad effects
on existing TCP flows in the same network, which increases
total effectiveness of the whole network. TFRC controls the
rate using a report message of RTSP. The report message
contains loss of packets and jitters, which can be estimated
via the sequence number of received RTP packets and time
stamps, respectively. RFC3448 describes the following for-
mula for determining the throughput:

)

= \2ub p[3+(t_RT O (3% \[35bx p/8x px(1+32%p2)))

where the unit of X is Byte/second. The parameter of the
formula is summarized in Table 1. The calculated through-
put is a rate with which a RTSP server should send packets
considering the network congestion at the time. Therefore
weighted average values of the parameters in a short period
are applied into the equation. Paper [22] also defines the cal-
culation methods for the parameters. When the value of X

Table 1

R[seconds] Round trip time

pl%] A packet loss rate

s[Byte] Packet size

The number of packets acknowledged
by a single TCP acknowledgment

A TCP retransmission timeout value

Parameters of the throughput estimation formula.

b[number of times]

t_RTO[seconds]
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is less than the bandwidth, TFRC lets RTSP set the value as
throughput.

3. Proposed Approach

Probabilistic model checking which can evaluate compli-
cated properties with a high level of confidence is useful for
performance evaluation of information systems [4]. How-
ever, if we model whole systems with several simultaneous
sessions in detail, we cannot avoid the state explosion prob-
lem. To avoid the problem, in our approach we model real-
time distributed systems in different abstraction levels. Us-
ing both of simulation and model checking techniques, we
perform qualitative analysis in a stepwise fashion.

For a probabilistic model in a detailed level, we model
behaviors of protocols of RTSP, TCP, and UDP in detail,
and perform several trials of simulation in order to analyze
throughput, packet loss rates, and so on. A simplified model
is based on the simulation results. For the simplified model,
data transmission which we want to analyze is modeled in
detail, while other data transmission is abstracted. For the
transmission which we do not concern, we decide transmis-
sion rates probabilistically based on the simulation results.

In the rest of this section, we describe the detailed
model and the simplified model with a case study of a video
data streaming system [23]. In our approach, both of the
models are described with the PRISM language.

3.1 Target System

Here, we introduce an example of a real-time distributed
system. As the example system, we select a video data
streaming system [23] shown in Fig. 1. The system is com-
posed of a pair of a video server and its client, a number of
pairs of FTP servers and their clients, and a packet generator,
which are connected to each other through routers located
at the middle of Fig. 1. The routers are connected through
the 10Base-T Ethernet, which is considered as a bottle-
neck of packet transmission. In the considering scenario,
the video server sends 80 MB of video data with throughput
of 1 Mbps using the rate control of TFRC. After 100 sec-
onds from the start of the video streaming, FTP servers and
clients start their data transmission through TCP sessions.
Also, the packet generator always sends UDP packets with
the throughput of 8§ Mbps as background noise.

3.2 The Detailed Model

The main component of the detailed model is a queue which
buffers packets of a router in a bottleneck link. Behavior
such as packet loss and round trip time are based on the state
of the queue. Also, for each application in the system, we
model behavior of its server in detail, while behavior of its
client are abstracted as an operation of dequeue. Time elaps-
ing is controlled discretely with an integer variable. Figure 2
is an abstract outline of the detailed model for the case study
of Fig. 1.
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Router
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Abstracted
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Fig.2  An abstract outline of the detailed model.

The detailed model is composed of seven modules
named Timer, Router, MediaServer, FTPServer(x3), RTTO-
bserver, PLRObserver, while we abstract behaviors of the
packet generator as a part of packet transmission behaviors
of the module Router

3.2.1 Module Timer

The module Timer manages time elapsing in the detailed
model. In this module, we declare an integer variable which
represents current time. Time elapsing is based on events
such as packet transmission. In the detailed model, each
module registers time of occurrence of the next event. When
all modules register the time, the module Timer performs
time elapsing into the latest time of the registered event. Af-
ter time elapsing, a corresponding module performs the reg-
istered event and registers time of the next event again.

The module Timer contains two variables and is imple-
mented as eleven lines of code.

3.2.2 Module Router

The module Router manages buffer control of the router
with a queue which buffers transferring packets. In the mod-
ule, the current queue length is managed with an integer
variable. Enqueue and dequeue behaviors are described in
the module as operations. Also, regardless of the current
queue length, enqueueing packets are dropped with certain
probability. In order to construct the module Router, we
have to specify the maximum length of the queue, a packet
transfer rate of the link between the routers, and a constant
probability to drop enqueueing packets randomly as its pa-
rameters.

In the enqueue operation, if the current queue length
becomes larger than the maximum one, the enqueueing
packets are dropped (drop tail). The dequeue operation is
abstracted; together with the time elapsing operation, a num-
ber of packets are output from the queue at a time according
to the packet transfer rate of the link.

Figure 3 shows the module Router described with the
PRISM language. The module also manages the history of
packet loss intervals used for the congestion control. It con-
tains ten variables and is implemented as about 80 lines of
code. In Fig. 3, the ten variables are firstly declared. Several
actions are defined in CCS like expressions with probabili-
ties. For example, the expression
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module Router
g_len : [0..MAXQSIZE] init 0; //The current queue length
//The hlstory of packet loss intervals
int_p_lossO [0..10000] init 0;

int_p_lossl init lOOOO,
int_p_loss2
int_p_loss3

(o
[ init 10000;
E
int_p_loss4 : [
N
[
[

]

]

]

] init 10000;
.10000] init 10000;

] init 10000;

] init 10000;

]

int_p_loss5
int_p_lossé6
int_p_loss7 : init 10000;
int_p_loss8 : [ .10000] init 10000;

//A flag to observe whether the packet loss
// occurs burstly or not
bool init false;

coocoocooco
=
o
o
o
o

p_loss_flag :

//When the queue length does not reach to its maximum
//Transferring packets are dropped
// with certain probability
[ENQMS] (g_len <= MAXQLEN - ms_pnum)

-> 1 - P_LOSS_RATE

(g_len’” = g_len + ms_pnum) &
(p_loss_flag’ = false) &
(int_p_loss0’ = int_p_loss0 + 1)

+ P_LOSS_RATE :
(int_p_loss0’
(int_p_lossl’
(int_p_loss2’
(int_p_loss3’
(int_p_loss4’
(int_p_loss5’
(int_p_loss6’
(int_p_loss7’
(int_p_loss8’

0) &

int_p_loss0)
int_p_lossl)
int_p_loss2)
int_p_loss3)
int_p_loss4)
int_p_loss5)
int_p_lossé6)
int_p_loss7)

RO -l 3]

//When the queue length reaches to its maximum

[ENQMS] (g_len > MAXQLEN - ms_pnum) & (!p_loss_flag)
-> (g_len’ = MAXQLEN) & (int_p_loss0’ = 0) &

(int_p_lossl’ int_p_loss0 + 1)&

(int_p_loss2’ int_p_lossl)s&

(int_p_loss3’ int_p_loss2)s&

(int_p_loss4’ int_p_loss3)&

(int_p_loss5’ int_p_lossé)&

(int_p_loss6’ int_p_loss5) &

(int_p_loss7’ int_p_loss6) &

(int_p_loss8’ int_p_loss7)&

(p_loss_flag’ true);

// When the packet loss occurs burstly
// (do not update the history of packet loss intervals)
[ENQMS] (g_len > MAXQLEN - ms_pnum) & (p_loss_flag)
-> (g_len’ = MAXQLEN) &
(p_loss_flag’” = (g_len = MAXQLEN));

//The ENQUEUE operations for the three FTP sessions
[ENQFTP1] (g_len <= MAXQLEN - pnum_ftpl)
-> 1 - P_LOSS_RATE : (g_len’ = g_len + pnum_£ftpl);
+ P_LOSS_RATE : true;

[ENQFTP1] (g_len > MAXQLEN - pnum_ftpl)
-> (g_len’ = MAXQLEN);

[ENQFTP2] (g_len <= MAXQLEN - pnum_ftp2)
-> 1 - P_LOSS_RATE (g_len’” = g_len + pnum_£ftp2)
+ P_LOSS_RATE : true;

[ENQFTP2] (g_len > MAXQLEN - pnum_ftp2)
-> (g_len’ = MAXQLEN);
[ENQFTP3] (g_len <= MAXQLEN - pnum_ftp3)

-> 1 - P_LOSS_RATE : (g_len’ = g_len + pnum_£ftp3)
+ P_LOSS_RATE : true;

[ENQFTP3] (g_len > MAXQLEN - pnum_ftp3)
-> (g_len’ = MAXQLEN);

// DEQUEUE is executed together with
the time elapsing event
[TIMER] (g_len != 0)
-> (g_len’ = max(0, g_len - floor (min_lookahead =
(RATE_OUT -RATE_PGEN))));
[TIMER] (g_len = 0) -> true;
endmodule

Fig.3  The module of router described with PRISM language.

[ENQFTP1] (q_len <= MAXQLEN - pnum_ftpl)
-> 1 - P_LOSS_RATE : (g_len’ = g_len + pnum_ftpl);
+ P_LOSS_RATE : true;

stands for that when the action ENQFTP1 occurs and (g_len
< MAXQLEN — pnum_ftpI) holds, the variables g_len is
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updated to g_len + pnum _ftpl with probability 1 — P_LOSS_
RATE, or do nothing with probability P_LOSS_RATE.

3.2.3 Module MediaServer

The module MediaServer manages the transmission of
RTSP packets. A packet transmission rate is calculated from
the throughput equation defined in [22]. To use the equation,
we also have to model round trip time and a packet loss rate
of the RTSP session (see Sect.3.2.5 and 3.2.6). The mod-
ule MediaServer contains six variables and is described with
about 37 lines of code.

In our model, the packet transmission behaviors are ab-
stracted as a number of packets are transmitted simultane-
ously.

3.2.4 Module FTPServer

The slow-start and congestion avoidance behaviors of TCP
are embedded to the module FTPServer. For each connec-
tion of the TCP, we declare two integer variables to manage
the slow-start threshold and the window size. In total, we
declare four variables and the behavior is implemented as
about 26 lines of code for each connection.

3.2.5 Module RTTObserver

The module RTTObserver observes round trip time of RTSP
packets. In the module, the round trip time is obtained us-
ing physical delay and delay in the router. The delay in the
router is calculated as the time to transmit all packets cur-
rently buffered in the router. Therefore, we obtain the delay
in the router using current queue length and a packet trans-
mission rate of the link.

3.2.6 Module PLRObserver

The module PLRObserver calculates a packet loss rate of
RTSP packets. In the TFRC specification [22], a packet loss
rate is calculated using intervals of packet loss. To avoid the
loss rate varying rapidly, a history of the packet loss inter-
vals is used. Nine integer variables are declared to manage
the history, which are declared in the module Router. In the
calculation of the loss rate, recent intervals in the history are
weighted heavily.

3.3 The Simplified Model

The detailed model described in Sect. 3.2 is too complicated
to verify its qualitative properties using probabilistic model
checking. Here, we create a simplified model based on sim-
ulation results on the detailed model in order to perform
model checking. Using the simplified model, we can ver-
ify the minimum throughput of the media server.

In the simplified model, behavior of application servers
which we do not concern is abstracted. The abstraction is
based on the simulation results on the detailed model. In

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.5 MAY 2011

Abstracted

Fig.4  An abstract outline of the simplified model.

rewards "ftp_lthOo"
[CHECK] (prev_g_length >=MAXQSIZE*Q_OCC_LB1l) &
(prev_g_length < MAXQSIZExQ_OCC_UBl) &
(ftp_send >= 0) & (ftp_send < 20
: 1; //within 0-80 Kbps
endrewards

rewards "ftp_lthl"
[CHECK] (prev_g_length >=MAXQSIZE*Q OCC_LB1l) &
(prev_g_length < MAXQSIZExQ_OCC_UB1l) &
(ftp_send >= 20) & (ftp_send < 40)
: 1; //within 80-160 Kbps
endrewards

rewards "ftp_lth2"
[CHECK] (prev_g_length >=MAXQSIZExQ_OCC_LB1l) &
(prev_g_length < MAXQSIZExQ_OCC_UBl) &
(ftp_send >= 40) & (ftp_send < 60)
: 1; //within 160-240 Kbps
endrewards

rewards "ftp_1th3"

Fig.5 A part of reward descriptions for analysis of the distribution.

the simulation, we obtain probability distributions of trans-
mission rates for the application servers depending on cur-
rent queue length. The simplified model decides the packet
transmission rate using the distributions to simulate the be-
haviors of the servers. Figure 4 is an abstract outline of the
simplified model. The number of states is a few, thus the
module contributes reducing the number of whole states.

The simplified model does not have an integer variable
to control time elapsing in order to reduce a state space. In-
stead of using such an integer variable, we assign a certain
period into an action transition of the model. Each module
transmits a number of packet due to its current transmission
rate. In this paper, we let the period be 50 ms.

Here, we describe how to analyze such probability dis-
tributions on the detailed model and how to construct the
abstracted module from the distributions.

3.3.1 Analysis of the Probability Distributions on the De-
tailed Model

We use reward descriptions of the PRISM to obtain the
probability distributions of transmission rates for applica-
tion servers. In our detailed model, at every one second in
the scenario, we calculate a summation of packet transmis-
sion rates for all application servers within the period. If
the calculated rate occurs in the range of transmission rates
specified by the reward property, we assign the reward one
in the reward description. Evaluation of the reward prop-
erty by the PRISM simulation can generate a histogram of
the transmission rates among the extracted paths. Then, we
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module Other_Servers

other_rate : [10..31] init 10;
// the number of packets in 50 msec]
[ENQ] (g_length < cell(85*MAXQSIZE/IOO)) —>
0.0000135260 (other_rate’ = 13) //1040Kbps
+ 0.0000608672 (other_rate’ = 14) //1120Kbps
+ 0.0004193071 (other_rate’ = 15) //1200Kbps
+ 0.0022385587 (other_rate’ = 16) //1280Kbps
+ 0.0094817500 (other_rate’ = 17) //1360Kbps
+ 0.0281882553 (other_rate’ = 18) //1440Kbps
+ 0.0671567600 (other_rate’ = 19) //1520Kbps
+ 0.1294238586 (other_rate’ = 20) //1600Kbps
+ 0.1955188249 (other_rate’ = 21) //1680Kbps
+ 0.2156793789 (other_rate’ = 22) //1760Kbps
+ 0.1728965326 (other_rate’ = 23) //1840Kbps
+ 0.1040828334 (other_rate’ = 24) //1920Kbps
+ 0.0497419909 (other_rate’ = 25) //2000Kbps
+ 0.0188891068 (other_rate’ = 26) //2080Kbps
+ 0.0051669451 (other_rate’ = 27) //2160Kbps
+ 0.0008656662 (other_rate’ = 28) //2240Kbps
+ 0.0001690754 (other_rate’ = 29) //2320Kbps
+ 0.0000067630 (other_rate’ = 30); //2400Kbps
[ENQ] (g_length >= cell(MAXQSIZE*SS/loo)
& (g_length < Cell(MAXQSIZE*90/lOO)) —>
0.0000186290 (other_rate’ = 12) //960Kbps
+ 0.0000521611 (other_rate’ = 13) //1040Kbps
+ 0.0002421768 (other_rate’ = 14) //1120Kbps
+ 0.0009798844 (other_rate’ = 15) //1200Kbps
+ 0.0047541161 (other_rate’ = 16) //1280Kbps
+ 0.0163935037 (other_rate’ = 17) //1360Kbps
+ 0.0452088123 (other_rate’ = 18) //1440Kbps
+ 0.0971091547 (other_rate’ = 19) //1520Kbps
+ 0.1661369826 (other_rate’ = 20) //1600Kbps
+ 0.2123070503 (other_rate’ = 21) //1680Kbps
+ 0.1995238432 (other_rate’ = 22) //1760Kbps
+ 0.1393857652 (other_rate’ = 23) //1840Kbps
+ 0.0729287367 (other_rate’ = 24) //1920Kbps
+ 0.0315314141 (other_rate’ = 25) //2000Kbps
+ 0.0102496656 (other_rate’ = 26) //2080Kbps
+ 0.0025745252 (other_rate’ = 27) //2160Kbps
+ 0.0005178857 (other_rate’ = 28) //2240Kbps
+ 0.0000707901 (other_rate’ = 29) //2320Kbps
+ 0.0000111774 (other_rate’ = 30) //2400Kbps
+ 0.0000037258 (other_rate’ = 31); //2480Kbps
[ENQ] (g_length >= Cell(MAXQSIZE*90/100))
& (g_length < ceil (MAXQSIZEx95/100)) ->
0.0000025649 (other_rate’ = 11) //880Kbps
+ 0.0000205193 (other_rate’ = 12) //960Kbps
+ 0.0000718175 (other_rate’ = 13) //1040Kbps
+ 0.0002872701 (other_rate’ = 14) //1120Kbps
+ 0.0016005048 (other_rate’ = 15) //1200Kbps
+ 0.0065046156 (other_rate’ = 16) //1280Kbps
+ 0.0208270814 (other_rate’ = 17) //1360Kbps
+ 0.0545941412 (other_rate’ = 18) //1440Kbps
+ 0.1149516386 (other_rate’ = 19) //1520Kbps
+ 0.1788974471 (other_rate’ = 20) //1600Kbps
+ 0.2109511461 (other_rate’ = 21) //1680Kbps
+ 0.1836220141 (other_rate’ = 22) //1760Kbps
+ 0.1244212918 (other_rate’ = 23) //1840Kbps
+ 0.0657463764 (other_rate’ = 24) //1920Kbps
+ 0.0270623812 (other_rate’ = 25) //2000Kbps
+ 0.0084539483 (other_rate’ = 26) //2080Kbps
+ 0.0016877118 (other_rate’ = 27) //2160Kbps
+ 0.0002744455 (other_rate’ = 28) //2240Kbps
+ 0.0000230842 (other_rate’ = 29); //2320Kbps
[ENQ] (g_length >= ce11(MAXQSIZE*95/1OO) ->
0.0000074358 (other_rate’ = 11) //880Kbps
+ 0.0001041011 (other_rate’ = 12) //960Kbps
+ 0.0002354667 (other_rate’ = 13) //1040Kbps
+ 0.0007460578 (other_rate’ = 14) //1120Kbps
+ 0.0026719279 (other_rate’ = 15) //1200Kbps
+ 0.0078001457 (other_rate’ = 16) //1280Kbps
+ 0.0243274326 (other_rate’ = 17) //1360Kbps
+ 0.0614270772 (other_rate’ = 18) //1440Kbps
+ 0.1240562741 (other_rate’ = 19) //1520Kbps
+ 0.1859939423 (other_rate’ = 20) //1600Kbps
+ 0.2053790519 (other_rate’ = 21) //1680Kbps
+ 0.1726070382 (other_rate’ = 22) //1760Kbps
+ 0.1167344976 (other_rate’ = 23) //1840Kbps
+ 0.0625424460 (other_rate’ = 24) //1920Kbps
+ 0.0255989530 (other_rate’ = 25) //2000Kbps
+ 0.0078497177 (other_rate’ = 26) //2080Kbps
+ 0.0016507458 (other_rate’ = ) //2160Kbps
+ 0.0002528169 (other_rate’ = 28) //2240Kbps
+ 0.0000148716 : (other_rate’ = 29); //2320Kbps
endmodule

Fig.6  The abstracted module for four FTP servers.

translate the histogram into the discrete probability distri-
bution. Since the distributions depend on the condition of
the queue, we add the condition of latest queue length in the
reward description.
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Figure 5 shows a part of the reward descriptions in
our detailed model. The reward is assigned to the transi-
tion labeled with the CHECK action. The guard condition
for each reward description is composed of the conditions of
the queue length and those of the transmission rates. The pa-
rameters Q_OCC_LBn and Q_OCC_UBn (1 < n < 4) stand
for lower and upper bounds of queue occupancy rates, re-
spectively. Totally, in our detailed model, we specify 140 of
reward properties to obtain the histograms for all conditions
of the queue.

3.3.2 Construction of the Abstracted Module

The abstracted module is based on the discrete probabil-
ity distributions obtained from the results of PRISM sim-
ulation. Figure 6 shows the abstracted module obtained in
our experiment shown in Sect.4, which simulates the be-
haviors of four FTP servers in the example of Sect.3.1. In
the module, there are four transitions labeled with the action
ENQ with the different guarded conditions involved with the
queue length (g_length). For each transition, it decides its
packet transmission rate (other_rate) according to the prob-
ability distribution. In the simplified model, the abstracted
module interacts with the modules of the media server and
the queue.

4. Experiments

We have performed some experiments using our PRISM
models described in Sect. 3. We have also modeled the sys-
tem by NS-2[1], [24] to compare the simulation results. The
experiments were performed under an environment of Fe-
dora 13 (64 bit), Intel Core 2 Duo 2.33 GHz, and 2.00 GB of
M.M.

In the experiments, we assume packet transmission pa-
rameters as follows: the packet size is 500 Byte, the number
of packets acknowledged by a single TCP acknowledgment
is one, and the TCP retransmission timeout value is 4 X RT T
second. We assume that transmitted packets are lost with
the probability 0.001.

In this paper, we have performed two experiments.

The first experiment checks the correctness of our de-
tailed model. In the experiment, we performed 1000 trial
runs for PRISM and NS-2 simulation, respectively, and
compared the simulation results. In this experiment, we con-
sider nine scenarios with respect to the buffer size of routers
and the number of the FTP servers. In the scenarios, the
buffer sizes are 32, 64, and 128 KB, respectively. Also, the
number of the FTP servers are three, four, and five, respec-
tively.

In the second experiment, we performed about 10000
trial runs for PRISM simulation, and created a more sim-
plified PRISM model based on the simulation results. As
a target scenario, we selected a scenario of 64 KB of buffer
and four FTP connections. Using the simplified model, we
verified the minimum throughput of the RTP session.
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4.1 Analysis of the Correctness

Before analyzing the 1000 trials of simulation, we extracted
one sample from the simulation results by PRISM and NS-
2, respectively. Figure 7 and Fig. 8 represent measured
throughput and packet loss rates, respectively, in the sce-
nario of 64 KB of the buffer and four FTP connections.
Throughput in the graph means the average throughput
within one second, and a packet loss rate means a calcu-
lated value at the time as defined in [22]. In the scenario of
the example, file transmission starts after 100 seconds from
the start of the RTP session, and this causes the network
congestion. Consequently, the throughput of the RTP ses-
sion goes down and the packet loss rate of it comes up. The
simulation results of Fig. 7 and Fig. 8 show that our PRISM
model and NS-2 model behave similarly even if the network
congestion occurs.

To analyze the correctness of our PRISM model in de-
tail, we compare the average, variance, minimum and max-
imum of throughput of the media server in the 1000 of runs
measured by PRISM and NS-2. Tables 2, 3 and 4 represent
the analyzed throughput in the period of congestion (after
120 seconds in the simulation scenario). The row of Size
stands for the buffer size of the router. Also the rows of
Max, Min, Ave and Var represent the maximum (Kbps),
minimum (Kbps), average (Kbps), and variance of through-
put, respectively.
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Table2  Summary of the analyzed data (3 FTP servers).
Size 32KB 64 KB 128 KB
Model NS-2 PRISM NS-2 PRISM NS-2 PRISM
Max 1000 880 960 920 972 956
Min 44 24 128 132 224 128
Ave 536 523 515 530 535 513
Var 1.55E+04 | 1.20E+04 1.02E+04 | 1.03E+04 || 8.10E+03 | 1.20E+04
Table3  Summary of the analyzed data (4 FTP servers).
Size 32KB 64 KB 128 KB
Model NS-2 PRISM NS-2 PRISM NS-2 PRISM
Max 992 796 856 832 768 800
Min 20 4 76 56 100 128
Ave 387 368 399 421 399 399
Var 1.37E+04 | 7.77E+03 || 7.82E+03 | 7.14E+03 || 5.09E+03 | 5.92E+03
Table4  Summary of the analyzed data (5 FTP servers).
Size 32KB 64 KB 128 KB
Model NS-2 PRISM NS-2 PRISM NS-2 PRISM
Max 816 644 688 660 664 680
Min 4 4 36 40 84 100
Ave 289 270 317 332 317 330
Var 1.15E+04 | 5.63E+03 || 6.43E+03 | 5.35E+03 || 3.77E+03 | 3.94E+03

Tables 2, 3, and 4 show that the behavior of our de-
tailed model is similar with that of the NS-2 model for all
scenarios. Also we have analyzed packet loss rates and
RTT as well. The results also show our detailed model be-
haves similarly to the NS-2 model. In the cases of the buffer
size 32 KB, however, we can see the difference of the maxi-
mum throughput between the detailed model and NS-2. We
think one of the reasons is that we strongly abstract a packet
sending mechanism in the PRISM model, that is, when the
packet transmission rate is high, our model transmits a num-
ber of packets at a time. When the buffer size is small, trans-
mitted packets tend to be lost because of such abstraction.
We think this causes the differences of behaviors between
the PRISM model and NS-2 one.

For one trial run of the PRISM simulation, it takes 2.5
seconds averagely, while it takes 34.1 seconds in the simu-
lation of NS-2.

4.2 Verification Results for the Simplified Model

Here, we verify the minimum throughput that the media
server may provide in the worst case. In the verification, we
use a simplified model based on the simulation results on
the detailed PRISM model. The simulation results should
contain discrete probability distributions of the throughput
of FTP servers and the packet generator. Since the packet
generator generates UDP packets at the same rate in the ex-
ample, we can decide the transmission rate to be the same
rate.

The discrete probability distributions of the total
throughput of the four FTP servers are shown in Fig.9,
where the buffer size is 64 KB and the number of the FTP is
four. The charts are divided with respect to values of buffer
occupancy. It takes about 173 minutes to perform 10000
trials of PRISM simulation.

Based on the results of Fig. 9, we create the simplified
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Fig.9 The discrete probability distribution of throughput of the FTP
servers.

model. The simplified model is described with 136 lines of
code and seven variables. In order to reduce a state space,
we have reduced a range of integer variables for the control
of packet loss intervals.

The verification property for checking the minimum
throughput is given as follows; P~ [F measure & throughput

< x]. This property means the probability of throughput

being the value of x is greater than 0, where throughput is
a variable to measure throughput of the RTP session within
one second and measure is a boolean variable which repre-
sents timing to measure the throughput. In order to evaluate
the value of throughput within one second, we let measure
become true periodically for every one second (20 steps) in
the scenario. The verification is performed with varying the
value of x from 0. The minimum throughput is defined as a
minimum value of x such that the result of model checking
becomes true. In the experiment, we have performed model
checking with varying x from 0 to 56 which is the minimum
throughput obtained by simulation on the detailed model.

Model checking on the simplified model outputs the
minimum throughput 20 Kbps. The number of states con-
structed by PRISM is 10885476, and it takes 940 seconds
for model checking. We can see that the obtained mini-
mum throughput doesn’t contradict with the simulation re-
sults shown in Table 3.

4.3 Discussion

In the simulation on the detailed model, we have obtained
similar results with NS-2. We conclude that we have mod-
eled correctly the behavior of real-time distributed systems.
Also, the execution time of PRISM simulation for one trial
is shorter than that of NS-2. We think that this is because
NS-2 implements behavior of protocols definitely while our
detailed model has some abstracted behavior. From the ex-
perimental results, we expect that we can use PRISM as a
network simulator for the real-time distributed systems.

In the verification on the simplified model, it has taken
about 173 minutes for simulation and about 15 minutes for
model checking. We think that we can verify the property
within the realistic time. For the state space, we have con-
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structed about ten millions of states, though we reduce the
space by some abstraction. In order to analyze other qualita-
tive properties or apply our technique into more complicated
systems, we have to apply other abstraction techniques to re-
duce the state spaces as a future work.

For validity, we did not fully show the validity of our
simplified model by the experiment. Therefore, we cannot
say the results of probabilistic model checking are reliable.
We believe that, however, as reported in Paper [4] there are
many works in which they apply probabilistic model check-
ing to performance evaluation of information systems, and
our hybrid approach is useful to reduce verification costs.
We have to show the validity of our simplified model by
performing other experiments in the future.

5. Conclusion

This paper presents a hybrid evaluation method for a real-
time distributed system based on the probabilistic model
checking technique and simulation. In our approach, we
perform stepwise analysis using probabilistic models of tar-
get systems in different abstract levels (detailed model and
simplified model). To validate the correctness of our model,
we model it in a model for the well-known network sim-
ulator NS-2, and give the comparison of their simulation
results. The comparison shows that the result of PRISM
simulation is very similar to that of NS-2. It shows that the
proposed approach is useful to analyze the network perfor-
mance. We believe that such analysis is useful for other kind
of network analysis.

The future works include validation of our simplified
model, and also automatic derivation of the simplified model
suitable for model checking analysis. Many abstraction
techniques are proposed for model checking. We want to
apply such techniques to the process.
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