u

) <

The University of Osaka
Institutional Knowledge Archive

Title RENWCED S HRIEBABIL—FICL DEEA— M~ b
v OMFRIFE

Author(s) |RM, &, M, &=, #HLx EZ

Citation | BT BEHEEFRIRMMARES. SS, VIV TH
A4 ITVR. 2008, 107(505), p. 103-108

Version Type|VoR

URL https://hdl. handle.net/11094/27453

rights Copyright © 2008 IEICE

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Institute of Electronics, Information, and Conmunication Engi neers

#HHEA BTHEREE¥S [CRgss
THE INSTITUTE OF ELECTRONICS, IEICE Technical Report
INFORMATION AND COMMUNICATION ENGINEERS S52007-74(2008-3)

BN EES < BB RV — T L DR — b= b OMiZ b Fik
W RE T WSS Mk

T KKK FERFPEE A 2R
T 560-8531 KFRAFEFHAFFL 1-3

HoFEL HHA b o 2R L LEET VB FELEELIIREL TS, BREFETIE, KAIZTIC
WBEETNVERRL, EERMEBETT IV E B4R T S CEGAR (CounterExample-Guided Abstraction Refinement)
N—TZESL. HRETVORROE, Tl dRHA— b~ U OERTIT) 2 EORME RO, KB TIE, #
RFEOREN 27N T AL ERRMICEERL, T3 Y XLADOELHDIERE 5% 5.

F—7—F ET7VRE, KHA—F< b, BT AMMEE, CEGAR

Abstraction of Timed Automata Based on Counterexample-Guided Abstraction

Refinement Loop

Takeshi NAGAOKA', Kozo OKANOY, and Shinji KUSUMOTO'

1 Graduate School of Information Science and Technology, Osaka University
Machikane-yama 1-3, Toyonaka City, Osaka, 560-8531 Japan

Abstract We have proposed a method of model abstraction for timed automata. The proposed method is based on CEGAR
(CounterExample-Guided Abstraction Refinement) loop which automatically refines an abstract model using counter exam-

ples. Our algorithm has some features such as refinements are performed indirectly through transformation of the original

timed automaton. This paper gives formal descriptions of the algorithm and the correctness proof of the algorithm.

Key words

1. Introduction

This paper gives correctness proof of our algorithm proposed
in[8]. The algorithm is CEGAR [1] based algorithm of abstract
model refinement used for model checking on timed automata.

A general CEGAR algorithm consists of several steps. First, it
abstracts the original model (the obtained model is called abstract
model) and performs model checking on the abstract model. Next,
if a counter example (CE) is found, it checks the counter example
on the concrete model. If the CE is spurious, it refines the abstract
model. The last step is repeated until the valid output is obtained.

In general, most CEGAR based algorithms [1], [2] obtain refined
abstract models from the previous abstract models by modifying
some transformations. In our algorithm, however, the refined model
is obtained indirectly; we transform the original timed automa-
ton preserving the equivalence and from it we generate an abstract
model by eliminating clock attributes.

This paper proves that the transformation preserves bi-simulation

equivalence and also the refined abstract model is the spurious CE

Model Checking, Timed Automaton, Model Abstraction, CEGAR

free.
The rest of the paper is organized as follows. In Sec. 2., some
definitions are described. Sec. 3. gives our CEGAR algorithm. Sec.

4. proves the correctness of the algorithm. Sec. 5. concludes the

paper.
2. Preliminaries

In this Section, we give definitions of a timed automaton, a region
automaton which specifies whole states of a timed automaton with
finite clock regions, and others.

Let ¢(C) be a set of whole differential inequalities of 2 clocks
over a finite clock set C. A subset of ¢(C) is called clock con-

straints.

Definition 2.1 (Timed Automaton). A timed automaton <f is a 6-
tuple (L, b, T, I,C, A), where

C': a finite set of clocks; A : afinite set of actions; L : afinite set of
locations; lo € L :an initial location; T C Lx Ax2°C) x B x L;

where, 2°(°) is a set of clock constraints, called guards; B = 2¢

-103-

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

- a set of clocks to reset; and I C (L — 2°(°)) : a mapping from

locations to clock constraints, called location invariants.

a,g,m

A transition t = (l1,a,g,7,l2) € T is denoted by I1 =5 Ia.

Amap v : C — Ry is called a clock assignment. We can ex-
tend the domain of v into a set of C as follows: v € Rgo. We define
(v+d)(z) =v(z)+dford € Ryo. r(v) = vz — 0],z €ris
also defined for r € 2€. By N, a set of whole v is denoted.

Definition 2.2 (Semantics of Timed Automaton). For a given timed
automaton of = (L, 1y, T,1,C, A), let a set of whole states of &/
beS=LXxN.

The initial state of o/ shall be given as (l,0°) € S.

For a transition I, ©25 1, (€ T), the following two transitions are
semantically defined. The first one is called an action transition,

while the latter one is called a delay transition.

h 2 b, g(), I)(r(v)) Y& £d I(h)(v+d)
(ll,V)é(lz,T‘(l/)) (ll,l/)é(ll,l/-{—d)

For a given timed automaton 7, we can introduce a correspond-

ing clock region CR(<)[4],[5]. In general, a clock region di-
vides a |C|-dimensional Euclidean space into finite points, seg-
ments, and faces. By [u], an element (a region) in CR(&/) is de-
noted. For [u] € CR(&), g([u]) and I{[u]) represent that any
point in [u] satisfies a guard g and invariant I, respectively. Also
by r([u]), applying clock resetting r onto [u] is denoted, where
r([u]) = [u][z — 0],and z € .

Definition 2.3 (Region Automaton). A region automaton &, =
(Lr, b o, Tr, A) of a given timed automaton & = (L, b, T, I,C, A)
is defined as follows.
L. C L x CR(), lro = (b, [0°]), where [0°] satisfies I(lp),
T, C L, x A X L, T, consists of
o (L[u) S, W) if(hu) 2 (L) ford € Rzo A
(Lu') = (I',v) fora € A

There is a bi-simulation equivalence between a timed automaton
&/ and its region automaton o7 [3].

In[6],[7], a data structure DBM (Difference Bound Matrix) is in-
troduced to represent a convex space in |C| -dimensional Euclidean
space, where C is a set of clock variables. It is also represented as
a set of some elements in the clock region CR(&7). A state set of
states of a region automaton & = (L, l, 0, T, A), can be repre-
sented in (I, D) = {({,[u]) | [u] € D} using the corresponding
DBM D. Paper [6] gives operation functions on DBM, such as up,
and and other functions, which represent elapsing time, intersec-
tion of time spaces and so on, respectively. There is a minimum set
of differential inequalities which can represents DBM D [6]. Such
a set is denoted by ¢(D). ¢(D) can be obtained by reduction oper-
ations on DBM. A set of every region which satisfies an invariant
I(1) of location [is denoted by (I, D1nv).

and. Conmmuni cati on Engi neers

e

nitial NN
-abstractio J nd

Model)

|

) : Specification
Checking./

is satisfied

i

(Refinement) 4=(Simulation |
Specification
is unsatisfied

Figure 1 General CEGAR Algorithm

- Figure 2 Our Proposed Algorithm

3. Algorithm

3.1 General CEGAR Algorithm

Model abstraction sometimes over-approximates an original
model, which causes spurious counter examples which are not actu-
ally counter examples in the original model. Paper[1] gives an algo-
rithm called CEGAR (Counterexample-Guided Abstraction Refine-
ment). In the algorithm, at the first step (called Initial Abstraction),
it approximates the original model, and the next step, if a spurious
counter example is found in the abstract model, it refines the ab-
stract model as it does not admit the spurious counter example. The
next step is repeated until valid output is obtained. Figure 1 shows
the general flow of the CEGAR algorithm.

3.2 Our Proposed Algorithm

Our proposed algorithm generates an abstract model M from a
given timed automaton & by applying an abstraction function h,
and performs model checking on M. If a counter example T (rep-
resented as a path on the abstract model) is found while model
checking, it concretizes T by applying inverse function h~'.The
concretized one is a set of paths. We denote it by T" (which is a set
of paths on &). At Simulation Step, it checks whether each path
in T is feasible on & or not. If every path in T is infeasible, the’
next step shall refine the model so that the counter example T be-
comes infeasible. Our algorithm does not directly refine M but it
refines &/ and then obtains a new abstract mode by applying A to
the refined timed automaton. Figure 2 shows flow of our CEGAR

algorithm.

-104-

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

The proposed algorithm checks a property AG /. —e, where
E (C L) of a timed automaton &7 is a set of error locations of the
target system. The property means there is no path to locations in £
from the initial state. Please note that any counter example of such
a property can be represented in a finite length of sequence without
loops. Therefore, hereafter, we assume that counter examples are
finite sequences without loops.

3.2.1 Abstract Model

Definition 3.1 defines the abstraction function s on L, of a region

automaton 27,

Definition 3.1 (Abstraction Function h). For a region automaton
&y = (Ly, by 0, Ty, A) of a given timed automaton &/, an abstrac-
tion function b : L, — Sis defined as follows:
o Vbl €Le h(li)=h(k;)
<= Loc(l- ;) = Loc(lr 5),
L, — L is a function which retrieves a location at-

tribute from a state of 5. The inverse function h™' : § — 2Fr of

where Loc :

h is also defined as in a usual manner.

The abstraction function h defined in Definition 3.1 maps any
state of L, which belongs to the same location into the same ab-
stract state. Otherwise they are mapped into the different states.
This means that there is a one-to-one correspondence between the
location set of & and the abstract state set S. Therefore, the ab-

straction function h can be extended its domain as in Definition 3.2.

Definition 3.2 (Extension of Abstraction Function h). Abstraction
functionh : L — S of a timed automaton of = (L, T,I,C, A)
is defined as follows:

o Vi, eL hl)=h) < L=
Similarly, the inverse function h™" : S — L of h is also defined.

Definition 3.3 gives an abstract model M of a given timed au-
tomaton & using the abstraction function h defined in Definition
3.2

Definition 3.3 (Abstract Model). An abstract model M =
(S, 30, =) of a given timed automaton of = (L, 1, T,I,C, A) us-
ing the abstraction function h defined in Definition 3.2 is defined as
Sfollows:

e S={n)|leL)}

e 5o = h(b),

o 5={(h,a,b)]|(h,a,9,1k)eT}
Definition 3.4 (Counter Example). A counter example on Misa
sequence of states of S. A counter example T of length n is repre-
sented in T = (80, , 8n).

A set T of a run sequences on & obtained by concertizing a

counter example 17" = (3, - - - , 4,), is defined as follows:

gy)
(li=h""(s;)for0<i<n) A
((Li—laaﬂgi?ri?l’i) €T forl é i é n)}

T = {(l{) @1,91,71 ll a2,92,72

and Conmuni cati on Engi neers

Abstraction

Inputs &/, h
{h = abstraction function}

$:=0, =:=0{M=(8,30,>)}

foreach [€ L do
§:=8u{nl)}

end for

80 = h(l)

foreach (l1,a,g,7,l2) € T do
—i=— U{(h(h), (&)}

end for

return M

Figure 3 Abstraction

Simulation
Inputs o7, (I “"224" 1 *229%7 ...
Ro = (lo, Do) {Do = {0°}}
D := up(Do) {Any elapsing time}
D = and(D, I(ly)) {Add Invariant of o}
fori:=1tondo
R; :=Reach(#, Ri_1, (L1, a4, 9:,7i, k)
if R; = 0 then
return false
end if

end for

T (b =)

return true

Figure 4 Simulation

Reach

Inputs &, R = (I, D), (li,a,g,7, 2}
D := and(D, g) {add guards of transitions}

D :=reset(D, r) {reset the clocks}

D := and(D, I(lp)) {add Invariant of I }
D := up(D) {Any elapsing time}

D := and(D, I(l)) {add Invariant of I}
return (lz, D)

Figure 5 Reach

3.2.2 Initial Abstraction

Initial Abstraction generates an abstract model M from a timed
automaton & = (L, l,T,I,C, A) using the abstraction function
h. Figure 3 shows the algorithm of Initial Abstraction.

3.2.3 Simulation

For a set T of concretized counter example sequences obtained
from 7" on M, Simulation performs the algorithm in Fig. 4 on each
sequence t € T. Reachability from the first location of ¢ to the last
location of ¢ is checked in Simulation using a procedure Reach in
Fig. 5. Reach uses some operation functions of DBM. When the
algorithm in Fig. 4 returns false, the counter example T is judged
as a spurious counter example.

3.2.4 Refinement of Abstract Model

In this step, we have to generate a refined abstract model which
does not admit the spurious counter example (we call it the spurious
CE free model for a given CE). When a counter example is judged

as a spurious counter example, there is a Bad State I, which has

-105-

NIl -El ectronic Library Service

Institute of Electronics,

Path of the
Abstract
Model san

Bad 4]

7

Corresponding I / /
path of the Timed ;’ev e)\ et
Automaton (.}

Trransition Relation
in Region
Automaton wen

Path of the
Abstract
Model

Corresponding /, ' l !

/
path of the Timed ""’@1;"@,@ ,@"

Automaton

Transition Relation
in Region
Automaton

Figure 7 Refined Model

Rehnement
Inputs&ii,h,B1 = (lval))eb = (LPTE’Uza‘797T7 lb)

{ep = a transition to f}
iy = o,
;.1 = DuplicateState(%1, B) {Duplication of States}
;11 := DuplicateTransition(%% 11, B, ep)

{Duplication of Transitions}
i +1 += RemoveTransition(&.+1, B) {Removal of Transitions}
Mi+1 :=Abstraction(2%y1, h)

return M;

Figure 8 Refinement

a corresponding state set B1 = (&, D1) reachable from the initial
state but unreachable to ...+, and another state set By = (&, D2)
unreachable from the initial state but reachable to l,.+, are merged
(mapped into the same state) as in Fig. 6.

In general, refinement algorithm should divide state I, into more
than two states as state B, and state Bz are mapped into differential
states. Dividing of a state space of a timed automaton usually needs
Subtraction operation of DBM. However, DBM is not closed under
Subtract operation [7], so applying such an approach is difficult.

We proposes another approach, in which it duplicates state B
in the concrete model and also performs other transformation on
the concrete model. Applying the abstraction function to the trans-
formed concrete model produces a new refinement abstract model
where a state mapped from Bs is unreachable (refer in Fig. 7).

The algorithm of Refinement in Fig. 8 consists of three sub algo-
rithms, called duplication of states, duplication of transitions, and

removal of transitions, shown in Fig.9, 10, and 11, respectively.

I nf ormation, and Conmuni cation Engi neers

DuplicateState

Input o/, B = (lb, Dl)
I := newLoc() {Generate a new location I }
L:=Lu{l}
I(1) := c(Ds) {A set of inequalities representing D }

Figure 9 Duplication of States

Duplicate Transttion
Inputs &7, B1 = (I, D1),ep = (brev,a, 9,7, bp)
{ep = a transition to I }
T :=TU{(lprev,a,g,7,)}
{Duplicate a transition e, to a BadState}
foreach (l1,a’,¢’,7', k) € T suchthat i) = I do
if Reach(&, (&, Dy), (l1i,a’,g’,7', 12)) # 0 then
T:=TuU{(},d,d v L)}
{duplicate transitions from 4, only enable from (({;, Ds).)}
end if

end for

Figure 10 Duplication of Transitions

RemoveTransition

Inputs &/, By = (b, D1),eb = (bprev, 8. 9,7, b)
{ep = a transition to Iy }

Prev := (Lprev7 Dlnv)
{a set of every region satisfying an invariant of lprev }

R :=Reach(«7, Prev, e;,) {obtain regions of }, reachable from Prev}
if relation(R, B1) = (true, true) then
{when R = B, relation(R, B1) returns { true, true).}
T:=T\{({,a,g9,7,)}
end if

Figure 11 Removal of Transitions
Here, we gives definitions of states to duplicate, transitions to du-

plicate, and transitions to remove.

Definition 3.5 (States to Duplicate). Let By = (I, D1) and dupli-
cation of a location Iy be .. A set of states to duplicate, of a region

automaton is defined as (1, D1).

Duplication of transition duplicates the following kinds of transi-
tions: “transitions from lre, to lp,” and “ transitions not only from

l» but also enable from (&, D1).”

Definition 3.6 (Transitions to Duplicate). For a region automaton
2y = (Ly, b0, Tr, A), B1 = (I, D1), states to duplicate (I, D1),
and a previous location lyre,, of a location b, in a counter example,
transitions to duplicate of a region automaton is defined as follows:
Tr a = {(lprev, [v]) = (&, [v']) V(lprev, [v]) € (brev, Dinv).
(b, [v']) € (I, D1)-(prev, [v]) = (b, [v']) € To} U {(&, [v]) =
(LD | Y, []) € (b, D1). V(L) € Le. (b, []) =
(L,[v) € Tr-}.

Definition 3.7 (Transitions to Remove). For a region automaton
= (Lyr, b0, Tr, A), Bt = (lp, Da), states to duplicate (I, D1),
and a previous location lyrc, of a location in a counter example,
transitions to remove of a region automaton is defined as follows:

T r = {(lpreva [’U]) *_3 (lba [UID ‘v(l?m“v [‘UD € (LPTGW DI"“’)’

-106-

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

duplicate duplicate remove

Region
- Automaton

Figure 12 Relations among models

(lorev, [v]) = (b, [v']) € T2}

The algorithm of Removal of Transitions removes -transitions
only when a set of states reachable from e, is the same as a
set (I, D1) of Bad States. Therefore, for every (lprev, [v]) =
(b, [V']) € Trr, (b,[v']) € (&, D1) holds. It means that every

transition in 77 » has its duplication in T}, 4.
4. Correctness Proof

As mentioned in Section3., the proposed algorithm checks a prop-
erty AG /. —e, where E (C L) of a timed automaton & is a set
of error locations of the target system.

Paper [2] gives a theorem on a conservative class of abstractions
which attempts to preserve semantics of automata against state re-
ductions under the condition that it checks only a property AG p for
a proposition p.

From the theorem, we can derive the following theorem.

Theorem 4.1. For a timed automaton &/ and a set E of error loca-
tions. Let the abstract model and a set of error states of the abstract
model be Mand E = {h(e) | e € E}, respectively. The following

statement always holds.

MEN\ ~é =86\ -)
eck e€E
Proof. Let a concrete model and its abstract model abstracted by
h'be M and M, respectively. For a proposition p, if an abstraction

function h satisfies the following for every s € S:

h(s)Ep=skEp @

then M }= AG p = M }= AG p holds from Theorem 1 in Paper [2].

Here we assume that p = /.5 —é for M,andp =\ —-e

e€E
for . In addition, an abstraction function defined in Definition 3.2
maps each location in & to a state M and the mapping is one-to-
one mapping. Thus, h(l) = é <= | = e holds. As a result,
the abstraction function h satisfies the statement 2; Theorem 4.1 is

proved. O

and Conmuni cati on Engi neers

Lemma 4.1 (Bi-simulation equivalence among timed automata).
Let denote by of; and 27; 1 a timed automaton before-applying i+1-
th application of Refinement and one after applying i + 1-th appli-
cation of Refinement, respectively. o; is bi-simulation equivalent to

iy

Proof. Let denote by - ; and <7 ;41 their region automaton for-
; and 11, respectively. In a similar way, &7, @/};, @2, 242,
H3 (= 1), D2,(= o iy1) are defined, where the superfix
means a sub algorithm of the Refinement. Therefore the superfixes
1, 2, and 3 stand for after applying Duplication of States, Duplica-
tion of Transitions, and Removal of Transition, respectively.

We will prove that 27 is bi-simulation equivalent to &1 by
proving bi-simulation equivalence over the corresponding region
automata. For I, let [}, be a duplicated state. For a set D; of regions
which associates to a location to duplicate, a set of states in . will-
be (I, D1), and (, D1). Let T, 4 and Ty be a set of transitions
be added in 7 and that to be removed in <., respectively.

i) o ;and L,

Let’s consider & ; = (Lrsbio0,Trs,As) and &), =
(L}, 1%, 0, T, AD). From the assumption, b ;0 = I} ; ¢» Trs =
T!;, A;=AlandL;; =L, ;U (I, D1) hold.

The initial statel- ;0 = I} ; o, and T}.; = T},. So, there is no
transition to the duplicated state set (I, D;) in <72;. Thus, there is
bi-simulation equivalence between oy ; and 2. '
iy o7}, and &2,

Fof 2 = (L2,,12,0,T?;, A?), obviously L2 ; = L, and
?,0=10 AZ= Alhold. T2, =T}, UT, 4 also holds.

We show that for every [v] € Di, a state (b, [v]) and a state
(&, [v]) have a bi-simulation equivalence relation. When there ex-
ists a transition (&, [v]) = (I, [¢]) , as defined in definition 3.6, the
corresponding transition (%, [v]) = (I, [v']) is generated. Also,
when there exists a transition (I, [v]) = (I, [v']), there must be an
original transition (%, [v]) = (I, [v']). Thus, we proved the first
goal.

Thus, the concrete bi-simulation equivalence relation ~ between
I}, € Ll and 12, € L? , is defined as follows:

Lbi~vls = Ly=1o0r
2, is duplication of I, ' 3)

For the initial states, I} ; o ~ 12, o holds. A transition set T'* ; sat-
isfies T} ; C T2,. For each transition in T} ;, thus, there is a corre-
sponding transition in 7> ;. Suppose that [} ; ~ {2, and I}, = 1Y,.
Then there exists a transition {2, = [, and [}, ~ [%;. Let consider
converse. For each transition in 722, there is the corresponding tran-
sition in T+ ;. Please note that for a transition in T} 4, there exists
the original transition. Suppose that I} ; ~ {2, and I2;, = [%. Then
there exists a transition I}, = I, and 1Y, ~ [%,.

Therefore, 7. ; and 22; are bi-simulation equivalent.

iti) 72, and o3,

-107-

NI | -El ectronic Library Service

Institute of Electronics,

I nf ormati on,

Let’s consider &°; = (L2;,13,0,T>;, A2). Obviously L3 ; =
L2, 18,0 = 12,0 and A} = A? hold. T32; = T, \ Tr » also
holds.

The case when the algorithm in Fig. 11 does not perform any re-
moval of transitions is trivial. &2; is equivalent to 27>;, thus also
holds the relation ~.

Otherwise, in other words, in the case of removal of a transi-
tion, from Definition 3.7, each element in T’ . has its duplication in
T. 4. Thus, even if the transition is removed, ~ is also preserved
between (lprev, [V]) € (lprevs Dinv) of #2; and (lprev, [v]) €
(lyrew, Dinv) of 22;. Thus each state of L2, and that of L2 ; sat-
isfy the relation defined in (3). In a similar way of case ii), 22, and
o2, are bi-simulation equivalent.

From the facts 1), ii) and iii), we can conclude that o7 ; and 7. ;

are bi-simulation equivalent. O

Lemma 4.2. At most n times repetition of Refinement yields the
spurious CE free model, where n is the length of the spurious

counter example.

Proof. Let &, 2/ and M be a timed automaton, its region au-
tomaton and its abstract model, respectively. For a counter example
T = (80,81,
reducing the error location, let consider one of the corresponding
@™ 1Y to T on

o, where I, is error location. Let R; be a set of reachable i-th

,4n), where §, is an abstract state obtained by
a1,91,7 ag,g92,m
sequences t = (lp “2ZM™ g R ...

states along with the sequence ¢, and U R; be that of unreachable
(= (I, Dinv) \ Ri).

We prove that “for sub-sequence starting from o to (1 £ k <
n) of t, by applying at most k times repetition of Refinement yields
that it is reachable to an abstract state corresponding to Ry, but un-
reachable to an abstract state corresponding to U Ry *)

Let duplicated location from R; be [;. Let the abstract state of I
be 51 = A(L).

i) k=1

Ro = (lo, Drno) holds. A set of reachable states from (lo, Drno)
through a transition (k, a1, g1,71, i) is in fact Ry from the defini-
tion of R;. Therefore, Refinement duplicates R;, which is a loca-
tion I and Refinement also removes a transition from [to /1. In the
obtained abstract model, it is reachable to only 571 corresponding to
Ry, and it is unreachable to a state h(l1) corresponding to U R;.

i) k=2

As inductive assumption, we assume that at most k£ — 1 times rep-
etition of Refinement yields that it is reachable to an abstract state
corresponding to Ry_1 but unreachable to an abstract state corre-
sponding to U Rg—1.

Let R}, (2Rx) be a set of reachable states from (l—1, Diny). If
Rr = Rj, then in a similar way as k = 1, applying one more
Refinement leads to the goal.

Let consider when Ry C R}, holds. A transition from lx_1 to lx

and Conmuni cati on Engi neers

cannot be removed because U Ry, is reachable from (lx—1, Drnyv).
In such a case, from the inductive assumption, we can obtain the
refined abstract model, in which an abstract state corresponding to
Ry_1 is reachable but URy_1 is not. Let l;_, and [be dupli-
cated locations of Ri—1 in k — 1-th time-Refinement and R in
k-th time-Refinement, respectively. Adding transition from §,_; to
I, improves the model so that it is reachable to only a state corre-
sponding to Ry.

From (i) and (ii), statement (*) is proved.

If the counter example is spurious, it is unreachable from R,—1
to error state (I, Dino) in M. Similarly, in M, it is unreachable

from §'n_1 t08,. Thus the lemma is proved. O

Theorem 4.2 (Correctness). If a counter example is spurious, at
most n times repetition of Refinement in Fig. 8 yields a spurious CE

Jfree model.

Proof. From Lemma 4.1, Refinement preserves bi-simulation
equivalence. From Lemma 4.2, at most n times repetition of Re-

finement yields a refined spurious CE free model. O

5. Conclusion

This paper gives a formal description and correctness proof of our
proposed CEGAR algorithm in [8].

The future work will be extension of our algorithm to handle in-
teger variables used in UPPAAL timed automata.

Acknowledgment

This work is being conducted as a part of Stage Project, the De-
velopment of Next Generation IT Infrastructure, supported by Min-
istry of Education, Culture, Sports, Science and Technology.

References

[1] E M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut:
“Counterexample-guided Abstraction Refinement,” In Proc. of the
12th Int. Conf. on Computer Aided Verification, vol.1855, pp.154-
169, July, 2000.

[2] E M. Clarke, A, Gupta, J. Kukula, and O. Strichman: “SAT based
Abstraction-Refinement using ILP and Machine Learning Tech-
niques,” In Proc. of the 14th Int. Conf. on Computer Aided Verifi-
cation, vol.2404, pp.695-709, July, 2002.

[3] E M. Clarke, O. Grumberg, D A. Peled: “Model Checking,” MIT
Press, 2000.

[4] R. Alur: “Techniques for Automatic Verification of Real-Time Sys-
tems,” PhD thesis, Stanford University, 1991.

[51 R.Alur, C. Courcoubetis, and D. L. Dill: “Model-checking for real-
time systems,” In Proc. of the 5th Annual Symposium on Logic in
Computer Science, pp.414-425, IEEE Computer Society Press, 1990.

[6] J.Bengtsson, and W .Yi: “Timed Automata: Semantics, Algorithms
and Tools,” In Lectures on Concurrency and Petri Nets, vol.3098,
pp-87-124, 2004.

[71 A. David, J. Hakansson, K G. Larsen, and P. pettersson: “Model
Checking Timed Automata with Priorities using DBM Subtraction,”
In Proc. of the 4th Int. Conf. on Formal Modelling and Analysis of
Timed Systems, pp.128-142, 2002

[8] T. Nagaoka, K. Okano, and S. Kusumoto: “Abstraction of Extended
Timed Automata for UPPAAL Based on Counterexample-Guided
Abstraction Refinement Loop (in Japanese),” IEICE Technical Re-
port, Vol.107, No.176, pp.77-82, 2007.

-108-

NI | -El ectronic Library Service

