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Abstract

Photoproduction of strange particles at medium energies helps us understand the dynamics of strangeness
production.In this thesis, several photoproduction processes of multi-kaons are investigated in an effective
Lagrangian method.

In one kaon photoproduction, we review three reactions with different Lambda hyperons, Lambda(1116),
Lambda(1405) and Lambda(1520). By using them, basic reaction dynamics and its relevance with hadron
structure are discussed. Special emphasis is put on the meaning of the form factor, which is an important
ingredient of the reaction dynamics.

In two kaon photoproductions, first we study hidden strangeness production associated with the phi-
meson production. It has provided puzzles for a long time as an OZI suppress process. Several attempts
have been made so far, however, with not much success. To approach the problem, we perform an elaborated
analysis by including hadronic rescattering processes near the threshold region in addition to the conven-
tional Pomeron exchange at high energies. We have then found that the rescattering though Lambda(1520)
resonance could provide significant contribution near the threshold which mimics the bump like structure
in the cross section observed in the latest experimental data from the LEPS group by carefully choosing the
form factor. We have then studied, as a prediction of our model, spin density matrices which are sensitive
to the spin-parity quantum numbers of a t-channel exchanged particle. We have found results which are
consistent with the experimental data, indicating that spin-parity in the t-channel is dominated by natural
parity. This is the first result and is nontrivial so far. Thus our study indicates the importance of the hadronic
process of the phi-photoproduction near the the threshold region while the Pomeron dynamics dominates in
the high energy region.

As another process of two kaon production, we study = baryon production and have obtained once again
results consistent with the existing data.

Finally we have studied the three-kaon production associated with ) baryon. This is a totally new
theoretical study and provids an estimate for the total production rate. We found that the rate is about factor

ten smaller than what we naively expect from the extrapolation from one to two kaon productions.
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Introduction

1.1 Historical review of hadron physics

Modern nuclear physics started with the obervation of H. Becquerel!. After Becquerel’s obervation, Marie
Curie and her collaborators found radioactivity. Soon after that period, Ernest Rutherford had invastigated
inside of atom.

Hardron physics started with the prediction of Yukawa Hideki? . In 1935, he predicted the field quantum
with a finite mass to explain the interaction between nucleons. Even though his prediction of pi meson is
the important step to explain thet strong interaction, it was found that pi meson itself is not the fundamental
quantum of strong force for several reasons. In 1954, Yang-Mills theory was proposed as the simplest non-
Abelian gauge theory. It was the first step to explain nuclear force using the gauge théory.

After invention of the particle accelerator, physicist had found that there are so many hadrons. Sakata
tried to expain mesons and baryons using proton, neutorn and A. His work and similar invastigation had
tried to explain too many hadrons using more fundamental particles. Those too many hadrons are rearranged
systematically by the quark model suggested by M. Gell-Mann and G. Zweig.

In 1967, S. Weinberg proposed *a model of leptons’ which became the starting point of the standard
model. And asymptotic freedom of QCD was discovered by t’Hooft (Holland), Grass and Wilczek (USA)
and Politzer (USA) independently.

! Antoine Henri Becquerel (1852-1908) : French physicist. He won the 1903 Nobel prize in Physics with Marie Curie and Pierre
Curie
*Yukawa Hideki (23 January 1907 — 8 September 1981) a Japanese theoretical physicist and the first Japanese Nobel laureate.
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Table 1.1: Timeline of modern hadron physics

1896 | A. H. Becquerel reported the rays emitted
from uranium.

1929 | The first particle accelerator
Y. Hideki predicted 100 MeV mass meson. | 1935

xt was discovered | 1947 | K9 — 7t + 7~ was discovered

CERN was founded | 1954 | Yang-Mills theory

The Sakata model | 1956

1~ was predicted in the quark model | 1962

1964 | K—p — 2~ K1 K9 was discovered
1967 | Model of leptons

The discovery of asymptotic freedom | 1973

1997 | Spring-8 was opened for users.

Higss-like particle was reported. | 2012

1.2 Effective field theory and symmetries

1.2.1 Effective field theory

Strong interaction is described by Quantum Chromodynamics. However, at low energy, it is not easy to study
the dynamics of strong interaction directly from QCD. The purpose of the effective Lagrangian method is
to represent in a simple way the dynamical content of a theory in the low energy limit, where effects can be
incorporated into a few constants. The basic strategy is to write down the most general set of Lagrangians
consistent with the symmetries of the theory.

To construct the effective Lagrangian, S. Weinberg introduced the guiding principal or theorem in 1979.
The effective field theory is based mainly on a ”theorem” suggested by [1]:

Dissertation by H. Y. Ryu (Ver 1.1, Feb. 2013)



Effective field theory and symmetries 4

If one writes down the most general possible Lagrangian, including all terms consistent with
assumed symmetry principals, and then calculates matrix elements with this Lagrangian to any
given order of perturbation theory, the result will simply be the most general possible S-matrix
consistent with analyticity, perturbative unitarity, cluster decomposition and the assumed symme-

try principles.

According to Weinberg’s theorem, we can construct the most general effective Lagrangian for the strong
interaction with the relevant symmetries. The Lagrangian has therefore an infinite number of terms and thus
an infinie number of free parameters. They have to be obtained by fitting to experiment or lattice results.

For certain physical problems, one can calculate Feynman diagrams with a proper Lagrangian set.

1.2.2 Symmetries of QCD Lagrangian

Here we breifly review symmetries which are base or guidelines for construction of effective Lagrangian.

Gauge symmetry: Quantum chromodynamics is a quantized non-Abelian gauge field theory. The
gauge field theories are of a particular kind of field theories which are based on the gauge principle. The
gauge principle is the requirement that the theory be invariant under the local gauge transformation. Quan-
tum electrodynamics can be constructed by the phase transformation of the Abelian gropu U(1), while
Quantum chromodynamcis can be done by non-Abelian phase transformation of SU (3), whose representa-

tions are identified with the color degrees of freedom.

Chiral symmetry: From the Dirac equation for a massless particle, we get the following chial fields:

Y, =Ty, Yr=Tgry. (1.1)

where the matrices I‘IL2 7(1 £ 5) are chirality projection operators and v is a solution of the Dirac equation.

Cg,1, obey the following properties:
Fp+Tp=1, I'yI'y=Iy, I'rI’'r=Tg, [ Tr=Tgrl'L=0. (1.2)
We can apply this chirality decomposition to a Lagrangian for a massless noninteracting fermion.

L=ipdp =L + L, (1.3)

Dissertation by H. Y. Ryu (Ver 1.1, Feb. 2013)
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where

Lr,r =L, ROVLR (1.4)

These Lagrangian densities are invariant under the global chiral phase transformations

Yy =€ "LRYL R, (1.5)

where the phases o, g are constant. Using these left- and right-handed fields, v/, 1 r, we can construct the

Lagrangian which satisfies chiral symmetry as follows:

1 - oy
L= —itr[Gu,,G‘“’] +YLiv* DL + YriV*Dytbr , (1.6)
Guv = OuAy — 0, Ay —iglAy, A)), Du=08,—igA,, A,=> T°AL (1.7)

where Af(a = 1 ~ 8) are the gluon fields, 7% = /2 are the generators of the color SU(3) group with

Gell-Mann matrices A%, and g is the gauge coupling constant.

Discrete symmetry: Invariance of the physics under a transformation means that quantity can be repre-
sente by unitary operator. Parity (P) and charge conjugation (C) are discrete groups and they are conserved

in both QCD and QED, whereas weak interacitons do not respect these sysmetries.

1.3 Strangeness particle in the hadron physics

In 1962, Gell-Mann and Neéman predicted a new baryon, 2~, with S = -3, J P 3/ 2+, and a mass of
about 1670 MeV [77]. After their prediction, the 2~ (1670) was discovered at BNL [74] in 1964, which
confirmed the hypothesis of SU(3)z. The Babar Collaboration measured the spin of the Q™ using Z0 —
Q°K*, Q7 - Q"K' and @~ — AK™ events under the assumption that the charm baryons have spin
1/2, as expected form the quark model, the angular distribution of A from 2 decay is cossistent with spin

assignment 3/2 for the 2~ and inconsistent with all half-integer spin assignments [75].
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Strangeness particle in the hadron physics 6

FIG. 1.1: The discovery of a hyperon with strangeness minus three. Photograph and line diagram of event
showing decay of )™. These figures are taken from [74].

FIG. 9.1 shows the 2~ line in the bubble chamber and FIG. 1.2 shows the spin predictions of the Q—
baryon and the experimental data.

2

d o000l {7
= \ & Ly
B o900\ 14
L T H
% 800 £
w /4
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00 i T
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U AR \ 5
400 LY et I

by F"\ \'éw' - i ) o
300 s R t o =5 12
2007 "

<1 <08 06 04 02 0 02 04 06 08 |

costi{A)

FIG. 1.2: Mesearment of {2™. The green, red and blue lines are their expection for the spin of ()~. Data are
taken from [75].

1.3.1 = and () production
Very few ()/= baryons have been identified in the last 50 years. Even fewer have their quantum numbers

determined. Kaon beam was the primary source for the discoveries of ) /Z. But photon beam could be a
powerful alternative.
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Strangeness particle in the hadron physics 7

Flavor SU(3) symmetry predicts the existence of as many = resonances [15]. However, not much is
known about these resonances. Recently, the CLAS Collaboration at the Thomas Jefferson National Accel-
erator Facility (JLab) started a cascade physics plan [16]; in particular, the feasibility to do cascade baryon

spectoscopy via photoproduction reactions such as yp — KT KT=~ and vp — KT Kt7~Z20[16, 17].

Table 1.2: Some /= baryons

MDY | MMeV) | T MeV)

= (172t 1318 + is the quark model prediction
2(1530) | 32)F 1530 9.1
2(1690) | (1/2?)7 1690 <30
2(1820) | (-3127)~ 1823 24
£(1950) )’ 1950 60

Q (3/2)* 1672 (3/2)T is the quark-model prediction
Q(2250) 7 2250

Table 1.2 shows our recent knowlodge of (/= baryons. We have a few information about them and theri

dynamcis is not well known.

1.3.2 ¢ meson (1020) photoproduction

yp — ¢p scattering process is very special and interesting phenomenon. Evne though this process violates

OZI rule shown in FIG 1.3, that process is not suppressed.

U R e —
. u > . u
> d d—> d
_|_
vp — KTA Yp — ¢p

FIG. 1.3: Strangness particle production processes

In this point of view, this special property of ¢ meson photoproduction is very good subject to investigate
the hidden strangeness in the hadronic scattering process. In the present thesis, we would like to introduce
several hadronic approach to explain ¢ meson photoproduction. In the beginning, Pomeron and one meson
exchange process are reviewed. Next we would like to explain one exotic particle exchange and rescattering

process.
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1.3.3 General questions for the open strangeness physics

The production of open strangeness in photo-induced reactions at intermediate energies allows studies of
the transition from the conventional hadron dynamics to the underlying dynamics of quarks, since a strange

quark and antiquark must be created.
The questions which gave the motivation for this work are:
1. Do quark degrees of freedom control the open strangeness production?

2. Does chiral symmetry govern the threshold region and up to which energy ?

3. Is the Feynman diagram method sufficient for an adequate description or are different concepts like

Regge exchange more appropriate to understand associated strangeness production ?

From the experimetal side, data of sufficient accuracy are needed to answer these questions. As a theoretical
side, investigating production of kaon and hyperon in this work, we would like to contribute the way to
answer the above two questions.

In this work, we study the muti kaons production to understand strangeness production dynamcis more

deeply.
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One Kaon Photoproduction



2

vp — KTA(1116)

2.1 Introduction

The production of strange particles in photoproduction at medium energies could give us more deeper
insight of the strangeness in the hadron physics. To study this subject, many facilities, like SAPHIR [3] and
CLAS have performed several hyperon production experiments.

In this chapter, we review the ground Lambda particle production process, yp — K+A(116). This
process is well described with resonance in an effective Lagrangian scheme [13]. In this work, we try to
describe the ground Lambda photo-induced production with the gauge invariant set without a resonace
since the goal of the review of the one kaon photoproduction is to test several form factors types and to find

available parameter values to investigate = and Q production.

Kt Y Kt 107
q’%\ﬂr v
)L\‘L‘ﬁ I + - + g
P—> > A* P——t—y—A\* D <
(k2) (p2)

FIG. 2.1: Gauge invariant diagram set of yp — KT A(116)

We consider the four gauge invariant diagrams in the FIG. 2.1. We are going to show the formalism we used

and next the numerical result step by step.

10
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2.2 Formalism

Effective Lagrangian is given by

— K
LyNn = —eN {fy“ - ﬁau,ﬁ"] AEN 2.1)
Lrpn = GeppMy 150, K p (2.2)
Lokx = —ie(K~0,KT - K"9,K )A* (2.3)
_ /{A v u

= —— 2.4
EW{\A eA[zA/[AdualeA 2.4)
Lykph = tegyrpadyys K~ pAr. 2.5)

In our calculation g,xpA = gipa and we use the following parameters.

Table 2.1: Parameters in this work

kp | 179 | PDG
gkpA | 6.15 | SU3)
kA | -0.613 | PDG
T-matrices for each diagram are given by
K 1
s o= 1 7] I+ -2 k1 u(k .

T. iegpr AU(p2)b1vs | I + GTTA (k1 + kg +mp) | E1éyu(ks) O (2.6)
T, = —iegprat(p2)(k1 — p1)ysulks) 21 '267 5 .7

(k1 — p1)? — m;;

) KA ko —py + mp
T, = —_ kqé k 2.

u tegpKag u(p2)k1 Tk = 1) = m%ih’YSU( 2) (2.8)
T, = —iengAﬂ(pg)é775u(k2) 2.9)

T and TV stand for the self gauge invariant part of T' and the gauge violating part of T". One can apply

type I or type II form facotr to gauge invariant part and some common type form factor to gauge violating

part. Surely summation of gauge violating parts satisfies the gauge invariance.
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As a next step, we apply the gauge invariant form factors as follows:
T = T™F(s) + (TY + Ty + T.)F, + T, F(u). (2.10)

T and TY*°! denote the gauge invariant part of T and the gauge violating part of 7 respectively. F. stands

for the common form factor and defined by
Foe=1-(1-F(s))(1 - F(¥))1 — F(u)). 2.1

We try the three form factor type for each F. Type I form factor is defined by

A2, —m? ’
Fu@p?) = =M (2.12)
nA% "
Fp(p?) = [ M } (2.13)
5 nki; + (p? — M?)

where Fy and Fg stand for the form factors of the scalar meson and the baryon respetively.

In type II form factor, ;s has same form as Flg :

nA% "

Fu(p*) = Fp(p?) = [ 3 ] : (2.14)
nA%, + (p? — M?)

As the 3rd form factor, let me introduce type III form factor. This overall form factor is motivated in the

rescattering process in ¢ photoproduction in chapter 7 and I check that this kinds of form factor gives us

available magnitude of the cross section even in one kaon photoproduction. Type III form factor are applied

as follows:
T=(Ts+ T+ T, + Tu)F(s)F(t). (2.15)

We use the same form factor in Eq.(2.14) as F'(s) and F(¢). Since the summation of the four 7T-matrices
are gauge invariant, this scheme doesn’t violate the gauge invariance. But we can see this form factor gives
us smaller value than type I and type II because two form factor are multiplied. Nevertheless this type III
form factor is very sensitive to the cut-off, then we get the reasonable megnitude in a little lager cut-off than _
cut-offs in other two types.

To test these three type of form factors, I apply these to the energy dependent cross section calculation

and we can see the result in the next section.
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2.3 Numerical result

2.3.1 Contribution of each channels

Here we show the cross section of each channel. At first, the cross section without form factor is shown in

the below.
+

yp->K A(1116) No form factor
27 57 3 10— A T
| |— s-channel E 7

100 ||~ t-channel 20
I |~ c-channel 10 E /
80| u-channel | F —
= | Total 101 3 =
60| ; -
@) B 0 E -
40} -
0+ 10"F E
i '2 : ] 1 I 1 I 1 :
=1 2 3 g kg 2 3 4

E [GeV]

FIG. 2.2: Contributions of each channels with form factor in different scales.

As we see in FIG. 2.2, c-channel contribution is dominant near the threshold but s-channel is dominant as the
photon energy increases. In the right pannel, we can distingush the difference of the channels’ contribution
in the log scale.

yp->K A(1116)

Type I form factor

4 T T T T 101 ; T T T T T T E
- - s-channel' | A £ 7
= t-channel (U _
3 — c-channel || 10 E \
- u-channel r 3
= T — Total 0 E (\_
= 2 i 1
° 107 E
1+ ok ;
10°F g
. | | | ! -4 i | ! | L | ! i
ey 2 3 4 A I 2 3 4

EY [GeV]

FIG. 2.3: Channels’ contribution with form factor. Type I form factor is used with n = 1, Ap; = 0.7 GeV
and Ag =0.7 GeV.

With the form factor, c-channel is the most dominant one in thw whole energy region.
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2.3.2 Energy dependent cross section

Here the energy dependent cross sections are shown with the three form factors.

Type I form factor

TYPEI

5 ] T I T I T | T I T | T T l T I T I T I T I T
- — (1,065,065)] | — (2,065,0.65)] -
ME — (1,07,07) | |_ — (2,07,07) ||

— (1,075,075) — (2,0.75,0.75)
&4 E 7
ol ]
1 =1

0 o MK W OIS TR (ol e -1 4 1 5 1 ¢ L 3

1 12 14 16 18 2 1 12 14 16 18 2

EY [GeV]
FIG. 2.4: The total cross section with various parameters. Parameters in the legend denote (n, Ay, A B)-
We can see that experimental data are well described with cut-off value, around 0.65 GeV. Resonances

contribution is well known in yp — K*TA(1116) process, but in this chapter we treat the basic gauge

invariant set only for simplicity.

Type II form factor
TYPE II
5 I T I T l T I T I T [ T I T l T l T I T l T I T
L — (1,06,06) | | — (2,06,06)
— (1,0.65,0.65) — (2,0.68,0.68)
4r- — (1,0.75,075)| [~ — (2,0.75,0.75)
= 3
2
o) 2H
1 .n
I 1 |

et a1 ¥ o i § s
1 12 14 16 18 2 1 12 14 16 18 2 22

FIG. 2.5: The total cross section as a functon of the photon energy, E., with type II form factor. Parameters
in the legend denote (n, Ay, Ap).
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This form factor makes more sharp peak near the threshold region than type I form factor.

Type III form factor

This type III form factor is motivated from the study of ¢ meson photoproduction. We use this kinds of form

factor when we describe the rescattering of ¢ meson photoproduction with the K A(1520) intermediate

state.

TYPE I

6 I T [ T I T J T l T l T I T l T ] T l T [ T I T
- — (1,1, 1) - s (2, 1, 1) B
5+ - (1,1.25,125)| [ ——— (2,1.35,1.35)|_]
| — (1,15,15) I — @2,15,15 ||
4+ - 1
E L = -
03 _
B | L i
2 -
] L] 1
1 —
L]

0 | Il | T

1 12 14 16 18 2 22

1 I1.2 1.4' 1.6I 18 2
E, [GeV]

FIG. 2.6: The total cross section as a functon of the photon energy, £, with type IlI form factor. Parameters
in the legend denote (n, Ayr, Ap).

Since two form factors are mutiplied to T-matrix, type III form factor gives us small value but we can
see this form factor is really sencitive to cut-off parameter. Such a property makes this form factor give a
relevant magnitude in ¢ meson photoproduction, I guess. As a alternative of the form factor in the hadronic

process, we would like to test availability of this form factor in the several cases.

2.3.3 Angle dependent differential cross section

Here the differential cross section as a function of the scattering angle at specific energy. We show some
plot usging type I form factor with same parameter set which we used in the previous section. We can see
that the experimant data can be well described except the threshold energy region, £, = 0.925 GeV. We
use only basic four gauge invariant set. Some discrepancy could be explained with some resonaces and
t-channel K* exchange, I guess.

Here we show the differential cross section with type I form factor only. In the case it is need to investi-
gate the form factor dependence of the cross section, we can do that with parameter set described previously.
The goal of this section is to check the compatibility of each form factor in some cases. And we want to

apply this resut to understand = and {2 production cases.
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T T T T T T T ] T Ty
0.65 E =0.925GeV _: 0.6:— .= 1.15GeV _: “‘H;; T
0.5 1 05F 1 — (1.07.07
04 - 041 — (1,0.75,0.75)
03F ] 0.3:—‘%’/ = BAPAIR
0.2_— - 0.2_— L} ]
0.1 =5 01lF % = =
O—Imizm:l:lxnIt:nI_ O'I. { ¢ 1 5 4 4
1 -0.5 0 0.5 1 -1 -0.5 0 05 1

T T T T T T

do /dQ [ub/sr]

|
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

FIG. 2.7: The differential croglsnsection as a functon of cos 6.

2.3.4 Beam asymmetry

The beam asymmetry shows that there are some polariaztion dependence when we measure the observable
in the laboratory. We can measure this using the linearly polarized photon beam.
Here the beam asymmetry as a funciton of E. and cos 0...,,. are shown. The beam asymmetry which we

used here is difined by

_ doy /dQ — doy /d)
B dU_L/dQ+dUl|/dQ.

(2.16)

where do | /dS2 and do|/dS2 are the differential sections with linearly polarized photon in the perpendicular
direction and in the parallel to the reaction plane. Since we choose X Z plane as a reaction plane, the
perpendicular direction to the reaction plane is y direction and the parallel direction to the reaction plane is
x direction.

In this section we show the energy dependent and scattering angle dependent beam asymmetry. Even
though there is no experimental data of the beam asymmetry of yp — KA (1116) process, it can be a kind
of prediction or a guideline for the future work.

First we show the scattering angle dependent beam asymmetry with type I form factor. We describe the

beam asymmetry with varing parameters. Using the same form factor and parameters, we show the energy
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dependent one also.

+ — (1,0.65,0.65)

vyp->K A(1116) —_— LD
Type1|— (1,15,15)

0 T T T 0 T T T T

I I I

02+ —-021 =
04 —-04+ T
06 —-06 ]
L s L o
08 Ey =10GeV  _| gl Ev =14GeV |
L i L 4

e L w I 5 [ 4 ) S N | S O [

-1 -05 0 0.5 1 -1 05 O 0.5 1

ORT T~ T T ] ORT T T 7T
02 02
04l o0l d
06| 06} -
ol E=18Gev | og] E=22GeV ]

Photon Beam Asymmetry ()

- R L
021 02 N
04l 04|
061 Josk i
_Qg; E, =26 GeV Aol E, =30 GeV ]

-1 e (e | ST (- ;| p=d s o A
-1 05 O 0.5 1 -1 <05 0 05 1

COS 6
cm

FIG. 2.8: The photon beam asymmetry as a functon of cos 6.

In FIG. 2.8, we show the beam asymmetry with type I form factor at each scattering angle. Since there are
very small difference in the range, 0.65 GeV < A < 0.75 GeV, we try larger cut-off A value, 1 GeV and 1.5

GeV which are used in other photoproductions. Next let us consider the energy dependent beam asymmetry.
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0 vp->K'A(1116)
0.2 TYPE 1
el — (1,0.65,0.65)
_06 F— (171’1)
08 — (1,15, 1.5)

-0.2
-04
-0.6
-0.8

Photon Beam Asymmetry (Z)

FIG. 2.9: The photon beam asymmetry as a functon of E..

2.4 Summary of this chapter

A(1116) production is important as the ground state of A baryon which occurs in the most kaon production
cases. In this point of view, to study yp — KT A(1116) is basic and important.

In this chater, we show that we can successfully describe yp — K+TA(1116) scattering process in an
effective Lagrangian approach. We test three types of form factors not only for checking the validity of
the form factors but also for the mult-kaons production calculation. Futhermore we show beam asymmetry

estimations for the future work.
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vp — KtTA1405)

3.1 Introduction

(k1) (m)

K+ Y Kt
! A T
AT y K-
P—> "y A* P—o—r——A* P <

(k2) (p2)
FIG. 3.1: Gauge invariant diagram set of yp — K+ A(1405)

The A(1405) resonace is a negative parity baryon resonacne with spin 1/2, isospin I = 0 and strangeness
S = —1. The resonance is located slightly below the K N threshold and decays into the 7% channel through
the strong interaction. Theoretically, the existence of A(1405) was predicted in 1959 by Dalitz and Tuan,
based on the analysis of the experimental data of the K N scattering length [4, 5]. An experimental evidence
of this resonance was reported as early as 1961 in the invariant mass spectrum of the 72 channel in the
K~p — wnwX reaction at 1.15 GeV [12]. In recent years, the structure of A(1405) has been found to
be important in various aspects in the strangeness sector of nonperturbative QCD. At the same time, the
experimental information on A(1405) is being rapidly improved by new data, such as the 73 mass spectra
in several reactions and the precise measurement of the energy level of the kaonic hydrogen. Thus, it is an
important and urgent issue to understand the nature of the A(1405) resonance.

In this chapter, we calculate the cross section and the beam asymmetry as a function of E. and cos 6

19
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by considering four Feynmann diagrams in FIG. 3.1. The parameters determined in this calculation can be
considered as s5 production and would be used to estimate multi-s5 production processes. We use the form
factor set which we used yp — KT A(1116).

3.2 Formalism

Effective Lagrangians are given by

Lykxk = —ie(O"K~ K+ — 8"K+K_)A” 3.1

= —eN |y — 2N owvgv| AN 2

LiNN eN [’y 21WNJ 0 ] u 3.2)

Lya*k = gNa~KO K AN (3.3)

LyNa*k = ’L'egNA*KAﬂK‘A*’y”N (3.4)
RA* —x %

Lonsas = 62MA*A ouw(0VAH)A*. (3.5)

Here A* = A(1405) and we use the following parameter set.

Table 3.1: Parameters in this work

Kp 1.79 PDG
grpr+ +1.9486 flavor singlet assumptions
KA* 0.25 Skyrme model {11], unitarized ChPT [6]

T-matrices for each channel are given by

: _ ki +k2+ M, Kp
S — * 7 k .
T iegpa~ K U(p2)py (k1 + k2)? — M3 [1 + 2Mph éyu(ke) (3.6)
. _ 2(p1 '67)
T, = —iegoarg k1 — P )ulks 3.7
t 9pA*K (p2)( 1 pl) ( 2) (kl _pl)g _ m% ( )
L 2Rps _ k3 — 1 + M-
Tu = Z2MA* gpA*Ku(pg)kléfy (kg — p1)2 _ ]WK* ;blu(kg) (38)
T. = iegpAv«Kﬁ(pg)é»{u(kg) 3.9)
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We can easily check T, T} and T, consists of gauge invariant set and 7, is gauge invariant itself.

T = T™F(s)+ (TV + Ty + T.) Fe(s, t,u) + Ty F(u) (3.10)

3.3 Numerical result

3.3.1 Contribution of each channel

No form factor

y p > K A(1405)

8 T T T T 101 ; T i T =i T 3

| | = s-channel - 3

- t-channel (K only) C ]

||~ c-channel 0 al

6| — u-channel 10°E 3

| | — total F E

_’g“ L J
= 4 10'E E
o | g R
2 — ]

2 10 3 / .

} -3 L | L | L |

0] 2 3 419 7 2 3 4

E [GeV]

FIG. 3.2: Total cross section without form factor. Two plots are same but in different scale.

vy p -> K A(1405)
. -1

TYPE I form factor

0.03 : s W
Vi 3 m
= -t 10°F E
Z0015F : /\
o i 10°F E
I o ;
0005} AW
I : | 1. 6l ! ; | . i
01 2 3 419 4 2 3 4

EY [GeV]

FIG. 3.3: The total cross section with the type I form factor. They are shown in the different scale and each
line is denoted in the same way of FIG. 3.2.
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FIG. 3.2 tells us that s-channel is dominant and there are negative interference effect between s-channel
and others since s-chaanel contribution is larger than the total. The total cross section with the form factor

are shown in FIG. 3.3. Here the contribution of ¢-channel is larger than that of s-channel.

3.3.2 Energy dependence with form factors

The total cross sections with the type I and type II form factor are shown. Usually A ~ 0.7 GeV value is
available to expalin one s5 production. But here I try several cou-offs which appear in the other photopro-

duction.

Type I form factor

04

TYPEL

— (1,0.7,0.7)
= (1,151)
— (1,15,1.5)

||— 2,0.7,0.7)
——— (2,1,1)
H— (2,15,13)

._.
S
)
A
)
w
~

E [GeV]

FIG. 3.4: Total cross section without form factor. Two plots are same but in different scale.

Type II form factor o
04— a,07,0m — 2,07,07) sl
| {1,110 |— @.1,1)
— (1,15,15) — (2,15,15)

03 =

:S\ - -

203 —~

O L L

0.1 —
0l 2 4 2 4

EY [GeV]

FIG. 3.5: Total cross section without form factor. Two plots are same but in different scale.
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3.3.3 Angular dependence with form factors

Here we show with parameter at several E,.

yp->K" A(1405) —
TYPEL |— (1,1.5,1.5)
0.04 T | T | T I T O.] T l T I T | T
L E‘/ =1.575 GeV 4 r Ev =1.725 GeV .
0.03 0.08
0.06
0.02
0.04
0.01 002
0 0
1 05 0 05 1 -1 05 0 05 |
E 0-2 T I T I T | T 0.2 T l T I T I T
= L Ev =1.875GeV 4 L EY =2.025 GeV .
£0.15 —0.15
Q
®
v 0.1 0.1
O
O
= 005 0.05
\
o
=) 0 0
-1 05 0 0.5 1
0.2 T I T T l T T T I T I T
E =2.175 GeV r E =2.325GeV 7
1 025~ 7 e
0.15 r .
02 —
0.1 0.15
0.1
0.05
0.05
0 0
-1 05 0 0.5 1 -1 05 O 0.5 1
COS ©
cm

FIG. 3.6: Differential cross section as a function of cos ..

We can observe that the maximum values increase as E, increases. And maximums appear forward, cos ¢/ ~

0.7
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3.3.4 Photon beam asymmetry

Photon Beam Asymmetry ()

FIG. 3.7: Photon beam asymmetry as a function of cos § with type I form factor.
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We use the same definition of the beam asymmetry in Eq.( 2.16). We shold be careful the definition and

the sign of beam asymmetry. Our result shows that the sign of photon symmetry is negative. It means that

the electric photon-hadron coupling is larger than the magnetic one.
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FIG. 3.8: Photon beam asymmetry as a function of the photon energy E., with type I form factor.

3.4 Summary of this chapter

A(1405) resonance baryon is considered as not only 3 quarks state but also strongly bouned KN state.

We don’t still understand this resonance particle well and it means that it is very interesting subject to

investigate. In this point of view, to study the A(1405) resonance baryon is very important to obtain deeper

understanding of the strangess in the hadron physics. In this chapter we calculate the cross section and

the beam asymmetry as a function of E, and cos  in reasonable cut-off range. There are not many clear

data of yp — K+ A(1405), we extimate observables in an effective Lagrangian approach. Our work in this

chapter is not only predictions of the A(1405) production but also a basic step to understand the muti-kaons

production. In the next chapter, we investigate other hyperon resonance, A(1520).
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vp — KTA(1520)

4.1 Introduction

The A(1520) baryon resonance has been spotlighted because its mass is similar to that of the expected %
but strangeness is opposite. As far as the experimental of the A(1520) production are concerned, there are
experiments reported so far: Boyarski et al (photoproduction)[7], the Daresbury group (photoproduction)
[8] and the CLAS collaboration (electroproduction)[10]. Recently the LEPS collaboration is searching for
the ©7 associated with the production of the A(1520) in photoproduction off the deuteron.

() 4 ¥ K+ K
! T o K

’oﬂ + ? K_ + "'1
P—> <y A* P A* P—> > A*
(k2) (pz)

FIG. 4.1: Gauge invariant diagram set of yp — K+A(1520)

In this chapter, we investigate the A(1520) photoproduction near the threshold energy. We use the same
gauge invariant form factor formalism which we apply the A(1116) and A(1405) previously. We can use
the results of yp — K+ A(1520) to test the effective Lagrangian formalism and to estimate multi-kaons
photoproduction. We consider the s, ¢, c-channel except the u-channel because the magnetic moment of

A(1520) is not known well and the u-channel contribution is supressed in usual K+ A producton case.

26



Formalism 27

4.2 Formalism

Effective Lagrangian is given by

—_ KN
Lyny = —eN [’m My au,,a"] AEN 4.1
Likx = —ie(O*K- Kt —9*KtK™)A, (4.2)
Lena = PN (57 K-)R 5N (4.3)
mg
Lognar = 5NN AvR-R 95N (4.4)
mg

with |ggnax| = 10.9. T-matrices are given by

. _ ki+ ks + M K
T, = Wy P11+ Bk ¢ 4.5
iegr NA+ T (P2)P1aYs CETSE —MZ?[ + oM, 1] ~u(p1) @4.5)
. o 2p1 - €
T = —iegicnnea® (p) (ks — parsu(p) o _Q)Zimz (4.6)
K
T. = —iegrna-u®*(p2)vsu(p1)eya 4.7

We apply the form factor which preserves the gauge invariance as follows:
T =T™F(s) + (T)°' + T} + T.) F. (4.8)

where F, = 1 — (1 — F(s))(1 — F(t)). s and t are defined s = (k; + k2)2 = (p1 + p + 2)? and
t = (k1 — p2)? = (k2 — p2)? respectively. T denotes the self-gauge invariant part of T and T is
gauge violating part of T. Since sumation of 7Y°!, T; and T preserve the gauge invariance, form factors
in Eq.(4.8) don’t violate the gauge invariance of T'. As we discussed in the previous chapters, we try two
form factor type for F; and F; with various parameters. We employ the Rarita-Schwinger field for spin-3/2
particles and they are defined in Appendix A.

At first, we would like to check the contribution of each channel without the form facotr and with form
facotr. After that we will discuss about the energy and angular dependent cross section and beam asymmetry.
Through this prosedure, we can find avaible value or range of cut-off in the form factor with experimental

data. We will use these parameter values to extimate the multi-kaons photoproductions later.
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Numerical result

4.3 Numerical result

4.3.1 Channel contritution

No form factor

2000 T T T T I = T T | T T T 7]
|| = s-channel 3‘
- t-channel 10
1500 (H = c-channel —
| == Total i ;
=) ;
= 1000 - :
o | -
500/ 1/
' : ol K 1 . fo g 1 5 ]
0—= 3 4 510 3 3 4 5
EY [GeV]

FIG. 4.2: Total cross section as a function the photon energy E., without form factor.

Near the threshold, c-channel contribution is dominant. But in large photon energy region, s-channel

contribution is larger than c-channel.

+
Yp-> K [\1(1520) with TYPE I form factor
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FIG. 4.3: Total cross section as a function the photon energy E., with type I form factor. Two plots describe
same graph. The left is ploted in a linear scale and the left is ploted int log scale. Parameters of form factor
are choosen as (n, Aps, Ap) = (1, 0.75, 0.75).

FIG. 4.3 shows form facotrs make s-channel depressed very much. Form factors are really important not
only to fit the experimental data but also to determine each channel’s contribution. Next section we will test

form factors with several parameters when we describe the cross section and beam asymmetry.
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4.3.2 Energy dependence

Type I form factor
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FIG. 4.4: Total cross section with the type I form factor.

Ay = A = 0.68 GeV is the best fit (the green line) and other cut-offs are tried also (black and blue
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FIG. 4.5: Total cross section with the tyep II form factor.

The experimental data are well described with type II form factor with the same cut-off range of type I

form factor.

Dissertation by H. Y. Ryu (Ver 1.1, Feb. 2013)



Numerical result 30

4.3.3 Angle dependence
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FIG. 4.6: Total cross section with the type I form factor.

The differential cross sections at several photon energies are shown in the FIG. 4.6. We observe that there
is almost no angle dependence near the threshold. It looks reasonable that there are no so many A (1520)

baryon production near threshold. The cross section increase when the scattering angle goes to the forward.
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4.3.4 Beam asymmetry

We use the definition of the beam asymmetry in Eq. (2.16).
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FIG. 4.7: The beam asymmetry as a function of cos 6., with the type I form factor.

It is difficult to distingush the difference between the parellel and the perpendicular components of the
photon beam near the threshold (the upper left pannel). The maximum magnitude increase as the photon
energy increases and the beam asymmetries are zero at the forward and backward angles. FIG. 4.7 tells us

that the beam asymmetry is larger near the forward angle region than the backward angle region.
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FIG. 4.8: The beam asymmetry as a function of E., with the type I form factor.

FIG. 4.8 shows the energy dependence of the beam asymmetry near the backward region. Since there is

no experimental data, these result are prediction.

4.4 Summary and outlook

Strangeness photoproduction is an important to obtain a deeper understanding of the nature of baryon res-
onances. Up to now, some nucleon resonances have been observed at the near-threshold energy in the K'Y
photoproduction. Investigating K A* state is a good waty to study poorly understood nucleon resonacnes
with a heavy mass since the threshold of K'A* is relatively high compared with that for the 7V, nN and
K A photoproduction. In the present work, we describe the K+ A(1520) photoproduction with an effective
Lagrangian method. We would like to extend this fromalism to the multi-kaons photoproduction.

Another interesting point is a bump structure of the differential cross section of yp — K+ A(1520) [9].
We would like to reproduce this bump with the coupled-channel method. There are still many curioud area
in K'A* photoduction.
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Two Kaons Photoproduction
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@ photoproduction: Introduction and Tree

level calculation

5.1 Introduction

#(1020) photoproduction has been an interesting subject because of characteristic property of ¢ meson. The
#(1020) meson is distinguished from other vector mesons, since it contains mainly strange quarks. Because
of its dominant strange quark content, its decays to lighter mesons and coupling to the nucleon are known
to be suppressed by the Okubo-Zweig-lizuka (OZI) rule. In fact, the strange vector form factors of the nu-
cleon, which is implicitly related to the ¢ meson via the vector-meson dominance, is reported to be rather
small [18]. This large s5 content of the ¢ meson makes the meson-exchange picture unfavorable in describ-
ing photoproduction of the ¢ meson. Thus, the Pomeron [19, 20] is believed to be the main contribution to 1o/
photoproduction, since it explains the slow rise of the differential cross sections of ¢ photoproduction as the
energy increases. However, while it is true in the higher energy region, a recent measurement reported by
the LEPS collaboration [21] shows a bump-like structure around the photon energy E, ~ 2.3 GeV.It seems
that the Pomeron alone cannot account for this bump-like structure and requires that one should consider
other production mechanism of ¢ photoproduction near the threshold energy. Moreover, a recent measure-
ment of the spin-density matrix elements near the threshold region [22] implies that hadronic degrees of
freedom play essential role in the vicinity of the threshold.

So far, the theoretical understanding of the production mechahism for the ¢ photoproduction can be

34



Introduction 35

summarized as follows:

o General energy-dependence of the cross sections is mainly explained by Pomeron exchange that can
be taken as either a scalar meson or a vector meson with charge conjugation C' = +1. While the
Pomeron explains the increase of the differential cross section do/dt in the forward direction, it

cannot describe the behavior of do /dt near the threshold.

e The exchange of neutral pseudoscalar mesons (7°, i) provides a certain contribution to do/dt near
the threshold but it is not enough to explain the threshold behavior of do/dt [23]. Moreover, 7° and
n exchanges cannot explain the spin-density observables and, in particular, pi_, matrix element (see

Appendix for its definition).

e Usual vector meson-exchanges such as p and w are forbidden due to their negative charge conjuga-

tions (C = —1). Otherwise, the charge conjugation symmetry will be broken.

e Vector meson-exchanges with exotic quantum number such as I(JF €y = 1(1~ ) are allowed but
those vector mesons are not much known experimentally. Moreover, as for the experimental data
from the deuteron target, exchange of isoscalar mesons is more plausible. On the other hand, there is

no experimental evidence for isoscalar hybrid-exotic mesons [24].
o The contribution of scalar mesons such as ¢ and fj are negligibly small for do/dt [23].

Understanding this present theoretical and experimental situation in ¢ photoproduction, Ozaki et al. [25]
proposed a coupled-channel method based on the K -matrix formalism. They considered the YN — K A*(1520)
and KA* — ¢N kernels [26] in the coupled-channel formalism in addition to YN — ¢N and N — ¢N.
It is a very plausible idea; since the threshold energy for the KA* is quite close to that for the bump-
like structure (E, =~ 2.3 GeV), the A*(1520) resonance may influence ¢ photoproduction. Moreover, the
vp — K A*(1520) reaction can be regarded as a subreaction for the yp — K ICp process together with the
~p — ¢p one in Ref. [26]. In addition, a possible nucleon resonance (J P= /27) with large s5 content was
also taken into account. Interestingly, the coupled-channel effects were shown to be not enough to explain
the bump-like structure E., ~ 2.3 GeV. On the other hand, the bump-like structure was described by their
possible N* and was interpreted as a destructive interference arising from the N* resonance [40, 41].

Table 5.1 shows the previous important work relevant to the present work. Before 1999, people have
tried to understand ¢(1020) photoproduction with Pomeron prescripton. In 2005 LEPS collaboration found
there is a bump like structure near the threshold. Many people have tried to understand this threshold be-

havior via Pomeron, scalar particle exchange mechnism and resonances.
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Table 5.1: Timeline of ¢ photoproduction research

Author Date What they did Ref.
Titov et al 1999 | Structure of the ¢ photoproduction at a few GeV | 23]
T. Mibe et al | 2005 | Near-Threshold Diffractive ¢-Meson Photoproduction [21]

from the proton

S.Ozkietal | 2009 | Coupled-channel analysis for ¢ photoproduction with A(1520) [25]
W. C. Chang | 2010 | Measurement of spin-density matrix elements for ¢-meson [22]
etal photoproduction from protons and deuterons near threshold
A. Kiswandhi | 2010 | Is the nonmonotonic behavior in the cross section of [41]
etal ¢ photoproduction near threshold a signature of a resonance ?
H.Y.Ryuetal | 2012 | ¢ photoproduction with couple-channel effects [76]

Recently LEPS measured the spin density matrix at backwark region to investigate ¢ photoproduction
nature deeply. In the present work, we show that we can explain the bump-like structure near the threshold

and density matrix using not only conventional method but also hadronic rescattering process.

5.2 Pomeron exchange amplitudes
Kinematics is given by

(k1) Y & (k2)

P+7r+77+,~-'
() P > D (p2)

FIG. 5.1: Kinematics of tree level diagram

Incoming photon momentum and ougoing phi meson momentum are denoted by k; and ks respectively,
and incoming proton momentum and outgoing proton momentum are by p; and ps as shown in Fig(5.1).

P stands for pomeron and 7, 7 and o are other exchanged particles. The amplitude of the Pomeron-
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exchange [29, 30, 31] is given by
M = ~a(po) Myulpr)ele, 5.1)
where €4 and e, are the polarization vectors of the ¢ meson and photon. M, is
MHP = M(s, t)[H, (5.2)
where the transition operator I'#" is defined as

with p = (p1 + p2)/2. Note that the Pomeron amplitude preserves gauge invariance k{ M, = 0. The

corresponding invariant amplitude M (s, t) in Eq.(5.2) is written as [25]

1 - ap(t) ]
M(s,1) = CpFn () Fa(t)2 (“52) ™ Vexp(— Fap(), (5.4)

where s = (k1 +p1)? and t = (k1 — kg)2. Fiy(t) is the isoscalar form factor of the nucleon, whereas Fy(t)

is the form factor for the photon-¢ meson-Pomeron vertex. They are parameterized, respectively, as

AM?% — a3t
(4MF, — t)(1 —t/t0)*’
2u3

Fy(t) = (1 —t/M3)(2pd + M2 —t) 5)

Fn(t) =

The Pomeron trajectory a,(p) = 1.08 + 0.25¢ in Eq.(5.4) is determined from hadron elastic scattering
in the high-energy region. The prefactor C, in Eq.(5.4) governs the overall strength of the amplitude and
st determines the starting energy at which the Pomeron-exchange comes into play. We will discuss the

determination of these two parameters later.
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5.3 7 and 7 exchange amplitude

To calculate pseudoscalar meson (¢ = 70, 7) exchange in the ¢ channel, we introduce the following

effective Lagrangians:

c «,
Loy = ;;gabwew ﬁau¢vaaAﬁ90 1
LgaNN = 9231;11\\: N'Y[L75 Na#so, (5.6)

where ¢, Ag, and N denote the ¢ vector meson, photon, and nucleon fields, respectively, mg and My
stand for the masses of the ¢ meson and nucleon, respectively, and e represents the electric charge. The

t-channel amplitude then takes the following form:

e iF 1)F, .
M= g<p1\1/711v¢g¢~,¢ thf(h)ﬂ dyylpﬁ(pg)(kl — 162)'75u(p1)e“"aﬂk‘guedwklaew, 5.7
©

where r is the four momentum of an exchanged pseudoscalar meson. We introduce the monopole-type form

factors for each vertex Fi,nn(t) and Fy,,, defined as

A2NN _ M2 A2 _ M2
Fonn(t) = =200 Fouplt) = —3—". (5.8)
eNN vy

As for the coupling constants for the ¢ NNV, we follow Ref. [23]: grnyn = 13.26, g,nn = 3.527 for the
mINN and n/NN coupling constants, respectively. We use A;yny = 0.7GeV and Ayyy = 1GeV for the
cut-off masses of the corresponding form factors. Though these values are different from the phenomeno-
logical nucleon-nucleon potentials [32, 33], the effects of the ¢-meson exchanges on ¢ photoproduction
are rather small. Thus, we will take the values given above typically used in ¢ photoproduction. Those of
the coupling constants for the ¢y vertices are determined by using the radiative decays of the ¢ meson
to 7 and 7. Using the data from the Particle Data Group (PDG) [24], one can find g4,» = —0.141 amd
9gyn = —0.707. The negative signs of these coupling constants were determined by the phase conventions
in SU(3) symmetry as well as by 7 photoproduction [23]. We choose the cut-off masses for the ¢ym and
¢ryn form factors as follows: Ay, = 0.77 GeV and Ay, = 0.9 GeV, respectively.

5.4 Numerical result

FIG. 5.2 shows the differential cross section at the forward angle do/dt (# = 0) with various contribution

of Pomeron, 7 meson and 7 meson shown separately. The parameter set for Pomeron is taken from [25]. We
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FIG. 5.2: The differential cross section as a function of the £,.

see that the total contribution describes the monotonically increasing behavior but the bump structure near
the threshold energy is not produced. Also the contribution of the hadronic processes, 7 and 7 exchange,
are not important. These are the reasion why we try to find other hadronic process to explain the threshold

behavior. We are going to explain that part in chapter 7.
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FIG. 5.3: The differential cross section as a function of the angle between photon momentum and ¢ meson
momentum in C.M. system.

FIG. 5.3 shows the angular dependence of do/dt at E, = 2 GeV. The diffractive behavior with the forward

peak is well decribed through ¢-channel Pomeron, 7 and 7 exchange.
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contribution

6.1 Introduction

In the begining of ¢ photoproduction, we tested several one meson exchange model to explain the exper-
imental data. After we review 7%,  and ¢ exchange mechanism, we also investigated the effect of vector
mesons exchange. Vector meson exchange model can be one candidate which causes the ¢ photoproduction

since Pomeron is expected J P=1"1orJgP =01,

~ &

=1
P—> N—

FIG. 6.1: Vector meson (J = 1) exchange process

As a simple case, we applyed w(782) exchange model to see what happens when the vector meson is
considered. Interestingly vector meson exchang model gives us the raising behavior as Pomeron does. Fur-

thermore we can reproduce the angular distribution of the differential data using w(782) exchange model.
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But the negative charge conjugation tells us that w(782) exchange process is forbidden. It makes us to find
other vector meson exchange case and as a next trial, we tested 71(1400).

71(1400) has the lightest exotic vector meson with JFC = 11%. 1 (1400) exchange model also gives us
the raising behavior when we treat coupling constants of each vertex as free parameters. For more realistic
consideration we calculated coupling constants with loops calculations. In the end, we found that our result

is much smaller than what we expected as free parameters.

6.2 Vector meson exchange mechanism

Here we would like to shortly review what effect a vector meson exchange model produce. First of all, I

will introduce Lagrangian and invariant amplitude. After that I will discuss the numerical results.

(kl)ﬁf/b\%\//qﬁ (

(p1)p >t >—1' (p2)
FIG. 6.2: w(782) exchange process.

k2)

We use the following Lagrangians:

Logw = €Gyow(OuAy — OvAy)PHw” 6.1)
LonN = gunNNYNwt (6.2)

where g,nn! and 94w are free parameters in our calculation. From the above Lagrangian, we obtain the

following invariant amplitudes:

. I « N «
M = 1€gywIoNN 7 mE a(pa) [(kl €4ty — (€4 €5) k1 mZ (k1 - e3)(ey - q)
kq - AT w 6.3
+m3,( e 645)] () X Ay =t Aiyn —t ©3)

where k; and ks are the photon momentum and ¢ momentum respectively. ¢ = k1 — ko and t = q>. Using
the this formalism, we calculated the differential cross section as a funcion of the C.M. energy and the

scattering angle.

lgonn = 10.3557 in [2].
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FIG. 6.3: From the left, the differential cross section as a function of the center of mass energy F., at
forward angle (6 = 0) and a function of the scattering angle 6 at £, = 2 GeV. g = 15.8533, gupy = 1.9045,
Aunn =1GeVand A,y = 0.9 GeV are used.

FIG. 6.3 shows that w exchange can mimik what Pomeron does. Detailed analysis tells us that such a
characteristic behavior comes from the term (s )4 2(p; ) in the invariant amplitude of Eq. (6.3). Interesting

point is that the same term is in Pomeron amplitude also as shown in Eq (6.4).

" o Ko kY y ki-k
MPOmeron = 7!({);) |:!;!; (g” e __2k2_2) — (kila _ kg 1]€2 2)
2 2

(g - T (0 “k’“)} u(pr)EP e F(s, 1 (6:4)
Simple analysis shows that the propagator of a vecotor meson makes @(ps2)k1u(p1). It is very important
message because we may need vector meson-like particle exchange model to obtain the raising behavior as
the energy increases within the frame of the effective Lagrangian method. From this finding we can see that
which diagram is crucial in the invariant amplidude level.

So far everything seems all right. However, if we consider charge conjugation symmetry, this process is
forbidden because of breaking of the symmetry for the ordinary vector meson of JE¢ = 1=~ This is the
motivation of study of the exotic meson exchange model. As a lightest exotic particle with J£¢ = 1-1, we

investigate 71 (1400) exchange mechanism.
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6.3 m,(1400) exchange mechanism

m1(1400) is the lightest particle which pereserves the charge conjugation in the photoproduction. Since the
structures of vertexes are same as the those of w, we can easily guess that 71 (1400) exchange process gives

us similar increasing behavior.

v b

1

/

p > D
FIG. 6.4: m(1400) meson exchange process

In this section we intoduce the effective Lagrangian and invariant amplitudes described by 7; exchange
model. After that, we discuss the numerical results.

Effective Lagrangians are given by

Lyme = €Gymo(OuAv — OpAy)@tny (6.5)
LoNnN = gunNNNy N7y (6.6)

9m ¢ and gr, NN are input parameters. In this work multiplication of two coupling constants is parameter.

The invariant amplitude is given by

.€0~¢pm1 Gn NN _ * * 4 *
M = Z(;Yz_l—mgmu(M) [(kl “€p)by — (€y - €g)k1 — R%—l(kl “€5)(€y - q)
- a)(ey ) uto) )

where g (= k1 — k2) is the momentum of ;. For simplicity, we define g, as follows:

9m = Gy¢m 9mNN- (6.8)

Our reuslt is shown in FIG. 6.5 and our best choice is g, ~ 13.
Although there are still some ambiguities about the {-channel exchanged particle in ¢ photoproduction,
there are some data which supports that the exchanged particle has the natural parity. 71 (1400) has the nat-

ural parity since P = (—1)~!. Therefore the next step is to check whether 7; exchange process is realistic
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or not. To do that we calculate the coupling constants by using the known decay modes.

25— I S S S T A R S
2 |
—
=)
1l L i
=,
15+ -
>
© BONN(1974)
&) i & DARESBURY(1982)
< > DESY(1978)
= 1 1 e LEPS(2005)
= SAPHIR(2003)
B B m  CLAS-gll (preliminary)
A - o SLAC(1973)
05 w 1t] exchange only
0 1 | 1 | 1 I 1 | 1 I 1 | 1
0 1 2 3 4 5 6 7
E [GeV]

FIG. 6.5: Differential cross section with 71(1400) exchange calculation

6.4 Microscopic structure of 7 (1400) vertexes

FIG. 6.6 shows the diagrams which we consider to calculate the coupling constant of m1(1400) vertexes.

Triangle type loop are constructed from three decay modes. Let me explain v — mj — ¢ vertex part firstly.

6.4.1 ¢ vertex

To calculate g.,r, 4 we use the following Lagrangian:

Lopo = “:n—‘fewﬁam,,aapmo (6.9)

Lpigno = gmmoﬂ{‘(auﬂon—aﬂnﬂo) (6.10)
e

Lyon = ‘fzznflwaﬁaufluaaﬂﬁn (6.11)

Our strategy is that the invariant amplitude of ¢ vertex is same as that of the above triangle loop vertex.

Then we obtain the divergent integration and we need a regulariztion to calculate the integration. g, 4 is
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given by

B8 . PP )
4
Py == LI, ol Aol / d* ( g + 5

Mgy, (2m)4 02 —m?
o (p —k— 26) * 6;‘;1 6:; " ’p’ugaga/k‘ulk'ul
(p—0)>2—m2 (b —=EF —wn

m2 g 3 A% A
m 9opmi Gmonm1 i
dz dy 1 : 6.13
mpmg  2(4m)? / B Og< A ) e

(6.12)

12

We took only leading contribution of A and A = (1 —z)m2 + mei — y(m?> —m2+m2). £ is momentum

of p meson.

FIG. 6.6: Microscopic structure of 71 (1400) vertexes.

Similarly we can calculate the coupling constant for 71 NN vertex. For my NN vertex calculation, we use

the following Lagrangian

9nONN =7
Lrony = 2” My Nv,7sNo*r° (6.14)
9InNN ==
Lony = 2’}\4N N, N (6.15)
*C7r17r07] i gwlﬂonﬂ?(auﬂ-on = 8u777r0) (6.16)
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We can calculate two loop diagrams related to w1 NN vertex by using the above Lagrangian. Calculating

the invariant amplitudes give us the following result:

gWONNgnNNgﬂ‘onﬂl A2
4m2 2(4m)2’

gm NN = (6.17)

We used the following coupling constant set:

Table 6.1: parameters in this calculation

8spmo 2

Zynp 1.23
Emomin 8
ErNN 13.5
EyNN 6

Eq. (6.13) and Eq. (6.17) tells us that coupling constants, g, ¢ and g, yn are function of the cutoff A.
When we choose a little large cutoff, A = 1.1 GeV, we obtain

g'y7r1¢g71'1NN ~ (.02 (618)

This result is just 0.15% of parameter value (~ 13) in the tree level calculation.

6.5 Summary and conclusion

To find a alternative of Pomeron which explain the cross section of ¢ meson photoproduction in the high
energy region, we have investigated vector meson exchange mechanism.

Although we found that w exchange model could mimk the Pomeron exchange modelt, this mechanism
violate the charge conjugation symmetry. After that we try the simplest exotic particle 71(1400). 7 (1400)
exchange process can explain monotonically increasing behavior of the total cross section, but their coupling
constants are not known. To estimate the magnitude of the cross section of 71 (1400) exchange process, we
calculate coupling constants in microscopic picture. Using the decay modes in PDG, we can calculate the
maximum value of coupling constants of each vertex of loop diagrams. The result shows that the possibility
of such a process is very small.

Even though it is not so successful to find the other alternative process instead of Pomeron exchange,
we found that vector-like exotic particles could be one chance to investigate the behavior in high energy

region. We can try the other exotic particles heavier than 71 (1400).
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contribution

7.1 Introduction

In the present work, we want to scrutinize in detail the nontrivial hadronic contributions arising from
hadronic box diagrams in addition to Pomeron and pseudoscalar meson exchanges. Extending the idea
of Ref. [25], we consider seven possible box diagrams with intermdiate pN, wN, oN, 7N, KA(1116),
K*A(1116), and K A(1520) states. However, it is quite complicated to compute these box diagrams explic-
itly, so that we use the Landau-Cutkosky rule [27, 28], which yields the imaginary part of the box diagrams
by its discontinuity across the branch cut. Though their real part may contribute to the transition amplitude,
we will show that the imaginary part already illuminates the coupled-channel effects on the production
mechanism of yp — ¢p near the threshold. The parameters such as the coupling constants and cut-off
masses of the form factors will be fixed by describing the corresponding processes and by using experimen-
tal and empirical data. Yet unknown parameters are varied as compared to the present experimental data.
In addition, we tune the strength of the Pomeron amplitude near the threshold region, where the hadronic
contribution seems more significant. It is a legitimate procedure, since the Pomeron gets more important as
the energy increases. Thus, we determine the threshold parameter in such a way that the Pomeron exchange
becomes effective in the higher energy region. We did not consider any N* resonance, since we do not have

much information on them above the ¢V threshold [24]. We will show that the coupled-channel effects are

47
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indeed essential in explaining the recent LEPS data, which is the different conclusion from Ref. [25].

The present thesis is organized as follows. In Section II, we explain the basic formalism. We show how
to compute the box diagrams mentioned above. In Section III, we present the numerical results such as the
energy dependence of the forward cross sections, the angular distributions, and the spin observables. We
also discuss how the K'A*(1520) channel can explain the bump-like structure together with the Pomeron
exchange tuned. We discuss in detail the spin-density matrix elements for ¢-photoproduction. The final
Section is devoted to summary and outlook. In the Appendix, we present the definition of the spin-density

matrix elements for reference.

7.2 Formalism

We will employ the effective Lagrangians to compute hadronic rescattering process in addition to the

Pomeron-exchange. In Fig. 7.1, we draw the relevant Feynman diagrams. The first diagram corresponds

% ¢ Y ¢ g ¢
p o p \\p’ |

FIG. 7.1: Relevant Feynman diagrams for ¢ photoproduction: We draw, from the left, the diffractive
Pomeron exchange, the pseudoscalar meson-exchanges, and the generic box diagram for hadronic rescat-
tering that includes intermediate meson M, and baryon B; states.

to the Pomeron-exchange, and the second one depicts 7°- and 7-exchanges. The last diagram represents
generically all the contributions from various box diagrams with intermediate hadron states, i.e. pN, wN,
oN, nN, KA(1116), K*A(1116), and KA(1520), among which the last one was already considered in
Ref. [25]. From now on, we will simply define the pN box diagram as that with intermediate pand N
states, and so on. We also define the 4-momenta of the incoming photon, outgoing ¢, the initial (target)
proton and the final (recoil) proton as k; and k3, p; and po, respectively. In the center of mass (CM) frame,

these variables are written as k1 = (k, k), ky = (Ey, p), p1 = (Ep, —k) and py = (Ey, —p), where k = |k|,

Ey = 1/m§) + |pl%, Ep = y/m2 + |k|2, and E,, = ,/mf}, + |p|?, respectively.
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7.21 K*TA(1520) box diagram

In addition to the Pomeron- and pseudoscalar meson-exchanges, we include the seven different box dia-
grams: pN, wN, oN, ©N, KA(1116), K*A(1116), and K'A(1520). Since the K'A(1520) box diagram
is the most significant one among several possibie box diagram in describing ¢ photoproduction, we first
discuss the KTA(1520) one and then deal with all other box diagrams in the next subsection. In The
yN — KTA(1520) process was investigated within an effective Lagrangian method in Ref. [26] of which
the results were in good agreement with the experimental data. Thus, we will take the formalism developed
in Ref. [26] so that we may take into account the K A(1116) coupled-channel effects more realistically.

The effective Lagrangians for YN — K1 A(1520) are written as

Lxna = g;;z{vm N0, Kt A™,
grnA- .

Lognrs = —i My ok N5 KT A,
Eq&KK = —ig¢KK(8”K—K+ - 3”K+K_)¢“,
Lonn = —gonnN |y — % gmvp, ¢"'N,

2Mpy
Likx = —ije(PK~ Kt — 3“K+K_)A#,
N L KN 12
E’)’NN = —eN [’YI - MO" 8,,] AﬂN7
€ . - X
Loxnas = —zg]]\{/f—?N%A#K"’A " (7.1)

where K and A** denote the K meson and A(1520) fields. For A(1520), we utilize the Rarita-Schwinger
formalism. My is the kaon mass. The K NA* coupling constant is taken from Ref. [26], since we use the
amplitude derived in it. The ¢ K K coupling constant can be determined from the experimental data for the
decay width 'y, g rc. On the other hand, g4nn is not much known experimentally. Recent experiments
measuring the strange vector form factors imply that the strange quark gives almost no contribution to
the nucleon electromagnetic (EM) form factors [18]. One can deduce from this experimental fact that the
¢N N coupling constant should be very small. In Ref. [35], the ¢ NN was estimated by using a microscopic
hadronic model with wp continuum: gy = £0.25 and x4 = 0.2, which are compatible with the recent
data for the strange vector form factors. Thus, we will take these values in the present work. However, note
that the s-channel contribution with the ¢ NN vertex is almost negligible. In Table 7.1, the relevant strong
coupling constants and anomalous magnetic moments are listed.
Based on the effective Lagrangians given in Eq.(7.1), we can write down the amplitude for the K+ A*(1520)

box diagram. It contains both real and imaginary parts. The real part is divergent, which is also the case for

other box diagrams and the rigorous calculation is rather involved. Thus we consider that the real part can be
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Table 7.1: The strong coupling constants and anomalous magnetic moments used in the present work.

JKNA" 11 Ref. [26]
JoKK 4.7 Ref. [24]
GeNN 0.25 Ref. [35]
Kop 1.79 Ref. [24]
K¢ 0.2 Ref. [35]

taken into account effectively by the reenormalization of various coupling constants, and calculate only the
imaginary part explicitly. The reasoning behind is similar to the concept of K-matrix formalism for the S-
matrix. Physically, the imaginary part corresponds to rescattering and is obtained by the Landau-Cutkosky
rule, Ref. [27, 28].

Having computed the Lorentz-invariant phase space volume factors, we obtain the imaginary part of the

amplitude as

L [ (= K AT ML(EHA* — gp), (72)

ImM g+ prbox = s In

where 7 is the magnitude of the K+ momentum. This imaginary part of the amplitude is schematically
drawn in Fig. 7.2. The shaded ellipse in the left-hand side represents the invariant amplitude for yp —
K™*A*, which is basically the same as that of Ref. [26] except for different form factors as will be explained
later. It consists of three different types of the Feynman diagrams as shown below the left dashed arrow. On
the other hand, the right ellipse stands for the K*A* — ¢p process that contains the diagrams below the
right arrow, generically. Note that we use a similar method as in Ref. [25] but we choose the different form
factors and parameters. The corresponding invariant amplitudes My (yp — KTA*) and Mp(KtTA* —

¢p) with the form factors are defined as follows:

Mpiyp = KYAY) = (Mps+ Mpg+ Mp)FL(s,t),
MR(EFYA* — ¢p) = (Mps+ Mgyt + Mpe)Fr(s,t), (7.3)

where My s (MRs), Mp i (Mpy), and My, . (Mp,) represent the s-channel, the ¢-channel, and the
contact-term contributions to the yp — K+A* (KT A* — ¢p) process, respectively:

EJKNA* _ ki +4+ My
ML,s = QM uk2y 5 ! 2 q M2 é’Y'u'(pl):
N
ERpgRNA* -y B+ MK,
+ 2MyM 2#75(12 _Mg ¥ 1u(p1)7
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FIG. 7.2: Feynman diagrams for the KA (1520) box. The form factors are introduced in a gauge-invariant
way.

M %—i&{g—A_“%u(Pl) #Mf\,’
Mpe = %N;A—*ﬁ“qﬁsu(pl),
Mps = Z%J]%?ﬂ u(p )éd)% sk{u®(p1),
1 LI oty AT ),
Mas = —igk’]]\(}\;{gdeK 2ki.]j)2 (s gEu (o),
Mpe = —LENRINN g, et (py). (7.4)

We introduce the form factors F'r(s,t) and Fr(s,t) for Mpr and M, respectively, in particular, in a

gauge-invariant manner for the yp — K A* rescattering:
Fr(s,t) niAf T omeAd 1™
S? = Vi |
e mAT+ (s — M2)2|  |ngAd+ 2

ns =

’ngA% n4A3 E
Fr(s,t) = 7.5
L(S, ) |:TL3A§+ (S_]\/[pz)z} LMAi?Lt? ) (7.5)

where the cut-off masses A; and powers n; are fitted to the experimental data for the yp — K TA* and
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7P — ¢p, which are listed in Table 7.2. In Fig. 7.3, we draw the numerical result of the total cross section

Table 7.2: Cut-off parameters used in Eq.(7.5)

ni 1
N9 1
ns 2
Ny 1
A1 0.8 GeV
Ag 0.8 GeV
A3 1.0 GeV
Ay 1.0 GeV

for yp — KTA* in comparison with the experimental data taken from Ref. [37]. It is in good agreement
with the data.

1500 -——————————————

1000 I

o [nb]

500 ]

o .

:l; L L L
Ey [GeV]

FIG. 7.3: Total cross-section of the yp — K A(1520) reaction as compared to the experimental data [37].

7.2.2 All other box diagrams

In the same manner as done for the K A* box diagram, we consider the six intermediate box diagrams
as shown in Fig.7.4, i.e. the pN, wN, oN, 7N, KA(1116), and K*A(1116) box diagrams. p photopro-
duction has been studied theoretically [38, 39, 40, 41] in which the contributions of the {-channel 7- and
o-exchanges were considered and o-exchange was found to be the dominant one, since it selects the isovec-
tor part of the EM current. Thus, we take into account the pp box diagram with the o- and m-exchanges
in the f-channel, as shown in the first diagram of Fig. 7.4. We will show later in Fig. 7.5 that indeed the

o-exchange describes qualitatively well the yp — pp reaction. In Ref. [38] w photoproduction was also
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_ o : Pk

K~ H K K ' H
7 A(1116
’ A(1116) » » (1116) »

FIG. 7.4: Feynman diagrams for the six hadronic box contributions.

discussed within the same framework. In contrast to the yp — pp reaction, the 7w-exchange appeared to be
dominant, since it picks up the isoscalar part of the EM current. Correspondingly, we consider the wp box
contribution as in the second diagram of Fig. 7.4, where w is produced by the one pion exchange. The op
and 7p box diagrams are obtained by reversing the pp and wp box diagrams. The yp — KA(1116) and
vp — K*A(1116) reactions were measured by several experimental collaborations [42, 43, 44, 45, 46, 47]
and were investigated theoretically [48, 49, 50, 51, 52]. While we consider all the relevant diagrams for the
K A*(1520) box contribution because of its significance, we will take into account only the K-exchange
diagrams in the t-channel for the KA and K*A box diagrams, since these two box diagrams turn out to
have tiny effects on ¢ photoproduction.

The relevant effective Lagrangians for these box diagrams are given as follows:

Lope = g;lp" [0,A4,0"p" — 8,A,0" o,

P _
L;NN = goNNNNo,
Lrony = —igrnnNysTaNao,

g ¢ v (04
‘Cﬂ’p¢ = T:Ll; euua,ﬂa qwaﬁp 710,
[fwdm = gwa(auwua'u(bu— Mwual’d)ﬂ),

Mme
£7w7r = g;l—meﬂmﬁa”A“é)ﬁwaﬂo,
Lvny = —gvnnN (7 V*— &V OV )N, (V=uw, p),

2Mpy

Likx = —ie[(*KT)K™ — (O*KT)KT]| A,,
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Loxk
Lrna

Lok K

Lork+

= igqbKK [(E)“K“L)K_ - ((9’”K_)K+] ¢#’
= —iggpaAAysNK™,
KK s’ AOPK K,
M+
= DeKK" a0 PR K, ‘ (1.6)
me .

where the coupling constants and the cut-off masses are listed in Table 7.3. The invariant amplitudes for

Table 7.3: Coupling constants and cut-off masses used in box diagrams of Fig. 7.4

Gypo 0.82 Ref.[38]
JoNN 10.026 Ref.[38]
gxNN 13.26 Ref.[38]
Grpe -1.258 Ref.[24]
pwo -045 Ref.[24]
Gywn 0.557 Ref.[24]
JwNN 10.35 Ref.[34]
9pNN 3.72 Ref.[34]
9oKK 448 Ref. [24]
gKNA -13.26 Ref.[54]
VKK 0.254 Gev~1 Ref.[24]
KK+ 10.74 Ref.[24, 53]
P 0 Ref.[34]
Kp 6.1 Ref.[56]
Azpe 1.05 GeV Ref.[31]
ArnN 1.05 GeV Ref.[31]
Aypo 1.05 GeV Ref.[38]
Aonn 1.1 GeV Ref.[38]
A 1 GeV Ref.[38]
Aopp 0.9 GeV Ref.[38]
Aowg 0.9 GeV Ref.[24]
Ao 0.6 GeV Ref.[34]
Ay 1.227 GeV Ref.[57]
Ag 1 GeV

these box diagrams are derived as follows:

9vpaGa NN

M, (1o — M)

_igqﬁpﬂ'gﬂ'NN c ¢
My (tx — M2) #7070

*p

A3 —Mz_A?;NN“Mg}

[(k1 ICE e;) — (k1 - e;)(e,y . r)] ﬂ(q)u(pl){ il 2

to— M2 t,— M2

A2 _ M2 A2 . M2
- ppm T NN
ksear i(p2)ysu(q) X { tr — M2 ' tfﬂ — M2 ) }’
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—iGywrgrNN _
Mu = B et x|

Map = el au(r ka)leo €)= (- )k )]

2 12
X{Adwo_Mo,AgNN—Mg}’

2 2
Adom — M . A727NN - M
tr — M2 te — M2 ’

ty — M2ty — M2

_ _9oNNGvwo  [req. ..\ _ orr. .3\ ]= _5p a
Mos = 2200 [k5e, 1) = 5l 1) )11+ ) = 2.0 o)
2 2
Y
A — (k1 —r)? ’
_ GuNN Gpwo L ANLE (. Y AR
Mar = 3o [(r KL — (r -k — M3 ]
2
_ K A2
x4(p1) [’Yu(l + Kw) — ﬁqu] U(Q){ (Ag—_(r-w‘_—“]@‘)i) },
p w
Myp = —2NIvn . pekdrPia(g) |72(1+ k) — omg® | ulpr)
’ M, (t, — M2) 7 Mp
2
N
A2 — (1 — kg)? ’
_ —GpNNZG¢pm v, B a  kFp
Mun = 7ot cpvope Kir i) (1700 4 5) = 20t o)
2
A
A2 —(ky—7m)2) |’
. 2
—2iegK PA - { (A%( - M?{) }
M = ——=——(r-e)U U X _— )
5L (tL _ M}Q{)( ’Y) (q)’75 (pl) tK _ M]2{ ]
2194 K K9K PA *\ = { (A%( - M12<) }
M = —F—————(r-€:)U U P _ ,
. 2 2
TLYyKK*gKPA va .B= A — My,
_ aiErnkl € —K K
Me,L M- (tr, = M) HvasCmbieic w(q)rsu(pr) x { < AT ik )
_ 9gKK*gKPA *ptyw _ A — ME
Mer = mfuuaﬂ%“sz%rﬁ u(p2)ysu(g) x { ( AT —ix ; (1.7

where the subscripts 1, - - - 6 correspond to the box diagrams appearing in Fig. 7.4 in order. The other sub-
scripts L and R denote the yp — M B and M B — ¢p parts, respectively. In Figs. 7.5 and 7.6 we draw
the results of the total cross sections for the vp — pp and «yp — wp reactions, respectively. The results are

qualitatively in agreement with the experimental data.
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FIG. 7.5: Total cross-section of the yp — p°p reaction. The solid curve depicts the present result obtained
from the ¢-channel o-exchange diagram. The closed circles and the open squares are taken from Ref. [58],
where as the open triangles represent those from Ref. [59].
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FIG. 7.6: Total cross-section of the yp — wp reaction. The solid curve depicts the present result obtained
from the ¢-channel 7-exchange diagram. The closed squares denote the experimental data from Ref. [60]
whereas the open circles represent those from Ref. [61].

7.3 Numerical result and discussion

We are now in a position to discuss the numerical results for ¢ photoproduction. We start with the differential
cross section at the forward angle do/dt(6 = 0) as a function of the photon energy E, in the laboratory
frame. The parameters are determined in the following manner. Since the the Pomeron-exchange in the
low-energy region is not much understood, we fit the parameter for the overall strength C,, and that for the
threshold syp, in Eq.(5.4) in such a way that the Pomeron-exchange reproduces the high energy behavior of
the differential cross section: Cp, = 8GeV~! and s¢, = 3.83 GeV2. On the other hand, We fix the cut-
off parameters for the K A*(1520) box diagrams to describe the E., dependence of do/dt in lower energy

region, in particular, to explain the well-known bum-like structure around E., ~ 2.3 GeV. The parameters
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FIG. 7.7: Differential cross section as a function of the photon energy E.. The thick solid curve depicts
the result with all contributions included. The solid curves with the symbols P, T', B and H represent the
Pomeron contribution, those of 7- and 5-exchanges, those of all the box diagrams, and the total contribution
of hadronic diagrams (T" + B), respectively. The dashed curves with numbers in order denote the effects of
the seven box diagrams separately.

of all other hadronic diagrams are taken from existing references as explained in the previous section.

Figure 7.7 illustrates various contributions to do/dt(f = 0) as a function of thé photon energy E,
from the Pomeron-exchange, the ¢-channel 7- and 7 exchanges, and seven box diagrams. The solid curve
with symbol P draws the contribution of the the Pomeron-exchange to do/dt. As expected, it governs E,
dependence in the higher energy region (£, > 3GeV). Note, however, that the Pomeron does not contribute
to do/dt below around E, = 2.3 GeV in the present work. The - and n-exchanges provide a certain
amount of effects on the differential cross section (solid curve with symbol 7°). The contribution of the
m- and n-exchanges start to increase from the threshold energy and then it decreases very slowly when it
reaches approximately 3 GeV. Thus, the effects of the 7- and n-exchanges are quite important in the lower
E., energy region up to 3 GeV, where the Pomeron-exchange overtakes the 7- and n-exchanges.

Except for the KA*(1520) box diagram, all other box contributions turn out to be negligibly small.
However, the K A*(1520) box diagram plays an essential role in describing the experimental data for do /dt
in the lower E., region, in particular, in explaining the bump-like structure near 2.3 GeV. This is very
different from the conclusion of Ref. [25], where the K'A*(1520) seems to be suppressed in the K-matrix

formalism. The reason lies in the fact that we have introduced different form factors for the vyp — KA*
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and K A* — ¢p reactions. In general, form factors are given as functions of two Mandelstam variables for
the box diagrams, i.e. F'(s, t), since we have two off-shell particles in the s-channel and other two off-shell
particles in the ¢-channel. However, it is very difficult to preserve the gauge invariance in the presence of
the form factors. Thus, we have introduced a type of overall form factors to keep the gauge invariance in the
vp — KA* part, as written in Eq.(7.5). To keep the consistency, we also have included a similar type of the
form factors in the KA* — ¢p part. With these form factors considered, we find that the K A* box diagram
is indeed enhanced as shown in Fig. 7.7 in comparision with Ref. [25]. The contribution of the KA* box
diagram increases sharply up to E, ~ 2 GeV and then falls off linearly. The result of the K'A* box diagram
indicates that the off-shell effects, which arise from the form factors and the rescattering equation, may

come into play.
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= [T] t-channel m+n
— [B] Boxes
- = [1] pBox
—= [2]J w Box
—= [3] oBox
— = [4] t Box
—— [S5]1 KA(1116) Box

-~ [6]K A(1116) Box
— — [7]1 KA(1520) Box
------ 1| 4+ BONN (1974)

D A LEPS (2005)

[u—y
o
T T T

1 llllllll

Dl I S S

[um—
o
T T[T
I
)
)

do/dt [ub/GeV’]

-——
-~

T
!
1
1
-,
'

T
1
1
i
i
1
{
I
|
1
1
|
1
|
’
H
|
|
1
I
1
1
|
I
1
11

10 45 90 135 180
0 [degree]

FIG. 7.8: The differential cross section as a function of the scattering angle 6 with the photon energy at
E, = 2 GeV. The thick solid curve depicts the result with all hadronic contributions included. The solid
curves with the symbols T" and B represent the contribution of the 7- and n-exchanges and those of all the
box diagrams, respectively. The dashed curves with numbers in order denote the effects of the seven box
diagrams separately.

Considering the fact that the K*A threshold energy (Ey, = 2 GeV) is very close to that of ¢ pho-
toproduction (Eyp, =~ 1.96 GeV), one might ask why the contribution of the K*A is suppressed. While
the K'A*(1520) channel (Ey, ~ 2 GeV) is directly related to ¢p, since both are the subreactions of the
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vp — K Kp process, the yp — K*A reaction is distinguished from those two reactions, because the K*A
channel is related to yp — wK A reaction. Thus, one can qualitatively understand why the contribution of
the K*A box diagrams is suppressed.

In Fig. 7.8, the differential cross section as a function of the scattering angle is depicted at E, = 2 GeV.
Since the Pomeron-exchange is suppressed at this photon energy because of sy, = 2.3 GeV, we can examine
each hadronic contribution to the differential cross section more in detail. Figure 7.8 clearly shows that the
K A(1520) box diagram is the most dominant one among the hadronic contributions. Adding all the effects
of the box diagrams, we find that the box contributions almost describe the § dependence. Together with the
- and n-exchanges, the result of the differential cross section is in good agreement with the experimental
data [21, 62]. '

——
141 - .

— Total
B —— [P] Pomeron
12+ = -— [H] Hadrons ]
— [T] t-channel n+n
] — [B] Boxes T
—_ 1 -
> E=37GeV 1
O Y
=08
=
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B 0.6
°
04
0.2
0

90

FIG. 7.9: The differential cross section as a function of the scattering angle § with two different photon
energies E, = 3 GeV and 3.7 GeV. The thick solid curve depicts the result with all contributions in-
cluded. The solid curves with the symbols P, T', B and H represent the Pomeron contribution, those of -
and 7-exchanges, those of all the box diagrams, and the total contribution of hadronic diagrams (T' + B),
respectively.

The differential cross section as a function the scattering angle are drawn in Fig. 7.9. The left and right
panels correspond to the photon energies F., = 3 and 3.7 GeV, respectively. As expected, the hadronic
contribution is dominant over the Pomeron-exchange at the lower photon energy, while at £, = 3.7 GeV,
the Pomeron governs the yp — ¢p process. Interestingly, the effects of the box diagrams, in particular,
the K A*(1520) one, turn out to be larger than those of the 7- and n-exchanges, whereas the box diagrams
seem to be suppressed at higher photon energies. It implies that the /{A*(1520) box diagram influences ¢
photoproduction only in the vicinity of the threshold energy. Figure 7.10 depicts the results of the differential
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FIG. 7.10: Differential cross sections of the yp — ¢p reaction as a function of ¢ -+ |t|min With eight different
photon energies. The experimental data are taken from Ref. [21].

cross section as a function of ¢ + |t|;,in, with eight different photon energies, where |¢|n;y, is the minimum
4-momentum transfer from the incident photon to the ¢ meson. The results are in good agreement with the
experimental data taken from the measurement of the LEPS collaboration [21].

It is of great importance to examine the angular distribution of the ¢ — K*K~ decay in the ¢ rest
frame or in the Gottfried-Jackson (GJ) frame, since it makes the helicity amplitudes accessible to exper-
imental investigation [63, 64]. The detailed formalism for the angular distribution of the ¢ meson decay
can be found in Refs. [64, 23]. The decay angular distribution of ¢ photoproduction was measured at
SAPHIR/ELSA [65] but the range of the photon energy is too wide. On the other hand, the LEPS col-
laboration measured the decay angular distribution at forward angles (—0.2 < t + |¢|min) in two different
energy regions: 1.97 < E, < 2.17 GeV and 2.17 < E, < 2.37 GeV [21], which are related to the energy
around the local maximum of the cross section and that above the local maximum, respectively. There-
fore, we have computed the decay angular distributions at two photon energies, i.e. E, = 2.07 GeV and

E, = 2.27 GeV, which correspond to the center values of the given ranges of E., in the LEPS experiment.
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FIG. 7.11: The decay angular distributions for —0.2 < ¢ + |t|min in the Gottfried-Jackson frame. We take
the center values of the energy ranges measured by the LEPS collaboration [21], i.e. £y = 2.07 GeV and
E, = 2.27GeV. The experimental data are taken from Ref. [21].

The one-dimensional decay angular distributions W (cos 0k ), W{(¢px — @), W(¢x) are presented in
Fig. 7.11, which are expressed respectivley as
) = 50— o)+ 5 (3o — 1) co O,
) = 1+2pyp1_1c0s2(gx — D),
21W(px) = 1-—2Rep]_;cos2¢x,
) 1+ 2pyAi_1cos2(px + D),
) = 1+ 2p7p' cos 2, (7.8)

where 0 and ¢ denote the polar azimuthal angles of the decay particle K in the GJ frame. ® represents
the azimuthal angle of the photon polarization in the center-of-mass frame. 1 P, stands for the degree of

polarization of the photon beam. 1 _;, A1_1, and p’ are defined as

~ 1
Pl = §(p%_1—1mp?_1),
1
Ap = E(p%—l—*-Imp%—l)v
F = 2p1 + poo- (1.9)

"Definitions of the angles are well described in appendix B.
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The expressions for the spin-density matrix elements p,, with the helicities A and X’ for the ¢ meson can
be found in Appendix B .

The panel (a) of Fig. 7.11 draws the one-dimensional decay polar-angle distributions W{(cos k). As
pointed out by Refs. [21, 22], the decay distribution behaves approximately as ~ (3/4)sin? 8, which
indicates that the helicity-conserving processes are dominant as shown in Eq.(7.8). It means that {-exchange
particles with unnatural parity at the tree level do not contribute to W (cos 6k ). As will be discussed later,
pYy from the 7- and n-exchanges, which is related to the single spin-flip amplitude in the GI frame, exactly
vanishes. On the other hand, all hadronic box diagrams contribute to it. Though the Pomeron-exchange
might contribute to this spin-density matrix element, it does not play any role below 2.3 GeV. The panel (b)
of Fig. 7.11 shows the results of W(¢x — ®), which are in good agreement with the LEPS data, whereas
the panel (c) depicts those of W(¢x ), W(¢x + ®), and W(®P), respectively, which deviate from the data.

In fact, the data show somewhat irregular behavior which does not seem to be easily reproduced.

Table 7.4: ¢ density matrix in the forward scattering at E,, = 2 GeV

pbo Pi-1 Rep?_; AV ES! p

t-channel 70 + 7 0 -0.5 0 0 0
p box 0.651 —0.175 297 x10"* -894x107%® 1.37x 1072
w box 0.035 —0.48 926 x107* —872x1077 —1.05x1073
o box 0.254 —0.066 —885x107% 2.03x10"* —7.93x107*
7 box 0.061 0.448 557 x107* 1.79 x 1074 1.15 x 1073
KA(1116) box 0.025 0.488 —1.08x107? 7.85x107° —221x107?
K*A(1116) box 0.030 0485  1.39x107% 110x107®  2.06x107°
KtA(1520)box 3.1x107* 0499 —295x107° 5.131x107%  -6.02x107°
box all 6.62x 1072 0455 246 x 1074 1.74 x 1074 5.69 x 1074
hadrons 513 x 1072  0.24 5.64 x 10~4 1.34x107* —1.99 x 10~*

As shown in Fig. 7.11, the decay angular distributions shed light on the production mechanism of the ¢
meson, since they make it possible to get access experimentally to the spin-density matrix elements, or the
helicity amplitudes of ¢ photoproduction. It has important physical implications, because even though some
diagrams seem to contribute negligibly to the cross sections, they might have definite effects on the decay
angular distributions. In Table 7.4, The contributions of each box diagram to the various spin-density matrix
elements at £, = 2GeV are listed. As expected, the 7- and n-exchanges contribute only to pi_q1- The
hadronic box diagrams mainly contribute to pQ, and p}_; and are almost negligible to other components.
Interestingly, the pp box diagram is the dominant one for pJ,, even though it provides much smaller effects
on the differential cross section than the K'A*(1520) one.

Dissertation by H. Y. Ryu (Ver 1.1, Feb. 2013)



Summary 63

TllllllllllllIIlIIIIIIIlIII

0 0 A 1 .77<Ey<1 97

o 197<E<2.17
o 217<E<237
— E=187GeV
—— E=207GeV
.—. E=227GeV

1
1 Rep g

o ey 0 T

2
[~ Imp-y

Spin-density matrix elements

I

k.

0
02l g 11 1 § &

L 1 1 1 I 1 1 1 1 —I 1 I 1 I 1 1 1 I~_I i 1] 1 L 1 1 i
04y 0.1 0 0.1 0 0.1

2
et | [GeV]

0.2

FIG. 7.12: The density matrix elements as a function of |t —¢min| for three different photon energies, i.e. 1.87
GeV, 2.07 GeV, and 2.27 GeV, to which the solid, dotted, and dot-solid curves correspond. The experimental
data with three different ranges of the photon energy are taken from Ref. [22].

Rcently, the LEPS experiment measured the spin-density matrix elements for yp — ¢p [22] in the range
of E, = 1.6—2.4 GeV in which the Pomeron-exchange does not play any important role, in particular, in the
present approach. Thus, we can examine the hadronic contributions to each spin-density matrix elements.
Figure 7.12 illustrates the various spin-density matrix elements, compared with the LEPS data. Since the
experimental data are given in the finite range of E., we just take the three center values corresponding to
the ranges, i.e. E, = 1.87, 2.07, 2.27 GeV. The hadronic diagrams considered in the present work describe
quantitatively Rep%, p9_; and pl,. However, the deviations are found in other spin-density matrix elements

as t — |t|min increases.

7.4 Summary

In the present work, we aimed at investigating the coupled-channel effects arising from the hadronic inter-
mediate box diagrams to ¢ photoproduction near the threshold region in addition to the Pomeron-, -, and

n-exchanges. In particular, the bump-like structure near E, ~ 2.3 GeV, which was reported by the LEPS
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experiment [21], sheds light on the production mechanism of the ¢ meson in the vicinity of the threshold,
since the Pomeron-exchange was shown to be not enough to explain this peculiar structure of ¢ photo-
production. Thus, we studied in detail the effects of the seven different box diagrams such as pN, wN,
oN, 7N, bKA(1116), K*A(1116), and K'A(1520). In order to take into account the rescattering terms, we
employed the Landau-Cutkosky rule in dealing with these box diagrams.

Since it turned out that the K A*(1520) box diagram played a dominant role among hadronic contri-
butions in the lower-energy region, we scrutinized its contribution to ¢ photoproduction. We introduced
the form factors depending on both the s and ¢ Mandelstam variables in such a way that the total cross
section of the yp — K A*(1520) reaction was well reproduced. All other box diagrams were constructed
by utilizing the previous theoretical works and by reproducing the corresponding experimental data when
they were available. We examined each contribution carefully by computing the differential cross section
of ¢ photoproduction. While the K A* box diagram was found to be the most dominant near the 2 GeV, all
other box diagrams turned out to be very small. The results were in good agreement with the LEPS data
including the bump-like structure. We also computed the differential cross section as a function of ¢ + || min
and found it to be in good agreement with the experimental data.

We investigated the contributions of hadronic box diagrams to the decay angular distributions. While
the one-dimensional angular distributions W (cos 6x) and W (¢ — ®) were in good agreement with the
experimental datai, other three angular distributions seemed to deviate from the LEPS experimental data.
We also examined the various spin-density matrix elements, which were measured recently by the LEPS
collaboration. We found that the hadronic box diagrams describe the experimental data for RepYy, p§_; and
ph were well reproduced. While the present results explain near ¢t — [¢|min &~ 0 relatively well for other
spin-density matrix elements, they deviated from the expeimental data as ¢ — [¢|min & 0 increased.

As shown in the present work, the intermediate box diagrams, in particular, the K A*(1520) one, play
crucial roles in explaining the cross sections of the yp — ¢p reaction in the vicinity of the threshold.
Other box diagrams also provided certain effects on the part of the spin-density matrix elements. We have
considered in this work only the imaginary part of the transition amplitudes of the box diagrams based on
the Landau-Cutkosky rule. However, the results of the spin-density matrix elements already indicate that
we should carry out a theoretical analysis of ¢ photoproduction more systematically and quantitatively.
Thus, we need to investigate a full coupled-channel formalism and to solve rescattering equations with the
real parts of the box diagrams fully taken into account. Another interesting and important problem is to
extend our approach to the neutron target, since some of considered amplitudes are isospin-dependent. The

corresponding works are under way.
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8.1 Introduction

FIG. 8.1: yp — K+t KTEZ" scattering process.

Since the late 1980s, no significant progress has been made in cascade spectroscopy because of the
closing of the then existing kaon facilities. Recenty, the CLAS Collaboration at the Tomas Jefferson Na-
tional Accellerator Facility (JLab) initiated a cascade physics plan [16]. They want to understand the
strangeness baryon properties more deeply via photoproduction reactions such as yp — K+TKTZ~ and
yp — KtK+n~ 20,

Cascade physics has recently received special attention in connection with the search for the exotic
pentaquark states. In fact, the NA49 Collaboration has reported seeing a signal for the pentaquark cascade
=5 [78]. However, to date, other experiments with much higher statistics have obtained negative results.

In this work, we investigate yp — KT K=" in an effective Lagrangian approach to estimate the cross

section of that scattering process.
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8.2 Possible diagrams (channels)

<5 channer :

FIG. 8.2: 7 diagrams for yp — K KE~ scattering process.

FIG. 8.2 shows the seven possible diagrams for yp — K KZ~ scattering process. Each diagram is
determined by the position where the photon is coupled to. Since both kaons are charged, there are two
diagrams (3 and 6) which contain the contact term. We found that diagram 1, 2 and 3 make gauge invariant
set and diagram 4, 5 and 6 make another set. The diagram 7 is self-gauge invariant. We apply the different

form factors for each gauge invariant set. We will explain this later.
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8.3 Formalism
8.3.1 Effective Lagrangian
We use the following Lagrangian ;
LyNN
Lykk
LKNA
Ly a=-
LykNA

L

YETE
‘C"yKAE_

LA

N _ kv v n

eN [’y“ QJ\INU‘WG NA

—ie [(9 KK~ — (8,K7)K¥] A¥
9N AP s0, K~ N

graz- 2 Y50, KA

iegyk NAAY* 15 K~ N A#

eE~ |~ + B Lo B AR

- B ome HY

ieg xaz-2 Vs K~ AAM

. KA "
eA [maw,a ] AAH

We use the following coupling constants and anomalous magnetic moments:

JKNA 6.1512 GeV~! Ref. [26]
IKA=- 2.104 GeV~1 Ref. [24]
Kp 1.79 Ref. [24]
KA -0.613 Ref. [54]
K= 0.35 Ref. [54]

8.1)

8.2)

8.3)

84)

8.5)

8.6)

8.7

(8.8)

Table 8.1: The strong coupling constants and anomalous magnetic moments used in the present work.

Until this step, there is no free parameter. We use the strong coupling constants and magnetic moments

which are determined by previous experiments and theoretical calculations. Some free parameters will ap-

pear when we introduce form factors. And those free parameters will be determined by the experiment data

later.
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8.3.2 T-matrix

We use S = 1 — T convention and T-matrix are given by

T= b b e et [T+ gk 1), 69)
T =qmﬂ@mw£:f 32 2mlﬁmMmhf2;L@/ 8.10)
Ty =emmmmmﬁf:£i£} 7éyulka) (8.11)
fn==mQWM@£:£:ﬁ%2( f; 2mmm (8.12)
Ty = eamrzonon 1(pa) (s — o) DA i) s . 8.13)
Ts = eqigai(ps)ty T 2_;)!;1) 21511&(’92), (8.14)
T = ooy bk — ) e ) @19

where g1 = ggna and g2 = gxa=-. Except the diagrams which include the contact term, every diagrams
have two propagators. Now we are in a position to find the gauge invariant set to apply form facotor. To
conserve the gauge invariance, we will apply the form factor to the self-gauge invariant part and the gauge
invariant set respectively. The gauge invariant set means that the sum of the invariant amplitudes are gauge
invariant but alone is not.

We can easily check that 71, 75 and T3 are consist of one gague invariant set and Ty, T and T make
another set. 77 is self gauge invarinat set. We apply relevent form factors for each gauge invariant set as

follows:
Toal = TVE + TV + Ty + T3)Fy o + +(Ty + Ts + Ts) Fa e (8.16)

Tiota1 Stands for the sum of each diagram’s T-matrix. T{“" and TY ol are the self gauge invariant part and the
gauge violating part of T-matrix of the diagram 1. F} is the form factor which depends on only the virual
particle’s momenta in diagram 1. F . and F5 . are the common form factors which depend on the variable

of the gauge invariant set. We introduce the detail of how to construct form factor in Appendix C.
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8.4 Numerical result

Before applying form factors, we check the bare contribution of each diagrams.

vp>K K&

No form factor
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FIG. 8.3: total corss section without form factor

FIG. 8.3 tells us that the first diagram which contains s-channel is most dominant before applying the form

factors. We can see that diagrams with photon coupled to the first kaon cotribute more than those with

photon and the second kaon coupling. Diagram 2 and 4 contaions t-channel and 3 and 6 have contact term.

Next let us consider form facotor contribution.
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8.4.1 TypeI form factor
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FIG. 8.4: Total corss section with type I form factor. Data are taken from [54].

FIG. 8.4 shows that our results with various parameters. We use type I form factor to reproduce the
data and our best fitting is (n, Aas, Ap) = (2,1.3,1.4). In the present work, we include only ground state

baryons. Considering resonance baryons as intermediate states might change.

8.4.2 Type II form factor

T
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FIG. 8.5: Total corss section with type II form factor. Data are taken from [54].
FIG. 8.5 tells us that type II form factor can reproduce the data with the parameters which are similar
values compared with those of the type I form factor. In this calculation, the best choice is (n, Az, A B) =

(2,1.375, 1.375). This parameter sets can be used to estimate the order calculation of yp — K+ K+ K0~
by extrapolation.
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8.5 Summary of this chapter

In summary, we have explored the reaction yp — K KZ= within an effective Lagrangian approach. This
is the investigation of this reaction in connection with the cascade spectroscopy program initiated by the
CALS Collaboration at JLab. There is a previous theoretical work [54], but we use a different form factor
set to preserve the gauge invariance and consider the only ground states as the intermediate states. We found
that with similar free parameters value compared with [54], we can reproduce the experiment data.

Our results show that our approach can reproduce the experimental data with reasonable choice of pa-
rameters. This calculation is important in the point of view that we can investigate the strangness physics
via E photoproduction. Also this calculation is helpful for us to estimate the three s5 production which is
related to O~ production. In the previous chapters, we introduced yp — KA as one s5 production process.
This two s5 production mechanism study, K K'= production, is very important to extend three s§ produc-
tion process. We will use the results we get in this chapter to extimate vp — K K K2 photoproduction.
Furthermore we can investigate the dynamics of the cascade dynamics more using the machinary which we

used in the present work.
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9

Yyp — KtK+tKYQ~

9.1 Motivation

Historically, baryons with mulitple strange quarks have played an important role in the development of the
quark model and our understanding of the universe. The prediction and discovery of the {2 baryon certainly
was one of the great triumphs of the quark model. However, half a century later, there has been little new
information about the 2 and Z byryons. In fact, only two  states and six = states are considered to be
well-established, with at least three-star rating in the PDG [14]. The production mechanism of these states
is still unknown to a large extent. Tipically small cross sections make the observation of the higher excited
states difficult, which explains our current lack of knowledge in excited hyperon spectroscopy. Production
of doubley- or triply-strange baryons by means of a photon beam (such as in the CLAS, at present, and
CLASI12 and GlueX, in the future) is expected to shed light on the genesis of these states which involves the
production of s5 pairs from the vacuum. This significant change in baryon strangeness number from intitial
(S = 0) to final state (S = —3, — 2) could result from direct production via vector-meson dominance or
from a sequence of intermediate transitons. Inference on the production mechanism of these states in YD
collisions can be obtained from precision measurements of the cross section and invariant mass of these
states.

The photoproduction of the (S = —3) Q baryon requires the total strangeness transfer AS = 3. This is
the largest possible transfer of strangeness number, which makes the measurement of the production of this

state and of its decay properties particularly interesting in a photoproduction environment, which have not
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yet been established.

The 12 GeV upgrade in CLAS12 will provide and order of magnitude higher in luminosity and signifi-
cantly better multiple-particle final states acceptance than CLAS. It is therefore expected that many aspects
of 0~ and Z stats, including the cross section of the ground state 2~ and = baryons, the mass splittings of
ground and excited cascades which would deepen our understanding of the «/d quark mass difference, and
the polarization of the =~ baryon.

In this chapter, we calculate the cross section for yp — K+ K+ K%~ based on an effective Lagrangian
approach. The ground states A, ¥ and = are included in this calculation. With the form factor set used in

one and two kaons photoproduction, we estimate an order of the total cross section.

9.2 Three type of diagrams

9.2.1 Typel, Il and III

Here I would like to explain how to construct the diagrams we consider. At fisrt draw the baryon and meson
lines. After that we can draw photon line which is coupled to the charged particle and the particle with the
magnetic moment.

Considering the order of three kaon, I have the diagram set which depends on the position of the neutral
kaon. Each diagram set is labeled as type I, type II and type III. FIG. 9.1 show the type I diagram which the

neutral kaon is third position.

FIG. 9.1: The first type of diagram set. It depends on the position of the neutral kaon.

We couple the photon line to the charged kaons and each baryons. Since we cannot attach the photon line
to the neutral kaon, there is no ¢-channel and contact term related to the neural kaon, K 0.1 would like to

introduce other two type. After that I will explain how to draw the photon line.

Dissertation by H. Y. Ryu (Ver 1.1, Feb. 2013)



Three type of diagrams 76

FIG. 9.2: The second and third diagram set.

After we categorize three types, we need to distinguish the diagrams according to the place where pho-

ton coupling.

10 places photon can couple

FIG. 9.3: 10 possible places where photon can couple to.

I show 10 possiblities that the photon can couple with, but it depends on the charge of kaon. It means

that the photon cannot couple with nuetural kaon, therefore there are 8 possibilites for each type. But I will

fix the label of the 10 places. For example, photon doesn’t couple with positon 8 and 9 for the type I case. I

call the diagram I-7 for the diagram which photon couple with position 7 and call the diagram I-10 for the

diagram coupled with position 10 even though there are no photon coupling with position 8 and 9 in the

case of type L.

We will show each diagram when we explain the detail formalism in the next section. In the present

work, we include the kaon and the ground state of baryons , for example A(1116) and Xi~(1321). We can

improve our result including more intermediate states. That is our next work.
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9.3 Formalism : Type I diagrams

8 diagrams of type I are shown. The neutral kaon is the third line which is denoted in a red. In this present
work we consider the ground state baryons as intermediate particles. For example, By = p, Bo = A and

B3 = =~. Furthermore we consider the kaon ¢-channel exchange in the 2nd and the 5th diagrams.

(p1)  (p2) (M) T + Kt o
(k1) Y K+ K+ Re %YAS F* B
LLL7 "v ". ". = ’ 'x ",

FIG. 9.4: Type I diagrams.

In the next, we will introduce Lagrangian set and 7-matrices to calculate this diagrams.
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9.3.1 Effective Lagrangian and 7T-matrix

Effective Lagrangians are given by

Likx = —ie[(BKﬂK‘ — 8(K‘)K+]
Lkna = gr+NaMY' 50K~ N
Lxas- = gr+a=-Z Y150, K A
Lyoz-q- = gKOE-Q—ﬁ—uauFO’YSE_
For convention, I define couplings for short as follows:
91 = 9gKNA, 92 =9gKAa=-, 93 = gKo=-q-

where A = A(1116). T-matrixces are given by

k1 + ko —py — Py —

UWB"] A*N

k1+1€2—i>1+MA

Ti-1 = —iegi1g293T" (pa)ph (

P ky+ ko + M,
VIl + ka)? = M3

" k1+k2_p1 p2

K
I+ 21\; 161:| ,yu(k‘g)

ki+ky —p1 — p2)? — 42 pz(kl-l-kz

k1 + ko — P+ My

Ti2 = iegig293u*(pa)ph

2p1 - €,
(k1 — p1)? — mi

Ey+ ko —p) — Py —

x (k1 — p1)vsu(ke) x

(k14 k2 —p1 —p2)? — M2 ﬁz(k1+k2—p1)2—

ky+ ko — Py + My

Ti—3 = iegigogsut (P4)

X é7’y5u(k2)

3(ki+ka—p1—po)?— M2 p2(k1+k2—101)2—

©.1n)

“.2)

(9.3)

4

9.5)

(9.6)

.7

9.8)

©.9
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Ty

Tis

Ti-6

T

Ti—10

1 k1 + ko — 151 p2_ =
P+ ks —p1 — p2)? — ME_

k1 + ko —py + My kil ko — Py + My
(k1 + ke —p1)2 — M3 7 (k2 — p1)? — M}

~zeg1g293—u“( 4)p

X by prvsu(ks) (9.10)

10 kl + k? - 251 ¢2 — A{E‘

Tieg192038 (Pu)Ps (k1 +ka — p1 — p2)? — M2_

X by (liz__il);r_MA’}z x 1’)1’)’5U(k2)( 2%;1 - ©.11)
D — l)j yhosu() ©9.12)
ieg19293T" (p4)ph ( Ifll-:_ :2 2__1{11___:;2)2_ ~ME [I + 2';\2_ 161]

Xy :22_- ;51 zbz) M2 Drysu(ka)u(ks) 9.13)

. _ 1
icg19293 [u"(p4){7aguu = 5w + vwwa)}fé‘D"ﬁ (k2 —p1 — p3)

K
2]‘? TH (pg) k1€, D8 (k2 — m —m)]

ko —py — by — b —p1 + My
B k2 — p1 — pa)? M2 2( —p1)?— M}

Xp3g Prysu(ks) 9.14)

where the propagator of the spin3/2 spinor is defined as

v

M 1 2 pt AV — pYyH
DH*(p) = 15+ [g”y——7“7u pt'p” i P ] (9.15)

p? — M? 3 3 M2 3M
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9.4 Formalism : Type II diagrams

8 diagrams of type II are shown. The nuetral kaon is the second line which is denoted in a red.

{1

L
o

K+
o” ¢"
I
¢"'
#
L.

(3
ok
.
.

FIG. 9.5: Type 11 8 diagrams.

Becareful that the label number is not order of diagrams, but the position where the photon line is coupled

to. And there is no contac term related to the neural kaon.
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9.4.1 Effective Lagrangian and 7-matrix

Effective Lagrangians are given by

KN

L = —eN|y +— 8"] AXN 9.16
ANN [’Yu M (9.16)
Lxna = gr+nabMYV* 0, KN 9.17)
EKOAEO = gKOAEOEO’Y“’)%au—ROA (918)
Lr+zog- = gK-Eon—_§0’75au?OQ_“ + gK+AEo§_“8uFO’y5E_ 9.19)
For convention, I define couplings for short as follows:
91 = 9gKNA, 94 = gKOAZ0, G5 = gK=0Q- 9.20)
T-matrixces are given by
. _ kv + k2 — 9 — 152 ky+ky—py —
Th1 = — u®
-1 i€9194950” (P4)P3a ot Fo 1 = MEO‘{) i+ o —p1)? M2 hrs
ki + ko — M, Kp
I .
* T + kz)? M2 [ * aag, i | rehe) ©2D
Tir = icqraag(pipsaraiz =P = Mer 1t R8s 2% -
“(k1 + k2 — p1 — p2)? — M2 (ki + k2 —p1)2 — M3
2p1 - €y
Kk — k 22
x (k1 — 1) vsu(k) X (k1 — p1)2 — m% ©-22)
. _ ky + k2 — Py — 152 0 k1 + ks —py+ My
Thi-3 = — *
-3 i€g19495%” (P4)P3a (k1 + k2 — p1 — MEO (k1 Tk —p1) — Mﬁ
xéosu(ka) (9.23)
. KA _ k1 + ko — Py — P9 — M=-
Ti-a = — —7* b =
-4 1€919495 2MAU (pa)rs (k1 + k2 — p1 _p2)2 _ Mé_
ky+ kKo — Py + My 162—151
X kiéy u(k 9.24
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Kzo u K1+ ke —py — Py — M=-
2M=o S(k1+ ko —p1 — p2)? — M2Z_

Ey+Ey—py — My ko — Py + My
(k1 + k2 — p1)2 = M3 "% (ks — p1)? — M}\ﬁl%u(b) (9.25)

kz“‘i)l'—p2—MEO kz*pl""MA
ka — p1— p2)? —~ M2, > (ko — p1)? — M3

Ti—7 = iegig4gs W (pa)p

Xkléry

Th-s = ieg1g495ﬁ°‘(p4)p3a(

© 2p3-ey
X u(kg) X (9.26)
i)l /5 ( 2) (kl i]3)2 1712

kQ—pl—ﬁz'—MEO k;2_ﬁ1+MA

Tioo = degigugs™ (pa)éne (k2 — p1 — p2)% — M2, * (ky — p1)® — M3
xp1715u(k2) (9.27)
. _a 1 anvB
Tn-10 = 1ieg194gs|U {7ag;w - 5("/&7#71/ + 7u7u'7a)}67D (k2 —p1 —p2 — p3)
—g* "y BB( koo — 1 — ey — ko —p —po — Mz
w (p4)2]v[Q k1€, D" (ko — p1 — p2 P3)] p3ﬁ(k2 i —pa)i %ﬁz
ko — M,
2= T MA k). (9.28)

(ke — ;)% — M}

T'-matrices for type II have three propagators except the diagrams which contain the contact term. We can -
easily show that the first 3 T-matrices are gauge invariant set. But others are not so trivial. Therefore, in the
preliminary result, we check the gauge invariance of T3;_4_11—10 numerically. After that we apply the form

factors to the first 3 T"-matrices and to the others respectively.
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9.5 Formalism : Type III diagrams

Here we will show the 8 diagrams in type III. And we will explain which lagrangians are used and 7-matrix

expression.

FIG. 9.6: 8 diagrams of Type III

Type III diagrams have different intermediate states because of the order of the neutral kaon. In this case,

ground state ¥ and Z° are choosen as the vitual intemediate states.
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9.5.1 Effective Lagrangian and T-matrix

Effective Lagrangians for type III are given by

LNy = —eN|y* — My a“”B,,J AuN
Lokk = —ie[(@"K)E — (F)K] 4,
=+
Lxnso = ggnsoX Yv50,N
Lgsizo = ggzizod yh 50, K~ 5t
) =0 _
Ligs+rzo = tegygstzol YsET ALK
Lyzog- = gxrzog-Q 0K Ts=0
Lygzog- = —iegyxzon-0 "A K ysE
Lozist = —e5@ [y — N Y
YE+E 2M2 K
=0 K= —
Lygozo = €E 5 oo o8, A, ="
o H 1 an—-v
‘C'yQ—Q‘ = —ef) YaGpv — 5(70'7;/)’1/ + ')’u"/u’)’a) A%Q

—y KO- v _
—efd umﬂﬂ:aa (8VAQ)Q”.

For convenience, we redefine the coupling constants as follows:

g6 = Gk=oq-
gr = JGKnNxo
g8 = ggs+zo

(9.29)

(9.30)
(9.31)
(9.32)
(9.33)
9.34)

9.35)

(9.36)

9.37)

(9.38)

(9.39)
(9.40)
(9.41)

ge and g7 are determined from previous works. But in our calculation, gg which is related to ™~ is a free

parameter. We choose 10 as the coupling constants related to £~ verteces in the present work.
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T-matrixces of type III are given by

. _ k1+l€2—151 Py — M=o k14 ko — Py + M+
Tt = —iegogr9st (pu)psy (k1 + k2 — p1 — p2)? MEO (k1 + k2 —p1)2 — M2, Pre
K1+ k2 + M,
I Eqléu(k 9.42
(kl—i—kg)?—Mg[ +2M 1] Ju(k2) 9.42)
T . . ki +ks—p1 —po— Mzo Ky + ko — Py + My
— Py + M+
k 043
X[I+2M 161]45 T~ ) = ME, Drysu(ke) (9.43)
. _ k1 + k2 — Py — Py — M=o ko — Py + Ms+
Tin-s = iegogrgsi(pa)pas (k1 + ko — p1 — p2)?2 — M2, (1 = 7o) (ko —p1)? — M2,
2p2 . 67
k 9.44
Xﬁ175u( 2) (kl — p2)2 - m%{ ( )
. — ky+ks—p— 9 =0 ko —p +M+
Tiws = ~ieqsmai® (pomaag L S b
x p1v5u(ke) (9.45)
. _ k1 + ko —py — o — M=o KE P — P
Tin-r = iegagrgst(pa)ps (k:11+ T —— i VR D T (kg ——— 2) M2 by
-1 — Mz:+
X u(k (9.46)
s —p1)2 = 151’75 (K2)
. _ Ky —py — Py — Mo . Ky —py + Myt
Tm-s = iegegrgst’ (pa)psu ( k;— pll_p22)2 By yENLIT _pll)g —
=0
2 €
x pyysuks) e Y (9.47)
( P3) - My
— M= + M
11[1]—9 = Z6.969798“' (p4)6'yp, (k ﬁl_ pﬁ22)2 _ ]\_402 ﬁ (k_ — pl)Q 2+ ﬁ175u(k2) (948)
=0

. _ 1 v
Ti-10 = ie969798T" (1) | Yol G — = (Vute + Yo yu) 1€7*D"P (ko — p1 — p2 — p3)
2

ks =1 — P2 + M=o ky — Py + M+
ko — p1— p2)? — M2," % (kg — p1)? — M2,

P1—D2 — ps)]pw(

xprysulks) (9.49)
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9.6 Numerical result

Here we will show the result of our calculation. Af first, we will look around the total cross section of each
diagram without form factor. It is always meaningful to see the bare contribution of each diagram in the
sense that it help us understand the structure of each T-matrix.

9.6.1 Contributions of each diagram without form factors

Here the totall cross sections of type I diagrams set are shown.

TYPE 1
100 T T T 100 T rr T 17T L
[T 1 ] [T I ]
80 - S go -1 "
60 — 60 |- —
40 - — 40 |-
20 - 20
0 _L 1 ] 1 I L E 0 —J_LJ | | 11 1 I_
5 10 15 20 5 10 15 20
100 T T 17T T 1T 17T L 100 T T 17T T ET 3 T T 17
Lli,) I [ i [T 61 [ I ]
80 |- °1 4  sofl® -
60 |- — 60 -
40 — 40 -
= 20r - 20 - M
3. 0 —I 11t I Lol |M 0 —L L1l LI 1 | 1 | l—
— 5 10 15 20 5 10 15 20
b 100 T T T 100 | S Y | T 117 T T
i ' ' ] [T T l ]
80 |- 17! -+ 8ol -
60 - 60 —
40 — 40 |- —
20 - 20
0 —| 1 l L _-l—/‘l/I Ohj_Ll ? I Y | L 11 I_
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100 l T TT I T 1 rr I T T 171 100 ] FT ¥ l T T 1T l LS
[T ] [ ]
[4] [10]
80 |- — 80 |-
60 — 60 |-
40— - 40 —
20 20
0 —J_Ll 1l | L.l 11 I_ 0 _J_Ll Ll I
5 10 15 20 5 10 15 20
EY [GeV]

FIG. 9.7: Each contribution of type I diagrams without form factors
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Next the totall cross sections of type 2 diagrams set are shown.
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FIG. 9.8: Each contribution of type II diagrams without form factors

We observe that the contributions of the second diagram which include the kaon exchanged ¢-channel ,

the 9th diagram with a contact term and the 10th diagram with 2~ €)~ coupling are large. Every diagram

increases as a function of the photon energy E, since there are 4 energy integration in the phase space.

Therefore we can expect that we need the stronger form factor to controll these increasing behaviors. The

form factors dependent on the three vitual particles can do. We will explain this later.
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FIG. 9.9: Each contribution of type III diagrams without form factors

FIG. 9.10 shows the total cross section of type III diagrams without form factor. We can see that the

4th and the 7th diagram’s contribution are large. We can expect the magnitude of the total cross section of

type III can be different from other two types since type III diagrams contains different intermediate states

compared with type I and type II. We show the total of each type and total of every diagrams in the next

section.
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Here we show the contribution of the summation of each diagram set and the total of every diagram we

calculated.

No form factor

1000 | T I T I T 1000 I T l T ’ T
L TYPEI ] L TYPE I 4
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FIG. 9.10: The cross section as a function of E.,.. Each type’s contribution and total contribution are shwon.

We observe that the magnitude of the total cross section of type I and type II are similar, but that of thpe III
are relatively large. We guess that such a difference is came from the different intermediate particle in the

diagrams. The position of the neutral kaon makes the different choice of the intermediate states.
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FIG. 9.11: The total cross section as a function of E.,. The blue points are a extrapolation taken from [79].

Two solid lines in FIG. 9.7 are our result. The extrapolation points are extimated from one 53 production
(K'A) and two s5 production (K K E). We try two cut-off parameters in the form factor. We observe that the
cross section is very sensitive to the cutoff since cutoff affects 24 diagams. For simplicity we assume that

the cutoff of the mesons and that of the baryons are same, A M = Ag.

9.7 Summary and outlook

In this work, we calculate order of the total cross section of yp — K+ K+ K°Q~ in an effective Lagrangian
approach. To do this, we consider the 24 Feynman diagrams depending on the position of the photon and
the kaon. For simplicity, we consider only the ground state of baryon and kaon as the intermediate states.
In our calculation there are two parameters, 9gr=q and the cutoff A. Using gx=q = 10, we obtain 0.05 nb
around 20 GeV. This work is the first step to predict the 2~ production. We would like to consider possible

resonances to obtain the relevant order calculation in the next work.
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Summary and Outlook

In this thesis, we have studied kaon photoproductions, starting from single kaon up to three kaons. The
general purpose is to understand the mechanism of strangeness production near the threshold region and
effect of strangeness in hadron structure. In particular, the strangeness productions are accompanied by a
hyperon or its resonance, the reaction is useful to explore the structure of the hyperon resonances.

Single kaon production with ground state hyperons have been studied extensively. Here in this thesis we
have studied systematically many different reactions in a common method, that is the effective lagrangian
approach. The effective lagrangian is based on the idea which we can construct an effective field with
hadronic degrees of freedom instead of quarks and gluons, respecting the symmery of the underlying theory.
In most cases, we have not considered explicitly possible nucleon resonances, and just concentrate on the
background contributions, which give a smooth behavior of the cross sections as functions of the photon
energy. In this regards, our study is not complete but rather qualitative. Nevertheless, systematic study
should provide an important aspect of hadron dynamics in the strangeness production reactions.

One general problem is the form factor. This is a necessary ingredient in hadron reactions when com-
pared with experimental data. Physically the form factor is needed to account for the internal structure of
hadrons. Practically, this provides a simple mechanism to explain the decreasing tendency of the reaction
cross sections for exclusive processes. Nevertheless, the detailed account of the form factor is not given at
the microscopic level, and we still need much phenomenological approach. In this regard, we believe that
the present study is useful.

As a result of the present study we have found a reasonable set of form factor which can be applied to
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wide range of processes with parameters of physically reasonable range. This is quite encouraging, because
in the previous studies, form factors are always treated as theoretically unknown factors.

As specific subjects, we have studied in detail phi-photoproduction associated two kaons (K+-K-), and
three kaons associated with Omega production (KKK). In the former, it is difficult to describe the bump
structure of the phi photoproduction with gluon exchchange, Pomeron. And the bump came from the res-
onance [25] is unkonwn. To explain the bump strucuter near the threthold, we have investicagated several
rescattering processes. Including the hadronic process and Pomeron, we explain the bump structure suc-
cessfully. As the next project, we would like to investigate the phi photoproduction off the neutron with
the coupled-channed method. In the latter, we have provided order of the cross sections for the first time
prior to experiments. In the present work, only the ground intermediate states are considered. We would like
consider the relevant resonaces for the better prediction. In the near future the experiment will be done at

JLab and our results can be compared to the results from there.
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Convention and Kinematics

A.1 Unit, Metric and Dirac matrices

A.1.1 Unit

We use the natual unit(A = ¢ = 1) in this dissertation. Following this unit system, we obtain some relation

between the natual unit and MKS unit as follows:

he = (6.58 x 107%eV) x (3 x 10%m/s)
= 19.74x 1078 eV -m

= 197.4Mev - fm
=1
= 1974fm = 1 in the natual unit system (A.D)
. = Mev it sy .

Using the definition 15 = 10~28m?, we obtain
1GeV™? = (1974 x 1071%)’m?

389.463125 b (A2)
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And the magnitude of electric charge(|e|) and the fine structure constant(c) are given by

47
el = V&7 @.3)
a = é*/An = ¢*/dnhc=1/137.04 (A4

A.1.2 Metric and Dirac matrix

We follow the convention of Bjorken and Drell [67, 68]. The metric in Minkowski space is defined by

1 0 0 0
0 -1 0 0
H = v = (AS)
g = 0 0 -1 0
00 0 -1

Dirac gamma matrices are defined as follows(Bjorken-Drell Notation):

I 0 . 0 o 0 I
0 i 5
= y = X s = (A.6)

The Pauli sigma matrices are defined as follows :

01:(0 1>, 02:(0—1'), 032(1 0) A7)
10 i 0 0 -1 _

These matrices satisfy
(¥ = 207, (™) =%,
(P2 = I, (=4

AV, A =0, (P2 =1, (%) =4°

2
I

tr(o?) = 0, (o9 =0°, o7 =89 +icdkgk (A8)
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A.2 Spin-1/2 Spinor

Spin-1/2 spinor representation is as follows:

VE T M | 0
0 E, + M
ulps:=1/2)=| _ o D ulps=—1/2) = | peciny (A9)
JE, 1M VE+ M
Px+ipy _ Pz
VE M Ept M

where E, = /M2 + p?. And normalization condition is given by

u(p, s)u(p,r) = 2M b, » (A.10)

A.3 Spin-3/2 Spinor
We denote the spin-3/2 filelds u*(p, S)! which satisties the Rarita-Schwinger equations [69]
(b —m)ut(p,s) =0, puut(p,s) =yut(p,s) =0 (A.11)

A general form of the solutions is obtained by

1.3 s
n _ e I
u(p, S) ;C(2 15 2,>\)63A(17)U(17, s) (A.12)
where S = X + s/2, u(p, s) is the spin-1/2 spinor defined in Eq. (A.9), and C(j1 j2 J; p1 po) denotes the
SU(2) Clebsch-Gordan coefficient for J(u1 + p2) = ji(p1) + j2(u2). And eX(p) is the basis four-vector
and is defined by

v [Ex-D . P(éx - P)
er( v ot M(E—I—M)) (A1)
with
. 1 . A 5 1 ;
ey = —75(1,%0), é=1(0,0,1), é-= E(la —1,0) (A.14)

1§ =43/2, +1/2, —1/2, —3/2
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More explicitly, Eq. (A.12) can be written as

W (p,+3/2) = e

+%=
S

p,1/2)

Wi, 4179 = 2172+ Tehm -1/
w19 = \ret1/2 e -1/2
w(p,-3/2) = ¢(p-1/2)

A.4 Cross section and Phase space

A.4.1 Cross sections

ﬁaa mg ﬁl) mi

\ﬁna my

ﬁb; mp

FIG. A.1: Definitions of variables for production of an n-body final state

The definition of the differential cross section in Ref.[73] is given by

27)4| M|?
do = ( )|2 | 5= X d%n(Pa + pv; P1,D2," ", Pn)
4V/(pa - pp)? — mim3

In the rest frame of m, the flux factor in the denominator

\/(Pa )% — mim3 = mypa b ;

while in the center-of-mass frame

\/(pa 'pb)2 -— m%m% — Pa cm\/g-

(A.15)

(A.16)

(A.17)

(A.18)
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And the phase space is defined by

n n
. R
A0, (Pa + Py P11 Pn) =0 (Pa+ 06— D Di i (A.19)
9 (2m)32E;"

’L:l

A.4.2 Kinematics in two-body scattering process

Da, Mg ﬁb; myp

—,

(Eiab(Ma), Plab(ma)) (my, 0) in the Lab frame

FIG. A.2: Kinematics in the center of mass frame and in the laboratory frame

We consider the two-body scattering process shown in Fig(A.2).

In the center of mass frame, energies of particles are given by

s—mg—}-mg s—mg—i—mg

E p) = ————
2\/-5 , cm(mb) 2\/5 3

where F.y,(m) is energy as a function of particle mass m. We can easily check the energy conservation

Em (777/11) = (A.20)

relation, Eem(mg) + Eem(mp) = +/s. The absolute values of three momenta are given by

. L B \/(5 — (mq — mp)?)(s — (Mg + myp)?) B /\1/2(8, mg,mg)
|pcm(ma)| - ’pcm<nlb)| = 2\/5 = 2\/5 y (A.21)

with kinematical function® defined by
Mz, y, 2) = 22 + 3% + 2% — 2zy — 2yz — 221 (A.22)

In the laboratory frame, where the paricle with mass my is the target and that with with m,, is tha beam, the

21t is also called the Kiillen function.
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energy and momentum of intital particle are given by

. S — m2 _— m2
Eip(mg) = ——2—2b Ep(my) = mp , (A.23)

2my,

and the absolute values of the three momentum of the beam is given by

AV2(s,m2 mb) s —m2 —m2\2 :
- . 3 ’ _ 2
|ra| = o ( o ) m2 (A.24)

And the energy and momentum relation between two frames are given by

am (1) _ ma + mp

E =
lab(ma) 2my, 2my

, |Pem| = lplabl f’ (A.25)

For the photoproduction case, the mass of the beam is zero, m, = 0, we obtain

Egm(ma) —-m
2mb

Eian(ma) = ) Iﬁcm(ma)l = |Pem(mp)| = 25 - (A.26)

A.4.3 Two-body phase space

From the definition of phase space in Eq. (A.19), two-boby phase space is given by

*py $Ppy 4

1 d*py
= §(E—E, — E
4(2m)6 | E\Es (E— B - By)
1 p*dp
= —— [dy 2L §E—-E —E :
4(2m)6 / A 1= B) (A.27)

with P = p, + py = (E,0) and b = [P} em| = |P2.cm| in the center of mass frame. From the energy conser-

vation,

E = Ei+Ey
_ 2, =2 2 | =2
= \/ml—l-p +\/m2+p
B, pip
E; Es
pE

- dp . A28
E.E, D ( )

= dF =
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Substituting Eq. (A.28) to Eq. (A.27), we obtain

1 _

Po(P; p1+p2) = 4(27r)5/dcos0% (A29)
1 p

T 22n)E (A30)

For phase space calculation itselt, we can ues Eq. (A.30), but we use the relation, Eq. (A.29) in the invariant

amplitude calculation because there are § depencence in the integration.

Using the energy and momentum conservation, p is given by

V(s = (m1 +mg)?)(s — (m1 —mg)? _ A/2(s, mf, m3)

A.4.4 Three-body phase space

(A31)

For three-body phase space calculation, I use the recursion in Ref. [71]. ®,(E, p) denotes that the inital
state has energy F and momentum p.
d*py d>py d3p3

0) = SUP — py — po —
5(E,0) (27)32E, (27)32E, (27)32E; (P=p1=pz = pa)

d3p .
/ ZWSEC%(I)Q (E — E3, —P3) (A.32)
d3p3
= — P : .

In the final step, we use the Lorentz invariance of the phase space. And e is defined as follows:

(E— E3)? — (—p3)? = € —(0)?

= ¢ = +/(E— E3)—|ps]? (A.34)

Applying Eq. (A.29) to Eq. (A.33), we obtain
P3(E,0) = &ps X ! /d cos OE
(ST | enP2Es T | 2(2n) ¢

1 d3p3 D
= — | — | d g - A.
4(2#)8/ E; / cos . (A.35)
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with
AV2(e2 m2, m2
p= (261 2) (A.36)
A4.5 Four-body phase space
Similarly let us start with the definition of the four-body phase space.
~ d®p dPpy Pps Pp oy
Dy(E,0) = SUP —py —po —pa —
4(B,0) / (27)32E; (27)32E; (27)32E3 (21)32F, (P—=p1—p2—=ps—p1)
d®py
il o N — -7
/(27r)32E4 3(E — B4, —pa)
d*py
= /(271')TE 3(e3,0). (A.37)

Applying the relation, Eq.(A.35) to Eq. (A.37), we obtain

" 1 d3p3
D4(E,0) = /(27r 535, [ / /d cos @ 62]
3 3
- 11/dp4/dp3/dc050—— (A38)
7T

with €3 , €2 and p defined by

es = V(E— Ey)?— |ps? (A.39)

e = +(e3— E3)? —|ps2 (A.40)
21/2 €2, m2, m2

P = (22621 2), (A41)

Dissertation by H. Y. Ryu (Ver 1.1, Feb. 2013)



B

Additional discussion on the spin density

matrix of ¢ photoproduction

B.1 Spin density matrix and decay angular distribution

p
(Ar)
FIG. B.1: Definition of the helicity index and ¢ meson decay

The spin density matrices are correlation function of the phton and ¢ meson polarization. In the labo-
ratory, we cannot measure the phi meson directly. Instead of that, we estimate the properties of phi meson
by measuring the decayed kaons from the phi meson. The decay angular distributions of the decayed kaons
help us to study the phi meson’s properties and they are parameterized by the spin density matrices. We can

understand the helicity transition process deeply investigating the spin density matrices of the scattering.
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Although we cannot measure the intermediate ¢ meson’s helicities, we can get information of helicities of
¢ meson using the decay angular distribution of kaons. This description is shown in FIG. B.1. The spin

density matrix of the vector meson is defined as follows:

1

0 _ %

Py = N Z N Y Y ®-D
Ay,AiAf

1 _ 1 T T (B.2)

Py = ]_\/; DYZLI IR WED VIS U VIS 0 )
A“l?)‘iyAf

2 _ 4 AT, T} (B.3)

Y Y IR = Ay E AL XAy )
AysdiyAg

3 1 AT T (B.4)

PN = N VRN LAV Ay '
Ay iz A '

There are other definitions of the spin density matrix. But I introduce what we need to explain our analysis
here. If you want to see more detail explanation, you can find it in many references [64, 80].

The decay angular distribution can be parameterized by the spin density matrix as following;

1 1

Wi(cosfg) = 5(1 — pdo) + 5(3p80 — 1) cos? O (B.5)
Waldx —®) = 1+ 2pypi_qcos2(px — ) (B.6)
Ws(dx +®) = 1+ 2pyAq1_1c0s2(dx + D) (B.7)

where p}_; and A;_1 are defined by

1

P = 5(.0%—1 —Imp3_) (B.8)
1
A = '2‘(/)%—1 +Impi_;). (B.9)

Angles in the above equations are defined in the reaction plane in FIG. B.2,

Angles of the decayed kaons are defined in Gottfried-Jackson (G.J.) system. Definitions in G.J. system are
shown in FIG. B.3.

In G. J. system, ¢» meson is at rest and the photon momentum is parellelle to the z-axis. Using the formailsm
we disscussed above, let us discuss the helicity property of ¢ photoproduction more. It is well known that

in the forward angle region, ¢-channel contribution is dominant. Analysis of the spin density matrix and the
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FIG. B.3: Kinematics in G.J. system.

decay angular distributon help us understand the properties of the exchanged particle through ¢-channel.

B.2 WWi(cosfk) and spin one-flip process

Here we will discuss about Wy (cos 6k ) to understand spin flip process in the ¢ photoproduction. Let me

rewrite the definition of T (cos ) and pY,.

1 1
Wi(eostr) = 5(1- pYo) + 5(3p80 — 1) cos? g (B.10)
1
P = N(\T0—1|2 + | To1/?) (B.11)

_ |To—1|2 + |Toa|? (B.12)
IT_1-12 + |T-11|%2 + [To-1)? + |To1|?> + |Th-1]? + |T11 |2

We ignore the helicity indeces of the baryon since they are same in the both helicity amplitude in Eq.( B.1-
B.4). From the denominator of Eq.(B.12), we know that pJ, is related to the spin one-flip process. If pf),
is large enough, it means the the spin one-flip process is dominant in ¢-channel. Otherwise, the the spin

one-flip process is not important in ¢-channel and it indicates that the exchanged particle through ¢-channel
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is a particle with J = 0.

To check whether the spin one-flip process is dominant or not, let us consider threee extrem cases:
l. If P80 = 0 (no spin one-flip), Wi (cos ) = 0.5 — 0.5 cos? .
2. If pgy = 0.5, Wi(cos ) = 0.25 4+ 0.25 cos? O

3. If pdy = 1 (only spin one flip exists), W (cos 0k ) = cos? .

T I I I T l T
" E=2.07GeV !
Y

0.8

0.6

-

-~ -—
N, — e ——

" EY=2.27 GeV o

O | | 1 | | | |
-1 -0.5 0 0.5 1
@030 i

FIG. B.4: W as a function of cos §. The dots are LEPS data and solid line is our theoretical result. Threee
cases of pf); are also presented.

Even though it looks that the there are some contribution of pYo » but the experimental data and our result
support that the spin one-flip process is not dominant. The conclusion of FIG. B.4 is that the exchanged

particle through ¢-channel has the spin quantum number, J ~ (. This conclusion gives us the consistent
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description of Pomeron (JF¢ = 0%*) exchange process and it shows that the hadronic description can

explain J = 0 particle exchange process also.

Dissertation by H. Y. Ryu (Ver 1.1, Feb. 2013)



Wa(dx — @), Ws(¢k + ®) and natural parity 106

B3 Wa(éx — @), Ws(¢x + @) and natural parity

Illl'l_
T

lllll

llllll'l—

1@ ] w#
05 -~ F .
N F 1., OF .

g 0-1 aEREEnEe N I‘% N
IS L BR227GeV 1§ ]
15K ‘ -

;

s =B :
- 1t ¢
05 E -
obttititd Boruiar, i
T T

O — D O + P

FIG. B.5: W3 and W3 as functions of specific angles. The upper pannels are for E, = 2.07 GeV and the
lower pannels are for E, = 2.27 in our work. Data are taken from [21].

Let me rewirte definitions of W, and W5 again,

Wa(dx —®) = 1+2p,pi_;cos2(px — ) (B.13)

Ws(dx + @) = 1+ 2p,A1_1cos2(ex + D) (B.14)

where p, is the photon strenth which is 1 in 100% polarized beam. At high energy, it is known that the

following relations are extablished well :

TfVA/,IiM = +(-1)»"MT (B.15)
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where the upper + sign is for the natural parity (N), the lower — sign is for the unnatural parity (U).
Applying Eq.(B.15) to Eq. (B.13) and Eq. (B.14), we obtain

o If the exchanged particle has the natural parity,

1 1

-1 2 2

= |7 A = —|1 .
P1-1 N| 11| ) 1-1 N| 1 1| (B.16)

e If the exchanged particle has the unnatural parity,

1 1
=1 2 2
D = ——|7 A — T 17

From the relations of Eq. (B.16) and Eq. (B.17), we can learn two things. Firstly, the sign of p!_; and A;_1,
we can determine the exchanged particle has the natural parity or unnatural parity. Secondly, comparing the
magnitudes of pi_, and A;_;, we can see that the spin conserved process is dominant or spin two flip
preess is dominant.

Now we are in a position to check the experimental data and our theoretical result. First of all FIG. B.5
tells us that the sign of 5}_; is positive. And our result shows that the magnitude of pi_y is larger than that
of Aj_;. It means that the spin conserved process is dominant and the spin two-flip process is ignorable.
The finite magnitude of W3(¢x + @) indicates that the Eq. (B.15) is a good approximation at low energy

region.
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C

Miscellaneous notes

C.1 Unitarity of S matrix, imaginary part of invariant amplitude and cutkosky

rule

C.1.1 Imaginary part of invariant amplitude through unitarity of S-matrix

Let us star with definition of S-matrix.

Sy = 1—-1Ty (C.1)

T = (2m)*' MW} +ph - p] -9 —---p)) €2

Using the unitarity of S-matrix, we can obtain the imaginary part of 7-matrix.

sts =1
(1+iTH(1—iT) = 1—T+TH+TIT =1

2ImT = -TIiT (C3)
= 2Im(b|T|a) = —(b|TT}a)

- / (27) 32Ee/ (2n) 32E (OIT'1£) (1T la) (C4)
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Here

oIl = [y =1, =Ty )

In terms of invariant amplitudes,

3
2ImM(a —b) = —ﬁ/gé/d 22y — f)M(a — f)(2n)*6(P, — £ — £p)

3 3 ‘
N _ﬁ/;ﬂi/db (P —t- KD) (f > M(a— f) (C.6)

Here P, = ky + p1 = (1/s,0) in CM frame.

We insert a identity [ dM?% (M3 — £%) = 1into I; in Eq.(C.6).

— d*p 2 2 2
L = [ =2 [dM} (M} —(3) (P, —£—Lp) (C.7)
2Ep
And
Mp = Ep-14p
dM% = 2EpdEp (C.8)

Applying Eq.(C.8) to Eq.(C.7), we get

d3¢
L o= / 2 (EpdEp) (M} — £) 6(Pu = €~ t)

= /d% S(ME — 2) 6(P, — £ —£p)
= §[Mp—(Pa—0?%, (p=P.—1 (C.9)

Substituting Eq.(C.9) to Eq.(C.6), we obtain

1

21mM(a—>b) e

d3e 9
/ §[Mp — (Po— 0] M(f = bM(a—f) (C.10)

S

~

Iz
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Next let us consider I.

|€1%dl4]

25, = dQ §[ME — (Vs — Eo)* + €] (C.11)

Using EydE, = |€|d]£], we can rewrite Eq. (C.11).

[2 = /El—gg‘—gdﬂ 5[M%——S—m§+2\/§Eg]

= /WEK Q—(S(E Ey)

= |£| /dQ (C.12)

Substituting Eq. (C.12) into Eq. (C.10), we obtain

1
@m)

2ImM(a—b) = ~ "' / 4 M(f — BM(a — f)

= ImMa—b) = _327|rl;|\/§ X /dQ M(f - d)M(a— f) (C.13)

C.1.2 Cutkosky Rule

When we calculate a invariant amplitude, we can apply the following rule known as cutkosky rule:

T — 2iImT (C.14)

1

7z — —27i §(£2 — m?) (C.15)

When we apply the cutkosky rule, we can get the exactly same value ImM as we concern in the Eq. (C.13).
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C.2 Form factors

There are much ambiguities in how to choose form facters in hadron physics since there no way how to
derive form factor from a fundamental theroy. Theoretical physicist have tried sever types of form factors

to explain experimental data. Here I will briefly show their compatibilities.

A2 —m?
R0 = g (C.16)
oy nA* "
R(p°) = {nA‘l e mQ)z] (C.17)
2 w22
F(p®) = Exp[%} (C.18)

Fy(p?) is the dipole type. And F and F3 have the following relation :

3 = lim Fy (C.19)

n—oo

The following figure shows the behavior of those three form factors.

1 T T T I ’ I '
— F, (A, =0.7GeV) |
0.8 — F, (n=1,A,=0.7 GeV) ||
I g . |
0.6 1
| }
04 7]
02 7]
o3 4

p’ [GeV’]

FIG. C.1: Momentum dependence of three form factors
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C.2.1 Type I form factor

Type I form fator for meson-meson-baryon vertex is given by

F(4,p%,03) = Fu(q®)Fe(p})Fp(pd)
A2, — M2
Fuld®) = H (C.20)
M
Al n
F 2 — n B
) = |

Mpyr and Mp stands for the meson mass and baryon mass respectively. Fj type is used for a scalar meson
and F; type is used for a baryon and a vector meson. These choice of form factor explain many data

successfully in several works [54, 66] and it is most recommanded.

C.2.2 Type II form fator

Type I form fator for meson-meson-baryon vertex is given by

F(¢®,p},p3) = Fu(q®)Fp(pi)Fa(p3)
Fi(g®) [ nhy ]n c.21)
M = .
nA}*VI+(q2—M1%4)
2\ ”A}Ia "
Fs(r) = [nA4B+<p2~M%>]

F; type is used for not only meson but also baryon. This kind of form factor is also available for several

cases [26].

C.2.3 Type III form fator : overall type

This overall type is motivaed from ¢ meson photoproduction in chapter 3. We multiply two F5 type form

facotr which depends on ¢ and s respectively to the gauge-invariant invariant amplitude set as follows:
M=Mg+ M+ M+ )F(s)F(t) (C.22)

C.24 F,inthelimitn — oo

Firstly we use the following definition of the exponetial to prove F3 = limy,_, o0 Fo.

n
e® = lim [1 + -“3] (C.23)
n

n—oo
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Now let us consider the form factor F5 in the limit n — oo.

lim Fy(n, A, p%) = i | Ly :
R0 2(ns A, ) = Pt nAt + (p? — m?)?
. r 1 n
= = (€24)
-1+ nA4

Here we use the binomial expansion:

—3
(1+2)* =1+ oz + ———OMQ' S (C.25)

Applying Eq.(C.25) to Eq.(C.24), we obtain

i 2 212 2 2)2\ 2 n
) B a (T =m7) —1(-1-1) [ (p* — m?)
nan;o F(n, A, p*) = nh—{lgo 1 N + 51 Y = (C.26)
i 2 . 2y2/x4]"
s T |1 T (C.27)
n—oo n
2 . 2\2
- Exp[— p T ) } (C.28)
1 T l T I T I T
L A=0.7GeV |« Exponential | -
m=1GeV —_ n=1
08— -—- n=2 —
- - n=5 -
i e 5522 §OF
.06 - =100 H
S| - i {0 i
i\
S04 | .
‘\
02+ ‘\\ —
1 \:«:“-L—__J
Ol 2 3 4 5

2 2
p [GeV]
FIG. C.2: The F5 type form factor for various n values. When n — oo, the F; type form factor approaches
to the exponetial function denoted red solid line.
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