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2 M. IKEDA

PROLOGUE

This thesis is concerned about the author’s study about nonlinear dispersive wave equations
during the doctor course of Department of Mathematics of Science in Osaka University. He
has been studying well-posedness for the equations and an asymptotic behavior of solutions
for them. More specifically, he has been interested in the nonlinear Schrédinger equation,
Klein-Gordon equation, Dirac equation and their system. He has obtained some results about
Scattering or Blow-up phenomena for these equations so far. Some of them are organized in
this thesis.

In Chapter 1, the author studies a scattering problem for the time-dependent Hartree-
Fock equation (HF). This system appears in the quantum mechanics as an approximation to
a Fermionic multi-body system. His aim in that chapter is to show existence of the modified
scattering operator for HF (for the definition of the operator see Chapter 1). To obtain
this operator, one has to improve the domain and range of the modified wave operator (for
the definition of the operator see also Chapter 1) obtained in [70] by Takeshi Wada. The
author uses a different approximate solution to HF, which differs from that in [70], and
succeeds in improving the domain and range of the modified wave operator. By combining
this improvement and existence of the inverse wave operator, which was already obtained in
[70], the author proves existence of the modified scattering operator to HF. The author notes
that how to construc the approximate solution was based on paper [21] by Nakao Hayashi
and Pavel I. Naumkin.

In Chapter 2 and Chapter 3, the author studies a scattering problem for the Dirac-Klein-
Gordon system (DKG), which is the couple of the Dirac equation and the Klein-Gordon
equation with the Yukawa type interaction and plays an important role in quantum mechanics.
It is well know that solutions for Dirac equation satisfy a reduced Klein-Gordon equation.
From this fact, solutions for DKG also satisfy a Klein-Gordon system (KG), to which many
mathematicians has studied existence of global solution. Among them, in [71], existence of
the scattering operator (for the difinition of this operator see Chapter 2) for the reduced
KG system was proved in three space dimensions in lower order Sobolev spaces. However,
existence of the scattering operator for DKG itself is not so clear even from the previous
result [71].

In Chapter 2, which is based on a joint work [20] with Nakao Hayashi and Pavel. L
Naumkin, the author proves existence of the scattering operator for DKG itself in lower
order Sobolev space. In this chapter, DKG itself is treated without reducing it into the KG
system. Moreover, by using their estimates, one can improve the domain and range of the
scattering operator for the KG system obtained in [71].

In Chapter 3, the author considers existence of the wave operator for DKG in two space
dimensions. The author notes that 2d case is more difficult than the 3d one, since as the
dimension is lower, an expected time decay property of solutions is slower. In fact, 2d case
is delicate one and the borderline between the short range scattering and the long range
one. To overcome the insufficient time decay property, the author uses an algebraic normal
form transformation, which one is permitted to use under the non-resonance mass condition,
developed by Hideaki Sunagawa in [59] and the decomposition of the Klein-Gordon operator
into a product of the Dirac operators (which is essential). Moreover, as one see in Chapter 2,
one meets derivative loss difficulty for the Dirac part. To defeat the derivative loss, the author
uses a special structure of the nonlinear term to the Dirac part (for more detail, see Chapter
3). By combining these two facts, existence of the wave operator for DKG is obtained in two
space dimensions in lower order Sobolev space under the non-resonance mass condition. The
author notes that by using the first method, existence of the inverse wave operator was also
proved in [33].

In Chapter 4 and Chapter 5, the author discusses Blow-up phenomena of solutions for the
nonlinear Schrédinger equation with a non-gauge invariant power nonlinearity:

(0.1) i+ Au= AlulP, (t,z)€[0,T)xR".
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Blow-up phenomena to the corresponding heat equation and the wave equation has been
studied extensively. However, there are few results about (0.1). When it comes to NLS, the
one with a gauge invariant power nonlinearity

(0.2) O+ Ap=pulolP e, (t,z) € RxRY,

where 1 € R, has been studying extensively. It is well known that large data local well-
posedness holds for (0.2) in L%-sense under 1 < p < pg, where pg = 1 + 4/n is called
L2critical exponent (see e.g. [65]). Moreover, L2-norm of those solutions for (0.2) conserves

(0.3) e B)llzz = lle (0)l g2, for any ¢ € R.

Thus L?-conservation law and the local well-posedness imply large data global well-posedness
in L2-sense of (0.2) in L?-subcritical, i.e. 1 < p < po.

In the present (0.1) case, large data local well-posedness also holds in L2-sense under
1 < p < po. However, L2-conservation law (0.3) for (0.1) can not be expected. Thus global
well-posedness results for (0.1) are not trivial in L?-subcritical case. The author notes that
in [58], when (n,p) = (2,2), non-existence of the usual wave operator was shown and some
mathematicians had expected to get a small data global existence result for (0.1) in the case
(n,p) = (2,2).

On the contrary, in Chapter 4, a small data blow-up result will be shown in the case
1 < p < 1+42/n, which includes (n, p) = (2,2). This is a joint work with Mr. Yuta Wakasugi.
The method in this Chapter is based on a test-function method [72, 73] used by Qis. Zhang,
who proved the same result for some parabolic equations and the damped wave equation
respectively. This test-function method was extensively used to obtain small data blow-up
result for the various damped wave equations.

In Chapter 5, proceeding Chapter 4, the author considers (0.1) and discusses estimates of
the “lifespan” for L?-solution. The method in Chapter 4 is based on a contradiction argument
to construct the blow-up solution. Therefore the mechanism of the blow-up solution, such as
estimates of the lifespan and the blow-up rate, can not be understood. To avoid contradiction
argument, the author uses the idea of paper [46] (for the detail, see Chapter 4). By combining
this and the test-function method, he succeeds in proving an upper bound of the lifespan for
(0.1) in the case 1 < p < 1+ 2/n.

Finally, the author notes that both results in Chapter 4 and Chapter 5 were extended
to the wider case 1 < p < pp in the recent author’s paper [32] by the same method as in
Chapter 5, after submitting this doctoral thesis. This is a joint work with Mr. Takahisa Inui.
The author also notes that the method in Chapter 5 can be applicable to the damped wave
equation (see [35]), to which the lifespan of solutions has not been well studied.
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1. EXISTENCE OF THE MODIFIED SCATTERING OPERATOR FOR THE HARTREE-FOCK
SYSTEM

1.1. Introduction. In this chapter, we study scattering problem for the nonlinear Schrédinger
equation with nonlocal interaction:

(HF) iOu+ (1/2) Au = f(u), (t,z)e RxR",

where space dimension is n > 2, A denotes the Laplace operator in z, u = (uy,--- ,uy) is a
CVN (N > 2)-valued unknown function of (¢,x) and f (u) denotes a nonlinear term. The j-th
element of f (u) = *(f1(u), -+, fn (u)) is defined by

N
) = [ Ve ()l @ - ) w0 w @)} by
k=1

where V (z) is called a Coulomb potential given by
(1.2) V(e)=2Ale[™, (2 €eR™\{0})

and A is a non-zero real constant. The system (HF) is called a time-dependent Hartree-Fock
equation and appears in the quantum mechanics as an approximation to a Fermionic N-body
system. Our aim is to show existence of the modified scattering operator for the system
(HF). To do so, we will improve domain and range of a modified wave operator obtained in
T. Wada [70]. As for a modified inverse wave operator, we will use results obtained by T.
Wada [70].

We introduce an N X N matrix F (u,v) = {Fj; (u,v)},; ;< y Whose (i, j)-clement is defined
by

N
(1.3) Fij (u,v) =V x { <Z uk6k> 6ij - u,-z“)j} ,
k=1

where “+” denotes the convolution for space variables, §;; is Kronecker’s delta i.e. 6; = 1,
6i5 = 0 (i # j) . Furthermore we define an N x N matrix F'(u) = F (u,u) and then we can
express nonlinear term f (u) as

fu)=F(u)u.

We note that F'(u) is an N-dimensional Hermitian matrix.
Let uy be a given final state. A = A(¢,€) is an N x N matrix-valued function and the
solution of the Cauchy problem

(1.4) A =t"'F(Auy) A, t>1, EcR®

(1.5) A8 =1y, (R,

where Iy is the N X N unit matrix.
Our purpose can be formulated as follows. We assume that the final data

uy € H with1/2< < a<1

and the norm ||uy| goo is sufficiently small. Then we will find a unique global solution
u € C ([0,00) ; H*F) of (HF) satisfying

t—+oo

(1.6) lim (u (t) — (it)-% e%A (t,z/t) Gy (m/t)) =0, in H®®

with 1/2 < § < 3. This means that the modified wave operator for the system (HF) is well-
defined from a neighborhood at the origin in the space H%® to a neighborhood at the origin
in the space H%P,
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Finally, we introduce several notations used in this chapter.l (¢) denotes the free Schrodinger
evolution group defined by

UM = Fle$8PF = (2mit) 3 / exle=3 4 () dy
R"l
— MHDOFM@),

212
where M = M (t) = exp (L;ti—) is a multiplication operator and D (¢) is a dilation operator
defined by

(D(t)¢) () = (it) "% ¢ (x/1).
We note that
U(—t) = M(=t)i"FID(1/t) M (—t),
since (D (t))™! = i"D (1/t). By using the above identities, we easily see that
(1.7) Jt)=UR) U (—t) = M (t)itVM (—t) =z + itV (t €R).
For 3 > 0, we define
L8) 1P =1T O =U® P U(~t) = PM () (~AY2 M (~t), (tER).
Then the commutation relation
0.+ (1/2) A, 171°] =0
holds, where [A, B] = AB — BA.
1.2. Existence of the modified scattering operator. We now state our results in this
chapter.

Theorem 1.1. Let 1/2 < 3 < a < 1. We assume that uy€ H** and ||ut || goo = €, where €
is sufficiently small. Then there exists a unique global solution u of the system (HF) satisfying

ue C([0,00); L%, |T71Pu e C([O,oo);L2).
Moreover the following estimate
<
HO.8 ~

_n/g i=?

(1.9) u (w - o2 g a ¢/0)

is true for all t > 1, where 0 <6 < B and 0 < u < (a— ) /2.

By the above Theorem, we get existence of the modified wave operator
WFuy — u(0)
for the system (HF) as follows.

Corollary 1.2. The modified wave operator W for the system (HF) is well-defined from
a neighborhood at the origin in the space H** to a neighborhood at the origin in the space
HOA,

We state a result of existence of modified inverse wave operator (VV_)_1 obtained in T.
Wada [70]. He studied the initial value problem

(1.10) { 1O + Etl(/oz))f’;: P o) e RxRY, 1 > 2

where up be a given initial data and then he got the following results:
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Theorem 1.3. (see [70]) Let 1/2 < § < 8, n = min(1,(8—-6)/2) and 0 < v < n/3. We
assume that ug€H%P and ||ug||gos = €, where € is sufficiently small. Then there ezists a
unique global solution u of the system (HF) satisfying

u € C ((—00,0];L%), |T1Pu € C((~00,0];L7).
Moreover there exists a scattering state u_ € H*® such that the estimate
_ ijz|?

(=) (ule) ~ 2 A0, 0 |
HO0.6
is true for allt < —1, where A (t,&) is the solution of the following Cauchy problem

i A=t"'F (A ) A, t<-1, £e€R"
A(-1,&) =1y, £€R™

By the above Theorem, we obtain existence of the modified inverse wave operator

(W_)_l T Uy — U_

S 17

for the system (HF) as follows.

Corollary 1.4. The modified inverse wave operator (VV_)_1 for the system (HF) is well-
defined from a neighborhood at the origin in the space H%P to a neighborhood at the origin
in the space HO®,

As a consequence of Corollaries 1.2 and 1.4, we can define the modified scattering operator
St = (VV_)_1 WTiuy —u_.

Theorem 1.5. The modified scattering operator St = (W=) ' W+ for the system (HF) is
well-defined from a neighborhood at the origin in the space H*® to a neighborhood at the
origin in the space HY®.

Theorem 1.1 is improvement of Theorem 1.1 obtained in [70]. In Theorem 1 of paper [70],
it was shown that for any uy € H%? with smallness condition on |44 || (i = 1,2) where

D1, p2 be the numbers such that 2 < p; < % <p2 < % and Pll + p% =1- % (see Lemma

1.9), the system (HF) has a unique global solution u € C ([0, 00) ; L?) N L{ ([0, 00) ;L) such
that the estimate

_n

w(t) — (it)"5 e At /) iy <ttt

Lg([t,oo);Lg)

is true for any ¢t > 0, where 1/4 <b < 1,n >2and 0 < 2/q¢ =n/2—n/p < 1. This means that
the modified wave operator W™ for the system (HF) is well-defined from a neighborhood at
the origin in the space H%? to a neighborhood at the origin in the space L2. His result requires
more smoothness for the final data uy (H 9.2) than ours (H%® with o > 1/ 2) and the value
u (0) of solution obtained in [70] belongs to wider class (L?) than ours (Ho’ﬁ with 1/2 < 8 < @) .
It is not clear whether modified scattering operator for the system (HF) can be obtained or
not. His method is based on that of J. Ginibre and T. Ozawa [11] to study the Hartree
equation

idu + (1/2) Au = (V . |u|2) u, (t,z) € RxR", n>2,

where u = u (¢, z) is a C-valued unknown function and V (z) = A |z|™! (A € R) is a Coulomb
potential. Their method is based on Strichartz estimate (see [?]) and the use of an approxi-
mate solution 4

n ilz?
) = (it)" 2 e%m (z/t) exp (—i { (V * |ﬂ+[2) (w/t)} logt)
to the free Hartree equation. In {70], T. Wada put

u = (it) "2 e%A (t,z/t)ty (x/t)
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as an approximate solution to the free Hartree-Fock equation following from the paper [11]
and showed that

R = (0 +(1/2) A)ur — f ()
= (1/2)t2M () D (t) AA(t) iy
is the remainder term which implies the second differentiability of @;. On the other hand, in
order to get our Theorem 1.1, we use the factorization of U (t) = M (t) D (t) FM(t), take
U (t) FLA(t) iy as an approximate solution of u and utilize the operator J given by (1.7).
This method was used by N. Hayashi and P. I. Naumkin [21] to study nonlinear Schrodinger
equations with a critical power nonlinearity
0w+ (1/2) Au = AMu/Y"u, (t,2) e R xR",
where A € R and n = 1,2 or 3. By the identity
U FrA® 4y =u + M@E)DE)FM(t) - 1) FLA®R) iy,

we can see that the difference between the two approximate solutions is

MBDEO)FM@E) -1)FLA@R) 0y

We show that this term is a remainder term in L? (see (1.36)).

The rest of this chapter is organized as follows. In Section 1.3, we state several Sobolev type
inequalities and unitarity of A (¢,£). In Section 1.4, we lead integral equation corresponding
to the system (HF) and the final data condition (1.6). In subection 1.5, we introduce several
propositions used in the proof of Theorem 1.1. In subsection 1.6, we prove Theorem 1.1.

1.3. Sobolev type inequalities. First we state the Gagliardo-Nirenberg-Sobolev inequal-
ity.

Lemma 1.6. Let q,r be any numbers.satisfymg 1 < q,7r < oo, and let j,m be any real
numbers satisfying 0 < j < m. If u € H (R*) N LY (R™), then the following inequality is
valid:

(1.11) ”(—A)j/zu‘

el (VNI T

where C is a constant depending only on n,m,j,q,r and a. Here p > 1 is such that zl? =
% +a (% — %) + 1—;9- and the parameter a is any from the interval % < a <1, with the
following exception: if the value m — j — 7 is a nonnegative integer, then the parameter a is

any from the interval £ < a < 1.

For the proof of Lemma 1.6, see, e.g [16]. This lemma is used to obtain the estimates (1.10)
and (1.24) in this paper. Next we state the Sobolev inequality which immediately follows
from Lemma 1.6 with j =0 and a = 1.

Corollary 1.7. Let 1 <7 <00, 0 <m < n/r and 1/p = 1/ — m/n. Then there exists a
positive constant C > 0 such that for any w € H

ull» < C H(—A)mmu‘

L
Next we state the Hardy-Littlewood-Sobolev inequality. This one also follows from Lemma
1.6 with j=0,m=n—7,a=1and u= (_A)—("—W)ﬂ o.

Lemma 1.8. Let 0 <7 <n,1 <p,g < oo and 1+ 1/p =~v/n+ 1/q. Then there exists a
constant C > 0 such that

(112) 177 %6 = C|(—a)"=28] < ClislL.
Here C is independent of ¢.
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Lemma 1.8 means the embedding Hy ” (R®) — L9 (R") holds. For the proof of the
equality in (1.12), see, e.g [62].

When we estimate L>-norm of the term such as |-|~7 * @, we use the following Lemma. (see
Remark 1.1).

Lemma 1.9. Letn >2,0<vy<n,2<p<2n/(n—7) <q<2n/{(n—2) (00 ifn=2)
and 1/p+1/q =1—+/n. Then there exists a constant C > 0 such that

(1.13) 1177 % (69) || poe < C (Il o Nl o N0 o 10001 2a) 2,
provided that the right hand side is finite.

We can prove Lemma 1.9 exactly in the same way as in the proof of Lemma 2.4 of paper
T. Wada [69] and see also A. Simomura [56].

Remark 1.1. We ezplain the reason why we need Lemma 1.9. Letp =00, j =0, m=n—1,
r= 5 anda=1. Then % =1i+ta (% — %) + —1;—“ 18 satisfied, but unfortunately, the equality
m—j—n/r=0

also holds. Therefore we can not use Lemma 1.6 in this case.

Next we introduce a commutator estimate for fractional derivatives.

Lemma 1.10. Let s € (0,1),81,82 € [0,8] with s = 51+ s2, 1 < p,q1,q2 < 00 and 1 <
1,72 < 00 with 1/p = 1/q +1/r. Then the following estimate holds:

(L19) |22 (89) - 6 (~8) 2w (-A)2 6| < C gl IWllgze -
For the proof of (1.14) see, Kenig-Ponce-Vega [42].

1.4. Application of the Dollard decomposition. We write the integral equation asso-
ciated with the system (HF) and the final state condition (1.6). Define a first approximation
for the solution of (HF) by

(1.15) u () = M @)D (&) 0 (t), (L) = A(t) iy

We note that the free Schrodinger evolution group U (t) = F ~1e=itlél*/2F can be decomposed
as

Ut)p = M(@HD(EFM(t)e

(1.16) = M@®HD()é+R()s

where

(1.17) RE)=M@E)DE)FM(@)—1)F L
Multiplying both sides of (HF) by FU (—t), we obtain

(1.18) 10y (FU (—t)u) = FU (—t) f (u).

Note that w (¢,£) = A (t,£) 4y (§) satisfies the equation

(1.19) i (t) =t Hf (W (1), t>1, E€RY,

since A (t,€) is the solution of (1.4). Due to the difference of (1.18) and (1.19), we get
10 (FU(—t) u — W)
= FU(=t)(f (w) =t T U Ff (@)
= FU(=t) (f (w) —tT" MO D(¢) f (@) — t7'Rf ()
(1.20) = FU(=t)(f () = fwm)) —t7"FU(-t) Rf (@),
here we have used the decomposition (1.16) and the identity
tTIM @) D) f () = f (wa).
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We note that by using (1.16) again, the equalities
FU(-tu—w = FU(-t)(u—U({t)F ')
= FU(-t)(u—u — Rw)
hold. Thus integrating (1.20) in time over [t, 00) and using the final condition (1.6), we obtain

w(t) —ur (t) = z'/twu(t—ﬂ (f (w) = f (un)) dr

(1.21) +R1D—i/tooLl(t—T)R(T)f(zi))d—T.

T

The system (1.21) is the integral equation for (HF) with the final condition (1.6). Let us
consider the linearized version of (1.21)

w(t) —wi (t) = i/toou(t—f)(f(v)—f(ul))df
dr

(1.22) +Rw—¢/ UG- R () f ) L.
t
For T' > 1, where T is sufficiently large, we define the following function space:
X={veC([T,00);L?);|lv—ux < o}
with the norm
lollx = s (2 o ()2 + 2 |71 1)

€[T,0c0

L2) !

where 1/2 < 8 < o < 1 and (a—3)/2 > p > 0 is sufficiently small. We will show the
map v € X, — u defined by (1.22) is a contraction mapping in subsection 1.6, where
X, ={ve X;|lv—wlx <p} (p=Cut| goa) be a closed ball in X.

1.5. Properties of solutions. We state several Propositions used in the proof of Theorem
1.1.
First we remember results to the Cauchy problem (1.10) of the Hartree-Fock equation

Proposition 1.11. Let n > 2 and ug € H%P with 3 > 0. Then the following statements
hold.
(i) There ezxists a unique global solution u of (1.10) which belongs to
C (R;L?) N L] (R; LR)
where (p, q) is any pair of numbers such that 0 < 2/qg =n/2—n/p < 1. Furthermore if 3 > 0,
then
TP ueC(R;L?).
(i) If B > 0, then the solution u € C (R; L?) with |TPuecC (R; L?) is unique.
(i) If the norm ||ugl|goe.s is sufficiently small, then the inequality
sup |71 u(®)] , < 2luoll o
ltI<1 L
holds.
We can prove Proposition 1.11 by applying the method in [4], [5], [14], [26] and [38] and

see also [69)].
Second we state unitarity of the matrix-valued function A (¢,¢) defined by (1.4) and (1.5).

Lemma 1.12. Whent > 1 and{ € R", the solution A (t,€) to the Cauchy problem (1.4)-(1.5)
is an N x N unitary matriz. Therefore for u € CV, the equality

|A (t,€) ulcN = |U|CN

is valid.
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We can find the proof of Lemma 1.12 in that of Lemma 3.1 of paper T. Wada [70] and see
also A. Simomura [56].

Next we show time decay estimates for the first approximation uy, the difference u; — v
and v € X,,.

Proposition 1.13. Let n > 2 and uy € H** with 0 < 8 < a < n/2.
(i) For 2 < p <2n/(n—23), the inequality

i _nf{q1_2
(1.23) laalle < ¢ 3078 g g0

~J

is valid for all t > 1, where u; is defined by (1.15).
(it) Let 1/2 < B <n/2 andv € X,. For 2 <p < 2n/(n—283), the inequalities

(1.24) lur = vl < ¢~ (B2 =n/2(1/2=1/p) lut{l oo s
(1.25) lolle S 720722 fuy | o.a
are valid for all t > T, where T is sufficiently large.
Proof. First we prove the estimate (1.23). Let 2 < p.< 2n/(n — 23). By the definition of
uy, M (t)| = 1, |0 (t)|cv = |A(t) Gy |en = |G4]cn (see Lemma 1.12) and Corollary 1.7 with
r=2and m=0=n(l/2—1/p), we have
_nfy_2 R _nfy_ 2 R
il = 50 o @l =507 hay
_nfy_2 R _nfq_2 R
< T e <080 i

since 0 < 0 < 3 < a. This completes the proof of (1.23).

Next we show the estimate (1.24). Let 2 < p < 2n/(n—28) and t > T where T is
sufficiently large. By Lemma 1.6 with j = 0,m = 8,q =r =2 and a = n/3(1/2 — 1/p),
|M (—t)| =1 and the identity (1.8), we have

ler = vl = (M (=) (ur = )]s,

S 2% M0 -]

_n(i-1 =
=t (2 P) ’|j|ﬂ(u1—v) 2
< (B/2+w=n/21/2-1/p)

sincem—j—n/r=0-n/2<0andve X,
Finally we prove the estimate (1.25). Let 2 < p < 2n/(n—23) and t > T where T is
sufficiently large. By (1.23) and (1.24), we have

lolle <l —wallpe + lull e
< B2+ =n/2(1/2-1/p) 4 4—n/2(1-2/p) s || o.e
S PP | o
since
(B/2+ 1) +n/2(1/2 — 1/p) > n/2(1 - 2/p).
This completes thé proof of (1.25). O

Next we show the estimate of 1w (t,€) = A (t,€)ay (€) in H*, where A (t,£) is the solution
of

(1.26) iRA=t"'F(Auy ) A, t>1, £eR,

(1.27) A(1,6) =1y, £€R™

Unfortunately, we don’t have explicit representation of A (¢,¢) .
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Proposition 1.14. Let 1/2 < a < 1 and uy € H**. Then the inequality

N 2
I Dll e S Nl goa (1+ lusllpoa logt)
is true for all t > 1.

Proof. Multiplying both sides of (1.26) by (—A)a/2, we have
(1.28) i0h (=) (1) = 7 (—A)* £ (@ (1))

Taking a scalar product (-—A)a/ 2@ in CN to both sides of (1.28) and imaginary part, we
obtain

(1.29) 8| (a2 w|ZN = 2t~ Im (- A)2 F () b, (-A)* )

3

CN

where (-,-)cv denotes the scalar product in CV and we have used f () = F(@)®. By
integrating (1.30) over R™, we get

2
(1.30) ) ”(—A)"‘/2w L, =2"1m ((—A)a/2 (F (@) 0), (—A)*/> w)L
Since F (@) is an N-dimensional Hermitian matrix (see (1.3)),
(1.31) Im (F (@) (—A)*? @, (—A)*/2 w) =0

y (1.30) and (1.31), the equality

NIR
[R

|-y wHi =2t~ I (~8)F (F (@) ) ~ F () (~8)% b, (~A)

)
L2

holds. By Schwarz’s inequality and the commutator estimate (1.14) with s = s1 = «, s3 =0,
p=2,g=n/al and r = 2n/ (n — 2a) , we have

Oullie < 267 |[(-2)2 (F (@) %) - F () (-A)"/ |

L2 1@l g

(1.32) S I pansn20)

~

(-2)°2 (F (@)

L 90

(see Lemma 2.3 of paper [25]). By the equalities | (t)|cy = |A(f) Gyley = |G4|on (see
Lemma 1.12) and Corollary 1.7 with p = 2n/(n — 2a), r = 2 and m = «, we have

(1.33) 19l p2n/tn—20) = J|A () gl p2n/ 209 = ||Tit|| fon/ (200 S JJUt]] rose -

Let ¢ =n/(n —1). We note that |z| ™ % f = C (-A)"(*"D/2 ¢ (see Lemma 1.8). By Lemma
1.8 with y =1+ a, p =n/a and q = g, we get

/2 ~ (n—1-a)/2 ~
|car2E@|,,,. s |-a 2 @a)|| . S bl
= |JA(t )U-I—HL?é = ||ty || 24
(1.34) S el < gl o,

here we have also used the equalities | (t)|cnv = |A(t) G4 |cy = |@4]cnv and Corollary 1.7
with p = 24, r = 2 and m = 1/2. By combining (1.32)-(1.34), we have

(1.35) O]l g S ¢ g o0 -

Integrating (1.35) over [1,¢] and using the initial condition A (1,£) = Iy (see (1.27)), we have
desired estimate. This completes the proof of the proposition. O

Next we state two estimates of remainder term involving operator R (¢) given by (1.17).
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Proposition 1.15. Let 1/2< < a <1 and 0 < § < 3. The following two estimates

(1.36) RO ay20| | st @2 uygoa (14 fur 0. logt)
and
) RO r @), SO fup e (1+ lusloa logt)

hold for any t > 1, where W (t,£) = A (¢,€) 4.

Proof. First we show the estimate (1.36). By the definition of R (t), IM(¢)] = 1 and
D (t) ¢l 2 = @]l 2 , we have

(1.38) ( R(t) (=A%

2 “(M (t) = ) FH{(=A)?y

L2’
We note that for any p € [0, 1], we have

(1.39) (M (t) = 1] St |,

for any t > 1 and z € R™ By (1.38)-(1.39) with p = (a — §) /2, we have

(140)  |[R (&) (—A)"w =t ||| o
L2

S t—(a—é)/2 Hlxla-éS ]_—-—1 (_A)a/2 W L

Applying Proposition 1.14, the desired estimate (1.36) is obtained.
Next we prove the estimate (1.37). In the same proof as (1.40), we get

(1.41) ”R(T) - M e -

LS

By the identity
(=A)*? f (i) = (—A)? (F (@) ©) — F () (~A)*2 6 + F (@) (~A)2
we have

If @)llga < H(—A)"‘/2 (F (@) ®) — F () (—A)a/%l

L2
(1.42) +HF(111)(—A)"/2711

L2’
We estimate the first term of the right hand side of (1.42). By the commutator estimate
(1.14) with s = s1 =@, s2 =0, ¢ =n/a and r = 2n/ (n — 2a) , we get

(=222 (F (@) i) - F (@) (-2)*"2 )|

L2
S ldllgansonze || (=) (F (@) -
By the estimates (1.33) and (1.34), we have
ol ooz [[ (=202 (F @))| S N o

Therefore we obtain

(1.43) a2 (F @ o) - F @) (-a)""% || , < o

Next we consider the second term of the right hand side of (1.41). By Holder’s inequality, we
have

| F @) (-8 < IF @) g il
We put ¢* =2n/(n —203) and ¢* =2n/{n — 2 (1 — B)}. Then the following relations

2<q@ <2n/(n—-1)<qg" <2n/(n-2)
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and 1/¢* =1—1/n—1/q¢* are valid. Thus by Lemma 1.9 with v =1, p = ¢* and ¢ = ¢*, we
get

IF @)= S |17+ (20)
= 1A B g IA @ sllger = 184l goe a4 gor

S Moo Nl go < llurloa

L Sl 1] e

here we have also used the equality |@ (t)|cv = |A () @y|ey = |d4|cv and the Sobolev
inequality with 1/¢* =1/2— (1 — ) /nand 1/¢* = 1/2 — 3/n (see Corollary 1.7). Therefore
we have

(1.44) HF(@) (—A)E @

S A P

By combining Proposition 1.14, (1.41)-(1.44), we get the desired estimate (1.37). This com-
pletes the proof of the proposition. 0

1.6. Proof of existence of the modified wave operator. In this subsection, we give a
proof of Theorem 1.1.

Proof. Let t > T where T is sufficiently large. We take L?-norm of (1.22) to get
(1.45) @ =l < [ 150~ @ dr
) > . dr
R+ [ IR () @)l T

We consider the first term of the right hand side of (1.45). Let p* = n/8 and ¢* =
2n/ (n — 20) . By the decomposition

fur) = f(v)
= F(up)(u; —v)+ F(u,u1 —v)v+ F(u; —v,v)v
and Holder’s inequality with 1/2 = 1/p* + 1/¢*, we have
If (u1) = f (@)l 2
|F (u1) (ur — )l g2 + I1F (1, w1 = v) vll g2 + | F (w1 — v,v) vl 2
I1F' (u1) o0 [z — vl g2 + |1 F (u1, w1 = 0) || o [|0]l o
+1F (ur — v, 0)|| o~ [0l - -

We estimate the first term of the right hand side of (1.46). Let ¢* = 2n/{n—-2(1— 3)}.
Then the following relations

2<§ <2n/(n-1)<q¢"<2n/(n—2) and 1/§*+1/¢* =1—1/n
hold, since 1/2 < # < 1. Applying Lemma 1.9 with y =1, p = ¢* and ¢ = ¢*, we have

1 )l oo S |17 )| lall e oo
By (1.23) with p = ¢* and ¢*, we obtain

(1.47) 1F (wi)ll oo S 77"l | o

since 2 < §* < ¢* < 2n/(n —283). Next we consider the second term of the right hand side
of (1.46). Let 1/p3=1+1/p* —1/n =1+ (3 - 1) /n. By Lemma 1.8 with y = 1, p = p* and

q = p3, we obtaind
IF @ = o)l 5 M7 {mlw = o)

S
(1.48) S fJur (ur - v)”Lps .

<
(1.46) <

Le*
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We choose py such that 1/pg = 1/p3 — 1/2 = 1/2+ (8 — 1) /n. By Holder’s inequality with
1/ps = 1/ps +1/2, we get

(1.49) lut (u1 — V)l e < llutllpes llur — vll e -
By (1.48)-(1.49), we have
I (w1, ur = )|l poe [0llzer S Nluallpoa lus = vll 2 [0l - -
By (1.23) with p = p4 and (1.25) with p = ¢*, we obtain
(1.50) IF (ur,ur = 0)ll o 0l e S o7~ @297 g o,

since 2 < pg,q* < 2n/(n — 26) and v € X,,. In the same manner as in the proof of (1.50), we
can estimate the third term of the right hand side of (1.46) as follows:

(1.51) IF (w1 = ,0) | o 0ll o S o7~ PP uy |00 -
By combining (1.46), (1.47), (1.50) and (1.51), we get-

(1.52) 1f @) = f (w)ll g2 S pr~ B2 uy [0

since v € X,. By Proposition 1.15 with § = 0 and (1.52), we obtain

o0
lu() —uillz S p||u+||§{0,a/ = B/24+1m) -1 g
t
72 Juy | oo (1+ a0 log?t)

o0
[l e (14 uslon log ) dr
t
(1.53) S TP uy | o

for any ¢ > T if T is sufficiently large and ||u4 || go.« < 1. Precisely we take 7' > 0 such that
the estimates

1< a0 log

and

are satisfied for any 7 > ¢t > T, since /2 > 3/2 + p.
Note that | 7| R (1) = R (r) (—A)ﬂ/z . Multiplying both sides of (1.22) by |7|° , we obtain

1TV (u (t) — w (2))
_ / Ut —7)T1P(f @) = f(w))dr

(1.54) VR (D) (—A)gw—i/tooU(t—T)R(T)(—A)gf(zb)dT—T.
We take L2-norm of (1.54) to get
1717 () = 1)),
< [wree-swy,e
Hrocafal, [T R0 ot @],
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By Proposition 1.15 with § = 3, we have
1P () = wa ()]

(1.55) < [T - ),

f (u
@D | o ( + s o 1ogt)
—(a

Tl 300 /
t

We consider the first term of the right hand side of (1.55). By the factorization of |7|° (r) =
™M (1) (—A)ﬁ/2 M (—7), we can estimate

|17 (7 @) = 7 ),
(1.56) < 77| F (un) M (=) (ur =) o

+78 || F (ug,u1 — v) M (—t) || gs

+7P || F (u1 — v,0) M (—t) v|| s -
We consider the first term of the right hand side of (1.56). We remember the definition of
p* =n/f and ¢* = 2n/ (n —203). By the fractional Leibniz rule (Lemma 3.5) with x = 3,
p=2,q =2, g =p* r1 =00 and ro = ¢*, we have

|1 (1) M (=7) (u1 = v) || s

S NF (i)l pe M (=7) (w1 — 0)l g

(1.57) + ||F(u1)||gf* lur = vl o~ -

L2

—A)/2 (1 + [lus 0.0 logT) dr.

By combining (1.57), (1.8), (1.47) and (1.24), we obtain

| F (u1) M (=7) (u1 — v)|l gs
PN (@) g |||T1° (1 =)
I )l g, o = vl

N

L2

N

pr PRI (1) oo + o777 1 () g,
(1.58) S o P s lfoa + pr P H 1 (un)ll g, »
since 2 < ¢* < 2n/(n—28) and v € X,. We need to estimate “F(ul)”f{f* . We put ¢ =
n/ (n — 1) for simplicity. Then the equality
1+1/p*=(B+1)/n+1/§
holds. By Lemma 1.8 with v = 8+ 1, p = p* and ¢ = ¢, we have

IF @)llgs, S H|| (urwy H
P

(1.59) = -2 b2 @) . S lhuallag
Applying (1.23) with p = 2q, we get

(1.60) sl Z2s S 77" flus W0

since 2 < 2¢ < 2n/ (n — 28) . By combining (1.58)-(1.60), we have

(1.61) IF (u1) M (=7) (w1 — )|l g S o7 P g 1 2poa -
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Next we consider the second term of the right hand side of (1.56). We note that p* = n/3 and
q¢* = 2n/ (n — 20) . By the fractional Leibniz rule (Lemma 3.5) with x = 3, p = 2, ¢1 = p*,
g2 = 2, 1 = q* and 7o = o0, we have

I (u1,u1 — v) M(=7) vl s
(1.62) S IF e = )l o, ol
' + 17 (u1, w1 = v)ll oo M (=7) vl g5 -
We estimate the first term of the right hand side of (1.62). By Lemma 1.8 with v = 5+ 1,
p = p* and q = § and Holder’s inequality with 1/§ = 1/2¢ + 1/24, we have

IF @ =l S |7« {wla w1},
P

— |l Ay-tn—1- B)/2{ —:—H
(=2 wln =) .
S M (s = 0)la S Dl gas llus = vl gaa

We note that 2 < 2§ < ¢* < 2n/(n —23). By using (1.23), (1.24) with p = 24 and (1.25)
with p = ¢*, we obtain ‘

I (1, w1 = )l e, [0l or

~

Next we estimate the second term of the right hand side of (1.62). By (1.8), we get
(1.64) M (=T)vllgs =T

—3/4— - 2
(1.63) S lwallges llur = vllpaa 1ol e S o7~ 47274 Jluy [[Fo

N[w

By (1.15), (~=A)2 D (r) = 779D (r) (-A)%, |D (1) 6]l 12 = |6l > and (1.8), we have

o, = aroera,
(1.65) = P800, =l
By applying Proposition 1.14 with a = § to (1.65), we obtain

ool < s, + [P

IA

pr @l o
S o uslgoa (14 luslfoa logT)
(1.66) S utllgoalogT,
for all 7 >t > T, if T is sufficiently large and ||u|| go.« is sufficiently small, since v € X,. Pre-
cisely we take T' > 0 and ||u4 || go,o such that the inequalities 77# < logT, 1 < ||u+||zo,a log T

and ||uq||go < 1 since p > 0. We remember the definition of ¢* = 2n/(n —23) and
g =2n/{n—2(1— B)}. We note that the relations

2<§*<2n/(n—-1)<q" <2n/(n—2)
and 1/¢* =1-1/n—1/¢* bold. Thus by Lemma 1.9 with v = 1, p = ¢* and ¢ = ¢*, we have

IF (u =)l S |17 {wsl =01 }|
(1.67) (2 = 0| v [l [ g )2
Applying (1.23) and (1.24) to (1.67), we obtain
(1.68) 1F (1,01 = ) oo S o7 24P fuy 0

since 2 < G, ¢* < 2n/ (n — 203) . By combining (1.64), (1.66) and (1.68), we have
(1.69) 1F (w1, ur = )| oo M (=7) 0l| go S p7 /47307274 (log 7) [t | F0.0
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if ||u4|| go.« < 1. Therefore by (1.62), (1.63) and (1.69), we obtain
(1.70) I1F (w1, u1 — ) M (=7) vl o S pr =¥ 473827 (log 7) |luy 0.0

for all 7 >t > T, if T is sufficiently large.
In the same way as in the proof of (1.70), we can estimate the third term of the right hand
side of (1.56) as follows:

(1.71) I1F (u1 ~v,0) M (=7) vll ga S pr~ 24730274 (log 7) s [ Fpoua -
By combining (1.56), (1.61), (1.70) and (1.71), we have
(L.72) 1517 (£ @) = £ @], S om 7 i o

for 7 >t > T, if T is so large that
7=3/4=36/2—n (logm) S rlk
forall 7>t > T, since § > 1/2.
Then by virtue of (1.55) and (1.72), we have
[P o - wm @), £ plslne [ @ Qo) s
(1.73) St lusll o s
for t > T, if ||uy| o« <1 and T is so large that the estimate
t—(a=0)/2 (logt) < t7*,

for any ¢t > T, since (a — 3) /2 > p.
By (1.53) and (1.73), there exists a large time 7' > 0 such that

lu = wiflx < et flgoa -
Furthermore if ||uy || o« < p, then u € X,. In the same manner, we can prove the estimate

lu—allx S llusll o llv =93 x,
for large T > 0, where 4 is defined by (1.22) with (u,v) replaced by (&,7). From this
inequality, we can obtain

. 1 .
fu—llx < 30—l
if flug|lgo.« < 1/2 is satisfied. Therefore (1.22) defines a contraction mapping. Hence there

exists a unique solution u € X, of the integral equation (1.21). Therefore we see u €
C ([T, 00); L?), 7P uecC ([T, 00); L?) and the following inequalities

(1.74) lu (8) — w1 (8)]] g2 < pt=B/4=H

(1.75) |17 () —ui e, < ot

hold for any ¢ > T. The estimate (1.9) for t > T follows from (1.74), (1.75) and Lemma 1.6
withp=g=r=2,j=06,m=F and a = §/8.
Let t > ¢y > T. Using the integral equation (1.21), we can see that the equation
: .
(1.76) u(t) =U{E—to)ulto) =i [ U{t—7)f(u)dr
to

holds. By Proposition 1.11 with ug = u (t) € H%?, we can extend the existence time to zero.
Theorem 1.1 is proved 0
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2. SCATTERING PROBLEM FOR THE DIRAC-KLEIN-GORDON SYSTEM (DKG)

2.1. Introduction. In this chapter, we study the Dirac-Klein-Gordon system (DKG) in
three space dimensions.

(DKQ) { (a(tattf 'AV :#‘f g)f ,ffgiw (,z) € R x R™

where M, m are positive constant and denote the masses of the spinor field and the scalar field

respectively, v is a Cz[nTH]—V&Llued unknown function of (¢,z) and ¢ is a R-valued unknown
function and stands a scalar field, A € C,u € R,4* = 1) denotes a transposed conjugate to
the vector 1. Here a;, 8 € M, [241] (C) are called Dirac matrices and defined by

2

ﬂ2=a§:I, a8+ Ba; = O,

(DM) ajar + oy = O,

for jk=1,...n,j#k, I = [6jk]1<]. w<4 - With the Kronecker symbols §;; = 0 if j # k and
6 =1. o 4

Our purpose in this chapter is to prove existence of the scattering operator for (DKG) in
theree space dimensions. The DKG system (DKG) was studied by reducing it to a nonlinear
Klein-Gordon (KG) system (see [1, 71]). Denote Dy = Dy pr = 6 + £(a-V+iM3). We
note that in view of the properties of the matrices a;, 3 we have

DDy = {02 —(a-V+iMB)(a-V +iMB)} ¢ = (af + <v>§w) b,

where <V>12v1 = M? — A. Hence multiplying both sides of the Dirac equation D v = \¢pSB
by D_, we obtain

(2.1) (07 + (9)3) ¥ = AD_ (#8%) .

Solutions for (2.1) also satisfies (DKG). In fact since D_ (D — A(¢Bv)) = 0, by L3-

conservation law

D19 (8) = A(@8Y) (Dl 2 = [[(D+) (0) — A(¢8¢) (0)l| 2 = O,

if 0i (0) = — (- V+iMB)¥ (0) + A(¢pfBvy) (0). Thus (DKG) is equivalent to (2.1). More-
over, solutions for (2.1) also satisfies

(02 +(9)%) ¥ = A(D-9)BY —iMBIY + 6 (Ds)
(2.2) = A((D-¢) B —iM¢I + A$*I) 9,

where we have used the fact that ¢ is the solution of Dirac equation. Here we can see that
equation (2.2) does not necesarily involve the derivative of 1. However, solutions (2.2) does
not satisfy (2.1) unfortunately. Thus especially, whether existence of the wave operator (local
Cauchy problem at t = +00) can be constructed or not is not clear because of this fact and
the derivative loss_difficulty.

We recall the problem of existence of the wave operator for DKG system. Define the free
Dirac evolution group by

Vp(t) =Vpum(t) =Icos(t(V)y)—(a-V+iMp) (V)X,Il sin (¢ (V) ),
and the free KG evolution group by

cos ({(V),,t)  sin({V), 1)
Vi 0 = Vian = ( “B(or ) Smiod )

mt)
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Then we look for the solutions of DKG system, which obey the following final state conditions

(2.3) lim [[Vp (=) 9 () = 9|, =0

. i e 0 (05500 )~ (oier )

for the given final data ¥t e Xy, (¢+, (;5;_ ) € Xs with some Hilbert spaces X; and X5 which
are defined explicitly later.

The problem of the existence of the wave operator can be formulated in the form of the
integral equations

=0
X2

(2.5) Vp ()% (£) = p* — /tva(—swws)ds,
(26) Vie (~1) ( <V>‘¢1(§3¢ (t) )

= 2 — - —s 0 ]
@7) = <<v>;?¢>;f) || vrel )(<v>;3w*ﬁw(s>)d

for the given final data ¢* € X, (cbf, ¢§L ) € Xo. If there exists a unique solution

CIORIORA/mEZI0)

of system (DKG) for the given final data (¢+, N qﬁ;) , then the wave operator W+ for the
system (DKG) denotes the mapping

(#®),60), (V) 80 (1) =W (7,61, (V)70 65)

We introduce some notations.

If we can show that D (W™*) = R(WT), where D (W™) is the domain and R (W) is
the range of the wave operator W™, then we can easily construct the scattering operator.
The existence of solutions for the cubic nonlinear Klein-Gordon equations in the low en-
ergy space along with the property D (W) = R (W) were obtained in [60] by using the
LP — LT method and the Strichartz type estimates. The cubic nonlinear Dirac equation
(Or+ -V +iMpB)y = A (¢*B¢) ¢ was studied in paper [49], where the scattering operator
was obtained in H?® with s > 1.

We now survey some works concerning KG system. The existence of the global small solu-
tions to the Cauchy problem for the quadratic nonlinear KG including (DKG)-(2.2) was shown
in [43] by applying the time decay estimates through the operators (9, d;, 2;0; + t9;), <j<3
and using the hyperbolic coordinates. The use of the hyperbolic coordinates implies the con-
sideration of the problem inside of the light cone and so yields the compactness condition on
the initial data. In papers [1], [8], [10], [28] the method of [43] was improved and the com-
pactness condition on the data was removed however the higher order Sobolev spaces for the
initial data were implemented. The global in time existence of small solutions to the Cauchy
problem for quadratic nonlinear KG system including (DKG)-(2.2) was shown in [27] for the
case of small initial data (¢ (0), 83 (0), ¢ (0), 6:¢ (0)) in the space (H*3 x H3*3)5, moreover
the inverse wave operator was constructed from the neighborhood at the origin in the space
(H*3 x H3*3)5 to the neighborhood at the origin in the space (H*! x H3’1)5. In paper [71],
it was shown the existence of the scattering operators for (DKG)-(2.2) from the neighbor-
hood at the origin in the space (H5/2’1 X H3/2*1)4 x (H>! x H®1) to the neighborhood at
the origin in the same space.

Our main result is the following. Denote 90/37 < ¢ < 6 and u = 5/4 — 5/2¢. Note that we
can choose 1 = 1/4 when we take ¢ = 5/2.
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Theorem 2.1. Let n = 3 and the final data ™+ € (H3/2+“*1)4, (¢7,07) € H> w1 x HITwL,
Then there exists € > 0 such that for any final data (w+, QST, ¢; ) satisfying estimate

||¢+HH%+;«1 + “('ZSTHHQ‘H‘J + H¢;HH1+}L,1 < £,

there exists a unique global solution

(eov0ve 0 (05500 )
e (¢ (10,00) ;H3/2+“’1))4 x (C ([0, 00) ; H1))?
for (DKG) with the final state condition
”VD (_t) (4 (t) - 7»b+||1r13/2+u,1

6 (1) 2
(2:8) * |[Vra (=) ( (V) 6 (1) ) ) ( (V) 03 >’H o0
as t — oo. Moreover the estimate is true
VD (~0)% ()l g + \ Vi (1) ( <v>-¢1(§t)¢ (t )‘ = e
m H2+u,1

for allt > 0.

Corollary 2.2. The wave operator WF for (DKG) is defined from the neighborhood at the

origin in the space (H‘q’/%"’l)4 x (H*Tw1 x HY 1) to the neighborhood at the origin in the
same space.

In the same way as in the proof of Theorem 2.1 below, we can solve the initial value
problem in the same function space, therefore we have the following result.

Corollary 2.3. The inverse wave operator (VV_)—1 is defined from the neighborhood at the

origin in the space (H3/2+“’1)4 x (H*Twl x H* 1) to the neighborhood of the origin in the
same space.

As a consequence of Corollaries 2.2 and 2.3 we get.

Corollary 2.4. The scattering operator S = ()/V_)_1 WT is defined from the neighborhood

at the origin in the space (H?’/2+“’1)4 x (H2¥H1 5 HIT1Y) to the neighborhood at the origin
in the same space.

We now explain our strategy of the proof of Theorem 2.1. Denote the free evolution group
Ur (t) =Us (t) — TtV — 1 it £

We can decompose Vp (t) as

(2.9) Vp (t) =Y Us (t) As,m,
where the operators :
‘ AizAi,M=%(Iii(V);}(a-VJriMﬂ)).
Note that (a-V +iMgB)*? = — (V)3, 1, due to the properties (DM). Hence by a direct
calculation we get
(2.10) ArAz =0, > Ar =Tand AL = Ay,
+

which show that the operators A4 are the projectors. A simple calculation shows that

2.11) Ay (a-V +iMp) = % (@-V +iMBF (V) I) = Fi (V) As.
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Note that Ay commutes with operators 9;, (iV),, and (o - V +iMf3), therefore we obtain
AsDyyp = L1 Ast),

where the Klein-Gordon operators L4 = L4y = 0 F1(V),, . We multiply both sides of the
Dirac equation (DKG) by the operator A4 pr to get

019 LiAry) = AAx (86Y),
212 (2 +(9)2) 6 = 0.

Then we can reconstruct the solution of the Dirac equation (DKG) by the formula ¢ =
>4 A+y. Therefore to prove the existence of the wave operator we look for the solutions of
system (2.12) which obey the following final state conditions

(2.13) s (=) Azt (8) = AL¥™ || 34un — O
and
214) HV’“"(‘” ( <v>§(§~f¢ (1) ) ) ( <v>§ oF )‘H —0

ast — oo for given final data y* € H%+“’1, (qbf, gb;r) € H?+#1 In order to show that problem
(2.12)- (2 14) is equivalent to the original one, we must prove that the final state conditions

Hui. t)y ALy (t) — Ai¢+”H3/2+u,1 — 0 are equivalent to HVD (=) (t) — w+HH3/2+#»1 — 0.

Through the paper, we write A ~ B if there exist some positive constants C;,Cy > 0 such
that C1B < A < CyB and we also write A < B if there exists a positive constant C' > 0 such
that A < CB.

Lemma 2.5. The final state condition
tli>m Z Hu:t t) Arf — Asf* ||H3/2+u1 =0
holds if and only if
tILIEO ”VD' (=) f - f+HH3/2+N’1 =0.

Proof. We have by decomposition (2.9)

VD (=) f = F || s = || D, U (—t) Asf — AsfY)

+

Hm,:s

Hence by the triangle inequality

VD (=) f = | s < D U (—8) Arf — AL | yoms -
+

On the other hand, since the operators A4 are the projectors by (2.10) we have
(215) (A:}:g, A:Fh)L2 = (A:FAj:g, h)Lz =0
which implies

[Vo,ar (—t) f = f+||Hmo—ZHuiM £) Axprf = Acpt FH [ fmo -
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This yields the result for H™ spaces. We next consider the case of the weighted space. By
(2.9), (2.10), and the Cauchy—Schwarz inequality we find

|z (V)™ (Vp (=) f - f+)HL2
-Aj:-T m( t)yALf — Aj:f+)>

2

L2
2

v

%Z zAs (V m(z Uy (—t)Aif—Aif+)>
+

*
=3 Az, z)(V m< Uz (—t) Asf - -A:tf+))
T

L2
2

L2
y (2.10), we find

2 Ay (V (Z ) Asrf - Aif*))

+
= (V)" (Us (—t) Acf — AsrfY).
Then using the estimate
2

[As, 2] (V)™ (Us (—t) Arf — AxfT)
n

L2
2
S DS W (0 Asf A SV = £
+ Hm-1
we get,
|z (V)™ Uens (=) Ar o f — AxmfT) H2LZ
S |l (9™ (Vo (<6 F = 1) z2 + Vo (<8) = £ || pmes -
Therefore
Jim 3 As 04 ()7 = 1) s =
holds if
hm HVD tyf—f+ ”Hml—o
Lemma 2.5 is proved. |

We use the Strichartz type estimates to treat the problem in the lower order Sobolev spaces,
however it seems difficult to apply the Strichartz estimates to (2.10) due to the derivative
loss of the nonlinear term. To obtain better differentiability properties of the nonlinear term
we apply the operators

1 . ~ 7 _
Bi=Bun =5 (1Fi(V)3f 8) = F5 (V)af L=

instead of A, (which were used previously in [22], [23] to make a factorization of the Klein-
Gordon operator 07 + (V)?V[ = L, L_). Note that in view of the properties of the matrices
o, B the identities are true

(2.16) Ay — By = j:% (V)i D,

and

i _ 1 _
LaBe =2 V)3t (02 +(V)3) = %5 (V)3 D-Ds.
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We will construct the desired solutions by the iterative procedure such that

Dy = A gy,
(247 { (3 + (W) 0 < o () gy, £ =1
and
D+w(0) =Y,
(82 + (V)%) 6@ =0.

Also by virtue of the Dirac equation D+1,b(k+1) = /\d)(k)ﬂdz(k) we obtain
D_ (¢(k)51/}(k))
- (D_¢(k)) By ® — iMe® [ ®) 1 ¢® gD, )
- (D_¢(k)) B ®) — i M® [p®) 1 A¢*) U= 1) [y (k=1).
Thus in view of the Dirac equation (DKG) it follows that

1 _
LeBap*D = 3o (V)3 DD yp*HD

= F A (V) D (6®u®)

2
= ¢%/\ (V)af ((’D_qﬁ(k)) By® — i Me® k)
(2.18) +)\¢(k)¢(k—1)1¢(k—1))

for £k > 1. In the case of £k = 1, we have
i
L:Bsy") = FIN(V)yf Dy (¢<0>5¢<O>)
i .
= FA ( (D_qs(f’)) By® zM¢(O)I¢(O)) .

Thus instead of (2.12), we can study the following system

{ ( LoByp* ) = (v Ry

where
_ Lt ®) By® _ i 1L ) 74k
Fep = 750 ((Domp®) o - idto® 1y
+)\¢(k)¢(k—1)1¢(k—1)) ,

Cap = Fou(v®) By,

for k > 0, here and below we use definitions ¢(~9 = 0, v9 =0, so that, in particular, we

define Fy g =0 and G+ =0.

23

Note that the nonlinear terms of system (2.19) do not involve the derivatives of the un-

known function ¢. This fact enables us to use the Strichartz type estimates. To treat the
second equation of system (2.19) as in [22], [23] we introduce the new dependent variables

B1¢®), then we have

LeBsd™tD = 52 (V)1 (07 +(V)2) 95H) = (V)1 G

where L1 = Lim = 0y Fi(V)

m*
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Thus we have a system

(2.20) { LBy ™) = (V) P,

LiBip®t) = (W) LGy,

for £ > 0. Our purpose is to prove that the sequence

(VD(_t) P®) Ve (—t )( (v k)> 19,60 >>

is the Cauchy sequence in the space

(¢ (.00 mm)) s (G020 )

under the final state condition

N T

ean v oo (680 0 ) (ome )

In order to write the integral equation associated with (2.20), (2.21), we study the asymptotic
behavior of Byy(®). By Lemma 2.5 we find that

=0.

H2+m,1

> [ (0 Ay ® (1) - Asy]
+

1NHVD t) ™ (¢ ()—¢+’

H3/24+n H3/2+p,1 '

By the identity Byy® = A, ¢®) £ I (V)X/Il %D By =1 we obtain

[ (=) Awr® (1) — Asp?|

H3/2+p,1

Us (~) Beys®) (1) — Awyr™ % A (V)3HUs (1) ¢ pyth

H3/2+p,1

from which it follows that

= e (=6) Acu® (1) - Avt|

s (~1) Bap® (1) — As® % 2 (V)51 Us () 65D gyt

H3/2+p,1

H3/2+p1 ™ HVD w(k) () - WL‘

H3/2+u1

Therefore from the first equation of (2.20) by virtue of the final state condition we have the
integral equation

Uz (—t) Bep®HD (1) — Aggpt
(2.22) / ” V)t Us (=s) Fi pds F %)\ (V)ar Jlim Uy (—t) ¢ By ()
t —00
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with given final data ¢t € H3/2+t#1 Denote T = % (q&f’ Fi (V);ll (15;) . By the identity

HV’“" =0 ( <v>§(2tg<)k> (t) ) - ( <V>¢;1+1 63 )

2

2

H2+u,1

> Ui (—t) Beo® (t) - ¢f

+ H2+“'1
2
(D Hs (=) BLo™® (t) + i (V)" 03
T H2+u,1
2
= |3 (e (~0) Bog® (1) - @7
T H2+p,1
2
|2 (e (-0 B0 (0 - o)
H2+u,1

= 2% [ (-0 B ) - et

H2+u,1

via the parallelogram property. Thus we see that the latter of (2.21) is equivalent to
Jim 3 s (-0 B0 () - o1

H?2+n1

Thus the second equation of system (2.20) can be written in the form of the integral equation
(2.23) Uy (—t) BLo® (1) — @ = — / (V) Uy (—8) Gt pds.
¢

In what follows we study the integral equations (2.22) and (2.23).

We introduce the operators Z = (Zk)1<k<n Jr =J+m = (JkiM)1<k<n where Z, =
kO + t0k, T+ = Tk, +,m = tOk T ixk (V) , which were used previously in [43] and in [23],
respectively. We easily see that

ol (—t) = Fhi0keTHOMF = Uy (~0) (21 F it (V)3 On)
from which by the commutation relation [z, (V)%,] = a (V)% 2 8 it follows that

(2.24) (V) Uz (8) zpldy (—t) = (V) 3y 2 F it = FiTk+ — (V)31 O

Let us also compute the commutation relations for the operators L4, Z; and Jj +
(2.25) LiZ= Byl + O % [og, (V) 3y 0 = (Ze i (V)3 ) Lo,
(T, L4] = [k, (V) 3] (V) 2y — O = 0.
Also we have the relations [Zk, (V)fvﬂ = - (V);,I?’ Ox0; and
(2.26) Zk — Tkt = oLy

2.2. Time decay estimate and Strichartz estimate. We first state the time decay
estimates through the operators J. p, for any smooth and decaying function (see [27] for the
proof).

Lemma 2.6. Let m > 0 and the space dimension n > 2. Then the estimate

Il < ¢ (0" 30-3) (||¢||LV"+Z | Temdl 22 + ||¢||Hu>



26 M. IKEDA

is valid for all t > 0, where v = % (1 - —), 2 < p < 2n/(n-—2), provided that the
right-hand side s finite.

Denote the space-time norm
||¢||Lr 1[/1 - H”¢ “qu

where I is a bounded or unbounded time interval. Define
g:i:m g] /u:}:m t_T) > ()

for any T € I, where m > 0. By the duality argument of [68] along with the LP — L9 time
decay estimates of [48] we have the Strichartz type estimates.

LT(I) ’

Lemma 2.7. Let2< ¢ <2n/(n—2) and 2 = 2 (1 - %) . Then for any time interval I the

following estimates are true
192 9 102) 5 Wl )
<
”gi,m [g”IL‘tX’(I,L%) ~ ”g“L;" (I;H‘l;,_l)

and
el (8) DMl g (£:22) S 1Dl rw

where v/ =7/ (r 1), ¢’ = ¢/ (¢~ 1) and = 232 (1 - 2)

2.3. Proof of existence of the scattering operator for DKG in 3d. We define the
vectors

I~

%

S
=

1
o) = (B+w<k>, B_y®, (V)2 B1¢®), (V)

FO = (905 o (V)5 Fo (9 G (9 Gt
and the matrix-operator
L=diag(Lip Loy, Lom, L ).
Then system (2.20) can be rewritten as
(2.27) Lok+D) = pk)
Also we denote the matrices
U (t) = diag Uy pr (1) U101 () U1, (8) . U-1,m (1)),
b = diag(1,1,0,0)
and the vector of the final data
—ding (Ap 0t A0, (DR 0F, ()5 27,

where &1 = %(qﬁf Fi (V) ! (j);), then the integral equations (2.22) and (2.23) can be

written as

(2.28) U (—t) vV (1) / U (- F(k)dS:F A(V);jtlimU(—t)b¢(’“>ﬁ¢<’“>

for k > 0. We also have U (—t) v(® (t) — vt =0, i.e. v (t) =U () v*.
We introduce the function space for the final data v+ € (H 3/ 2+"’1) ' and for the successive
approximations oK)

10
xi=oe o (1, (1))l < oo}
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with the norm

oty = 32 (1720l g pn-tty + Pl iy )

<1
whereI=[t,oo),%=%(1——%),andu:§—%, N <qg<6,and P=(Z,T),

J = diag (Ty1,m, T-1,M> T 1,my T—1,m) -

For example, we can choose ¢ = 5/2, then p = 1/4.
Then the result of Theorem 2.1 follows from Lemma 2.5 and the following theorem.

Theorem 2.8. Assume that vt € (H3/2+"’1)10, and ||Vt gss2+u1 < € for somee > 0. Then
there exists a unique global solution v(®) X[0,00) to the integral equation (2.28). Moreover,

the estimate HU(OO)HX[O ) < &3/ is true.

Proof. Tt is easy to see that v(® =Y (t)vt € X0,00) and HU(O)HX

we assume that for some k£ > 1

000) < g3/4, By induction

v¥ e X0,00) and Hv(l)H < 34
X[0,00)

for all 0 <! < k. Let us prove that v**1) e X0,00) and Hv(kH)HX[ < e3/4,

0,00)

Ha—H/)

By Lemma 2.6 we have the estimates

R (

4

|

Ha+u—1

(2.29) < cwi0-3) [o®],  <cevn 0-30-2)
X[0,00)

where 2<p<6,a<3/24+pu—v=5/p+up—1,1<[<k. In particular, since
00 = o)+ o), 00 =i (v), (o1 - o),
and
_1 1
0 = (@)t (o +0), 06 =i (V) (o) - o)
we can write |

[+

withy=3/p—1/2>0,2<p<6,a <5/p+p~-1,1<1< k. So using the identity
x = FiJy (iV)y £itV (V)y, , we find the estimate

“for

0 3/4 )\ v—1
H§+1/2 + Hat¢ HH;—1/2 5 € <t>

<1>|
Hg + Haﬂ’b Hy1

w0+ [ 9ho®

+
Hy

s 5 ([l (9t Bav|
+

oyl

(2.30) < ¥ o®)|

Hy

J+ <v>7_n% Byo®)

a
Hp
~v

X[0,00)

for 2 <p<6,a<5/p+pu—11<1<k Then by (2.29), (2.30), the commutation
relation [z;, (V)] = a(V)?\ZQ J;, we obtain by the Sobolev and Holder inequalities with
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1/¢=1/py + 1/p2, 1 =5/4—5/(2q) . (When we choose ¢ = 5/2, = 1/4, then we can take
p1 =4 and ps = 20/3)

leﬁj:Bi¢(k+l)HH;/2 = Hivl (V)ar Fi,k‘
S (s PR o ) R

i P P R

< 0 (wn;gu ")

withy=2-3 (1—71; + piz) > 0, and similarly by the Holder inequality with 1/q = 1/p; + 1/ps
(When we choose ¢ = 5/2, y = 1/4, then we can take p; = 4 and py = 20/3)

LPt Lp2

Lr1 Lr2

S )

H}/?

S 07 o]
LP2 e R X[0,00)
with vy =2—-3(1/p1 + 1/p2) > 0. In the same manner by the Sobolev and Hélder inequalities
with 1/2 = 1/p; + 1/p2, p = 5/4 — 5/2q, we obtain (When we choose ¢ = 5/2, u = 1/4, then
we can choose p; = 3 and py = 6)

s,

S @) Faepll gu-1/

S (IP-e],,, +[e],,.) o],

+H¢(’“)H o, e,

S (T P sl W
X[0,00) X[0,00)

with v = 2 — 3(1/p1 + 1/p2) > 0, and by the Holder inequality with 1/2 = 1/p; + 1/py (
When we choose ¢ = 5/2, = 1/4, then we can choose p; = 3 and py = 6)

1
z1Ls (V)2 BLpk+l)

Hl/2+p
2,
< G <H ( <k)’ < t—vH (k)”
S @) Gapllype S [0 O S 07 [P
. _ 1,1
withy=2-3 (p—l + 1)—2) > 0. Therefore
(k+1)' H (k+1)H
”x/:v Ly (1:Hy"?) ||k Lyo (LHV/2+8)

S e Tl
X10,00) X10,00)
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with v > 0. By (2.26), we have

HJU(HI)‘ L;(I;H,}”) + va(kﬂ)‘ Leo(LH2+0)
< H Zv(k+1)’ (1) + HZMH)‘ e (5E/349)

* “wﬁv(kﬂ)‘ L (LHg"®) - HmEU(HI)HL?"(I;Hl/”")
S [|zot| — EXCE] (o)

o (i e el N
X{0,00) X(0,00)

So we need to estimate only the operators Z . Multiplying both sides of (2.27) by Z¢, and
using (2.25) we obtain

(2.31) Lz = (2o 4 Qo) F(®)

t
where Q% = iV* (+ Mt s— D+ (W — (V)T_nl) . Note that the operator Q% acts

m ?

as a zeroth order operator. From (2.31) we find

(2.32) %u (—t) 22+ — 1 (—t) (2% + Q%) F¥)

for || < 1. By our final conditions, we have
Jim U (=4) oD (1) = v F S0 (V)3 Jim U (~t) bo®) gy,

By (2.26) and (2.27), we obtain

1 1 _1
2By (V)2 ¢* D = 7, L By (V)2 0% D 2 (V)2 G

from which in view of (2.25) it follows
1 1 _1
Us (—t) 218 (V)& oY) = Ky slhs (—t) Bx (V)2 6T + UL (=) 20 (V)m® G

where K; + = Ky 4+ = £ ((V)m T+ (V);ll 81) . Note that

1
2 (V)m® G+

<G
o S 108kl s

s Jeol )

2
— k
w SO [0
3 X

Hg 0,00)

Therefore
1 1

Jlim Uy (—t) Z°Bs (V)7 o+ = K3 (V)2 Oy
for ja| < 1, where K% = K§ ,, = +i ((V)m x* + (V),_nl VO‘) . In the same way as above by
(2.26) and (2.27), we get

2Byt = T+ By 4 2 (V)3 Fy.
Therefore by (2.25), it follows

Uz (—t) Z1ByypktD)
= ]Cl,:i:uj: (—t) Bii,[)(lﬁ_l) + Uj: (—t) Iy <V>X41 F:i:,k-
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Note that
Hﬂfl <V>X41 Fi,kl /240 SN Pl g-1/2400
S( +|
L6
(k) (k-1) (k-1)
o o0 v
< (uva? + o)) ).
X10,00) X10,00)
Then

Jlim Uy (—t) 228y = K Ary™ F %Aicg (V) lim U (—t) bg(®) ¥
for || < 1. Thus we have
(2:33)  Jim U (—0) 2% = KOV F SMCE (V)3 lim U (—1) bo®) gyt

Then integrating (2.32) in time over (¢,00) in view of (2.33), we find

¢
U (—t) 2%+ = oyt 4 / U (—s) (2% + Q*) F®)ds

(2.34) F 2K (V)3 lim U (1) b®) gy
for |a| < 1.

We take the L] (I; Hq%) and L (I; H1/2+“) norm of (2.34) , where I=[t,0), and use the
estimates of Lemma 2.7 to obtain with 2 < ¢ < 6,2/r =3/2(1 —2/q), and p =5/4—5/(2q)

a, (k+1) o
HZ |L, ray) Hz (e
“(Za + Qo‘) F:i: k”LF:f(I H2“ 1/2
HV+”H3/2+“’1 + “(Za-i-Qa) G:tk” a/(q— 1))
LF?I (1H2“ )
q/(q-1)

Since 1/2 — 2u > 0 by the Sobolev inequality with i =1- l + I/QT_M we find

o2 Q < (83 o
”(Z +Q )F:f:,k”Lm(IHzp 1/2) ”(Z +Q )F:tk”Lm(ILPI)
q/(q—1)
(10 199
~ <l Pé Ly (LHY) ¢ LT(I;L9) v LI72(I;LP2)
2o (Pl L
+||Pv Ly(L;L%) ( ¢ L7 72 (LHL,) 00 LT72(I;LP3)
( - T
+ LT(I;L9) ’¢ o ([;L>) LT2(I;LP2)
(k—1) l (k— 1)‘ (k—1)
+|[PY Ly (LL's) L[‘ (I;LP3) L (I;Lo°)
(k—1) { (k— <k—1>‘ .
+||Pe LI (I;L9) ¢ Lo (I;Lo°) 4 L7 2 (rLp2)’
where by the Holder inequality 1 + = + p—a = p% = % — % — %ﬁ
We have p% = % - % - g,u (when we choose q=5/2, p = 1/4, then we can take p; = 5/3

and ps = 5). We only show the following inequality . ¢ > 90/37 comes from this.

“(D_,M(z,w))(z«p(m)l T H <k>H

X0,00)
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We apply the Holder inequality 1 / p1=1/p2+1/p3

o < P21, |20
H w L, D ¢ Lpr2 Z¢ Lp3
We apply the Sobolev inequality with 1/p3 =1/q — a3/3, a3 >0
®| < H <k)‘
|ze®| s |zv oo
We also have
(k) (k)
26 e <126

if ag < 1/2 and

|

By Sobolev’s inequality with 1/ps = 1/ls — a2/3, ag > 0

asN)

oo

By lemma, 2.6, the following estimate holds _
HD ¢(k)‘ < 53/4( £~ 3/2(1-2/l2) _ 3/4 <t>3/l2—3/2

a2N

< HD_

re2

if2<1ly <6,as+1/2<5/ly+ pu~— 1. Thus the estimate holds
(k) < ~3/4 ;7\3/l2—3/2
[p-o]., s =@

By Holder’s inequality (r — 1) /r = 1/r+(r — 2) /7, we get the above estimate, if (3/lz — 3/2) ;55 <
—1. These inequalities is valid if 97/30 < ¢ < 6.(When we choose ¢ = 5/2, u = 1/4, then we
can take p1 = 5/3, po = ly =20/3, ag = 0)

We now estimate the next term

(2% + Q%)

LT (I;H%)
”77111 Ly (1) ‘w(k)‘ L2 (1iL7)
E il PR P,

where 1/l4+1/ps =1/ls+1/ps = 1—1/q. By the Sobolev inequality with 1/l4 =1/¢—1/6+
21/3 =2/3(1—1/q) we obtain

o

LT IH"‘“ S ;”Zlgilp(k)’

As above we apply the Sobolev inequality with b = 3/p—3/ps > 0, where 1/py =7/6—2/q—
2u/3 =1/pa =1/3(1 —1/q) and after that Lemma 2.6
Hb+v) ’

(RS 0y 3(-3) (e
where v = 5/2 — 5/p. Hence as above

“ <[]
”1/’ L7723 (1;Lpe) ™ ! X[O,oo).

And finally the Sobolev inequality with 1/l5 = 1/q — 1/6 gives
i < Z |2B2v®)|, ()
q

Ly ()

S

P2 Hb+v-1

Lr I; LlS

We show the following estimate.
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L T ]

We apply the Sobolev inequality Wlth 1/ls=1/q—as5/3, a5 >0

Ooo)

L P (s
We also have
[P P
ifas <1/2 and
|Pu®| . 3 |[PBew
+

By Sobolev’s inequality with 1/ps = 1/ps — ag/3, ag > 0

k k)
9y = e g
By lemma 2.6, the following estimate holds
H Uc)‘ spreo <) ) 2 (t)7e 2

if2 < pg <6, 2utag < 5/p6+,u—1. By Holder’s inequality (r — 1) /r = 1/r+(r — 2) /r, we get

the above estimate, if (1—)3; - %) —L> < —1. These inequalities is valid if 97/30 < ¢ < 6.(When

we choose ¢ = 5/2, p = 1/4, then we can take l5 = 20/7, ps = ps = 4, a5 = 3/20, ag = 0)
Therefore
Hzav(k-i—l)

i Hzav(k—i-l)‘

rp (LHg"?)

“I,

L (I.H1/2+p)

o Gl

3
2

E+¢e2.

N

IV s + ||

X[O o) X[O co)

Thus we have
Hv(k+1) ‘

< Ce.
X[0,00)

In the same manner we consider the difference v®) — y(5=1) and prove the estimate

oo -

,U(k——l) _ pk—2) H

Xi0,00) =3 X10,00)

which shows that the sequence {v(k } defined in (2.28) is a Cauchy sequence in the space
X[0,00)- Thus the result of the theorem follows. Theorem 2.8 is proved. 0
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3. WAVE OPERATOR FOR DKG IN 2D

3.1. Difficulty in 2d case. In this chapter, we consider the final state problem for DKG
in two space dimentions. As we mentioned previous chapter, we meet with two problems in
considering the final value problem. First, we are not allowed to start with the Klein-Gordon
system (2.2), which does not involve the derivative of 1. Second, though (DKG) is equivalent
to (2.1) not (2.2), equation (2.1) includes the derivative of . )

Moreover, two dimensional case is known as critical, i.e. borderline case between the long
range scattering and the short range one. More precisely, time decay property for solutions
of the DKG system is slower than three dimensional case. Therefore, previous section’s
argument does not work to two dimensional case directly.

To overcome the lack of time decay property, we will use the algebraic normal form trans-
formation developed in paper [59] and the decomposition of the Klein-Gordon operator into
the product of Dirac operators:

(3.1) R+ (V)i =D, D_.

This combination allows us to find a suitable second approximate solution to 1.

3.2. Several Notations and Main Results. We state our main results in this chapter.
We introduce the function space

44
(3.2) Dy=H ,°nH>' NH2
qg—1

Theorem 3.1. Let m, M >0, m # 2M, 4 < ¢ < 0o and (¢, ((V) o1, 04)) € (Dq)4. If the

norm p = H(w+, ((V) f,(bg))”}p ts sufficiently small, then there exist a positive constant
1

T > 0 and a unique solution

<v>§n¢(t) RN
(W)’< (V) 016 () )) (e(Imeoin))

for the system (DKG). Moreover, there ezists a positive constant C > 0 such that the following
estimate

190 ~vo @l + | (02 5%0 ) = (wrtame )| e
18 true for all t > T, where % <p<l-— %, where
(3.3) (o: 60, (V)" B4 ) () = (Vi (6%, Ve () (81, (V) 3 )

By Theorem 3.1, we can get existence of the wave operator for (DKG) as follows:

Corollary 3.2. Let m, M > 0, m # 2M and 4 < q < co. Then the wave operator Wt for
(DKG) is well-defined from a neighborhood at the origin in the space (Dyg)* x ((V)—I Dy x Dq)

to the space (Hl/Z)2 X (H1 X L2) .

The rest of this chapter is organized as follows. In subsection 3.3, we state some basic
estimates for free solutions of the DKG system and we introduce “null forms” and state their
properties. In Section 3.4, we decompose two harmful terms by the algebraic normal form
transformation and we find a second approximation for 1 through the decomposition of the
Klein-Gordon operator by the Dirac one. In Section 3.5, following paper [20], we will also
change the transformed DKG system into another form in order to apply the Strichartz type
estimates to the Dirac part. In Section 3.6, we will prove Theorem 3.1 by a iteration scheme
based on paper [24].
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3.3. Elementary Estimates and Null forms. We state L? — L? time decay estimates
through the free evolution groups Uy m (t) obtained in paper [48].

Lemma 3.3. Let m #0 and 2 < p < 0o. Then the estimate
|ds m () Bl S E2/P7 191l g20-2/2)
is true for any t > 0, where q is a conjugate exponent of p: 1/p+1/q=1.

By the lemma, we can easily get LP — L9 time decay estimates to free solutions for the
DKG system.

Corollary 3.4. Under the same assumption of Lemma 3.3 and M > 0, the following esti-
mates

Vo @) vt|l,, < 2P| 22w
Hq

me(wg@> <W§@N

are valid for any t > 0, where q is a conjugate exponent of p: 1/p + 1/¢g=1.

N

e H20-2/P) ’

Remark 3.1. Let k € R, M,m # 0 and 2 < p < oo. Then the following estimates

HVD (t) ¢+HH; < /P~ ”w+HH~+2~4/p,1
o ong
e (o ) (e )

hold for any t > 0.
Next, we introduce the Leibniz rule for fractional derivatives.

A

b
He+2-4/p,1

Hy

Lemma 3.5. Let £ >0, 1 < p,q1,q2 < 00, 1 < 11,72 < 00 and Il) = 311- + % = 512— + % Then
the following estimate holds:

(3-4) luvll gy < el 0llpr + 100 g lullp-s -

For the proof of (3.4) see, e.g. [40].
Let 27 = ZJ'...Z" for a multi-index v = (vy,--+,7,) € (NU{0})". We can see the
commutation relations (see [1] and [64]):
(3.5) D4, 2k — (1/2) o] = oDy,
(3.6) [07 —A+m? 2] = 0,
for k = 1,2, where [A, B] = AB — BA.
We introduce the quadratic (null) forms:
(3.7) Q(f,9) = ) (0g) = (V) (Vg),
(3.8) Qi (f,9) = (9;)(Okg) — (Orf) (859),
for 0 < j < k < 2, where & = (89, V) = (i, 01,2) . Especially Q. is called strong null

form and has an additional time decay property through the operator Zj, obtained in [44]
(see also [24], [36] -and [59] etc). '

Lemma 3.6. Let j,k = 1,2. Then for any smooth function f,g, the identities
(3.9) Qo (£9) =t (8of) (Z59) =t (Z;£) (Bog) ,

(3.10) ik (f,9) = t72(Z9)(Zf) —t72(Z;f) (Zkg) + 71 (8;f) (Z9)
~t71(8j9) (Zef) + 71 (Z5) (eg) =7 (Z49) (On)
are valid for any t € R\ {0}.
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3.4. Decomposition of critical terms. We study a structure of some harmful terms of
(DKG). By the difference of (DKG) and the free DKG system, it follows that

(3.11) { Dy (Y —1hg) = (¢ — ¢g) BY + ¢gB (¥ — g) + DBy,
' (O +m?) (6 — o) = (¥ — )" BY + VB (¥ — ¥o) + ¥§ 6o,

where [0 = 82 — A. The last two terms ¢y8v,, Y4B, are critical, both of which have the
worst time decay property. Especially, since

00BYg, ’l/JsﬁwO =0 (t—l) in L2 as t —» 400

(see Corollary 3.4), the L?-norm of these terms are not integrable with respect to time ¢ over
[1,00). Therefore, it can not be expected that usual pertubation technique is applicable to
(3.11). To overcome this lack of time decay property, we will decompose them into an image
of a Klein-Gordon operator and a remainder term following paper [59], based on papers [36],
[45] and [66].

Let (v1,v2) be a solution for the following homogeneous KG system with masses M,
My > 0,

(3.12) (O+M})v; =0, (t,z) € RxR? for j=1,2.
By the masses Mj, Ms, we introduce the symmetric matrix

M2+ M2 2M M, )

MZM(MlM?):( oMMy M2+ M3

We have the following:

Lemma 3.7. (see [59]) Let i > 0 with det (I — M) # 0. Then the quadratic term vive
can be decomposed as

1 ~
(3.13) VI = G TR {(O+m?) f—4R},
where
(3.14) f = f ('Ul,'U2) = (—[\/[12 — M22 + Thz) Vivg — QQO (Ul,vg) y
2 2
(3.15) R = R(v,v2)= Z Qo,m (Orv1, Omv2) + Z Qo,m (Ov2, Omv1)
m=1 m=1

—Q1,2 (G1v1, Oaup) — Qa1 (Gav1, D1va) .

Under the nonresonance mass condition m, M > 0 and m # 2M, we can apply Lemma 3.7
to the critical terms ¢y8yq, ¥F1y. Before doing so, we prepare for several notations. We
put

1
m?2 (2M +m) (m — 2M)
which is well defined if m, M > 0 and m # 2M. For a real-valued function ¢ and a C2-valued
function ¥ = (¢4, Q,Z)Q)t, we define C2-valued functions of bilinear form:

(3.16) M=

fp=[fp(®.¢) = (f($,%1), f (S 02)",
(3.17) Rp =Rp (6, %) = (R(¢,%1) , R (,%,))",
QP = 9P (¢,%) = (Qo (¢, 1), Qo (¢, %)),

Moreover, for C2-valued functions ¢ = (¢y,95)", ¥ = (¢1, 1), we put the bilinear forms:
i = fr (949) = 51 f (95:95)
(3.18) Ri =Rk (¢ 9) = 7 R (95:95)
Q= of (¢tv¢) = ijl Qo (‘Pjij) .
We have the following:



36 M. IKEDA

Corollary 3.8. Let m, M > 0, m # 2M and (v, ¢g) be a free solution for the Dirac-Klein-
Gordon equations. Then the quadratic terms ¢oBvg, VB can be expressed as

(3.19) { ¢o8vo = M { (D + M?) fp (¢0, B1bo) — 4Rp (9, Btbo) }
VB = M {(O+m?) fx (¥, Be) — 4Rk (¥, Bo) } -

Proof. We consider the Dirac part of (3.11). Multiplying by D_ both hand sides of D¢y = 0,
we get

(3.20) D_Dytpg = (O+ M?) ¢y =0,

which implies ¥y = (1/10’1, ¢0’2)t is also solution of the free KG equation. Note that by the

condition m, M > 0 and m # 2M, we can apply Lemma 3.7 with m = M, v; = ¢ and
v2 = Y to get for k= 1,2,

Sovor = M {(O+ M?) f (¢0, o) — 4R (¢0,Yos) } -

Thus by a simple calculation, we obtain (3.19). Next, note that from the equality (3.20), we
see that 1 satisfies the free KG equation. Thus in the same manner as the proof of the Dirac
part, we can prove the KG part, which completes the proof of the corollary. O

Next, we will change the DKG equations into another form without critical nonlinearities.
We introduce a new unknown function (¥, ®) as follows:

(3.21) U=y—9Pg—fop=%—fp, D=9 —¢¢ — fx = ¢ — fx,
where (¢, ¢g) is defined by (3.3) and
(3.22) fo = fo (o %) = MD_fp (¢, Biby)

= M(fp (Do, Bv0) — iM fp (#0,%0))
(3.23) fx = fx (W) = Mfk (b5, Biy),

are the second approximate solution to (1, ¢) , where we have used the properties (DM) and
D11y = 0 to obtain the third equality in (3.22).

Here we remember that by the anti-commutation relations (DM) of the Dirac matrices, we
can decompose the KG operator as follows:
(3.24) O+ M?=D,D_.

By combining Corollary 3.8 and this decomposition, we can rewrite (DKG) as follows:

Lemma 3.9. Let m,M > 0 and m # 2M. Then (¢, ¢) satisfies (DKG) if and only if the
new variable (¥, ®) defined by (3.21) is a solution of

(3.25) { (D f_:n\g):(bF:’ G, (t, x) cR x ]R27
where
(3.26) F=F (3,9) = 00+ $8v0 + 6% — AMRp (b0, B0)

G =G () =989+ 9" B + 1580 — AMRx (65, B0)
and M, Rp and Ry are defined by (3.16), (3.17) and (3.18), respectively.

The first identity of (3.25) is new and enables us to treat the Dirac equation in two space
dimensions.

Proof. From (3.11), we see that (¢, ¢) is a solution of (DKG) if and only if the new variable
(12), qES) satisfies the following DKG equations:

(3.27) { D“L = %5}% "hgbﬂlég‘ + d’oﬂ{ﬂ + ?oﬁlﬁo,
(O+m?) ¢ =9 BY+ ¢ By + U8y + ¥§B¢,
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We consider the Dirac part of (3.27) only, since it is easier to handle the KG part. Note that
by the assumption m, M > 0 and m # 2M, we can apply Corollary 3.8 to ¢,5¢,. Thus we
have

(3.28) $oBYy = M {(T + M?) £ (g, BY) — 4Rp (0, Bg) } -

Moreover, by the decomposition (3.24), we can transform the first term of the right hand side
of (3.25) as follows:

(3.29) AM (O + M?) fp (g, Be) = MDD_ fp (¢, Bo) = D+ fp,

where we have used the definition of fp given by (3.22). Inserting (3.27)-(3.29) into the
Dirac part of (3.27), we obtain the Dirac part of (3.25), which completes the proof of the
lemma. O

3.5. Reduction DKG to a first order system. To construct a solution for the final
value problem of the DKG system, we will use the Strichartz type estimates (Lemma 2.7).
However, it seems difficult to apply these estimates to the Dirac part for (3.25) due to a
derivative loss difficulty. To gain first order differentiability properties of nonlinear term, we
use the matrix operators By, L1 as in the previous chapter 2, though we do not necessarily
need the operator B in dealing with the initial value problem for the DKG system (see [33]).
We will construct the desired solution (¢, ¢) for the DKG system by the iteration scheme.

(k) (k)
Let {(w , ¢ )}120 be a sequence such that (2.17) and

(330) (1/1(), (Z)O) = (77[)07 ¢0) )
under the final conditions
(3.31) Jim Hw““) (t) — %o (t)H e =0
. o™ (1) P (t) _
(3.52) i H ( (VLo (1) ) “(w2a ) ”H -

for k > 0, where (1, ¢g) is given by (3.3). It suffices to prove that the sequence
{W% (<v>§n 6P ()2 6t¢>(’“)) }

is a Cauchy one in the Banach space V(C ([T, 00); Hl/z))4 for some T > 0.
As the previous section, we introduce the new sequence {(\I!(k), (P(k))} as follows:
(333) W =g® g fp=9" ~ fp, @® = 6® gy — fie =6 — fi.
By Lemma 3.9, the sequence {(1/}(k), ¢(k))} is a solution of (2.17), (3.30)-(3.32) if and only
if the new one {(\Il(k), <I>(k))} satisfies the transformed DKG equations
D, W+ = pk)

(¥°,2%) =~ (fo. fi).

k>0

where

FO=F (6%,9%), ¢® = (3Y),

for k>0 (fp, fx, F and G are defined by (3.22), (3.23) and (3.26), respectively).
By the decomposition of the Klein-Gordon operator by the Dirac operator, we have

i o
LiBe=F5 (V)3 I (af + <v>’7’w) - ;% (VViED_Dy.
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Thus from the Dirac part for (3.34), we can deduce the following:
(3.35) L:BUD = 52 (V) DD, W) = (V) FP,

for [ > 0, where Fik) = :F%’D_F(’“). Therefore from Dirac part of (3.34), we have:
k+1) — (VL PR B>
(3.36) { LiB. ¥ (Vm FE, k>0,

BLUY = —B4 fp.
Remark 3.2. By the properties (DM) of the Dirac matrices, we can transform FL into
another form without any derivatives of ) or the free solution Vg (see (3.44)-(3.45) precisely).
This fact enables us to use the Strichartz estimates to (3.36).

Next we will also transform the KG part of (3.34) as in [20], [24]. We can see that the
sequence {tb(k) } is a solution of the KG part for (3.34) if and only if the sequence {Biq)(k) }
satisfies

(3.37) { LB @FHD = (V>,_n1~G’j:, for k > 0,

B:+®®) = —B. fx,
where G% = Gk ({p(k)) = FiGk.
Therefore by (3.36) and (3.37), we get
LB UMY = (V)3 FE,
LoBr @D = (V) ! GY,

(Bi\I’(O),Bi‘I’(O)) =~ (B:thyBifK) :

Remark 3.3. The identity >, By = I holds, which enables us to reconstruct a solution
(U, ®) for (3.84) from (BLV,B+®).

Inserting the identities

(3.39) oM = > BL¥W 4+ fp, ¢ = > Bia®) + f,
T T

(3.38) for k > 0,

into the nonlinearities F¥, G, we can express (3.38) by the new variable (Bi\I/l, Biél) only
without <(}>l,1~bl) .

At the end of this section, we will lead the integral equations associated with (3.38). We
introduce a new unknown function sequence { v(k)} whose components are defined by

o®) = (B+\I!(’“), B_U®, (V)3 B, 0P (V)3 B_q><k>>t ,

a nonlinear term

N =N (o) = <<v> AR (V)5 FE (V) GE (V) G’i)t
for k > 0. Then by using these notations, (3.38) can be simplified as
(3.40) Lo*+h) = N (v(’_“)) for £ > 0.
To lead the integral equations for (3.40), we need to study the asymptotic behavior of the
new variable v(¥). We can obtain the following:
Lemma 3.10. Let (v, ((V) ¢}, 85)) € (H5/2’1)4. The function (1/1(’“), (b(k)) satisfies (2.17),
(3.30)-(3.32) for any k > 0 if and only if the new function v®) satisfies (3.40) and
(3.41) lim “v(k)\

t—o0

s 0, for k> 0.
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The proof of the lemma will be given in Appendix. From Lemma 3.10, we can lead the
integral equations associated with (3.40) as follows:

(3.42) o+ (1) = — / oouu— S)N(v(k)) ds.

3.6. Proof of existence of the wave operator for DKG in 2d. In this subsection, we
give a proof of Theorem 3.1. Note that the identities

m

hold, the nonlinearity A (U(k)) can be expressed in terms of the space derivatives of v(*) (so
excluding the time derivatives).
For T > 1, where T is sufficiently large, we introduce the following function space:

Xr={ve (C ([T,oo);H1/2))6; 0]l x, <oo},

with the norm

vl = sup ¢ (Wollzaqrcoy + M0l e (rmrmy )

,O0

where 1/2 < p <1-2/g,4 < g < oo and I=[t,00). We define
A=C ” (17/}+’ ((V) ¢f’¢;)) ||H;1f(§/_q1)mH5/2’l ‘

In order to obtain the theorem, we will show that the sequence {v(k)} is a Cauchy one in a

closed ball Xt 4 for appropriate T and p, where X7 4 = {v e Xr; ||v||XT < A} .
Hereafter, we will use the notation Li X = L] (I; X), D =D_ and

BU =B,¥, B®=DB5.9,
for simplicity if it does not cause a confusion.

Proof. We will prove v(¥) ¢ Xt 4 for any k > 0 by induction. In the case of £ = 0, it is easy
to see that v{® € Xr,4 for some T and p. We omit the detail. For k > 1, we assume that
v®) e Xr 4 for 0 <! <k. We will show k1) ¢ X 4 for some T" and p.

First, by the identities D1y = 0 and Diyp®) = AgE=Dgy=1) for k > 1, we get for
k>1,
~ (k—1)

D_ (gﬁ(k)ﬁ'&(k» = <'D_(E)(k)) ﬁ{b(k) _ iM(}(k)IQL(k) + /\(*b(k)&(k—l)jlb

~ (k) ~ (k—1 ~(k ~(k—1 ~(k
205 Vg + 26 o1 1+ 26® g I
and

D_Rp (¢9, B¢0) = Rp (D-y, Bbg) — iMRp (¢, Btby) -

From these identities, we can express F{ as follows

.3
(3.44) Ff = ¢% ZF;“ + “remainder” for k > 1,
j=1
where
~(K)\ Lok ~ (k) ~(k
(3.45) o= (0-37) 80", B = (000 80 + (D-0") B,
Ff = 4iMRp (D-go, Bt)-
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Here we note that “remainder” (given by (3.44)) can be handled in the same manner as
either F; ko j = 1,2 or 3). Thus we will omit the estimate of them. We also decompose G%. as

Gk = $2 Gk where

~ (N~ (k ~ (k)\ * . o=k
(3.46) ot = (3%) 60", et = (") sy +uisd®™,
G = 4MRk (45, o) -
Taking L}L:-norm and L{°H Z-norm of (3.42) and applying Lemma 2.7 with (q,7,7) =

(4,4,1/2) and (2, 00,0), we have
B 5 I

F} k

NU(HI) L33 + “Gl

LY3 /2

=
LEHZ ¢ Hy)s

LiLs
(3.47) + Z <H |

Moreover, we remember that <$(k), ﬁ(k)) is expressed as (3.39).

k
e

L%Lz) '

Now we will estimate Flk . By the Holder inequality, we have

H(DB(I)(]C)) B\I’(k) L?/3Li/3 5 {HB(I)UC) (8)”H1 ”B\Il(k) (S) L L4/3
t
s Alls|Be® (s)]| i
e lily
(3.48) s 4 ”B\Ij(k)‘ L4L4 HS_””L%(I) < A%,

for any ¢ > T since v € X7 4 for 0 <1 < k. By the Holder inequality and Remark 3.1 with
p = 8, we obtain

(3.49) 170|510 ()12 Mo ()l S 42572,

for any s > ¢. In the same manner as the proof of the estimate (3.48), we also obtain

(3.50) ” (DBtb(k)) fo‘

A3t 3/4— u

4/3L4/3 ~

for all t > T, due to v € X7.a for 0 <1 < k and (3.49). By the Holder inequality and
Remark 3.1 with p = 8/3, 8, we obtain

(330 [Pk ()], S 10 G)lg o (Mg £ 57 [0 [0 g2 < A%

for any s > t, where we have used the properties (DM) and D1, = 0. Thus in the same
manner as the proof of the estimate (3.50), we obtain

(3.52) H (DfK) Bk

for all ¢t > T due’to v®) € X7 .4 and (3.51). By the Holder inequality and the estimates
(3.49) and (3.52), we get

<A3t 1/2— ,u

4/3 L3~

353 |(fx) fol

L¥3pis S HHDfK (8)1 L2 (S)‘ L

sl
for all £ > T. Thus by combining (3.48), (3.50) and (3.52)-(3.53), we obtain

(3.54) HF{“‘ < A%

4/3 473 w
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for t > T > 1 since pu < 1. Next we consider F¥. We have

(3.55) 28] 0 < (287 w0 + P00 8
By Corollary 3.4 with p = oo, we have
(3.56) |(PB2) b0, , < [[B2 )], I )iz, < o7

for all ¢ > T since v € Xr,4 for 0 <1 < k. In the same manner as the estimate (3.57), we
get

(3.57) |(Pix) | < A%,

’DfK (S)‘

S
i | SIS

for any t > T, where we have used the estimate (3.51). Moreover, we also have

(3.59) |(Ds0) BE®)| 60 ()llzzy

BE® (S)HLg ;

for all ¢ > T since v(® ¢ X7,4. In the same proof as the estimate (3.49), by the Holder
inequality and Remark 3.1 with p = 4, we get

(3.59) 172 @) , < 160 (Ml It ()1 < 4%,
for any s > ¢. By the estimate (3.59) and Corollary 3.4 with p = co, we have

(3.60) | @é0) 7o 60 Mg, |70 ]| )

for all ¢ > T. Therefore by combining the estimates (3.55)—(3.58) and (3.60), we obtain
(3.61) HF’“\

—p
L1L2 r\J S Apt )

< pA%TY,

Lz~ J

u
LIH 1/2 p t
for any ¢t > 7" > 1 since i < 1. Next we consider Ff. By the definition of R p, we have

(3.62) IRD (Déo, Yo)llir-12 S D IR (Do, v0,3) || g
j=12

where we put ¢, = (1/)071, wm)t. By Lemma 3.6, we can express R as
(3.63) R (Do, ;) = 5712y + 5722,
for s € R\ {0}, where
Z1 = (800 Dg) (21014 ;) — (£218:Deby) (D0D13g ;) + similar,

Z2 == (21821'[}0,3') (2201Déy) + (2101 D) (32321?0,]) + similar.
By applying the Holder inequality, we have

-1 < > -1
(3.64) [ERAY PP /t s (H%HH; 12600y, + 1ol ||Z¢o||Hzl_qg)ds-
By Corollary 3.4 with p = ¢, we get
(3.65) 10 @llg S 5™ (V) 01 68) [ gasra S AsTHHH1,
q/q9—
(3.66) lbo (9)lg S 7 [t | amase S ASTH,
-1)

for any s > ¢t. On the other hand, note that the commutation relations (3.5)-(3.6) hold, by
applying the Sobolev inequality and the charge and energy conservation laws, we obtain

G671 1Z00llay, S 1200l S 120005 < 1(206) O)lgan S A
(368) 1260l S 1Z00lrisre S 1260l S 1(Z60) (O)loa S A,

2¢/(q—2)



42 M. IKEDA

since ¢ > 4. Thus by combining (3.64)-(3.68), we get
(3.69) |52 21| Lz S At 1H2/a

for any ¢ > T. By the Holder inequality, we have

(3.70) I 2alygs < [ 57 1200 6)lag 1260 (Vg ds 5 4%,

since in the same manner as the proof of the estimates (3.67)-(3.68), we obtain
1Z2¢0 (M gy + 1200 ()l g2 S A,

for any s > ¢. Therefore combining (3.61)-(3.63), (3.69) and (3.70), we have

(3.71) HF:,{“ < A%142/q

Lig-1/2 "™

for all t > T > 1 since q > 4.
Next, we will estimate G¥. By the Leibniz formula (3.4) with x = 1/2, p = 4/3, 1 =q =2
and 71 = r9 = 4 and the Holder inequality, we obtain

|(Be®) Bu® T H”B\IJ(’“) (s)l'Hl/z BY (s, "
S A s‘“HB\II(k) (5)|L4 L
z t
(3.72) S Al HB\I,(k)\ i < A2l

for any t > T since v(¥) € Xt,4. By the fractional Leibniz rule (3.4) again and Remark 3.1
with p = 4, we have

(3.73) |70(s)]

for any s > ¢. In the same manner as the proof of the estimate (3.72), we obtain

670 (58 ol g2 89 0], o0

2.,-3/2
a5 100 )l a I ()] 72 < A7,

3;,-3/4—pn
e S AN,
¢

H1/2 H1/2

for any t > T due to v(®) € XT,4 and (3.73). In the same manner as the proof of the estimate
(3.75), we get
4,-7/4
S AR

(3.75) |(70)" o

(2) ;
for all £ > T. Thus by combining the estimates (3.72) and (3.74)-(3.75), we obtain
(3.76) HG'f’

L,

2:1/2—2p
4/3 1,1/2 S A% ?
Ly

fort > T > 1 since p < 1. In the same manner as the proof of the estimates (3.61) and (3.71),
we obtain

(3.77) HG’;’

< pAtH. HG’;{ < A24-142/a

Lz ™ Lz ~
for any ¢ > T Finally, by combining (3.54), (3.6'1), (3.71), (3.76) and (3.76)-(3.77), we obtain
(3.78) Hv(kﬂ)‘ <A (AT1/2—N +p+ AT—1+u+2/q) ,

Xr
for T > 1. By the estimate (3.78) and 1/2 < u < 1 — 2/q, there exist a large T > 0 and a
small p > 0 such that v(*+1) ¢ XT,4. In the same manner as the proof of (3.78), we can prove
the estimate

(3.79) Hv<k+1) _ v(k)’

va _ U(k—l)‘

3

1
< —
XT—2 XT
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for I > 1if T > 1 is sufficiently large and p > 0 is suffuciently small, which implies that
{’U(k)} 4x>p 18 @ Cauchy sequence in X7,4. Theorem 3.1 is proved. W

3.7. Appendix. In this subsection, we give a proof of Lemma 3.10. By Lemma DKG and
a decay property of fp given by (3.22), we also have the following:

Corollary 3.11. Let (y+, ((V) ¢T,07)) € (H5/2’1)4. The final state condition (2.3)-(2.4)
with X1 = HY2, Xy = H'holds if and only if the identity

(3.80) lim Z [ALY )12 =0

is valid, where U is defined by (3.33).

We put B = [| (%%, (V) 67, 3)) || o2 -
Proof. By Lemma 2.5, we see that (2.3) with X; = H'/2 is equivalent to
(3.81) , tlirgo; | A+ () — Us (£) Art™ || rje = 0.

By the decomposition (2.9) and the identities (2.10), we have
|A£® Oll e = || Ast (6) = Us (O Asv™ = Asfp| -

By the property of A, the fractional Leibniz rule (3.4) withp=2and ¢; =7, =4 (i =1,2)
and Remark 3.1 with p = 4, we get

”'A fDHH1/2 S ol 5/2 ol 5 3/2 <t 12

for all £ > 0, which completes the proof of the corollary. a

Next we will prove Lemma 3.10.

Proof of Lemma 3.10. First we prove the Dirac part. By Corollary 3.11, we see that (3.31)
is equivalent to

i (k) —
(3.82) Jim ; HAi\I/ (t)HHm —0 for k> 0.
By (2.16) and the Dirac part of (3.34), we have
(3.83) BLwk+) = A, g+ _ gy LR for k> 0.
Thus it is sufficient to show that
(3.84) lim HF’“H =0 for k> 0.
t—oo H-1/2
By the Sobolev inequality and the Holder inequality, we have for £ > 1,
k ok ok +

[ PRV 3 PO i P 1 P Ly P
(3.85) (163 W rsm + 193 1 gare) [#] o+ I0limg oz
By Remark 3.1 with p = 8,8/3, we get
(3.86) Iéollyz < t7%*B, Ilbollyz,, St'/°B.

Thus by the assumptions and the estimates (3.85)-(3.86), we obtain (3.84) for £ > 1. In the
case of k = 0, it is easy to see (3.84). We omit the detail. Conversely, we assume (3.41) and
we will prove (3.31). By the decomposition I =), By, we have only to show

o3 i 32|
+

H1/2
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We have

(3.88) HBfDHHl/2 < HBQ(? (Do, ¢0)HH1/2 + remainder,

(3.89) 1BQT (Do, o)l 172 S 1196 1| 12/2 + 10:Q5 || 2 -

By the Holder inequality and Remark 3.1 with p = 8,8/3, we obtain

(3.90) 18: Qo (D¢0»¢0,j)HH—1/z S “¢0||Hg/3 “1/10”}1; + H¢0HH82 “"‘/’0”1{3/3 St'B

Since the remainder terms in (3.88) can be estimated in the same manner as the proof of
(3.90), we obtain

oo ol

from which (3.87) follows.
Next we consider the KG part. By the identity

1F + allze + 115 = glm = 2 (15130 + gl )

we can see that (2.4) with Xy = H! is equivalent to
) () —
2B (42 0 -0 0)] .-

In the same manner as the proof of the estimate (3.91), we can obtain

F < +—-1p2
2 I

<¢71B?

1/2 ™

which completes the proof of the lemma. O
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4. SMALL DATA BLOW-UP OF L2-SOLUTION FOR THE NONLINEAR SCHRODINGER
EQUATION (NLS) WITHOUT GAUGE INVARIANCE

4.1. Introduction. We study existence of a blow-up solution for the nonlinear Schridinger
equation (NLS) with non-gauge invariant power nonlinearity

(4.1) i0u+ Au = Au?, (t,x)€[0,T) xR",
with the initial condition
(4.2) u(0,7) = f(z), z€R",

where T > 0,1 < p <1+ 2/n, u = u(t,z) is a complex-valued unknown function, A =
M +id € C\{0}, \; e R (j=1,2), f = f(z) = fi(z) tife(z) and f; = fj(z) €
L} (R™) (j = 1,2) are real-valued functions. This chapter is based on a joint work with Yuta
Wakasugi.

It is well known that local well-posedness holds for (4.1) in several Sobolev spaces H*®
(s > 0) (see e.g. [3, 65] and the references therein). However, there had been no results of
global existence of the solution of (4.1)-(4.2). In this paper, we will prove a small data blow
up result for (4.1). More precisely, we will show that if the initial data f in L? satisfies a
certain condition related to its sign, then the L?-norm of the solution u of (4.1)-(4.2) blows
up in finite time, even if the data is sufficiently small (see subsection 4.2). We note that when
p > ps, where p; is the well-known Strauss exponent, which is greater than 1 + 2/n, global
existence results are known (see [3]). Thus the following natural questions arises: What
happens in the case of 1+2/n < p < ps 7. This questions was addressed in recent paper [32].

Our result implies that the nonlinear effect of A [u|P is quite different from that of Ag [u|P "
(Ao € R), since the L2-norm of solutions for

(4.3) iBu + Au = Ao |ulP " u

conserves for any ¢ € R. Tsutsumi [65] proved global existence of L2-solution of (4.3) when
1 < p < 1+4/n. It is also well known that for (4.3), the exponent p = 1+2/n is the threshold
between the short range scattering and the long range one (see [2, 67, 52, 11, 18, 17]). We
also mention that when p > 1+ 4/n, blow-up of H!-solution of (4.3) is proved by Glassey
[15] (see also [51]). However, their results require that the data are large as contrast with our
result.

Back to our problem (4.1), in the short range critical case (n,p) = (2,2), Shimomura
[57] and Shimomura-Tsutsumi [58] studied the asymptotic behavior of solutions of (4.1).
Especially, Shimomura-Tsutsumi [58] proved nonexistence of the wave operator for (4.1).
On the other hand, Hayashi-Naumkin [21] considered the final state problem for NLS with
the quadratic nonlinearity pu? + va? + Aju|?, which includes the term A{u|?, in two space
dimension. They proved existence of the global solution which behaves unlike the free one in
L?. We note that their result requires that y, v # 0 and is not applicable to (4.1).

From these results, some people might think that the non-gauge invariant nonlinearity
AulP with 1 < p < 1+ 2/n may act as a long range effect such as Ao |u[P~! u. However, our
result gives a negative conclusion to such an expectation.

4.2. Main Result. We first recall the well-known fact about local existence of the solution
in L? for the integral equation

(4.4) w(t) = U(t)f—z’)\/o U (t— ) [ul ds

associated with (4.1)-(4.2), where U(t) = exp(itA) is the evolution group of the free Schrédinger
operator.

Proposition 4.1 (Tsutsumi [65]). Let 1 < p < 1+4/n,A € C\ {0} and f € L. Then there
exist a positive time T = T (|| f||;2) > 0 and a unique solutionu € C ([0, T); L*)NL} (0, T; L)
of the integral equation (4.4), where r,p are defined by p=p+1 and 2/r =n/2 —n/p.
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We call the solution u in the above proposition “L?-solution". Let T,, be the maximal
existence time of local L%-solution, that is,

Tm = sup{T € (0,00]; there exists the unique solution u to (4.4)
such that u € C ([0,T); L?) N L (0,T; L2)},

where r, p are as in the above proposition. To state our result, we put the following assumption
on the data:

(4.5) “fre LNR™), A2 | fi(z)dx > 0" or “fy € LYR™), A1 | fo(z)dz < 0.
R™ R

Our main result is the following:

Theorem 4.2. Let 1 <p <1+2/n, A € C\ {0} and f € L%. If the initial data f satisfies
(4.5), then T, must be finite. Moreover, we have

(4.6) pHm flu @)l 2 = +oo.

We note that we put no restriction on the size of the data. In order to prove Theorem 4.2,
in the next section, we introduce a weak solution of (4.1)-(4.2) and the result of nonexistence
of a global weak solution.

4.3. Reduction of the integral equation to a weak form. To prove Theorem 4.2, we
define a weak solution of (4.1)-(4.2).

Definition 4.1. Let T > 0. We mean u is a weak solution of NLS (4.1)-(4.2) on [0,T) if u
belongs to LT ([0,T) x R™) and satisfies

loc

/ u (—i0p) + Avy) dzxdt
[0,T)xR"™

(4.7) = 1 (@)Y (0,z)dz + A lulP ydzdt

R” [0,T)xR"
for any ¢ € Cg ([0,T) x R™). Moreover, if T > 0 can be chosen as any positive number, u is
called a global weak solution for (4.1)-(4.2).

We note that an L2-solution as in Proposition 4.1 is always a weak solution in the sense
of Definition 4.1:

Proposition 4.3. Let T' > 0. If u is an L?-solution for the equation ({.4) on [0,T), then u
is also a weak solution on [0,T) in the sense of Definition 4.1.

We will give a proof of this proposition in Appendix.
Next, we mention nonexistence of a nontrivial global weak solution for (4.1)-(4.2) with the
condition (4.5).

Proposition 4.4. Let 1 <p <1+ 2/n, A € C\ {0} and let f satisfy (4.5). If there exists a
global weak solution u of (4.1)-(4.2), then u = 0.

Combining Proposition 4.3 and 4.4, we obtain Theorem 4.2. Indeed, let f € L? satisfy
(4.5) and u be the L2-solution of (4.4). Suppose that T, = co. By Proposition 4.3, u is
also a global weak solution of (4.1)-(4.2) in the sense of Definition 4.1. Thus, we can apply
Proposition 4.4 and have u = 0. However, by noting u € C([0, c0); L2(R")), it contradicts
f # 0. Therefore, we have T}, < oo.

Next, we prove (4.6). First we suppose

limin [[u(t)] 2 < co.
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Then there exist a sequence {tx}xen C [0,7T7,) and a positive constant M > 0 such that

(4.8) lim t% = Tpn
k—o0
(4.9) sup [lu(te)|| L2 < M.
keN

By (4.9) and Proposition 4.1, there exists a positive constant 7' (M) such-that we can con-
struct a solution

u € C([te, tr + T(M)); L?) N LY ([tk, te + T(M)); LE)

of (4.4) for all k € N. However, by (4.8), when k is sufficiently large, the inequality t; +
T (M) > T, holds and it contradicts the definition of Tr,. Therefore, we obtain

Jiminf [lu ()] 2 = oo,

which completes the proof of Theorem 4.2.

At the end of this subsection, we mention the strategy of the proof of Proposition 4.4.
We apply a test-function method used by Zhang [72, 73] to NLS (4.1). By using some
test-functions and space-time sets cleverly, he obtained some blow-up results for nonlinear
parabolic equations (see [72]). By the same method, he also proved a blow-up result for the
nonlinear damped wave equation:

Utt—AU—{-Ut:l’Ulp, (t,.’L‘)ERXRn,
U(Oax) = UO(m)vvt(wa) = vl(m)’ z € R,

where 1 < p <1+ 2/n,v=wv(t,z) is a real-valued unknown function, vg (x) and v; () are
compactly supported given functions (see [73]). However, since this method needs a positivity
of the nonlinear term |v[?, it can not be applicable to NLS (4.1) directly, because solutions
for NLS are generally complex-valued and the constant A in front of the nonlinearity is a
complex number. To overcome these difficulties, we make a little modification to this method
by introducing an appropriate positive function (see (4.12)) related to A |ul?.

For the nonlinear heat equation and the damped wave equation with the same type non-
linearity as |u|?, it is well known that the exponent p = 1+ 2/n, which is often referred to as
the “Fujita exponent”, is the threshold between the small data global existence and blow-up
of solutions (see [47, 7, 63] and the references therein).

4.4. Proof of non-existence for non-trivial global weak solution. In this subsection,
we give a proof of Proposition 4.4.

Proof. First we introduce two cut-off functions n = n(t) € C§°([0,00)) and ¢ = ¢(x) €
C§°(R™) such that 0 < n,¢ <1,

(1 ift<1/2 1 e <1/2
"(t):{ 0 ift>1 ‘b(m):{ 0 if|z|>1

Furthermore, it is possible to take ¢ satisfying the inequality
(Vo) ()]
¢(z)
with some constant C independent of z. Let R > 0 be large parameter. Using the above

cut-off functions, we also put three cut-off functions dependent on R :

m&t)zn(%) for t € R, ¢R(a:)5¢(%) for x € R",

(4.11) Yt x) =ng(t) ¢p(x) for (¢, z) € [0,00) x R™.

Let Bg = {z € R"; |z| < R} be a ball at the origin. We also define the time-space set
Qr = [0, R?] x Bg. We note that Qg includes the support of 9. Denote ¢ = p/(p — 1) €
[1+4 n/2,00). We consider the case A\; > 0 and A [ fadz < 0 only, since the other cases can

(4.10) <C for |z| <1,
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be treated almost in the same way (see Remark 4.1). In this case, we may assume f; € Lt
and [g. fo (z)dz < 0 by the assumption (4.5). We define a positive function of R by

(4.12) Ip= Re/Q AlulPytdzdt.
R

We note that ¥% € C3([0, R? + 1) x R"). Since u is a global weak solution of (4.1) (see
Definition 4.1), we can use the identity (4.7) with 7 = R% + 1 and have

In = / fo (@) &% (z) d + g / (Im u) $%71, (¥ ) dads
Bgr Qr

(4.13) + /Q (Reu) A (v%) dadt.

By the assumption on f;, the first term of the right hand side of (4.13) is negative for
sufficiently large R > 0. In fact, by f> € L! and Lebesgue’s convergence theorem, there exists
Ry > 0 such that for any R > Rj,

i f2 (z) ¢% (z) dz < 0.

Thus, we have for R > Ry,

Ip < q/Q (Imu) wqR_l (O g) dxdt + /Q (Reu) A (wqR) dzdt

S [ vk ol dede+ [ Jul|A ()| dodt
Qr Qr
(4.14) = Jiyr+ Jor

First we will estimate J; g. By a simple calculation, we get

Out (t.9) = 507 (@) O0n) (5 )

By noting 87 (t) =0 if t € [0,1/2] and the Hélder inequality, we obtain

1 R? g1
J < , dxdt
LR S T2 /R2/2 /Ba lulp® da

1 R2 , 1/p R2 1/q
< = u|PyYGdxdt / dzdt
R 122/2/133l "Vh R2/2 JBpg
1/p p(n+2—
(4.15) ~ I,/FR™t2-20/a,

where

RZ
Lp= Re/ Alu}pw%cwdt. ,
R2/2 JBg
We note that n +2 — 2q < 0, since 1 < p < 1+ 2/n. Next we consider Jy g. By a direct

computation, we have

A(vg) = %«J(q—l)n‘fz 6% @)V6 (%)

Py (065 () (20) (F).

Using this and (4.10), in the same manner as above, we obtain

1 R2 l/p R2 1
Jr S o5 / / |ulPypdedt / / dxdt
R 0 BR\BR/Z 0 BR\BR/2

(4.16) ~ [}PR2-20)/q

/a
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where we put

R2
IZ’R = Re / / A |u|p wqul'dt
0 Br\Bg2

By combining (4.14)-(4.16), we have

1/ 1/ n+2—2
(4.17) Ir< (11’ 2y 12’5) R(n+2-20)/a
for R > R;. Since it is clear that I; p < Ir(j = 1,2), we obtain
(4.18) Ir SR <,

with some constant C independent of R, since n + 2 — 2¢ < 0. Here we note that only in the
critical case p = 1 + 2/n, the identity n + 2 — 2¢ = 0 holds. By (4.18) and letting R — +o0,
we have

Re / Aulf dtdz < oo,
[0,00) xR™

that is, u € L? ([0,00) x R™). Noting this and the integral region of I1 g and I g, we have

(4.19) Rl—ig—loo Iir=0, forj=1,2.
Therefore by the inequality (4.17) and (4.19), we get
lim Ir=0
R‘—l-g-loo R )
which implies © = 0. This completes the proof. O

Remark 4.1. In the different cases from A1 > 0, putting

—Re / /\|u|p1/1‘112dxdt if A1 <0, fodaI < 0,
Qr

Ig = Im ANulPyhdzdt  if Ao >0, Az [ frdz >0,
Qr

—Im / )\]ulpd)(}%dl‘dt if Ao <0, Ao ffldiL‘ > 0,
\ Qr

we can prove the same conclusion in the same manner as above.

4.5. Appendix. In this subsection, we give a proof of Proposition 4.3. The main difficulty
of the proof lies in the fact that if p is close to 1, then the nonlinear term |u|? does not have
twice differentiability with respect to space variables. To avoid differentiating twice, we use
appropriate changing variables and differentiate with regard to time variable (see (4.27)). As
the result, we can derive an H>2-estimate (see also [3]).

We first recall the well-known Strichartz estimates for the Schrodinger equation (see [68]).

Let
2<p;<2n/(n-2) ifn>3

2

2< p, <oo ifn=2 and—:%—ﬂ(j:1,2).

2<p;j<oo ifn=1 " Pj
Then the following estimates hold:
Lemma 4.5. For any time interval I, the estimates

WU ey < 16l
t
(4.20) / U(t — s)Fds SWEI o
0 LN (LS Ly*(ILs?)

are true, where rh =13/(ro — 1) and py = py/(py — 1).

Now we give a proof of Proposition 4.3. Denote the nonlinear term by F (u) = A|u|? and
the time interval by I = [0,T") for simplicity.
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Proof. Let T > 0,p = p+1,2/r = n/2 —n/p, ¥ € C2([0,T) x R™) and let u be an L3
solution of (4.4) on [0,7). It is easy to see that u € LP ([0,T) x R®). We decompose u into

loc
u = uy + ug, where u; = U (t) f is the homogeneous part and

UgE—i/O U(t—s)F(u)ds

is the inhomogeneous ane. The homogeneous part u; can be treated easily. In fact, by a
standard density argument, we can obtain the identity

/ u1(—i0y) + Ay)dxdt =i f(2)y¥(0, z)dx.
IxR™» R™
Thus, it suffices to prove

(4.21) /I o ug(—i0p) + Avy)dzdt = / F(u)ydzdt,

IxR"?

which must be dealt with somewhat carefully because of involving the non-smooth nonlin-
earity |ulP. we split the left-hand-side of (4.21) as

—i/ u2(8tw)dacdt+/ ug Apdzdt
IxR™ IxR™
(4.22) = K+ Ko.

Hereafter we use the notation LTL, = LI (I;L%) for simplicity. Since u € LiL; and
Cg° (I x R™) is dense in Ly L%, there exists a sequence {ug}ren C C§° (I x R™) such that

(423) lim ”Uk - UHLer =0.
k—oo tT

We also introduce an approximate function sequence {uzx}, ey to the inhomogeneous part
ug, whose component is given by

t
U2k = —2/ U(t - S)F(uk)ds
0

Let a =2 (1+ % — p) > 0. By the Strichartz estimate (4.20) and the Holder inequality with
p—1 —

;1, = %4-1]—1 and Tl, %+p—:l+a, we can estimate
s —wzilpgors S Ml = bl o
-1 -1
< || (gt + el ) e = el | o
t
-1 -1
(4.24) < T (lull g + el g ) lu = well e

By (4.23), (4.24) , noting ug (0, z) = 0 and integration by parts, we have

Ki=—ilim |  upx(0p)dedt

N=00 J IR

(4.25) = lim z/ (Opug i )dzdt.
IxR™

n—o0

By the almost same argument as in (4.24), we find that uay € C (I; Hl) and there exists a
time derivative Gsugy € C (I i H _1) such that the identity

(4.26) Owug k= 1Aug g — 1 F (ug)
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is valid. From this identity, we can show that Ausf € C (I ; Lz). In fact, changing variables
with ¢t — s = s, we have

Orug n(t) = —i0 /Ot U(s\F(ug)(t — s")ds'

¢
(4.27) = —iU(t) F(ux)(0) — z/ U(s)0(F(ug))(t — s)ds.
0
Applying the Strichartz estimate (4.20) to (4.27), we have
(4.28) 1Beuzr (D)l L2 S Nk (O) e + 110: (F (we)l e -

By the same way as in (4.24), we also have

(4.29) 00 (F @l ,,

and the right-hand-side is finite due to ux € C§°(I x R™). Therefore by combining (4.28)-
(4.29), we obtain

—1
9et s (Ol S Il 2y + T el 1 1 9rtil e < 00

—1
/ 5 ™ ||Ukl|1£;L; ||8tuk”L{L§

for any k € N, from which we can see Gyug i, € C (I; L2). Thus by the equation (4.26) again,
we also find ugy € C (I i H 2) for any k € N. Therefore we have the identity

(4.30) (Dugp, ¥) 2 = (ugk, AY) 1z -
Thus by combining the identities (4.25), (4.26) and (4.30), we obtain

Ki; = lim </ F(ug)ypdzdt —/ u2,kA¢dmdt>
k—oo \ Jrxprn IxR"
(4.31) = / F(u)ydzdt — Ko.
IxR"

In fact, by the same way as in (4.24), we obtain

/I o (F ) = F () wd:cdt{ ST (el g + s ) s = wll g 1905 e

and

/ (u2,k - U2) Ad)dl‘dt
IxR™ :
Therefore, combining (4.22) and (4.31), we obtain (4.7). This completes the proof. O

S Tlluge — w2l peorz 1AV o2
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5. LIFESPAN OF SOLUTIONS FOR NLS WITHOUT GAUGE INVARIANCE

5.1. Introduction. In this chapter, we continue to study the initial value problem for NLS:
(5.1) i0u + Au = Alul?, (t,z)€]0,T)xR",

with the initial condition

(5.2) : uw(0,z) =¢f (z), zeR",

where T > 0,1 < p < 1+ 2/n, u is a complex-valued unknown function of (t,z), A € C, f is
a given complex-valued function, £ > 0 is a small parameter.

In the previous chapter, a blow-up solution for (5.1)-(5.2) was constructed in the case of
1 < p £ 1+2/n under a suitable initial data. But since a contradiction argument to construct
a blow-up solution was used, the mechanism of the blow-up solution (e.g.estimate of the
lifespan, blow-up speed etc.) was not understandable. In this chapter, by the modification
of the method, we will prove an upper bound of the lifespan in the case 1 < p < 1+ 2/n.
This result was extended to the wider case 1 < p < 1+ 4/n in the recent paper [32]. (For
more information of blow-up results of NLS, see e.g. [15], [51], [50], [54] and the references
therein.)

5.2. Known Results and Main Result. Our concern in this chapter is the estimate of
the lifespan. The lower bound of the lifespan follows from Proposition 4.1 immediately.

Corollary 5.1. Under the same assumptions as in Proposition 4.1 and € > 0. the estimate
is valid

T. > Ce'l,
where w =n/4—1/(p—1) and C = C(n,p,||f|l;2) is a positive constant.

The next interest is an upper bound of the lifespan.

Remark 5.1. In [34], in order to prove T, < oo, a contradiction argument based on papers
[72], [73] was used. Therefore, an upper bound of the lifespan was not obtained.

Next, we state our main result in this chapter, which gives an upper bound of the lifespan.
Then the following is valid;

Theorem 5.2. Let 1 <p<1+2/n, A€ C\ {0} and f € L% If f satisfies (4.5), then there
exist €9 > 0 and positive constant C = C (p, \) such that

T. < Cel/s
for any € € (0,¢0) where k =n/2-1/(p—1).

Remark 5.2. There is a gap between the lower bound (see Corollary 5.1) and the upper
bound in L?-framework, that is k > w. Recently, this result was extended in [32].

Finally, we mention the strategy of the proof of Theorem 5.2. We will use a test-function
method based on papers [46], [61]. In [46], [61], upper bounds of lifespan for some parabolic
equations were obtained. However, their arguement does not be applicable to the present
NLS directly. Since solutions for NLS are complex-valued, the constant A in front of the
nonlinearity is a complex number and especially, the appropriate function spaces for NLS
differs from that of those parabolic equations. To overcome these difficulties, we will consider
the real part or imaginary part for the equation and reconsider the problem under the suitable
function spaces L? to NLS, so that we can use the local existence theorem.



ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVE WAVE EQUATIONS 53

5.3. Integral inequalities by appropriate test-functions. In this subsection, we pre-
pare some integral inequalities. Before doing so, we introduce the non-negative smooth
function ¢ as follows, which was constructed in the papers [6], [9]:

¢(z)=¢(lz]), ¢(0) =1, 0< ¢(z) <1 for |z| >0,

where ¢ (|z|) is decreasing of |z| and ¢ (Jz|) — 0 as [z| — oo sufficiently fast. Moreover, there
exists p > 0 such that

(5.3) 6| < ué, = R,

and |[¢|[,: = 1. This can be done by letting ¢ (r) = e for » > 1 with v € (0,1] and
extending ¢ to [0,00) by a smooth approximation. Let € be suffuciently large and

0, ift >T,
n(t):nT(t):{ (1—t/T)0, lfOStST,

where 0 < S < T. Furthermore, set ng(t) = n(t/R?), ¢g(z) = ¢(z/R) and Yg (t,z) =

ng (t) ¢g (z) for R > 0.
First, we reduce the integral equation (4.4) into the weak form.

Lemma 5.3. Let u be an L2-solution of (5.1)-(5.2) on [0,T.). Then u satisfies

/ u(=id, () + A (o)) dadt
[0,TR2)xR"

(5.4) = is/ f (@)Y (0,z)dzx + )\/ |ul? 9 pdxdt,
R" [0,TR?)xR"

for any T, R > 0 with TR? < T..

This lemma can be proved in the same manner as the proof of Proposition 3.1 in [34] and
Proposition 4.3.

Next, we will lead a integral inequality. Hereafter we only consider the case of A\; > 0 for
simplicity. The other cases can be treated in the almost same way (see Remark 5.3).

We introduce some functions:

In(T) = / (uf? o pdzdt,
(0,TR2)xR"

Jr = ¢ Rn—f2($)¢($/R)d~"3

and

1/q
A(T) = / 0 (0177 (1) VOD ¢ (2) dadt |
[0,T) xR™

1/q
B(T) = / np (t) 6 (2) dadt )
[0,T) xR

where ¢ = p/ (p — 1) . By the direct computation, we have

Y
(5.5) AT)=0{6—-1/(p— 1)} YeT"? B(T) = <9—%) B

We have the following:
Lemma 5.4. Let u be an L2-solution of (5.1)-(5.2) on [0,T.). Then the inequality holds

(5.6) MIR(T) + Jr < B {In (T)"" A(T) + plIp ()7 B (T) }

for any 0 < T and R > 0 with TR? < T., where s = -2+ (2+n) /q.
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Proof. Since u is an L2-solution on [0,7;) and TR? < T, by Lemma. 5.3, we have

/\/ |ul? ¢ pdxdt + is/ f (@) YR (0,z)dx
(0,TR2)xR™ R"

(5.7) - / w(=id, () + A () dedt.
[0,TR2)xR™
Note that A; > 0, by taking real part as the above identity, we obtain

MIg(T)+ Jp = /[0 g R (0 () + A )

< [ 0] {10: ()] + |2 (¥g)} dadt
(0,TR2)xR™
(5.8) = KL+ K%
We note that (9;n) (t) = 0 except on (0,7) . By using the identity
Og (t,x) = R 2¢g () (i) (t/R?)

and the Holder inequality, we can get

Kh = R / | n4? ((Bem) (¢/R?) | n5 P é et
[0,TR2)xR"

1/q
< RR(T)V? ( / |(@en) (t/R2)|"ng" (’"”astmdt)
[0,TR2)xR"

(5.9) = Ir(D)/PA(T) R,

where we have used the changing variables with t/R2? = ¢/ and /R = z’ to obtain the last
identity. Next, by the identity A (¢ (z/R)) = R=2(A¢) (x/R), the Holder inequality and the
estimate (5.3), we have

K = R luln (t/R?) |(A¢) (z/R)| dzdt
[0,TR2)xR"

< uR? / |u| ¥ gdzdt
[0,TR2)xR™

1/q
< WRIg(T)P ( / wRd:cdt>
[0,TR2)xR"

(5.10) = wIg(D)'/?B(T) R,
where we have used the changing variables again. By combining the estimates (5.8)-(5.10),
we have the conclusion. O

Remark 5.3. We remark the other cases different from Ay > 0. For example, when Ay > 0,
by taking the imaginary part as (5.7), an estimate similar to (5.6) can be obtained.

Next, we give the upper bound of Jg. Let ¢ > 0 and 0 < w < 1. We introduce the function

(5.11) v (o,w) = max (0¥ —z)=(1— w)wl—fu_)oﬁ.
Tz

We denote
D(T) = A(T) + uB (T),
for simplicity. The following estimates are valid:
Lemma 5.5. Let u be an L%-solution of (5.1)-(5.2) on [0,T;). Then the estimate
(5.12) Jr < MY (D (T) R°/A1,1/p)
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holds for any T > 0, R > 0 with TR? < T, where s = —2 + (2 + n) /q. Moreover, if T. = 0o,
that is u is a global solution, then the inequality is valid:

(5.13) limsup R~*9Jgp < (u/A)Y @V

R—oo

The proof of this lemma was based on that of Theorem 3.3 in [46] and Theorem 2.2 in [61].
Proof. Since u is an L?-solution on [0,7}), by using (5.6) with S = 0, we obtain
Jr < R°D(T) I (T)YP — A\ IR (T) < MW (D (T) R* /A1, 1/p),

which is exactly (5.12).
Next, we will prove (5.13) under the assumption 7; = co. By (5.11) and (5.12), we have

Jr MY (D (T) R? /A, 1/p)

= M (1-1/p)(1/p) =17 (D (T) R* /M) T

(5.14) = C1RD(T)?,
for any 7' > 0, R > 0, where C; = /\1_1/(’)—1) (p—1)(1/p)?. This inequality implies

IA

q
. —sa g < . .
(5.15) limsup R™*Jr < Cy {%I;%D (T)}

R
Next, we will estimate D (T). Set
_ 0 __ K
IRV S (R
Remembering the identities (5.5), we can rewrite D (T') as
(5.16) D(T) = a, TP 4+ b,T"1,

Since

Qp

: - _ 1y Ve Vapl/p
min D (T) p(p—1)""a, %,

pMrp (p—1)"1Va gl

5.17 = :
0 {0-1/ - D}" (1+0)1®
we have
1 li i - /P _ 1)V
(5.18) Jm min D (T) = p*/Pp (p — 1)
Finally, by combining (5.15)-(5.18), we obtain (5.13), which completes the proof of the lemma.

O
5.4. Upper bound of lifespan. In this subsection, we give a proof of Theorem 5.2, which

implies an upper bound of the lifespan for the local L2-solution. We also consider the case
of A1 > 0 only. The other cases can be treated in the almost same manner. When )\; > 0,
we may assume that fy satisfies

f2 € LY /R fo (x)dz < 0.

Proof. First, we note that by Corollary 5.1, there exists &g > 0 such that 7, > Tp for any
€ € (0,e9), where Tj is defined later. Moreover, since 1 < p < 1+ 2/n and f satisfies (4.5),
by Theorem 4.2, we also find T, < oo.

Next, we consider the lower bound of Jg. By fo € L! and Lebesgue’s convergence theorem,
there exists Ro > 0 such that for any R > Ry, Jg > Co. Set Ty = apb, 'RE. On the other
hand, let 7 € (Tp, ;) and R > Ry. By using (5.12) with T = 7R~2, we have

(5.19) e <Cy'CL{R*D (R} = CH (1,R),
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where Cy = Cy 'C1. By (5.16), we can rewrite H as

(5.20) H(r,R) = {D (1R B*}" = {ayr VP R™ 4 byri/ap-es ",

where a; = n/q, as = 2 —n/q. We solve the equation apT_l/pRal = bprl/qR“’z and we put
R, = {a;lpr}l/Q.

Note that R, > Ry, by substituting R, into R of the inequality (5.20), we obtain

(5.21) e < CoH (1, R;) = C37"

where k =n/2 —1/(p—1) and C3 = C3(6,p) > 0 is constant dependent only on 6, p. From
the assumption n < 2/ (p — 1), we obtain x < 0. Therefore, by (5.21), we can get

T < Cel/x

for any 7 € (Tp,T¢), with some C > 0. Finally, we can get T, < Cel/%, which completes the
proof of the theorem. a
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