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M IKEDA

PRor,ocun

This thesis is concerned about the author's study about nonlinear dispersive wave equations
during the doctor course of Department of Mathematics of Science in Osaka University. He

has been studying well-posedness for the equations and an asymptotic behavior of solutions
for them. More specifically, he has been interested in the nonlinear Schrodinger equation,
Klein-Gordon equation, Dirac equation and their system. He has obtained some results about
Scattering or Blow-up phenomena for these equations so far. Some of them are organized in
this thesis.

In Chapter 1, the author studies a scattering problem for the time-dependent Hartree-
Fock equation (HF). This system appears in the quantum mechanics as an approximation to
a Fermionic multi-body system. His aim in that chapter is to show existence of the modified
scattering operator for HF (for the definition of the operator see Chapter 1). To obtain
this operator, one has to improve the domain and range of the modified wave operator (for
the definition of the operator see also Chapter 1) obtained in [70] by Takeshi Wada. The
author uses a different approximate solution to HF, which differs from that in [70], and
succeeds in improving the domain and range of the modified wave operator. By combining
this improvement and existence of the inverse wave operator, which was already obtained in

[70], the author proves existence of the modified scattering operator to HF. The author notes

that how to construc the approximate solution was based on paper [21] by Nakao Hayashi
and Pavel I. Naumkin.

In Chapter 2 and Chapter 3, the author studies a scattering problem for the Dirac-Klein-
Gordon system (DKG), which is the couple of the Dirac equation and the Klein-Gordon
equation with the Yukawa type interaction and plays an important role in quantum mechanics.

It is well know that solutions for Dirac equation satisfy a reduced Klein-Gordon equation.
From this fact, solutions for DKG also satisfy a Klein-Gordon system (KG), to which many
mathematicians has studied existence of global solution. Among them, in [71], existence of
the scattering operator (for the difinition of this operator see Chapter 2) for the reduced
KG system was proved in three space dimensions in lower order Sobolev spaces. However,
existence of the scattering operator for DKG itself is not so clear even from the previous
result [71].

In Chapter 2, which is based on a joint work [20] with Nakao Hayashi and Pavel. I.
Naumkin, the author proves existence of the scattering operator for DKG itself in lower
order Sobolev space. In this chapter, DKG itself is treated without reducing it into the KG
system. Moreover, by using their estimates, one can improve the domain and range of the
scattering operator for the KG system obtained in 1711.

In Chapter 3, the author considers existence of the wave operator for DKG in two space

dimensions. The author notes that 2d case is more difficult than the 3d one, since as the
dimension is lower, an expected time decay property of solutions is slower. In fact, 2d case

is delicate one and the borderline between the short range scattering and the long range
one. To overcome the insufficient time decay property, the author uses an algebraic normal
form transformation, which one is permitted to use under the non-resonance mass condition,
developed by Hideaki Sunagawa in [59] and the decomposition of the Klein-Gordon operator
into a product of the Dirac operators (which is essential). Moreover, as one see in Chapter 2,

one meets derivative loss difficulty for the Dirac part. To defeat the derivative loss, the author
uses a special stnrcture of the nonlinear term to the Dirac part (for more detail, see Chapter
3). BV combining these two facts, existence of the wave operator for DKG is obtained in two
space dimensions in lower order Sobolev space under the non-resonance mass condition. The
author notes that by using the flrst method, existence of the inverse wave operator was also
proved in [33].

In Chapter 4 and Chapter 5, the author discusses Blow-up phenomena of solutions for the
nonlinear Schr6dinger equation with a non-gauge invariant power nonlinearity:

0.1) i}p I L,u: ) l,rlo, (t,r) e [0,7) xR'
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Blow-up phenomena to the corresponding heat equation and the wave equation has been
studied extensively. However, there are few results about (0.1). When it comes to NLS, the
one with a gauge invariant power nonlinearity

ω・助 づaψ +△9=μ 191P~19,(ι ,″)∈ R× Rれ ,

where p € R, has been studying extensively. It is well known that large data local well-
posedness holds for (0.2) in.L2-sense under 1< p 1po, where po: I*4ln is called
L2-critical exponent (see e.g. [65]). Moreover, .L2-norm of those solutions for (0.2) conserves

(0.3) |19(t)|IL2=9(0)|IL2,fOr any ι∈R.

Thus .L2-conservation law and the local well-posedness imply large data global well-posedness
in Z2-sense of (0.2) in tr2-subcritical, i.e. 1 < p .--po.

In the present (0.1) case, large data local well-posedness also holds in .t2-sense under
7 < p ( ps. However, L2-conservation law (0.3) for (0.1) can not be expected. Thus global
well-posedness results for (0.1) are not trivial in l2-subcritical case. The author notes that
in [58], when (n,p) : (2,2), non-existence of the usual wave operator was shown and some
mathematicians had expected to get a small data global existence result for (0.1) in the case

(n,p) : (2,2) .

On the contrary, in Chapter 4, a small data blow-up result will be shown in the case

1 < p < 1*2f n, which includes (n,p) : (2,2) .This is a joint work with Mr. Yuta Wakasugi.
The method in this Chapter is based on a test-function method 172, 73] used by Qis. Zhang,
who proved the same result for some parabolic equations and the damped wave equation
respectively. This test-function method was extensively used to obtain small data blow-up
result for the various damped wave equations.

In Chapter 5, proceeding Chapter 4, the author considers (0.1) and discusses estimates of
the "lifespan" for.L2-solution. The method in Chapter 4 is based on a contradiction argument
to construct the blow-up solution. Therefore the mechanism of the blow-up solution, such as

estimates of the lifespan and the blow-up rate, can not be understood. To avoid contradiction
argument, the author uses the idea of paper [a6] (for the detail, see Chapter 4). By combining
this and the test-function method, he succeeds in proving an upper bound of the lifespan for
(0.1) in the case 1 < p < | +21n.

Finally, the author notes that both results in Chapter 4 and Chapter 5 were extended
to the wider case 1 < p < ps in the recent author's paper [32] by the same method as in
Chapter 5, after submitting this doctoral thesis. This is a joint work with Mr. Takahisa Inui.
The author also notes that the method in Chapter 5 can be applicable to the damped wave
equation (see [35]), to which the lifespan of solutions has not been well studied.
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1. ExrsrnNcp oF rHE MoDTFIED t"*:?:iliopERAroR. FoR. rHE Hanrnnn-Focx

1.1. Introduction. In this chapter, we study scattering problem for the nonlinear Schrodinger
equation with nonlocal interaction:

(HF) i}tu * (112) Lu: f (r) , (t,r) € IRxlRn,

where space dimension is n) 2, A denotes the Laplace operator inr,u:t (ut,... ,21,') is a
CN (lf ) 2)-valued unknown function of (t,r) and / (z) denotes a nonlinear term. The j-th
element ot f (u) : ' (h (u) , . .. , fi,' (")) is defined by

/.N(r.1) fi @) : l^_, (, - il>,{l"n@)l'ui @) - ui @)u*(il u*@)} dy,
JlKn /.:t.

where V (r) is called a Coulomb potential given by

(1.2) V(r):Il"l-t, (*€R"\i0))
and ) is a non-zero real constant. The system (HF) is called a time-dependent Hartree-Fock
equation and appears in the quantum mechanics as an approximation to a Fermionic l/-body
system. Our aim is to show existence of the modified scattering operator for the system
(HF). To do so, we will improve domain and range of a modified wave operator obtained in
T. Wada [70]. As for a modified inverse wave operator, we will use results obtained by T.
Wada [70].

We introduce an ltr x l[ matrix F (u,u) : {FU (u,r)}r...t., whose (i, j)-element is defined
by

(/N \ _l(1.3) F;ifu,a):v - 
J (t "xD*) 

6ii - uilil,(\r:r / )

where "*" denotes the convolution for space variables, 6;7 is Kronecker's delta i.e. 666 : l,
6u : 0 (i,+ i). Furthermore we define an l/ x ltr matrix F (u) : F (u,u) and then we can
express nonlinear term / (z) as

f(u):F(u)u'
We note that F (z) is an lf-dimensional Hermitian matrix.

Let ua be a given final state. A : A (t, {) is an .ly' x N matrix-valued function and the
solution of the Cauchy problem

(1.4) i\sA: frF (AAi A, t ) r, € e R'

(1.5) A(1,{) :1.n/, €€IR',,

where ft,' is the l/ x l/ unit matrix.
Our purpose can be formulated as follows. We assume that the final data

ua € Ho'o withll2 < {3 < a < 1

and the norm llzlllno,. is sufficiently small. Then we will find a unique global solution
u € C ([0, *) ; Ho,P) of (HF) satisfying

(1.6) ,jf." (" f rl - (tD-Z "4 e(t,rlt)an @lt)) : o, in 110,6

withTl2 < 6 < p. This means that the modified wave operator for the system (HF) is well-
defined from a neighborhood at the origin in the space 110'o to a neighborhood at the origin
in the space I1o'€.
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Finally,we introduce several notations used in this chapter.グ
(ι)denotes the■ ee Schrё dinger

evolution group deined by

颯→φ≡F‐
「
知争=2がスη易卜″のカ

= ル冥ι),(ι)FM(ι),            、
where M=Mo=eXp(等

)お
a muL山 乱bn Operttor andつ oお adh■ On operttor

deflned by

(つ (ι)φ)(″ )=(づι)~号 φ(″ル).
ヽヽ石e note that

ン(―ι)=ノИ(―ι)づ
ηF~1つ (1/ι )ノレ1(―ι),

since(つ
(ι ))~1=づ

れつ(1/t).By uSing the above identities,we easily see that

(1.7)   J(ι )≡ ン(ι)″ν(一ι)=ノИ (ι )づι▽ノИ(―ι)="十 jι▽ (ι ∈R).

For β≧0,we deine

(1.8) |′ lβ =|」 (ι )lβ ≡ν(ι )|"lβン(―ι)墨 ιβル4(ι )(―△)β /2ノИ(一ι),(ι ∈R).

Then the colnllnutation relation

レ+にDへ団q=0
holds,where lス ,B]=スB― Bス・

1.2.  Existence of the modifled scattering operatoro We now state our results in this

chapter.

Theorelll1 1.1.Zθ ι 1/2<β <α <1.″宅αss鶴鶴θιんα
`Z十
∈〃 0'α αηα lla十 11〃 0,α =ε,υんθ

“
ε

tS Stθ 7Cづ Cηιιν sttαιι.Tん cη ιんctt cπtsts α zηづ9鶴θ θJοιαι jοιttιづθη 鶴 げ ιんC SνStcm、

「

)sαι生力 れ θ

鶴∈θ(p,∞ );L2), |」 lβ鶴∈θ(Ю ,∞);L2).

νθttουθr ιんθルιιθυづηθ csιづ鶴αιθ

(刷   |レ←の←00→″
2cギИc,./tl鉾←/→

)|〃Q6ヽ「
ザμ

づs tracル r aιι ι≧1,2tlん C=0≦ δ≦β αηα O<μ <(α ―β)/2.

By the above Theorenl,v7e get existence of the lnOdined、 vave operator

″ +:鶴+→ 包(o)

for the system(HF)as fol10WS・

Corollary l.2.Tんθ mοαがθα υαυθのθttιθr Иノ+ル rιんC Sν StCm iHF)づS υα卜α(′ηθごルリη
α ηθづθんbθ r・Lθθα αι ιんc θれgづη づη ιんc sPα cc∬ 0,α ιο α ηcづクんうθ7・7Lθθα αι ιんθ θrづθづη づη ιんθ spα cc
∬ 0,β .

1ヽ石e state a result of e対 stence Of modined inКrse waК operator(″ )~1 0btained in T.
、、rada Fq.He Studied the initial ttlue prOblem

(1・
1の    {taz+サθ全場F∫°)'←,。∈R× RL η≧2
where鶴O be a given initial data and then he gOt the follo、ving results:
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Theorelln l.3.βθθ 1701ノ Zet 1/2<δ <β ,η =min(1,(β ―δ)/2)αηα O<ν <η/3.Tグθ
assamθ ttαι 20∈∬0,β αηα‖υ。||〃 o,β =ε'υんθtt εづss匂卵cづθηιιν smαιι.rんθη ιんctt θ"づ

sts α
鶴ηづ9包θ θιθbαι sο Jzιづθη鶴げιんc SνStCm、HF)Sαι

"力

れθ

鶴∈θ((―∞,q;z2), |」 lβ鶴∈θ((―∞,q;L2).

■fο rθθυcr ιんθ
"c cttsι

s a scattcrづηθ sιαιC鶴― ∈∬
°,δ sacん ιんαι ιんθ θstづ鶴αιθ

lレ
(―→(ZO-0・ /2c呼五←,./→色+←月)|〃Qδ κ‖η+2ン ,

づs″Lcヵ r aJι ι≦-1,υんθ宅ス(t,ξ )'Sιんθ sθιzιづθηげιんθメ列ιθυれg θαttθんνp知らιθπ

taス =ι
-lF(■2+)ス, t≦ -1, ξ∈Rれ

∠(-1,ξ)=几v,ξ ∈Rη .

By the above Theoren■ ,we obtain existence of the lnOdifled inverse wave operator

(″ )1:鶴o→ 鶴―
fOr the system(HF)as fol10WS.

Corollary l。 4.Tん c mθα′ cα づηυcttc υαυθ の θttιθr(〕〃
~)1カ

rιんC Sν sιcm iHF)づ S TCιι―

αげれθαルリ協α ηCtθんbθ 7・Lθοα αι ιんθ θ7・3θづη tη ιんθ ψαcc∬ 0,β ιο α ηcづgん bθ ttθοα αι tんθ θrづθれ
づηιんc spacc」

『

°
'δ .

As a consequence of Corollaries l.2 and l.4,、 ve can deine the lnodi■ ed scattering operator

S+=(″ )1″
十
:7r■ → 鶴 .

Theorem l.5.Tん c mοαげ cα SCαιιθrれθ Opθ ttιθr S十 =(И ノ )11〃
+力 rιんc Sν Sιθ鶴 iHF)tS

υθιJ―αげηθα力θtt α ηθjθんbθ ttθοα αι ιんθ θttθれ じηιんC″αCc∬0,α サθ α ηcづθんιθ7・Aθθα αι ιんθ
οrづθづηづηιんc sPacC∬

°
'δ・

Theorem l.l is improvement of Theorem l.l obtained in 170].In Theorem l of paper i70],

it was shown that for any色 +∈ 」ビ°,2 with smallness cOndition On‖ t+|ILpt(を =1,2)where
pl,p2be the numbers such that 2<pl<霧 ≡≒<p2<青≡号and岩 +分 ==1-寺 (See Lemma
l.9),the system(HF)has a unique global s01ution鶴 ∈θ(p,∞ );Z2)∩ z:(p,∞ );L3)suCh
that the estilnate

llZO―・
→号Cギス。,.ハ金十

11ィ
(卜,。μ3)κ「

b

is true for any ι>0,where 1/4<b<1,η ≧ 2 and O≦ 2/9=η/2-η/p<1・ This lneans that
the mOdined wave operatorン ソ+for the system(HF)is well― deined fl・Om a neighbOrhood at
the origin in the space」 げ0,2 to a neighborhood at the origin in the space Z2.I_Iis result requires

more smoothness for the inal data z+(∬ °,2)than Ours(∬ 0'α With α>1/2)and the nlue
し (0)OfSOlution Obtained in 1701 be10ngS to wider class(L2)than Ours(∬

0'β With 1/2<β <α ).
It is not clear whether mOdined scattering operator for the system(HF)can be Obtained or

not.His method is based On that of J.Ginibre and T.Ozawa 11ll tO Study the Hartree
equation

a鶴 +にの△u=ぃJつЪ仏→∈R× RЪ η≧λ
where z=鶴 (t,")iS a C― ′ヽalued unknown fllnction and y(χ )=入 |"~1(入 ∈R)iS a coulomb
potential.Their lnethod is based on Strichartz estimate(See l?1)and the use of an approxi―

mate solutionを 1

色1=け)号 Cギ a+。/の expし {(y*p+F)。ハ}bgt)
to the free Hartree equation.In 1701,T.Nゝda put

ltl≡
(づ
ι)~'CtttИ (ι ,″ /ι)a+(″ル)
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as an approximate solution to the free Hartree-Fock equation following from the paper [11]
and showed that

R : (i\t-t (112) L) ur - f (u)
: (rlDr2M@D(t) LAQ)a+

is the remainder term which implies the second differentiability of d1. Onthe other hand, in
order to get our Theorem 1.1, we use the factorization of U(t) : U(t)D(t)fM(t), take
U (D f -r A (D A+ as an approximate solution of z and utilize the operator .7 given by ( 1.7) .

This method was used by N. Hayashi and P. I. Naumkin [21] to study nonlinear Schrddinger
equations with a critical power nonlinearity

i}tu * (I12) Lu : \lul2/" u, (t, r) e IR x IR',

where ) e IR and n : 1,2 or 3. By the identity

u ft) F-lAQ)a+ : ur r M(t)D (t) F (M (t) - D r-rA(t)i'+,
we can see that the difference between the two approximate solutions is

M (t)D (t) F (M (t) - D f-t A (r)a+.

We show that this term is a remainder term in ,L2 (see (1.36)).
The rest of this chapter is organized as follows. In Section 1.3, we state several Sobolev type

inequalities and unitarity of A(f,O. In Section 1.4, we lead integral equation corresponding
to the system (HF) and the final data condition (1.6). In subection 1.5, we introduce several
propositions used in the proof of Theorem 1.1. In subsection 1.6, we prove Theorem 1.1.

1.3. Sobolev type inequalities. First we state the Gagliardo-Nirenberg-Sobolev inequal-
itv.

Lernma I.6. Let q,r be any numbers sati,sfyi,ng 7 < e,r I n, and let j,m be any real
numbers sati.sfyi,ng 0 < j < rn. If u € Hf''o (R") n rc (R') , then the followi,ng znequali,ty i,s

uali,d:

llr-oy',' "11 < c ll ?L)*/' ull" il,il1;" ,ll' ' lltp- ll ' ' llL," ""

書 +α (÷ 一 号 )十 ≒芦
αηα ιんC Pα %η祀 ↓cr α            p≧

1づS Sttι ん ιんαι
:=

づs αηνル鶴ιんθづηιCηαι洗≦α≦1,Wづιんιんθ

メガιθυれθθ
"6の
ιづθηrグιんθ υαιしθ鶴―プー千づS a ηθηη

"α

ιjυθづηιηθらιんCη ιんθ pα%mcι cr αづs
αην力りmιんθれιcηαι洗≦α<1・

Forthe proofof Lemma l.6,see,e.g[161.ThiS lemma is used to obtain the estimates(1.10)

and(1.24)in thiS paper.Next we state the Sobolev inequality which immediately follows

from Lemma l.6 with′ =O and α=1.

Corollary l.7. 五θι l <r<∞ ,0<鶴 <n/γ αηα 1/P=1/r_m/η・Tんθη ιんθ
“
θ
"づ

sts α

ρθsづιづυc cθηstαηι(9>O szcん ιんαιメθr αην包∈∬″

同ν≦θl←△μ
2州
ク.

Next M″ e state the Hardy― Littlew00d_Sobolev inequality. This one also follo、 vs froln Lelnllna

l.6 withプ =0,777=η ―γ,α =l and u=(一 △)~(れ
~γ
)/2
φ.

Lerllma l.8。 五θι O<γ <2,1<p,9<∞ αηα l+1ル =γ/71+1/9.Tんθη ιんθtt θχづStS α
cθηstαηι(フ >O sacん ιんαι

(1.12) lll l-'' - dllr,: c llt-al-rn-it2 oll", t c lldnr,.

(1.11)

Here C i,s i'ndePendent of $.
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Lemma l.8叩 ans the embeddingイ γ(Rη)喘 L9(Rη )h01dS.For the proof of the
equality in(1.12),see,e.g[62].

When we estimate L∞―norm of the term sucll as l・
「
γ*φ ,We use the fo1lowing Lemma(See

Remark l.1).

Le...ma l.9。 ιθι η≧2,0<γ <η,2<p<2η /(η一γ)<9<2η /(71-2)IЮ ヴ71=2リ
αηα 1/p+1/9=1-γ /2・ Tん Cη ιんc賓3 θχづsts α θθηstαηι θ>O sttcん ιんαι

(1.13)    |||。
~γ
*(φ7)|IL∞ ≦θ(|lφ lι p‖ψllL′ φllL9‖ψll五 9)1/2,

Pttυづごθα ιんαι ιんθれθんιんαηα sづ Jθ づs fηづιC・

We can prove Lemma l.9 exactly in the same、 ′ay as in the proof of Lemma 2.4 of paper

T.ヽVada 1691 and See also Ao Simomura 1561.

Remark l。 1.フレlθ θαpιαづηιんθ ttαsθη υんν υθ ηθcα Zθmmα ゴ.θ.Lcι p=∞ ,プ =0,m=η -1,
γ=fT anda=1.鶴 cη :=会 十 a(十 一 号 )十 七芦

jS Satを jed′ bttt鶴物わ焼鶴ηαιcり,ιんθ θgttdttν

77L― J― η/r=o
αlsθ んοιαs.Tllc質力質υc cαη ηθtttsc Lcmma F.δ  ttt ιんts casc.

Next、ve introduce a colnlnutator estilnate for fractional derivatives.

Lellllma l.10.五 θι s∈ (0,1),Sl,S2∈ [0,SI υづιん S=Sl+S2,1<P,91,92<∞ αηα l<

rl,r2≦ ∞υづιん1/p=1/9+1/r.Tん Cπ ιんθルιιθυれg θStづmαιθんθιおr

(1.14) |(△ )S/2(φψ)_φ (―△)S/2ψ _ψ (_△ )S/2φ llLp≦ θ llφ lEl ψllぷ 2・

For the pr00f of(1.14)see,Kenig― Ponce― Vega 142].

1.4. Application of the Dollard decomposition。 Vヽe write the integral equation asso―
ciated with the system(HF)and the inal state condition(1.6).Deine a nrst approximation

br the sollltiOn of(HF)b57

(1.15)         包1(ι)=ノИ (ι)つ (ι)う (ι),6(ι)=ス (ι)a+.

ヽヽ石e note that the fl・ee Schrёdinger ev0111tion groupン (t)=F lC ttに 12/2F can be decomposed

as

ン(`)φ = ルイ(ι )つ (t)FM(ι )φ
(1.16)            =ノ И

(ι)つ (ι )φ +2(ι )φ ,

where

(1.17)         2(ι )=ノИ (ι)つ (ι)F(ノИ (ι )-1)F~1・
Multiplying both sides of(HF)by√7(―ι),We obtain

(1.18)           ta(′ 7(―ι)Z)=チン(―ι)∫ (a).
Note thatう (t,ξ)=■ (t,ξ )2+(ξ )Satis■es the equation

(1・
19)          をと働(t)=ι

~1ノ
(働 (ι)), t≧ 1,ξ ∈Rn,

since■
(ι ,ξ )iS tho SOlutiOn Of(1.4).Due to the diference of(1・ 18)and(1・ 19),We get

ta(′%ィ (― t)鶴 -6)

= ノン(一ι)(∫ (包)一 ιlン (ι )Fl∫ (う ))
= √ン(―ι)(∫ (包)一 t~1ノИ(1)つ (t)∫ (う )一 ι

~12∫
(■ ))

(1.20)        = ノン(―ι)(∫ (lt)一 ノ(Zl))― ι
~11冗
ιイ(―ι)2∫ (■ ),

here we have used the decomposition(1.16)and the identity

t~1ノИ(ι)つ (ι )∫ (■)=ノ (al).
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We note that by using(1.16)again,the equahties

「
フ (―ι)Z一 う = Я /(―ι)(Z― ン (ι)F10)

= チ7(―ι)(鶴 ―鶴1-'電う)
hold. Thus integrating(1.20)in tilne over[ι ,CЮ )and using the flnal condition(1.6),、 re Obtain

嘲匂0=づ
∞
嫌―→げ0-0酢 ｀

側    +20可 ∞
“
→20貞0争 .

肌iFi乱猟:Pil:Arnrr(:跳・
On br饂⊃Wtthぬe ind∞nd■on oo.臓∬

州ηO=づ∞4-→げ0-れ D酔
囲    +2め巧

/∞“
→20貞0争・

For T≧ 1,Where T is sumciently large,we deine the following function space:

X={υ ∈θ(IT,∞);Z2);lυ _包lχ <∞ }
with the norm

υ X=ぱ
乳 )(ι

″2+μ
‖υO‖ L2+ι

μ
lll」
ドυOIIL2)'

where 1/2<β <α <l and(α ―β)/2>μ >O is sumciently small.ヽ 石ヽe will show the
map υ cィ ρ l→ z deined by7(1.22)is a cOlltraction mapping in subsection l.6,where
Xρ ≡{υ ∈χ;lυ ―Zl‖ x≦ ρ}(ρ =θ l鶴+〃 o,α )be a closed ballin χ.

1.5.  Properties of solutions。  ヽヽ石e state several PrOpositiOns used in the pr00f Of TheOrem
l.1.

First we remember results to the Cauclv prOblem(1.10)Of the Hartree― Fock equation

(HF).

Proposition l.11. Lcι η ≧ 2 αηd z。 ∈ Л「
°,β υをιんβ ≧ 0.Tんθη ιんcメθιιοttlづηθ sιαιCmθηιs

んθJグ .

の 例しθtt CχづSts α ttηづ9zθ θJο bαι sθ Jttιづθη zげ rゴ・1の りんづCん bθιθηθs ιο

θ(R;L2)∩ L:(R;五雑)
υんC質 (P,9)じ S αην pαづrげ ηZttbθ

“
sacん ιんαサ0<2/9=η /2-η/P<1.Fttrιんcrmο宅 ゲβ >0,

ιんθη

l」 lβ Z∈ θ(R;L2).

μり f/β >0,ιんcη ιんθ sθ Jttιづθη包∈θ (R;L2)υづιん |」
β鶴∈θ (R;五

2)づ
s zηを9包θ・

μづりJιんθ ηθr92 11鶴 ollHo,β づS Sttcづθηιιν smαιちιんCη ιんcづηθgttαιjιν

i選 |||」
ド鶴(t)|IL2≦ 21包01〃 Qβ

んοJαs.

Vヽe can prove Proposition l.11け applying the lnethOd in 141,15],1141,1261 and[38]and

see also[691.

Second we state unitarity of the matrix_valued fllnctionス (t,ξ )deined by(1.4)and(1.5).

Lemmal.12.じ夕耽θη ι≧l αηごξc Rη ,ιんθ sθ Jttιづθηス(ι ,ξ)jθ ttθ 6し acんνρttbι cm rゴ .ィリーrゴ・″
をsαη Ⅳ×Ⅳ鶴ηづιαη ttαιrづ″.Tん cttθ宅ルrZ∈ CN,ιんθ θαしαιjιν

lИ (ι ,ξ )包lcN=lυ lcN
js υαιづα.
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We can find the proof of Lemma 1.12 in that of Lemma 3.1 of paper T. Wada [70] and see

also A. Simomura [56].
Next we show time decay estimates for the first approximation 21, the difference ur - u

and u € Xo.

Proposition 1.13. Letnt2 andu4€ Ho,o with0< P <a<n12.
(i) For 2 1 p < 2nl (n - 29), the i,nequali,ty

(1.23) llr,llr" S {t(t-il llz.,,llso..
is aali,d for all t > \, where uy is defi,ned by (1.15).

(i,i,) Let 112 < 0 < rl2 and u € Xo. For 2 < p I 2nl (n - 2P), the i,nequalities

(L.24) llul - ullp 5 ;@/2+D-n/2(1/2-r/p) llzallso,. ,

(1.25) ll"llu S 7-n/2(r-2/p) lluall.ro,.
are aali,d, for all t ) T, where T i,s suffici,ently large.

Proof. First we prove the estimate (1.23). Let 2 < p < 2nl (" - 20). By the definition of
ur,lM (t)l : 1, ht(r)laN : lA(t) z+lc, : ld+lc, (see Lemma t.I2) and Corollary 1.2 with
r :2 and rn: o : n(Ll2 - tld, we have

-'lr-"\ - /r-?\
llrrllr." : t-i\'-;) llu, (r)llr,, : {d\'-;) lla+llu

s #('-?) lli,+lln, s r+('-i) 1;a*1;r" ,

since 0 I o 1 lj < a. This completes the proof of (1.23).
Next we show the estimate (1.24). Let2l p 4 2nl (n-2P) and f ) ? where ? is

suffrciently large. By Lemma 1.6 with j :0,m: 0,e: r:2 and a: nl0Q/2-I1fl,
lM(-t)l: 1 and the identity (1.8), we have

lluy - ull,, : llM (-t) (u1- u)117, ,

- lr ..a ,,+/r-r) ,-"(+_ i)S llt-alt Met) ("r -,)llj," " llM (-r)(ur - ,)ll;, "
= f-"G-il l|rf r., ,,,,11A(*-i) ,,,, r*r/r-r\

- ll,-, .rr - r)llrrt' 
o'llur-rll"ruv P/ 

.

since rn - i - nt, : t'::;:';"Jiri:
Finally we prove the estimate (1.25). Let2Z- p < 2n/ ("-20 and f ) ? where 7 is

sufficiently large. By (1.23) and (1.24), we have

ll,ll*
S ;@/z+D-n/z(r/z-r/p) O a 6-n/z(t -2/n) 11ualloo,.

S ;nl2(t-zlfi llz1llro,.,
since

(0lz + p,) + n12(112 - rld > n12(r - zld .

This completes thd proof of (1.25). tr

Next we show the estimate of it(t,€): A(t,€)a* ({) in fI', where A(t,0 is the solution
of

(1.26) i01A: [rF (Aai A, t ] \, 4 € IR",

(t.27) ,4 (1,€) : IN, € e R'.
Unfortunately, we don't have explicit representation of A(t,€).
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Proposition l。 14.五θι 1/2<α <l αηα z十 ∈」げ°'α . Tんθη ιんcづηc9包αιづιν

レ0隔ακ牌Ⅶル←+MLO絆 b→ .

js tttθ 力r αιι ι≧1.

Pttχノ Multiplying bOth sides of(1.26)by7(_△ )α
/2,we hⅣe      ・

囲    n《 刊ィ2。 0=「ll Alげ2脚0
Taking a scalar prOduct(― △)α

/2ぅ in CⅣ to both sides of(1・ 28)and imaginary part,we
obt」 n

囲  all Alイ 26〔N=z4hO刊 イ
2FOQI Al″ 2→

ぃ ,

where(・ ,・ )cN denotes the scalar prOduct in CⅣ  and、ve have used∫ (う)=F(う )め.By
integrating(1.30)over Rれ ,We get

←η aⅨ刊げ2(2=Z‐ mO刊げ2ば00日げ2→′.

側    h● 0←村イ2亀←村ィ2→′=。
By(1.30)and(1・ 31),the equality

all Alイ2列
し
=z‐ hO刊 号ば 00 FOIAl号 亀国 号→ ′

holds.By Schwarz's inequality and the commutator estimate(1.14)with S=Sl=α ,S2=0,
p=2,9=2/α tt and γ=2η/(2-2α ),we have

a ttLα ≦ %‐
ll Alイ
2解 00 FolAlイ 2酬L2回″α

団    ≦
「
1回L¨っ→‖l Alイ

2ば
0)に告膳隔α

(see Lemma 2.3 of paper[251).By the equalities lう (ι )lcN=|ス (ι )金+lcN=C+lcN(see
Lemma l.12)and COr。1lary l.7 with p=2η /(2-2α ),r=2 and m=α ,we have

(1.33)  ‖う||五 2■/(■ 2α)=‖ス(ι)2+||五2η/(η -2α )=|10+||五 2れ/(■ 2α)｀ |1鶴十11〃 0,α・

Let α=η/(η -1).Mた nOte that l"11*∫ =θ (―△)(η
~1)/2∫
(see Lemma l.8).By Lemma

l.8 with γ=1+α,p=η /α and 9=α ,we get

ll Alィ
2ば 0)にηtt κ ll Al 172卜の″い司雌″ακ ML2α

= ‖ス(ι )金十11L21=‖金+|IL21
(1.34)                κ ll雹十‖件1/2≦ ‖し+‖件o,α ,

here we have also used the equalities lう
(ι)lcN=IA(ι)2+lcN=10+lcN and COrollary l.7

with P=2σ,r=2 and m=1/2.By combining(1.32)― (1.34),we h[Ⅳe

(1.35)             a‖う‖.α κι-111Z+|ILo,α .

Integrating(1.35)over il,tl and using the initial conditionス (1,ξ )=乃v(See(1・ 27)),we have
desired estilnate. This cOmpletes the proof of the proposition。                        □

Next we state two estimates Of remainder term invol宙 ng Operator 2(ι )giVen by(1.17).
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Proposition 1.15. LetIl2<{J<a<7 and0 <d< 0. Thefollowingtwo est,imates

(r.36) llarrl eL)ot' rllr, S s-@-6)tz llulllpo. (r + 11"*1;fu," rogr)

and

(1.37) 
llo r'l e^)ut' f @llr,1 7-@-b)/z ll,*llL, " (r + 11"*lllr,,. Iogr)

hold for any t ) l, where ri,(t,€) : A(t,€) A+.

Proof. First we show the estimate (1.36). By the definition ot R(t), lM(t)l : 1 and
llD (t) dllr, : ll{llr,, we have

(r.3s) ll"ft,e^)6/"llr,:j|1,,Ul - r)F-r 1-q6/2*]|1,".

We note that for arry p e [0, 1] , we have

(1.3e) lM(t) - 1l s t-upfu,
for any f ) 1 and r € lR'. By (t.38)-(1.39) with Lr: (o - 6) 12, we have

(1.40) ll"trl eL)ut'*ll*S7-@-6)/2|jt"t"-'r-'(-a)','*ll",:;(a-5)t2ll.rllr-.
Applying Proposition 1.14, the desired estimate (1.36) is obtained.

Next we prove the estimate (1.37). In the same proof as (1.40), we get

(1.41) llo,'-l eNi f @||1",{t-@-D/zllf @)lln-.

By the identity

(-L)'/' f (ri') : (_L)"/" (F (,t) ,i,) - F (,rn) (-a;'/',,i, + F (tit) (-t1'/z 6,

we have

ll/ (a)lla.

(r.42) + llr 1o1 ea)'/'*!] 
",

We estimate the fi.rst term of the right hand side of (1.42). By the commutator estimate
(1.14) with s - s1 : a, s2 : 0, e : nfa and r : 2nl (n - 2a), we get

llt-l)'/'(r (,n) ,i,) - F (it) (_ 61't'all 
^ll' ' lltz

s llnllp.Tq,-"*, llt-nl'r' E @Dll"^,. .

By the estimates (1.33) and (1.34), we have

llritll 2,^r1"-,., ll 
r-ll'/' (p' (r))llr",. S llu*ll|7... .

Therefore we obtain

(1.43) llf-o;"r'(r(,),n) -F(?,)(-a)"/' *llr,5 ll,*ll?r,..
Next we consider the second term of the right hand side of (1.41). By Holder's inequality, we
have

llr t,l e^)*/2 *llr, 
= llF (r)llr,_ ll,lle. .

We put q* :2nl (" - 20) and {* :2nl {n - 2 (1 - p)} . Then the following relations

2<q* <2nl("-1) <q" <2nl (n-2)
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and 1/α
*=1-1ル ー1/9*are valid.Thus by Lclnma l.9 with γ=1,p=α*and 9=9*,恥℃

get

旧0陀∞κ‖H‐ *"⊃粍∞κ膳レい屹9*
= ‖ス (ι )金+L″ ‖ス (t)a十 11Lc*=‖ 金十11Lゲ ‖色+|IL9*

κ ll残十‖〃l β ll含 +‖〃β≦‖Z+‖卜o,α ,      
｀

here we have also used the equality lう
(ι)lcN=|ス (ι)2+lcN=い +lcN and the Sobolev

inequality with 1/α*=1/2-(1-β)/η and 1/9*=1/2-β/η (See corollary l.7).Therefore
、ve have

囲     牌 OI Al号 酬 L2κ 牌到 %°洲 剣 ″̈

By combining Proposition l.14,(1.41)― (1・ 44),we get the desired estimate(1.37).ThiS COm_

pletes the pr00f Of the proposition.                                              □

1.6. Proof of existence of the modifled wave operator. In this subsectiOn,we give a
proof of[rheorem l.1.

P"げ Let t≧ T Where r is suttciently large.ヽ bヽ take■2_nOrm of(1.22)to get

凹  牌0-州バ
/∞
Ⅳあ頁ω♭″
到2釧′十

/∞
旧0貞Ob争・

鶏濯T穿;.1;鷺 t::‖翼il盟
五ght hand dde of(■ 4o.La p*=2/β and 9*=

ノ(鶴1)一 ∫(υ )
= F(包 1)(Zl― υ)十 F(包 1,鶴 1-υ )υ tt F(Zl― υ,υ )υ

and Hё lder's inequality with 1/2=1/p*+1/9*,ヽ Lre ha、 re

ll∫ (al)― ∫(υ )|IL2
≦  ‖F(鶴 1)(し1-υ )|IL2+‖ F(鶴 1,21-υ )υ llL2+‖ F(し 1-υ ,υ )υ llL2

(1.46)  ≦  ‖F(包 1)IL∞ |1鶴1-υ llL2+‖ F(包 1,Zl― υ)ILグ lυ llL9*

+‖ F(包 1-υ ,υ )|ILp*‖υ lLq*.

ヽヽ石e estimate the■ rst term of the right hand side Of(1.46).Let α*=2η/{η -2(1-β )}・
Then the follolving relations

2<σ*<2η/(η -1)<g*<22/(η -2)and 1/α *+1/9*=1-1/η

hold,since 1/2<β <1.Applying Lemma l.9 with γ=1,p=α*and 9=9ホ ,we have

llF 01)IL∞ κ
 lll・
11*(包 1 2tl)|IL∞ κ ZlllLσ *Zl lLq*・

By(1.23)with p=9*and σ
*,lVe Obtain

(1.47)             ‖F(zl)|IL∞ κ7~111Z+|ILo,α ,

since 2≦ α*<9*≦ 22/(η -2β).Next we cOnsider the second terln of the right hand side
Of(1.46).Let 1/P3=1+1/p*-1/η =1+(β -1)/η・By Lemma l.8 with γ=1,p=グ and
9=P3,We Obtaind

牌●山一のレ κ‖H‐ *{匂010}雌〆
(1.48)                   κ ll鶴 1(鶴 1-υ )Lp3・
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ヽヽ石e choose p4 SuCh that 1/P4=1/P3~1/2=1/2+(β -1)/η・By Hёlder's inequality with
lル3=1/P4+1/2,we get

(1.49)        ‖lt l(Zl― υ)LP3≦ ‖Zl lLP4 11Zl~υ L2・

By(1.48)― (1.49),、ve have

‖F(21,Zl― υ)|ILダ lυ llL9*κ ll包 l Lp4 11包 1~υ llL2 υ L9*・

By(1.23)with P=ρ4and(1.25)with p=9*,we obtain

(1.50)    ‖F(鶴 1,鶴 1~υ )|ILp*|lυ llLq*κ ρτ
(β /2+μ )111鶴

十 11件 0,α ,

since 2≦ p4,9*≦ 2η/(η -2β )and υ∈Xρ .In the same manner as in the proOf Of(1.50),we
can estimate the third term of the right hand side of(1・ 46)as fol10WS:

(1.51)     ‖F(包 1-υ ,υ )|IL,*|lυ llLq*κ ρτ
~(β /2+μ )-111z+||卜

o,α・

By combining(1.46),(1.47),(1.50)and(1.51),we get

(1.52)      ‖∫(υ)一∫(包1)L2κ ρ7(β /2+μ )-111鶴十11件 0,α ,

since υ∈χρ.By Proposition l.15 with δ=O and(1.52),we obtain

牌0~剣L2だ ねにOρ
/∞「
αη』‐酔

判げ2回 pα←+tt・ 30ρ b→
十
/∞
「

中 同 跳α←到 叫 略ぃ範 シ

(1.53)            κ ι
~(β/2+μ )‖鶴+‖″o,α ,

for any t≧ r if r is suttciently large and llZ+ffo,α ≦ 1・ Precisely we tah T>O such that
the estillnates

l≦ ‖包+‖ Lo,α log ι

and

ι―α/21。 gι κι
~(β/2+μ )

are satisned for att τ≧ι≧T,SinCe α/2>β/2+μ .

Note that l」
lβ 2(7)=2(7)(―△)β/2.Multiplying both sides of(1.22)by Jlβ ,We obtain

l」 lβ (Z(ι )― 鶴1(ι ))

=づ
∞
4-引Л鍛→貞o″

囲  +20←ギ商/シけ→20←ギ貞o争 .

We take Z2_nOrm of(1.54)to get

l団
β。O ηOた 2
≦
/∞‖Л賀バの一れ》権2″
+牌 0←ギ酬′十/∞牌0←ギДO雌2争・
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By Proposition l.15 with δ=β,we have

lrド●0匂 0た 2
団  ≦

/∞‖Л負貞→―貞o陀2酔
‖<α』ρ牌+隔ぃ←十牌十艤0絆 b→
■a.略ぃ

/∞「
Ц刺2←到叫陥ぃ範シ

ヽヽ石e consider the■ rst term of the right hand side of(1.55).By the factorization of l」
lβ (7)=

τβノИ (7)(―△)β
/2ノИ (_7),We Can estimate

l団
βげ0-∫ lulll権 2

(1.56)              ≦ τβ‖F(鶴 1)ノИ(―ι)(包1-υ )|■β
+τβ‖F(包 1,包 1-υ )ノИ(―ι)υ‖″β

十τβ‖F(Zl― υ,υ )ノИ(一ι)υ‖″β・

ヽヽ石e consider the■rst term of the right hand side of(1.56).We remember the deinition of

P*=η /β and 9*=2η /(2-2β ).By the fractional Leibniz rule(Lelnma 3.5)with κ=β ,

p=2,91=2,92=ρ *,Tl=∞ and r2=9*,We ha、 re

‖F(鶴 1)ノИ(―τ)(Zl― υ)||″β
κ ‖F(Zl)IL∞ ‖ノИ(―τ)(鶴 1-υ )||″β

(1.57)             +‖ F(包 1)‖亨β+‖
Zl~υ llLq*・

By combining(1.57),(1.8),(1.47)and(1.24),we obtain

‖F(鶴 1)ノИ(―γ)(鶴 1-υ )||″β

κτ部旧硼五∞1団β。10た 2
+‖ F(%1)‖
ィル‖
し1~υ ll五 9*

κ ρτ
~β~μ

‖F(21)|IL∞ 十ργ
~β~μ

‖F(包 1)‖ィβキ

(1.58)        ( ρτ
~1~β ~μ

 ll包十130,α +ρτ―β
~μ

‖F(し 1)‖
lβ*'

since 2≦ 9*≦ 2η/(2-2β)and υ∈χρ・ヽ1石e need tO estimate‖ F(21)||ィ
f..｀
石`e put α=

η/(η -1)fOr Simplicity.Then the equality

l+1/p*=(β +1)/η +1/α

holds.By Lemma l.8 with γ=β +1,p=p*and 9=σ ,We have

lF 01)|1手 κ
 ll・
11*011tl)1手

(1.59)         =|(一 △)°一βl)/2(し l ttl)|ILグ κ ll鶴 111L21・
Applying(1.23)with p=2α ,we get

(1.60)              ||し 1 12α κ τ
~111包
十‖卜0,α ,

since 2≦ 2α ≦2η/(η -2β).By combining(1.58)― (1.60),we ha、 re

(1.61)    IF 01)M(7)(zl― υ)||″β κ ρτ
~lβ μZ+1告。ρ.
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Next lve consider the secOnd term ofthe rigllt hand side of(1・ 56)ハVe nOte that p*=η /β and

9*=2η/(2-2β ).By the fractional Leibniz rule(Lelnma 3.5)with κ=β,p=2,91=P*,
92=2,「1‐ 9*and r2=∞ ,We have

‖F(21,鶴 1-υ )ノИ(―τ)υ‖■β

(1.62)         κ ‖F(Zl,Zl~υ )||″βホ‖
υllL9*

+‖ F(鶴1,Zl―υ)|IL∞ ‖ノИ(-7)υ ll″β・

ヽヽ石e estimate the■ rst term of the right hand side of(1.62).By Lemma l.8 with γ=β +1,
p=p*and 9=σ and Hёlder's inequality with 1/σ =1/2α +1/2α,we haVe

llF CL Zl-011ヵルκ ll。 |~1*{η 01-→ }||.多
=||(―△)し~1° /2{鶴1。1-0}|ILp*
κ ll包 1(Zl― υ)Lα κ lZllL2α llZl― υllL21・

Vヽe note that 2≦ 2α <9*≦ 2η/(η -2β).By uSing(1.23),(1.24)with p=2σ  and(1.25)
with P=9*,we Obtain

‖F(鶴 1,包 1-υ )‖ィ*‖
υllL9*

(1.63)     ヽlzlllL21 11包 1-υ llL2c llυ llLq*κρ7 3/4-3β/2-μ  ll包十11件 0,α .

Next we estimate the second term of the right hand side of(1.62).By(1.8),we get

(1.64)       ‖M(―γ)υ lヵβ=τ β
lll」

lβ
υ
llL2・

By(1.15),(一△)'つ (7)=τ
~βつ(7)(一△)3,‖つ(7)φ lL2=‖φllL2 and(1.8),we haVe

lMβ町に2=ノ ll Al″
2っ 0.OL2

←的     =レ OI Al″
2ぅ 0た2=同″"

By applying PrOposition l.14 with α=β to(1.65),we obtain

lrド州′≦IMβ 01 0性2+IMβ年lL2

κ ρτψ十版■馴メα←十tt■ 10ρ bg→
(1.66)               ヽ|1鶴 +‖〃o,α 10g τ,
fOr all γ≧t≧ T,if r is suttcielltly large and‖ 鶴+||〃 o,α iS Sumciently Small,since υ∈χρ.Pre～
Cおeけ 祀 take r>o and llし +||″Qα SuCh that the hequ」託bs τ

~μ
≦bgγ ,1≦ 包+|1作 oρ bgτ

and ‖鶴十‖〃0,α ≦ l SinCe μ > o. Vヽe relnember the deflnition of 9* = 2η /(η -2β)and
σ
*=22/{η -2(1-β )}.ヽМe nOte that the relations

2<α*<2η /(η -1)<9*<2η /(η -2)

and 1/α*=1-1ル ー1/9*h01d.Thus by Lemma l.9 with γ=1,p=σ*and 9=9*ぃ ve have

牌OL■一→屹∞κ lH‐ *{ltllltl-0}性∞
(1.67)         ん (|し 1-υ llL9*|1211L9*|1包 1-υ llLゲ 鶴1五 4*)1/2.
Applying(1.23)and(1.24)to(1.67),we obtain

(1.68)      ‖F(し 1,し1-υ )|IL∞ κρτ 3/4β /2 μl包十11卜 0,α ,

since 2≦ σ,σ*≦ 22/(η -2β).By COmbining(1.64),(1.66)and(1・ 68),、ve have

(1.69) |IF 01,し 1-υ )|IL∞ |lν (-7)υ l″β κ ρ7~3/4-3β/2μ (bgτ )|IZ+ILo絆
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if llZ+||″o,α ≦ 1.Therefore by(1.62),(1.63)and(1.69),we Obtain

(1.70)  |IF(21,21-υ )ν (-7)υ llβ κ ρ7~3/4-3β/2μ (1。g7)|1包十11作 0絆 ,

for all τ≧ι≧ T,if r is suttciently large.

In the same ww asin the proofOf(1.70),we Can estimate the third term ofthe right hand

side of(1.56)as fol10WS:                           、

(1.71)  |IF 01-υ ,υ)M(―τ)υ ll″β κ ρτ
~3/4-3β/2μ (bg7)|1叫 30,α .

By cOmbining(1.56),(1.61),(1・ 70)and(1.71),we hⅣ e

につ   1団 βげ0-ノ。〕権2κ″‐ψ la■ ll告 0絆 ,

fOr τ≧t≧ T,if r is s。 large that

τ-3/4-3β /2-μ
(1。
g7)κ 7~1~μ

for al1 7≧ ι≧T,Since β>1/2.
Then by virtue of(1.55)and(1.72),■ re have

‖
Л 負 嘲 匂 0に 2だ れ 略 い

/∞
「

卜
句 τ+メ 叶 a1/211∝ 釧 岬 レ ぃ

(1.73)             κ ι
~μ

 ll鶴十‖″0,α ,

fOr t≧ T,if l12t十 11frO,α ≦l and T iS s0 1arge that the estimate

t― (α
―β)/2(1。 gι)κ ι

~μ
,

for any ι≧T,Since(α ―β)/2>μ .

By(1.53)and(1.73),there exists a large time T>O such that

llZ― 色1‖x≦ |1色十11″ 0,α .

FurthermOre if‖鶴十1〃 0,α ≦ρ,then包 ∈スレ.In the same manner,we can proК  the estimate

‖包―色‖x κ ll鶴 +‖″o,α ‖υ―う‖x,
fOr large r>o,where t is deined by(1.22)with(Z,υ )replaced by(a,0).Froln this
inequalityЪ ミ、 can obtain

牌 剣x≦ :レ
ー到ゎ

if‖鶴+||〃 o,α ≦ 1/2 is satisfed.Therefore(1.22)deflnes a contraction mapping.Hence there

exists a unique solution z c Xρ  of the integral equation (1.21). Therefore 、ve see 鶴 ∈
C(IT,∞);L2),|」 lβ包∈θ([T,∞ );五

2)and the f。 110wing inequalities

(1.74)          |1鶴 (ι)一 Zl(ι )||五 2≦ ρι
~β/4μ

につ    lrド●0-η OL2≦μψ
hold for any t≧ T.The estimate(1.9)fOr t≧ r f011。 ws frOm(1.74),(1.75)and Lemma l.6
with p=9=r=2,ノ =δ,m=β and α=δ/β .
Let t>ι O≧ T.USing the integral equatiOn(1.21),we Can see that the equation

にη  州=いのく。現ガ“→貞0ニholds.By Proposition l.1l with uO=z(ι O)∈ ∬
0'β
,we can extend the existence time to zero.

Theoreln l.l is proved                                           □
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2. Sc.q.rrpRrNc eRoBLEM FoR THE Drnac-Kr,nrx-GoRnorq sysrEM (DKG)

2.I. Introduction. In this chapter, we study the Dirac-Klein-Gordon system (DKG) in
three space dimensions.

(DKG)

where几イ,γE are positiveじ onstant and denote the llnasses ofthe spinor fleld and the scalar ield

respectively,ψ  iS a c2[≒昇]_valued unknown fllnction of(ι ,″)and φiS a R― Valued unknown
fllnction and stands a scalar ield,λ ∈C,μ ∈R,ψ*=ιラdenotes a transposed cottugate to
the vector 1/1.Here αブ,β ∈νI宇](C)are called Dirac matrices and denned by

(DM)            β2=t;i勇阜灘1みピ31=° '

fOrブ ,た =1,… .η ,ブ ≠た,∬ =Iδ′ん]1≦′,に 4・ With the Kronecker symbols δ′λ=O ifプ ≠たand
δ′′=1.
Our purpose in this chapter is to prove existence of the scattering operator for(DKG)in

theree space dimensions.The DKG system(DKG)was studied by reducing it tO a nonlinear

Klein―GordOn(KG)system(see 11,711).Denoteつ 士 =つ土,M=a+土 (α
・▽ +ダイβ).Ⅵた

note that in view of the properties of the lnatrices α′,β we haVe

つ一つ十ψ=争イ~(α・▽+ダИβ)(α・▽十Jνβ)}ψ =(〆 十(▽)b)ψ ,

where(▽ )し =AP―△・Hence multiplying both sides Of the Dirac equationつ +2/・ =λφβψ
byつ_,we obtain

(2.1)         (冴 +(▽ )傷 )ψ =入つ (φβψ)・

Solutions for(2.1)alSO Satisies(DKG).In faCt Sinceつ _(つ+ψ 一 人 (φβψ))=0,by Z2_
conservation law

‖つ +ψ (ι)一 人 (φβψ)(ι)|IL2=‖ (つ十ψ)(0)一 人 (φβ2/1)(0)IL2=0,

if aψ (o)=― (α・▽ 十 jνβ)ψ (0)+λ (φβψ)(0).Thus(DKG)is equiValent tO(2.1).MOre_
over,solutiOns fOr(2.1)alSO Satisies

(2.2)

←澤十(▽ )%)ψ = λ(つ _φ )βψ―ブИφfψ +φ (つ+ψ )
=λ ((つ一φ)β ―プИφI十 人φ

2f)ψ
,

where we have used the fact that r/ is the solution of Dirac equation. Here we can see that
equation (2.2) does not necesarily involve the derivative of fi. However, solutions (2.2) does
not satisfy (2.1) unfortunately. Thus especially, whether existence of the wave operator (local
Cauchy problem at t : *oo) can be constructed or not is not clear because of this fact and
the derivative loss^ difficulty.

We recall the problem of existence of the wave operator for DKG system. Define the free
Dirac evolution group by

Vp (t) :VD,M (t) : tcos (t (V)y) - ("'V + iM 13)(V)# sin(f (V)p1),

and the free KG evolution group by

{(υ ttLミヽ P」乃切争←,→∈R× Rπ

たc ltl=を cμ ltl=(」 :野 1群げち:量 |IVLi})
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Then、ve look for the s01utions of I)KG systenl,which Obey the fol10、ving inal state conditions

o.3)

(2.4)

ι螺 ||ん (―→ψO― ψ
+|lxl=0

鳳|″σ←→(lvlttφ。)― (Ⅳ#φす)に2=0
for the given final data tl.t+ e Xt,(Q[,Ot) € Xz with some Hilbert spaces Xr and & which
are defined explicitly later.

The problem of the existence of the wave operator can be formulated in the form of the
integral equations

(2.5) vn (_.t) rb Q) : ,,b* - [* Vo (_'s) Qplt (s) ds,
Jt

(2.6) vxc ?t) ( ,.,,9,(:) , , )\ \v/m at6@ )
l2.T) : ( 6[, \- roo / s \,

(. tol;' o; )- J, vxc(-s) ( <ol;' j.p',r,@ )d'
for the given final datarlt+ € Xr, (01,0{) € Xz. If there exists a unique solution

(l' al .6 (t) ,(v);' 0,6 A))

of system (DKG) for the given final data (tb+,0{,0[), then the wave operator )uV+ for the
system (DKG) denotes the mapping

('v ru ,6 ft) .(v);' a,o @) : w* ('v* .o[ , (v);' o;)
We introduce some notations.
If we can show that D(W+): R(W+), where D(W+) is the domain andlR(W+) is

the range of the wave operator W+, then we can easily construct the scattering operator.
The existence of solutions for the cubic nonlinear Klein-Gordon equations in the low en-
ergy space along with the property D(W+): R(W+) were obtained in [60] by using the
Lp - Ls method and the Strichartz type estimates. The cubic nonlinear Dirac equation
(0t-ta'V +iMp)4;: )'?b-Plb)/ was studied in paper [49], where the scattering operator
was obtained in fI" with s ) 1.

We now survey some works concerning KG system. The existence of the global small solu-
tions to the Cauchy problem for the quadratic nonlinear KG including (DKG)-(2.2) was shown
in [43] by applying the time decay estimates through the operators (07,01,ri01*t?i),=i<s
and using the hyperbolic coordinates. The use of the hyperbolic coordinates implies the con-
sideration of the problem inside of the light cone and so yields the compactness condition on
the initial data. In papers [1], [8], [10], [28j the method of [43] was improved and the com-
pactness condition on the data was removed however the higher order Sobolev spaces for the
initial data were implemented. The global in time existence of small. solutions to the Cauchy
problem for quadratic nonlinear KG system including (DKG)-(2.2) was shown in [27] for the
case of small initial data (/ (0) ,\trlt Q), d (0) , Ard (0)) in the space (fla,3 , Ht,t)t, moreover
the inverse wave operator was constructed from the neighborhood at the origin in the space
(n+'s x f/t,t)u to the neighborhood at the origin in the space (f/a'l t F/t,t)t. In paper [71],
it was shown the existence of the scattering operators for (DKG)-(2.2) from the neighbor-
hood at the origin in the space (H5l2,r , gsl2,r)n 

" 1gt,t , Hr,t) to the neighborhood at
the origin in the same space.

Our main result is the following. Denote 90137 < q < 6 and lr:5/4-5/2q. Note that we
can choose p:714 when we take q :512.
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Theorem 2.1.Lcι η=3 αηαιんθ fηαι ααια ψ+∈ (∬
3/2+μ,1)4,(φ

l,φオ)∈ ∬
2+μ ,1×∬1+μ ,1.

動cη ιんθtt θ″jStS ε>O sacん ιんαιルr αην fηtt ααια(ψ +,φl,φす)Sαιづ功jηg θSιれαιc

‖ψ
十
1.3+μ ,1+|lφ吉llI12+μ ,1+|lφす|II11+μ ,1≦ ε,

ιんcn3 θttsts α ttηづ92C θJθ bαι sθιzιづοη

(b(一
のψO,レC(―→

((▽ )鼻望φ。))
∈
(θ (p,∞ );∬

3/2+μ,1))4×
(θ (p,∞ );∬

2+μ,1))2

ルr rIフκ(1ノ υづιんιんθ fηαι Sιαιθ cθηごづιづθη

‖ん (―→ψ ltl―ψ+||〃3/2+μ l

●.助   十
11な
c(―の
((▽)静 2φ。)一 ((▽#け )||〃 2+μ l→ 0

αs t―→oo. A√θttθυθr ιんθ θsιづ鶴αιθづs trac

‖ち(のψ OII″ 3+μ l+lνκC(―→((▽ )浮霧φ。)||〃 2+μ l≦θε
ルr αli t≧ 0.

Corollary 2.2.7Lθ υαυcの cttιθrンソ+ル r ρκの づSαげηθごルリπιんθ ηcづθんbο ttοοα αι ιんε
οrづθ
jη づηιんθ″αεθ(〃

3/2+μ ,1)4×
(∬
2年μ,1× ∬ 1+μ ,1)ιθ ιんθ ηCづθんbθttοθα αι ιんcθれθづηづηιんθ

Sα %んθ Spα 6θ .

In the same way as in the pr00f Of Theorem 2.l below, we can solve the initial value
prObleln in the same function space,therefOre、 ve have the f0110、 ving result.

Corollary 2.3.動θづηυc%c υαυθのθttιθr(″ )~1づSαげηθα/ram ιんθ ηθづθんbθ 7・Lοοα αι ιんθ

θれgづηれιんθ″α6θ (∬
3/2+μ ,1)4×

(If2■
μ,1× ∬1+μ,1)ιθ ιんC ηθづgん bθ 7・Lθθαげιんθ θrづθれれιんθ

SαttC Spα cc.

As a consequence Of COr01laries 2.2 and 2.3 we get.

Corollary 2.4.7Lθ scαιιθ7・oηg οpθ ttιθr S=(ンν )~14/・ づSαげ;ηθαメ寵刀η ;んθ ηθづθんbθ ttοοα

αι ιんθθれθれ づηιんθ ψα6θ (∬
3/2+μ,1)4×

(∬
2■μ,1× ∬ 1+μ,1)ιθ ιんθ ηθづθんιθttθθα αι ιんθ θrをgれ

tη tんc sane spacc.

1ヽ石e now explain our strategy of the pr00f Of Theoren1 2.1. Denote the free evolution group

ン 上 (ι)=ン 士,M(ι )=C士
づι(▽)M=F lctttt(ξ )llrF・

We can decomposeソ D(t)as

O・鋤        ち0=Σ404μ ,

土

where the operators

、4=札M=:←土バη加・▽+″→.

NOte that(α・▽+づνβ)2=_(▽ )し∬,due to the properties(DM).HenCe by a direct
calculation、 ve get

(2.10)       ス1ス平=0,Σス土=f andス生=ス土,
土

which show that the Operatorsン 4土 are the projectors.A silnple calculation shows that

い ⊃  /■ l針 ▽+州の =:い 。▽十州β平バηM⊃ =■ 岡 νん



ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVEヽ VAVE EQUATIONS        21

Note thatス土COmmutes with operatorsと ,(づ▽)M and(α・▽十づ■lfβ),therefore we obtain

ス土つ十ψ=£土ス土ψ,

where the Klei‐ Gordon operators£ 土 =£ 土 ,M=2平 づ(▽ )M・ Vヽe multiply both sides of the

Dirac equation(DKG)by the Operatorス土,M tO get            、

。・動      {彦 fi↓「ガly;場ぁ.
Then we can reconstruct the solution Of the Dirac equation(DKG)by the fOrmula t/1=

Σ土ス上■/・・ Therefore to prove the existence of the wave operator we look for the s01utions of

system(2.12)which Obey the following inal state conditions

p.l・31      ‖4(→ス土ψ ltl~ス土ψ+||〃 3+μ l→ 0
and

as t→ ∞for giК n inaldata ψ十∈″:十μ,1,(φ l,φす)∈ 〃
2+μ l.In order to show that prOblem

(2.12)― (2.14)is equiValent to the original one,we must prove that the inal state conditions
ιイ士(~ι)ス土ψ(ι)~ス土ψ十11″3/2+μ ,1→ O are equittlent to‖Иズーι)ψ (t)一ψ

+〃
3/2+μ ,1→ 0・

Through the paper,we write■ 2 B if there exist some positive constallts θl,θ2>O SuCh
that θlB≦ ス≦θ2B and We also writeス (B if there exists a positive constant θ >O such
that五 <θB.

LeIIIIna 2.5。 TFtθ  fηαι stαιC Cθηαづιづθη

t螺 2E‖ク■(一のス土∫ス土ノ
+″
72+却 =0

土

んθιαsゲ αηα θηινゲ

ι螺 ||ち (の ∫
―∫+〃γ2+μ l=0・

P"げ We hⅣe by decomposition(2.9)

Hence by the triangle inequality

lluo t-t) f - f+llr-,, { Dllu*(-t)A+f - A*f+ llr-,-.
+

On the other hand, since the operators "4+ are the projectors by (2.10) we have

(2.15) (A+g,Aah)y, : (A+A+g,h)'2 :0

which implies

llvo,nr eD f - f*ll'r*,o: I llu*,, (_t) A+,uf - A+,nrf+ll'r^,o
+

↓
十〃

ヽ
、

′

ノ
＋

２
′φ

ぽ
房▽

／

１

１

ヽ
一

ヽ

―

ノφ

０

０

φ

一．

ｍ
▽

／

１

１

＼
一Ｃを

４２

同卜洲μ√にい同十刷にηr
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This yields the result for 17れ 'O spaces. We next consider the case of the weighted space. By

(2.9),(2.10),and the Cauclv― Schwarz inequality、ve ind

ll″ (▽ )れ (ち (―のノー∫
+)l i2

=モトコつれ繕la.l tl… /■ J・ll憶 2
≧籍卜却tly・ l tl… a.J・ llに 2
とレ劃岡tly・ l ll… /・ f・ ll憶 2・

By(2.10),ヽ Ve ind

州動π
ttly・
l tl… 4・ /・ ll

= ″(▽)m(ン土(~ι )ス土ノ~ス土ノ+)・

Then using the estilnate

レ劃Omと ly・ l tl…J憶2

んにly・ l tl… 4月にη判創嶽→卜艦1

we get       llバ

▽)π la.,M(―ι)ス土,M∫ ~ス士,M∫+)|IL2

Therebre SI"(▽
)m(ら ,M(―の∫―/f)|IL2+||ら ,M(→∫―芦|ILm l・

鳳を睦ly・←のノノ→隔mュ =0
holds if

,t13 llv" (-t) f - f+lls^,, :0.
Lemma 2.5 is proved. n

We use the Strichartz type estimates to treat the problem in the lower order Sobolev spaces,
however it seems difficult to apply the Strichartz estimates to (2.10) due to the derivative
loss of the nonlinear term. To obtain better differentiability properties of the nonlinear term
we apply the operators

B+: B+.u: * (t + i (v);,;4,) : +i (v)-n| r-
2\,tvt"/,2

instead of A+, (wtiicfr were used previously in 1221, [23] to make a factorization of the Klein-
Gordon operator At2 + (V)2, : L+L-). Note that in view of the properties of the matrices
aj, P the identities are true

(2.16) A+ - n*: +* (y-r| o*
and 

L+B+: +: (v)# (al *(v)'r) : +: (v)t' D -D+.2'
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desired solutions by the iterative procedure such that

lat2.13ぢ称ピl構稀メ2は
We 、vill

o.17)

and

{(∂′

=0,

φ(0)=0.

⑨

、^「
り
「
副

Also by virtue of the Dirac equationD*4:(k+1) - Ad(/c) 7rb(k) *" obtain

つ
0°βψり

=(つ一φ(°
)β
ψ°)一″И〆0∬ψO)十φ(Oβつ+ψ條)

=(つ一φ鰤))βψ°)一 ″ИφO)∬ψ。)+λφ。)φ。 1)fψ鰤 1).

Thus in view of the Dirac equation(DKG)it fo110ヽ Vs that

4亀ψ回 =平:0か つ+ψ回

=干
:λ
(▽ )プつ一

(φ

(°βψ°))

=平
:λ
(▽ )プ ((つ
一φ°))βψ°)一″〆0∬ψ。)

(2.18)       十人φ(Oφ。
~1)∬
ψは
-1))

fOrた ≧1.In the case Ofた =1,we ha、 re

亀亀び⇒=干
:λ
Oプ舞0°βψ9

=平
:λ
(▽)バ

(つ
一φ°))βψ°)一 ″ИφO)」ψO)).

Thus instead of(2.12),we can study the fo110wing system

00   {ご嘲お|(11■社,b
where

F■
,ん =平 :λ ((つ一,M〆

°
)β
ψlR・ l―ダИ〆0∬ψlt・ l

+λφlt・ lがた⇒∬ψ條―⇒),

θ二ん=平 :μしり
*β

ψQ
fOrた ≧0,here and below we use deinitiOns φ(J)≡ 0,ψ (`)=0,Sb that,in particular,we
deine F.,。 =O and θ士,0=0・
Note that the nonlinear terms of system(2.19)dO not involve the der市 at市es of the un―
known function ψ.ThiS fact enables us tO use the Strichartz type estilnates.To treat the
second equation of system(2.19)aSin p刻 ,Ptt we introduce the new dependellt nriables
βttφ (た),then we have

亀 亀 ρ ⇒=平 :⑭ ″ け 十岡 → ρ
⇒=岡 尻

l Gttb

Where£土=£土,れ =a平 づ(▽ )れ .
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Thus、ve have a system

p.20)
{:1た郷三師と|

for k ) 0. Our purpose is to prove that the sequence

(ν
。(―→ψO,ソkc(―の

(1(キ″a〆0))
is the Cauchy sequence in the space

"〔

Q司燿ψれうド×(g批鋼:β劉)
under the inal state condition

鳳 |ち卜のψ
°0-ψ +|が切ュ

02⇒  十鳳|々cl t)(Ⅳ )/1μ)。 )(Ⅳ厚け)に 21● l=°
In order to write the integral equation associated with(2.20),(2.21),we Study the asymptotic

behavior of βttψ (ん).By Lellllma 2.5 we ind that

,,lV- GD 'q+,!(k) (r) - A+,/+ll r",,*,,, s llu" ?t) ,1,@ ft) - ,l'+ll r",,*.,,
土

By the identity βttψ (た)=ス士ψ(λ )干 :λ (▽汚′φ(た
1)βψ(た 1),We obtain

|ク
生(―のス土ψ°ltl―ス土ψ

+||∬

γttμ l

=|ク生(―→βttψ0 0-ス土ψ+土
:入
(▽ )プク
=(→
がた⇒βψ。⇒

|lfr3/針μl

fI・ om which it fol10ws that

牌
←→亀メ知 スコ

+土
多 岡 プ
4o岬 ω 昨 ⇒

降γ獅ュ

=14(「のス土ψ°ltl―ス土ψ十11″ 21μ l κ llん (―→び
→
lll― ψ+||″針μl・

Therefore from the■rst equation of(2.20)by virtue of the inal state condition we ha√ e the
integral equation

ク生(― t)βttψ (ん
+1)(ι
)_ス土ψ
十

02幼  =―
/∞
lVlプ姓 国

・
,ん
αs平
:入
⑭ ブ鳳 姓 い )が

°βψ0
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with given flnal data ψ十∈ヵド/2+μ ,1.Denote Φ:=:(φl平 J(V)「1l φす
)・
By the identity

陣J(0ギ性あ。)― (Ⅳ厚け)脱 1

=に40亀ρOイ格2切
+に404ρ O‐嘲

42切
=にい国縫ρO→憶2切
+陸上に同亀ρO‐ )憶2切
=22『‖4(→β土〆°0~Φ:||[2+μ l

via the parallelogram property.Thus we see that the latter of(2.21)is equinlent to

拠と降卜の亀〆
°°Φ主膳神=a

Thus the second equation of system(2.20)can be written in the form Ofthe integral equation

u+(-t) B*6(*+t) (r) - oI : - lr* (v);t u+ (_'r) Ga,ad,s.(2.23)

In what fol10ws we study the integral equations(2.22)and(2.23).

Vた introduce the operators Z=(Zん )1<ん <η ,こ =え ,M=(ム ,土 ,M)1<ん <η ,Where Zん =
χんと 十 ιa,島 ,土 =洗 ,土 ,M=ι ぬ 土 づ

"ん
(▽ )ν ,WhiCh Were used previously in[43]and in[231,

respectively. ヽヽ石e easily see that

″ん4(―→=FlづaCT2f⇔MF=4(の
("た
平jι (▽ )プぬ

)

iom which by the commutation relatbnレ た,(▽ )跡]=α (▽)レ
2 a it f011(ws that

(2.2の (▽)M4(ι )χι4(―ι)=(▽ )ν
"ん
干づι&=平だ為,土 ~(▽ )プ a.

Let us also compute the commutation relations for the operators L+, Zn and Jn.+

(2.25) L*Zn : ZxL+ -r 01" t i 1r1", (Y) e11 a, : (zr + i}k (V)-;) L+,

[島 ,士 ,£土]=Iχた,(▽ )llf](▽ )M― &=0.

Aヽo祀 ha■‐e the reh■ ons[れ ,(▽ )プ]=― lV)プ aa and

(2.26) Zx - Jt",+: rkL+.

2.2. Time decay estimate and Strichartz estimate. We first state the time decay
estimates through the operators J+,m for any smooth and decaying function (see [27] for the
proof).

Lemma 2.6. Let m ) 0 and the space dimens'ion n ) 2. Then the estzmate

lllllr, < c (ty-t('-,t) (11a11';,t*# lltr,^oll"r,:,+ lldllo,,)\



おυttα ルr tt ι≧Qυんθtt ν=呼 (1-:),2≦ P<2η/い 動,pη ttα cご 協 流c
rづθんι―んαηα sづαc ts fηづιC.

Denote the space― tillne norm

‖φL,(I;ん 3)=‖ |lφ (ι)IL31 L[(f),
where r is a bounded or unbounded tilne interval. Deine

し土√」σKの =ガ姓瀞→0‐ズ→″
fOr any T∈ ∬,where m>0.By the duality argument of[68]along With the Zp― Z9time
dectt estimates of F司 鴫 hⅣe the Strichartz type estimates.

Lemma 2.7.Zθι 2≦ 9<2η/(η -2)αηα争=,(1-:)・ T7Lθηユr αην ιれCれιCrυ tt l tんθ
ルJJθυれθ θSιJttαιθs αtt ιrZθ

‖免,mレ ]‖ L,(ム L3)κ llθ‖L『′
(ム
″
f″

1)'

‖免,m lglllLFttLるい |lgllL:′
(ム41)

αηα

‖″士,m(ι )φ llL:(I;L3)κ ‖φl〃μ
'

υんθ宅〆=r/o一 ⇒,ご =g/鮨―⇒αηα μ=7(1:).
2.3.  Proof of existence of the scattering operator for E)KG in 3d. ヽヽ石e deine the
vectors

押=OψQ‐び20れρ,岡九プ ),
FO=((▽ )プ F・ ,た ,(▽ )プ‐,た ,(▽ )尻:θ+,た ,(▽)尻:θ _ル

)
and the matrix― operator 

£ =diag(£十,M,£ ,M,£ +,π ,£ ,m).

Then system(2.20)can be rewritten as

(2.27)            £υ(ん+1)=F(た ).

Also we denote the matrices

ν
(ι)=dia/g(ιイ+,ν (ι),佐 1,ν (t),41,m(ι ),佐 1,m(ι )),

b=diag(1,1,0,0)

and the vector of the inal data

#=山glψtたハ。っ九鳴岡九→,

where Φ菫 = :(φ l平づ(V)尻
l 
φ2・ ), then the integral equations(2.22)and (2.23)can be

written as

p20ン ←のυ
●+⇒ OV+=/∞ ν国 メ

°dS T:λ lVl″ 鳳
ν←のb〆Oβψ0

fOrた ≧ 0.Mた also haveン (―ι)υ (0)(ι )一 V十 =0,i.e.υ (0)(ι)=ン (ι)V+・
ヽヽ石e intrOduce the function space fOr the inal(lata υ+ ∈ (fr3/2+μ

,1)10 and for the successi、 re

approxilnations υ(ん )

ヽ

ｋ

ｒ

リ
∞＜Ｘυ

ヽ
、

１

ノ

ヽ
１

′
ノ

μ十
∬
／

ｆ

ｌ

ヽ

Ｊ

／

１

１

＼

θ∈υ〓χ
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with the norm

レ L=忍 (腋
α
υ
屹『●ィ

ル
リ
+腋 αttL沖 ″νttμ司引))'

where f=レ ,∞ ),争 =3(1-:),and μ=呈 T易 ,器 <9<6,and 2=(Zゼ」),

」=diag(′年1,M,Jll,M,ご舞1,れ ,[21,m).

For example,we can choose 9=5/2,then μ=1/4.
Then the result of Theoreln 2.l fo1lows from Lelnlna 2.5 and the following theorem.

Theorem 2.8.■ ssしmeιんαι v十 ∈(∬
3/2+μ,1)1°

,αηα lv+||″ 3/2+μ ,1≦ εルrsθmθ ε>0.動θη
ιんctt c"づsts α zηを9zθ θιθbαι sθιttιjθη υ(∞ )∈ χp,∞)ιθ ιんCれι″電ι cgzαιづθη″.2〃 .νο

“
θυcら

ιんθ esれ mαιc‖υ(∞)|lxp,∞
)≦
ε3/4づs;rZθ´

Pηげ It iS easy to see that υ(0)=ン (t)v+∈ Xp,∞)and lυ
(の
|lxp,∞)≦

ε3/4.By induction

we assume that for someた >1

ρ∈杓Q司狙d肝°脹n→ダ
μ

for al1 0≦ ι≦た.Let us proК  that υ(λ+1)∈ xp,∞ )and lυ・
+1)lxp,∞

)≦
ε3/4.

By Lellnlna 2.6 we have the estilnates

|lυ

°
|1粥
S(ι)3(13)(||」υ°

||″αttν l十 11υ
OI〃
αttν )

≦ θ(ι )3(1~:)|lυ ollxp,∞
)≦
θε3/4(ι):(1-:),

where 2 < p I 6, a I 312+ p" - u : \lp t tt - 1, 1 < I < k. In particular, since

ψO=υP ttυP,aψ①=バηνlP υ釣,

and

60 - (v);+

we can write

ψ
OII粥 十

11aψ

°
|1弔 1+||あ

①
ll弔+1/2+|laφ

°
|1弔
1/2 κ ε

3/4(ι
)γ

l

with γ=3/p-1/2>0,2≦ p<6,α ≦5/p+μ -1, 1 ≦ι≦た.SO uSing the identity
″=平κ理|▽ )プ 土jι▽(▽ )プ ,К ind the estimate

(2.29)

<

(2.30)      ヽ

for 2≦ p<6,α ≦
relation[″ι,(▽ )跡]=

ヽ
１

，

ノ

Ｃ

４υ一

Ｃ

３υ

／

ｆ

ｌ

ヽ

１
一２
ｍ
▽〓

φａ
ヽ
１

，

ノ

Ｃ

４υ＋υ

／

１

１

ヽ

レ′暁十肝岡九ρし
考
『 (|1免

(▽ )プ βttψ
OII粥 十ι

llβ
ttψ
°
|1粥 )´

+を 0印れρ脱‖卜覗縫ρけ
げ卜V2卜oに

[臥0

7林″亀:鷺 :daユ毎脂l鳥11・T古 1鳳糧淵柑驚l
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llq: rlpt+llpz, tt:514-slQd. (When we choose q:512, p:114, then we can take
pt:4 andp2:2013)

wtth γ==2-3(::―十分)>0,and silnilarly by the Hё
lder inequalityヽⅣith 1/9=1/Pl¬卜1/p2

(When We choose 9=5/2,μ =1/4,then we can take pl=4 and P2=20/3)

ll r ,, ,,ll ll -r
ll"' 

t* (Y I h B+Q\"* " 
ll 
",,, 

5 
| l', 

(v) ^' G *,rll rr, 5 ll (r) G +,nll u

s 
ll 
r,-, ll,,,ll@) {'r,ll",,s (r)-' ll,,*,ll'", _,,

with 7 - 2-3(\/pt +Ilpz) > 0. In the same manner by the Sobolev and Holder inequalities
with I12: 7lh -t llpz, F:514 - 512q, we obtain (When we choose q:512, p: Il4, then
we can choose pt :3 and p2 : $)

』

　

の

川

Ｌ鸞
肥
尤
Ｍ

＋
旧
ｐ
眸

郎
瑯
四
「

Ｌ
ド

洲
Ⅶ

「
「

⇔

＜
Ｎ
　
　
　
　
　
＜
Ｎ

＜
”
　
＜
Ｎ

＜
Ｎ弘

ψ”

＋
　
＝
＝
＝
＝

″
　

毛

１
　
　
　
ん

好
　
　
　
ゴ
′

士φ
　
川
引

っ
Ｏ
　
　
　
　
　
　
μ

ｌ
，

ｍ
　
　

　
　

〃

Ⅳ

　

坤

土
　
　
θ

が
　
ω＜

Ｎ

＋〃∞
ι
Ｌ

好
　
　
ヽ
１
，
ノ

助
　
　
　
　
ｏ，∞

Ｌ
ド

　
３
　
■

＋
　
　
⇒
↓
眸

仁
い
　
＋

Ｌ
　
　
　
　
∞

＝
引
Ｉ

　
　
　
　
Ю

判
　
　
　
‐２
‐
版

♂
　
湖
―

レ

＜―‐＜
Ｎ

く

牌亀亀ψ°刊雌1か
||(χ )■ ,た ||″μ_1/2

Gレー〆°雌,1+牌→た21)lωψ°恒p2
+牌りに∞牌
卜⇒性211ωψ回た,2

⇔‐0脚隆[嘲 +卜
に⇒降[J

with 7 - 2-3(Llpt+llpz) > 0, and by the Holder inequality with1,l2: llpt.-tllpz
When we choose q:512, p: ll4, then we can choose pt :3 and p2 : $)

lt1 7卜
°に[ぃ

Therefore０＞

ヽ

ｌ

Ｊ

ノ

ー
一２
十

、　
　
１
一■

／

１

１

ヽ

つ
０一

２

〓γwith
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with γ>0.By(2.26),we haVe

レが科⇒に,。明+しが
好⇒たF。"→

≦
 IZυ
°+1)|IL:(ム

民/2)+IZυ
°+1)IL『

(1〃
1/2+μ) 、

+|IZ£υ°十⇒
||ルf(ム″y2)十 lχ

£υ(た+1)||げ
(ム
〃1/2+μ

)

( IZυ°
+1)|IL[(ム

既/2)+IZυ・
+1)ILF(ム
″1/2+μ

)

+0脚隆Iぃ +卜昨⇒膜lJ・
So we need to estimate only the operators Z.Multiplying both sides of(2.27)by Zα ,and
using(2.25)we obtain

£Zαυ(た+1)=(zα +Qα )F(ん )(2.31)

where Qα =づ▽α
(十
(▽ )プ ,一 (▽ )プ ,+(▽ )″ ,一 (▽ )尻

1)t・
Note that the operator Qα  acts

as a zeroth order operator.From(2.31)we ind

Oa   ttν←→Z%lt・ ll=ν←→にα+Qつメリ
fOr lα l≦ 1.By Our inal cOnditions,we have

鳳
ν ← →υ

鮨十⇒ 0=v十 干
:λ
lVlプ
鳳
ン け )bが

°
βψ
O.

By(2.26)and(2.27),、 ve Obtain

ろ β土 (▽ )九 φ
(ん+1)=所

,土
β土 (▽ )九 φ

(た+1)十 ″ι(▽ )π
2θ
土,た

followsfi・om which in宙 ew of(2.25)it

4(→ 幼β土(▽ )九 〆
ん十⇒ =κι社4(→ 亀 (▽ )九 が

た+⇒ +4(→ 均 (▽)m2G土ル

WhК 毎 =嬌 ∴ m=当 llVlπ η 十 岡 尻
1→ .剛 e施乱

牌耐吼告√MLiQ」
κ
 ll″
ψ°)|1鍔

lψ

ψ)1鍔 ん(⇒ γ
llυ

に

Therefore                                                 l

hm 4(―→Zαβ土(▽ )九〆た+⇒ =κl(▽ )為Φ士
ι→ oo

fOr lα l≦ 1,Where κ塁=κ塁,れ =土づ((▽ )れ "α +(▽ )尻
1▽α
).In the same wり

as aboκ by

(2.26)and(2.27),、ve get

Zlβttψ (軒
1)=あ

,土
β士,Mψ(肝 1)+″ι(▽ )プ■,た .

Therefore by(2.25),it f0110WS

″土(~ι)ZIβttψ (ん+1)

=κι燕4(―→βttψ。・ )+4(の角(▽)プ■,ん .
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Note that

Then

fOr lα
l

(2.33)

Then i

(2.34)

fOr lα l≦ 1.
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＜
Ｎ

＜
勾

＋
　
　
　
　
　
　
　
　
　
　
　
　
　
．

″
　
　
　
　
　
　
　
　
ヽ
１
′
ノ

”
Ｌ

に

　

同

『剰杷
陶

肌
国
吼
　
ｏ，∞＞＋

亀

」

∞
―ｌ

ｑ

・ｌ
Ｍ

洲
「

‐‐
‐
＝
Ｌ

‐‐隔
ド

陶
牌
ヤ
弧

鳳
姓 ←
・
)Zαβttψ
O=κ
塁ス土ψ
+干
:λ
κttlVl″ 鳳

ν← →b〆
Oβ
ψ
0

<1.Thus we have

鳳
ν←→Zαυ° =κ

α
v十
モ
λκl,M IVlプ 鳳 昨 ⇒

bが°βψ°・

integrating (2.32) in time over (1, oo) in view of (2.33), we find

ν(―→Zαυ。+⇒ =καv+十五ン(一⇒(Zα +Qα )Flり ds
干
:λ
κ1 0″鳳 ν←のb〆

→βψO,

Wetak the Z,(二 月サ)andげに
〃1/2+→ nOrm Of●・39,where r=レ ,∞),and use the

estimates of Lemma 2.7 to obtain with 2≦ 9<6,2/r=3/2(1-2/9),and μ=5/4-5/(29)

|IZα
υ°+⇒

|IL『
。
〃/2)+|IZα

υ°十⇒
|ILF(ム〃1/2+μ

)

κ卜+膳ψれ1+(‖::lyllil「
:動3)・

Since 1/2-2μ ≧ O by the SObolev inequality with昔 ==1-:十 上2ξ2と ,We flnd

ll(Zα  tt Qα)■ ,た |ル
F時 (ムくん 1つ

だ ||(Zα  tt Qα )F■ ,λ llL声
仏L,1)

ん
(|12が

り

|1巧
。 .)+|laが

oll巧

仏 Lっ )|lψ

°

|ILル 綺 L″ )

十
112ψ
OII巧

。メ3)(||〆
粉
|IL〆場。弓 3)+|laが

り
|IL/場 仏L,3))

+|12〆 →
|IL:仏 L9)||が

た一つ

|ILFttL∞ )|lψ

θ ⇒

||五ヵ 仏 ル )

十
112ψ
鮨 ⇒
|1巧 ←ノ

3)||〆

ん―⇒
||ニデ
ち
仏ι
p3)|lφ
に 1)|ILFttL∞

)

+|12が
た⇒
|1巧仏ん9)||〆
ん⇒
||げ仏ι∞)||メ

ん―⇒
|ILヵ仏L″ ),

where by the]=dder inequality:― 十分 =七 十分 =岩 =:-1-堕9   3・
Ⅵたhave ′,=:一 :一 :ルι(When We ch00se 9=5/2,メリ==1/4,then we can take pl・=5/3
and P2=5).1ヽ石e Only show the following inequality.9>90/37 comes from this.

|(つ
一μ 〆

°
)(Zψ
O)|IL声

仏 Lり
｀
|lυ

°

|lln0
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We apply the Hdlder inequality Llh: llpz + llps

llto - oG t 
t t z { t r, )11,,, < llo - o', 1.,,,, ll 

u r,o, 
11,,,

We apply the Sobolev inequality with 1/p3 :7lq - asl3, o3 ) 0

llz *,a11,", s llto,r,ll,*
We also have

lltr",l | 

",. 
. llu r,r, ll, i

if a3 ( I/2 and

llz*nt ll"r. = llzs*,r'@ll,t
By Sobolev's inequality with llpz: lllz - a2f 3, a2 ) 0

ll, -r.ol 1,", s ll, - rT'll,=
L2

By Iemma 2.6, the following estimate holds

llo-6t-t llrr, S ,t/+ py-t/z(|-2/12) : ,3t4 \6)s/tz-s/z

if 2 < 12 .--6, az -t 112 3 Sllz I p, - 1. Thus the estimate holds

llo--arr,ll",, S rs/+ p1s/tz-s/z

By Holder's inequality (" - 1) lr : Ilr*(, - 2) f r,we get the above estimate, if (3112 - 312) h <

-1. These inequalities is valid 1t 97 130 < q < 6.(When we choose q : 512, t-r : Il4, then we
can take h :5/3, pz : lz :2013, az:0)

We now estimate the next term

ll(2" + e") G+,nll r= (,,:t\
\ q-t /

N ll' - llr;Q,ni;) ll- llqa g,roo1

+llnt'@ll,;1,,,,,; llo'-' ll fh Q t uig:

where llla+Ilp+:7lls+llps:1-11q. By the Sobolev inequality withllla:7lq-Il6+
2p,13 : 213 (I - tld we obtain

llpdrtll ^, stllzs*,t&tllll' - llr;(:nifl - ? ll---' llr;(r,ru'r'S'

As above we apply the Sobolev inequality with b :3lp-3lps ) 0, where llpn:716-2lq-
2p'/z : 1/p, : 1/3 (l - tlil and after that Lemma 2.6

lls*,t(r) ll s (,)-;('-;) (llns*,r,&tll +lls*,t@) ll ).ll--' llLo" - '-' llgt+"-r ' ll"-' llgu+" ) '

where u :512 - Slp.Hence as above

ll'lt*rll -=: < ll,r*rllll. llrf g;uny - ll" llx1o,_r

And finally the Sobolev inequality with 1/15 : Ilq - 1/6 gives

llrEtktll s t llzs*orrtllll ll4Q;rts) - ? ll---- ll4Q,u)/,)'

We show the following estimate.
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レびりにι5+ψ°降″

|12ψ

°)〃
∫5κ 12ψ
°)|1弓

/2

|12ψ
°
|IL:。メ5)lψ
°
ILル←瑚ξ)κ llυ

°
|ll口 0・

We apply the Sobolev inequality with 1/J5=1/9~α 5/3,α5≧ 0

We also have

if α5≦ 1/2 and

‖2ψ°||メ5んと||?β ttψ
°
||″:ρ

By Sobolev's inequality with 1/P5=1/p6~α 6/3,α6≧ 0

11ψ

°)|1瑚
ξ
κ
 llυ・
)1弓

ξ
+α 6

By lemma 2.6,the follo、ving estilnate holds

llυ

(粉

||.詰十α6(ε
:(ι)3(1発 )=ε ,(ι)発 :

if 2≦ p6<6,2μ ttα6≦ 5/p6+μ -1.By Hё lder's inequality(r-1)/r=1/γ +(γ -2)/γ,we get
the above eslmat%f(農 -3)あ <一・ These mequttiesぉ nld f97/30<9<a(when
we choose 9=5/2,μ =1/4,then we can tab ι5=20/7,p5=p6=4,α5=3/20,α6=0)
TherefOre

llzα
υψ十⇒

|IL,(ム弓/2)+|IZα
υθ+1)|げ

(二
〃1/2+μ

)

κ llv十 11″ 3/2+μ■+|lυ
°)|lip,∞

)+|lυ

。一⇒
|llp,∞)κ

 εttε 3・

Thus we have

卜l・・llにし→≦σa
ln the same manner、 、G conSider the di∬ erence υO)_υ O-1)and prOve the estilnate

卜°―が
卜⇒脹n→≦:卜

lt ll一が卜動にn0
恥rhich sho、vs that the sequence {υ (た)}deined in (2.28)is a Cauchy sequence in the space
X10,∞

)・
ThuS the result of the theoreln fOllows. Theoreln 2.8 is proved.                 □
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3. Wevs oPERAToR pon DKG rN 2o

3.1. Difficulty in 2d case. In this chapter, we consider the final state problem for DKG
in two space dimentions. As we mentioned previous chapter, we meet with two problems in
considering the final value problem. First, we are not allowed to start with the Klein-Gordon
system (2.2), which does not involve the derivative of Ty'. Second, though (DKG) is equivalent
to (2.1) not (2.2), equation (2.1) includes the derivative of ry'.

Moreover, two dimensional case is known as critical, i.e. borderline case between the long
range scattering and the short range one. More precisely, time decay property for solutions
of the DKG system is slower than three dimensional case. Therefore, previous section's
argument does not work to two dimensional case directly.

To overcome the lack of time decay property, we will use the algebraic normal form trans-
formati,on developed in paper [59] and the decompositi,on of the Klein-Gordon operatorinto
the product oJ Dirac operators:

0.1) 冴+(▽ )傷 =つ十つ・
This combination allows us to find a suitable second approximate solution to ry'.

3.2. Several Notations and Main Results. We state our main results in this chapter.
We introduce the function space

(3.2) D9≡″警∩が,1∩∬f.

Theorem 3.r. Letm,M )0,m+2M,4<q--crc and (/*, 11V1 df,d;)) €(D)4.lf the
nonn p = ll(ti*, ((V) dl, O{))ll"z i,s suffici,ently small, then there erist a posi,tiue constant
T > 0 and a un'ique solution

for the systern (DKG). Moreouer, there erists a positiue constant C > 0 such that the foltowi,ng
est'imate

ヽ

１

，

ノ

ヽ

１

，

ノ
∬∞Ｔ

／

ｆ

ｌ

ヽ

θ
／

１

１

ヽ

∈

ヽ

１

‐

′

ノ

ヽ

１

‐

′

／

↑

φ

φ

ａ

ｌ
一２
π
ｌ
一２
働
．％

／

′

‐

ヽ

＼

ψ

／

１

＼

lv鰈呪φ。)(lv)ク品。。)||″ 1≦θι μ
づs tttθルr aιι t≧ T,υんθ質〕<μ <1-:,υんθ宅

(3.3) (l'0, oo,(v);' a,oo) @ : (ro Q)'l,+ ,vxc G) (ol, <vl;' of))

By Theorem 3.1, we can get existence of the wave operator for (DKG) as follows:

Corollary 3.2. Let m,M ) 0, m t' 2M and 4 < q < n. Then the waae operatorw+ fgr
(DKG) is well-defined from a nei,ghborhood at the origi,n i,n the space (D)2 t ({V)-t Do x Dn)

to the space (HL/\2 x (Hr , L').

The rest of this chapter is organized as follows. In subsection 3.3, we state some basic
estimates for free solutions of the DKG system and we introduce "null forms" and state their
properties. In Section 3.4, we decompose two harmful terms by the algebraic normal form
transformation and we find a second approximation for r/ through the decomposition of the
Klein-Gordon operator by the Dirac one. In Section 3.5, following paper [20], we will also
change the transformed DKG system into another form in order to apply the Strichartz type
estimates to the Dirac part. In Section 3.6, we will prove Theorem 3.1 by a iteration scheme
based on paper [24].

／

１

１

ヽ

＋
∬

ψ
一
↓ψ
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3.3.  Elementary Estillllates and Null forms.lVe state Lp_LC tilne decay estimates
through the fI・ ee evolution groups ν土,れ (ι)Obtained in paper i48].

Lemma 3.3.五θι鶴≠O αηご2≦ p≦ ∞.Tんθη ιんc cstづ鶴αιθ

‖ιイ土,m(ι )φ llLp κ ι
2/P-111φ
‖月嗜(1-2/2)

をs ιttθ ルr αην ι>0,υんθ宅9づs a cθり包gαιC θηοηCηιげpr 1/p+1/9=1・

By the lemma, Ire can easily get ZP― Z9tilne decay estilnates to free solutions for the

DKG system.

Corollary 3.4。 しrnder tんc samc assttmptを οηげ Lc鶴鶴αθ・θ αηα Aイ >0,tんc力 JJθυtη g estt―

mαιcs

‖ち←)ぽ ILP κ ι2/Pl ψ十11弓←2/D,

|々
0((▽厚φす)ILp κ ι

2/Pl((▽
厚け)1弓←_ν。,

αtt υαれαルr αην ι>0,Tんθ肥9,s a cθ″鶴θαιC Cηοηθ力ιげpr 1/P+1/9=1.

Remark 3.1.五θι κ∈R,ν ,鶴 ≠O αηα 2≦ p<∞ .Tんθη ιんθルιJουれθ θsιれαιcs

‖ら (→ψ
+|IЛ

T κ t2/P lllψ
+||″κ+2-4ル ,1

1な
0((▽謀け)|1島 κ ι

2/P lll((▽

厚φ夕)|〃κ+2夕21'
んθJご ルr αηνι>0.

Next,、ve introduce the Leibniz rule for fractional derivatives.

Lemma 3.5。 Zθ ;κ >0,1<P,91,92<∞ ,1<rl,r2≦ ∞αηα:=士 十岩=轟 +与 T71eη
ιんθルιJθυれg θsιづ鶴αιcんθιαsf

(3.4)             ‖zυ‖〃β κ llZ‖″a‖
υ‖LTl+‖υ‖″ぁ|1鶴 |lι

r2・

For the proof of(3.4)sea e・ go μq.
Let Zγ =Z『 1・…Zχη fOr a multi― index γ=(γ l,・ …,γれ)∈ (N∪ {0})η・ヽ 石ヽe can see the
commutation relations(see[ll and[641):

(3.5)            [つ +,Zた ―(1/2)αλ]= αたつ+,
(3.6)       F― △+鶴2,4]=0,
forん =1,2,where lス ,31≡ スB― Bス・
ヽヽ石e illtroduce the quadratic(nu11)fOrmS:

(3.7)            20(∫ ,θ)≡  (a∫ )(ag)一 (▽∫)・ (▽g),

(3.8)         Q′ ,ん (∫,9)≡ (0∫)(ag)― (∂ん∫)(らθ),
fOr O≦ ′<た ≦2,where∂ ≡(め ,▽ )≡ (ta,∂1,a).Especially`み ,た

iS Called strong null

form and has an additional time decay prOperty through the operator Zた ,Obtained in i44]

(SCe alSO 1241,1361 and i591 ctc)・

Lemma 3.6.Lcι ブ,た =1,2.動θηルr αην Smθθιんルηcιづθη∫,g,ιんθ jαθηιづιづθs

(3.9)       QO,′ (∫,g)=tl(あ∫)(ろ g)― tl(ろ∫)(ぬθ),

(3.10) 動,ん (∫ ,θ)=ι 2(ろ g)(Zたハーι2(zJ∫)(Zん g)+ι
l(a∫
)(4g)

一tl《力θ)(Zご)+tl(ZJ∫ )にれg)一 t~1←ろθ)にれ∫),

απ υαιづαルr αην ι∈Rヽ {0}.
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3.4.  Decollllposition of critical terms. ヽヽb study a structure of some harlnful terms of

(DKG).By the diserence of(DKG)and the free DKG system,it follows that

O・⇒ {伸乳雰澪竺嗜J象謹瀞″鶏絋″」ぷ螂:ゎψ。
where□ =冴 ―△.The last two terms φoβψO,ψもβψo are Critical,both Of which have the
worst tillne decay property. Especially,since

φOβψO,ψbβψO=0(ι
~1)in五2 aSt→ 十∞

(See COr。 1lary 3.4),the L2_nOrm of these terms are not integrable with respect to time t over

[1,∞ )・ Therefore,it can not be expected that usual pertubation technique is apphcable to

(3.11).T00Vercome this lack of time dectt property we will decompose them into an image
of a Klein― Gordon operator and a remainder term following paper[591,baSed on papers i361,

1451 and[66].
Let(υ l,υ2)be a S01ution for the fo1lowing homogeneous KG system with masses■ fl,

″ 2>0,

(3.12)      (□ +Lげ )均 =0,(t,")∈ R× R2,forノ =1,2.
By the masses Aイ 1,A42,We introduce the symmetric matr破

M=M(4,乃 )=(電誌〃ι降協′)・
ヽヽ石e have the following:

Zθι硫 >0疵 ιんdet(仇2f_“ )≠ 0・ T7Lcη ιんθ 9色αご鶴ιづc ιθtt υlυ2Lemma 3。 7.作θθ b劇ノ
cαη bc αccθ mpθ sθJ αs

G.13)

υんθ
“
(3.lo

(3.15)

(3.1つ

{(r+n')f-+n},υlυ2=
det←L2f_ノИ)

∫ = ノ(υ l,υ2)≡ (~Lイ ーユイ十九2)υ l υ2~200(υ l,υ2),

2=2 0Lυ 分≡ΣE QQm(aυち硫 υ→十ΣE QQぼ aυら偽 υl)
m=1 m=1

-Qt,z(0rrr,}zuz) - Qz; (}zut,?ruz) .

Under the nonresonance mass condition m, M > 0 and zn + 2M, we can apply Lemma 3.7
to the critical terms do/rho, ,h[,]tbo.Before doing so, we prepare for several notations. We
put

(3.16) ノИ ≡
m2 (zM + m) (m - 2M)

which is well defined if m,M ) 0 and ml2M. For a real-valued function / and a C2-valued
function ,lt : (rhylbz)t , we define C2-valued functions of bilinear form:

{斜鮨iみル1答働,,
Moreover, for C2-valued functions g: (gt,g)t , *: (rltr,{z)t , we put the bilinear forms:

( tn : f x (et,rt) =D3i=, f (v1,,h) .

(3.1s) \ n" - R6 (v'.,/1 =D'1:rn(pi.,!),
I Af : e{ (v' . ,t1 = Dli:, Ao (,c i, * )

We have the following:
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Corollary 3.8. Let ffi, M ) 0, m + 2M and (tlts,6il b" a free solution for the Dr,rac-Klei,n-
Gordon equations. Then the quadrati,c terms do|rbo, ,![,|tbo can be erpressed as

(3.1e) { dog,l,o: 4 {F + M:.) f o (do, g,bd - 4Ro (Qo, g,!i\,
| ,ptg4;o: M {(t + m2) f x (rb6, grli - aRx (4i,lrlti} .

Proof. We consider the Dirac part of (3.11). Multiplying by D- both hand sides of D+{o : 0,

we get

(3.20) D-D+{o: (tr + M2) tlts:O,

which implies {o : ($o,r,rbo,r)' is also solution of the free KG equation. Note that by the
condition m,M ) 0 and m l2M, we can apply Lemma 3.7 with frt,: M, u1 : @6 and
uz : tho,n to get for k : I,2,

dorpo*: M {(a + m2) f (do,rbo,n) - tR (6o,rlro,r)) .

Thus by a simple calculation, we obtain (3.19). Next, note that from the equality (3.20), we
see that rfu satisfies the free KG equation. Thus in the same manner as the proof of the Dirac
part, we can prove the KG part, which completes the proof of the corollary. n

Next, we will change the DKG equations into another form without critical nonlinearities.
We introduce a new unknown function (V, O) as follows:

(3.21) V =lt - t[o- Io=,lt- jo, Q =Q- Qo- fx =Q- fn,
where (rbo,6il is defined by (3.3) and

(3.22) fo : fo(do,r!il=MD-fo(Qo,grl'o)
: M(f o(D-do,lrbd - iMf n(do,rbi),

(3.23) io : ix (rbd = Mf x (rp6,0rld ,

are the second approximate solution to ({,@) , where we have used the properties (DM) and
D+rLo: 0 to obtain the third equality in (3.22).

Here we remember that by the anti-commutation relations (DM) of the Dirac matrices, we
can decompose the KG operator as follows:

(3.24) Z+M2:D+D-.
By combining Corollary 3.8 and this decomposition, we can rewrite (DKG) as follows:

Lernma 3.9. Letm,M ) 0 andml2M. Then(tl;,$) sati,sfies (DKG) i,f and only i.f the
new uariable (V,Q) defi,ned by (3.21) i,s a soluti,on of

(3.25) t ,-D*Y.:-F' ^ (t.r\ etR x IR2,
I (l+m2)o:G, \''1''qx\

uhere

( ,: F (A.,1,\ =A0,1, + 00il,o+ eoTe - 4MRo@o.g\i,/arA\ ) \' '/\u'2v, 
\ c: t (/) =Ih.,th +tb" g{o+rl,60rlt - 4MRx(\tt,\rhil.

and "[4, Rp and, &x are d,efined" by (3.16), (3.17) and, (3.18), respecti,uely.

The first identity of (3.25) is new and enables us to treat the Dirac equation in two space
dimensions.

Proof. From (3.11), we see that (t!,@) is a solution of (DKG) if and only if the new variable

lA,d)satisfies the following DKG equations:

\3.27) t '*! - op!+-69'L-o-+ dog'l'* d-\7{o',
\ (l + ^\ O:',1t. P',lt + r/,. grl,o +',1)6t3r! + {69{0,
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ヽヽ石e consider the Dirac part of(3.27)only,Since it is easier to handle the KG part.Note that

by the assumption鶴 ,M>O and 7し ≠ 2y1/f,we can apply Corollary 3.8 to φOβψO.ThuSヽVe
have

o.2o φOβψO=ル {(□ +χ
2)ん

(φ。,βψ。)-42D(φO,βψO)}・
Moreover, by the decomposition (3.24), we can transform the first term of the right hand side
of (3.25) as follows:

o.2の λル (□ +上ρ)ん (φ。,βψO)=ルつ+つ_ん (φ。,βψ。)〒つ十ん,

where we have used the definition of fo given by (3.22). Inserting (3.27)-(3.29) into the
Dirac part of (3.27), we obtain the Dirac part of (3.25), which completes the proof of the
lemma. n

3.5. Reduction DKG to a first order system. To construct a solution for the final
value problem of the DKG system, we will use the Strichartz type estimates (Lemma 2.7).
However, it seems difficult to apply these estimates to the Dirac part for (3.25) due to a

derivative loss difficulty. To gain first order differentiability properties of nonlinear term, we
use the matrix operators B+, L+ as in the previous chapter 2, though we do not necessarily
need the operator 6 in dealing with the initial value problem for the DKG system (see [33]).
We will construct the desired solution (rlt,d) for the DKG system by the iteration scheme.

Let { (4ttxl, d(*)) }. O" a sequence such that (2.17) andt\' /)>o
(3.30)

under the flnal conditions

(3.31)

(',1'o,Oo) : ({o,6o) ,

,rl* ll'at-t G) -,t,o(r)llrr,,, : o,

(3.32) 鳳|(lvlギ 1緯)。 )― (lvl争易。。)雌1=Q
fOrた ≧0,Where(ψ O,φO)iS given by(3.3).It sumces to proК that the sequence

lQOη九州,岡澤a～ )L>0
is a Caucけ one in the Banach space(θ (lT,∞);∬

1/2))4 for sOme T>0.

As the pre宙 ous section,we introduce the new sequence{(Ψ (ん),Φ (ん))}as f0110Ws:

(3.33) Ψ
(ん )≡

ψ

(た )_ψ

O一 ん

≡
多

(ん )一

ん ,Φ

(ん )≡

φ

(ん )一

φ O― ル

≡
あ

(ん )一

九 争

By Lemma 3.9, the sequence {(VT' d(-))} is a solution of (2.17), (3.30)-(3.32) if and only

if the new one {(rl,,(l),O(k))} satisfies the transformed DKG equations

(3.34) {伸 7ザ熙幅)運七(。 ,た≧L

、vhere

メ°≡FCt多動,び°≡G←り,

fOrた ≧0(ん ,∫κ,F and C are deined by(3.22),(3.23)and(3.26),respectiК ly).
By the decomposition of the Klein― GordOn operator by the]Dirac operator,、 ve have

£土β土=平
:(▽ )プ・←イ+(▽)%)=干 :(▽ )プつ一つ+・

ｌヽｌノ
″ル″ん／ｆｌヽ一〓

い
ノ
ΦΨ
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Thus from the Dirac part for(3.34),we can deduce the fo1lowing:

G.3→    £土βttΨけ⇒=平ちに)プつ一つ十Ψけ⇒=Ⅳ )プ写F),
fOr ι≧ 0,Where Fy)≡ 平 :つ一F(た

).Therefore from Dirac part of(3.34),we hmκ :

030    {亀β運51■lη計4'ん≧
0'

β土∫D・

Remark 3.2.Bν  ιんθρ
"pθ
焼づCS ρ 刀 げ ιんθ Dれ ε ttα ιれccs,υθ cαη ιttηψ 開 4れ ιθ

αηοtんer∫brγRり ttんοttι αην dc7・ oυ attυ es 9∫ ψ οrιんC力℃e Sθ Jtttiοη ψo β ec rθ・イイリ
ー
63・イリ prectSCJυ ノ・

助 づSル Ct θηαbJθ s as tθ  ttsc ιんθ Strづ cんαrιz cstづ maιcs ιθ ″ .θの .

鍵紀霞詳ちTlmmf糧毬織癬凛)T鳳凪」Tlよ品∬l思萌
satisfles

03つ     {亀
β
運 頷3≡ 蠅

)計 G生 'brた ≧Q
g土∫κ,

where θ塁≡σ埜
(多

(ん))≡
平:Gん・

Therefore by(3.36)and(3.37),we get

030   {:1たご日三円ギ雄i brん≧Q
(縫
Ψ°,βttΦ⑨)=― (4ん,4ル )・

Remark 3.3.Tんθづごcηιづιν Σtt β主=」 んθιαS,2tlんづ6ん θηαιιcs tts tθ “
cOηstttcι α sθιttιづθη

(Ψ ,Φ)ルr raクノルリm(βttΨ ,βttΦ ).

Inserting the identities

G.3"    3° =ΣEttΨ O十ん,が°=Σ ttΦO+ル ,

土                   土

illto the no」 mea五 des 4,G塁 ,К Can express(3.38)by the new va五abb(βttΨ
I,β
ttd)only

宙ぬ0乱 Cの・
At the end of this section,we will lead the integral equations associated with(3.38).ヽ 石ヽe

introduce a ne、v unkno、vn function sequence{υ (た )}WhOSe coIIlponents are deflned by

脚≡
0+」
2&び2oれが2岡九&びう

t,

a nOnlinear term

χ tt χ←り≡いノ40″毛岡澤皓0岸→
t

fOrた ≧ 0.Then by using these notations,(3.38)can be Simplined as

(3.40)        £υけ⇒=/(υ撃))brた ≧0・
To lcad the integral equations for(3.40),we need to study the asymptotic behavior of the

new variable υ(ん ).、、石e can obtain the follov″ ing:

Lemma3.10。 ιθι
(ψ
+,((▽

)φl,φす))∈ (〃
5/2,1)4.動θルηCι jθη

(ψ

。),が°
)Sα
ιづ√θSク・Fη ,

`θ

.θの一″.θのルT α2ν た≧0がαηα θηινげtん c ηθυルRCtヴθn υ(た)sattjcs(θ .ィのαηα

04⇒     鳳膳°降v2=Qル rた≧Q
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The proof of the lemma will be given in Appendix. From Lemma 3.10, we can lead the
integral equations associated with (3.40) as follows:

(8.42) ?(k+1) (r) : - [* , A- s)I/ (rt*r) a".
Jt \ ,/

3.6. Proof of existence of the wave operator for DKG in 2d. In this subsection, we
give a proof of Theorem 3.1. Note that the identities

(3.43) arv(r-l : i (y)u(rl*' - rr-') . a,q&t : i (v)'J'(r[*, - r1-,)

hold, the nonlinearitV ,A/ (utr); can be expressed in terms of the space derivatives of ,(ft) (so

excluding the time derivatives).-For 
? ) 1, where ? is sufficiently large, we introduce the following function space:

xr: t, e (c (tr,-) ,H',')) t ll,llx" . -),
with the norm

llrllx" = ?:p r/'(ll ,ll41r,ro1+ llrll 
"71,,n,,,5)- te [",oo)

where 712 < p, < | - 2lq, 4 < q < oo and 1: [t,m). We define

A: c ll(+*, ((v)dl, d[))ll";;,^,,1;Hs/2,, .

In order to obtain the theorem, we will show that the sequence {u(e)} is a Cauchy one in a
closed ball X7,a flor appropriateT and p, where Xr,a= {u e X7;llrllx, < A}

Hereafter, we will use the notation LTX : LT Q; X) , D : D- and

BV : B+V, BQ : B+Q,

for simplicity if it does not cause a confusion.

Proof. We will prove u(k) e X7,a for any k > 0 by induction. In the case of k :0, it is easy
to see that u(0) e Xr,a for some T and p.We omit the detail. For k ) 1, we assume that
u(k) e XT,afor 0<J<k. Wewillshowu(k+l) €Xr,nforsome T and.p.

First, by the identities D4!o : 0 and D4p(r") : S6(n-t) Brlt(n-t) for k ) 1, we get for
k> 1,

o_ (45{kt p;rtr"t\ : b_o(*)\ pi,(r) - i,M$(k) *{n) * 
^6(*)6(*-1) 

r1r(k-t)\' / \ /
+x${k) rtn-D trbo + so(r) Qot,,lr(*-t) * xo(r) ootrbo

and

D-Ro (6o,/r!i - Ro (D-do,/rbil - iMRo (do,]rbd .

From these identities, we can express Ff as follows

.3
(3.44) f!: +XL,ef * "remainder" for k > 1,

J:T

where

(3.45) Ff : (o--O'r'\ 0i,&), F! = @-ao) p,t(r) + (o-6(r)\ p,bo,\/\
F! : 4iMRo (D-Qo,l3rlto) .



40 M IKEDA

Here we note that “remainder'(giVen by(3.44))can be handled in the same manner as
dther考

(プ =1,2 or O.Thus К wn1 0mit the estimate ofthem.We dsO decompose θtt as
G生 =干 3Σり=1彎 ,Where

(3.46) C=0り *βハ C=0り *βψO+弓β多叱
Gζ = 4んИ■ικ(ψ 6,βψO)・

Taking Lチ Ll―norm and Z"∬ :―norm of(3.42)and applying Lemma 2.7 with(9,r,γ )=

(4,4,1/2)and(2,∞ ,0),We have

‖
υけ ⇒
|IL:L3+|lυ

。十⇒
||五F〃ゥ

κ
‖
増
‖ん:/3ん1/3+|lθ

[||五
:/≒4κ

o.47)

M∝e叫 1      +1里

l御
考 性 :E1/2+|“ 雌 :瑚 )・

軍lIWttrth乱 (が
°
'が

り
)お
exptted器 o3)

Now we Ю増.By the Hdder hequ」 ity,К have

ll“りβびり性γり3だ Ⅲ帥°0侮1レ嗽→性tた/3

(3.48)

κストリレ山⇒Llに:β
≦ ス牌
脚
性:民 卜
り
性:。 ヽ
■%V界≒

forany t>T sincez(') e Xr,t for0 ( t <k. BytheHolder inequalityand Remark3.l with
p:8, we obtain

(3.4e) lli" t"lll* S lldo (")ll4ll,bo(")ll,,l S A2s-t.

for any s ) l. In the same manner as the proof of the estimate (3.48), we also obtain

(3.50) 
ll(aror-r) f oll"i,,r^,,< 43;3ta-u,

for all t> T, due to rQ) E xT,afor 0 < I ( k and (3.49). By the Holder inequality and
Remark 3.1 with p:813,8, we obtain

il-(3.51) llrt* (")llr, 5 ll/o (")11a,,,, lllo (")lla; 5 s-l ll,ip+ll46ll,l*llr2,,iS A2s-l

for any s ) t, where we have used the properties (DM) and D+rLo: 0. Thus in the same
manner as the proof of the estimate (3.50), we obtain

(3.52) 
ll(" t") sE@ll 

",,, 
,^,, f A3'-t /z-u 

,

for all t > T due'to u(k) € X7,a and (3.51). By the Holder inequality and the estimates
(3.49) and (3.52), we get

(3.53) ll(e7*\ t^ll . llll^i , 'll ll ; , 'll ll
\* __/' \^-,^ ) rollri,,"i,, : llllrtn 

(')llrr 
ll/a 

(s)llrxllr^,,,,,5 A"t-,r",

for all t > T. Thus by combining (3.48), (3.50) and (3.52)-(3.53), we obtain

(3 54) llrf ll .ll-rllt/"4/3---
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brt≧ T≧ l ShCe μ<1.Next tt consder F2to W3 hⅣ e

O.5o    l考
|14″ 1/2≦ |(つ

が
°

)ψOI辱 L3+||(つ
φO)多
級)|.L3・

By Corollary 3.4 with p=cЮ ,we haVe

Cη  lρβがり吼 :が |レが90雌1膨00陀r陀:κρん礼
fOr all ι≧T since υ(I)∈ χT,A for O≦ J≦ た.In the same manner as the estimate(3.57),we
get

囲  10→ 州 .4κ lト
ル0肥3豚釧貯脂:卸

ケL

fOr any t≧ T,where lve ha、re used the estimate(3.51).MoreoК r,祀 also haК

田  レ のβ」°雌:が 卜仇釧 ″出レ
び安→恒3脂:卸

t
fOr all ι≧ T since υ(た)∈ XT,ス .In the same proof as the estimate(3.49),by the Hё lder
inequality and Remark 3.l with p=4,we get

(3.59)     |ん (S)||五 2 κ llφ°(S)‖罐 |lψ。(S)‖鋼κ■
2s l,

fOr aw s≧ ι.By the estimate(3.59)and COr。 1lary 3.4 with p=∞ ,we htte

o.60   11(つφ∂ん||.z2κ
lllφ
O。)|1亀 |ん。)IL3114Sρ・

2ι
 l,

fOr all t≧ T.TherefOre by combining the estimates(3.55)― (3.58)and(3.60),we Obtain

o.61)         1考
|ILン フ2κ 〆ι

μ
'

br att t≧ T≧ l Since μ <1.Next we consider考 .By the deinition Of 2D,鞭 hⅣe

(3.62)       ‖2D(つφ。,ψ。)ル :″ 1/2κ Σ ‖2(つφo,ψ O,′ )|IL:L3,
′=1,2

where we put ψ。=(ψ O,1,ψ O,2)ι・By Lemma 3.6,we can express 2 as

(3.63)         2(つφ。,ψ。,′ )≡ S~lZl+S2z2,
fors c R、 {o},Where

Zl≡ (あ aつφO)(zl∂ lψ O,′ )一 (Zlaつφ。)(あ∂lψ O,′ )+similar,

あ〒―(Zlのψ。,′)(Z2■つφo)+(Zlとつφ。)(Zメカψ。,′)+Similar.
By applying the Hё lder inequalitフ ら、ve have

剛 に%嘔 だル
41祠

価
為
Ⅷ 冽 価 Jお

(3.65)   |lφ。(s)|IЛり ヽ Sl+2/911((▽ )φl,φす)‖ヵけだ奎Ъ S AS~1+2/9,
(3.66)   |lψO(S)1鶴 κ Sl+2/911ψ+|1弓ス:生)κ 4Sl+2/9,
for att s≧ ι.On the other hand,■Ote that the cOmmutatiOn relations(3.5)― (3.6)hold,by
applying the Sobolev inequality and the charge and energy conservation lalvs,we obtain

(3.67)  ‖Zψ。||″]9/(92)κ  ‖Zψ。|lffl+2/qκ ‖ZψOI″3/2κ ‖(Zψ O)(0)||〃 3/2≦ ■,

(3.68)‖ ZφOII″,9/(92)(‖
Zφ。||″2+2/9κ ‖ZφOII〃 5/2 κ ll(ZφO)(0)||″ 5/2(■ ,



since 9>4.Thus by combining(3.64)― (3.68),we get

(3.69)          |ls lZlllL:L2κ ■2ι -1+2/9,

for any ι≧T.By the Hёlder inequality we have

はつ  卜も 陀:咤 ヽ/卜 釧
Z仇 0晦 hO晦 おだノ

「
≒

since in the same manner as the proof Of the estimates(3.67)― (3.68),we obtain

ll乏
ζψ。(S)|1鋼 十 11ジζ売 (S)|1罐 κИ,

fOr any s≧ ι.TherefOre combining(3.61)― (3.63),(3.69)and(3.70),we have

O.71)        IJ可‖|.″ v2κ 42ι一軒2/9,
fOr all t≧ T≧ l Since 9>4.
Next,we will estimate Gl.By the Leibniz fOrmula(3.4)with κ=1/2,p=4/3,91=92=2
and η =r2二=4 and the Hё lder inequality,we obtain

l四うЪボ→権γ電″κ Ⅲβ」安⇒臆1″レポ安→た1にγ3
だスト」レJ安⇒雌1たγ300      (ス トψた:。レポリに:4・ヽ%V界≒

fOr any ι≧ T since υ(ん)∈ XT,ス .By the fI・ actional Leibniz rule(3.4)again and Remark 3.1
with p=4,we ha、「e

(3.73)    |ん (s)||〃 1/2 κ llφO(S)‖可/2 11ψ O(S)‖珂/2｀ ■
2s3/2,

fOr aw s≧ ι.In the same manner as the pr00f Of the estimate(3.72),、 ve Obtain

(3.74) |(βΨ°))*ん
|IL:/3弓′ξ 
κ
 llllβ
Ψ°)(S)||″

1/21ん (S)||″ 1/211L:/3だ・
3ι-3/4μ

,

for any t≧ r dueto υ(ん)∈ 二κT,4 and(3.73).In the same manner as the proof Ofthe estimate
(3.75),Ⅵ get

(3.75)        ||(ん )*ん |五:/3弓′ξ
κ・
4ι -7/4,

fOr all ι≧T.Thus by cOmbining the estimates(3.72)and(3.74)― (3.75),we obtain

(3.76)          |IG[|IL:/3弓
″
κ・
2t1/22μ

,

42

fOr ι≧T≧ l sinCe μ<
we obtain

o.7つ

the estillnate

C.7o
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卜回―がりにT≦ :レ0-が
卜⇒膿T,

1.In the same manner as the proOf Ofthe estimates(3.61)and(3.71),

障雌:√ρん礼牌性:が五%‐4
for any ι≧T.Finally,by combining(3.54),(3.61),(3.71),(3.76)and(3.76)― (3.77),、、G Obtain

(3.78) llrt**'tll", S e(tr't'-, + p+ 47-r+u+z/a),

for?) 1. Bytheestimate (3.78) andrf2< p<l-z/q, thereexist alarge T >0 anda
small p > 0 such 6646 2(ft+r) € Xr,e. In the same manner as the proof of (3.28) , we can prove



ASYMPTOTIC ANALYSm FOR NONLINEAR DISPERSIVE WAVE EQUATIONS 43

forl)1if?)lissufficientlylargeandp>}issuffucientlysmall,whichimpliesthat
{r(*)}*-o is a Cauchy sequence in X7,4. Theorem 3.1 is proved. n

3.7. Appendix. In this subsection, we give a proof of Lemma 3.10. By Lemma DKG and
a decay property of /p given by (3.22), we also have the following:

Corollary 3.rL. Let (1,*,((V) OI,0[)) € (H5/2,r)4. The fi,nal state corid,i,ti,on (2.3)-(2.4t)

with X1 : Hr/2 , Xz : Hr hotds i.f and only i,f the identi,ty

(3.80) ,r:1 t ll"a+v (r)lls,7z : o

-
i,s aali.d, where V i,s defined by (3.33).

we put B : ll(u*, ((v) of,d;))llrup.-.
Proof. By Lemma 2.5, we see that (2.3) with Xr: 11r/2 is equivalent to

(3.s1) ,t1aDllA+{(t) -u+(t)A+tb+llr,p:0.
+

By the decomposition (2.9) and the identities (2.10), we have

I l.A+ v (t)ll s r 1 z : llt*,t' ft) - u+ (t) A+{+ - A+ i oll r,,, .

By the property of A+, the fractional Leibniz rule (3.4) with p : 2 and qi: ri:4 (i:1',2)
and Remark 3.1 with p: 4, we get

llol i "ll r,,, 5 ll6oll 
""p 

ll'holl r'n s t-' B',

for all f ) 0, which completes the proof of the corollary. n

Next we will prove Lemma 3.10.

Proof of Lemma 3.10. First we prove the Dirac part. By Corollary 3.11, we see that (3.31)
is equivalent to

(3.s2) rm I ll.,q**'*' (r)ll ,,,^ :0 for ,k ) 0.
t-oo Ll ll - ' ll Hr/2

By (2.16) and the Dirac part of (3.34), we have

(3.S3) 61E(t+t; : /+\tr'(ft+11 - (V)# Fk for /c > 0.

Thus it is sufficient to show that

(3.84) ,\* ll.-llr_,,": o ror k > o.

By the Sobolev inequality and the Holder inequality, we have for k ) 1,

ll"*ll,_,,, s lla-11",,, llr-11,,,,* llr-11",,, ll0*11,,,"

(3.s5) + (lldl ll4p + llotllo-,,")llo'llr,,"+ lldolla,, ll{olln;,".

By Remark 3.1 with p : 8,8/3, we get

(3.86) lldolla., 5t-s/aB, llrbollq,,l s-r/2".

Thus by the assumptions and the estimates (3.85)-(3.86), we obtain (3.84) for k ) 1. In the
case of k:0, it is easy to see (3.84). We omit the detail. Conversely, we assume (3.41) and
we will prove (3.31). By the decomposition 1: D+B+, we have only to show

(3 87) ,'i* I llul i,11",,, : o

-



44 M. IKEDA

We have

(3.ss) llut"llr,,, < llBa| (DQo,,ho)lln,p* remainder,

(8.8e) llBa? (Ddo,,billu,p Slla|llr,/" + lla,e|llr,,".
By the Holder inequality and Remark 3.1 with p : 8,8/3, we obtain

(3.e0) llarqo (Ddo,rbo,)llr-,r" 5 lldollag,, ll/ollag + lldollrr., llrl'olla"",,f t-t62.

Since the remainder terms in (3.88) can be estimated in the same manner as the proof of
(3.90), we obtain

(3 e1) llui,ll,,,,f t-lsz,
from which (3.87) follows.

Next we consider the KG part. By the identity

llf + gll2a^ + ll/ - sll2n^ :2 (llf ll:r" + llsll'"^) ,

we can see that (2.4) with Xz: Hr is equivalent to

f llr* (o@ (il - d" (,)) ll
7r -\' ""/|H1

In the same manner as the proof of the estimate (3.0f ), we can obtain

llui.ll,, s t-'82 
'

which completes the proof of the lemma. n
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4. Slrall DATA Blow-up oF tr2-solurroN FoR THE NoNLINBaR ScuRoorNcnR
EQUATION (NLS) wITHOUT GAUGE INVARIANCE

4.I. Introduction. We study existence of a blow-up solution for the nonlinear Schrddinger
equation (NLS) with non-gauge invariant power nonlinearity

(4.1) i,\tu t Az : ,\ lrlo , (t,r) e [0, ?) xR',

with the initial condition

(4.2) u(O,r):f (*), z€JR',

where T > 0, L < p < 1 + 2fn, u : u (t,z) is a complex-valued unknown function,,\ :
trr *z)z € A\ {0}, Ii € R U :L,2), f : f(r) : h@) +ifz(r) and fi : f1@) e
,L"(R') (i : I,2) are real-valued functions. This chapter is based on a joint work with Yuta
Wakasugi.

It is well known that local well-posedness holds for (4.1) in several Sobolev spaces fI"
(" > 0) (see e.g. [3, 65] and the references therein). However, there had been no results of
global existence of the solution of Q.L)-(a.2). In this paper, we will prove a small data blow
up result for (4.1). More precisely, we will show that if the initial data / in ,L2 satisfies a
certain condition related to its sign, then the L2-norm of the solution u of (a.1)-(4.2) blows
up in finite time, even if the data is sufficiently small (see subsection 4.2). We note that when
p)_p", where p" is the well-known Strauss exponent, which is greater than 1 *2f n, global
existence results are known (see [3]). Thus the following natural questions arises: What
happens in the case of 7+2ln < p < p" ?. This questions was addressed in recent paper [32].

Our result implies that the nonlinear effect of ) lzle is quite different from that of \slu1n- ' ,
()6 e R), since the L2-norrn of solutions for

に3) ta鶴 +△z=λo zlP~1包

conserves for any , € IR. Tsutsumi [65] proved global existence of .L2-solution of (4.3) when
L < p < It4ln. It is also well known that for (4.3), the exponent p:7-t2/n is the threshold
between the short range scattering and the long range one (see [2,67,52, II,18, 17]). We
also mention that when p > 1 + 4f n, blow-np of l{l-solution of (4.3) is proved by Glassey

[15] (see also [51]). However, their results require that the data are large as contrast with our
result.

Back to our problem (4.1), in the short range critical case (n,p) : (2,2), Shimomura

[57] and Shimomura-Tsutsumi [58] studied the asymptotic behavior of solutions of (4.1).
Especially, Shimomura-Tsutsumi [58] proved nonexistence of the vrave operator for (4.1).
On the other hand, Hayashi-Naumkin [21] considered the final state problem for NLS with
the quadratic nonline arity trtu2 * uu2 -t \lul2 , which includes the term \lul' , in two space
dimension. They proved existence of the global solution which behaves unlike the free one in
L2. We note that their result requires that p,,u f 0 and is not applicable to (4.1).

From these results, some people might think that the non-gauge invariant nonlinearity
)lzlewith 1.<p<7+2lnmayactasalongrangeeffectsuchas.\6lzle-l2. However,our
result gives a negative conclusion to such an expectation.

4.2. Main Result. We first recall the well-known fact about local existence of the solution
in L2 for the integral equation

(4.4)

associated with (4.1)-(4.2), where U(t) : exp(iiA) is the evolution group of the free Schrddinger
operator.

Proposition4.L (Tsutsumi 165]). LetT<p<1-t4fn,)e C\{0} and f eL2. Thenthere
eristaposi,tiueti,meT:?"llfllL)>0andaun'iquesoluti,onu€C(lO,f) ;f2)nf;Q,f;LE)
ofthei,ntegralequat'ion(l.l),wherer,paredefinedbyp:plland2fr:nl2-nlp.

ft
u (r) : u (t) f - n^ 

Jo 
u (t - s)lule ds
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IVe call the solution tt in the above prOposition ``Z2_solution". Let rtt be the maxilnal

existence tilne of local Z2_solution,that is,

ηγ2 ≡ Sup{T∈ (0,∞];there exists the unique solution z to(4.4)
such that υ∈θ([0,T);五

2)∩ L[(0,T;Zl)},

、vhere r,ρ  are as in the above proposition. To state our result,、 ve put the fol10、 ving assumption
On the data:

につ 蹟 ∈珈 り 為
ス2H→

山 >『 ∝ 跳 ∈メ畷 為
スπ
以 →山 <性

Our main result is the following:

Theorem 4。 2.Zθι l<p≦ 1+2ル ,入 ∈Cヽ {0}αηαノ∈Z2.1/ιんθづηづιづαιごαια∫sαιjββθS
″.り ,ιんθη ηγ2鶴鶴Sι bcルづιθ.νθttθυθらυθんαυθ

(4.6)           
ιミ _。 IZ(ι )|IL2二

十∞ .

We note that、 re put no restriction on the size of the data. In order to prOve Theoreln 4.2,

in the next section,、 ve introduce a、 ″eak solution Of(4.1)― (4.2)and the result of nonexistence
of a g10bal、 veak solution.

4.3. Reduction of the integral equation to a weak form. To prove TheOrem 4.2,we
deine a weak solution of(4.1)― (4.2).

Deflnition 4.1.五θι T>0.I夕 :θ mcaη zづs α υcαたSθιZιづθηげ ⅣιSク .ゴリーク・〃 οη 10,T)ゲ 包
bθ Jθηgs tθ Lttc(p,T)× Rη )αηα Sαιづ朝 CS

ノ[,T)× Rη Z(―
づaψ +△ψ)α

"α
t

(4.7)             = づ
スη
ノ(")ψ (0,″ )dχ +λ

4,T)× Rれ
|し IP ψdχαι

メθЪ;∫七じιttg`J!:[t。先』:]iβ」
`:ゲ

:;:7ク .Z;F>0 6α
η bC θんοscη αs αην ρθSjιづυθ ηttmbθら鶴づs

ofl〕[hlll:l■_1:an 
ι2_solution as in Proposition 4.l is always aヽ veak solutiOn in the sense

見1:|:」F¥1脇 tttιttλザイ脱観」[魔∫:ツg離満;:Ъ等ぅ.γ
ttαれθηク・イノθη p,η ,流 cη包

逸耳tよ重ittll駆彙穐濯邪1糧蔵ギ智習晰
・
weak sdu■on brい卜

“
o就h■e

condition(4.5).

Proposition 4。 4.ιθι l<p≦ 1+2/η ,入 cCヽ {0}αηα ιθι∫sαιづ功 α.″・f/サんθtt θ
"づ

StS α
θJθ bαι υθαたsθJzιづθη鶴げ″.ゴリー″.〃 ,ιんθη Z=0.

Combining Proposition 4.3 and 4.4,we obtain Theoreln 4.2. Indeed,let∫ ∈ Z2satiSiフ

(4.5)and u be the Z2_s。lution Of(4.4).SuppOSe that rm=∞ .By Proposition 4.3,z is
also a global、 veak solutiOn Of(4.1)― (4.2)in the Sense of Deinition 4.1. Thus,、 ve can apply

PropositiOn 4.4 and have z=0.However,by nOting tt c θ(10,aD);Z2(Rれ )),it COntradicts
ノ≠ 0.Therefore,祀 htte[耽 <∞ .

Next,we prove(4.6).First we suppose

i呪鳴|IZ(ι)IL2<∞ .
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Then there exist a sequence{ι ん}ん∈N(=[0,rm)and a pOSitive constallt Aイ >O such that

脇遺ιん=Ъ
Sup‖ lt(ιた)|IL2≦ 几f.
ん∈N

By (4.9) and Proposition 4.1, there exists a positive constant f @) such'that we can con-
struct a solution

u e c([tp,t* + T(M)); L\ . LT(tn,tu + r(M)); L*)

of @.Q for all k e N. However, by (4.8), when k is sufficiently large, the inequality l;, f
T (M) > 7l- holds and it contradicts the definition of T,n. Therefore, we obtain

E;lt,ll, (i)ll L2 : @1

which completes the proof of Theorem 4.2.
At the end of this subsection, we mention the strategy of the proof of Proposition 4.4.

We apply a test-function method used by Zhang 172, 73) to NLS (a.1). By using some
test-functions and space-time sets cleverly, he obtained some blow-up results for nonlinear
parabolic equations (see [72]). By the same method, he also proved a blow-up result for the
nonlinear damped wave equation:

I ur, - L,u I ut : lrl?, (t, r) e IR x Rn,

I ,(0, r) : uo(r),u1(0,r) : rt(r), r € IR',

where | <p < 1+ 2fn, u: u(t,r) is a real-valued unknown function, u6(r) and u1(r) are
compactly supported given functions (see [73]). However, since this method needs a positivity
of the nonlinear term lule, it can not be applicable to NLS (4.1) directly, because solutions
for NLS are generally complex-valued and the constant ,\ in front of the nonlinearity is a
complex number. To overcome these difficulties, we make a little modification to this method
by introducing an appropriate positive function (see (4.12)) related to A lzle.

For the nonlinear heat equation and the damped wave equation with the same type non-
linearity as lule, it is well known that the exponent p: l+2f n, which is often referred to as

the "Fujita exponent", is the threshold between the small data global existence and blow-up
of solutions (see [47, 7, 63] and the references therein).

4.4. Proof of non-existence for non-trivial global weak solution. In this subsection,
we give a proof of Proposition 4.4.

Proof. First we introduce two cut-off functions q : q(t) € Cff([0, oo)) and 6 : Q@) e
Cf (R") such that 0 1n,O < 1,

Furthermore, it is possible to take @ satisfying the inequality

“
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with some constant C independent of r. Let R > 0 be large parameter. Using the above
cut-off functions, we also put three cut-off functions dependent on ,R :

for r € IR',

) x IR'.

Let Bp : {r e 1R'; l"l < ;i} be a ball at the origin. We also define the time-space set

Qn=l0,R1x Bn. We note that Qp includes the support of {p. Denote q=pl(p - 1) e
fl+nlZ,oo). We consider the case )r > 0 and )1 [ fra" ( 0 only, since the othercases can
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be treated almost in the same way (see Remark 4.1). In this case, we may assume fz e Lr
and /p. f2(r)dr < 0 by the assumption (4.5). We define a positive function of ,B by

解.12)

(4.13)

(4.14)

(4.15)

where

16 : Re 
lo_^r*rfq*d,rdt.

ヽヽ石e note that ψЪ∈66(10,R2+1)× Rり。Since z is a global weak solution Of(4.1)(see
Deinition 4.1),we Can use the idelltity(4.7)with r=R2+l and ha、 ′e

L=兎
Rん
040山 +9兎

Rい
mOψ

『

物 翻

* 
Io^(Reu) 

A,(t1tq^) arat.

By the assumption onん ,the■ rst term of the rigllt hand side of(4.13)is negative for
sumcielltly large R>0.In hct,by/2∈ Zl and Lebesgue's convergence theorem,there exists

Rl>O such that for any R>Rl,

兎Rん 040山 <0
Thus,we have for R>Rl,

√R < gJ`R(Im Z)ψ 71(aψ R)α″dt十
ノlR(Re鶴

)△ (ψ l)d"αι

κ
 ノ:RIZlψ711の (ψ R)ld"ご

ι+/RI包 ||△ (ψl)|ご″αι
≡ Jl,R tt J2,R・

First we will estimate Jtn. By a simple calculation, we get

0t l,aft.d : #6o@) @tn) (#)
By noting 1trt(t):0 if t e [0,112] and the Holder inequality, we obtain

1fR"fr\n 5 # J*,,r1"^l"l,bT'a"ot
ヽ

、

‐

′

／

ご
”
ｄ

Ｒ

√
ん
だ
／

′

ｉ

‐

＼

ｐヽ

、

‐

′

／

αχα
９
Ｒ
ψＰ鶴ム

勧

２

　

　

一

ｒ

ｒ

・
一〃
　渤知

＜
Ｎ
　
　
”
一

fR' r
Ir,n = Ru 

J n, p I 
" ^^l"l' 

rqrdrdt'

We note that n +2-2q /-0, since 1 < p < I+21n. Next we consider Jz,n.By a direct
computation, we have

L (*n*) : fio o - r),tnn(L) oh-2 @ lvof (;)
+fionkft) on;' (,) (^d) (;)

Using this and (4.10), in the same manner as above, we obtain

rz, n s # (1,- | 
" 

*r 
" ^, "t 

ute $q^d, r dt)''' (1,* I u 
^r" ^, "0, 

0,)" 
n

(4.16) 壁場夕R(η
+229)/9,



ASYMPTOTIC ANALYSE FOR NONLINEAR DISPERSIVE WAVE EQUATIONS 49

where we put
lR' f

I2,p:Re | | Xlulel-,q^drdt.
JO J Bp\Bp1z

By combining (4.1a)-(4.16), we have

(4.17) rnS (riQ+ I;!fl) p(n+2-2u)to, '

for R > Rr. Since it is clear that li,n 3 la(j : I,2), we obtain

(4.1S) Ip ! p"+z-2n < c,

with some constant C independent of R, since n l2 - 2q < 0. Here we note that only in the
critical casep:1+2fn,the identity nl2-2q:0 holds. By (4.18) and letting R--+ -|oo,
we have

n" / ),lule dtd,r < n,
J[0,oo)xR"

that is, u € Lp ([0, oo) x R") . Noting this and the integral region of 1,4 arrd 12,p, we have

(4.19) ,IT_ Ii,R:O, for j :1,2.

Therefore by the inequality (4.17) and (4.19), we get

"IT; 
IR: O,

which implies u:0. This completes the proof. n

4.5. Appendix. In this subsection, we give a proof of Proposition 4.3. The main difficulty
of the proof lies in the fact that if p is close to 1, then the nonlinear term lule does not have
twice differentiability with respect to space variables. To avoid differentiating twice, we use

appropriate changing variables and differentiate with regard to time variable (see (4.27)). As
the result, we can derive an f/2-estimate (see also [3]).

We first recall the well-known Strichartz estimates for the SchrOdinger equation (see [68]).
Let ( z<4<2nl(n-2) \fn>.3 ,

{ 
.2"<pj(oo 

if n:2 and ":?-ltU:l'2).
| 21o, .-oo if n:l rj 2 Pj'"
\ 

-,J -
Then the following estimates hold:

Lemma 4.5. For anu t'ime i,nterual I. the est'imates

llu (t) f ll LT, e ;Lt, ) S ll f ll r,,
ll rt ll(4.20) ll / u(t- s)r'dsll S llFll ,
ll Jo ll ri1 1r;rlt1 r'i2 g;r|,21

are true, where rL : rzl(rz - 7) and pi : p2l b2 - 1).

Now we give a proof of Proposition 4.3. Denote the nonlinear term by f' (z) : I lzlp and
the time interval by 1 : [0, ?) for simplicity.
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Pηげ Let r>0,ρ =p+1,2/r =η/2-η /ρ ,ψ ∈C3(10,T)× R・ )and let tt be an Z2_
solution of(4.4)on 10,T)・ It iS easy to see that u∈ Zttc([0,T)× Rπ )・ ヽヽ石e decompose tt into
鶴=包1+Z2,Where包 1≡ び(ι )ノ iS the homogeneous part and

吻≡現ズ
t“ →・ 0お

is the inhomogeneous one. The homogeneous part鶴 l can be treated easily. In fact, by a
standard density argument,we can obtain the identity

/×理ηげ砂+△0翻 =づスルズ→傾Qれ
Thus,it sufnces to pr。 、Ve

解.21)
ノLRη
し2(~をそ%ψ 十△ψ)αχごι=/×

Rπ F(Z)ψ
α
"α
ι

、vhich must be dealt with somewhat carefully becausё of involving the non― smooth nonlin―

earity lz P. rヽe split the left― hand― side of(4.21)as

―づノ|× Rη
包2《%ψ )ご

"dι
―トリ1× Rπ Z2△ψ
歯朔ι

(4.2の ≡ Kl+κ 2・

Hereafter we use the notation LttZ3≡ Zサ (∬ ;ιl)fOr Simplicity.
CF(I× Rπ )iS dense in L『 Zg,there exists a sequence{zん }λ∈N⊂ CF

Since 包 ∈ z:zg and

(4.23)

)(∬
×Rη )Such that

lttL櫻
ん一酬駆 =°

ヽヽ石e also introduce an approximate fllnctiOn sequence{包 2,た }ん∈N tO the inhomogeneous part
鶴2,｀VhOse component is given by

唸た≡巧ズ
t呻―弧哺ふ

Let α≡暑(1+奇 ―p)>0・ By the Strichartz estimate(4.20)and the Hё lder inequality with

ナ
=:+齢 計 andヵ =)十 も|+α ,We can estilnate

‖Z2~鶴 2,た ||げ La S I‖ 鶴IP~|したlp五
:′
L`′

κ‖(IZ悔
1+|IZん

1悔
1:

(4.24)                    )|IZ―

した|IL`|IL[′

κ Tα
(1包
|1岬:£
+|1鶴ん

η :`)1鶴
― 鶴た|IL:L£ ・

By(4.23),(4.24),noting Z2,た (0,・ )=O and integration by parts,we have

κl=巧鳳/×Ⅳ吃バめのα″洸
解.2o :鳳 j/×

RC鶴エンαZ洗・
By the almOst same argument as in(4.24),、 ve ind that鶴 2,た ∈θ(I;∬

1)and there exists a

time derintive aZ2,た ∈σ(f;∬
1)Such that the identity

●.2o とし2,た =づ△鶴2,た ~jF(鶴た)
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is valid. From this identity, we can show that Luz,t e C (I;L2).In fact, changing variables

witht-s:s',wehave

01u2,n(t) - _.iLt [' u6'1r1uk)(t - st)dsl
Jo 

ft(4.27) :-iu(t)F("r)(0) -o Jou(s)0t@(uk))(t-s)ds.
Applying the Strichartz estimate @.20) to (4.27), we have

(4.28) ll\tuz,n (t)ll* 5 ll"r (0)llor"o + llAt @ (un))ll 
r,, ro, 

.

By the same way as in (4.24), we also have

(4.2e) lla, (F' (uk))ll1,, 
Lo, STo ll"rllTLsll\tukllr;re

and the right-hand-side is finite due to up € CtrQ x R'). Therefore by combining (4.28)-
(4.29), we obtain

ll\tuz,x (t)ll r, { llunllorr rzp 
t To ll"rllTLg ll\ppll 

". "o 
< x

for any k e N, from which we can see 01u2,1" e C (I;.L2). Thus by the equation (4.26) again,
we also find u2,1" e C (I;H2) for any k e N. Therefore we have the identity

(4.30) (Luz,r",{) rZ (uz,*, Lr!) r? .

rhusbvcombiningth:T'ii^^';,1_i'1,::::r''T,J,',|,"*\

lc*oo \-/fxR' /.IxR" /

(4.31) :l F@)Qdrd,t-K2.
/rxR"

In fact, by the same way as in (4.24), we obtain
lr I

I t _ @ @r) - r (")) {aratls r' (ll"rllfiLs+ tt"ll[Ls) llur - ullrrrsll$llr;r*
IJIxR' I

and lf
I I _ (r",n - u2) A,l;drdtl STllu2;r - u2llrTrTll\r/llrr ;.lJrtm' I

Therefore, combining (4.22) and (4.31), we obtain (4.7). This completes the proof. n
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5. Lrpnspam oF soLUTIoNS FoR NLS wrrHour GAUGE INVARIANCE

5.1. fntroduction. In this chapter, we continue to study the initial value problem for NLS:

(5.1) iAlu-f Au: )lrlo, (t,r) e [0,T) xR',

with the initial condition

(5.2) u(O,r;:ef(r), r€JR',

whereT)0,I<p<l-t2fn,trisacomplex-valuedunknownfunctionof.(t,r),)eC,/is
a given complex-valued function, r > 0 is a small parameter.

In the previous chapter, a blow-up solution for (5.1)-(5.2) was constructed in the case of
1 < p 1 7*2ln under a suitable initial data. But since a contradiction argument to construct
a blow-up solution was used, the mechanism of the blow-up solution (e.g.estimate of the
lifespan, blow-up speed etc.) was not understandable. In this chapter, by the modification
of the method, we will prove an upper bound of the lifespan in the case 1 < p < | + 2ln.
This result was extended to the wider case 1 < p < | * Aln in the recent paper [32]. (For
more information of blow-up results of NLS, see e.g. [15], [51], [50], [54] and the references
therein.)

5.2. Known Results and Main Result. Our concern in this chapter is the estimate of
the lifespan. The lower bound of the lifespan follows from Proposition 4.1 immediately.

Corollary 5.1. Under the same assumpt'ions as'in Proposi,ti.on 1.1 and e > 0. the estzmate
i's ual'id 

T, >- cerr, ,

where a : nl4 - tl (p - l) and C : C (n,p,llfllr") i,s a posi,t'iue constant.

The next interest is an upper bound of the lifespan.

Remark 5.1. In 134], in order to proae T" 1 @, a contrad'icti,on argument based on papers

172), l73l was used. Therefore, an upper bound of the li,fespan was not obtai,ned.

Next, we state our main result in this chapter, which gives an upper bound of the lifespan.
Then the following is valid;

Theorem 5.2. LetT<p<1-t2fn, )e C\{0} ond f e L2. If f sati,sfi,es (4.5), thenthere
erist es ) 0 and posi,ti,ue constant C : C (p, )) such that

T, :: CeI/"

for any € € (0, e6) where n: nf 2 - tl @ - t) .

Remark 5.2. There is a gap between the lower bound (see Corollary 5.1) and the upper
bound i,n L2-framework, that i,s K> a. Recently, this result was ertended i,n[32].

Finally, we mention the strategy of the proof of Theorem 5.2. We will use a test-function
method based on papers [46], [61]. In [46], [61], upper bounds of lifespan for some parabolic
equations were obtained. However, their arguement does not be applicable to the present
NLS directly. Since solutions for NLS are complex-valued, the constant ) in front of the
nonlinearity is a complex number and especially, the appropriate function spaces for NLS
differs from that of those parabolic equations. To overcome these difficulties, we will consider
the real part or imaginary part for the equation and reconsider the problem under the suitable
function spaces tr2 to NLS, so that we can use the local existence theorem.



ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVEヽ VAVE EQUAT10NS        53

5.3.  Integral inequalities by appropriate test… functions. In this subsection,we pre―
pare some integral inequalities.  Before doing so, 、ve introduce the non_negative smooth

fllnction φ aS f011ows,which was constructed in the papers 161,19]:

φ(")=φ (|"|),φ (0)=1,0<φ (")≦ l fOr lχ l>0,
where φ(|″ |)iS deCreasing ofl″ land φ(|"|)→ O aS lχ l→ ∞ Suflicielltly fast.Moreover,there
exists μ>O such that

(5.3)                 |△φ≦μφ, ″∈Rη ,

and llφ llLl‐ 1.This can be done by letting φ(γ)=C~rν for r≫ l with ν∈ (0,1l and
extending φ tO[0,OO)by a Sm。。th approxilnation. Let θ be sufuciently large and

州 =物 0={[刊 ηL I饉 7L電
where O≦ S<T.Furthermore,set ηR(ι)=η (ι/R2),φR(")=φ (″/R)and ψR(t,χ)=
ηR(ι)φR(")fOr R>0.
First,we reduce the integral equation(4.4)into the weak fOrm.

Lemma 5.3.Zθιtt bc aη  Z2_soJttι jθηげ″.リーβ.〃 θη p,鍵 ).動θη tt sαιづjcs

4,質)M¨獅 +Щ爛脚
国   =く

れ胴 佑
Q→ 山 十人

兎,ぃ 理
的 脚 ,

ルr aην T,R>OυづιんTR2<■ .

This lemma can be proved in the same manner as the proof of Proposition 3.l in[341 and

PropositiOn 4.3.

Next,we will lead a integral inequality. Hereatter we only consider the case of入 1>O fOr
simplicity.The other cases can be treated in the almOst same w可 (see Remark 5.3).
ヽヽ石e introduce some functiOns:

島0=4,TR21xM山脚
'

JR = ε
J(2~∫

2(χ )φ (χ/R)α"

and

Цη=幌,記伽側ηぽ回嗣→■
Щη=幌。」刺州→■

固  ■0=頃θ7⑫ lll ttT‐仏30=(占
)珈
・

ヽヽ石e have the f01lowing:

Lemma 5。 4.五θιu bθ αη Z2_sθιttιづθηげ

`J.リ

ーβ・〃οη 10,■ )・ 動θη ιんθれθ9zαιづινんθιαs

(5.6)    ハノЪ (r)+ぬ ≦ RS{助 (r)1/PA(r)十 μ転 (r)1/PB(T)}

力r αην O<T αηごR>Oυ づιんTR2<鍵 ,ttlん Ctt s=-2+(2+η )/9.
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Pηげ Since tt is an L2_solutiOn on 10,■ )and TR2<■ ,by Lemma 5.3,we have

税 ,TR21xP山
脚 ‐ ε

スπ
バ→佑 C→ 山

田    =4,TR21x辟 中 銀 の +Щ 爛 脚 ・

Note that入 1>0,by taking real part as the above identity,、 ve obtain

橘0+ぬ =4,質〕ⅣЦ訓の十べり翻
≦
4,TR21x辟

回 ]銀州 ■ Al州 脚

(5.8)            ≡ κl+Ki
Vヽe note that(aη )(t)=o eXCept on(0,T).By using the identity

aψR(t,")=R~2φR(")(Qη )(ι/R2)

and the Hё lder inequality,、ve can get

xl=R-24,TRり
×Rη
降lηyp10→ ←/R句 lη五

1/Pφ
Rα
"ご
ι

≦

『

%o功
幌 :2)MЮ

粥 的 げ
剌
妬
→

珈

(5.9)   =IR(T)1/PA(T)RS,
where we have used the changing variables with ι/R2=ι

′and″/R=χ
′t00btain the last

identity Next,by the identity△ (ψ (χ/R))=R~2(△φ)(″ /R),the Hё lder inequality and the
estimate(5.3),we haVe

xl=R-24,TR2)×
Rη tt 
η←/Rり |(△のし/⊃ lα

"α
ι

≦ μR-2J4,TR2)×
Rπ
lZl ψRαχごι

≦  μR-2√R(T)1/P(|ぃ
,TR2)× Rη

 
ψRα
"ご
ι

)1/9

(5.10)      =μ IR(T)1/PB(T)RS,

where Ⅵ  hⅣe used theぬanging nriables again.By combining the estimates(5.8)― (5.10),
we have the conclusiOn.                                                       □

Relnark 5。 3.I夕「θ
“
mαtt ιんθ θιんθr cascs αびθπηιルリ鶴λl>0.Л9rθ″αηριθ,υんcη λ2>0,

うν ιαたれgιんθづπαθれαη ρarサ αS β・り,αη θSιjmαιc sづ鶴づιαr ιθ″.の cαη bθ θbιαれθα.

Nextぃve give the upper bOund of Ji.Let σ>O and O<ω <1.We introduce the function
 `                                         ω     l

(5.11)     Ψ (σ ,ω )≡ m錯 (σχ
ω~")=(1-ω

)ω
l ωσl ω・

We denote

D(T)=ス (T)十 μB(T),

fOr silnplicity. The following estilnates are、 ralid:

Lemma 5.5。 五θιtt bθ αη Z2_sθιttιづθηげβ.リー″・夕θη Ю,■ )・ 7hCη ιんθ θθιjttαιθ

(5.12)                JR≦ λlΨ (D(T)RS/入 1,1/P)
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んθιαsルr aην T>0,R>OυづιんTR2<■ ,υんθtt S=-2+(2+2)/9・ χοttθυθちゲη=∞ ,

ιんαιづszづsα クιθわαi sθιzιづθη, ιんθη ιんθ tη c9鶴αJづινづs υαあごr

(5.13)             lim sup R~S9JR≦ (μ /入 1)1/(P~1).
R→∞

The proof ofthis lemma was based on that of Theorem 3.3 in i461 and Theorem 2.2 in[611.

P"ρ二 Sinceじ is an Z2_s。lution On[0,鍵 ),by uSing(5.6)with S=0,We obtain

」R≦ RSD(T)JR(T)1/p_λ lIR(r)≦ 入lΨ (D(r)RS/入 1,1/p),

which is exactly(5.12).

Next,Ⅵ will proК (5.13)under the assumption鍵 =∞ .By(5.11)and(5.12),祀 hNe
JR ≦ 入lΨ (D(T)RS/入 1,1/P)

= 入1(1-1/p)(1/p)ギ 4号 {D(T)Rs/λl}島
(5.14)          = θlRS9D(T)9,

for any r>0,2>o,where θl=λ「
1/(P~1)(P_1)(1/P)9.ThiS inequality implies

はり    ,魁pR→9ぬ≦Q{昌 DO}9・
Next,we will estimate D(T).Set

θ
%=   ,け

赫
・

Remembering the identities(5.5),we can rewrite D(T)as

(5.16)            D(T)=α PT 1/P tt bpT1/9.

Since

猥BD(T)=p(p-1)~1/9α:/9げ
P

団    =

(5.18)            lim ml:D(T)=μ 1/Pρし-1)~1/9.

Finally,by combining(5.15)― (5.18),we obtain(5.13),whiCh COmpletes the pr00f Ofthe lemma.
□

5.4. Upper bound Oflifespan. In this subsection,Ц re give a proof of Theorem 5.2,which

ilnplies an upper bound of the lifespan for the 10cal L2_solution. ヽヽ石e also consider the case

of λl >O Only. The other cases can be treated in the allnOst same manner. 11″ hen λl >0,
we mw assume thatん Satisies

んこスηん0山 <0
Pηθ9′ First,we note that by Corollary 5,1,there exists εO>O such thatつ覺 >To fOr any
ε∈(0,εo),Where TO is deined later.Moreover,since l<p<1+2ル and/Satisies(4.5),
by Theorem 4.2,we also■ nd η <∞ .

Next,we consider the lower bOund of JR.By∫ 2∈ Zl and Lebesgue's convergence theorenl,
there exists RO>O such that for any R>RO,ぬ ≧島 .Set Ъ =αp年 lR3.On the other

hand,let τ∈(T。 ,鍵 )and R>RO.By using(5.12)with T=γ R 2,we have

(5.19)         ε≦CJlθl{R3D(τR 2)}9≡ (b∬ (7,R),
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where Cz: C;LQ. By (5.16), we can rewrite 11 as

(5.20) H (r,R): {D (rR-')R"}n : {oor-r/onar a6orr/aR-"'}

where at : n/Q, a2 : 2 - nlq.We solve the equation apr-|/p Rot : brrT/qp-oz and we put

R, : {a;1brr}'/' .

Note that R, ) Ro, by substituting.R" into -R of the inequality (5.20), we obtain

(5.21) e 1C2H (r,R"): CBr*

where n: nl2 - l/ (p - 1) and Cs: Ce(0,p) > 0 is constant dependent only on 0,p. From
the assumption n <21 @ - 1), we obtain rc ( 0. Therefore, by (5.21), we can get

, < Cer/^

for any r € (Ts,Q) , with some C > 0. Finally, we can get Tu ! Cer/", which completes the
oroof of the theorenr. n
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