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Abstract

Quark-Gluon Plasma (QGP) is a matter expected to exist in the early universe. Relativistic heavy ion
collision is only experimental approach to create the QGP on the earth. Recent heavy ion experimental
data are known to be reproduced by relativistic hydrodynamic models with low viscosity. This fact
provided a new aspect of matter, i.e. strongly coupled or correlated QGP for us. However the
hydrodynamic models depend on several inputs, such as equation of state and transport coefficients.
It is highly desirable to determine these inputs by microscopic theory. In this thesis, we focus on
Israel-Stewart (IS) theory and the ratios of viscosity to corresponding relaxation time. IS theory is a
causal dissipative hydrodynamics which is frequently used by the hydrodynamic models. The ratios
are related to canonical correlations of energy-momentum tensor by an application of relaxation-
time approximation to Kubo formulas. We measure the canonical correlations with SU(3) lattice
gauge simulation for the temperature range reached by RHIC and LHC. We show that two kinds of
subtraction (vacuum and contact terms subtractions) are required for the correlations on the lattice to
obtain the ratios. From the analyses, the transport coefficients are constrained by the first principle.
Then we also analyze characteristic speed of transverse and sound modes with the ratios. We find that
the sound mode can be superluminal from our lattice measurements. This means that an application
of the IS theory to the hot QCD matter requires some modification to keep the causality.
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Chapter 1

Introduction

Standard Model

Standard model is a theoretical framework to describe elementary particles and three fundamental
interactions among them, i.e. strong, electromagnetic, and weak interactions. Quarks and leptons
are the smallest elements constructing our world in the standard model (Fig. 1.1). The quarks are
divided into three generations and carry internal degrees of freedom called flavor and color. There
are six flavors (up (u), down (d), charm (c), strange (s), top (t), and bottom (b)) and three colors
(red (R), green (G), and blue (B)), and the anti-quarks carry anti-colors (R, G, and B). The quarks
are affected by the strong interaction because of the color charge. The leptons are also classified into
three generations i.e. electron (e), muon (u), tau (7), and neutrinos (ve, vu, and v,). The leptons
do not feel the strong interaction because they are colorless. The strong interaction is described by
an exchange of elementary particle called gluon (g). Particles which mediate interactions are called
gauge particles. The gluon is one of the gauge particles. In the standard model, photons () and weak
bosons (W, Z) are also known as the gauge particles which mediate the electromagnetic and weak
interactions, respectively. Since the gluons also carry the color charge, they interact not only with
quarks but also themselves (self-interaction). This is an inherent property of the gluons. Because of
the self-interaction, quark-gluon systems show various non-trivial aspects as discussed in the following.
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Figure 1.1: Standard model.



Asymptotic Freedom

The first principle that governs the strong interaction is Quantum Chromodynamics (QCD). QCD
is described by SU(3) gauge field theory. One of the most important features of QCD is asymptotic
freedom [1, 2]. According to a perturbative calculation of renormalization group equation

dg

"igg = B(9), (1.1)
QCD coupling a5 in the leading order behaves as
2
g 1
s | — ; 1'2
o A= In(k?/Ad0p) (1.2)
il 2
bg = 11-=-N :
o= g (17 57). o

where g, k, and Ny are the running coupling constant, the renormalization scale, and the number of
flavors, respectively. 3(g) is called the beta function. Agcp is called QCD scale parameter which is
determined by experiments, Agcp ~ 200 MeV. In the case of Ny < 16, the running coupling constant
becomes small as increasing the renormalization scale k. Since the high (low) energy scale corresponds
to the short (long) distance scale, the running coupling constant g between two color charges becomes
small (large) in the short (long) distance,

high xk < short distance scale < small g, (1.4)
low k < long distance scale < large g. (1.5)

This property is called the asymptotic freedom. Note that the above argument is based on perturbation
theory. The behavior of the running coupling constant in the low energy scale has to be investigated
by non-perturbative approaches because of the large coupling.
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Figure 1.2: Asymptotic freedom of QCD coupling a; from Ref. [3].



Confinement of Color

Although the quarks and the gluons are regarded as elementary particles in the standard model,
no one has ever observed single quark or gluon as an isolated state. There are only several indirect
evidences for their existences in experiments. Because of the asymptotic freedom, they are always
confined inside particles called hadrons. The hadrons are classified into two kinds, baryons and mesons.
In constituent quark model, the baryons are composed of three quarks with different colors among them.
On the other hand, the mesons consist of a quark and an anti-quark having opposite colors. Thus the
baryons and mesons are always white, i.e. color singlet states (Fig. 1.3). Only white particles can be
observed in experiments. If one attempts to isolate single quark or gluon from hadrons, infinite energy
is required. This is a phenomenological interpretation of confinement of color.

Quark

Baryon Meson

Anti-quark

Figure 1.3: Baryons and mesons in the constituent quark model.
Deconfinement Phase Transition

The quarks and the gluons are expected to be released from hadrons in extremely high temperature
and/or baryon density conditions. In such situations, a large number of hadrons overlap each other
and the hadronic matter makes a transition to the quark-gluon one (Fig. 1.4). The quarks and the
gluons can exist as isolated state in the matter. This phenomenon is called deconfinement phase
transition. There are two natural and one artificial candidates where such a deconfined matter is
realized. The candidates in nature are early universe and compact stars. The artificial situation is
heavy ion collisions. In the early universe and the relativistic heavy ion collision, high temperature

‘(i\ @G)@@ e "o «% ° ...o‘.. .
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Figure 1.4: An example of deconfinement phase transition.



and low baryon density state is realized. The deconfined matter under such a condition is called
Quark-Gluon Plasma (QGP) because of an analogy with the ionized plasma. The electrons and nuclei
that form the atoms are ionized in the plasma. Similarly the quarks and the gluons that constitute
hadrons are separated in the QGP. On the other hand, the deconfined matter at low temperature and
high baryon density is expected to be realized inside the compact stars. Another deconfined matter
called color superconductor is expected to exist there [4, 5]. This matter is an analogy with the electric
superconductor. In the case of the electric superconductor, the electrons near the Fermi surface form
Cooper pairs and show macroscopic collective mode. Since the dense quark matter has the Fermi
surface, the quarks also form the Cooper pairs near the Fermi surface at sufficiently low temperature.

QCD Phase Diagram

The matters described by QCD show various aspects depending on temperature and baryon density
as discussed above. They are drawn in a T-up plane called QCD phase diagram as in Fig. 1.5a. In
Fig. 1.5a, the vertical axis denotes the temperature I and the horizontal one is the baryon chemical
potential pp. The solid phase transition line represents the first order transition. There are expected
to exist two critical end points at both ends of the transition line [6, 7]. The deconfined phase transition
at high 7" and low up is expected to be crossover. The transition temperature 7, on high temperature
side is about T, ~ 160 MeV, according to the first principle calculation, i.e. lattice QCD simulation.
The relativistic heavy ion collisions at RHIC (LHC) reach about T ~ 2T (5T;). The transition baryon
chemical potential on the low temperature side is expected to take place at ug. = 1 — 1.2 GeV, which
is almost the same value that realized at the core of neutron stars. Fig. 1.5b shows another sketch of
QCD phase diagram with three light flavors, i.e. up, down, and strange quarks. The bare masses of
up and down quarks are treated as the same value m, = my and strange quark is little heavier than
them mgs > my 4. As shown in the figure, the deconfined phase transition is believed to be crossover
for the case of two light and one heavy flavors Ny = 2 + 1.
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Figure 1.5: a): An illustration of QCD phase diagram in 7-up plane. There are expected to exist three
main phases that are hadrons, quark-gluon plasma, and color superconductor ones. b): QCD phase
diagram with three light quarks [8]. The deconfinement phase transition is believed to be crossover.



Relativistic Heavy Ion Collision

The relativistic heavy ion collision is only practical approach to create QGP on the earth. The basic
concept is'to collide two heavy nuclei accelerated to almost light speed and produce high temperature
and density situation called a fireball. The quarks and the gluons are then deconfined inside the
fireball in which QGP is realized. The critical energy density is about €, ~ 0.5 Gev/fm?® which is
corresponding to 7, ~ 160 MeV. In the relativistic heavy ion collisions at RHIC (LHC), the energy
density reaches € ~ 5 GeV/fm?® (15 GeV/fm?). It is thus expected that QGP can be created in the
present heavy ion experiments. Space-time evolution of the relativistic heavy ion collisions based on
Bjorken picture [9] is shown below:

Figure 1.6: Cartoon of a relativistic heavy ion collisions.

1. Accelerate heavy nuclei such as °7Au (2%8Pb) up to /s = 200 (5600) xA GeV at RHIC,
Relativistic Heavy Ion Collider (LHC, Large Hadron Collider), where /s represents the colliding
energy at the center of mass frame of two nuclei. Each nucleus is compressed because of Lorentz
contraction. The nuclei are composed of valence quarks with high momentum which carry the net
baryon number, and gluons and sea quarks (quark and anti-quark pairs) with low momentum.
They are also called fast and slow partons, respectively. Thus the accelerated nuclei have some
thickness.

2. Collide the heavy nuclei with each other. While the fast partons pass through the other nu-
cleus, the slow ones form the fireball with high temperature and low baryon density. Since this
stage is in non-equilibrium state and the farthest away from observation in heavy ion collisions,
theoretical prediction is quite difficult.

3. The system reaches the local thermodynamical equilibrium. The quarks and the gluons are
deconfined in this stage and QGP is created. The space-time evolution of QGP produced at RHIC
and LHC is known to be well described by relativistic hydrodynamic models. The temperature
decreases with the expansion of the system.

4. The quarks and the gluons are confined inside the hadrons again with decreasing temperature
and the number of each species is frozen (chemical freeze-out). The hadrons repeat the inelastic
collisions among of them and exchange their momenta with each other. The system then reaches
the kinetic equilibrium and the hadrons no longer interact (kinetic freeze-out). At last, the
hadrons are observed by detectors.
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Figure 1.7: Space-time evolution of relativistic heavy ion collisions from Ref. [10].

This is a brief current of the relativistic heavy ion collisions. One of the highlights at RHIC is
a success of ideal hydrodynamic descriptions for the space-time evolution of QGP created by heavy
ion collisions [11, 12, 13, 14, 15]. Furthermore LHC also supports the hydrodynamic picture of QGP
[16, 17]. This novel feature revealed that the QGP is a strongly coupled and/or correlated system,
which is one of the most significant subjects over broad areas in physics.

Purpose

Although the success of relativistic hydrodynamic models at RHIC provided a new aspect of
hot QCD matter for us, the hydrodynamic simulation depends on various input parameters, such
as the equation of state and the transport coefficients, and contains ambiguity. Recently, for more
quantitative argument the importance of dissipative effects in the hydrodynamic models has been
recognized [18, 19, 20, 21|. Thus theoretical comprehension of the transport coefficients is desirable.

The simplest relativistic dissipative hydrodynamics is the first order theory, which in the non-
relativistic limit reduces to Navier-Stokes theory [22, 23]. The first order theory is, however, accompa-
nied with the acausal problem and instability in numerical simulations [24, 25]. One of the strategies
to evade these problems is to extend the theory up to second order with respect to dissipative currents
[26, 27]. In the second order theory, however, there appear new phenomenological parameters as sec-
ond order transport coefficients in addition to the first order ones. These transport coefficients cannot
be determined within the framework of hydrodynamics. Ab initio calculation based on microscopic
theory, i.e. QCD in the case of heavy ion collisions, is required to study and constrain the parameters
in the dissipative hydrodynamic models.

Since the temperature range realized at RHIC and LHC is not within the reach of perturbation
theory due to the asymptotic freedom of QCD, we need to employ some non-perturbative approach
to investigate the transport coefficients of the hot QCD matter. At present, lattice QCD simulation is
the only systematic way to calculate physical quantities in such a non-perturbative situation. There
are several pioneering works which analyzed the transport coefficients by lattice QCD simulations
[28, 29, 30, 31, 32]. These works have used Kubo formulas, which relate the first order transport
coeflicients to a low energy behavior of corresponding spectral functions. In this approach, one needs
to extract the spectral functions from Euclidean correlators measured on the lattice. This step is,



however, non-trivial because of an ill-posed problem [33].

In this thesis, we focus on the ratios of first and second order transport coefficients. In Refs. [34, 35],
it is argued that the ratios are related to static fluctuations of the energy-momentum tensor by
rewriting the classical limit of Kubo formulas with the relaxation time approximation. We modify
their arguments to treat quantum systems and show that the ratios are related to canonical correlations
of the energy-momentum tensor. It enables us to evade the difficulty in analysis of spectral functions
and obtain the ratios directly from lattice QCD simulations. Whereas the ratios themselves are’
not the transport coefficients, analysis of them can constrain free phenomenological parameters of the
dissipative hydrodynamic models. We note that a similar argument has been also given in Ref. [36, 37].

We need to regularize the canonical correlations to extract physical quantities because they are
ultraviolet divergent. We perform the regularization by vacuum subtraction. In addition to this pre-
scription, we argue a contribution from contact terms. This contribution is usually removed solely by
the vacuum subtraction, because the coefficients of contact terms are not dependent on the temper-
ature. However, the coefficients of contact terms in the canonical correlation of energy-momentum
tensor are proportional to the energy-momentum tensor. Therefore the contact terms are dependent
on the temperature and cannot be removed by the vacuum subtraction. Thus we must deal with the
contact terms separately besides the vacuum subtraction.

The structure of this thesis is as follows. In Chapter 2, we review the basics of QCD and the lattice
gauge theory at finite temperature. The lattice gauge theory is that the field theory defined on the
discretized space-time. We introduce the fermion and gauge actions on the lattice, and then discuss the
confinement of quarks and the deconfinement phase transition for pure gauge theory. We also argue
thermodynamics on the lattice in this chapter. In Chapter 3, we discuss the Monte Carlo method for
lattice QCD simulations. What we obtain from the simulations are equilibrium expectation values of
various physical quantities with statistical errors. We see how to obtain the statistical expectation
values from lattice QCD simulations. The relativistic hydrodynamics is argued in Chapter 4. We
present the first and second order dissipative hydrodynamics with a phenomenological derivation by
Israel and Stewart [27]. We show how to introduce the relaxation times of each dissipative current to
hydrodynamics. Also the causality conditions for pure gauge theory are introduced in this chapter. In
Chapter 5, we derive formulas that relate the ratios of transport coefficients to the canonical correlation
of energy-momentum tensor. First we see the classical formulations in Refs. [34, 35] and then derive
the quantum ones. We also discuss how to remove the unphysical divergence and to extract the ratios
‘with physical meaning from the canonical correlations. We formulate a method to observe the ratios
on the lattice and show numerical results in SU(3) lattice gauge theory in Chapter 6. The ratios of
transport coefficients are related to characteristic speeds of plane wave propagating in medium. From
the analyses, we also argue the causality in the second order dissipative hydrodynamics. The last
chapter is devoted to conclusions and outlooks.

Notation

In the present paper, we use the natural unit A=c=kg =1,

h= % = 6.5821 x 1072 GeV -5 = 1, (1.6)

c=29979x 10 m.-s7! =1,
kp =8.6173x 107 GeV - K1 =1,

where h, ¢, and kp are Planck constant, the speed of light, and Boltzmann constant, respectively. In



this unit, one obtains
[energy] = [mass] = [time] " = [length] ™. (1.9)

A useful relation is obtained from these conventions,

he = 197.33 MeV - fm ~ 200 MeV - fm = 1. (1.10)
We adopt the metric tensor in Minkowski space-time as follows
1 0 0 O
0 -1 0 0
0 0 0 -1
The Greek indices denote four-dimensional space-time ; u,v,p,... =0,1,2,3 = t,z,y,2. The Roman
indices denote three spatial components ; i,j,k,... = 1,2,3 or z,y,2z. Arbitrary four-vectors are
represented as
zh = (xo,xl,x?,x:") z, = g’ = (20, —2', —2?, —23). (1.12)
The same indices are summed,
3 I3 3 .
Tyt = Zwﬂy“, Ty = Zziyl. (1.13)
u=0 i=1
The inner product in Minkowski space-time is defined by
T y=guaty =2 —z'y' -2l - 2% =2%0 - 7.7 (1.14)
The metric tensor in Euclidean space is given by
1 000
0100
O = 0010 (1.15)
0 0 01
In this case, the Greek indices denote four-dimensional space ; u,v,p,... = 1,2,3,4 or z,y,2,7. The
inner product in Euclidean space is defined by
Ty = 8y = Toyo + T1y1 + Tay2 + T3ys = Toyo + T - §. (1.16)

In the standard representation, the Dirac matrices in Minkowski space are given by

1 0 . 0 o 0 1
0 __ i 1 _ 0.1 .2 3
7—(0 _1>, 7—(_% 0_>’ v° 17777—(10), (L.17)

where o; are the Pauli matrices,

alz([1)(1)>, 022(?Bi), 03:<(1)_01>. (1.18)

The Dirac matrices satisfy the anti-commutation relation

{7} = 2¢". : (1.19)

In the Euclidean space, the Dirac matrices are defined as follows,

Yu = (Vi 714) = (’Y iy ) {’Y;u’Yu} = _25;w- (1.20)
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Chapter 2

Lattice QCD

In 1974, K. G. Wilson showed the confinement of quarks with the lattice gauge theory in the strong
coupling limit [38]. After that the first numerical simulations of lattice gauge theory were performed
by M. Creutz [39, 40, 41], and the lattice gauge theory has achieved success in many studies, e.g.
critical temperature, static quark potential, hadronic mass spectrum, and equation of state, and so
on [42, 43, 44, 45, 46, 47, 48, 49, 50]. The lattice gauge theory is the only non-perturbative approach
based on the first principle in QCD physics and is applied not only to QCD but also to Quantum
Electodynamics (QED) [51, 52] or supersymmetric theory [53, 54]. The field theory defined on the
lattice has some advantages. Since the space-time is discretized and a momentum cut-off is introduced
to the lattice gauge theory, the divergence that troubles the continuum field theory is naturally removed
on the lattice. Moreover a gauge fixing procedure is not required on the lattice because the number
of degrees of freedom of gauge field is finite. In this chapter, we overview the lattice gauge theory,
especially its application to QCD at finite temperature. We also refer to the phase transition and
thermodynamics in lattice QCD. '

2.1 QCD action in the continuum

Quantum Chromodynamics (QCD) is the first principle to describe dynamics of quarks wé,a(x) and
gluons Au(z) = 35, Al (z)T*, where the index f runs from 1 to Ny, which is the number of flavors.
The spinor index is denoted by a = 1, 2, 3, 4, the color indices for quarks and gluons by a = 1,2, 3 and
i=1,2,..,8, respectively, and Lorentz index p = 1,2, 3,4. T are adjoint representations of the SU(3)
Lie algebra, which are traceless hermitian 3 x 3 matrices. The QCD action in Minkowski space-time
is given by

SQCD = Squark + Sgluon (21)
Ny

Squa.rk = Z/d4$ wé;a(f’?) (i(’)’”)aﬂ(Du(ZB))ab - mfdaﬁ(sab) wg,b(x)’ (22)
f=1

Sgluon = *le'/d4$FZu(x)FuV’i(z)' (2-3)

Here the covariant derivative D, and the field strength tensor F),, are defined by

(Dﬂ(m))ab = 6abau + ig(Au(w))aba (2.4)
Fi (z) = 8,4k (x) — 8, A, (z) — gfijk[ 4l (2), AL(2)), (2.5)

11



where g and fi;x are the coupling constant of strong interaction and the structure constant of SU(3)
Lie algebra, respectively. The commutation relation in Eq. (2.5) causes the self-interaction of gluons,
which is one of the most important features of QCD. Due to the self-interaction of gluons, QCD shows
various non-trivial properties. '

The QCD action Eq. (2.1) has local invariance under the SU(3) gauge transformation,

Y(z) = ¢'(2) = V(@)y(@), ¥(@) - 9'(@)=4@)V(2),
gAu(z) — gA, () = V(2)(94u(z) — i0,)V ' (2).

An element of SU(3) group V(z) is defined as V(z) = e #*®* | where 6%(z) is a transformation
parameter and @ is the fundamental representation of SU(3) Lie algebra. Under the gauge transfor-
mation Egs. (2.6) and (2.7), D,(z) and Fj,, (z) transform covariantly,

D,(z) — D),(z) = V(z)Dy(z)V(x), (2.8)
Fu(z) — F;,w(x) = V(:U)Fu,,(.’l,‘)VT(.’L‘).

In the following, we describe the QCD action simply,

Socp = /d4x Y(z)(iy,D* — m)y(z) — i/d‘ix Fﬁu(z)F“”’i(:v). , (2.10)

2.2 QCD action on the lattice

2.2.1 Fermion action

The basic idea of lattice gauge theory is to define the theory on the discretized space-time. In order
to formulate the lattice QCD, we start from the single flavor free fermion action in the continuum
four-dimensional Euclidean space,

sl = [ e Blo)(n0, + mv ) (2.11)
The partial derivative is replaced by the finite difference on the lattice,

Bub(a) — 5-(b(n+ )~ b(n — ). (2.12)

where a and n are the lattice spacing and the lattice site, £ = na, respectively. n % fi denote the
nearest neighbor sites of n along u-direction. Thus the free fermion action on the lattice is given by

_ _ 4 1) — (n —
S}?t[w’w] - a42,¢}(n) (Z7ﬂ¢(n+M)2au(n ,LL) +m,¢}(n) ] (213)
n p=1
We impose the same gauge transformation as Eq. (2.6) on the lattice fermion field,
¥(n) = ¢'(n) = V(n)y(n), ¥(n) - 9'(n) =gn)Vin). (2.14)
Since 1(n)y(n £ 4) in Eq.(2.13) are not gauge invariant,
Y(n)p(n+ i) — @' ()Y (n£ ) = SV )V (n £ p)gh(n £ ), (2.15)

12



we introduce link variables U, (n) (Fig. 2.1), which play a role of the gauge fields on the lattice and
transform under the gauge transformation as

Un(n) = U (n) = V(n)Up(n)V(n + f). (2.16)
Then the gauge invariant quantity is obtained
V(UL (n+ ) = P()VI )V () Uu(m)Vi(n+ RV (n+ p)ib(n + ) (2.17)
= D)V (n)(n). (2.18)
Thus the gauge invariant fermion action is given by
$r. o "
lat[w w U] 2z (14 Zw Z ,LL ’I’L+ ,u) 2(2“(” ,LL)@[)(TL :LL) + mz/)(n) . (219)

Note that a fermion propagator derived from Eq. (2.19) includes a problem called doubling problem
[55, 56]. The fermion propagator has one physical and 15 unphysical poles. The unphysical poles are
called doublers !. To avoid the doubling problem, several lattice fermions are proposed [57, 58, 59, 60,
61, 62, 63].

U;(n) Plaquette
n / n+ i n+v, o n+ i+v
@@
A
——p— " » A
n / n+p n n+
U,n)
Figure 2.1: Link variables. Figure 2.2: Plaquette.

2.2.2 Gauge action

SU(N.) gauge action ? in the continuum Euclidean space is given by

Bl = / i (2.20)
The corresponding gauge action on the lattice proposed by Wilson [38] is written as
N
828 = - (1 = —ReTr Upw(n )> : (2.21)
n p<lv

n D-dimensional space, 2° — 1 doublers exist.
2Here we argue general case for the number of colors N.. If one sets N. = 3, the gauge theory corresponds to QCD.
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where g is the bare coupling constant. The trace Tr is taken over the color charge indices. Plaquette,
U (n), is defined by the product of the link variables along the smallest square on the lattice in p-v
plane (Fig. 2.2),

Upy(n) = Up(n)Uy(n + @)U} (n + 2)UJ (). (2.22)

Trace of the plaquette is a gauge invariant quantity and one of the fundamental observables in lattice
simulations. Link variables and gauge fields are related to each other by the following relation,

Uy(n) = expligaA,(n)], U;ﬂ(n) = exp[—igad,(n)]. (2.23)

Using this relation, one can easily confirm that the Wilson gauge action Eq. (2.21) reproduces
Eq. (2.20) in the continuum limit a — 0. In the following argument, we exclusively consider the
gauge theory on the lattice and abbreviate the indices “cont” and “lat”.

2.3 Lattice QCD without quarks

2.3.1 Wilson loop and strong coupling expansion

Wilson loop is one of the basic observables in lattice simulations. The Wilson loop on the lattice is
composed of the products of link variables along a closed path C,

v

ieC

W(C)=Tr (path ordered). (2.24)

It is obvious that W(C') is gauge invariant from Eq. (2.16). The smallest Wilson loop corresponds to
the trace of the plaquette. In the following, we consider a rectangular path n, X n, in u-v plane as a
closed path C (for example, Fig. 2.3).

Wilson loop

>l >
< «

A
A

\ 4

-
\ 4
Y

Figure 2.3: Rectangular path.

The vacuum expectation value of some observable O in pure SU(3) gauge theory can be written
with path integral formalism as

4
(0) = %/DUO el = %/H [T dUu(n) 0 g5l (2.25)

n p=1 -

A / DU %6l (2.26)
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Using the Wilson gauge action Eq. (2.21) and Eq. (2.25), the vacuum expectation value of the Wilson
loop becomes '

(W(C)) / DU W(C) [exp Y ) (1-ReTr U,w(n))]] (2.27)
n pu<v
Z, DU W(C) |:exp =Y ) (Tx U (n) + Tx ij(n))]} . (2.28)
n pfv

Here Z' means that the constant terms in Eq. (2.27) are canceled out between numerator and denom-
inator. In the second equality, the following relation has been also used,

S ReTrUun(n) = %(Tr Uu(n) + Tx UJ, (n)). (2.29)
p<v p#v

Now let us consider how to calculate the Wilson loop in Fig. 2.3 for the strong coupling case g > 1.
In this case, the exponential can be expanded in terms of g~ 2. First we focus on the link variables on
the bottom-left corner. The expectation value of the Wilson loop then reduces to

W(C)) = / puw(e) [] 1;[(1 + ;}—Tr Uy () + vl + 0(;—4)). (2.30)
n ptv

The first and second terms vanish by performing the group integration. If one describes W(C) as
W(C) = Tr[Uu(m)VU(n)], (2.31)

a contribution from the third term in Eq. (2.30) is calculated as

= [ a0t () W(O) T )]
=5 [ )V, ) D) VUL THU )+ UL+ U )

= [ ) W)V [ A0 t) el ealUis(n + )V + UL

1

:m'l‘r [VU(n+ 2)Ul(n+ p)]. (2.32)

Thus the factor 1/(g2N,) appears from the third term in Eq. (2.30) for each plaquette in the Wilson
loop. (W(C)) becomes

(W(C)) o (g2Ne) ™™ Tr[1] = Ncexp[-non, In(g>N,)|. (2.33)

We show this procedure in Fig. 2.4 schematically.
(W(C)) with large n, is expected to behave as

(W(C)) x exp[—n,V(ny)] for n,>1, (2.34)

where V(n,) is a potentlal energy between infinitely heavy quark and anti-quark separated by the
distance n, on the lattice. Wilson loop can be interpreted as the energy required for the process that
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a massive quark and an anti-quark pair is generated at £ = 0 with the distance n, and then annihilates
each other at ¢ = n,. Comparing Eq. (2.33) with Eq. (2.34), V(n,) reads

V(ns) = ny In(g%N,). (2.35)
Using dimensional distance r = an,, the static quark potential is rewritten as
1
V(r) = ﬁrln(gch) =or, (2.36)
: 1
o= In(g?N,), (2.37)

where o denotes the string tension of the massive quark and anti-quark pair.

The behavior that (W (C')) is proportional to the area of a rectangular path in Eq. (2.33) is called
area law. When (W(C)) shows the area law, the static potential between quarks becomes linear
potential as in Eq. (2.36). If one attempts to separate the quark and anti-quark, the potential energy
is proportional to their distance and increases infinitely. One thus needs infinite energy to obtain free
quarks. This phenomenon is called confinement of quarks. In the actual case, the separated quark and
anti-quark are divided into new pairs when the potential energy becomes large enough to generate a
quark and an anti-quark.

Y
\ 4
YA
4

y

VY 4

Ya
VA
Ya
Ya

<
YA
YA
YA
Ya
YA

z

YA

>
A
<
A Y
A
<
A 4

Y a4

V A \ 4

n

Figure 2.4: Leading contribution to (IW,) in the strong coupling expansion.

2.3.2 Polyakov loop and phase transition

Polyakov loop is a useful observable to describe the deconfinement phase transition [64] in the lattice
simulation [65, 66, 67, 68, 69, 70]. It is defined by

g |
11 U4(ﬁ,n4)] : (2.38)

=1

N, is the number of lattice sites in the temporal direction. The reason why P(77) is called the Polyakov
loop is that this quantity is constructed by the product of all temporal link variables and forms a closed
loop along the temporal direction with the periodic boundary condition as shown in Fig. 2.5. The
periodic boundary condition is generally imposed on a finite temperature system as will be discussed
in the next section. The expectation value of the Polyakov loop is related to the free energy of an
isolated quark Fj '

(P(7)) o e~ Fa/T, (2.39)
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where T' denotes the temperature. Since the value of the Polyakov loop is independent of its spatial
position, one can rewrite (P (7)) by the spatial average

P= NL;;” ZP(ﬁ), (2.40)

where N, is the number of spatial lattice sites. Eq. (2.39) indicates that the expectation value of the
Polyakov loop can be regarded as an order parameter of a deconfinement phase transition, i.e.

(P) =0« Fy; = co & Confinement, (2.41)
(P) # 0 & F, = finite & Deconfinement. (2.42)

Moreover the spatial correlation function of the Polyakov loops is expected to behave as
(P(m)P!(R)) oc e VT p = a|m -1, (2.43)

where V'(r) denotes the static quark potential as seen in the last subsection. Therefore the correlation
function Eq. (2.43) in the long distance limit vanishes

Lim (P(ri) PY(7)) = (P(m))(PY(7)) = |(P)|* = 0. (2.44)

In this way, the non-abelian SU(N,) gauge theory is expected to show the phase transition at some
critical temperature T, (see also appendix A).

Let us assume the case of N, = 3. The action of SU(3) gauge theory has a Z(3) global symmetry.
Under this symmetry transformation, the Polyakov loop transforms as

P — 2P, z=1,e*m/3 4mi/3 (2.45)

where 2 are the group elements of Z(3). Then (P) is regarded as an order parameter for the Z(3)
global transformation

(P) =0 (low T') & Z(3) symmetry unbroken, (2.46)

(P) # 0 (high T') & Z(3) symmetry broken. (2.47)

The order of the phase transition can be analyzed by three-dimensional effective theory. With

an appropriate gauge transformation, all link variables Uy(7i, n4) can be set to the unit SU(3) matrix
except ng = 1 in Eq. (2.38). The Polyakov loop then becomes

1
P(ii) = 3Tx[Ua(%, 1)) ' (2.48)
Imaginary time Polyakov loop

Figure 2.5: Polyakov loop.
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Integrating out the spatial link variables, an effective SU(3) spin theory in three dimensions which
describes the interactions of U, on the time slice ny = 1 is derived. If one considers the nearest
neighbor interactions for the effective theory, its universality class is the same as that of the three
state Potts model in three dimensions having a first order phase transition. Therefore the phase
transition of SU(3) gauge theory is expected to be the first order.

2.4 Thermodynamics in Lattice QCD

2.4.1 Thermal expectation value in the continuum

According to quantum statistical mechanics, the expectation value of some physical operator O in
thermal equilibrium is given by
1

(0) = —;-Tr 0e#] = - / dn (n|Oe~¥1n), (2.49)

Z= / dn (nle %), (2.50)

where H is Hamiltonian in Euclidean space. Using path integral formalism, the partition function Z
is rewritten as follows :

Z = /Dq o= Jo/ T dtLlgd] /Dq e Sladl (2.51)

/DqE /ﬁd(ha (2.52)
i=1

where L and S are the Lagrangian and the action, respectively. Applying this formulation to QCD
naively, the partition function reads

Z= / DA, DyDp e~ SecnlAub¥], (2.53)
SqcplAu ¥, Y] = Sp[Au, ¥, 9] + SalAul, (2.54)
where the fermion and the gauge actions in Euclidean space are given by
1/T ~
Sp = / dt / Bry(yu Dy +m)yp, (2.55)
0

/T s 1 .

2 2
SG = /0 dt/d :L‘ZFHVFNV' (256)

Anti-periodic and periodic boundary conditions are imposed on the fermion and the gauge fields,
respectively :
W(E,0) = —p(Z,T7Y, P& 0)=—¢FT"), AuF0) =A,(FT). (2.57)
Thus the thermal expectation values in QCD can be written as
DA, DYDY O eSecplAu¥]
0y =  PADYDY O e -,
f DAMDQ/)DQ/] e'—SQCD [A;MPJ/’]
Note that the quantization of QCD accompanies a divergence in the partition function Eq. (2.53)
which arises from the infinite number of degrees of freedom of the gauge fields which are equivalent
to each other. To avoid the divergence, gauge fizing is performed in the continuum theory. On the

other hand, the lattice gauge theory does not require the prescription because of the finite degrees of
freedom of the gauge fields on the lattice.

(2.58)
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2.4.2 Thermal expectation value on the lattice

From Eq. (2.58), the thermal expectation value of some physical quantity O on the lattice is given by

_ [ DUDYD§ 0 e~ 5<U¥d1-SalUl _ [ DU O DetF[U] e~ l]

= = = = . 2.59
() [ DUDYDy e=SrlU¥]l-5cU] [ DU DetF[U] e—5¢ll] (2.59)

where we have performed the Grassmann integral for multiple variables
/ DyDip e ¥ MFIUIM) — Det F[U]. (2.60)

The fermion determinant DetF[U] is taken for all indices of F', which are space-time coordinates,
spinor, color, and flavor. The relations similar to Egs. (2.57) hold on the lattice :

W(@,0) = —(A,Ny),  P(R,0) = —p(A,Ny),  Uu(i,0) = Up(#, Nr). (2.61)

In quench approrimation, the fermion determinant is replaced by unity, DetF'[U] = 1. This corresponds
to an approximation that dynamical quark loops, i.e. vacuum polarizations are neglected. In the case
of pure SU(3) gauge theory, there are no quarks intrinsically and the thermal expectation value
Eq. (2.59) is given by

[ DU O 51V
[ DU e=5clU] '

(0) = (2.62)

The numbers of lattice sites in spatial and temporal directions are related to the spatial volume V
and temperature 1" as follows :

1
a-N;’

V =(a,N,)%, T= (2.63)
Here a, and a, are the lattice spacings of spatial and temporal directions, respectively. As seen in
Eq. (2.63), we must prepare the large number of N, to simulate the thermodynamical limit and N,
for the vacuum, respectively.

2.4.3 QCD thermodynamics on the lattice

Before discussing the thermodynamics on the lattice, let us recall several thermodynamic relations in
the continuum space-time. The fundamental quantity in equilibrium thermodynamics is the partition
function or the free energy density

T
f=-5mZ(TV). (2.64)

Basic thermodynamic quantities can be derived from the partition function. In the thermodynamic
limit, the pressure can be directly obtained from the free energy density, P = — f. Using this relation,
one obtains other quantities such as the energy density € or the entropy density s

6—3P_T3 P

i = Targa (2.65)
s 1 gP
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In the high temperature limit (Stefan-Boltzmann (SB) limit), the thermodynamic quantities approach
those of the ideal gas of free quarks and gluons due to the asymptotic freedom, ¢ = 3P (see appendix A).
The deviations of thermodynamic quantities from the SB limit have been studied by perturbative
method in the high temperature region. On the other hand, lattice QCD simulations have been used
as one of the non-perturbative methods in the low temperature region, where temperature is less than
several times Agcp.

The direct calculation of the partition function is, however, impossible on the lattice. Instead, the
expectation value of the action is measured in the lattice simulations 3. The free energy density is
related to this expectation value as follows,

[ / rT N4/ﬁT dp' S (2.67)
T4 = T 0y ‘
T Bo Bo

where B and (g denote the inverse couplings, 8 = 2N./g?, at finite and zero temperatures, respec-
tively. So means a difference between the actions at finite and zero temperatures, So = St — ST=0.
The lattice simulation at zero temperature is approximated by a symmetric lattice with N, = N,. If
one adopts the action given by Eq. (2.21), St can be written as

1 o |
St = N3N E -—ReTr E Ui;(n 52 Uis(n)|, for ,7=1,2,3. (2.68)
z<3 i ’

We have shown the contributions of the space-space and space-time plaquettes separately because the
extents of lattice along spatial and temporal directions are different at finite temperature.
From Eq. (2.67), ¢ — 3P on the lattice is obtained from

=3P _ _gnapdB g

o e (2.69)

As is clear from Eq.(2.63), the inverse coupling, i.e. the lattice spacing varies with the temperature
for fixed N,,
dg

-2
Blg)=T% = _oN. Y

T da_’ (2.70)

where we have introduced the beta function B(g). Using this beta function, Eq. (2.69) is rewritten as

- 3P

T4 = —3N*B(g)S. (2.71)

The energy density e/7** is then obtained by adding the pressure 3p/T* = —3f/T* to this equation.

2.4.4 Determination of scale

In order to express the thermodynamic quantities measured on the lattice in physical units, one must
know the relation between the lattice spacing @ and the inverse coupling § by comparing a quantity
measured on the lattice and the corresponding quantity which is measured experimentally at T' = 0.
The string tension o is often used as such a quantity. The string tension is evaluated by measuring
the static quark potential between infinitely heavy quarks (see subsection 2.3.1).

3The approach introduced here is called standard integral method.
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To set the lattice spacing, we adopt the string tension on the lattice a\/o parametrized for the
interval of inverse coupling 5.6 < 8 < 6.5 as follows [71]
ava = f(g%)(1 +0.27314° — 0.015454* + 0.019754°)/0.01364, (2.72)
f(g*)

a(g) = 2B =60) (2.73)

where f(g?) is the two-loop order scaling function of SU(3) gauge theory

b
2y ST 1
56 = tog) B exp (~ g5 ) (274)
with renormalization-scheme-independent factors by and b
11 102
by = —, by = —. 2.
S " Gy - em

Thus the lattice spacing can be set for a given inverse coupling from Eq. (2.72) with /o at T = 0,
which is known experimentally.

In addition, let us determine the temperature scale T'/T. for a given temporal extent N,. Using
the string tension, 7'/T, is written as

T Tyo 1 o
T. o T. ayoN,T,’
where we have used Eq. (2.63) in the second equality. Once the critical coupling 8. for the deconfine-
ment phase transition is known, the string tension at . is determined from Eq. (2.72) for fixed N;.

Then the ratio T./\/o and the temperature scale T/T, can be determined. The critical coupling is,
for instance, obtained from the analysis of the location of peak in the Polyakov loop susceptibility

xp = N2((P?) — (P)?). (2.77)

(2.76)

Furthermore, the critical couplings which are measured on several temporal extents is extrapolated to
infinite volume limit using the following ansatz

N,

Be(Nr, Ny) = Be(Ny,00) — h (]—v;)s : (2.78)

where h is a parameter, h < 0.1. This ansatz is appropriate for the first order phase transition of
SU(3) gauge theory.

summary

e We outlined the lattice formulation of quantum chromodynamics (QCD), the confinement of
quarks, the phase transition, and the thermodynamics in SU(3) gauge theory.

e In lattice QCD, the quarks and the gluons correspond to the lattice sites and the link variables,
respectively.

e The confinement of quarks is explained by using the strong coupling expansion and the Wilson
loop, which is one of the basic lattice observables and shows the area law leading the linear
potential between quarks.
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e The SU(3) gauge theory shows the first order deconfinement phase transition and the Polyakov
loop is used as an order parameter of it.

o The thermodynamic quantities are obtained by the integration of gauge action.
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Chapter 3

Lattice Simulation

While QCD is admitted to be a fundamental theory of strong interaction, an analysis of QCD at the
energy scale ~ Agcp with analytic or perturbative methods is quite difficult because of the large
. coupling constant. There are many subjects which need non-perturbative comprehension based on
QCD such as hadron structure, nuclear force, QCD phase diagram, and hot/dense QCD matter. Nu-
merical simulation is the most powerful approach for such a non-perturbative QCD physics. Due to
the improvement of computer performance, recently lattice simulations have been performing more
realistic situations compared to those of the early days. In lattice simulations, one first prepares a set
of gauge configurations generated by Monte Carlo methods. Then some observable (for example, cor-
relation function, plaquette, Polyakov loop, etc.) is repeatedly measured on each gauge configuration
and enormous amount of data are collected. At last one obtains an expectation value of an observable
with statistical error from the lattice data. In this sense, lattice simulation may be regarded as an
experiment. In this chapter, we introduce basic concept of Monte Carlo method and several algorithms
used in our lattice simulations.

3.1 Monte Carlo method

An expectation value computed on a set of gauge configurations is in principle given by Eqgs. (2.59) or
(2.62). However the analysis requires a large number of integrations and vast amounts of computer
time, so that to perform the multiple integrations naively is not practical. Some efficient method is
required for sampling data. In this section, we introduce how to generate the gauge configurations
that is first step in lattice QCD simulations and overview some useful algorithms that are used in this

- thesis.

3.1.1 Importance sampling

An expectation value of some function f(z) with a density function p(z) is given by

_ J2def(2)p(a)
(f)==% - (3.1)
[, dzp(2)
In the Monte Carlo simulation, this expectation value is approximated as
1 N
(f) = Jim izzlf(aci), a<xz;<b (3.2)
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Here N denotes the number of sample data. z; is chosen randomly with the normalized distribution
density

P(z) = @)= 3.3
(z) 1P dap(a) (3.3)

Eq. (2.62) takes the same form as Eq. (3.1) and an expectation value of some observable O in the
lattice simulation may be obtained from

N—oo

1 N
(0) = lim N;O[Ui]’ (3.4)

where U; are the gauge configurations generated randomly with the probability distribution density
called Gibbs-measure

e—SclUlpy

U= Tovesomr

(3.5)
Following the weight e~5¢ U1 the gauge configurations having a large contribution to the integral in
Eq. (2.62) are mainly taken into the summation in Eq. (3.4). This is called the importance sampling.
The number of gauge configurations is finite in the actual numerical simulations and the statistical
error is proportional to 1/ v/N. The error estimates will be discussed in section 3.2.

3.1.2 Markov process

What we do first in lattice simulations is to generate gauge configurations following the probability
distribution Eq. (3.5). The gauge configurations are generated stochastically starting from an initial
gauge configuration Uy,

Up—-U - Uz —---. (3.6)

The new configuration U’ = U,, depends only on the last configuration U = U,_1 in Markov process.
Thus the probability P[U’] that a gauge configuration U’ is realized is written as

PV} = PUIT(U - U"), (3.7)
Ue—SG[U]
PlU] = m, (3.8)

where T'(U — U’) represents a transition probability that U’ is adopted after U. T(U — U’) satisfies
the following conditions :

Yrw U =1, (3.9)
UI

0<TWU-U)<1. (3.10)

An operation to obtain a new configuration is called update. When the configurations in Eq. (3.6) are
updated under the Markov process, the sequence of the configurations is called Markov chain. If one
performs enough number of updates, the gauge configurations are expected to reach an equilibrium
state. The probability distribution in the equilibrium state satisfies the balance equation

Y P[UIT(U - U') =Y Po[U'T(U - U). (3.11)
U U
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Thus Peq is a fixed point of the Markov process. A sufficient condition about T(U — U’) for the
equilibrium state is the detailed balance condition :

Poo[UIT(U — U') = P UITU’ — U). (3.12)

3.1.3 Heat bath algorithm

In conventional algorithms of lattice QCD simulations, a single link variable U,(n) is renewed by new
one UL(n) in each update. To update all link variables on lattice once is called sweep. Heat bath
algorithm is one of the algorithms for the update of gauge configuration and satisfies the detailed
balance condition Eq. (3.12). In the following, we outline the algorithm with the case of SU(2) gauge
theory with Wilson gauge action [39, 40]. The case of SU(3) gauge theory can be constructed from
the SU(2) case as will be seen later. '

In the heat bath algorithm, the candidate link variable U = Uj,(n) is updated to satisfy the
probability distribution

dP(U) x e~%¢lVgu, ' (3.13)

Using the Wilson gauge action given by Eq. (2.21), the probability distribution is written as
2
dP(U) x exp (?Re 'IT[UV]) au. (3.14)

In the case of four dimensional space, V' denotes the sum of staples V; (Fig. 3.1),

V=> V=Y (Un+pUn+2)U(n) + Ul (n+ a — 9)U}(n — D)U, (n —D)). (3.15)

6
i=1 pH# v

There are six staples for single link variables which is updated. dU is the Haar measure of the gauge
group. We introduce the representation

UE’U,OI-FZG:(?, ‘/E’UOI-F’L’I_L‘&', (316)

A

Figure 3.1: Staple.
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where I and & are 2 x 2 unit matrix and Pauli matrices, respectively. The exponential in Eq. (3.14)
is then rewritten as

Re Tr [UV] = Re Tr [(uol + ¢t - &) (vel + i - 7))
= Tr.[ugvp — - U]
= kTr [UW). (3.17)

Here we introduced an SU(2) matrix W defined as follows
V=kW, k=+/det[V]. | (3.18)

One thus obtains the probability distribution
dP(U) o exp (%m [UW]) du. (3.19)
If we define a SU(2) matrix X = UW, we may rewrite the probability distribution as
dP(X) o exp <§2§k’1‘r [X]) dx. (3.20)

Generating X with this probability distribution, one obtains a candidate link variable U),(n)
U(n)=U=XW (3.21)
Introducing the representation of X
X=xol+iz-6, detX]=x3+|Z*=1, z=(r9,) € R, (3.22)

the problem is replaced by a question of how to choose a point on the four dimensional spherical
surface. Then the Haar measure can be written as

]. —|
dX = ;r—2—d4a:6(x§ + 2% = 1)

_ % d|||Z? deost d¢ dzo % (5 <|f| - M> o ('f' - m))
(1 - 23)6(1 — 3

2/1— .rg

1 / 2
= Wdcosﬁ d¢ dxo /1 — x§. (3.23)

In the last line, we omitted the step function because of |z9| < 1. The probability distribution dP(X)
then reduces to

= lz dcosf d¢ dzg
7r

dP(X) = il—dCOSQ do dzg /1 — 22 P, (3.24)

2

where we used Tr[X] = 2zo.
We summarize the procedure to obtain z = (zq, ¥) below :
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1. Generate a uniform random number y € [0, 1].

2. Compute zg from

2

_ 9 o 4k B 4k
o = In(Ay + B), A = 2sinh (g_2) , B =exp ( g_2> . (3.25)

3. Generate a uniform random number z € [0,1]. Accept zg by the following condition :

z<4/1—-2% — accept (3.26)

z>4/1-2% — reject — Returntostep. 1. (3.27)

4. Generate uniform random numbers ¢ € [0,27] and cosf € [—1,1].

5. Compute Z.

r1 = y/1 — x} cosd, r2 = /1 — z sinfcos, z3 = 4/1 — z3 sinfsing. (3.28)

6. Obtain X"V = xol +1i%- 7.

- /
Once X" is determined, the new link variable is obtained from the relation U*™(n) = U™¥ =
X"ewit Thus an update of a link variable is performed in the heat bath algorithm. Repeating this
procedure for each link variable, a sweep is completed one time and a new gauge configuration is
obtained.

The naive application of the above algorithm to SU(N) gauge theory seems to be difficult. In
actual lattice QCD simulations, a method proposed in Ref. [72] called pseudo heat bath algorithm is
usually used. Here we focus on the SU(3) gauge theory in which a link variable is represented by 3 x 3
unitary matrix. First, some SU(3) matrix is divided into three SU(2) subgroups, for example

a b 0 100 a 0 b
Ui=[ cdol), ta=|0ab], U=[010]. (3.29)
001 0 cd c 0 d

A subgroup U; is then randomly chosen and the same procedure for SU(2) gauge theory is applied to
that. Performing the same way to the other two SU(2) subgroups, an update for SU(3) gauge theory
is accomplished. This method is applied to general SU(N) gauge theory.

3.1.4 Overrelaxation

Overrelazation method [73, T4, 75] is often used in combination with (pseudo) heat bath algorithm in
lattice QCD simulation. The basic idea of this method is to pick out a new link variable which locates
as far as possible from old value in a configuration space. To obtain more accurate expectation value
based on Eq. (3.4) from a finite number of data, one needs to collect samples from a wide region in
the configuration space. In other words, the ergodicity must be satisfied. However it can happen in
lattice simulation with an updating algorithm that many samples are chosen from narrow range in the
configuration space. In this case, one cannot expect to get reliable result. The overrelaxation method
is valid for this problem.

In the overrelaxation method, an update for a link variable is performed by following transformation

Urew = yyoldyt, (3.30)
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where V' is a sum of staples given by Eq. (3.15). Then the action is invariant under this update
Srew — gold - Assuming the case of SU(2) gauge theory, the gauge action (2.21) reads

S&™ = —BReTY[U™"V] = —BReTr[VUMVIV] = —BReTY[UV] = Sg°, (3.31)

and the detailed balance is satisfied. Here we used a fact that V is unitary, i.e. V=1 = V1 in the third
equality. The cyclicity of trace is used in forth equality. Thus the new link variable is always adopted
and changes the location dramatically in the configuration space.

We note that the overrelaxation method itself is not ergodic because the update procedure is held
on specific regions in the configuration space where the gauge action is constant. Thus the gauge
configurations generated by this method become the micro canonical ensemble. In order to realize
a set of the gauge configurations corresponding to canonical ensemble which is distributed with the
weight eS¢, one needs the other updating algorithm such as the heat bath one.

3.2 Error estimate

After generating gauge configurations and sampling data, one evaluates an expectation value of some
physical quantity with statistical error. Error analyses must be performed carefully when the data
have correlation. In the following, we see how to estimate the statistical error for uncorrelated and
correlated sample data, respectively.

3.2.1 Autocorrelation

In the lattice QCD simulation, sample data are desirable to be uncorrelated for an accurate analysis.
A correlation between the sample data measured in the different gauge configurations is called auto-
correlation. The autocorrelation for sample data in i-th and (¢ + t)-th gauge configurations is given
by

Alt) = 57— Z 0;0; 44 — . (3.32)

Autocorrelation time 7 is evaluated from the autocorrelation function normalized by A(0),

% ~e T (3.33)

If one estimates the sample data at every T sweep, the data are almost uncorrelated. The autocorre-
lation provides an indication of the number of sweeps to obtain uncorrelated data.

3.2.2 Jackknife method

An average and a statistical error of some observable O approximated by N uncorrelated sample data
are respectively given by

N
_%; (3.34)
_ J{(0—-(0)s _ [(0% —(0)
50_\/ N-1 ‘\/ N-1 (3:35)
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where in the second equality in Eq. (3.35) we have used the fact that the data are uncorrelated,
ie. (0;0;) = (0;)(0;) = (O)2. If the sample data have correlation, the statistical error cannot be
correctly estimated by Eq. (3.35). In such a case, we should use other methods which can evaluate
the statistical error for correlated data.

Jackknife method is one of such methods. This method is valid even if the sample data are
correlated. The procedure is as follows. First, N data are divided into N, = N/n groups where n is
called bin-size. Then the average for (N — n) sample data where i-th group is removed is computed,

(0); = ﬁ > Ok (3.36)
k

This average is regarded as a new sample. Using the new sample data, the average of some physical
quantity f(O) and its statistical error are evaluated by

Np

(£(0)) = = D £((0), (3.37)
n =1

5(7(0)) = /(N = DFXO0)) = (FO)17). (3.38)

The bin-size should be sufficiently large compared with the autocorrelation time.

summary

e Lattice QCD simulation can be divided into three main steps : a generation of gauge configura-
tions, a measurement of lattice observables, and a data analysis.

e The first step is carried out with the Monte Carlo method which provides the gauge configurations
based on some stochastic distribution.

e In the heat bath algorithm a link variable is updated with the weight e~5¢,

e Overrelaxation method is often combined with the heat bath algorithm to collect sample data
from wider range in the configuration space.

o In the last step one has to estimate the statistical error and pay attention to the correlation
between the data observed on different configurations.

e Autocorrelation gives a guide of the number of sweeps which cuts off the correlation of gauge
configurations.
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Chapter 4

Relativistic Hydrodynamics

In this chapter, we give a brief review of the relativistic hydrodynamics from a phenomenological
view point. The quark-gluon plasma is expected to be almost ideal fluid because of the success of
ideal hydrodynamic simulations for the space-time evolution of a hot quark-gluon matter produced in
relativistic heavy ion collisions [12]. For more realistic and quantitative simulations of the matter, the
hydrodynamic model on the basis of the relativistic dissipative hydrodynamics is required. First order
theory (relativistic Navier-Stokes theory) is the simplest dissipative hydrodynamics which includes
dissipative terms up to the first order. The first order theory, however, is known to violate causality
and dissipations can propagate with an infinite speed. This is an undesirable feature for a description of
relativistic fluids. This acausal problem can be avoided by taking into account higher order dissipative
effects into the hydrodynamics. In the following, we introduce one of the second order theories,
proposed by Israel and Stewart, on the basis of Refs. [27, 76, 77]. In the second order theory, new
transport coeflicients, i.e. relaxation times for dissipations are naturally introduced. We see the second
order hydrodynamic equations can be causal due to the relaxation times.

4.1 Basics of relativistic hydrodynamics

4.1.1 Conservation laws

Hydrodynamics is a theory which describes time evolution of a macroscopic fluid element without
knowledge of the microscopic components of the fluid. The basic equations of relativistic hydrody-
namics are two local conservation laws of the energy-momentum tensor T#¥ and the net charge currents
N} such as electric charge, baryon number, and strangeness,

8,T™ = 0, (4.1)
OuNE=0, (i=1,..,7). (4.2)

Here the type of the net charge density is denoted by an index i. T# and N¥ can be decomposed by
using an arbitrary, time-like, normalized four vector u#, u,u* = 1, as follows,

TH = €equ'u’ — (Pog + II)AM + WHYY + WYk 4 7, (4.3)
N# =nut + VH. (4.4)

A* is the projector onto the three-dimensional space orthogonal to u# defined by

AP = gh — by, u AP =0, APEAY = APV, Ak =3, (4.5)
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where the metric tensor is defined by g** = diag(+, —, —, —).
In the local rest frame (LRF) of a fluid defined by u* = (1,0,0,0), each quantity is given by

€eq = U T""u,, (the energy density) (4.6)
n =u,N*, (the net charge density) (4.7)
1
Pg+1l= _gAuVTW’ (the pressure) (4.8)
WH =4, TP Af,  (the energy flow) : (4.9)
V¥ = AENY, (the net charge flow) (4.10)
P,
gt =W+ — eeq—'_Tqu“, (the heat flow) (4.11)
T = T (the stress tensor) (4.12)

where the angular bracket means the symmetrized spatial and traceless part of the tensor,
1 1
AW = 5(B5AF + AAT) — §A‘“’Apa] APe. (4.13)

The dissipative currents are constrained by the orthogonality relations
u, V¥ =0, u,WH =0, uugh =0, u,m = 0. (4.14)

Although the conservation laws Egs. (4.1) and (4.2) include 10 + 4r unknown variables (T*" is a
symmetric tensor of rank 2 and then has 10 independent components, and N/ have 4 components for
each type of the charge i), there are only 4 + r equations. Thus, the hydrodynamic equation system
does not close and some additional conditions are required to solve hydrodynamic problems.

One of the prescriptions is an ideal fluid approximation in which the dissipative terms in Eqgs. (4.3)
and (4.4) are neglected and the number of unknown variables reduces to 5+r. Therefore one can solve
the hydrodynamic equations with an equation of state ¢ = ¢(p,n), which includes information about
the microscopic properties of the fluid. Another approach is to derive 5 + 3r equations for dissipative
terms in addition to the conservation laws from the second law of thermodynamics

us? >0, st = sequt + dsH, (4.15)

where s, s¢q and ds” are the generalized entropy current, the entropy density in equilibrium, and
the entropy flux, respectively. The equations for dissipative terms are obtained from the expansion of
s* with respect to small deviations from the local thermodynamic equilibrium. Then the dissipative
hydrodynamics can be classified by an order of the expansion of the entropy flux ds* as will be
discussed in Sec. 4.2. In the following, we consider a single type of the net charge density i.e. ¢ =1
for simplicity.

4.1.2 Eckart and Landau frames

Although the four velocity u* is arbitrary in general cases, two choices called Eckart and Landau
frames are often used. In Eckart frame, u* is defined by

M (4.16)

VN, N#

(i

u
Ugp
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In this frame, u* is regarded as the LRF of the net charge flow, i.e. V¥ = 0. Eckart frame is also
called particle frame. On the other hand, u* is identified to be the energy flow in Landau frame,

THuY
V ug Tg Ty “z

Landau frame is called energy frame. There u# is the LRF of the energy flow W#, i.e. W* =0 and

(4.17)

u
uy,

4.1.3 Ideal fluid approximation

The ideal fluid approzimation is one of the prescriptions to close the hydrodynamic equation system.
Since the dissipative currents are neglected in this approximation, the energy-momentum tensor and
the net charge current can be written as
TH = eequfu’ — Peg A", NH = nu*, (4.18)

In the ideal fluid approximation, the Eckart and Landau frames are equivalent to each other, u’}f; = u’z,
because V, = 0, W, =0, Il = 0, and #** = 0. The number of the unknown variables then reduce
from fourteen to six (i.e. €, P, n, and u* with u? = 1), and the hydrodynamic equation system with
an equation of state is closed. The ideal hydrodynamic equations thus can be solved uniquely under
a given initial condition. »

Let us see that the entropy production rate vanishes for an ideal fluid. From Eq. (4.1) and (4.18),
one obtains a relation

U0 T" = Deeq + (€eq + Peq)Vyut =0, (4.19)

where D = u,0* and V# = AMQ, are the convective time derivative and the gradient operator,
respectively. Using the first law of thermodynamics

Tdseq = deeq — pdn, | (4.20)
and a thermodynamical relation, '
€eq + Poq = T'Seq + pn, (4.21)
Eq. (4.19) reduces to
T(D‘seq + 8eqVuut) + p(Dn + nV ut) = Tausqur =0, (4.22)

where we used Eq. (4.2) in the first equality. Thus the entropy current does not increase in an ideal
fluid,

B, = 0. (4.23)

In the above argument, we assume that the system has no discontinuity like a shock wave. If the
system has such discontinuities, the entropy production rate has a positive value even in an ideal fluid.
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4.2 Relativistic dissipative hydrodynamics

Although the ideal fluid approximation is a convenient approach, one cannot apply it to systems where
the dissipative effects are significant. The dissipative hydrodynamics should be used for such a case.
As noted already, the dissipative hydrodynamics is closed by equations for the dissipative currents in
addition to Egs. (4.1) and (4.2). We derive these equations with a phenomenological way on the basis
of the second law of thermodynamics. Before discussing the dissipative hydrodynamics, we summarize
the phenomenological procedure in the following :

s p

1. Determine the form of §s* as a function of the dissipative currents :

dst = dsH(V*#, ¢#, 7, I0). (4.24)
For the definition of the entropy current, the dissipative currents are sufficiently small.
2. Substitute the entropy current to the second law of thermodynamics : J,s* > 0.

3. Divide the divergence of the entropy current into the dissipative currents and the conjugate
thermodynamic forces :

d,s" = (Dissipative currents) x (Thermodynamic forces). (4.25)

4. Tmpose linearity between the dissipative currents and the thermodynamic forces :

(Dissipative currents) = (Transport coefficients) x (Thermodynamic forces). (4.26)

Then the equations for dissipative currents Eq. (4.26) are obtained.
N\ J

In what follows, we discuss the relativistic dissipative hydrodynamics following this procedure. We
see that the form of §s* determines whether the dissipative hydrodynamics can be causal theory or
not in this procedure. In this and next sections, the components of vector and tensor are denoted by
@ =0,1,2,3 and that of partial derivative by u =t,z,v, z.

.

4.2.1 First order theory

First order theory, which is the relativistic Navier-Stokes theory, was proposed independently by Eckart
and Landau-Lifshitz [22, 23]. We adopt the Eckart frame here. In the first order theory, the entropy
current in the Eckart frame is determined by the tensors u*, ¢#, II, and 7#” and the orthogonality
relations Eq. (4.14),

q#
S” — Sequ'u + T- (4.27)

Substituting this form to the second law of thermodynamics Eq. (4.15), one obtains the following
expression,

To,s* = —1IV ,u* + ¢*(V, T 1 + Duy) + 7V u, > 0. (4.28)
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Imposing linearity between the dissipative currents and the thermodynamic forces, one obtains the
relations for dissipative currents,

I = —CV,ub, (4.29)
"

¢ = kT (V—TZ - Du“) , (4.30)

T — o). (4.31)

Here the proportional coefficients {, x, and 1 correspond to the bulk viscosity, the heat conductiv-
ity, and the shear viscosity, respectively. We call them the first order transport coefficients. From
Egs. (4.29)-(4.31), the second law of thermodynamics is given by

12 quq” T

i >0. 4.32
(T KT? T — ( )

b
Oyst =

We note here that g,g* < 0 because of the orthogonality relation u,¢* = 0 in the LRF. Therefore the
first order transport coefficients must be non-negative to satisfy Eq. (4.32). The transport coefficients
are free parameters in hydrodynamic simulations. They cannot be determined within the framework
of hydrodynamics but by a microscopic theory.

The first order theory is known to violate causality due to the parabolic equation of motion for
dissipations [24, 25]. Therefore its application for the relativistic phenomena (for instance, high energy
heavy ion collisions or baryonic fluid inside compact stars) contains a principle problem.

e A
e An example : Heat conduction in the first order theory
Let us consider a heat conduction described by the first order theory. From Eq. (4.1), the
energy conservation law in Eckart frame is given by

OHTY = BT + 96T = Byecq + 204" = Breeq — 20i¢° = 0. (4.33)

Here we used the orthogonality relation d,¢* = 0 in the third equality. The heat current is
given by Eq. (4.30), i.e.

¢' = kV'T = kO'T, (Fourier’s law). (4.34)

Therefore Eq. (4.33) reduces to

[

. o o
T = K&;oT, K=2L o=«

v sy (4.35)

O

where we introduced the thermal diffusion coefficient K and the specific heat cy. Eq. (4.35)
is exactly the diffusion equation which is known to have an acausal propagation of heat
conduction.

N J

4.2.2 Second order theory

To evade the acausal problem of the first order theory, Israel and Stewart proposed to use the entropy
current extended up to second order in dissipative currents [27]. Due to this prescription, the equations
of motion for dissipations become hyperbolic and the propagation of the dissipations can be causal
with appropriate choices of parameters.
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Here we adopt the following entropy current

uH

T (4.36)

st = Sequp' + q? - (ﬂl’[n ,BqQVq + Brmpam” )

where 34 (A = II, g, 7) are thermodynamic coefficients. 34 take nonnegative values because the non-
equilibrium entropy density s = u,s* is smaller than the equilibrium one, i.e. s < s¢q. Performing the
phenomenological procedure described in the previous subsection, the second law of thermodynamics
becomes

19,00 1o+ it + b, ()]

. .1 B
— “[V“lnT—uu—ﬂqqu 2q,LTB <TI? ”)]
v 1 Br o
+ 7 oy — Brfru + 5T T0, . (4.37)
2 T
where A = dA/dt and the shear tensor o, is defined by
1 1
O = 5AZAZ(8,0UU + Oyutp) — gAm,Bpu”. (4.38)

Then the evolution equations for the dissipative currents or Israel-Stewart (IS) equations are obtained
from the linearity between the dissipative currents and the thermodynamic forces,

. 1 1 Bru*
— K —

II= - [H+caﬂu + 2HCT8M( T )] , (4.39)
. 1 1 Bqu

B _ _ I3 [ ) g

g Tq [q k(VHT — T4H) + 54 kT“0, ( T >], (4'40)

P
A _Tl [WW — oo + 7Mn T, (ﬂ ’;f )} . | (4.41)

The relaxation times 74 are the second order transport coefficients and related with the thermodynamic
coefficients 84 as follows,
Tr

L ﬂr:_

_m '
ﬂﬂ— 3 ﬁq T’ 277

¢
The second order theory can be causal due to 74. If one takes the limit 74 — 0, one can easily confirm
that IS equations (4.39)-(4.41) reduce to the first order relations Eqs. (4.29)-(4.31), respectively.
IS equations become simple form in the case of a uniform medium,

(4.42)

A=—1ta (4.43)
TA

From this equation, the dissipative currents are shown to decay exponentially with time,
A(t) = A(0)e™™4, (4.44)

We use this equation in the next chapter.

We close this subsection with three remarks : First, the entropy current Eq. (4.36) is not the most
general form in the second order theory. One can add the mixed terms such as I[Ig* and ¢, 7* or other
second order terms to Eq. (4.36) [27, 78]. In such a case, the number of phenomenological coefficients
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increases and the hydrodynamic equations become more complicated. Second the relaxation times 74
are different from the collision time or the mean free time. The relaxation times represent the time
scale that the corresponding dissipative current relaxes to its steady state value. While 74 are the
macroscopic time, the mean free time represents the time scale of the microscopic reactions in a fluid.
Finally the second order theory can be acausal one if 74 take too small values. In this case, more
higher order theories may be required for describing relativistic phenomena. A strategy to obtain
such theories is to expand the entropy current to higher order in dissipative currents and repeat the
same procedure as argued in this section. Since 74 are quantities proper to each matter, one must
investigate the validity of the second order hydrodynamics for each case.
s a
e An example : Heat conduction in the second order theory

We revisit the heat conduction problem discussed in the last subsection. The energy con-

servation law is given by the same form as Eq. (4.33),

Oreeq = 20iq". (4.45)
In the second order theory, Fourier’s law (4.34) is substituted by Eq. (4.40)
T40h¢' = —¢* + kO'T. (Maxwell — Cattaneo law) (4.46)

From Egs. (4.45) and (4.46), one obtains the heat conduction equation in the second order
theory

7,027 = K8;0" — &,T. (4.47)

In this way, the heat conduction in the second order theory is governed by the hyperbolic
equation and its propagation speed has some finite value.

N

4.3 Characteristic speed

In this section, we introduce characteristic speeds (group velocities) of transverse and sound modes
in pure gauge theory for later discussion. Let us assume that the propagation of dissipations when
adding small perturbations to a hydrodynamic system in equilibrium. Since there are no conserved
currents in pure gauge theory, the local rest frame is equivalent to the Landau (energy) frame. To
linear approximation in the perturbations, deviations from equilibrium state in the energy-momentum
tensor are given by

cbe + omtt + ST, (i=3)
¥, (i #7)

where c2 is the square of sound speed defined by c2 =.0P/0ke.

6T = e,  OT% = (coq + Pog)bu?, 6T = 4.48)
q q

4.3.1 Transverse mode

We first derive the characteristic speed of transverse mode under the linear perturbations. For the
shear current that travels in y direction with velocity gradient along the x direction, du2 and §7'2 are
nonzero components in Ju’ and §T%, respectively. They depend only on ¢ and x, i.e. du? = du(t,z)
and 672 = §T"%(t,z). The deviations of energy-momentum tensor are then given by

6T = e, 0T = (eoq + Pog)0u?, T2 = 6712, (4.49)
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The energy-momentum conservation law d,,(67#*) = 0 thus provides
(€aq + Peq)0s(6u?) + 05(6712) = 0. (4.50)

From Eq. (4.41) the evolution equation of shear current within the linear perturbations can be written
as

T Oy (6712) + 6712 4 0O, (6u?) = 0. (4.51)
Applying plane wave solutions
6u? ~ exp(—iwt + ikx), 6712 ~ exp(—iwt + ikzx), (4.52)
to Egs. (4.50) and (4.51), a following dispersion relation is derived,
1 k2 n
— —F— =0. 4.
w? + ey et P =0 (4.53)

From this dispersion relation, one obtains two propagating modes

1 ) 4k2 1
oo Mg [ 1 (w54)
2| Tn Tr(€eq+ Peq) T2
Since we are interested in the maximum value of the propagation speed of current, let us evaluate the
large k£ limit. In this limit, we have

N

Rew = +k, | ———.
Tr(€eq + Peq)

(4.55)

Therefore the characteristic speed of transverse mode v, within the linear perturbation is give by

ORew)? n
2 = ——— = —-——
Ur= ( ok ) Ta(Coq + Pog) (4.56)

4.3.2 Sound mode

Next we see the sound mode. Let us consider the bulk current propagates in  direction i.e. dul =
Sul(t,z) and 6T = 6T (t,z). In this case, Eq. (4.48) becomes

6T = e,  6T"' = (€eq + Peg)0u’, 6T = c2de + ' 4 611 (4.57)

Calculating as well as the transverse mode, the energy-momentum conservation law and the evolution
equation Eq. (4.39) reduce to

0:(0€) + (€eq + Peq)0z(0u') =0, 4.58)
(€eq + Peq)0:(0u') + 20, (8€) + 8, (87'1) + 8,(S11) = 0, 4.59)

(

(
118, (6TL) + 611 + ¢y(6u') = 0, (4.60)
70y (On) 4 07t 4 %177(9 (6u') = (4.61)

With these equations and the plane-wave solutions

sul ~ exp(—iwt + ikx), ontl ~ exp(—iwt + ikz), OIl ~ exp(—iwt + ikz), (4.62)
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-the dispersion relation is determined by

3 2 4 ’
ook ( ¢ i ) w+ k22 = 0. (4.63)
€eq+ Peg \1+iwmm 31 +iwr,

In the large k limit, Eq. (4.63) gives the characteristic speed of sound mode vy, as

O Rew 2 ¢ 4 n
2 2
= = + - + . 4-

UL ( ok ) m (Geq + Peq) 37 (eeq + Peq) Cs (4.64)

The characteristic speeds v and vy have to be smaller than the speed of light for the causality.
Thus the causality conditions are derived:

2 n

vp = ———— <1, 4.65
T Tr(€eq + Peq) ~ ( )
2 ¢ 4 n 2

V] = + = +cc <1. 4.66
L 7'l'I((‘:eq + Peq) 3 Tr(feq + Peq) g ( )

Both vy and vy, are expressed by the transport coefficients and the thermodynamic quantities. As’
seen in Eq. (4.66), the causality condition of sound mode provides more strict constraint than that of
transverse one.

summary

o We reviewed the relativistic ideal and dissipative hydrodynamics by a phenomenological deriva-
tion with the second law of thermodynamics.

e There are two choices of the local rest frame of fluid, i.e. Eckart (or particle) and Landau (or
energy) frames. '

e The first order theory (the relativistic Navier-Stokes theory) is known to violate causality due
to the hyperbolic evolution equation of dissipative current.

e On the other hand, in the second order theory the hydrodynamic equation of each dissipation
becomes parabolic and can be causal due to the relaxation times.

e We also introduced the characteristic speeds and the causality conditions of transverse and sound
modes for pure gauge theory.
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Chapter 5

Ratios of Transport Coefficients

Relativistic hydrodynamic simulations are useful tools to describe the space-time evolution of a hot
quark-gluon matter created in relativistic heavy ion collisions. The simulations depend on several
input parameters and boundary conditions such as an initial condition, equation of state, and transport
coefficients. Since these input parameters are sources of ambiguity of hydrodynamic simulations, it is
highly desirable to constrain them based on a microscopic theory or ab initio calculation that is QCD
for heavy ion collisions. There are several studies which analyzed the first order transport coefficients
from lattice QCD simulations [28, 29, 30, 31, 32]. These studies have used Kubo formula, which relates
the transport coefficients to low energy behavior of corresponding spectral functions. In this method,
one needs to extract the spectral functions from Euclidean correlators obtained on the lattice. This
step, however, is non-trivial because of an ill-posed problem [33]. In this chapter, we focus on ratios
between the first and second order transport coeflicients. We attempt to derive relations between
this ratio and canonical correlation of energy-momentum tensor in four-dimensional Euclidean space.
According to the relations, the ratios can be directly obtained from Euclidean correlation functions
without obtaining the spectral functions.

5.1 Linear response theory

Linear response theory describes a response of some physical quantity against small perturbations
added onto a thermal equilibrium system. Let us first consider a system described by Hamiltonian !

H(t) = Hy— AF(2), (5.1)

where Hp is Hamiltonian corresponding to equilibriumn state. F(¢) is a time-dependent external force
and A is a conjugate quantity of F(¢t). We discuss how a physical quantity B varies under the
perturbation —AF(¢). The thermal expectation value of B at time ¢ is given by (B); = Tr [p(¢)B],
where p(t) is a density matrix at time ¢t. What we calculate is a difference of (B) between at time ¢
and initial time tg,

A(B): = (B)t — (B)t, = Tr [o(t) B] — Tr [p(t0) B]. (5-2)

A(B); is determined if p(t) is obtained. In this and next sections, we write i explicitly.

'In this section, we discuss mechanical perturbation, which can be added to Hamiltonian as an external field such as
the electric or the magnetic fields. On the other hand, thermal perturbation such as heat or concentration gradients is
described as a boundary condition for a systemg Although these perturbations must be discriminated from each other,
they lead the same expression for the transport coefficients in a range of linear approximation.
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The time evolution of p(t) is given by
p(t) = U(t, t0)p(to)U" (2, o). (5.3)

U(t,to) is a time evolution operator, which satisfies following equations,

maﬁU(t, to) — HOU(4 k), (5.4)
U(to, to) = (5.5)
Ult, to) = UT(to,t) (5.6)

The solution of Eq. (5.4) with the initial condition Eq. (5.5) is

Ut to) = T <exp [-% t:H(s)dsD , (5.7)

where 7 denotes time ordering. Dividing U (i,to) into equilibrium and perturbative parts U(t,tg) =
Uo(t, to)U'(t), U'(t) also satisfies a similar equation as Eq. (5.4) and can be written as

S U'() = (exp [ ) H'(s)ds}) (5.8)
H'(t) = UJ(t,to) (—AF () Uo(t, to), (5.9)
Uo(t,to) = exp [—%Hg(t - tg):| . (5.10)

Then the expectation value (B); under the small perturbation is calculated as follows,

(B): = Tr [p(t) B]
= Tr [U(t, to)p(to)U (¢, t0) B]

~ Ty [p(tg) (1+% tH’(s)ds) UL (¢, to) BUo(t, t0) <1—% t:H’(s)ds>]

to

T o) B o) + 5 [T (o) B9, Bt )] ds
= T [p(to) B(t, to)] — & / T [plto)[4, B(t, 5)]F(s)] ds. (5.11)

Here we used a relation O(¢,¢g) = Ug(t, to) O Up(t, tg) with O = A and B. In the fifth line, we used a
commutator [p(tg), Up(2,%0)] = 0 and Up(t, tO)Ug(s,to) = Uy(t, to)Us(to, s) = Ub(t, s).

Assuming that the initial state was in equilibrium at infinitely past, i.e. p(tg — —00) = peq and
B(t,s) = B(t — s), the difference A(B); reads

AB) = (B): = (B)-co =5 [ (A Bt~ 5))eaF(s)ds, (512)

where (O)eq denotes an equilibrium expectation value, (O)eq = Tr [peq O]. Let us introduce an
oscillational force F(s) = Fe™* and complex admittance x(w) defined by

xw) =1 /_ (A Bt ))eq e s (51)
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Performing a transformation of integration variable ¢t — s — £, the complex admittance reduces to

x(w) = —% Aw([A,B(t)])eq e “tdt. (5.14)

Fourier transformation of x(w) is called response function,

i
X(8) = =3 ([4,B(t)])eq (¢ >0), (5.15)
x(t)=0 (t<0). (5.16)
To rewrite the complex admittance, we use an identity for an arbitrary operator A 2
R/T
[ Ho/T, 4] = e /T / dx o4, Hole o, (517)
0
Using this identity and Heisenberg equation of motion one obtains
B/T ) MT

[Peqs A] = ihipeq / d\ e Ae= Mo — ipp / dx A(—i)), (5.18)

0 0

o—Ho/T :

Here O represents time derivative O = dO /dt. With Eq. (5.18), one obtains the following equation

([4, B()])eq = Tt [peq [4, B(?)]]
= Tr[[oeq, A] B(2)]

WT o
— ATy [peq /0 A\ A(—i))B(2)

WT
ik / A\ (A(=i) B(£) g (5.20)
0

Applying Eq. (5.20) to Egs. (5.14) and (5.15), the complex admittance and the response function
reduce to

o0 kR/T ) .
(W) = /0 dt /0 d\ et A(—iA)B(t))eq, (5.21)

h/T _
X(t) = /0 A\ (A(—iN)B(®))eq (¢ > 0). (5.22)

If one adopts some current operator J/ V'V, where V is a volume of system, as A and B, the complex
admittance and the response function are given by

1 0 h/T )
x(@) = 5 / dt / A (J(—iN)J(t))eq e~ (5.23)
0 0
1 h/T
x(t) = 5 / A\ (T (=N T(B))eq (¢ > 0). (5.24)
0
2To check this identity, one may multiply efo/T to each side from left and differentiate with respect to 1/T,
(LHS) = d(lle) Ho/T[e=Ho/T g] = eHo/T HoleHo/T ] — Ho/T[Hoe™Ho/T, A] = eM0/T (4, Hole Ho/7,

R/T
(RHS) = Zz‘(1d/—T) / dX e*0[A, Hole 2o = ¢Ho/T 14, Hole Ho/T,
0
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Egs. (5.23) and (5.24) are Kubo formulas [79] for quantum systems. Taking a classical limit & — 0 in
Egs. (5.23) and (5.24), Kubo formulas in this limit are obtained,

Xw) = 7 [ dt 0T e (5.25)
1 (J

X(t) = 7 (J(0)J(t))eq (¢ >0). (5.26)

T TV
Thus responses of some quantity for small perturbations are expressed by the temporal correlator of
currents in the linear response theory with the classical limit.

5.2 Formulation

In this section, we derive relations between viscosity to relaxation time ratio and corresponding canon-
ical correlation of energy-momentum tensor for pure gauge theory. Since there is no charge flow in
pure gauge theory, a local rest frame (LRF) of a fluid is naturally identified with the Landau (energy)
one. In this frame, the energy and heat flows vanish, W# = 0 and ¢* = 0 (see subsection 4.1.2), and
the first order transport coefficients are the bulk viscosity ¢ and the shear one 7. The second order
transport coefficients are the relaxation times for the corresponding dissipative current, g and 7. In
chapter 4, we introduced the entropy current as Eq. (4.36). Since there are no conserved currents, the
entropy is given by

v
S = Seq - ﬁ (ﬁnHz + ﬂﬂ-’ﬂ'ijﬂ'ij) . i (5.27)

The viscosities and the relaxation times are related to each other as Eqgs. (4.42),
T = FAud, Tn = 20:7. (5.28)

5.2.1 Classical formulation

As an instructive example, we first derive formulas for the viscosity to relaxation time ratios for
classical systems by two approaches. The two different approaches are based on the classical limit
of Kubo formula Eq.(5.25) and Einstein principle [80, 81] with Eq. (5.27), respectively. They lead
the same result and the ratios can be related with static fluctuations of dissipative current. These
derivations were proposed by Refs. [34, 35].

Let us begin with the classical limit of Kubo formula Eq. (5.25) with w = 0. According to the
linear response theory, the first order transport coefficients for classical systems are expressed by the
temporal correlation of each dissipative current,

¢ = % / ~ at (TO)TI(2)), (5.29)

0
=7 | dtmaOma), (530

where A denotes three-dimensional spatial average

Alt) = % / Bz Az 1), (5.31)
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and (O) is a statistical average in equilibrium

Tre~H/TO

0= “remmr

(5.32)

Following the IS equations Egs. (4.39) and (4.41), the temporal correlation functions of dissipative
current decay exponentially as in Eq. (4.44), i.e

(A(0)A(t)) = e/ (A(0)A(0)). (5.33)

Applying Eq. (5.33) to Egs. (5.29) and (5.30) and performing ¢ integral, one computes

A= 4 / dt (A(t)A(0)) (5.34)
Y / dt et/ (A(0) A(0)) (5.35)
VAl ). (5.36)

Thus following relations are obtained,

Lo @) L= o). (537)
In this way, the viscosity to relaxation time ratios are related to the static fluctuations of dissipative
current (IT?) and (n%,). Note that Egs. (5.37) are valid only for classical systems because above
argument is based on the classical limit of Kubo formula Egs.(5.29) and (5.30). We will expand the
argument to quantum systems in the next subsection.

Let us derive Egs. (5.37) with a different manner. According to the Einstein principle, a probability
distribution P(a) of some state variable a in equilibrium is given by P(a) ~ €5(9), where S(a) is the
entropy in a volume V. If one identifies the entropy with Eq. (5.27) to be that in the Einstein principle,
a probability distribution of the state variable A is given by

PA(A) o exp [—%ﬂAAZ] . (5.38)

With this distribution function, the fluctuations (or the variances) of dissipative current are calculated
to be

(Ti2) — JaII2Py(l) T ¢T
N fdﬁ Pp ﬁ) ,BHV TI'[V
[ ar 7%, Pr(7) T nT

( zy) fd?TP ) = 2ﬁ1r T,rV, (5.40)

(5.39)

where we used the fact that the statistical average of dissipative current in equilibrium vanishes i.e.
(A) = 0 and hence ((§4)2) = ((A — (A4))?) = (A%). Egs. (5.39) and (5.40) are identical to Egs. (5.37).

It, however, should be remembered that state variables are assumed to be treated as classical
variables in Einstein principle. In quantum mechanics, when a state variable a does not commute
with Hamiltonian, a and the energy cannot be determined simultaneously because of the uncertainty
principle. This means that the entropy cannot be defined as a function of non-conserving state variables

in quantum systems [81]. The Einstein principle therefore is not applicable to such a situation.
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5.2.2 Quantum formulation

In the subsection 5.2.1, we derived the ratios of the first and second order transport coefficients
for classical systems. The ratios are described by the static fluctuations of each dissipative current,
which are classical and macroscopic variables. However, what we are now interested in is the transport
property of a hot quark-gluon matter where quantum effects would play significant roles. It is required
to expand the classical relations Egs. (5.37) to the ones in quantum field theory and to substitute field
operators for the classical variables A.

Let us apply the Kubo formula Eq. (5.23) to quantum field theory :

/ dt / h/T (=iA)J(t))eq €. (5.41)

Although this formula seems to be the same as Eq. (5.23), J is now a quantum field operator. In
order to extract physical quantity from Eq. (5.41), one must pay attention to a singularity specific
to quantum field theory. In general, some correlation function of field operators has a singularity at
identical space-time point, and the singularity brings about ultraviolet divergence of an integral of
correlation function.

4 0

e An example : Two point correlation function of scalar field
In quantum field theory, two point correlation function often diverges in short distance limit.
Let us consider two point correlation function of a free scalar field ¢(x), where x = (¢, T).
The correlation function in momentum space is given by

d*p i

et L (5.42)

(To(2)o(y)) = /

Here m represents a mass of the scalar field. Eq. (5.42) diverges in the short distance limit
z — y, and one has to perform some appropriate regularization procedure to remove the ul-
“traviolet divergence when the equal space-time correlator (¢(0)¢(0)) is explicitly concernedj

-

The bulk and shear viscosities are expressed by the correlation function of field operator corre-
sponding to each dissipative current,

_Y / dt / T TN, (5.43)

R/T
=5 /0 dt /0 d (R12(—1iA\)T12(2)). (5-44)

Imposing Eq. (4.44) on A = II, % in these equations as is the case in classical formulation, their
temporal integrals may be computed as follows,

/ dt /WT NAE) — / dt /th)\ INA®)reg | (5.45)
~ /0 dt et/ /0 h/TdA (A(=iX)A(0))reg (5.46)

= T4 / " (A(=1X) A(0))reg- (5.47)
0

In the right-hand side of Eq. (5.45), we put a subscript “reg” to the correlation function. This means
that (A(—i\)A(t))reg is a correlation function with some appropriate regularization. The Euclidean
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correlation function (A(—i\)A(0)) contains singularities at the origin and they should be excluded by
regularization to obtain a physical viscosity. Eq. (5.45) represents the prescription of the regularization
is carried out. We discuss the detail of this matter in a later section and use the regularized correlation
function in the following.

We refer to the approximation Eq. (5.46) for Eq. (5.45) as relaxation time approximation, owing
to an analogy to the standard approximation in non-equilibrium statistical mechanics, (O(¢)0(0)) =~
e~t/7(0(0)0(0)). Note, however, that Eq. (5.46) is slightly different from this approximation, because
in Eq. (5.45) the correlator between field operators separated along complex time is concerned, while
the standard relaxation time approximation assumes structure of correlators in real time. Despite this
difference, the time scales appearing in exponential function in Eq. (5.46) would be equivalent to the
relaxation times of dissipative current 74 in Egs. (4.39) and (4.41).

Substituting Eq. (5.47) in Egs. (5.43) and (5.44), the relations between the transport coefficient
ratio and the Euclidean correlation function of dissipative current are derived,

¢ v MTo

a - E/O dA <H(_7'A)H(O)>reg7 (5.48)
R/T

% = Yh‘/o dA (T12(—iA)712(0)) reg- (5.49)

If one takes the limit & — 0 in Egs. (5.48) and (5.49), the classical relations Egs. (5.37) are reproduced.
In the local rest frame of a fluid, one can replace the dissipative currents with the energy-momentum
tensor T,,. Then the relations Eqgs. (5.48) and (5.49) are rewritten as

¢ \% h/T — . _ 1 h/T "

ceg ) AT O = gy [ @ T O (550
™ 0 A

n vV (MNT 1 T

—= E/ dX (6T12(—1A)0T12(0))reg = ﬁ/ d*z (6T12(x)6T12(0))reg, (5.51)

where we used shorthand notations r = (—i\,£) and foh/ Tdle = [dP foh/ TdX. Defining Kubo’s
canonical correlation as

- T 2
(672)) = <(V / dta 5T,w(x)> ), (5.52)
Egs. (5.50) and (5.51) are expressed by
Voo Vo
S 6 L= (6T (5:53)

As seen in Egs. (5.53), the ratios of transport coefficients in quantum field theory are related to the
canonical correlation of T),, in four-dimensional Euclidean space. We note that Egs. (5.53) are also
derived by the projection operator method [36].

Although the canonical correlation Eq. (5.52) can directly be measured by lattice QCD simulation,
it is naively different from those in Egs. (5.53) due to two reasons. First, (5T3,,) is an ultraviolet
divergent quantity. A correlation function of field operator generally accompanies this issue and the
divergence must be excluded by some renormalization process. Second, the contact terms, which do
not affect Kubo formula, have a contribution to (6T3,,) in Euclidean space (see subsection 5.3.2 for
the detailed argument). The contact terms give finite but temperature dependent contribution to
(6T31,) on the lattice and cannot be removed by the vacuum subtraction. Thus one must perform
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an appropriate regularization for Eq. (5.52) to evaluate the ratios from lattice measurements of the
canonical correlations of 7),,.

An advantage of the measurement of viscosity to relaxation time ratios with Egs. (5.53) is that they
can be observed directly in lattice QCD simulation. This is an important difference from the previous
lattice studies of the first order transport coefficients. In order to get the transport coefficients, they
observed the Euclidean (imaginary-time) correlation function on the lattice and extracted the spectral
functions which have an information about each transport coefficient at low frequencies from the
lattice results. This procedure, however, requires an ansatz for the spectral function because one must
extract a continuous function from finite and small number of lattice data of the Euclidean correlation
function. On the other hand, we take notice of the ratios of transport coeflicients, and they can
be directly measured on the lattice without any ansatz. Whereas the ratios are not the transport
coefficients themselves, the ambiguity of hydrodynamic simulations is expected to be reduced by
analyses of the ratios.

5.3 Regularization

5.3.1 Operator product expansion

We have derived the relations between the ratio of transport coefficients and the canonical correlation
of T, (z) for quantum field theory in the last section. As already mentioned there, one must treat the
correlation function of field operator carefully since they contain singularity at identical space-time
points. One of those is an ultraviolet divergence, which originates from short distance behavior of the
Euclidean correlation function of T,“,(x). Another is a temperature dependent contribution that is
proportional to d-function, i.e. the contact term.

Since both of these effects come from the short distance behavior of the Euclidean correlation
function of T}, (z), we may employ the operator-product expansion (OPE) to investigate these effects.
According to Ref. [82], the product of T),,(z) at short distance limit behaves as

1
Tuu(w)Tpa(O) ~ CuypaW + C“VpaagTag(O)(s(‘L) (l‘) + - for z ~ 0, (5.54)

where Cl,pr and Cluygoag are c-number Wilson coefficients determined in perturbation theory. The
first term on the right-hand side in Eq. (5.54) is proportional to |z|™8 due to dimensional reason and
leads to an ultraviolet divergence. This term neither has medium effects nor affects long distance
behavior responsible for the hydrodynamics. Therefore it would be plausible that this divergence does
not affect hydrodynamics and should be eliminated when one discusses transport coeflicients. This
contribution is completely removed by subtracting the correlation function in the vacuum (T = 0).
The next terms on the right-hand side of Eq. (5.54) are proportional to dimension four operators.
These terms contain the contact term, which is proportional to 6(¥(z) as presented in Eq. (5.54).
This contribution cannot be removed by the vacuum subtraction because the statistical average of the
contact terms is proportional to (T,,) and has temperature dependence. The higher order terms in
Eq. (5.54) shown by dots neither yield divergence nor are singular.

When investigating the viscosity to relaxation time ratios based on Egs. (5.50) and (5.51), one has
to handle these extra contributions. To take this point carefully into account, we discuss regularization
process for the physically meaningful ratios. From now we set A = 1. First we show the vacuum
subtraction to eliminate the contribution from first term in Eq. (5.54). One can write this subtraction
procedure for Euclidean correlation function of T}, () as follows

1/T 1/T 1/Ty
/ d*z (T (2)Tpo (0))o = / d e (T (2)Tpe (0)) 1 — / d*z (T (7) Tpo (0)) 13- (5.55)
0 0 0
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Here we denoted the zero temperature by Ty because one cannot take an infinite lattice size in actual
lattice simulations. Due to this prescription, the first term in Eq. (5.54) is removed. Note that the
range of temporal integration of vacuum term differs from the thermal one as in Eq. (5.55).

In addition to the vacuum subtraction, we should subtract the contribution from contact terms
because they do not contribute to Kubo formula as discussed later,

1T 1T
/0 8 (T (2) T (0)) e = /0 &5 (T () Tpo(0))0 — Copoap(Tap@)o.  (5.56)

Unlike the vacuum subtraction for the canonical correlation of T, (z) Eq. (5.55), (Tog(0))o repre-
sents a simple difference between (1,3(0))r20 and (T53(0))r=0. (Tuv(2)Tps(0))reg is the regularized
correlation function which appears in Eq. (5.45).

As discussed above, we subtracted the contact terms from the Euclidean correlation functions in
the regularization. In this argument, we assumed that Kubo formula, which is our starting point,
does not contain a contribution from contact terms. We discuss this issue in the next subsection. We
will conclude that the contact terms do not contribute to Kubo formula and one has to exclude the
contribution from the Euclidean correlation function of T}, (x).

5.3.2 Contact terms in Kubo formula

We here investigate the contribution of contact terms to Kubo formula. From Eq. (5.54), the contact
terms in Euclidean space are given by

9(—i\ T) = Cppoap({Tas(0))o 5(4)( )- (5.57)

To evaluate the contribution of this terms to Kubo formula, which is dependent on the real-time ¢
and the imaginary-time A, we perform an analytic continuation A — X\ + it in Eq. (5.57). In order
to obtain an analytic continuation of d-function to complex argument, we utilize Poisson equation in
four-dimensional space

1 1
4 2
(@) = ~5 50", (5.58)
where 82 = 82 + 8% and 2% = A% + 2 = A% 4 r2. The contact terms are then given by
1
( l)‘ .'L‘) ﬂ_zcuupcmﬂ< ( )>0(9 1‘2+€ (5.59)

where we added an infinitesimal quantity € > 0, which vanishes in the end of calculation, to the
denominator of 1/x2 to suppress the singularity at 22 = 0. Before the analytic continuation, let us
carry out a differentiation and a spatial integration of 1/(z2 + ¢),

1 1
/d3a: 823:2 - = —8€/d3mm
oo 1“2
= —32776/0 dr m
-
XN te) o 24N+
2me

= Ao (5.60)
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In third equality, we used a following formula

2 T T 1 dr
d =— — | . 5.61
/ L 4(7‘2+C)2+86(T‘2+C) +8c/r2+c (5.61)
Performing the analytic continuation A — X + it in Eq. (5.60), one obtains

€

{(A+it)2 4 €}3/2°

g(t — i 6) = Cuupaaﬂ<TaB(O)>O (5.62)

To evaluate the contribution of contact terms to Kubo formula, Eq. (5.41), we perform temporal
integrals of g(t — iX;¢€),

oo '1/T
/ dt / d\ gt — iX; €) (5.63)
0 0
C Lo [at [ ¢ ¢ 5.64
= vpoo [ t : ) |
wvpaop{Tap( )>0/0 /0 {(A +it)2 + €}3/2 + {(n— % +it)2 4 €}3/2 (5.64)
0o 1/T €
= Cuvooas(Tas(0 dt dX , :
Crvpoap(Tap( ))0/0 /—I/T O +it)2 + )32 (5.65)
o0 o0 €
- vpoa, o A . ’ '
Ly ﬂ(T B(O)>0/0 dt/_ood {(/\+zt)2+6}3/2 (5 66)

where in the first equality we used the periodicity of A integral. Note that the §-functions in Eq. (5.57)

locate at upper and lower limits of A integral due to the periodicyty of A direction. Therefore we must

take into account the contributions from both §-functions at A = 0 and A = 1/T to Eq. (5.63).

Moreover we expanded it to A € [—00, 00| in the forth line for later convenience. In the following, we

show that the expanded intervals in Eq. (5.66) do not contribute to Eq. (5.64) in the limit of € — 0.
We divide the )\ integral of Eq. (5.66) into the original part and expanded ones,

oo 00 € o0 -1/T 1/T oo €
dt/ dX : :/ dt / —|—/ +/ d , (5.67
/0 coo AOF )2+ €32y —o —yr Jyr {OZ+it)2 +€}%/? (567)

and then evaluate the third integral range, flo/oT dA\, for fixed ¢. In the case of t = 0, the integral can
be evaluated as follows,

e €
d\ ————
yr (A2+ €)3/2

& €
< d\ |—————
- /1/T ‘ (A2 4 €)3/2

o0 €
< f P
[ € ]00 eT?
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In the same way, we can show that the \ integral for fixed ¢ # 0 vanishes,

o0 €. o0 €
dX g dX
/1/T {0 +it)2+e32| ~ /1/T } (A2 — 12 4 € + 2iAt)3/2

20 €
- / & 2 _ 42 2 2)13/4
yr  {(\2 =12+ ¢€)? + (2X)?)}
B €
% A\ ——
“Jyr (2A)32
€ N VT
T | . =i %) e — 0). 5.69
G a0 €0 6)
Thus the third \ integral in Eq. (5.67) does not contribute to Eq. (5.64) in the limit of ¢ — 0. One
can easily verify that the first one, f__olo/ T a), also has no contribution to Eq. (5.67) and Eq. (5.66) is
consistent with Eq. (5.64) for € — 0.
Let us perform the integral of Eq. (5.66) by using another formula

dx z
= . 5.70
/ (z24¢)32  eval+c (5:70)
With this formula, the X integral is calculated as
/ T - / o : [ z ]z:mit (5.71)
e K f— y .
s LAiE) €t el |, B HEe Vo LBl g ontil

where we introduced a complex variable z = X\ +it. f(z) = V22 + € is a two-valued function and
branch points locate at z = +iy/e (Fig. 5.1a).

~ z=A+it

P ><_7 = +I'\/; ,"’,’"".
Branch point ¥

\ z= ——I'\/;‘_ . /”/_,)/’é; /,’

F= +[-\/Z‘ /\" P ~

NS >< /’,'\0

Branch point 2
> Z :—i«/;‘ N

Figure 5.1: a): Riemann sheets for a two-valued function f(z) = V22 + e¢. Two branch points locate
at z = +iy\/e. b): Polar form.

/

In order to examine the right-hand side of Eq. (5.71), we introduce polar form (Fig. 5.1b),

z—iJe=me™, 2 + iv/e = roe'®, —7 < 01,0 <, (5.72)
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and rewrite f(z) as follows

1(z) = (2 = V)2 (z + iV V2 = (r1e%) /¥ (roe®)!/2, (5.73)
When the path of z integration passes through above the branch point z = +iy/e, that is ¢t €
[\/€,0], 2 = 400 + it and z = —oo + it correspond to 61 = 0 = 0 (r;,72 = o0) and 61 =6y = 7
(r1,72 = 00), respectively. In this case, f(z) has opposite signs at z = +00 + it and z = —o0 + it,
Froo(2) = (r1€%)/3(re®) /2 = /iy (5.74)
froo(2) = (re™) V2 (rae™)V2 = — \frm3 = — £(2) 40 (5.75)
Then one may calculate the value of fi..(z) as follows
z a+it 1+ z— 1
e = lim ———————== lim =—=1, (5.76)
|:\/Z2+6:|z +ooit a—00 \/(a+'Lt) +e€ a—00 \/1+22t t2 +Ee2_ \/T

where we defined fio(2) = v/1 = 1. Another limit is then given by

z —a + it —1+z— -1
[V22+€:|z——oo+1t o= V( a+lt)2+e a—’°° \/1+12t t2 +Zz_€7 V1 ( )

Here we used the relation Eq. (5.75) and f_o(2) is given by f-oo(2) = V1 = —f100(2) = —1. Thus
Eq. (5.71) for the case of t € [/€, 00] becomes

2 z=00+14t
e =1-1=0. (5.78)
[ \% 22 + €:| z2=—00+it

On the other hand, when the integration path passes between the branch point z = +i4/e and the
origin, i.e. t € [0,+/€], the two limit of 2 = +oo0 + it correspond to 6, = 0 = 0 (ry,rp = oo0) and
6, = —m,0p =7 (r,ry = ), i.e.

Froo(2) = (11€%) 2 (ree®) V2 = \frirg (5.79)
Feoo(2) = (117 ™) /2 (r2e™) V2 = \/r1T2 = fioo(2). (5.80)

In this case, the values of f(z) at two limits of z = +oo + it have the same signs. If one defines the
value of fio(2) =1 as well as the previous argument, another side becomes

_ 144t 1
[—Z ] — lim ati iy -1 —1,  (581)
z=—00+1t

*/224—6 a-—00 /( a+zt)2+e a—»oo\/1+22t £22'+E€2' 1

a
where we used Eq. (5.80) in the third equality. Eq. (5.71) then reads

z=00+it
z
— =1-(-1)=2 5.82
[\/Z2 +5:|z:—oo+it =1) ( )

From above discussion, Eq. (5.66) provides

oo [e’s) oo+t
dt / d\ / / dt / dz — 5
./0 -0 {(A+ zt)2 + 6}3/2 ( ) oot (22 +€)3/2

/ dt2+/ dt0=2e—0 (c— 0). (5.83)

50



In this way, we could confirm that the contact terms Eq. (5.57) do not contribute to Kubo formulas.
On the other hand, the Euclidean correlation function or the canonical correlation of T, (x) which are
observables on the lattice involve the contribution from contact terms. Therefore one has to subtract
the contribution in lattice QCD simulation because the original Kubo formula Eq. (5.41) does not
include it in the case of quantum field theory. :

5.4 Viscosity to relaxation time ratio

In this section, we use the OPE results on the contact terms [83] and rewrite the viscosity to relaxation
time ratio$ as expressions which are direct observables in lattice QCD simulation. For the following
discussion, we introduce a Fourier transformation of the Euclidean correlation function of T),,(z),

g (@a, ) = / 442 G o (z) €% = / 0z (T (2) o (0)) €9 (5.84)

5.4.1 Shear channel

First we show the contact terms in the shear channel. In the leading order OPE calculation [83], the
contact terms have most conveniently evaluated by taking the high frequency limit of the correlation
function G1212(q4,§) with zero spatial momentum,

. = 2 1
Jm  G1212(94, 0)o = Cr21205(Tas(0))0 = g(ﬂfﬁ')o +gF o, (5.85)
where Tﬁ,} is defined to be traceless and (F?) = (Fg,F3,) is the gluon condensate. In the first equality
of Eq. (5.85), the higher order terms in Eq. (5.54) vanish by Riemann-Lebesgue lemma.
4 N

¢ Riemann-Lebesgue lemma .
Let f(q) be a Fourier transform of f(x) that is an integrable function on R,

i +00 .
flg) = f(z)e " dz. (5.86)

Then f (g) tends to 0 as |g| tends to infinity,

lim f(q) =0. (5.87)

lgl—o0
N J
From Egs. (5.55), (5.56), and (5.85), one obtains the physical ratio of shear viscosity to relaxation

time of shear current in the leading order perturbation theory,
n V

7_— = T<5T122>reg

1T
= /[; d4:E (5T12(IL‘)6T12(0)>0 - ClZl2aﬂ<Taﬁ(0)>0

/T 1/To
_ /0 d'e (5T1a()0T1a(0))1 - /0 diz (5Ty2(2)6T12(0)) 1, — % ((TL’}')O + %<F2>0)
= T6The T 6Thn, — & (T + 3F%) (5.88

Since the right-hand side of Eq. (5.88) includes only lattice observables, one can evaluate 7/ directly
from lattice QCD simulations.
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5.4.2 Bulk channel
The contact terms in the bulk channel have also derived by the OPE calculation [83] as well as in the

shear channel,

lim Giiji(g4,0)0 = (4mbpg?)? (4<ng->0 + (F2>0) . (5.89)

qa—00

Here by is given by Eq. (2.75), bg = 11/(4x)?, for SU(3) gauge theory. The physical bulk viscosity to
relaxation time ratio is given by

¢ vV

S = 572
9T<67111.>reg
1/V - VvV . 4 1
=35 (T<5:/;2,.>T -7 <5T5>T0> — 5(4mbog?)? ((T};})o + Z(F2)0> : (5.90)

We end with account of a relation between the viscosity to relaxation time ratio and the thermo-
dynamic quantities. (F2)g and (T}})o in Egs. (5.88) and (5.90) are related to the energy density e
and the pressure P as follows :

2y, = 29 (o _3p)— 29
(F%)o = ﬂ(g)( 3P) ﬁ(g)e’ (5.91)
<TZ41>0 — —Et'l' — _%(et.l. + Pt.l.) — _% { (Et'l' + 20> + (Pt.l. . ia>} — —%(6 + P), (592)

where (g) denotes the beta function in Eq. (1.1), 3(g) = —bgg® + - - . 8 = ¢ — 3P is generally called
the trace anomaly. In the last equality of Eq. (5.92), we utilized the fact that the trace anomalies
included in € and P cancels out each other. Using these relations, the viscosity to relaxation time
ratios read

1% 6+P__ 29 ¢— 3P

n_ Va2
C_V ) 2 2\2 €+P_ 2g E—3P
P 9—T(5Tii>0 + 5(47”)09 ) ( 5 Glg) 6 ) . (5.94)

summary

e We have derived the relations of the viscosity to relaxation time ratio and the canonical corre-
lation or the Euclidean correlator of T}, for quantum field theory.

e There exist two kinds of extra contributions which originate from the short distance behavior of
the Euclidean correlator of 7),,, i.e. the ultraviolet divergence and the finite but temperature-
dependent terms.

e To remove these contributions we have applied regularization procedures to the correlator, i.e.
the vacuum subtraction and the removal of contact terms.

e We also confirmed that the contact terms have no contribution to Kubo formula but effect the
canonical correlation of 7),,.
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e The physical ratios can be expressed by only lattice observables, i.e. the canonical correlations
of T,,, and the thermodynamic quantities.

e Evaluating the ratios with lattice QCD simulation, we can constrain the free parameters in
relativistic dissipative hydrodynamic models.
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Chapter 6

Lattice Measurements

In the previous chapter, we derived the relations between the viscosity to relaxation time ratio and the
canonical correlation of energy-momentum tensor for quantum field theory. The ratios are expressed
by only lattice observables. In this chapter, we first introduce the energy-momentum tensor on the
lattice. For lattice simulations, we adopt traceless part of energy-momentum tensor defined by field
strength tensor constructed from clover type plaquette which respects parity of spatial coordinates.
The relations Egs. (5.93) and (5.94) require the sum of energy density and pressure, e+ P, and the trace
anomaly, § = ¢ — 3P. The sum ¢ + P is directly obtained from measurements of energy-momentum
tensor on the lattice. We compute the trace anomaly by a conventional approach with standard
Wilson gauge action. Using these observables, we determine the viscosity to relaxation time ratios
within SU(3) gauge theory. The lattice simulations are performed for temperature range relevant to
ultra-relativistic heavy ion collisions at the RHIC and LHC. We also analyze the characteristic speeds
of transverse and sound modes in a gluon medium. We find that the characteristic speeds obtained
from our lattice measurements are larger than any other theoretical predictions.

6.1 Formulation

6.1.1 Energy-momentum tensor on the lattice

Let us introduce energy-momentum tensor on the lattice. The traceless part of energy-momentum
tensor is generally described as

1 .
Th): = 2Tr [FNPFU,, - Zéuquana] : (6.1)

Here the metric is given by d,, = diag(+,+,+,+), because we now consider Euclidean space. We
adopt clover type plaquette Uﬁ, (Fig. 6.1) for the field strength F),,, on the lattice,

2 = Ly cl )t
a“gFu, = 2 {U (U’“’) }traceless part
— -3 {u -y - i - o) =g, (62
1
s = 2o+ v U )
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where Uy @ are given by
Ug) = Un(m)Uy(n + I,
U = V(U (n— p+ )Ui(n— A)Uu(n = ),
U = Ul(n - ))Ui(n — = 2)Uu(n — o — )U, (n — D),
U};ﬁ =Ul(n—0)Uu(n — ﬁ)U,,(n + 4 - UL (n+ ).
Here the link variables U,(n) are defined by Eq. (2.23). If one defines F),, with standard plaquette
Eq. (2.22), T, breaks the invariant under the parity of spatial coordinates and its off-diagonal com-

ponents have finite expectation value (T13) # 0, which must vanish in equilibrium. With Eq. (6.2),
diagonal and off-diagonal components of T;j,} on the lattice are rewritten as

i1 Ul Ug, U oel 1 frel \2 frel \2

S P — C. C.

Ta =T [ 2 alg > g atg | T aig DO Y OR)P, (69
oFp PO Pp>0 oFp PIFE,p>0
[A]cl Ovcl . 2 o )

T =2Tr | 3o e | = aig tlUieUiel (1 # ). (6.5)

Y U}JZV) AY ULIB A
n P
\4 (4) 4
\ U#V 4
U

Figure 6.1: Cover type plaquette.

We remark on a relation between T}, in the continuum theory and on the lattice. In the continuum
theory, T}, is obtained as the Noether current for the translation symmetry. On the other hand, T},,
on the lattice is no longer a conserved current due to the discretized translation symmetry. This
means that a renormalization factor Z(g) depending on the bare coupling g is required to connect
them, Tjo™ = Z (g)T/lj,‘,t From non-perturbative analyses of anisotropy coefficients !, Z(g) in SU(3)
gauge theory is estimated as [31]

1 — 1.0225¢% + 0.1305¢* ( 6 )
Z(g) = , | =>57]). 6.6
(9) 1—0.8557¢2 72 (6.6)

We use this factor on analyses in the following arguments.

n lattice gauge theory, the spatial and temporal lattice spacings can be different, i.e. ar # a,. The anisotropy
coefficient £ is defined by a ratio £ = a./a,. In this study, we use an isotropic lattice spacing a = a» = ao-
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6.1.2 Vacuum subtraction on the lattice

In this subsection, we discuss the vacuum subtraction for the ratios 1/7, and (/77 on the lattice.
Before proceeding with this subject, we clarify how to relate lattice observables to physical quantities.
While lattice observables are dimensionless, the lattice spacing a is only dimensional quantity on the
lattice. Physical quantities and lattice observables are connected by the lattice spacing.

Let us consider the energy density € as an instructive example. The energy density in the continuum
theory €™ is defined by the difference between the ones at T # 0 and at T' = 0 (vacuum), because it

diverges at the vacuum. €°°* can be related to the energy density on the lattice €t as follows,
€cont Econt _ 6coixt 1 elat _ elat_
=T T=0 _ * T T=0 _ N4(€;ﬁt _ Glﬁt:o), (6.7)
T4 T4 a* T4 T

where we used the relation 1/T = aN, in the last equality. In this way, one may naively subtract 617*%":0

from €2 in lattice measurements.

In the case of the viscosity to relaxation time ratios, the vacuum subtraction procedure on the
lattice gets a little complicated. One has to be careful of the subtraction for the canonical correlation
of T),,. First we see the shear channel ratio 7/7,. The vacuum subtraction for n/7, is performed as

follows,

1 n 1 —(V ~9
—— = — || =(Tf,) ] — (contact terms)
Tir, — T4 [\T 0

= % -(¥(T122))T — (TKO(T122)>TJ - %(conta,ct terms)

=71 (———Z (9){T1z) at)T - (EgjfoZ (9)(TH)™ . - ﬁ(contact terms)

— Z2(g)N3N? [(N—r (TH)=) = (Noo (7))

1
T] — ﬁ(contact terms). (6.8)
0

We used the relation V = (aN,)? in the fourth line. We regard an enough low temperature Tg as zero
temperature T = 0. Ty denotes the corresponding N.q represents the number of temporal lattice sites
which corresponds to the vacuum. As discussed in section 5.4, the contact terms can be expressed by
only the thermodynamic quantities which are lattice observables.

For the bulk channel, the vacuum subtraction with Eq. (6.1) becomes more complicated because
the spatial diagonal components of T}, include the trace anomaly 6§ = ¢ — 3P, i.e. T;; = TE - %9.
The bulk viscosity to relaxation time ratio is then related with (§72) on the lattice as follows,

%% = i4 [(QLT(M}%)) — (contact terms)]
0
_— _1_ _‘{_ rtl ?_) 2 . L
=T <9T<(5Tii 460) ))0 T (contact terms)
_1(v Se1N2y O el 9 o 1
T4 (gT {((5Tii )%) 2<5Tiz‘ 69) + 16 (66°) T (contact terms)
! F 9 . . 81 .
= gNoN; (Nf {Zz(g)<(<5’11-2~'1')2>1at + 3B(9)2(9)(6T};68)™ + £ B(9)(65%)’ t})
0
- %(contact terms), (6.9)
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where S denotes the action and B(g) the beta function (see subsection 2.4.3). We used Eq. (2.71) in
the last line. In this way, one must not take difference between (6:7"2 )t at finite temperature and at
the vacuum simply in data analyses. One needs to multiply each number of temporal lattice sites N

to (672,)'%* before the vacuum subtraction.

6.2 Set up

In table 6.1, we list lattice simulation parameters used in this study. We have performed SU(3)
lattice gauge simulations with a standard Wilson gauge action defined in Eq. (2.21). In order to
investigate the lattice spacing and spatial volume dependences, simulations have been carried out on
four isotropic lattices. The lattice spacing a for each inverse coupling 3 is determined by the string
tension /o = 460 MeV and the parametrization of ay/o in Eq. (2.72) [71]. We use T, /+/o = 0.63 [84]
and normalize 7" by T,. The temporal length aN, = 1/T of each lattice corresponds to a range of
temperature 0.5 < T/T. < 4, which covers those realized in heavy ion collisions at RHIC and LHC.

Gauge configurations are updated by heat bath and overrelaxation algorithms discussed in section 3.1.
We also list the renormalization factors Z(g) and B(g) in table 6.1.

Table 6.1: Lattice simulation parameters. N, and NV, are the numbers of lattice sites in spatial
and temporal directions, respectively. a and L, denote the lattice spacing and spatial lattice size.
Renormalization factors Z(g) and B(g) are also listed.

(8=6/g" [No | N, |affm]|Loffm] | Z(g9) | B(g)/6 |
6.499 | 32 [4,6,8,32[0.046 [ 1.5 |[0.796366 | 0.125501
6.205 | 32 | 4,6,8,32 | 0.068 | 2.2 |0.772442 | 0.112127
6.000 | 32 | 4,6,8,16 | 0.094 | 3.0 |0.748441 | 0.098172
6.000 | 16 | 4,6,8,16 | 0.094 | 1.5 | 0.748441 | 0.098172

We have generated 40, 000 — 2, 100,000 configurations at every 50 sweeps in Monte Carlo time for
each parameter. Statistical errors were estimated by the jackknife method with bin sizes in a range
of 50 — 1250 (see subsection 3.2.2). To perform the vacuum subtraction, we regarded a lattice with
the largest N, for each 8 as the vacuum one. In fact, our numerical result with the largest N, for
each 3 corresponds to temperature well below 7., where medium effects on expectation values are well
suppressed as seen in the following subsections.

6.3 Numerical results

6.3.1 Jackknife error

Fig. 6.2 shows the bin size dependence of the jackknife error for (T%) on the lattices with different
temporal size N, = 4,6,8,32 and § = 6.499. In this analysis, we did not perform the vacuum
subtraction. We can see that the statistical error does not depend on bin size. This means that the
autocorrelation of gauge configurations are well suppressed even in smallest bin size n = 50.
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Figure 6.2: Bin size dependence of jackknife error of (T122)lat. We set the inverse coupling 8 = 6.499
and prepared four lattices with different number of temporal sites N,.. In this figure, the vacuum and
the contact term subtractions are not carried out. The bin size dependence of jackknife error cannot
be seen for all results we analyzed.
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Figure 6.3: Temperature dependences of thermodynamic quantities. a): Sum of the energy density
and the pressure or the entropy density, € + P = T's. We acquired the sum from direct observation
of —3Z(g)(T}L) on the lattice. b): The trace anomaly, § = ¢ — 3P, measured on the lattice with a
standard procedure and Wilson gauge action. As discussed in section 2.3.2, SU(3) gauge theory shows
a first order phase transition at some critical temperature T,. Both figures show a characteristic
behavior above T, with a small statistical error. We can confirm that the lattice spacing and spatial
volume dependences of these observables are well suppressed. These results are consistent with past

lattice studies.
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6.3.2 Thermodynamic quantities

In Fig. 6.3, we show the temperature dependence of thermodynamic quantities ¢ + P and 6 = ¢ — 3P
2. €+ P is responsible for the causality conditions Eqgs. (4.65) and (4.66), and the contact terms
Egs. (5.93) and (5.94). The trace anomaly 6 is also included in the contact terms.

In the lattice simulations, we used the traceless part of energy-momentum tensor defined by
Eq. (6.1) for measurements of ¢ + P. The expectation value of ¢ + P was simply taken from
—%Z (9){(T% )" because a contribution of the trace anomaly is canceled out in this observable, i.e.

1 1 4 4
e+ P= (et.l. + Ze) + (Pt.l, o Ze) — 6t.l. + Pt.l. — 56t.l. — —§Z(9)<ng>bat (610)

We used ¢ = 3P%! in the third equality. Hence the definition of Eq. (6.1) is enough for this
measurement. While the definition of € + P is different from that used in the conventional analyses
of lattice thermodynamics discussed in subsection 2.4.3, the difference should be of higher order in
lattice spacing and converge in the continuum limit. Fig. 6.3a shows a rapid increase at the critical
temperature 7.. This indicates a phase transition as discussed in subsection 2.3.2 and Appendix A.
SU(3) gauge theory makes the deconfinement phase transition and degrees of freedom of a system
increase immediately above 7.

We also measured the trace anomaly with the Wilson gauge action Eq. (2.20) using Egs. (2.69)-
(2.71). The Wilson gauge action on the lattice is constructed from the standard plaquette (see
Eq. (2.68)). The numerical results in Fig. 6.3b are consistent with well known behavior measured
by previous studies on the lattice. (see, for instance, Ref. [85]).

Thermodynamic quantities presented in Fig. 6.3 are obtained with a reasonable statistics for all
temperature range. We can evaluate lattice spacing dependence of the thermodynamic quantities by
comparing the results with different inverse couplings. The numerical results show that the lattice
spacing dependence is well suppressed. The spatial volume dependence of observables can be estimated
by comparing results on two lattices with 8 = 6.000. The spatial volume of lattice with L, = 3.0fm is
eight times larger than that of smaller lattice with L, = 1.5fm. Fig. 6.3 show that the spatial volume
dependence of the thermodynamic quantities is also suppressed in the lattice simulations.

6.3.3 Viscosity to relaxation time ratio : shear channel

Fig. 6.4a shows that the temperature dependence of canonical correlation of T35 with the vacuum
subtraction (V(T%)/T)o. The numerical results take negative values for 8 = 6.000 at T < 2T,. On
the finer lattices with 3 = 6.499 and 6.205, the negative values are also observed for N, = 4 whereas
the results with N, > 6 are consistent with zero within statistical error. The results indicate that
(V(TZ)/T)o is not the ratio /7., because the latter must be positive from definitions of transport
coeflicients. Thus the existence of temperature dependent contributions, i.e. the contact terms, is
suggested in the canonical correlations. To obtain the physical ratio, one must remove the contact
terms by an additional regularization (see section 5.3 for this issue) 3.

In Fig. 6.4b, we show the temperature dependence of 1/7, given by Eq. (5.93). The figure shows
that the numerical results with all sets of configurations are consistent within the statistical error for
the range of temperature 1 < T'/T. < 4. We found that the lattice spacing dependence of the present

~

results is well suppressed. Comparing the results on the two different spatial volumes with 8 = 6.000,

%In this chapter, we omit the subscript “eq” which means equilibrium state because what one directly obtains from
lattice measurements is always an equilibrium value of some physical quantity.

31f one misses the contact terms, 7/7» can be negative. This means that either 7 or v takes negative value. However
these transport coefficients must be non-negative by definition.
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Figure 6.4: a): Temperature dependence of canonical correlation of T} with vacuum subtraction
(V(T%)/T)o. This observable seems to be dependent on the lattice spacing and to converge at high
temperature region. The spatial volume dependence cannot be seen within the margin of error. b):
Temperature dependence of the shear viscosity to relaxation time ratio n/7, in which the regularization
prescriptions, i.e. the vacuum subtraction and the removal of contact terms, have been performed.
n/7x behaves like the thermodynamic quantities shown in Fig. 6.3. This behavior mainly originates
from (e 4+ P)/2 in Eq. (5.93).

we can see that the spatial volume dependence of the ratio is also suppressed. n/7, rapidly increases
above T, as well as the thermodynamic quantities in Fig. 6.3. This behavior mainly originates from
the second term in Eq. (5.93), (e + P)/2, for 1.5 < T/T,. In the vicinity of T, the trace anomaly also
has a significant contribution to 7/7, (see Fig. 6.3). '

6.3.4 Viscosity to relaxation time ratio : bulk channel

In Fig. 6.5a we show that the canonical correlation of 673" with the vacuum subtraction (V (6T2)/9T)o
as a function of 7". Unlike the shear channel, for each lattice parameter, the bulk channel takes non-
negative value within statistical error for 1 < 7/T. < 4. However the extra temperature dependent
terms are included in the canonical correlation as is the case of the shear channel. Since the extra terms
do not contribute to Kubo formula as discussed in section 5.3.2, the contribution must be removed in
lattice measurements.

In Fig. 6.5b, we show the temperature dependence of the ratio ¢/ given by Eq. (5.94) or (6.9).
The figure shows that the results are consistent within the statistical error as well as the shear channel
except below T.. The lattice spacing dependence is suppressed for 1.5 < T'/T. < 4. However it
is hard to say about the lattice spacing dependence of the present results below 1.5 T, due to the
large statistical errors. Comparing the two results with § = 6.000, we found that the spatial volume
dependence is suppressed above T.

As well as /7, ¢/ has a tendency to increase in the vicinity of T,. However the origin of this
behavior of (/7 is different from that of n/7,. The behavior of n/7, around 7, is governed by the
contact terms whereas the canonical correlation of Ty equals to zero or negative within a statistical
error. On the other hand, the canonical correlation of §7}; has a dominant contribution to ¢/7r7. This

contribution, for instance, reaches about one third of ¢ /7y for the finest lattice with g = 6.499.
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Figure 6.5: a): Temperature dependence of canonical correlation of 67} with vacuum subtraction
(V(6T2)/9T®)o. Within the statistics, the results take non-negative values in the whole temperature
range we explored. In high temperature region, the ratio seems to converge a finite value. b): The
bulk viscosity to relaxation time ratio ¢/7y as a function of temperature. The contributions from the
vacuum and contact terms are both removed in this figure. Although the lattice spacing and spatial
dependences are suppressed above T, more higher statistics near T, is desirable.

6.3.5 Characteristic speeds

In a pure gluonic system with the entropy Eq. (5.27), the ratios n/7, and (/7 are related to the
characteristic speeds vy and vy, respectively. The maximum value of each characteristic speed squared
is given by

2 Ui
I 11
U e+ P)’ By
4
F N N (6.12)

mn(e+ P)  37(e+ P)

where ¢, is the speed of sound (see section 4.3). vy and vy, have to be smaller than the speed of light
to keep the causality conditions.

Fig. 6.6a shows v as a function of T' obtained from our lattice simulations. Although the errorbar
grows as 7' is lowered, the numerical results are consistent for 1 < 7/, < 4. The spatial volume
dependence is suppressed above T,. We found that 'v% take values from 0.5 to 0.6 within a statistical
error for the T' range analyzed. This means that the propagation of transverse mode in the gluonic
media satisfies the causality condition. v% demonstrates an increasing tendency close to T,. The
statistical error, however, increases as the temperature is lowered. We need to collect more data to
give a definite conclusion on the behavior of v2 near T..

The temperature dependence of v% —c? is shown in Fig. 6.6b. As well as U%, we found an increasing
behavior of v% — 2 in low temperature. The results on the finest lattice with 3 = 6.499 are not really
consistent with the ones on coarser lattices with 3 = 6.205,6.000. The spatial volume dependence
cannot be seen within a statistical error in the figure. The numerical results take values from 1.0 to
1.2 for 1 S T/T, < 4. Since the speed of sound is positive c¢2 > 0, the sound mode obviously violates

~
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Figure 6.6: Characteristic speed of a): transverse and b): sound modes. vr and vy denote the
propagation speed -of transverse and longitudinal plane wave in gluon media, respectively. Both of
them are dependent on the lattice spacing slightly. The spatial volume dependence cannot be seen
above T,. While vT preserves the causahty condition above T,, v? 7 becomes superlummal regardless
of the values of square of sound speed c2

the causality condition . This indicates that second order hydrodynamics with bulk viscous effect is
an acausal theory. However its behavior should be argued in careful manner, due to a large statistical

error of v} — ¢2 near T..

6.4 Discussion

It is of interest to compare v2 and v obtained from our lattice simulations with other theoretical pre-
dictions. First, a kinetic theory based on the Boltzmann equation with Grad 14 moment approximation
[27] predicts n/7r ~ 2P/3 in the high energy limit. With the relation € = 3P for ultra-relativistic
particles, Egs. (6.11) and (6.12) reduce to

Ui

1

Vhhe = yp— = 5 0.1 (6.13)
1 5

02 | = 3};’7 3 =7g = 0.56. (6.14)

In Eq. (6.14), the fact that the bulk viscosity ¢ of ultra-relativistic particles vanishes is used.
Second approach is based on a field theory with the projection operator method [36, 37]. In the
leading order (non-interaction) calculation, this method predicts

P

vl = — P (6.15)
1 2¢-3P 4 P

D, oy = A = 6.16

VLl =3-57TPp T3P (6.16)

1f one sets € = 3P, which is the case of Stefan-Boltzmann (SB) limit, and the sound speed ¢ = 1/3, v} — c? must
be smaller than 2/3 from the causality condition of sound mode.
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for a relativistic bosonic fluid. If one assumes the ultra-relativistic limit, Eqgs. (6.15) and (6.16) become
v2|g ~ 0.25 and v g ~ 0.67.

Third prediction is given by a string theory with gauge/gravity correspondence. This theory
provides

1

U%’ist = 1 _9m2’ (6.17)
2n
“%|st = m(l - cf) + Cg- (6.18)

Here Eq. (6.17) is derived in conformal hydrodynamic equations and takes a constant value v%}st ~ (.36
(78, 86]. On the other hand, Eq. (6.18) is derived by non-conformal theory [87] where relations
¢/n = 2(1/3 — c2) and 71 = 7 are used. If one sets c2 = 1/3, Eq. (6.18) is coincident to conformal
situation and leads to v%|st ~ 0.85.

The lattice QCD simulations without quarks constrain the characteristic speeds as

0.5 < v < 0.6, (6.19)
1.0 S vf |t — 2 S 1.2 (6.20)

for the range of temperature 1.5 < T/T, < 4. Both of v%hat and v%hat are larger than the above
theoretical predictions. Our numerical results indicate that the propagation of sound mode in second
order viscous hydrodynamics exceeds the speed of light. Thus the second order hydrodynamic models
with bulk viscous effect must need some correction to preserve the causality.

It should be noted that these predictions for the characteristic speeds assume different situations,
respectively. The kinetic results with Grad 14 moment approximation is obtained by classical Boltz-
mann equation in which quantum effects are not included. It is confirmed that quantum effects make
a qualitative difference to the behavior of {/my at low T" [37]. Quantum effects should be taken into
account in the above arguments. The field theoretical predictions are obtained by an application of the
chiral perturbation theory to non-interacting relativistic bosonic fluids in the hadron phase. However,
we now focus on the strongly interacting or coupled QCD system. The interaction between particles
can change the behavior of each characteristic speed. The conformal or non-conformal gauge/gravity
correspondence are powerful tools for investigations of the strongly coupled gauge theory. However,
it is not QCD itself but rather an effective model because of its conformal invariance and/or the
supersymmetry. One must attend to these differences when comparing the predictions each other or
employing them on hydrodynamic simulations.

Finally, we estimate the relaxation times 7, and 77 with our lattice results. From Egs. (6.11) and
(6.12) with the thermodynamic relation € + P = T's, the relaxation times are described as

1 7 1 ¢

S T ¢ 6.21
4 v2T s n (v%—%v%—cg)Ts (6.21)

The specific shear viscosity 7/s is frequently presented in discussions of perfect fluidity of the hot
QCD matter created by ultra-relativistic heavy ion collisions. The value 1/s = 1/(4r) is conjectured
as a lower bound by gauge/gravity correspondence [88]. On the other hand, comparisons of relativistic
- viscous hydrodynamic results with experimental data 5 constrain an upper limit n/s < 2—2.5 x 1/(4n)
(19, 21, 89]. From these limits of n/s, 1/{7x(e + P)} on the lattice, and Eq. (6.21), 7 is roughly
estimated as 7, = O(1071)-O(102) fm. In a similar way, 71 can be evaluated with a relation

SThe elliptic flow is often used as the experimental data due to its strong sensitivity to the shear viscosity (see, for
instance, Ref. [18]). In general, particle production in a transverse plane with respect to a reaction plane ¥, as a function
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¢/s = 2n/s(1/3 — c2) obtained from string theory, rq = O(107) — O(1072) fm. We, however, note
that the propagation of sound mode violates the causality condition in our lattice measurements.

Although the above estimates are rough arguments, the viscous effects for the hot QCD matter
may relax with a short time compared to a typical time scale of heavy ion collisions at the RHIC
and LHC ~ O(10') fm. These short relaxation times supports the validity of ideal hydrodynamic
models for ultra-relativistic heavy ion collisions. Moreover, in the hadron phase for a temperature
range 140 < T < 200 MeV, 7, is predicted as 7, ~ 2 — 4 fm in Ref [34]. This large difference of 7,’s
above and below T, may be considered as a consequence of the deconfinement phase transition. We
note that our estimates of the relaxation times are based on the assumption of QGP with low specific
shear viscosity. While this assumption is supported by the first principle calculations [30, 31], there
is not enough understanding of it. New developments are desirable for this subject.

summary

e We measured the thermodynamic quantities, the canonical correlation of energy momentum
tensor, the viscosity to relaxation time ratios, and the characteristic speeds with SU(3) lattice
gauge simulation.

e To obtain the viscosity to relaxation time ratios, we have performed two regularization prescrip-
tions, i.e. the subtractions of the vacuum contribution and the contact terms.

e While the behavior of /7, is mostly dominated by not the canonical correlation of §T;; but the
contact terms, the correlation of §T;; gives a significant contribution to {/m.

e We found the constraints of characteristic speeds 0.5 < v%hat <0.6 and 1.0 < v%llat —c2<1.2

from SU(3) lattice measurements and they are larger than any other theoretical predictions.

e The lattice results indicate that vr preserves but vy, violates the causality condition in the second
order viscous hydrodynamics, so that some correction may be required to bulk channel.

o The relaxation times of hot gluonic matter are expected to be so short, O(1071)-O(10~2), com-
pared to a time scale of heavy ion collisions, which supports the success of ideal hydrodynamic
description of the evolution of QGP.

of an azimuthal angle ¢ can be described as

BN 1 &N >
pEN_L_dN_ (1 #23 sncosio - )] ) (6.22)

where v, is the elliptic low. It denotes an azimuthal anisotropy of the particle production. The RHIC and LHC observed
large v, that supports collective behavior of the hot QCD matter.
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Chapter 7

Conclusions and Outlook

In this thesis, we measured the viscosity to relaxation time ratios for the range of temperature 0.5 <
T/T. < 4 with SU(3) lattice gauge simulation. We first formulated the relations between the ratio
and the canonical correlation of T),, for quantum field theory (subsection 5.2.2). The relations were
obtained from an application of the relaxation time approximation to Kubo formulas. To obtain the
physical ratios from the relations, we performed two regularization prescriptions for the canonical
correlations on the lattice. One is the vacuum subtraction and another is the removal of contact terms
(section 5.3). ‘

The canonical correlations include a temperature independent divergence. We took differences
between the canonical correlations at 7' # 0 and T' = 0 to remove the divergence (subsection 5.3.1).
In addition to this regularization procedure, we also removed the contact terms which depend on
temperature. The contact terms do not contribute to Kubo formulas due to the real-time integral
(subsection 5.3.2). On the other hand, they give a finite contribution to the canonical correlations.
Therefore the contact terms must be removed in lattice measurements of the canonical correlations.
We used the leading order OPE results for the estimates of contact terms (section 5.4). They are
expressed by the thermodynamic quantities, e + P and 6, which are lattice observables.

We obtained the sum of ¢ + P from measurements of Tf“} directly and the trace anomaly 6 by a
conventional approach with Wilson gauge action (subsection 6.3.2). By the first principle calculation,
we determined the temperature dependence of the ratio in shear and bulk channels, 1/7, and ¢/
(subsections 6.3.3 and 6.3.4). We found that both channels show rapid increasing behavior above
T but its origin is different for each ratio. The ratio /7, is mainly governed by not the canonical
correlation but the contact terms. In the bulk channel, the canonical correlation contributes {/mr as
well as the contact terms. We constrained the free parameters of relativistic dissipative hydrodynamic
models by these analyses. ‘

Then we analyzed the characteristic speeds of transverse and sound modes, ’U%« and v%, for the same
temperature range (subsection 6.3.5). They relate to the ratios n/7, {/7r, and the thermodynamic
quantities (section 4.3). We found that vZ in the hot gluon medium takes 0.5 < v2 < 0.6 for
1.5 < T'/T, < 4. This indicates that the propagation of this mode preserves the causality in the
second order hydrodynamics. On the other hand, from our lattice measurements, we evaluated v% as
1.0 S v? —c?2 < 1.2 for 1.5 < T/T. S 4. This means that the propagation of sound mode excesses
the speed of light. For the sake of causality, some prescription should be required to the gluonic fluid
with bulk viscous effect. :

We compared our first principle results of the characteristic speeds with other theoretical predic-
tions (section 6.4); kinetic theory with moment approximation, field theory with projection operator
method, and string theory with gauge/gravity correspondence. We found that both of our lattice re-
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sults of v% and v% are larger than any other theoretical predictions. We should note that each analysis
assumes & different situation.

We estimated the relaxation times of shear and bulk currents for the hot gluonic matter under an
assumption of the low specific shear viscosity 1/s (section 6.4). Both relaxation times take the value
of O(1071)-0(1072) fm. The time scale is shorter than that of heavy ion collisions at the RHIC and
LHC. These are rough estimates but consistent with the ideal hydrodynamical description of hot QCD
matter created by the relativistic heavy ion collisions. Moreover our result of 7, is shorter than that
of hadronic matter 7 ~ O(1) fm. This may suggest the deconfinement phase transition.

We refer to several remarks on the present study and future directions:

Relaxation of correlation function

In the present study, we considered that each correlation function of T}, decays exponentially
with single relaxation time. However several relaxation times may exist for each dissipative
current. Also the relaxation times may decay not exponentially but power law. In these cases,
the relaxation time approximation does not apply to the correlation functions simply.

Newtonian or Non-Newtonian fluid

We identified the relaxation times in Eq. (5.46) with the ones in Eq. (4.44), which are derived
from a linearity between dissipative currents and thermodynamic forces. This means that the
hot gluonic matter is Newtonian fluid, but it is non-trivial. If the linearity does not hold, i.e.
Non-Newtonian fluid case, our formulation of the ratios may be modified.

Improvement of statistical precision

The analyses of the ratios of transport coefficients need large amounts of data ~ O(107). Espe-
cially, the statistical errors are large in T/T, < 1.5. We cannot make definitive conclusions for
the observables there. To raise the statistical precision in the vicinity of T;, one needs additional
enormous quantity of data and computer time. However it may not be a practical approach.

Some prescription to reduce the statistical error is desired.

Dynamical quarks

Our lattice simulations are in the quenched approximation, i.e. with no dynamical quarks. Since
the gluons are dominant in the relativistic heavy ion collisions, the qualitative behavior of our
results may not change. However the contribution from quarks is required for more quantitative
and accurate comparison with experiments.

Ratios of other transport coefficients

Our formulation of the viscosity to relaxation time ratios are applicable to ratios of other trans-
port coeflicients. The heat conductivity and the diffusion constant to corresponding relaxation
time ratios, xK/74 and D/7p, are such examples. The former (latter) relates to the canonical
correlation of Tj4 (6N,), and we need to take into account dynamical quarks in lattice measure-
ments.

Specific heat

The specific heat ¢y relates to a canonical correlation of §T44. The correlation does not need the
subtraction of vacuum and contact terms because of temporal translation symmetry of Ty, (see
appendix C). If one obtains cy from lattice measurements, the speed of sound can be evaluated
by a relation c2 = s/cy. We have the entropy density s from lattice simulations, so that the

temperature dependence of v% can be determined with Eq. (4.64).

From creation to exploration of matter in extreme states ; the hot/dence QCD matter physics
embarks on new era.
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Appendix A

QCD Thermodynamics

A.1 Simple model for QCD thermodynamics

Here we argue that the deconfinement phase transition occurs at zero baryon density with a simple
model. The main purpose is a derivation of the thermodynamic quantities in the hadron (confined)
and QGP (deconfined) phases. The energy density €, the pressure P, and the entropy density s are
written by using the partition function Z as

T29InZ olnZ c+ P

= P=T—= = Al
TV ar v * °T T (A1)
Let us consider free pion gas as a hadron phase. Its partition function is given by
d’k _E(k)/T s
In Z7|- = —d-,rV W lIl(]. — € ), E(k) = k2 -+ m72|., . (A2)

where d, denotes the isospin degrees of freedom for plons, dr = 3. Setting m, = 0 for simplicity
(without loss of generality), Eq. (A.2) becomes

InZ, = VT3/ dz z%1In(1 — e™%) (A.3)
vr \%
=dr g F(4)<( ) = dxr §6W2T3 (A.4)

In the first line we used x = k/T. In the second equality, we performed the integration by part . ((s)
is Riemanns’s zeta function defined by

)= (4.5)
n=1
and ((4) = 7*/90. Thus the energy density and the pressure for the pion gas are given by
€x = T‘;ag’TZ =d, % 24 (A;6)
Py = Taglvz,, = d,,%HT"‘, (A.7)
or = dy %HT?’ (A.8)
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Next, let us consider the QGP phase. We assume here that the QGP phase is composed of free
massless quarks and gluons. Eq. (A.2) is applied to the gluon gas with the degrees of freedom of
gluons is dy = (spin) x (color) = 2 x (N2 — 1). Thus the gluon partition function reads

v
In Z, = dg—m2T3. (A.9)
90
On the other hand, the partition function of quarks is given by
7 d3k _E(k)/T
mzfz%vg/fiﬁﬂm1+e KoLy, (A.10)
where the baryon chemical potential equals to zero. The partition function for quark gas becomes
TV
InZz, = dqgwr?:r?’, (A.11)

where the degrees of freedom of a quark is given by dy = (spin) % (g9 and ) X (color) x (flavor) =
2 x 2 x N. x Ny. The factor 7/8 in Eq. (A.11) comes from the Fermi statistics of quarks (see
Appendix. A.2.2).

From Egs. (A.9) and (A.11), we obtain the partition function and the thermodynamics quantities
in the QGP phase :

g, = dp;/—OW2T3, dp =dg + gdq, (A.12)

Gy = dp%ﬂ'2T4 + B, (A.13)
1

By = dp-9—0W2T4 — B, (A.14)
4

B, = dP%HT? (A.15)

Here B is the bag constant, which is introduced to incorporate the effect that the vacuum energy
density in the quark-gluon gas is higher than that in the hadron one.

We show the temperature dependence of the energy density, the pressure, and the entropy density
schematically in Fig. A.1-A.3. The pressures P, and P, become the same value at some critical
temperature T¢,

P (Te) = Pp(Tc)- ' (A.16)
e € gep Y o §
Poep S oGP
Phase transition

+B 8'7 R—r Sfr

I T / I T z T

=5

Figure A.1: e vs T. Figure A.2: P vs T Figure A.3: s vs T.
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Since the higher pressure phase is more stable, a phase transition occurs at T.. From Egs. (A.7),
(A.14), and (A.16), the critical temperature is written as

- 90B

c = m- (A.17)

In the case of N, = 3 and Ny = 2, each degree of freedom is given by d; = 16, d; = 24, and d, = 37,
respectively. If one sets the bag constant B1/4 ~ 220 MeV, the critical temperature becomes T, ~ 160
MeV.

A.2 Derivation of partition functions

A.2.1 Free pion gas

First we derivate the partition function of free pion gas. In the following, we assume the vanishing
chemical potential case. The thermodynamic potential €2, is given by

3
Q= d,,VT/ (—% In(1 - "), E(k) = V&2 +m2. (A.18)

Expanding the log term, Eq. (A.18) becomes

o0 o0
Qp = —d, VT / LRELS %e——b}(’“)
0 n=1

272
m2vVT? 1 nm
=g ke (7). (A.19)

where we introduced modified Bessel function K3(z) in the second equality,

x0
/0 dk K2~ = m2TK, (%) . (A.20)

Using the expansion of Ky(x) = 2/z% + O(z°), Eq. (A.19) is calculated as

m2VT? 1 m 1 o2m 1 3m
= —ldy——e— | =Ka(= — - — -
2 o2 [12 2(7) + g Kal) + gz Kol ) + ]
o mAVT? (1 2, >+<1 2, >+(1 2 )+ ]
= di || G+ gt gt |
2m () 2 (3 3 (3R)
VIt 1 VIt
n=1

Here we took the massless limit in the third line. Thus the partition function of free pion gas Eq. (A.4)
is derived from Eq. (A.21),

I = dp—m2T3. (A.22)
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A.2.2 Free quark-gluon gas

Since the same derivation for the free pion gas is applied to free gluon gas, the partition function of
gluons is given by

T =dy—n?T3. (A.23)

While pions and gluons are governed by the Bose statistics, quarks follow Fermi statistics. Thus the
thermodynamic potential for free quark gas is calculated to be

1% d3k _E®)
Qq:dq-f Wln(l-#—e T )
m2VT? N (—1)»H nm
= 4 272 n? K2 (T)
n=1
__dm2VT212_i2+l2_
o |EGE B FOpP
g VT4 e (_1)n+1
- 92 “met nA
1. vrt
= —dg(1 - 2—3)—7;2—4(4)' (A.24)

In the last equality, we used the formula

0o (_11):+1 _ (1 _ 21_3)C(S). (A25)
n=1

We thus obtain the partition function of quark gas Eq. (A.11)

anq:—&:sz

— 273, A.
T ~ %“g90”" (A.26)

Since a total partition function is given by a product of partition functions for each degree of freedom,
the partition function of quark-gluon gas is written as

InZp=InZ;+InZ; = d,,%ﬁ:r?', dp =dg + gdq. (A.27)
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Appendix B

Coefhicient of Contact Terms

In this appendix, we evaluate the coefficient of contact terms by a perturbative calculation of Euclidean
correlator

Guvpo(T,y) = <TuV(-T)TPU(y)> (B.1)
for free SU(N.) gauge theory at finite temperature 1" (see also appendix in Ref. [90]). We have

Guvpo (%, y) =((8,A%(x) — 8o A%(x)) (8, AL (z) — BaAL(T)) (8, A%(y) — 5 A5(y)) (8- A (y) — 834 (1))
_ i(P Q)xei(R S) a _ a a o a )
=y /P ons et +ON((PLAL(P) PaA“(P))(QuAa(Q) QRaA7(Q))
x (R,A%(R) — RgA5(R))(S,45(S) — SsAL(S))),

(B.2)
where ) [, =T, [ Td%g. The Fourier transformation of G0 (,0) becomes
Gvpe(T / dT/dS:ce“ZTzGng(x 0) (B.3)

— d’T/d3.T,‘6_iT$ / ei(P-{-Q)a:
/0 Z PQRS

x ((PuA%(P) — PaAy(P))(QuAL(Q) — QaAL(Q)) (R, AB(R) — RaAL(R))(Ss A5(S) — SpA5(S))).

(B.4)

Each term composing the correlator is calculated as follows
2 /PQRS e P90 P,Qu RS, (A% (P)A%(Q) A (R) A5(S))
> /pQRs (PO QU RS, ((AL(P) AB(R)(AL(Q) AG(S)) + (AL(P)A}(9))(A%(Q) 45(R)))
= Z /P o el(P+Q)z_rQ2( PuQuP.Q0b0sbas + PuQuPyQ,00a0as)5%6™

SEY / GPrQu_4 P2Q2 P.Q.(P,Qo + P,Q,), (B.5)
where we used Feynman gauge

(A%(P) Ab(R)) = 1

- 1
T5np+nR,0(27r)36(p + 1:')5056abﬁ.
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Calculating other terms as well, Eq. (B.4) reduces to

Glu/po‘ _ _1 / dT/da.TZ/ —'L(T P—Q)z
PQ

P2Q2[ (PuPoQpQo + PpPrQu) + PA(QuQpbuo + QuQobp) + QX(PuPobys + PuPoby,)

+ PR{2P,Qu0ps + (PQs + FoQp)ouw — (Fu@p + BoQu)dvs — (PQo + PoQu)dpp
= (PuQo + PoQu)up — (PuQp + PoQu)0uo} + (PQ)*(8p0uc + 8sbip)]- (B.7)

Let us consider y=p=1and v = 0 = 2,

/3 .
G1212(T) =(N? — 1)/ dT/d%Z/ e—iT—P-Q)z
0 PQ
1
X P2Q? [4pip2qige + P22 + Q%*p? — 2PQ(p1g2 + paqi) + (PQ)2]. (B.8)

Substituting T'— @ and Q — —K after P integration, one obtains

G1212(Q) =(N? — TZ/ (dBk
X mwfh + k1)(g2 + ko)kika + (Q + K)%k3 + K%(qy + k1)?
-2Q+ K)K {(q1 + k1)k1 + (g2 + ka)ko} + ((Q + K)K)2] (B.9)

In case of Q = (g4,0), the correlator reads

3
Gi212(qs) =(N? — 1)TZ/%

1 212 212 2,2 2 2 2
X m[4klk2 +(Q@+ K)*ks + K*kif — 2(Q + K)K (ki + k%) + ((Q + K)K)?).
(B.10)
Let us calculate Matsubara sum.
1 1
TZK2 Zk2+k2_ ; ZIC4 TZ(’LIM* ik4+k)ﬂ
1 s
__Tgsglilu—skﬁ Z:‘/27rzeﬁz—1z~sl<:2l~c
_ 1 s _ n(k)—n(=k) 14+2n(k)
> Bsk 12k 2k T 2% (B-11)
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where n(k) denotes the Bose distribution function. Calculating other terms as well, one obtains

_ 14 2n(k)
1
TZ Q+ K) o% (B.12)
14 2n 1
T = , B.13
Z (Q+ K)2K2 [q4 + ZZICQ4 2 — ZikQ4:| ( )
(Q+ K)K 1+ 2n ikqy 1kqs
= B.14
TZ (Q+ K)2K? q3 + 2ikqy q3 — 2ikqy ( )
(Q+ K)K _14+2n(k k%q3 k%q?
= 1
Tz Q + K 2K2 2k [Q4 + 2Zk(I4 + qZ — 2ikQ4 (B 5)
Taking the limit ¢4 — oo, the correlator becomes
d3k 1+ 2n(k)
IVZ k2 2y k@
hm G1212(qs) = ( )/ Gr 2% [(kf + k3) — 2k
2 d3k
——(N2-1 k(1 + 2n(k
SV 1) [ k(14 2n(h)
§(N2 ~1) dk k3(1 + 2n(k))
— 022 (N2 — 1)mT. : (B.16)

90

In the second equality we used a relation 3k? = k2 (i = 1,2,3) and the polar coordinate in the third
equality. In the last equality, we calculated as

1 . e—ﬂk
3,1y — 3 _ 3
/dkkn(k)_/dkk ﬁk—_—/dkkm

- / dkk32e—nﬁ’° = Z / dkk3e Pk
n=1 n=1
6 = 1 6t
=5 > = 6T4¢(4) = 9—0T4. (B.17)
n=1

The divergence in Eq. (B.16) is removed by zero-temperature subtraction of G"(qs). Recalling the
pressure Eq. (A.7) and the degrees of freedom of SU(V.) gauge field (see also Appendix. A), the
coeflicient of contact terms in the shear channel for the free gauge theory is given by

_e—!—P
5

q}i_rfloo G1212(94)7-0 = C121208(Tag) -0 = —2—(N2 )m?T* = 2P = (B.18)

Here we used a relation ¢ = 3P for the free gauge theory. Thus the first term in Eq. (5.85) can be
confirmed and the second does not appear because of € — 3P vanishes in the free gauge theory.
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Appendix C
Specific Heat

The specific heat cy is related to a fluctuation of energy density de2,
14
cy = —(562). (C.1)

Rewriting € with a component of the energy-momentum tensor T4, one obtains

(8€?) = (3T%)

/ 2
- <(T / T 5T44<A>) )

1/T _ _
Y /0 A 6T 4a(2)6T1a(0)) (3
- (5T44(2LT)5T44(0)>. (C.3)

In the forth line, we used a translation symmetry of T4 with respect to time, Tys(A) = Tua(55)-
Since Eq. (C.3) does not include an identical space-time point, the divergence and contact terms in
Eq. (C.2) have no contribution to it. Thus the measurements of specific heat does not required the
regularization prescriptions. The specific heat is given by

Cv__V
T3~ T%

— 75671 )Tia0)

(6T4y)

= N3N$(5T44(%)5T44(0)>1“. (C.4)

Furthermore, the speed of sound c; relates to the entropy density s and cy as follows,

_ 9P _ (9P/8T)y _ s/T°
S B = @)y~ e T (C:5)

Using this relation with Eq. (4.64), the characteristic speed of sound mode vy, can be determined by
lattice measurements.
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Appendix D

Tables of Numerical Results

| 8 N[N [ (T3)™ x10° [ (T3l )t x10° [ " /T* | Neont |
6.499 | 323 | 4 | —1636069(310) | —1636028(314) | 4.1882(8) | 300,000
6 | —257173(129) | —257132(139) | 3.3324(18) | 1,000,000
8 | —72503(109) | —72462(121) | 2.9680(50) | 1,000,000
32 —41(53) 0(-) 0(—) 1,000, 000
6.205 | 325 | 4 | —1488702(290) | —1488654(306) | 3.8110(8) | 300,000
6 | —221949(231) | —221901(251) | 2.8758(33) | 300,000
8 | —55451(194) | —55403(217) | 2.2693(89) | 300,000
32 —48(97) 0(-) 0(—) 300, 000
6.000 | 325 | 4 | —1338696(301) | —1338602(330) | 3.4268(8) | 300,000
6 | —171995(234) | —171901(271) | 2.2278(35) | 300,000
8 | —1317(191) —1223(234) | 0.0501(96) | 300,000
16 —94(136) 0(-) 0(-) 300, 000
6.000 | 163 | 4 | —1338351(657) | —1338345(723) | 3.4262(19) | 500,000
6 | —170683(528) | —170677(608) | 2.2120(79) | 500,000
8 | —6679(439) —6673(533) | 0.2733(218) | 500,000
16 —6(302) 0(-) 0(—) 500, 000

Table D.1: (T§;)#* and the energy density ¢*.
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| /8 [ Ng | N‘r l <F2>lat l <F‘2>})at ‘ (6— 3P)/T4 | NConf |
6.499 | 32° | 4 | —1.2771263(16) | —0.0005556(17) | 0.3213(10) [ 300,000
6 | —1.2767567(14) | —0.0001860(15) | 0.5445(44) | 300,000
8 | —1.2766712(12) | —0.0001005(13) | 0.9299(120) | 300,000
32 | —1.2765707(6) 0(-) 0(-) 300, 000
6.205 [ 323 | 4 | —1.2293091(53) | —0.0011310(57) | 0.5844(29) | 40,000
6 | —1.2286418(46) | —0.0004637(50) | 1.2129(131) | 40,000
8 | —1.2284464(39) | —0.0002683(44) | 2.2180(364) | 40,000
32 | —1.2281781(20) 0(-) 0(—-) 40,000
6.000 | 323 | 4 | —1.1897434(23) | —0.0023742(26) | 1.0740(12) | 300,000
6 | —1.1884324(20) | —0.0010632(24) | 2.4349(55) | 300,000
8 | —1.1873814(19) | —0.0000122(23) | 0.08380(164) | 300,000
16 | —1.1873692(13) 0(—) 0(-) 300, 000
6.000 | 163 | 4 | —1.1897426(64) | —0.0023737(74) | 1.0738(33) | 300,000
6 | —1.1884371(56) | —0.0010682(67) | 2.4464(153) | 300,000
8 | —1.1874523(55) | —0.0000834(66) | 0.6039(486) | 300,000
16 | —1.1873689(37) 0(~) 0(-) 300, 000
Table D.2: Trace anomaly § = ¢ — 3P = —f3(g)(F?)o/2g. Field strength tensor F),, is defined by
standard plaquette.
I B l Ny I Ny | (N-T8)"™ x 10M I (N-THh)§" x 101 I (V{T$) /T I Neont
6.499 | 32° | 4 183142(470) —1695(537) —0.090175(28569) | 300,000
6 184891(183) 54(317) 0.014543(85376) | 2,000,000
8 185144(179) 307(315) 0.261320(268130) | 2,100,000
32 184837(259) 0(-) 0(-) 1,000, 000
6.205 | 32° | 4 180885(316) —2808(484) —0.140546(24225) | 650,000
6 183299(284) —394(464) —0.167321(99835) | 830,000
8 183751(259) 58(449) 0.046448(359574) | 1,000,000
32 183693(367) 0(-) 0(-) 510, 000
6.000 | 32° | 4 180194(363) —3310(455) —0.155537(21380) | 500,000
6 182151(279) —1353(391) —0.321861(93014) | 850,000
8 183989(342) 485(438) 0.364642(329306) 580, 000
16 183504(274) 0(-) 0(-) 890, 000
(B[ N2 [N, [ (N I5™ x 100 [ (NIBE <10 | (VUB/TY | Neow
6.000 | 16% | 4 144325(214) —2650(2988) —0.155654(17550) | 900,000
6 146128(206) —847(293) —0.251981(87126) | 1,000,000
8 146777(208) —198(295) —0.186080(277147) | 1,000,000
16 146975(209) 0(—-) 0(-) 1,000, 000

Table D.3: Canonical correlation of shear channel with vacuum subtraction.
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[ 8 N[N, [(NOTENH™ x 10" | (N, (OTF)A)§* x 10" | Neons
6.499 | 323 | 4 96267(252) 8782(281) 300, 000
6 89064(89) 1579(153) 1,990, 000
8 88028(86) 543(152) 2,100, 000
32 87485(125) 0(-) 1,000, 000
6.205 | 323 | 4 94471(165) 7615(238) 650, 000
6 88178(137) 1322(219) 830, 000
8 87257(124) 401(211) 1, 000, 000
32 86856(171) 0(-) 510,000
6.000 | 323 | 4 93224(187) 6497(277) 500, 000
6 88014(136) 1287(261) 850,000
8 87003(161) 276(275) 580, 000
16 86727(131) 0(-) 890, 000
l ;8 | Ng l N, l <Nr(m.l.)2>lat % 109 I (Nr(m.l.)2>%)at % 109 l Neont
6.000 | 16° | 4 75056(112) 5446(149) 900, 000
6 70180(98) 570(139) 1,000, 000
8 69645(99) 35(139) 1,000, 000
16 69610(98) 0(-) 1, 000, 000

J

Table D.4: Canonical correlation of 675" with vacuum subtraction.

| B | N3N | (N6TE6S)2 x 101 | (N,6T565)8 x 101 | Neons
6.499 [32° [ 4 2387(715) 2818(804) 300, 000
6 800(265) 1231(453) 1,990,000
8 285(255) 716(448) 2,100,000
32 —431(368) 0(-) 1,000, 000
6.205 [ 325 | 4 —1034(968) —605(2243) 190, 000
6 680(1045) 1109(2277) 150, 000
8 —605(860) —176(2198) 220, 000
32 —429(2023) 0(-) 40, 000
6.000 | 32 [ 4 6366(644) ~5399(797) 500, 000
6 3760(490) 2793(679) 850, 000
8 651(580) —316(747) 580, 000
16 967(470) 0(-) 890, 000
| B | N3N, | (NOTE68)2t x 1010 | (N0T56S8)8 x 10'° | Neont
6.000 | 16° [ 4 5039(391) 5014(527) 900, 000
6 2952(358) 2927(503) 1,000, 000
8 1019(360) 994(505) 1,000,000
16 25(354) 0(-) 1,000, 000

Table D.5: Product of 67" and the SU(3) gauge action §S with vacuum subtraction.
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[ B [ N3N, [ (N85 x 107 | (N,0578 x 107 | Noot |
6.499 | 325 | 4 15079(45) —192(51) 300, 000
6 15277(18) 6(31) 1,990, 000
8 15254(17) ~17(30) 2,100, 000
32 15271(25) 0(-) 1,000, 000
6.205 | 32% | 4 18031(69) —716(181) 190, 000
6 18390(81) —357(186) 150, 000
8 18397(67) —350(180) 220, 000
32 18747(167) 0(-) 40,000
6.000 | 323 | 4 21288(53) —1212(69) 500, 000
6 22116(44) —384(62) 850, 000
8 22416(54) —84(70) 580, 000
16 22500(44) 0(-) 890, 000
B [ N3N, | (N8 x 10° | (N,657)B x 10° | Noowt |
6.000 | 165 | 4 17117(32) —851(46) 900, 000
6 17732(32) —236(46) 1,000, 000
8 18141(34) 173(47) 1,000, 000
16 17968(33) 0(-) 1,000, 000

Table D.6: Canonical correlation of the trace anomaly with vacuum subtraction.

LB [ N[N | n/{r(e+P)} | ¢/{mle+P)} |

6.499 | 322 | 4 | 0.49277(611) 0.34450(642)
6 | 0.53190(2337) | 0.40994(2337)
8 | 0.63621(8256) | 0.47220(8187)
6.205 | 323 | 4 | 0.48985(587) | 0.31665(1604)
6 | 0.53687(3834) | 0.30919(10985)
8 | 0.68345(14919) | —0.08925(42872)
6.000 | 325 | 4 | 0.50686(595) 0.35252(667)
6 | 0.53776(4044) | 0.47612(4687)
8 | 8.0868(6.5294) | —1.2540(7.3648)
6.000 | 163 | 4 | 0.50682(442) 0.36907(480)
6 | 0.57055(3615) | 0.47948(3730)
8 | 0.18675(101436) |  4.0027(9697)

Table D.7: The viscosity to relaxation time ratios.
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