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Abstract

Quark-Gluon Plasma (QGP) is a matter expected to exist in the early universe. Relativistic heavy ion
collision is only experimental approach to create the QGP on the earth. Recent heavy ion experimental
data are known to be reproduced by relativistic hydrodynamic models with Iow viscosity. This fact
provided a new aspect of matter, i.e. strongly coupled or correlated QGP for us. However the
hydrodynamic models depend on several inputs, such as equation of state and transport coefficients.
It is highly desirable to determine these inputs by microscopic theory. In this thesis, we focus on
Israel-Stewart (IS) theory and the ratios of viscosity to corresponding relaxation time. IS theory is a
causal dissipative hydrodynamics which is frequently used by the hydrodynamic models. The ratios
are related to canonical correlations of energy-momentum tensor by an application of relaxation-
time approximation to Kubo formulas. We measure the canonical correlations with SU(3) lattice
gauge simulation for the temperature range reached by RHIC and LHC. We show that two kinds of
subtraction (vacuum and contact terms subtractions) are required for the correlations on the lattice to
obtain the ratios. FYom the analyses, the transport coefficients are constrained by the first principle.
Then we also analyze characteristic speed of transverse and sound modes with the ratios. We find that
the sound mode can be superluminal from our lattice measurements. This means that an application
of the IS theory to the hot QCD matter requires some modification to keep the causalit5'.
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Chapter 1

Introduction

Standard Model

Standard model is a theoretical framework to describe elementarS' particles and three fundamental
interactions among them, i.e. strong, electromagnet'ic, and weak ,interactions. Quarks and leptons
are the smallest elements constructing our world in the standard modei (Fig. 1,1). The quarks are
divided into three generations and carr5' internal degrees of freedom called fl,auor and color. There
are six flavors (up (u), down (d), charm (c), strange (s), top (t), and bottom (b)) and three colors
(red (R), green (G), and blue (B)), and the anti-quarks carr;'anti-colors (R, G, and B). The quarks
are affected by the strong i.nteract'ion because of the color charge. The leptons are also classified into
three generations i.e. electron (e), muon (pr,), tau (z), and neutrinos (us, up, and u,). The Ieptons
do not feel the strong interaction because the5' 6,1s colorless, The strong interaction is described by
an exchange of elementary particle called gluon (g). Particles which mediate interactions are called
gauge particles. The gluon is one of the gauge particles. In the standard model, ph,otons (1) and weak
bosons (W, Z) are also known as the gauge particles which mediate the electromagnetic and weak
interactions, respectively. Since the gluons also carry the color charge, they interact not only with
quarks but also themselves (self-interaction). This is an inherent property of the gluons. Because of
the self-interaction, quark-gluon systems show various non-trivial aspects as discussed in the following.
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Figure 1.1: Standard model.



Asymptotic Fleedom

The first principle that governs the strong interaction is Quantum Chromodynamics (QCD). QCD
is described by SU(3) gauge field theory. One of the most important features of QCD is asymptot'ic

freedom [1, 2]. According to a perturbative calculation of renormalization group equation

=β (g), (1・
1)

QCD couplirg a" in the leading order behaves as

a"(rc) :

κ銘

θ
2

4π
(1.2)

(1.3)

(1.4)

(1.5)

47rb0 1n(κ 2/AろσD)'

bO=7両

'(11~:・
′
),

where g, n, arrd N7 are the running coupling constant, the renormalization scale, and the number of
fl.avors, respectively. Ak) i" called the beta function. hgcD is called QCD scale parameter which is
determined by experiments, Aqco - 200 MeV. In the case of Ny ( 16, the running coupling constant
becomes small as increasing the renormalization scale rc. Since the high (low) energlr scale corresponds
to the short (long) distance scale, the running coupling constant g between two color charges becomes
small (large) in the short (long) distance,

high rc <+ short distance scale (* small g,

Iow n (* Iong distance scale +> large g.

This property is called the asymptotic freedom. Note that the above argument is based on perturbation
theory. The behavior of the running coupling constant in the low energy scale has to be investigated
by non-perturbative approaches because of the large coupling.

αs(Q)

Aprll 20t 2

=≡ QCD os(ヽ :′ )=O HS■ ±()(X'(,7

to 
e [c.vl

Figure 1.2: Asymptotic freedom of QCD coupling a" from Ref. [3].



Confinement of Color

Although the quarks and the gluons are regarded as elementary particles in the standard model,
no one has ever observed single quark or gluon as an isolated state. There are only several indirect
evidences for their existences in experiments. Because of the asymptotic freedom, they are always
confined inside particles called hadrons. The hadrons are classified into two kinds, baryons and mesons.
In constituent quark model, the bar5'ens are composed of three quarks with different colors among them.
On the other hand, the mesons consist of a quark and an anti-quark having opposite colors. Thus the
baryons and mesons are always white, i.e. color singlet states (Fig. 1.3). Only white particles can be
obsen'ed in experiments. If one attempts to isolate single quark or gluon from hadrons, infinite energ)r
is required. This is a phenomenological interpretation of confinement of color.

Baryon Meson

Figure 1'3: Barl'ons and mesons in the constituent quark model.

Deconftnement Phase Tlansition

The quarks and the gluons are expected to be released from hadrons in extremely high temperature
and/or bary'on densitS' conditions. In such situations, a large number of hadrons overlap each other
and the hadronic matter makes a transition to the quark-gluon one (Fig. 1.4). The quarks and the
gluons can exist as isolated state in the matter. This phenomenon is called deconfi,nement phase
transition. There are two natural and one artificial candidates where such a deconfined matter is
realized. The candidates in nature are earlg un'i,uerse and compact stars. The artificial situation is
heauy ion colli,sions. In the early universe and the relativistic heavy ion collision, high temperature
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Figure 1.4: An examlrle of deconfinement phase transition.



and los. baryon density state is realized. The deconfined matter under such a condition is called
Quarlc-Gluon Plasma (QGP) because of an analogy with the ionized plasma, The electrons and nuclei
that form the atoms are ionized in the plasma. Similarly the quarks and the gluons that constitute
hadrons are separated in the QGP. On the other hand, the deconfined matter at low temperature and
high baryon density is expected to be realized inside the compact stars. Another deconfined matter
called color superconductor is expected to exist there [4, 5]. This matter is an analogy with the electric
superconductor. In the case of the electric superconductor, the electrons near the Fermi surface form
Cooper pairs and show macroscopic collective mode. Since the dense quark matter has the Fermi
surface, the quarks also form the Cooper pairs near the Fermi surface at sufficiently low temperature.

QCD Phase Diagram

The matters described by QCD show various aspects depending on temperature and baryon densit5'
asdiscussedabove. TheyaredrawninaT-p,B planecalled QCDphasedi,agram asinFig. 1.5a. In
Fig. 1.5a, the vertical axis denotes the temperature 7 and the horizontal one is the baryon chemical
potential pq. The solid phase transition line represents the first order transition. There are expected
to exist two critical end points at both ends of the transition line [6, 7]. The deconfined phase transition
at high T and low ltB is expected to be crossover. The transition temperature I on high temperature
side is about ?} - 160 MeV, according to the first principle calculation, i.e. latti,ce QCD si.mulation.
The relativistic hearX' ion collisions at RHIC (LHC) reach about T - 27. (54). The transition baryon
chemical potential on the lorn' temperature side is expected to take place at FBc: I - 1.2 GeV, which
is almost the same r,alue that realized at the core of neutron stars. Fig. 1.5b shows another sketch of
QCD phase diagram with three iight flavors, i.e. up, down, and strange quarks. The bare masses of
up and down quarks are treated as the same value rnu: m4 and strange quark is little heavier than
them m" ) ffiud.. As shown in the figure, the deconfined phase transition is believed to be crossover
for the case of two light and one heavy flavors Nl :2 + L

Nf=2

/鍋甲" 鋼乙`

Nf● 3

Nfヨ 2+1

2nd order
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Figure 1.5: a): An illustration of QCD phase diagram inT-p,6 plane. There are expected to exist three
main phases that are hadrons, quark-gluon plasma, and color superconductor ones. b): QCD phase

diagram with three light quarks [8]. The deconfinement phase transition is believed to be crossover.

Baryon Chemical Potential



Relativistic Heavy Ion Collision

The relativistic heavy ion collision is only practical approach to create QGP on the earth. The basic
concept is to collide two heavy nuclei accelerated to almost Iight speed and produce high temperature
and density situation called a fireball. The quarks and the gluons are then deconfined inside the
fireball in which QGP is realized. The critical energy density is about e" - 0.5 gsv/fm3 which is
corresponding to Q = 160 MeV. In the relativistic heavy ion collisions at RHIC (LHC), the energy
density reaches € - 5 GeV/fm3 (15 GeV/fmt). ft is thus expected that QGP can be created in the
present heavy ion experiments. Space-time evolution of the relativistic heavy ion collisions based on
Bjorken picture [9] is shown below;

Figure l.6: Cartoon of a relativistic heavy ion collisions.

1. Accelerate heavy nuclei such as 1e7Au CotPb) up to ,/i -- 200 (5600) xA GeV at RHIC,
Relativistic Heavy Ion Collider (LHC, Large Hadron Collider), where /3 represents the colliding
energy at the center of mass frame of two nuclei. Each nucleus is compressed because of Lorentz
contraction. The nuclei are composed of valence quarks with high momentum which carry the net
baryon number, and gluons and sea quarks (quark and anti-quark pairs) with low momentum.
TheS' s1s also called fast and slow partons, respectively. Thus the accelerated nuclei have some
thickness.

Collide the heavS' nuclei with each other. While the fast partons pass through the other nu-
cleus, the slow ones form the fireball with high temperature and low baryon density. Since this
stage is in non-equilibrium state and the farthest away from observation in heavS' ion collisions,
theoretical prediction is quite difficult.

The s5's1sm reaches the Iocal thermodynamical equilibrium. The quarks and the gluons are
deconfined in this stage and QGP is created. The space-time evolution of QGP produced at RHIC
and LHC is knou'n to be rrvell described by relati,uisti,c hydrodynamic models. The temperature
decreases with the expansion of the system.

The quarks and the gluons are confined inside the hadrons again with decreasing temperature
and the number of each species is frozen (chemi,cal freeze-out). The hadrons repeat the inelastic
collisions among of them and exchange their momenta with each other. The system then reaches
the kinetic equilibrium and the hadrons no longer interact (ki,netic freeze-out). At last, the
hadrons are observed br. detectors.

2.

3.

4.
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Figure 1.7: Space-time evolution of relativistic heavy ion collisions from Ref. [10].

This is a brief current of the relativistic heavy ion collisions. One of the highlights at RHIC is
a success of ideal hSrdredynapic descriptions fol the space-time evolution of QGP created b5' hs2y5'
ion collisions [11, 12, 13, 14, 15]. Furthermore LHC also supports the hydrodynamic picture of QGP
[16, 17]. This novel feature revealed that the QGP is a strongly coupled and/or correlated system,
q'hich is one of the most significant subjects over broad areas in physics.

Purpose

Although the success of relativistic hydrodynamic models at RHIC provided a new aspect of
hot QCD matter for us, the hydrodynamic simulation depends on various input parameters, such
as the equation of state and the transport coefficients) and contains ambiguity. Recently, for more
quantitative argument the importance of dissipative effects in the hydrodynamic models has been
recognized [18, 19, 20,2I]. Thus theoretical comprehension of the transport coefficients is desirable,

The simplest relativistic dissipative hydrodynamics is the first order theor5', which in the non-
relativistic limit reduces to Navier-Stokes theory 122,23]. The first order theor)' is, however, accompa-
nied rn'ith the acausal problem and instabilit5' in numerical simulations 124,25]. One of the strategies
to evade these problems is to extend the theory up to second order with respect to dissipative currents

126,271. In the second order theory, however, there appear new phenomenological parameters as sec-

ond order transport coefficients in addition to the first order ones. These transport coefficients cannot
be determined within the framework of h1'd16dynamics. Ab initio calculation based on microscopic
theor5', i.e. QCD in the case of heavy ion collisions, is required to study and constrain the parameters
in the dissipative h)'drod)'namic models.

Since the temperature range realized at RHIC and LHC is not within the reach of perturbation
theor5' due to the asl.pplotic freedom of QCD, we need to employ some non-perturbatir.e approach
to investigate the transport coefficients of the hot QCD matter. At present, lattice QCD simulation is
the only systematic way to calculate physical quantities in such a non-perturbative situation. There
are several pioneering works which analSrTsd the transport coefficients by lattice QCD simulations

128,29,30, 31, 32]. These works have used Kubo formulas, which relate the first order transport
coefficients to a low erergy behavior of corresponding spectral ftrnctions. In this approach, one needs
to extract the spectral functions from Euclidean correlators measured on the lattice. This step is.



however, non-trivial because of an ill-posed problem [33].
In this thesis, we focus on the ratios of first and second order transport coefficients. In Refs. [34, 35],

it is argued that the ratios are related to static fluctuations of the energy-momentum tensor by
rewriting the classical limit of Kubo formulas with the relaxation time approximation. We modify
their arguments to treat quantum systems and show that the ratios are related to canonical correlations
of the energy-momentum tensor. It enables us to evade the difficulty in analysis of spectral functions
and obtain the ratios directly from lattice QCD simulations. Whereas the ratios themselves are'
not the transport coefficients, analysis of them can constrain free phenomenological parameters of the
dissipative hydrodynamic models. We note that a similar argument has been also given in Ref. [36, 37].

We need to regularize the canonical correlations to extract physical quantities because they are
ultraviolet divergent. We perform the regularization by vacuum subtraction. In addition to this pre-
scription, we argue a contribution from contact terms. This contribution is usually removed solely by
the vacuum subtraction, because the coef,Ecients of contact terms are not dependent on the temper-
ature. However, the coefflcients of contact terms in the canonical correlation of energl'-llomentum
tensor are proportional to the energy-momentum tensor. Therefore the contact terms are dependent
on the temperature and cannot be removed by the l'€Icuum subtraction. Thus we must deal with the
contact terms separately besides the vacuum subtraction.

The structure of this thesis is as follows. In Chapter 2, we review the basics of QCD and the lattice
gauge theory at fi,nite temperature. The lattice gauge theory is that the field theory defined on the
discretized space-time. We introduce the fermion and gauge actions on the lattice, and then discuss the
confi.nement of quarks and the deconfinement phase transition for pure gauge theory. We also argue
thermodynamics on the lattice in this chapter. In Chapter 3, we discuss the Monte Carlo method for
lattice QCD simulations. What we obtain from the simulations are equilibrium expectation values of
r,arious ph)'sical quantities with statistical errors. We see how to obtain the statistical expectation
values from lattice QCD simulations. The relativistic hydrodynamics is argued in Chapter 4. We
present the first and second order dissipative hydrodynamics with a phenomenological derivation by
Israel and Stewart 1271. We show how to introduce the relaxation times of each dissipative current to
hydrodynamics. Also the causality conditions for pure gauge theory are introduced in this chapter. In
Chapter 5, we derive formulas that relate the ratios of transport coefficients to the canonical correlation
of energy-momentum tensor. First we see the classical formulations in Refs. [34, 35] and then derive
the quantum ones. We also discuss how to remove the unphysical divergence and to extract the ratios
with physical meaning from the canonical correlations. We formulate a method to observe the ratios
on the lattice and show numerical results in SU(3) Iattice gauge theory in Chapter 6. The ratios of
transport coefficients are related to characteristic speeds of plane wave propagating in medium. Fbom
the analyses, we also argue the causality in the second order dissipative hydrodynamics. The last
chapter is devoted to conclusions and outlooks.

Notation

In the present paper, rre use the natural unit h,: c : le B : 7,

ん=」
==6.5821×

10~25 GeV・ s=1,

c=2.9979× 108m.S~1=1,

たB=8.6173× 10 14 GeV・ K~1=1,

whereん ,c,andたB are Planck constant,the speed of light,and Boltzmann constant,

(1.6)

(1.7)

(1.8)

respective157.In



this unit, one obtains

[energy] : [mass] : [time]-1 : [length]-1. (1.9)

A useful relation is obtained from these conventions,

h,c: L97.33 MeV.fm - 200 MeV'fm: 1. (1.10)

We adopt the metric tensor in Minkowski space-time as follows

(r o o o \
et",:u,:l|;t _0, B | (1 11)

\0 0 0 -1 /
The Greek indices denote four-dimensional space-time i F,u, pt... :0,I,2,3: t,fr,A,2. The Roman
indices denote three spatial components i,j,k,...: I,2,3 or r,U,z. Arbitrary four-vectors are
represented as

rts : (r0 rnl rx2,r3), frp : lpvru : (r0, -rl , -r2 r-"3). (1.12)

The same indices are summed,

33
rpy+:Drra', ,tai:Drnao. (1.13)

Lt:O i:l

The inner product in Minkowski space-time is defined by

r.a: gprrpa' - ,0a0 - ,ra' - ,2a2 - *3a3 : ,oao - E.i. (1.14)

The metric tensor in Euclidean space is given by

/r 0 0 o\
u":l3l?Sl (1 15)

\0 0 0 | /
In this case, the Greek indices denote four-dimensional space ; F,u,p,... - 1,2,3,4or rtA)2,r. The
inner product in Euclidean space is defined b5'

r'A : SprrpA, : roVll tgr I rzAz I rzAz: froAl + d'i' (1'16)

In the standard representation, the Dirac matrices in Minkowski space are given b1,

/7 o \ ' ( o t). .y5:itotrtrrt:(01\ (1 17"ro:I\o-r)' t':\-on o)' \ro)' (1'17)

where oi are the Pauli matrices,

lo r\ (o -i\ lr o \o':(.; r), o2:(; o"). o':(o:r) (1.18)

The Dirac matrices satisfu the anti-commutation relation

{l',1"}-29P". (1.19)

In the Euclidean space, the Dirac matrices are defined as follows,

'lt,: ?h,^rt) : (ln,'i,lo), {lp,'yr} - -26pr. (1.20)

10



Chapter 2

Lattice QCD

In 1974,K.G.ヽ rヽilson showed the coninement Of quarks珊rith the lattice gauge theory in the strong

cOupling limit i381.After thtt the■rst numerical simulations of lattice gauge theory were performed

by M.Creutz p9,40,41,and the lattice gauge theory has achieved success in many studies,e.g.

critical temperature,static quark potential,hadronic mass spectrllln,and equatioll of state,and so

On[42,43,44,45,46,47,48,49,501.The lattice gauge theory is the only non― perturbatitt approach

based on the■ Ist princip10 in QCD physics and is applied not only to QCD but also to Quantum

Electottnamics(QED)卜 1,5朗 or supersymmetric theory卜3,5q.The hld theory deaned on the

lattice has some advantages. Since the space― tilne is discretized and a lnomentuln cut― of is introduced

to the lattice gauge theory・ the divergence that troubles the continuuln fleld theory is natllrally removed

On the lattice. L〔 oreover a gauge flxing procedlllle is not required on the lattice because the ntlmber

of degrees of freedom of gauge fleld is inite. In this chapter,We overview the lattice gauge theory・

especially its application to QCD at inite temperatllre.ure also refer to the phase transition attd

thermodynamics in ltttice QCD.

2。 l QCD action in the continuum

OZαηιしπ 働
"mθ

ανηαmづcs(QCD)is the■rst principb to describe d57namics of 9鶴 α7・tS ψま,α(")and
θttθηsれ0)=Σた1■,し)P,Where the hdex∫ runS hOm l to持 ,whChお the llllmber of navor&

The spinor index is denoted by α=1,2,3,4,the color indices fbr quarks and gluons by α=1,2,3 and
j=1,2,… ,8,respectivelェ and Lorentz index μ=1,2,3,4.Tこ are adioint representations of the SU(3)

Lie algebra,which are traceless hermitian 3× 3 matrices.The QCD action in MinkOWSki space― time

is gittn b57

Sqcn:,9quark*^9gtuon
Nyr

,gquark : t I onr rbl,."(") (00\,u@t"@))"u - *I6o96o6) rr|u,r@),

l=r "

,sgruon : -+ [ aarrl,@1rt"''i1r).
+J

Here the covariant derivative D, and the field strength tensor F* are defined by

(Dμ (″))αb≡ δαbら +な (スμ(″ ))ab,

4ン 0)≡ ら五ιO)一 の■10-J′た[40),スタ0湖 ,

(2.1)

o.2)

(2.3)

0・→

0.5)



where g and ftjn are the coupling constant of strong interaction and the structure constant of SU(3)

Lie algebra, respectively The commutation relation in Eq. (2.5) causes the self-interaction of gluons,

which is one of the most important features of QCD. Due to the self-interaction of gluons, QCD shows

various non-trivial properties.
The QCD action Eq. (2.1) has local invariance under the SU(3) gauge transformation,

ψ(・ )→ ψ′(Z)=y(α )ψ (2),J(″)ち J′ (")=J(π)yl(α ),

gttμ (2)→ gЙ
L(π)=y(2)(gИμ(2)一 だれ)yl(2)・

An element of SU(3) group V(e) is defined as V(r) : 
"-iq"(r)t", 

where 0"(r) is a transformation
parameter and lo is the fundamental representation of SU(3) Lie algebra. Under the gauge transfor-
mation Eqs. (2.6) and (2.7), Dr(r) and Fp,(r) transform covariantly

Dμ (α )→ DL(″)=y(π )'μ (")1//1("),

ろン(■ )→ 弓ν(・)=y(")ろン(″ )1/1(″ )・

In the fo1lowing,we describe the QCD action simpl)ら

ぬσD=/α4″
J。)lηDμ―m)ψO)~:/α4.4ν

OFμ″0・

2.2 QCD action on the lattice

2.2.t Fermion action

The basic idea of Iattice gauge theory is to define the theory on the discretized space-time. In order
to formulate the lattice QCD, we start from the single flavor free fermion action in the continuum
four-dimensional Euclidean space,

Sfl"tlrl,,Ol: I d,ar $(x)(1r}t" + m)l)@).
J

The partial derir,ative is replaced by the finite difference on the lattice,

らψ(・)→ 島(ψ (η +ル)一ψ(η ―ル))・ (2.12)

where a and n are the lattice spacing and the lattice site, r : fra, respectively. n + tt'denote the
nearest neighbor sites of n along p-direction. Thus the free fermion action on the lattice is given by

輌痺m繕節 司 ・
We impose the same gauge traIIsformation as Eq。 (2.6)on the lattice fermion Seld,

ψ(2)→ ψ
′
(η)=7(η )ψ(2), F(η)→ J′ (2)=ψ (η )y† (η ),

Since f(η )ψ (η 士ル)in Eq.(2.13)are nOt gauge in■ rariant,

(2.13)

0・ 10

炉(η )ψ (η tt β)→ J′ (η )ψ
′
(η tt β)=J(η )1/† (η )1/(η ELル)ψ (η ELル ),

●・0
0・つ

0.0

0.助

(2.10)

(2.11)

12
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we introduce li.nk uariables Ur(") (Fig. 2.1), which pla5' a role of the gauge fields on the lattice and

transform under the gauge transformation as

ら(2)→ %(η)=y(η )の (η)yl(η +β )・

Then the gauge invari[Jlt quantity is obtained

J′ (2)し鴨(η )ψ
′
(η +ル)=J(η)yl(2)1/(η )これ(2)1/十 (η +ル)y(η +β )ψ (η +ル )

=ψ (η )●μ(η )ψ (2)・

Thus the gauge in、 ari〔】lt ferΠlion action is given by

/ t ur@){(n+ tr) - ul"@ - r")',h@ - t ), - . .\S'Ftlrl',rl,,rtl:"nD0@) lDr, n +rru!@)l ' (2.19)
;\=t/

Note that a fermion propagator derived from Eq. (2.79) includes a problem called doubling problem

[55, 56]. The fermion propagator has one physical and 15 unphysical poles. The unphysical poles are

called doublers 1. To avoid the doubling problem, several lattice fermions are proposed [57, 58, 59, 60,

61, 62,63].

C(″ )

/ ″+μ

(2.16)

(2.17)

(2.18)

(2.20)

(2.21)

″   ″+′

%(″ )

Figure 2.1: Link variables. Figure 2.2: Plaquette.

2.2.2 Gauge action

SU(N") gauge action 2 in the continuum Euclidean space is given by

sp*[A] :I I aarFi,Fi1",.

The corresponding gauge action on the lattice proposed by Wilson [38] is written as

オロ=参平】(1-尭
Re■ %νo),

lln t-dimensional space, 2D - | doublers exist.
2Here we argue general case for the number of colors N.. If one sets N. : 3, the gauge theory corresponds to QCD.

″+μ +1/
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where g is the bare coupling constant. The trace TY is taken orrer the color charge indices. Plaquette,
Urr(n), is defined b)'the product of the link variables along the smallest square on the lattice in p,-u

plane (Fig. 2.2),

U r"(n) : U p(n)U"(n + 1t)U)(n + D)u)(n). o.2勾

Tlace of the plaquette is a gauge inrrariant quantity and one of the fundamental obsen'ables in lattice
simulations. Link variables and gauge fields are related to each other by the follou'ing relation,

Цズη)=expレ gαスμ(η)1,  嘲(η)=Ⅸp卜をθα∠μ(2)]・ o.2o

Using this relation, one can easily confirm that the Wilson gauge action Eq. (2.21) reproduces
F,q. (2.20) in the continuum limit a --- 0. In the following argument, we exclusively consider the
gauge theorS'on the lattice and abbreviate the indices "cont" and "lat".

2。3 Lattice QCD without quarks

2.3.l  Wilson loop and strong coupling expansion

l″%Isθη ιοθP is one of the basic observables in lattice silnulations. The WVilson loop on the lattice is
composed of the products of link variables along a closed path(3,

o.24)

It is obvious that W(C) is gauge invariant from Eq. (2.16). The smallest Wilson Ioop corresponds to
the trace of the plaquette. In the following, we consider a rectangular path no x nr in pt-u plane as a
closed path C (for example, Fig. 2.3),

Figure 2.3: Rectangular path.

The vacuum expectation value of some observable O in pure SU(3) gauge theory can be written
with path integral formalism as

7C)≡Ъ
L呵 い就h∝d∝eの .

0=ウ /節"口 =ウ /平Ё学0"団 0.2つ

o.26)

Wilson loop

Z=/つ び C―
SC[び

I

14



Using the Wilson gauge action F:q. (2.2I) and Eq. (2.25), the vacuum expectation ralue of the Wilson

loop becomes

ぽ0=ウ /χ照の[刺
―多平ントロしに」

=ガ節照
+」 多平】

Ъ叫 二哺剤
1・

Here Ztmeans that the constant terms in Eq. (2.27) are canceled out between numerator and denom-

inator. In the second equality the following relation has been also used,

7]Re nら
ン0)=2]:(・ %νし)+蹴イン0))・

●.27)

(2.20

(2.29)

Now let us consid.er how to calculate the Wilson loop in Fig. 2.3 for the strong coupling case g ) 1.

In this case, the exponential can be expanded in terms of g-2. First we focus on the link variables on

the bottom-lefb corner. The expectation value of the Wilson Ioop then reduces to

(WICll=夕 /つ
びWC)平

風
(1+多Ъ%νい)+多Ъ琳ィい)+α ttD・

(2.30)

The■rst and second termS Vttish b57 perfOrming the group integration.If one describes W(C)as

″(σ)=Ъ Iの (η )ウ可(η)],           (2.31)

a contribution from the third term in Eq.(2.30)is cdCulated as

タルしOα陽0照の・嘲ン制

寺 ル
しOα陽0・陽 0ウ可例 叫 0らし+刷 い+醐 回

尋 ル
し0陽 0匂昴

ル
し0回 回 dら側 cЛらし+刷 い の4制 と

=先叩らい刑い洲・ (2.32)

Thus the factor llb2N") appears from the third term in Eq. (2.30) for each plaquette in the Wilson

loop. (W(C)) becomes

\W(C)t o( (92N")-"""T![1] : trrl"exp[-non" In(92l[")].

We show this procedure in Fig.2'4 schematically.
(W(C)) with large n" is expected to behave as

(W(C)) x expl-n"V(n")l for nr > l, (2.34)

where V(nr) is a potential energy between infinitely heavy quark and anti-quark separated by the

d.istance no orr the lattice. Wilson loop can be interpreted as the energy required for the process that

(2.3o

15



a massive quark and an anti-quark pair is generated at t :0 with the distance no and then annihilates
each other att: n". Comparing Eq. (2.33) with Eq. (2.34),I/(no) reads

1/(ησ)=πσl・ (g2f■ ). (2.35)

Using dimensional distance r: arlo) the static quark potential is res'ritten as

1/(r)=多 r ln(g2耗)三 σЪ
b=み ln(g2馬 ),

where o denotes the string tension of the massive quark and anti-quark pair.
The behavior that (W(C)) is proportional to the area of a rectangular path in Eq. (2.33) is calleo

area lau. \Arhen (W (C)l shows the area law, the static potential between quarks becomes linear
potential as in Eq. (2.36). If one attempts to separate the quark and anti-quark, the potential energy
is proportional to their distance and increases infinitely. One thus needs infinite energy to obtain free
quarks. This phenomenon is called confinement of quarks. In the actual case, the separated quark and
anti-quark are divided into new pairs when the potential energy becomes large enough to generate a
quark and an anti-quark.

Figure 2.4: Leading contribution to (I%) in the strong coupling expansion.

2.3.2 Polyakov loop and phase transition

Polyakou loop is a useful observable to describe the deconfinement phase transition [64] in the lattice
simulation [65, 66, 67, 68, 69, 70]. It is defined by

(2.38)

lI" is the number of lattice sites in the temporal direction. The reason why P(d) is called the Polyakov
loop is that this euantit5' is'constructed b5' ffus product of aII temporal ]ink variables and forms a closei
Ioop along the temporal direction with the periodic boundary condition as shown in Fig. 2.5. The
periodic boundary condition is generally imposed on a finite temperature system as will be discussed
in the next section. The expectation value of the Polyakov loop is related to the free energy of an
isolated quark .Q

(P(何 ))∝ C~F9/T,

●.36)

o.37)

４η↓η碗肛Ъ
ｌ

一馬
≡↓ηＰ

□□□
□□□
□□□
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where ? denotes the temperature. Since the value of the Polyakov loop is independent of its spatial
position, one can rewrite (P(d)) by the spatial average

P≡島冴
PO), o,4の

where Aro is the number of spatial lattice sites. Eq. (2.39) indicates that the expectation value of the
Polyakov loop can be regarded as an order parameter of a deconfinement phase transition, i.e.

(P) : 0 e Fn: oo (* Confi'nement,

(P) +o <+ 4 : finite <+ Deconfinement'

I\foreover the spatial correlation function of the Polyakov loops is expected to behave as

(P(磁)PI(ガ))∝ C｀
/(→ /T,  r≡ αl磁 ―僣

|,

where lz(r) denotes the static quark potential as seen in the Iast subsection. Therefore the correlation
function E,q. Q.a}) in the Iong distance limit vanishes

虐理し(P(椛)PI(■))=(P(磁))(P十 (π))=(P)2=0, ●.4→

In this wa5', the non-abelian SU(At) gauge theory is expected to show the phase transition at some

critical temperature [ (see also appendix A).
Let us assume the case of N" : 3. The action of SU(3) gauge theory has a Z(3) global symmetrS'.

Under this symmetry transformation, the Pol)rakov Ioop transforms as

P ---+ zP, z : l, 
"2ri/3 

, 
"4tri/3 

, Q.45)

where z are the group elements of Z(3). Then (P) is regarded as an order parameter for ttre Z(3)
global transformation

(P) : 0 (low r) e Z(s) symmetry unbroken, (2.46)

\P) + 0 (high f) e Z(3) symmetr5'broken. (2.47)

The order of the phase transition can he analyzed by three-dimensional effective theory. \4rith
an appropriate gauge transformation, all link variablesUa(fr,,na) can be set to the unit SU(3) matrix
except n4 : I in Eq. (2.38). The Polyakov loop then becomes

a動 =:Ъ降に 期・

Figrue 2.5: Polyakov loop.

(2.41)

(2,421

o.4o

(2.481

lmaginary time Polyakov loop

Space
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Integrating out the spatial link variables, an effective SU(3) spin theory in three dimensions which
describes the interactions of Ua on the time slice na : 1 is derived. If one considers the nearest
neighbor interactions for the effective theory, its universality class is the same as that of the three
state Potts model in three dimensions having a first order phase transition. Therefore the phase

transition of SU(3) gauge theory is expected to be the first order.

2.4 Thermodynamics in Lattice QCD
2.4.I Thermal expectation value in the continuum

According to quantum statistical mechanics, the expectation value of some physical operator O in
thermal equilibrium is given by

η

″
一Ｔ一Ｃ０ηη

α

√

ノ

ー

一Ｚ
〓

″
一Ｔ一Ｃ０■

ｌ

一Ｚ
〓０ 9,49)

o.50)

function Z

(2.51)

(2.52)

p.50

o.5→

(2.55)

0.56)

■elds,

where Z and ,S are the Lagrangian and the action, respectively. Applying this formulation to QCD
naively, the partition function reads

Z=/仇例メn
vrhere∬ is Halniltonian in Euclidean space. Using path integral formalisln,the partitiOn

is rewritten as follows:

Z=ルぼぽ銅 =ル
“
‐回

,

/つ
9≡

/liα
%,

Z=/つスμつψつψc~SOCDIスμ,ψ ,ψ l,

SOσD[スμ,ψ ,ψ]=SF[スμ,ψ ,ψ]+Sciスμl,

where the Jbrlnion and the gauge actions in Euclidean space are given by

SF=ズ
1/T at/ご

3″
J(γμDμ +ηι)ψ ,

SC=ノ
11/Tご
ι
/ご

3″

:Jttν
ttν・

Alli―pill:I)il and periodic boundary conditions are imposed on the ferlnion and the gauge

0=

ψ(グ,0)=―ψ(グ,T~1),   J(グ ,0)=― J(ご,T~1),   ■μ(グ,0)=スμ(″,T~1).   (2.57)

Thus the thermal expectation values in QCD can be written as

(2.58)

Note that the quantization of QCD accompanies a divergence in the partition function Eq. (2.53)
which arises from the infinite number of degrees of freedom of the gauge fields which are equivalent
to each other. To avoid the diverge\ce1 gauge fi,ring is performed in the continuurn theor5r On the
other hand, the Iattice gauge theory does not require the prescription because of the finite degrees of
freedom of the gauge fields on the lattice.
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2.4.2 Thermal expectation value on the lattice

Flom Eq. (2.58), the thermal expectation value of some physical quantit)' O on the lattice is given by

(o) : t?!?y!9 " !:!.':i::i'i - r?!-?n"vJ!)" -s"t't
I oUotpoE e. sF'lu,tl0]-sclul I DU DetF[Ule-sctu] ' (2'59)

where we have performed the Grassmann integral for multiple'uariables

o.60

The fermion determinant DetFlU] is taken for all indices of F, which are space-time coordinates,

spinor, color, and flavor. The relations similar to Eqs. (2.57) hold on the lattice :

l!@,,O) : -4)(d, N,), ,!@',O) : -Ih(fr. N,), Ur(f,,O) : Up(d, N"). (2'61)

It quench approrimation,the fermion determinant is replaced b5r urnify, DetFlU): l-. This corresponds

to an approximation that dynamical quark loops, i.e. vacuum polarizations are neglected. In the case

of pure SU(3) gauge theory there are no quarks intrinsically and the thermal expectation value

Eq. (2.59) is given by

(0)=
∫つびο C SCⅣ l

0.62)
∫つびC~恥μ]

The numbers of lattice sites in spatial and temporal directions are related to the spatial volume V
and temperature 7 as follows :

y=(ασttσ)3,  T=
α7RT

●.60

Here ao and a" are the lattice spacings of spatial and temporal directions, respectively. As seen in
Eq. (2.63), we must prepare the large number of N, to simulate the thermodynamical Iimit and AI"

for the \racuum, respectively.

2.4.3 QCD thermodynamics on the lattice

Before discussing the thermodynamics on the lattice, let us recall several thermodynamic relations in
the continuum space-time. The ftrndamental quantity in equilibrium thermodynamics is the partition
function or the free energ5' density

I ,Oof 
"-tt@)rlubtt(,,) 

: Detp[t/].

ノ=ギ ha二り

≒慕=T弁長,

s   l∂P
T3~T3∂ T・

Basic thermod5'nsmi. quantities can be derived from the partition function. In the thermodynamic
limit, the pressure can be directly obtained from the free energy density, P : - f . Using this relation,
one obtains other quantities such as the energy density e or the entropy density s

o.6o

0.65)

(2.66)
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In the high temperature limit (Stefan-Boltzmann (SB) limit), the thermod)'namic quantities approach
those of the ideal gas of free quarks and gluons due to the asymptotic freedom , e : 3P (see appendi" A).
The deviations of thermodynamic quantities from the SB limit have been studied by perturbative
method in the high temperature region. On the other hand, Iattice QCD simulations have been used

as one of the non-perturbative methods in the low temperature region, where temperature is less than
several times Aqco.

The direct calculation of the partition function is, however, impossible on the lattice. Instead, the
expectation value of the action is measured in the lattice simulations 3. The free energy density is
related to this expectation value as follows,

αβ
′
So, (2.6η

where p7 and, B6 denote the inverse couplings, B =2N.192, at finite and zero temperatures, respec-

tively ,5g means a difference between the actions at finite and zero temperatures, ,Sg : ,S? * Sr:0.
The lattice simulation at zero temperature is approximated bJ. a symmetric lattice with N" : N;. If
one adopts the action given by E,q. (2.21),,S7 can be written as

ガ婿〓

陽
　
島

∫
一響

η４鴫Σ
乞

１

一
３

＋η硫Σ
哺

１

一
３

Ｆ

Ｉ

Ｉ

Ｉ

Ｉ

Ｉ

Ｉ

Ｌ

ST=
聴 鋳 平金Ren , forづ ,ブ =1,2,3. ●.60

We have shown the contributions of the space-space and space-time plaquettes separately because the
extents of lattice along spatial and temporal directions are different at finite temperature.

From Eq. (2.67), e - 3P on the lattice is obtained from

(2.69)

As is clear from Eq.(2.63), the inverse coupling, i.e. the lattice spacing varies with the temperature
for fixed ly',,

ギ =-3繹 T#助 .

Bし,≡ T#=2既αも子,

≒算=3婿BO)助 .

(2.70)

where we have introduced the beta function B(g). Using this beta function, Eq. (2.69) is rewritten as

(2.71)

The energy density efTa is then obtained by adding the pressureJplTa: -3f lTa to this equation.

2.4.4 Determination of scale

In order to express the thermodynamic quantities measured on the lattice in physical units, one must
know the relation between the lattice spacing a and the inverse coupling B by comparing a quantity
measured on the lattice and the corresponding quantity which is measured experimentally at T :0.
The string tension o is often used as such a quantity. The string tension is evaluated by measuring
the static quark potential between infinitely heavy quarks (see subsection 2.3.1).

3The approach introduced here is called. standard integral method.

20



a(g)≡
∫(g2(β =6.0))'

where f (s2) i" the two-loop order scaling function of SU(3) gauge theory

a1ft : 
"f 

(e2)(1 + o.zrgraz - 0.0154ba4 + 0.0t975a6)/0.01364,

ノ(ク
2)

ズめ二cり」
,一
靖eつ

(―幕)'

島(馬 ,馬)=島 (鳩 ,∞)ん (持)3,

(2.74)

with renormalization-scheme-independent factors bo and br

bs:#, ur:ffi' Q'7b)

Thus the lattice spacing can be set for a givtn inverse coupling from Eq. (2.72) with 1/o at T : 0,

which is known experimentally.
In addition, let us determine the temperature scale TfT" for a given temporal extent AL'. Using

the string tension, TfT"is written as

T T√   1 √

瓦
=7可 =α

√鳩可 '

where we have used Eq. (2.63) in the second equality. Once the critical coupling B. for the deconfine-

ment phase transition is known, the string tension at B"is determined from Eq. (2.72) for fixed lf"'
Then the ratioT.f 1/o and the temperature scale TfT.can be determined. The critical coupling is,

for'instance, obtained from the analysis of the location of peak in the Pol5'a[sv loop susceptibility

χP==θ ((P2)_(P)2). (2.77)

Furthermore, the critical couplings which are measured on several temporal extents is extrapolated to
infinite volume limit using the following ansatz

To set the lattice spacing, we adopt the string tension on the lattice a1/o parametrized for the

interval of inverse coupling 5.6 < 0 ( 6.5 as follows [71]

(2.72)

(2.73)

(2,76)

o.78)

where h is a parameter, h S 0.1. This ansatz is appropriate for the first order phase transition of

SU(3) gauge theory.

summary

o We outlined the lattice formulation of quantum chromodynamics (QCD), the confinement of
quarks, the phase transition, and the thermodynamics in SU(3) gauge theory.

o In lattice QCD, the quarks and the gluons correspond to the lattice sites and the link variables,

respectively.

o The confinement of quarks is explained by using the strong coupling expansion and the Wilson

Ioop, which is one of the basic Iattice observables and shows the area law leading the linear

potential between quarks.
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o The SU(3) gauge theory shows the first order deconfi.nement phase transition and the Polyakov
Ioop is used as an order parameter of it.

o The thermodynamic quantities are obtained by the integration of gauge action.
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Chapter 3

Lattice SilnulatiOn

While QCD is admitted to be a fundamental theory of strong interaction, an analysis of QCD at the
energy scale - l\qcn with analytic or perturbative methods is quite difficult because of the large
coupling constant. There are many subjects which need non-perturbative comprehension based on

QCD such as hadron structure, nuclear force, QCD phase diagram, and hot/dense QCD matter. Nu-
merical simulation is the most powerful approach for such a non-perturbative QCD physics. Due to
the improvement of computer performance, recentl;' lattice simulations have been performing more
realistic situations compared. to those of the early days. In lattice simulations, one first prepares a set
of gauge configurations generated by Monte Carlo methods. Then some observable (for example, cor-
relation function, plaquette, Polyakov loop, etc.) is repeatedly measured on each gauge configuration
and enormous amount of data are collected. At last one obtains an expectation value of an observable
with statistical error from the lattice data. In this sense, lattice simulation may be regarded as an
experiment. In this chapter, we introduce basic concept of Monte Carlo method and several algorithms
used in our lattice simulations.

3.1 Monte Carlo method

An expectation value computed on a set of gauge configurations is in principle given by Eqs. (2.59) or
(2.62). However the analysis requires a large number of integrations and vast amounts of computer
time, so that to perform the multiple integrations naively is not practical. Some efficient method is
required for sampling data. In this section, we introduce hon' to generate the gauge configurations
that is first step in lattice QCD simulations and overview some useful algorithms that are used in this
thesis.

3.1.1 Importance sampling

An expectation value of some function /(r) with a density function p(r) is given by

(∫)=
″α″∫(2)ρ (″ )

(3.1)

″山ρ(・ )

In the Monte Carlo simulation, this expectation value is approximated as

φ=思井喜陶,ぼ ad
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Here N denotes the number of sample data. ri is chosen randoml;' with the normalized distribution
density

, n, \ p(r)drdP(r): ;r:=. (3.3)
Ja d'rpw)

E,q. (2.62) takes the same form as Eq. (3.1) and an expectation value of some observable O in the
Iattice simulation mav be obtained from

where Ui are the gauge configurations generated randomly with the probability distribution density
called Gibbs-measure

c一
Sc[び ]っび

ごPIび]=
∫つびC― SC[υ ]・

(3.5)

Following the weight e-s"lul, the gauge configurations having a Iarge contribution to the integral in
Eq. (2.62) are mainly taken into the summation in Eq. (3.4). This is called the importance sampling.
The number of gauge configurations is finite in the actual numerical simulations and the statistical
error is proportion aI to 7l t/ N. The error estimates will be discussed in section 3.2.

3.L.2 Markov process

What we do first in lattice simulations is to generate gauge configurations following the probability
distribution Eq. (3.5). The gauge configurations are generated stochasticalll' slurt'tr* from an initial
gauge configuration [/s,

1/0→ 碗 → め → …・ (3.6)

The new configuration U' : [/r, depends only on the last configuration U : Un-t in Markou process.

Thus the probability PlUtl that a gauge configuration Ut is realized is written as

0=J亀井きq叫

PIび句=Σ PIび]T(び →び′),
υ

判 1鵞 ,

(3.4)

(3.つ

(3.8)

(3.9)

(3.10)

where T(U --. U/) represents a transition probability that U/ is adopted after U. T(U -- U') satisfies
the following conditions :

Σ軍び→の=1,
び′

0≦ T(び → び
′
)≦ 1・

An operation to obtain a new configuration is called update. When the configurations in Eq. (3.6) are
updated under the Markov process, the sequence of the configurations is called Markou chai,n. If one
performs enough number of updates, the gauge configurations are expected to reach an equilibrium
state. The probability distribution in the equilibrium state satisfies the balance equation

Σ ttq[び ]T(び →υ′)=Σ ttq[び句T(び
′→び).
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Thus Puo is a fured point of the i\4arkov process. A sufficient condition about T(U -- t/') for the
equilibrium state is the detai,led balance condi,tion :

P.q[U]r(U -- U') : nqlutlT(Ut -- (I). (3.12)

3.1.3 Heat bath algorithm

In conventional algorithms of lattice QCD simulations, a single link variable Ur(n) is renewed b5'1s171'

one U'r(n) in each update. To update all link variables on lattice once is called sweep. Heat bath
algorithm is one of the algorithms for the update of gauge configuration and satisfies the detailed
balance condition Eq. (3.12). In the following, we outline the algorithm with the case of SU(2) gauge
theory with Wilson gauge action [39, 401. The case of SU(3) gauge theory can be constructed from
the SU(2) case as will be seen later.

In the heat bath algorithm, the candidate link variable U : UL(n) is updated to satisfy the
probabilit5' distribution

(3.13)

using the wirson sause action given b5, 

';':'J;;::::1"rr-, 
distribution is written as

dP(u)o( exp ( 3*"rttuyl) du.
\9" '/

ln the case of four dimensional space, V denotes the sum of. staples Vi (Fig. 3.1),

6

v = Iu :l(u,1n+ u)u|"(n+ t)uj(n) +uJ@+ tt - r)utr@ - t)u,(n - t)). (8.15)
i:l p*v

There are six staples for single link variables which is updated. dU is the Haar measure of the gauge
group. \[re introduce the representation

(3.14)

(3.16)U:usl +id..d, V:usl +id.d,

v,,(D=Z

Figure 3.1: Staple.
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where r and ∂are 2× 2 unit matrix

is then rewritten as        and Pauli matrices,respectively The exponential in Eq。
(3.14)

Rё Tr[び y]=Re T[[(Zo」 +づグ・∂)(υoJ+づご・グ)]

=Tr、 [Zoυo‐一ご・」

=んЪ  Iυ 7]・ (3.17)

Here n7e introduced an SU(2)matr破 l1/deined as follon7s

1/=た力1 た=νttetly].

One thus obtaiIIs the probability distribution                              (3.18)

αP(υ )∝ exp(みたTr[び lダ1)αυ・ 0.19)

If we deine a SU(2)matr破 χ ≡ びT4/,17e may rewrite the probability distribution l as

dP1/Yl…pレЪttX O.2の

Generating χ with this probability distributbn,one obtains a candidate link variable%(η
)

吼(2)=び =XT/71.

IntrOducing the representation of」 【

(3.21)

X=20∬ +づグ・∂
, det[χI=χ8+|″12=1,

the problem is replaced                  Z=(″

0,″)∈ R4,

surface.Then the Haar I                                    (3.22)
by a question of how to choose a point on the follr dimensional spherical

neasure can be written a 3

αx=嘉ご42δ (23+司
2_1)

=ギしdCOSθ  αφごχo l生三ち1;::彗li:11主

=嘉αCOSθ αφご″o画・             02o
ln the last line,we omitted the step functiOn because ofl″ 0≦ 1・ The prObability distriblltion dP(X)

then reduces to

dP(X)=】
芥,dC°

Sθ dφ d■0ャ/1-χるcた
βπo,

where we used TY[X] - 2ro.
We summarize the procedure to obtain r : (n1,d) below :

(3.24)
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２

Generate a uniform random number y € [0,1].

Compute rs from

鈎=多Ц均+ら ス=踊血鰺),
B=exp(―

:芸 )・
    (3.25)

3. Generate a uniform random number z e 10,1]. Accept r0 by the following condition :

z≦ ャ涯
I″

3  _,  aCCept

z>vttII″ :  _→   reieCt  一→  Return to step. 1.

Generate uniform random numbers φ∈10,2π l and COSθ ∈卜1,11.

Computeグ .

a=ャ硫 叫

6.Obtain XneW="0」 +tグ・∂.

″2こ=ャ涯
・

χ3sinθ COSφ
, 砲=νttdJdnφ O"

●.2o

(3.27)

４

　

　

５

Once X'e* is determined, the new link variable is obtained from the relation Uft'* (n) : Un"* :
ynew14/l. Thus an update of a link variable is performed in the heat bath algorithm. Repeating this
procedure for each link variable, a sweep is completed one time and a new gauge configuration is

obtained.
The naive application of the above algorithm to SU(N) gauge theory seems to be difficult. In

actual lattice QCD simulations, a method proposed in Ref. [72] called pseudo heat bath algorithm is
usually used. Here we focus on the SU(3) gauge theory in which a Iink variable is represented by 3 x 3
unitar5' matrix. First, some SU(3) matrix is divided into three SU(2) subgroups, for example

び1= じら= ( |  | こζ3= (3.29)

A subgroup t/a is then randomly chosen and the same procedure for SU(2) gauge theory is applied to
that. Performing the same way to the other two SU(z) subgroups, an update for SU(3) gauge theory
is accomplished. This method is applied to general SU(N) gauge theory'

3.L.4 Overrelaxation

Ouerrelaration method 173,74,75] is often used in combination with (pseudo) heat bath algorithm in
Iattice QCD simulation. The basic idea of this method is to pick out a new link variable which locates

as far as possible from old value in a configuration space. To obtain more accurate expectation value

based on Eq. (3.4) from a finite number of data, one needs to collect samples from a wide region in
the configuration space. In other words, the ergodi,city must be satisfied. However it can happen in
Iattice simulation with an updating algorithm that many samples are chosen from narrow range in the

configuration space. In this case, one cannot expect to get reliable result. The overrelaxation method

is valid for this problem.
In the overrelaxation method, an update for a link variable is performed by following transformation

(J\ew - V(J'IdVI,
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where V is a sum of staples given by Eq. (3.15). Then the action is inr,ariant under this update
S'new - ^9old. Assuming the case of SU(2) gauge theory, the gauge action (2.21) reads

βど
W=―

βReTr[び
newy]=―

βReTrlyび
°ldyl1/1=一

βReTriび °ld1/]=Sご d,
o.31)

and the detailed balance is satisfied. Here we used a fact that V is unitar5,, i.e. V-r : Vt in the third
equality. The cyclicit)' of trace is used in forth equality. Thus the new link variable is always adopted
and changes the location dramatically in the configuration space.

We note that the overrelaxation method itself is not ergodic because the update procedure is held
on specific regions in the configuration space where the gauge action is constant. Thus the gauge

configurations generated by this method become the micro canonical ensemble. In order to realize
a set of the gauge configurations corresponding to canonical ensemble which is distributed with the
weight e-s", one needs the other updating algorithm such as the heat bath one.

3.2 Error estimate

After generating gauge configurations and sampling data, one evaluates an expectation value of some
physical quantity with statistical error. Error analyses must be performed carefully when the data
have correlation. In the following, we see how to estimate the statistical error for uncorrelated and
correlated sample data, respectivel5r

3.2.1, Autocorrelation

In the lattice QCD simulation, sample data are desirable to be uncorrelated for an accurate analysis.
A correlation between the sample data measured in the different ga4e configurations is caIled auto-
correlat'ion. The autocorrelation for sample data in i-th and (? + r)-th gauge configurations is given
bv

ス
(ι)=

Ⅳ ― t ΣEοづο・+t― (0)2 (3.3幼

(3.33)

(3.34)

(3.30

Autocorrelation time r is evaluated from the autocorrelation function normalized by A(0),

Altl～
c_t/7

If one estimates the sample data at every r sweep, the data are almost uncorrelated. The autocorre-
Iation provides an indication of the number of sweeps to obtain uncorrelated data.

3.2.2 Jackknife method

An average and. a statistical error of some observable O approximated by N uncorrelated sample data
are respectively given b5'

ρ)=井土οづ,
こ=1

δO=

28



where in the second equality in Eq. (3.35) we have used the fact that the data are uncorrelated,
i.e. (O0): (O1)\O): <Ol2. If the sample data have correlation, the statistical error cannot be

correctly estimated b)' Eq. (3.35). In such a case, we should use other methods which can eraluate
the statistical error for correlated data.

Jackknife method is one of such methods. This method is valid even if the sample data are
correlated. The procedure is as follows. First, -l{ data are divided into AI" : Nln groups where n is
called bin-size. Then the average for (N - n) sample data where i-th group is removed is computed,

This average is regarded as a new sample. Using the new sample data, the average of some physical
quantity /(O) and its statistical error are evaluated by

ρ》=ギ端平
οト

債の=舟き動,

δ(∫ (0))=y(F吼 _1)((∫ 2(0))T(∫
(0))2).

The bin―size should be s面 ciently large compared、 rith the autocorrelation tilne.

(3.36)

o.37)

(3.38)

summary

o Lattice QCD simulation can be divided into three main steps : a generation of gauge configura-
tions, a measruement of lattice obserlables, and a data analysis.

o The first step is carried out with the Monte Carlo method which provides the gauge configurations
based on some stochastic distribution.

o In the heat bath algorithm a link variable is updated with the weight e-sc.

o Overrelaxation method is often combined with the heat bath algorithm to collect sample data
from wider range in the configuration space.

o In the last step one has to estimate the statistical error and pay attention to the correlation
between the data obsen'ed on different configurations.

o Autocorrelation gives a guide of the number of sweeps which cuts off the correlation of gauge

configurations.
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Chapter 4

Relativistic Hydrodynamics

In this chapter, we give a brief review of the relativistic hydrodynamics from a phenomenological
view point. The quark-gluon plasma is expected to be almost ideal fluid because of the success of
ideal hydrodynamic simulations for the space-time evolution of a hot quark-gluon matter produced in
relativistic heavy ion collisions [12]. For more realistic and quantitative simulations of the matter, the
hydrodynamic model on the basis of the relativistic dissipative hydrodynamics is required. First order
theory (relativistic Navier-Stokes theory) is the simplest dissipative h)'drodynamics which includes
dissipative terms up to the first order. The first order theory, however, is known to violate causality
and dissipations can propagate with an infinite speed. This is an undesirable feature for a description of
relativistic fluids. This acausal problem can be avoided by taking into account higher order dissipative
effects into the hydrodynamics. In the following, we introduce one of the second order theories,
proposed by Israel and Stewart, on the basis of Refs. [27, 76, 771. In the second order theor)r, new
transport coefficients, i.e. relaxation times for dissipations are naturally introduced. We see the second
order hydrodynamic equations can be causal due to the relaxation times.

4.L Basics of relativistic hydrodynamics

4.L.I Conservation laws

Hydrod5'nzmics is a theory which describes time evolution of a macroscopic fluid element without
knowledge of the microscopic components of the fluid. The basic equations of relativistic hydrodS-
namics are two local conservation laws of the energy-momentum tensor Tt"v and the net charge currents
Nf such as electric charge, baryon number, and strangeness,

Here the type of the net charge density is denoted b)' u.tr index i. Tt'u and Nf can be decomposed by
using an arbitrary, time-Iike, normalized four vector u,t', ,u,u.tlp : 1, as follows,

OμTμ
ν=0,

も ″ヽ=0,(t=1,… "r).

rμ
ν
=(eqttμ ttν ~(1ヽq+耳)△

μン+lダμzν +Tγν
ttμ +7Tμ

ン
,

A7μ =ημμ+Zμ .

△μν is the projector onto the three― dilFlllensional space orthogonal tO ttμ  deflned by

(4.1)

(4.2)

(4.3)

に。4)

LF' : gl"' -,Itrts,ttrr, U,LPU :0,
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where the metric tensor is defined by gp" : diag(*, -, -, *).
In the local rest frame (LRF) of a fluid defined by uu : (1,0,0,0), each quantitS, is given by

€uq : 'upTF''ttrr, (the energ5' densit5')

Tt, : 'trpN4, (the net charge densit)')

P"q * n: -!awTp", (the pressure)

Wt' - u,T"P Al, (the energ5' flsw)

VP : Lf N', (the net charge flow)

eP : wt" _ '"q* P"qvP. (the heat flow)
rL'1

Tpu : y\t"u) , (the stress tensor)

where the angular bracket means the symmetrized spatial and traceless part of the tensor,

解.6)

(4.7)

(4.助

(4.9)

(4.10)

(4.11)

(4.12)

1\uv) - 4ρ
σ

. (4.13)

The dissipative currents are constrained b57 the orthogonality relationS

urVP :0, urWP :0, upeP :0, urtr4v :0. (4.14)

Although the conservation laws Eqs. (4.1) and (4.2) include I0 -l4r unknown variables (Tuu is a
s)'mmetric tensor of rank 2 and then has 10 independent components, and Nf have 4 components for
each type of the charge z), there are only 4 * r equations. Thus, the h5'dlsdynamic equation system
does not close and some additional conditions are required to solve hydrodynamic problems.

One of the prescriptions is an ideal fluid approximation in which the dissipative terms in Eqs. (4.3)
and (4.4) are neglected and the number of unknown variables reduces to 5 * r. Therefore one can solve
the hydrodynamic equations with an equation of state e : e(p,n), which includes information about
the microscopic properties of the fluid. Another approach is to derive 5 * 3r equations for dissipative
terms in addition to the conserlation laws from the second law of thermodvnamics

らSμ ≧0, sts:seq'ttrP*\sP, (4.15)

where sP, s"q and dsp are the generalized entropy current, the entropy density in equilibrium, and
the entrop5' flux, respectively. The equations for dissipative terms are obtained from the expansion of
sp with respect to small deviations from the local thermodynamic equilibrium. Then the dissipative
hydrodynamics can be classified by an order of the expansion of the entropy flux ds/' as will be

discussed in Sec. 4.2. In the following, we consider a single type of the net charge density i.e. i : 1

for simplicity.

4.L.2 Eckart and Landau frames

Although the four velocity up is arbitrary in general cases, two choices called Eckart and Landau

frames are often used, In Eckart frame, ul' is defined by

σρ

△νμ△
１

一
３一

μ

σ
△ν

″^
△＋△△

１

一２

し告≡
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In this frame, zl is regarded as the LRF of the net charge flow, i.e. Vp - 0. Eckart frame is also

called particle frame. On the other hand, up is identified to be the energy flow in Landau frame,

「

け υ
ν

(4.1つ

Landau frame is called cη θηνルηmθ.There ttμ  is the LRF of the enerev■ OW Iク
rμ

,i.e.Tグμ=O and
9μ =― (Ceq+Peq)yμル・

4.1.3  1deal fluid approxilnation

Tんθづαθαι βzづα⊇つ
""づ

mattοη is one ol the prescriptions to close the hydrodynamic equation systeIIl.

Since the dissipati、 c cllrrents are neglected in this approcmati6n,the energy― 】nomentllm tensor and

the net charge current can be lⅣ ritten as

Tl"u - e"r1,P1t' - P.oLr", NP : nuF , (4.18)

蹴 ¶ 乳」 l胎 品 lt町 身 謂 洗 忌 %2讐 :∬盤 ■ :盤 淵 皿 £盤 壼 黒 ∫ 靴

狙 equation of state is closed. The ideal hydrodynanlic equations thus can be solved uniquely under

a gi、 en initial condition.

Let us see that the entrow production rate vanishes for an ideal■ uid.■om Eq.(4.1)and(4.18),

one obtains a relation

鶴νら Tμ
ν=DCeq+(ceq+鳥q)▽μttμ =0,          (4.19)

where D≡ 鶴μ∂
μ and▽μ≡ △μνめ are the cOn■7ecti■re time derivative and the gradient operator,

respectiveし Using the■rst law of thermodynamiCS

Tds.r- deeq- Fdn,

and a thermodynamical relation,

euq * P"q - lsee* pn,

Eq. (4.19) reduces to

T(Ds"rt ssoV rup) * p(Dn * nV rup) : T1*s{o:0,

where we used E;q. @.2) in the first equality Thus the entropy current does not increase in
fluid,

“

.2の

らS亀 =0・

In the above argument, we assume that the system has no discontinuity like a shock wave. If the
s)'stem has such discontinuities, the entropy production rate has a positive value even in an ideal fluid.

(4.21)

(4.22)

an ideal

(4.23)

鶴2ra.、γttz
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4.2 Relativistic dissipative hydrodynamics

Although the ideal fluid approximation is a convenient approach, one cannot apply it to systems where
the dissipative effects are significant. The dissipative hydrodynamics should be used for such a case.

As noted alreadS', the dissipative hydrodynamics is closed b)'equations for the dissipative currents in
addition to Eqs. (4.1) and (4.2). We derive these equations with a phenomenological way on the basis

of the second law of thermodynamics. Before discussing the dissipative hydrodynamics, we summarize
the phenomenological procedure in the following :

1. Determine the form of dsp as a function of the dissipative currents :

\st" :6sP(VP,qP,n,"r,fI). (4.24)

For the definition of the entropy current, the dissipative currents are sufficiently small.

2. Substitute the entropy current to the second law of thermod5'namics : 7rsP ) 0.

3. Divide the divergence of the entropy current into the dissipative currents and the conjugate
thermodynamic forces :

1psp :(Dissipativecurrents) x (Thermodynamicforces). (4.25)

4. Impose linearity between the dissipative currents and the thermodynamic forces :

(Dissipativecurrents): (Transportcoefficients) x (Thermodynamicforces). (4.26)

Then the equations for dissipative currents Eq. (4.26) are obtained.

In what follows, we discuss the relativistic dissipative hydrodynamics following this procedure. We

see that the form of \st" determines whether the dissipative hydrodynamics can be causal theory or
not in this procedure. In this and next sections, the components of vector and tensor are denoted by

F : 0,1,2, 3 and that of partial derivative by It : t,r,y, z.

4.2.1, First order theory

First order theory, which is the relativistic Navier-Stokes theory was proposed independently by Eckart
and Landau-Lifshitz 122,231. We adopt the Eckart frame here. In the first order theory, the entropy
current in the Eckart frame is determined by the tensors uF, eP, fI, and np' and the orthogonality
relations E;q. (4.I4),

nlt
sts : s.q'lrP + i,

Substituting this form to the second law of thermodynamics Eq. (4.15),

expression,

T1rsp : -frv pup * qp(Y ,T-r + Durl * nP'Y ,u, ) 0.

(4.27)

one obtains the following
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lmposing linearity between the dissipative currents and the thermodynamic forces, one obtains the
relations for dissipative currents,

Here the proportional coefficients (, K, and 4 correspond to the bulk viscosit5', the heat conductiv-
ity, and the shear viscosity, respectivelSr We call them the first order transport coefficients. From
Eqs. (4.29)-(4.31), the second law of thermodynamics is given b5'

Π =― (▽μttμ
,

9μ =κT(平 ―」Dttμ
),

7Tμ
ν
=2η▽(μ zν ).

らSI=詳―霧+号が≧a

“

.2の

“

.3の

に3⇒

(4.32)

We note here that epep 10 because of the orthogonality relation upQp:0 in the LRF. Therefore the
first order transport coefficients must be non-negative to satisfy Eq. (4.32). The transport coeffi.cients
are free parameters in hydrodynamic simulations. They cannot be determined within the framework
of hydrodynamics but by a microscopic theory.

The first order theory is known to violate causality due to the parabolic equation of motion for
dissipations [24,25]. Therefore its application for the relativistic phenomena (for instance, high energ5'
heavy ion collisions or baryonic fluid inside compact stars) contains a principle problem.

4.2.2 Second order theory

To evade the acausal problem of the first order theory, Israel and Stewart proposed to use the entropl'
current extended up to second order in dissipative currents [27]. Due to this prescription, the equations
of motion for dissipations become hyperboiic and the propagation of the dissipations can be causal
with appropriate choices of parameters.

An example : Heat conduction in the first order theory
Let us consider a heat conduction described by the first order theory. From Eq. (4.1), the
energy conservation law in Eckart frame is given by

aT00=a響 +aδ 7Ю
O=aceq+2a9° =aceq~2agt=0. (4.33)

Here we used the orthogonality relation )uqp :0 in the third equality. The heat current is
given by Eq. (4.30), i.e.

qi : nYiT: n}iT, (Fourier's law).

Therefore Eq. (4.33) reduces to

(4.34)

}sT:K0;0iT, 6:4,
CV

Cy≡ 弊, 解.3つ

where we introduced the thermal diffusion coefficient K and the specific heat cy. Eq. (4.35)
is exactly the diffusion equation which is known to have an acausal propagation of heat
conduction.
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Here we adopt the following entrop5' current

sμ =seqttμ +1生 ――
(βΠΠ2_β99ν 9ν +βππンλπνり響1:, o.30

where 0e@:n,e,zr') are thermodynamic coefficients. Ba take nonnegative values because the non-

equilibrium entropy density s : rlLtEP is smaller than the equilibrium one, i.e. t a see. Performing the
phenomenological procedure described in the previous subsection, the second law of thermodynamics
becomes

T∂μsμ =二 Π
 [れ

鶴μ+βΠ血+:Π[「αμ
(争

jμ

)]

-9μ
[▽
μln T_也μ―′θ9ら 一:%T∂ン(:「

鶴ン
)]

+7rμ
ν

lσ
μν一βπケμン+:7rpν Tαρ

(11鶴

ρ
)]・

where И≡ご■/醐 and the shear tensor σμンiS deined by

σμン≡:△β△ズορυσ+∂σttρ)一 :△μνορttρ・ ●.30

Then the evolution equations for the dissipative currents or Israel-Stewart (IS) equations are obtained
from the linearity between the dissipative currents and the thermodS'namic forces,

The relaxation times rA are the second order transport coefficients and related with the thermodynamic
coefficients 9,q, as follows,

血=_毒
 [Π

+αЪZμ 4:ΠξTομ
(2与ギ

生
)],

4μ =Tfi19μ ~κ
(▽
μr― Tttμ )■

:9μ
κT2a′

(号)1,

ケμν==―一三L[7Tμν-2ησμン+πμンηTαρ
(2ち11)]・

βΠ=子, 島=み, 陽=発

(4.37)

(4.39)

(4.40)

(4.41)

(4.42)

に.4→

The second order theor)'can be causal due to 16. If one takes the limit rA ---+ 0, one can easily confirm
that IS equations (4.39)-(4.41) reduce to the first order relations Eqs. (4.29)-(4.31), respectively.

IS equations become simple form in the case of a uniform medium,

A: -Lt. G.4s)
TA

FYom this equation, the dissipative currents are shown to decay exponentially with time,

A(t): A(0)e-t1""

We use this equation in the next chapter.
We close this subsection with three remarks : First, the entropy current Eq. (4.36) is not the most

general form in the second order theory. One can add the mixed terms such as flqp and QrTt'P or other

second ord.er terms to Eq. (4.36) 127, 78). In such a case, the number of phenomenological coefficients



increases and the hydrodynamic equations become more complicated. Second the relaxation times z4
are different from the collision time or the mean free time. The relaxation times represent the time
scale that the corresponding dissipative current relaxes to its steady state value. While rA are the
macroscopic time, the mean free time represents the time scale of the microscopic reactions in a fluid.
Finally the second order theory can be acausal one if ra take too small values. In this case, more
higher order theories may be required for describing relativistic phenomena. A strategy to obtain
such theories is to expand the entropy current to higher order in dissipative currents and repeat the
same procedure as argued in this section. Since 14 are quantities proper to each matter, one must
investigate the validity of the second order hydrodynamics for each case.

4.3 Characteristic speed

In this section, we introduce characteristic speeds (group velocities) of transverse and sound modes
in pure gauge theory for later discussion. Let us assume that the propagation of dissipations when
adding small perturbations to a hydrodynamic system in equilibrium. Since there are no conserved
currents in pure gauge theory the local rest frame is equivalent to the Landau (energy) frame. To
linear approximation in the perturbations, deviations from equilibrium state in the energ;'-momentum
tensor are given by

解t481

where c: is the square of soulld speed deflned by c:=′ ∂P/∂ 6.

4.3.1  ■bansverse mode

ミ、■rst deri、Ю the characteristic speed of transverse inode under the linear perturbations. For the

shear current that travels in ν direction with■7elocity gradient along the″ direction,δ 鶴2 and δ712をre
nonzero components in δttC and δTり ,respectively. They depend only on t and",i.e. δz2=δ鶴2(t,")

and δT12=δT12(t,").The deviations of energy― momentllm tensor are then gittn by

δT02=(ceq+鳥 q)δ包2,

δT°0=δ6,   δTOt=(ceq+』%q)δzt, δT″ ={:箭
,+δ

π“+δⅡ,:軍
;す

o An example : Heat conduction in the second order theory
We revisit the heat conduction problem discussed in the last subsection. The energy con-
servation law is given by the same form as Eq. (4.33),

aceq=2292.

In the second order theOr)ら Fourier's law(4.34)is subStitutedけ Eq.(4.40) “

.4o

“

.46)rs}tq' : -q'* n0'7. (Maxwell - Cattaneo law)

From Eqs. (4.45) and (4.46), one obtains the heat conduction equation in the second order
theory

乃冴T=Ka∂う―aT. (4.47)

In this way, the heat conduction in the second order theory is governed by the hyperbolic
equation and its propagation speed has some finite value.

δT00=δc,
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The energy-momentum conservation law 1rQfu"1: 0 thus provides

(e"q * 4q)0t(6u2) + 0,(5rr2) : g.
(4.50)

Flom Eq. (4.4I) the evolution equation of shear current within the Iinear perturbations can be written
as

77ra(δπ12)+δπ12+ηぬ(δZ2)=0.

ApplD「ing plane lvale solutions

δ鶴
2～

eXp(―

`ω

ι+りた
"),   

δπ
12～

eXp(― づωt+づん
"),

to Eqs.(4.50)and(4.51),a f0110Wing dispersion relation is derived,

ω2+1「ω_等
ム

=0・

Fron■ this dispersion relation,one obtains two propagating lnodes

(4.51)

(4.52)

“

.53)

(4.54)

Since we are interested in the maximum value of the propagation speed of current, Iet us evaluate the
large k limit. In this limit, we have

Re ω =土た (4.55)

Therefore the characteristic speed of transverse mode u, within the linear perturbation is give by

η (Ceq+Peq)・
解.50

4.3.2  Sound IIlode

Next■re see the sound mode. Let us consider the bulk cllrrent propagates in″ direction i.e, δ鶴1=

δZl(t,″ )and δTll=δTll(t,α ).In this case,Eq.(4.48)becomes

δT00=δc,   δT01=(ceq+′ bq)δυl,   δTll=c:δ 6+δπll+δΠ.

“

.5つ

Calculating as well as the transverse mode, the energy-momentum conservation law and the evolution
equation Eq. (4.39) reduce to

υ子== (`L:'|三
)2==

a(δ6)+(Ceq+4q)a(δ し1)=o,

(Ceq+鳥q)a(δ鶴1)+C:ぬ (δ6)+Q(δ711)+Q(δΠ)=0,
711a(δΠ)+δΠ+(偽 (δυ

l)=0,

多ao尚 +赫u+:η島0め =a

ヽrith these equations and the plane― wave solutions

δし
1～

exp(― づωι+づた■),   δ7Tll～ exp(― づωι+づた″),   δΠ ～ exp(一づωι+づた2),

(4.58)

(4.59)

(4.60)

(4.61)

場(Ceq+鳥q)・
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the dispersion relation is determined by

,r--:t^-( e *! n )r+k2c!:s. e.6s1w -eq+Pq\t*trr-i7**r*/ -

In the large k limit, Eq. (4.63) gives the characteristic speed of sound mod.e u; as

' /oReu.,\'= , ,, 
=, *!_!__*"7. e.64)uL:\ ak ) ;G""+P*) -5',1."o*"t-t;'

The characteristic speeds u7 and u7 have to be smailer than the speed of light for the causality.
Thus the causality conditions are derived:

,2r:---!*<y (4.6b)' Tn\e"ql P"q) -

o?:=,4^+! , n 
=r+c!<t. (4.66)- tJ 

"n 
(."o + P"q) 3 rn(e", * P.q)

Both u7 and u7 are expressed by the transport coefficients and the thermodynamic quantities. As-
seen in Eq. (4.66), the causality condition of sound mode provides more strict constraint than that of
transverse one.

summary

o We reviewed the relativistic ideal and dissipative hydrodynamics by a phenomenological deriva-
tion with the second law of thermodynamics.

o There are two choices of the local rest frame of fluid, i.e. Eckart (or particle) and Landau (or
energy) frames.

o The first order theory (the relativistic Navier-Stokes theor5.) is known to violate causality due
to the hyperbolic evolution equation of dissipative current.

o On the other hand, in the second order theory the hydrodynamic equation of each dissipation
becomes parabolic and can be causal due to the relaxation times.

o We also introduced the characteristic speeds and the causality conditions of transverse and sound
modes for pure gauge theory.
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Chapter 5

Ratios of Transport Coefficients

Relativistic hydrodynamic simulations are useful tools to describe the space-time evolution of a hot
quark-gluon matter created in relativistic heavy ion collisions. The simulations depend on several
input parameters and boundary conditions such as an initial condition, equation of state, and transport
coefficients. Since these input parameters are sources of ambiguity of hydrodynamic simulations, it is
highly desirable to constrain them based on a microscopic theory or ab initio calculation that is QCD
for heavy ion collisions. There are several studies which analyzed the first order transport coefficients
from lattice QCD simulations 128,29,30, 31,, 32]. These studies have used Kubo formula, which relates
the transport coeffrcients to low energy behavior of corresponding spectral functions. In this method,
one needs to extract the spectral functions from Euclidean correlators obtained on the lattice. This
step, however, is non-trivial because of an ill-posed problem [33]. In this chapter, we focus on ratios
between the first and second order transport coefficients. We attempt to derive relations between
this ratio and canonical correlation of energy-momentum tensor in four-dimensional Euclidean space.

According to the relations, the ratios can be directly obtained from Euclidean correlation functions
without obtaining the spectral functions.

5.1- Linear response theory

Linear response theory describes a response of some physical quantity against small perturbations
added onto a thermal equilibrium system. Let us first consider a system described by Hamiltonian 1

H(t):Hs-AF(t), (5.1)

where fls is Hamiltonian corresponding to equilibrium state. F(t) is a time-dependent external force
and A is a conjugate quantity of I'(t). We discuss how a physical quantity B varies under the
perturbation -AF(t). The thermal expectation value of B at time t is given by (B), : Th [p(t)B],
where p(t) is a density matrix at time l. What we calculate is a difference of (B) between at time t
and initial time ts,

A(B)' = (B)t - (B)r. : rf [p(t)B] - r] lp(to)B).

A(B), is determined if p(l) is obtained. In this and next sections, we write D explicitly.

(5.2)

lln this section, we discuss mechanical perturbation, which can be added to Hamiltonian €rs an external field such as

the electric or the magnetic fields. On the other hand, thennal perturbation such as heat or concentration gradients is
described as a boundary condition for a systemfAlthough these perturbations must be discriminated from each other
they lead the same expression for the transport coefrcients in a range of linear approximation.
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The time evolution of ρ(ι)iS gi“n by

ρ(t)=び (t,ι o)ρ (ι o)び
|(t,to)・

び(t,to)iS a time evolutiOn Operator,which sttisies fo1lowing equations,

4Щ壕の=Щの印,り ,

び(to,ιo)=1,

び(t,to)=υ
l(to,t).

The solution of Eq.(5.4)with the initial condition Eq.(5.5)is

しr(t,ιo)=7(expl-1ノ
Iム

r(S)gsI),

whre γ denotes time ordering.D市 idingび (t,to)intO equilibrium and perturbati■
7e parts

碗 (t,ι o)υ
′
(t),び

′
(ι)alSO Satis■ es a similar equation as Eq。 (5.4)and can be written as

印=γ←や陽ル0哺 ,

∬′
(ι)=疏 (ι ,tO)(― AF(ι))硫 (t,ι o),

咄り=eっ 卜■←T司 .

Then the expectation value(3)t under the small pertllrbation is c」 culated as fo110ws,

Here tre used a relation O(ι ,ォo)=可 (サ ,ιo)0恥 ←,ιo)With O=ス and B.In the■ ■h hne,

commutatorレ (tO),硫 (t,to)]=O and 1/0(t,ι o)可 (s,ιo)=硫 (t,to)碗 (ιo,S)=硫 (t,S).

Assuming that the initial state v7as in equilibrium at ininiteけ paSt,i・e.ρ
(ιo→ 一∞

)

3(t,S)=B(t― S),the difFerence△ (3)t readS
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(5.8)

(5,9)

(5.10)
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we used a

=ρeq and
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where (O)"o denotes an equilibrium expectation value, (O)"q = Tl [p"q O]. Let us introduce an
oscillational force F(s) : Fe"s and compler admittance 1(c.r) defined by

χO≡―:A《ムBけ期ヽqC巧く卜→お・ 0・ 10



Performing a transformation of integration variable t - s ---+ l, the complex admittance reduces to

x(u) : -I [* Uo, B(r)])"q 
"-iut61.IL Jt)

Fourier transformation of 1(c..') is called response function,

xQ): -ir<to,B(r)l)"q (r > o),

x(t):o (t<o)'
To rewrite the complex admittance, we use an identity for an arbitrary operator ,4. 2

le-Ho/T , Al : s-Hol, [o'' d), e^HolA, Hole*xuo .
Jo

Using this identity and Heisenberg equation of motion one obtains

lP'q' Al : ihP'q [u'' o^ ]'Ho A"-)'Ho : ihP'q [o'' o^ A(-i^)'' -Jt -Jo

o.n=ffi.

XO=ズ
∞

洗
ズ

νTぬ
♂ は 現狐 助呻

刑 =FT麒 依 切 即 L← >け

ズ 0=与
ズ

∞

洗
ズ

νT戯
法 切 用 L♂

刺=与
Iψ

戯陣
“
刑L← >け

“

・10

“

,10

0,10

“

・1つ

“

.18)

“

.19)

Here O represents time deri■ rative O=α O/dt・ With Eq.(5.18),one Obtains the follonring equation

(5.20)

Appl5'i1g Eq. (5.20) to Eqs. (5.14) and (5.15), the complex admittance and the response function
reduce to
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〓

ｑＢス

If one adopts some current operator J ltfr, where V is a volume of system, as ,,i and B, the complex
admittance and the response function are given by

(5.21)

(5.22)

(5.23)

(5.24)

2To check this identity, one may multiply eHo/r to each side from left and difierentiate with respect to IfT,
I .-,^

(LHS) : 
ffieHotrfe-Ho/r,Al:sHo/rgofe-Ho/r,Al-eHo/Ty11oe-Eo/T,A]:eHo/T1a,Hof"-'o/',

S. ph/r
(RHS) : id, J, d^e^Ho[A,Ho]"-^'o : 

"no/r1A,Hsls-Ho/r.
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甲
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Ｅ

Ｅ

(5.23) and (5.24) arc Kubo fortnulas [79] for quantum systems. Taking a classical limit h --+ 0 in
(5.23) and (5.24), Kubo formulas in this limit are obtained,

x(w) : + [* dt \J(o)J(t))"re-i't,rv Jo

x(t): fiU{o)tt))., (, > o).

Thus responses of some quantity for small perturbations are expressed by
currents in the linear response theory with the classical limit.

S=乱q― 券
"Π

Π2+島7″η′).
The宙scoshies and the relaxation times are related to each other as Eqs.(4.42),

5.2 Formulation

In this section, we derive relations between viscosity to relaxation time ratio and corresponding canon-
ical correiation of energy-momentum tensor for pure gauge theory. Since there is no charge flow in
pure gauge theory, a local rest frame (LRF) of a fluid is naturally identified with the Landau (energy)
one. In this frame, the energy and heat flows r,anish, Wt" : 0 and ep :0 (see subsection 4.1.2), and
the first order transport coefficients are the bulk viscosity ( and the shear one 4. The second order
transport coefficients are the relaxation times for the corresponding dissipative current, ry and rn. In
chapter 4, we introduced the entrop5r current as Eq. (4.36). Since there are no conserved currents, the
entropy is given by

dt(重 (0)i(ι )),

αι(7r12(0)テ 12(ι)),

“

.2o

“

.2o

the temporal correlator of

“

.2つ

(5.29)

(5,3o

7n=βΠぐ, Tn :20rrT' (5.28)

5.2.']., Classical formulation

As an instructive example, we first derive formulas for the viscosity to relaxation time ratios for
classical systems by two approaches. The two different approaches are based on the classical limit
of Kubo formula Eq.(5.25) and Einstein principle [80, 81] with Eq. (5.27), respectively. They lead
the same result and the ratios can be related with static fluctuations of dissipative current. These
derivations were proposed by Refs. [34, 35].

Let us begin with the classical limit of Kubo formula Eq. (5.25) with t,.r : 0. According to the
Iinear response theory, the first order transport coefficients for classical systems are expressed by the
temporal correlation of each dissipative current,

(=

η=

where A denotes three-dimensional spatial average
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and (O) is a statistical average in equilibrium

Following the IS equations Eqs. (4.39) and (4.41), the temporal correlation functions of dissipative
current decay exponentially as in Eq. (4.44), i.e.

o≡ 嘴
・

(И (0)Л (ι))=Ct/η (И (0)ス (0)).

Applying Eq.(5.33)to ET。 (5.29)and(5.30)and performing t integral,。ne cOmputes

√=子
I∞
読督0八叫

=子
I∞
洸ノ知のバリ

=子ηばり・
Thus following relations are obtained,

岩=子欧鋭 考=子陥り・

PA(Л)野 eXpl―
:Fβ
スズ21.

働=部品T2=島 =器 ,

め=協摯P=恭 =手 ,

(5.32)

(5.33)

は 34)

(5.35)

(5.36)

“

.30

は4o

(5.37)

In this way, the viscosity to relaxation time ratios are related to the static fluctuations of dissipative
current (II2) and (zrfr). Note that Eqs. (5.37) are r.alid only for classical systems because above
argument is based on the classical limit of Kubo formula Eqs.(5.29) and (5.30). We will expand the
argument to quantum s)rstems in the next subsection.

Let us derive Eqs. (5.37) with a different manner. According to the Einstein principle, a probability
distribution P(a) ofsome state variable a in equilibrium is given by P(a) - "5("), 

where S(a) is the
entropy in a volume V. If one identifies the entropS' with Eq. (5.27) to be that in the Einstein principle,
a probability distribution of the state variable ,4 is given by

(5.38)

With this distribution function, the fluctuations (or the variances) of dissipative current are calculated
to be

where we used the fact that the statistical average of dissipative current in equilibrium vanishes i.e.
(A):0 and hence \(542): ((A- \AD'z): (A'>.Eqs. (5.39) and (5.40) are identical to Eqs. (5.37).

It, however, should be remembered that state variables are assumed to be treated as classical
variables in Einstein principle. fn quantum mechanics, when a state variable a does not commute
with Hamiltonian, o and the energy cannot be determined simultaneously because of the uncertainty
principle. This means that the entropy cannot be defined as a function of non-conserving state variables
in quantum systems [81]. The Einstein principle therefore is not applicable to such a situation.
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5.2.2 Quantum formulation

In the subsection 5.2.1, we derived the ratios of the first and second order transport coeffi.cients
for classical systems. The ratios are described by the static fluctuations of each dissipative current,
which are classical and macroscopic variables. However, what we are now interested in is the transport
property of a hot quark-gluon matter where quantum effects would play significant roles. It is required
to expand the classical relations Eqs. (5.37) to the ones in quantum field theory and to substitute field
operators for the classical variables ,4.

Let us apply the Kubo formula Eq. (5.23) to quantum field theory :

(5.41)

Although this formula seems to be the same as Eq. (5.23), J is now a quantum field operator. In
order to extract physical quantity from Eq. (5.41), one must pay attention to a singularit5' specific
to quantum field theory. fn general, some correlation function of field operators has a singularity at
identical space-time point, and the singularity brings about ultraviolet divergence of an integral of
correlation function.

The bulk and shear viscosities are expressed by the correlation function of field operator corre-
sponding to each dissipative current,
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αλ(Π (― t入)Π (ι)),

αλ(7r12(~づλ)テ12(ι ))・

(5.43)

(5.44)

(5.45)

(5.46)

“

.47)

lmposing E;q. @.a$ on A : fI, zi' in these equations as is the case in classical formulation, their
temporal integrals may be computed as follows,

ズ

∞

dι

αt c~t/74ノ
|ん

/T
ご入(■ (―

jλ
)ス (0))reg

fh/T: ro Jo d^ <A(-i^)A(0))*s,

In the right-hand side of Eq. (5.45), we put a subscript "reg" to the correlation function. This means
that (A(-i.\),4(t))r"u is a correlation function with some appropriate regularization. The Euclidean

An example : Two point correlation function of scalar field
In quantum field theory, two point correlation function often diverges in short distance limit.
Let us consider two point correlation function of a free scalar field @(r), where r: (t,i).
The correlation function in momentum space is given by

Fα→αyll=/ぎ絆IF豊≒フ「
傾時の

(5.42)

Here m represents a mass of the scalar field. Eq. (5.42) diverges in the short distance limit
fr + At and one has to perform some appropriate regularization procedure to remove the ul-
traviolet divergence when the equal space-time correlator (/(0)/(0)) is explicitly concerned.
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correlation function (,4(-d,\),4(0)) contains singularities at the origin and they should be excluded by
regularization to obtain a physical viscosit5r Eq. (5.45) represents the prescription of the regularization
is carried out. We discuss the detail of this matter in a later section and use the regularized correlation
function in the following.

We refer to the approximation Eq. (5.46) for Eq. (5.45) as relaxation time approximation, owing
to an analogy to the standard approximation in non-equilibrium statistical mechanics, (O(I)O(O)) =
e-t/" (O(0)O(0)). Note, however, that Eq. (5.46) is slightly different from this approximation, because

in Eq. (5.45) the correlator between field operators separated along complex time is concerned, while
the standard relaxation time approximation assumes structure of correlators in real time. Despite this
difference, the time scales appearing in exponential function in Eq. (5.46) would be equivalent to the
relaxation times of dissipative current r,a in Eqs. (4.39) and (4.41).

Substituting Eq. (5.47) in Eqs. (5.43) and (5.44), the relations between the transport coefficient
ratio and the Euclidean correlation function of dissipative current are derived,

√
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耳

α入(Π (―を入)Π (0))reg,

α入(テ12(~jλ )7r12(0))reg・

(5.48)

(5.49)

“

.50)

(5.5⊃

“

.52)

If one takes the limit fi, ---+ 0 in Eqs. (5.48) and (5.49), the classical relations Eqs. (5.37) are reproduced.
In the local rest frame of a fluid, one can replace the dissipative currents with the energy-momentum
tensor Trr. Then the relations Eqs. (5.48) and (5.49) are rewritten as
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As seen in Eqs.(5.53),the ratios of transport coemcients in quantum■eld theory are related to the

canonical correlation of Ъν in fOllr― dimensional Euclidean space.ヽ 石ヽe note that Eqs.(5.53)are also

derived by the projection operator method Fq.

Although the canonical coriel就 lon Eq。 (5.52)can directly be measured brlattiCe QCD simulatiOn,
比 お nd■7ebr dttre武 仕om those h Eqs.に 50 due tO tn70 rettons.FIst,0」 鴨 )お an ultravbbt

di、℃rgent quantity. A correlation function of■eld operator generally accompanies this iSSue and the

divergence must be excludedけ SOme renormalization process.Second,the contact terms,which dO
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an appropriate regularization for Eq. (5.52) to eraluate the ratios from lattice measurements of the
canonical correlations of Tpr.

An advantage of the measurement of viscosity to relaxation time ratios with Eqs. (5.53) is that they
can be observed directly in lattice QCD simulation. This is an important difference from the previous

lattice studies of the first order transport coefficients. In order to get the transport coefficients, they
observed the Euclidean (imaginary-time) correlation function on the lattice and extracted the spectral
functions which have an information about each transport coefficient at low frequencies from the
lattice results. This procedure, however, requires an ansatz for the spectral function because one must
extract a continuous function from finite and small number of lattice data of the Euclidean correlation
function. On the other hand, we take notice of the ratios of transport coefficients, and they 6611

be directlS' measured on the lattice without any ansatz. Whereas the ratios are not the transport
coefficients themselves, the ambiguity of hydrod5'namic simulations is expected to be reduced by

analyses of the ratios.

5.3 Regularization

5.3.1 Operator product expansion

We have derived the relations between the ratio of transport coeffi.cients and the canonical correlation
of Tur(r) for quantum field theory in the last section. As already mentioned there, one must treat the
correlation function of field operator carefully since'they contain singularity at identical space-time
points. One of those is an ultraviolet divergence, which originates from short distance behavior of the
Euclidean correlation function of. Tp"(r). Another is a temperature dependent contribution that is
proportional to d-function, i.e. the contact term.

Since both of these effects come from the short distance behavior of the Euclidean correlation
function of Trr(r), we may employ the operator-product expansion (OPE) to investigate these effects.

According to Ref. [82], the product of T,r"(n) at short distance limit behaves as

(5.54)

where Cprpo and CprpooB are c-number Wilson coefhcients determined in perturbation theory. The
first term on the right-hand side in Eq. (5.54) is proportional to lrl-8 due to dimensional reason and

leads to an ultraviolet divergence. This term neither has medium effects nor affects Iong distance

behavior responsible for the hydrodynamics. Therefore it would be plausible that this divergence does

not affect hydrodynamics and should be eliminated when one discusses transport coefficients. This
contribution is completely removed by subtracting the correlation function in the vacuum (" : 0).

The next terms on the right-hand side of Eq. (5.54) are proportional to dimension four operators.

These terms contain the contact term, which is proportional to 5(a)(r) as presented in Eq. (5.54).

This contribution cannot be removed by the vacuum subtraction because the statistical average of the
contact terms is proportional to (Tr"l arid has temperature dependence. The higher order terms in
Eq. (5.54) shown by dots neither yield divergence nor are singular.

When investigating the viscosity to relaxation time ratios based on Eqs. (5.50) and (5.51), one has

to handle these extra contributions. To take this point carefully into account, we discuss regularization
process for the physically meaningful ratios. FYom now we set h: L. First we show the vacuum
subtraction to eliminate the contribution from first term in Eq. (5.54). One can write this subtraction
procedure for Euclidean correlation function of Tpr(r) as follows

rr/T rIlT r't lTo

I dar (Tp,(r)rp"(0))o -- I dar (I1,,@)r*QDr - I dar (Tp,(r)Tp,(0))ro. (5.55)
JoJoJo

Ъν07わσO～ %″σ辞+α″σαβttβ Oδ00+…・brぃ Q
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Here we denoted the zero temperature by 7o because one cannot take an infinite lattice size in actual
lattice simulations. Due to this prescription, the first term in Eq. (5.54) is removed. Note that the
range of temporal integration of vacuum term differs from the thermal one as in Eq. (5.55).

In addition to the vacuum subtraction, we should subtract the contribution from contact terms
because they do not contribute to Kubo formula as discussed later,

“

.50

Unlike the vacuum subtraction for the canonical correlation of. 7,""(r) Eq. (5.55), (%B(O))o repre-
sents a simple difference between Q"B(O))r+s and (T.B@))r:s. (Tp"(r)To,(0))*e is the regularized
correlation function which appears in Eq. (5.45).

As discussed above, we subtracted the contact terms from the Euclidean correlation functions in
the regularization. In this argument, we assumed that Kubo formula, which is our starting point,
does not contain a contribution from contact terms. We discuss this issue in the next subsection. We
will conclude that the contact terms do not contribute to Kubo formula and one has to exclude the
contribution from the Euclidean correlation function of Trr(r).

5.3.2 Contact terms in Kubo formula

We here investigate the contribution of contact terms to Kubo formula. From Eq. (5.54), the contact
terms in Euclidean space are given by

g(― jλ
,→ 圭6LνρσαβttЪβ(0))oδ。)(").

“

.5つ

To evaluate the contribution of this terms to Kubo formula, which is dependent on the real-time t
and the imaginary-time,\, we perform an analytic continuation.\ ---+ 

^+it 
in Eq. (5.57). In order

to obtain an analytic continuation of d-function to complex argument, we utilize Poisson equation in
four-dimensional space

fot/' 
an, (Tp,(r)Tp"(0)),"s = lot/' 

an* (Tr,(r)Tp"(0))o - cp,pooo(ToB(0))0.

メ→0_嘉∂2多
,

where∂2=002+彎 and″2=λ2+ノ =λ2+r2.The Contact terms are then given by

ズ巧λ→―嘉%νρσαβ(・βOb∂2ラ≒.

/ご
3α ∂2 =-86/α 3″

高

“

.50

where we added an infinitesimal quantity e ) 0, which vanishes in the end of calculation, to the
denominator of Lf 12 to suppress the singularity at 12 :0. Before the analytic continuation, let us

carry out a differentiation and a spatial integration of.ll@2 + e),

(5.58)

12+e

=-327r6ノ
F°

dr(r2+λ
2_卜 6)3

-2ne f* , 1: 
^2+eJ-*o'F*P*,2r2e: - WT43E'
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In third equality, we used a following formula

f, 12 r r 1 f dr

Jo'1t'a4t:-4@+iP* aP*4+ 8"J ai
Performing the analytic continuation .\ -- 

^+it 
in Eq. (5.60), one obtains

g(t - i),; e) : C1,,pooB€,BQ))o, 
^ 

L
t\r'-{- itlz * e}slz'

To evaluate the contribution of contact terms to Kubo formula, Eq. (5.41),
integrals of g(t - il; e),

/oo rllT
I a, I ax se - D,;e)
Jo Jo

=Cμンρσαβ(rαβ(0))oノ
F°

dtJl1/Tαλ
 l{(λ

_+tt)246}3/2+

=%″ バ̈Ъバ叫o/T洸ぷ戯面示フ
→%″ β̈ttβOoズ

∞洗遅α入藤扇≒7,

/1戯赫 |イI麒 1赫 |

≦
/1ご

λ
彙

=卜鼻]5T

“

.61)

“

.6勾

we perfornl temporal

{(入 ―÷+をι)2+c}3/2

(e --- o).

は60

1      (5.64)

(5.65)

(5.66)

where in the first equality we used the periodicity of ,\ integral. Note that the d-functions in Eq. (5.57)
locate at upper and lower limits of ,\ integral due to the periodicyty of .\ direction. Therefore we must
take into account the contributions from both d-functions at ) : 0 and ), : llT to Eq. (5.63).
Moreover we expanded it to ,\ e [-m, m] in the forth line for later convenience. In the following, we
show that the expanded intervals in Eq. (5.66) do not contribute to Eq. (5.64) in the Iimit of e -- 0.

We divide the .\ integral of Eq. (5.66) into the original part and expanded ones,

/.oo f@ r f6 / r-tlT' il/T r- \
I o, I o^r. *- : [* o, ( [-''' * ["' + [* )ar---------------------, (5.67)
Jo J-* t(I+it)2*elt/z Jr, \r-- r-L/r'lrp) t(^+it)2*e\3/z' 

\v'vr

and then evaluate the third integral range, Iff d\, for fixed l. In the case of t : 0, the integral can
be evaluated as follows,

=:二 → 0 (5.68)
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1/1ご
λ

(λ
2~_ι2+6+2jλ t)3/21

/r* e, -J\- JtP-" {(42 -t2 + e)z a (2s111f/a
f@F

= Jr,rd^OW
:6ryP 

L-nl 1/r. ffi--'o (e --+o)' (5'6e)

Thus the third .\ integral in Eq. (5.67) does not contribute to Eq. (5.64) in the limit of e --+ 0. One

can easily verify that the first one, I-Y'd), also has no contribution to Eq. (5.67) and Eq. (5.66) is
consistent with Eq. (5.64) for e --- 0.

Let us perform the integral of Eq. (5.66) b)' using another formula

/論=洗・
“

.70)

With this formula, the .\ integral is calculated as

/Dco

I a: e f**o' ,.. , 
-l " 1z:a+it

J-* ^ 16*;4u;;1vu: J-**oro" 1rr1,y1r: LJNI=-***' (5'71)

where we introd.uced a complex variable z: \+it. f(z) = \F+; is a two-valued. function and

branch points locate at z : +i,\/a (Fig. 5.1a).

In the same v/ay, we can show that the .\ integral for fixed t f 0 vanishes,

≦
/1α

λ

z=■i涯

rl

´́ヽ́´
0

z=λ +′ノ

´́ 子
・

z=ィズニヒ__

Figure 5.1,: a): Riemann sheets for a two-valued function f (z) : \/V + e. Two branch points Iocate
at z: tir/Z. b): Polar form.

fn order to examine the right-hand side of Eq. (5.71), we introduce polar form (Fig. 5.1b),

z― jνだ≡rlcJθl,  z+ムだ ≡r2Cづ
θ2,  _γ <θl,θ2≦ 7r,

“

.72)



and rewrite∫ (z)aS fOllows

∫(Z)=(Z― づ
～
″)1/2(z+づ～

だ)1/2=(rlθ
ttθ l)1/2(r2Ctθ 2)1/2.

When the path of z integration passes through above the branch point z : *it/E, that is t €

[rE,*], z: *@ *zt and z: -@ *el correspond to 0t:02:0 ("r,rz: @) and dr :02: r
(r1,r2:m),respectively. Inthiscase,f(z)hasoppositesignsatz:+oo+itandz:-crc*it,

(5。 73)

い.74)

“

.75)

“

.70

where we defined J+*Q): \/T:1. Another limit is then given by

[影
=]z_∞

.t=鳳面希券薫=風
_I+iL

“

.77)

llere we used the relation Eq. (5.75) and, f-oo(z) is given by f -*("): rt: -f+*(z): -1. Thus
Eq. (5.71) for the case of t e lt/?.m1 becomes

∫+∞ (Z)≡ (rlC° )1/2(r2CO)1/2=π

∫_∞ (Z)≡ (rl Ctπ )1/2(r2Ctπ )1/2=_ν″lr2=~∫ (Z)+“ .

Then one mり calculate the ttlue of九 ∞(Z)as fO110n7s

∫+∞ (Z)≡ (rlCO)1/2(r2C° )1/2=ν″lr2

た∞(Z)皇 (rlc~・
π
)1/2(r2Cjπ )1/2=ャ″lr2=んム(Z).

=≠ =1・

|ザ再]z_∞.t=鳳面希券薫=鳳
1+t子 一多+ラ

where v7e uSed Eq。 (5.80)in the third equality.Eq。 (5.71)then reads

卜≠再IIIづ√卜国裁
■ om above discussion,Eq。 (5.66)provides

I∞
洗Дごλπ扁赤y=(ズ

√
+f)就 月二ごZ置静

=ノ
lν

″

dt 2+√ αι O=2ν々 ―→0 (c―→ o)・

ｔ
二
α

＋一 一
．

一〓

(5.78)

“

.79)

●.8の

=-1,

“

.81)

“

.8幼

[影爾 12=+∞■t=鳳面黒 義 可
=鳳

/1+4多 +滲
=|=二

[洗 ]:[:ilをt=1-1=0・

On the other hand, when the integration path passes between the branch point z : +i\/a and the
origin,i.e. t€ [0,/u-],thetwolimitof z:*a*itcorrespondto 0r:02:0 (r1,rz:x) and
0L: -r,02: n (r1r12: oo), i.e.

In this case, the values of f (z) at two limits of z : *oo * it have the same signs. If one defines the
value of f+*(z): l- as well as the previous argument, another side becomes

1+J告 ―多+多

(5.83)



In this way, we could confirm that the contact terms Eq. (5.57) do not contribute to Kubo formulas.
On the other hand, the Euclidean correlation function or the canonical correlation of Trr(r) which are

observables on the lattice involve the contribution from contact terms. Therefore one has to subtract
the contribution in lattice QCD simulation because the original Kubo formula Eq. (5.41) does not
include it in the case of ouantum field theorv.

5.4 Viscosity to relaxation time ratio

In this section, we use the OPE results on the contact terms [83] and rewrite the viscosity to relaxation
time ratios as expressions which are direct observables in Iattice QCD simulation. For the following
discussion, we introduce a Fourier transformation of the Euclidean correlation function of Trr(r),

Gr,*(qn,il : I dan G1",po(r) eio' : I On, (Tr,@)Tp,(0)l sie' (5.84)

5.4,1, Shear channel

First we show the contact terms in the shear channel. In the leading order OPE calculation [83], the
contact terms have most conveniently evaluated by taking the high frequency limit of the correlation
function Gnrz(qt,q] with zero spatial momentum,

』塩G2121gち の0=Q"2αβ(■βOヽ =:(瑠 +ヽ:ばり0,

where Tf,)' i, defined to be traceless and (F') : (Ffr"Ft") is the gluon condensate. In the first equality
of Eq. (5.85), the higher order terms in Eq. (5.54) vanish by Riemann-Lebesgue lemma.

o Riemann-Lebesgue lemma
Let f (q) be a Fourier transform of f (r) that is an integrable function on R,

i(d : [** f (r)"-iq,dx. (5.86)
J-a

fnen /(q) tends to 0 as lql tends to infinity,

, lim /(q; : s. (5.87)
lql+oo

Flom Eqs. (5.55), (5.56), and (5.85), one obtains the physical ratio of shear viscosity to relaxation
time of shear current in the Ieading order perturbation theory

(5.88)

Since the right-hand side of Eq. (5.88) includes only lattice obserr,ables, one can evaluate 11f r" directly
from Iattice QCD simulations.
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5.4.2 Bulk channel

The contact terms in the bulk channel have also derived by the OPE calculation [83] as well as in the
shear channel,

91蝿
Gれ力僣ちの0=“πb。ク2/(4(咄・お+ばり0). (5.89)

Here bO is given b57 Eq。 (2.75),bO=11/(4π )2,for SU(3)gauge theory.The physical bulk viscosit5r t。
relaxation tilne ratio is gi■ /en by

岳=券ω畷)reg

=:仔 0畷 )T一
券

φ畷 )Ъ
)一 :僻

πbOgり2((瑚 .)0+:ば
り0)・

We end with account of a relation between the viscosity to relaxation time ratio and the thermo-
dynamic quantities. (F2)6 and F\i)o in Eqs. (5.88) and (5.90) are related to the energy density e

and the pressrue P as follows

ぽ2ぉ =みに_3o=ふQ

(5,90)

(ztit )o - _.r,r. : _'Xrrr, + Ptr') : _-1{ (U, .It)
where B(9) denotes the beta function in Eq. (L.l), 0@):
the trace anomaly. In the last equalit)' of Eq. (5.92), we
included in e and P cancels out each other. Using these
ratios read

“

・9⇒

“

・9勾:いう

-bog3+. . .. A : e -3P is generally called
utilized the fact that the trace anomalies
relations, the viscosity to relaxation time
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(5.93)

(5.94)

summary

o We have derived the relations of the viscosity to relaxation time ratio and the canonical corre-
Iation or the Euclidean correlator of Tp, for quantum field theory.

o There exist two kinds of extra contributions which originate from the short distance behavior of
the Euclidean correlator of Tpr, i.e. the ultraviolet divergence and the finite but temperature-
dependent terms.

o To remove these contributions we have applied regularization procedures to the correlator, i.e.
the r,acuum subtraction and the removal of contact terms.

o We also confirmed that the contact terms have no contribution to Kubo formula but effect the
canonical correlation of Tur.
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. The physical ratios can be expressed by only lattice observables, i.e. the canonical correlations
of Tp, and the thermodynamic quantities.

o Evaluating the ratios with lattice QCD simulation, we can constrain the free parameters in
relativistic dissipative hydrodynamic models.
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Chapter 6

Lattice Measurements

In the previous chapter, we derived the relations between the viscosity to relaxation time ratio and the
canonical correlation of energy-momentum tensor for quantum field theory. The ratios are expressed

by only lattice observables. In this chapter, we first introduce the energy-momentum tensor on the
Iattice. For lattice simulations, we adopt traceless part of energy-momentum tensor defined by field
strength tensor constructed from clover type plaquette which respects parity of spatial coordinates.
The relations Eqs. (5.93) and (5.94) require the sum of energy density and pressure, e*P, and the trace
anomalS', 0: e - 3P. The sum 6*P is directly obtained from measurements of energy-momentum
tensor on the lattice. We compute the trace anomaly by a conventional approach with standard
Wilson gauge action. Using these observables, we determine the viscosity to relaxation time ratios
within SU(3) gauge theory. The Iattice simulations are performed for temperature range relevant to
ultra-relativistic heavy ion collisions at the RHIC and LHC. We also analyze the characteristic speeds

of transverse and sound modes in a gluon medium. We find that the characteristic speeds obtained
from our lattice measurements are larger than any other theoretical predictions.

6.1 Formulation

6.L.1 Energy-momentum tensor on the lattice

Let us introduce energy-momentum tensor on the lattice. The traceless part of energy-momentum
tensor is generally described as

■リ (6.1)

lVeHere the metric is given by 6ur: diag(*,+,+,+), because we now consider Euclidean space.

adopt clover type plaquetteUfi!, (Fig. 6.1) for the field strength Fp, on the lattice,

恥らら
１
一４

一ρらろ■
２

〓

α2クろν≡_:{暉じ‐(螺し)|}tr¨
ebss part

=毛レイのた卜嘲・ の1≡ら,

螺し≡:(4ソ
+孵 +孵 +孵 ),

(6.2)

(6.3)
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whereありare」祀n by7

4り =ら (2)あ (η +β)哺 (η +')可 (2),

ころソ=の (2)可 (η ―β+ク)可 (η ―β)の (η ―ル),

v`ツ =哺 (η ―β)可 (η ―ルーク)ら (2-β ―ク)の (η ―ク),

グ,9=可 (η ―′)の (η ―′)の (η +β ―ク)4(η +β
)・

Here the link variables ,、 (η)aFe deined by Eq.(2.23). If one deines FItν  with standard plaquette
Eq,(2.22),5ν  breaks the imariant under the parity of spatial coordinates and its o■ diagonal com―

ponents have inite expectation ttlue(T12)≠ 0,WhiCh mllst ttnish in equilibriumo With Eq。 (6.2),

diagonal and o■ dia7gond components of写り・On the lattice are rewritten as

■1=Tr

写ン=2■ み・嘲し峨]・≠の・

(6.4)

(6.5)

暉 υメ
″

暉 暉

Figure 6.1: Cover type plaquette.

We remark on a relation between T* in the continuum theory and on the lattice. In the continuum
theory, T* is obtained as the Noether current for the translation symmetry. On the other hand, 7i.,,
on the lattice is no longer a conserved current due to the discretized translation symmetry. This
means that a renormalization factor Z(g) depending on the bare coupling g is required. to connect
them, Tf,l,"t: Z(g)TL?:.FYom non-perturbative analyses of anisotropy coefficientsr, Z(g) in SU(3)
gauge theor5'is estimated as [3t]

Z(g)=
t-L.0225g2+0.t305g4

(6.6)
1-0.8557g2

We use this factor on analyses in the following arguments.

lln lattice gauge theory, the spatial and temporal lattice spacings can be different, i.e. a, * a". The anisotropy
coefficient{isdefinedbyaratio t:a"fao.Inthisstudy,weuseanisotropiclatticespacing a:ar:ao.
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6.T.2 Vacuum subtraction on the lattice

In this subsection, we d.iscuss the vacuum subtraction for the ratios ryfrn and e lrn on the lattice.

Before proceeding with this subject, we clarify how to relate lattice observables to physical quantities.

While lattice obserr,ables are d.imensionless, the lattice spacing a is only dimensional quantity on the

lattice. Physical quantities and lattice observables are connected by the lattice spacing.

Let us consider the energy density € as an instructive example. The energy density in the continuum

theory .cont ir defined by the difierence between the ones at T l0 and at T :0 (vacuum), because it
diverges at the vacuum. €"o't can be related to the energy density on the lattice €rat as follows,

(6.7)

where we used. the relation itlT : aN" in the Iast equality. In this way, one may naively subtract epl o

from ept in lattice measurements.
In the case of the viscosit)' to relaxation time ratios, the vacuum subtraction procedure on the

Iattice gets a Iittle complicated. One has to be careful of the subtraction for the canonical correlation

of Tpr.First we see the shear channel ratio qfrn. The vacuum subtraction for r\frn is performed as

follows,

ぴ°■_cPtt c出 _16P号 (処°=N4はP_6糧め,

T4 ~    T4       α
4

l(::(ゴ
マち))0- (COntact terlns)]

|(子
(」12))T―

(I:(」
畔ち))η

l―
:lI(COntact terIIIS)

|(:ギ
fz2(θ

)(τL)lat)T―
(糸 発

Z2(g)('軽ち)lat)雪

1-ilI(COntact termS)

- (*,o(f?rl'"')^] - fi{"on uct terms).

― (COntact terlns)]

:δ
θ)2))0_f瑳 (COntact terms)

lη _1
T4η

~T4

1

T4

1~T4

=z2し )聡馨 (6.8)

Ⅵb used the relation 1/=(α ttσ )3 in the fourth line.ヽ 石ヽe regard an enough low temperature TO as zero

temperature T=0.TO denotes the corresponding ⅣァO represents the nllmber of telnporal lattice sites

which corresponds to the vacuum. As discussed in section 5.4,the contact terllns can be expressed by

only the thermodynanlic quantities which are lattice observables.

thl驚馳歯毬1:胤∬‖Tu盟驚F械およ鰍:1;跡TF」TT守:写
eFiT

The bulk viscosity to relttation time ratio is then related with(δ 瑚)On the lattice as bllcbws,
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where S denotes the action and」 B(θ)the beta function(see subSection 2.4.3)。 We uSed Eq。 (2.71)in
the last line.In ths wayЪ  One must not take dittrence bettreen(δ ttν )lⅢ at inite temperatllre and at

the vacuum simply in data analyses.One needs to multiply each number of temporal lattice sites Nγ

tO(δ ttν )lat bebre the vacuum subtraction.

6.2  Set up

ln table 6.1,¬℃list lattice simulation paranleters used in this study ure have performed SU(3)

latticё gauge simulations with a standardヽ lrilson gauge action deflned in Eq.(2.21).In Order to

investigate the lattice spacing and spatial、「olume dependences,silnulations have been carried out on

follr isotropic lattices.The lattice spacing α for each in、 電rse coupling β iS determined by the string
tension ν″=460 MeV ttd thё  parametrization of αν″in Eq.(2.72)Fl].ヽ lb use■ /～″ =0・ 63F到
and normalize r by■ .The temporal length aⅣ ァ=1/7 0f each lattice corresponds to a range of
temperature O.5sT/Tc(4,which covers those realized in heavy lon collisions at RHIC and LHC.

Gauge conflgurations are updated by heat bath and o、 crrelaxation algorithms discussed in section 3.1.

lVe also list the renormalization factors Z(g)and B(g)in table 6.1.

Table 6.1: Lattice simulation parameters. 1V, and AI" are the numbers of lattice sites in spatial
and temporal directions, respectively. a and Zo, denote the lattice spacing and spatial lattice size.

Renormalization factors Z(g) and B(9) are also iisted.

β=6/gZ 嶋 鳩 αlfml ισ「fml Z(g) 3(g)/6

6.499

6.205

6.000

6.000

32

32

32

16

4,6,8,32

4,6,8,32

4,6,8,16

4,6,8,16

0.046

0.068

0.094

0.094

1.5

2.2

3.0

1.5

0.796366

0.772442

0.748441

0.748441

0.125501

0.112127

0.098172

0.098172

We have generated 40,000 - 2, 100,000 configurations at every 50 sweeps in Monte Carlo time for
each parameter. Statistical errors were estimated by the jackknife method with bin sizes in a range
of 50 - 1250 (see subsection 3.2.2). To perform the vacuum subtraction, we regarded a lattice with
the largest N, for each B as the vacuum one. In fact, our numerical result with the Iargest AL for
each B corresponds to temperature well below [, where medium effects on expectation values are well
suppressed as seen in the following subsections.

6.3 Numerical results

6.3.1- Jackknife error

Fig. 6.2 shows the bin size dependence of the jackknife error for (ilr) on the lattices with different
temporal size AI, : 4,6,8,32 and 0 : 6.499. In this analysis, we did not perform the vacuum
subtraction. We can see that the statistical error does not depend on bin size. This means that the
autdcorrelation of gauge configurations are well suppressed even in smallest bin size n:50.
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Figure 6.2: Bin size dependence of jackknife error of (f?rlbt.We set the inverse coupling g:6.499
and prepared four lattices with different number of temporal sites N". In this figure, the vacuum and
the contact term subtractions are not carried out. The bin size dependence ofjackknife error cannot
be seen for all results u'e analvzed.
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・
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standard procedure and WVilson gauge action.As discussed in section 2.3.2,SU(3)gauge theOry shows
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6.3.2  Thermodynanlic quantities

ln Fig.6.3,we show the temperatlllle dependence of thermodynalnic quantities c+P and θ=〔 -3P
2.6+P is responsible for the causality conditions Eqs.(4.65)and(4.66),and the contact terms

Eqs.(5.93)and(5.94).The trace anomaly7 θ is also included in the contact terms.

In the lattice simulations,we llsed the traceless part of energy― momentum tensor deined by
Eq.(6.1)for measurements of 6+P.The expectation value of c+P was simply taken from
―:Z(g)(■オ)P becauSe a colltribution of the trace anoma15r is canceled out in this obser■

7able,1.e.

(6.10)

We used €t l' : 3Pt'l' in the third equality. Hence the definition of Eq. (6.1) is enough for this
measurement. While the definition of e * P is different from that used in the conventional analyses
of lattice thermodynamics discussed in subsection 2.4.3, the difference should be of higher order in
lattice spacing and converge in the continuum limit. Fig. 6.3a shows a rapid increase at the critical
temperature [. This indicates a phase transition as discussed in subsection 2.3.2 and Appendix A.
SU(3) gauge theory makes the deconfinement phase transition and degrees of freedom of a system
increase immediately above Q.

We also measured the trace anomaly with the Wilson gauge action Eq. (2.20) using Eqs. (2.69)-
(2.71). The Wilson gauge action on the Iattice is constructed from the standard plaquette (see

Eq. (2.68)). The numerical results in Fig. 6.3b are consistent with well known behavior measured
by previous studies on the lattice. (see, for instance, Ref. [85]).

Thermodynamic quantities presented in Fig. 6.3 are obtained with a reasonable statistics for aI^

temperature range. We can evaluate lattice spacing dependence of the thermodynamic quantities by
comparing the results with different inverse couplings. The numerical results show that the lattice
spacing dependence is weII suppressed. The spatial volume dependence of observables can be estimated
by comparing results on two lattices with B : 6.000. The spatial volume of Iattice with -Lo : 3.0 fm is
eight times larger than that of smaller lattice with Lo: 1.5fm. Fig. 6.3 show that the spatial volume
dependence of the thermodynamic quantities is also suppressed in the lattice simulations.

6.3.3 Viscosity to relaxation time ratio : shear channel

Fig. 6.4a shows that the temperature dependence of canonical correlation of 712 with the vacuum
subtraction V€?rllT.)6. The numerical results take negative values for B:6.000 at T <2?.. On
the finer lattices with B: 6.499 and 6.205, the negative values are also observed for N" : 4 whereas

the results with Nz ) 6 are consistent with zero within statistical error. The results indicate that
V€?r)/T)e is not the ratio r1f rr, because the latter must be positive from definitions of transport
coeflflcients. Thus the existence of temperature dependent contributions, i.e. the contact terms, is
suggested in the canonical correlations. To obtain the physical ratio, one must remove the contact
terms by an additional regularization (see section 5.3 for this issue) 3.

In Fig. 6.4b, we show the temperature dependence of. ryf rn given by Eq. (5.93). The figure shows

that the numerical results with all sets of configurations are consistent within the statistical error for
the range of temperature 1 STIT. J 4. We found that the lattice spacing dependence of the present

results is weII suppressed. Comparing the results on the two different spatial volumes with B : 6.000,

2In this chapter, we omit the subscript "eq" which means equilibrium state because what one directly obtains fiom
lattice measurements is always an equilibrium value of some physical quantity.

3If one misses the contact terms, rlfrn can be negative. This means that either q or rr takes negative value. However
these transport coefficients must be non-negative by definition.
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Figure 6.4: a): Temperature dependence of canonical correlation of ?12 with vacuum subtraction
V€?z)lne. This observable seems to be dependent on the lattice spacing and to com'erge at high
temperature region. The spatial volume dependence cannot be seen within the margin of error. b):
Temperature dependence of the shear viscosity to relaxation time ratio 11f rn in which the regularization
prescriptions, i.e. the vacuum subtraction and the removal of contact terms, have been performed.
r1f rn behaves like the thermodynamic quantities shos'n in Fig. 6.3. This behavior mainll' originates
from (e + P)12 in Eq. (5.93).

we can see that the spatial volume dependence of the r説 lo is also suppressed.η /77r rapidly increases
abow℃ Tc as well as the therl■ odynamic quantities in Fig.6.3.This behalrior rnainly originates from

the second term in Eq.(5,93),(c+P)/2,for l.5sT/■ .In the宙cinity of■ the trace anomaly also

has a signincttt contribution to η/η (See Fig.6.3).

6.3.4 Viscosity to relaxation tilne ratio: bulk channel

ln Fig.6.5a we show thtt the canonic」 correl就lon ofδ ttL wtththe vacuum subtrЖ tion(1/(δ瑚)/9T)o
as a function of r. unlike the shear channel,for each lattice parameter,the bulk channel takes non―

negatitt vdue within statistical error for l κ T/■ (4.Holvelrer the extra temperature dependent
terms are included in the canonical correlation as is the case ofthe shear channel. Since the extra terms

do not contribute to Kubo formula as discussed in section 5,3.2,the contribution lnust be removed in

lattice measurements.

In Fig。 6.5b,we show the tempertture dependence of the ratio c/7n gi1/en b57 Eq。 (5.94)or(6.9).
The ngure shows that the results are consistent Ⅵrithin the statistical error as well as the shear channel
∝cept below■ .The lattice spacing dependence is suppressed for l.5κ T/■ (4.Howe17er it
is hard to say about the lattice spacing dependence of the present results beloⅥ 「 1.5 Tc due to the

large statistical errors.Comparing the two results with β=6.000,we found thtt the spttial volume
dependence is suppressed above■ .

As urell as η/77r,(/知 has a tendency to increase in the vicinity of■ .HOWever the origin of this

behⅣlo■ of(/711 iS diferent iom that of η/物 .The beha171o■ of η/η around tt iS gOlrerned by the
contact terms whereas the canonical correl就 lon of T12 equals to zero or negative within a stttistic』

erroro On the other hand,the canonical correlation of δzt haS a dOminant corltribution toぐ /7n・ ThiS

contribution,for instance,reaches about one third of ξ/711 fOr the inest lattice with β=6.499.
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Figure 6.5: a): Temperature dependence of canonical correlation of δttt withヽ racullm subtraction

(y(δ瑚)/9T5)0。 within the statistics,the results tab non― negttive values h the whole temperature

rttlge we explored.In high temperature region,the ratio seems to converge a inite value.b):The

bulk宙 scosity to relttation time ratio ξ/7n aS a function of temperatllre.The contributions■ om the

vacuum and contact terms are both removed in this llgure. Although the lattice spacing and spatial

dependences〔re suppressed above Tc,Inore higher statistics near Tc is desirable.

6.3.5 Characteristic speeds

fn a pure gluonic system with the entropy Eq. (5.27), the ratios ryfrn and, (1ry1 are related to the
characteristic speeds ?r7 and ur, respectively. The maximum value of each characteristic speed squared
is given by

υ子=満 ,

“

.1⇒

“

.1動υZ=轟 +:満 +C:,

、vhere cs is the speed of sound(see seCtiOn 4.3). υT and υL have to be smaller than the speed oflight
to keep the causality conditions.

Fig.6.6a shows υl as a function ofT obtained from our lattice simulations.Although the errorbar
grows as T is lowered,the numerical results are consistent for l S T/■ ヽ 4.The spatial volume

dependence is suppressed above■ .恥b fOund that υl take Vdues■ om O.5to O.6 within a statistic』

media sttisnes the causdity condition.υ l demonStrates an increasing tendency close to■ .The
statistical error,however, increases as the temperature is lowered. We need to collect more data to

give a de■ ntte concl“ bn on the behⅣ br ofυみne冨 ■.

Thetemp9rtture dependence ofυ Z― c:iS ShOwn in Fig.6.6b.As well tt υl,We bund tt increasing
behalrior ofυ L― c:in lov7 temperature.The results on the nnest lattice with β=6.499 are not really

consistent with the ones on coarser lattices with β=6.205,6.000.The spatial volume dependence
cannot be seen within a statistical error in the flgure. The numerical results take values froln l.O to

l.2forl κ T/■ ≦4.Since the speed of sound is posLive c:>0,the sound mode obviously宙 olates
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Figure 6.6: Characteristic speed of a): transverse and b): SOund modes. υT and υL denote the
propagation speed of transverse and longitudinal plane Цra、℃ in gluon media, respecti■ 7ely Both of

them are dependellt on the lattice spacing slightりl The spatial■ 7olume dependence cannot be seen

aboК Tco While υi presertres the causdit5ア condition above■ ,υZ beCOIIles superlumind regardless
of the、りlues of sql■ are of soulld speed c:.

the causality condition 4. This indicates that second order hydrodynamics with bulk viscous efect is

an acausal theory Hon7eVer its behavior should be argued in careful nlanner,due to a large statistical

error of υL― C: near rc.

6。4 1)iscusslon

lt is ofinterest to compare υl and υz Obtained from our lattice simulations with other theoretical pre―
dictions. First,a kinetic theory based on the Boltzmann equation▼rith Grad 14 1noment approxllnation

1271 prediCtS η/77r壁 2P/3 in the high energy limit.恥 rith the relation c=3P for ultra― relat市istic

particles,Eqs.(6.11)and(6.12)reduCe t。

“

・10

“

・1→

In Eq. (6.14), the fact that the bulk viscosity ( of ultra-relativistic particles vanishes is used.

Second approach is based on a field theory with the projection operator method [36, 37]. In the
Ieading order (non-interaction) calculation, this method predicts

υみlft=
ε+P'
P

“

.15)

“

.16)

41f one sets c=3P,whch is the case of Stefan_Boltzmann(SB)limit,and the sound speed c:=1/3,υ
L一 c:must

be smaller than 2/3 from the causaltty condition of sound mode

62



for a relativistic bosonic fluid.

υ争IL 2 0・ 25 and υZI島
笙 0・ 67.

Third prediction is given

provides

If one assumes the ultra-relativistic limit, Eqs. (6.15) and (6.16) become

by a string theory with gauge f gravtty correspondence. This theor5'

υ子lst=

υLlst=

4-21n2'

名
に の+=

(6.17)

(6.18)

Here Eq.(6.17)ib deriVed in conformal hbrdrodynamic equations and ttbs a constant■ ralue υ;|“ 笙 0・ 36

178,86].On the other hand,Eq。 (6.18)is deriVed by non― conformal theory 1871 where relations

(/η =2(1/3-c:)and 711=4 are used.If one sets c:=1/3,Eq.(6.18)is coincident tO conformal
situation and leads to υL st 2 0・ 85.

The lattice QCD simulations without quarks constrain the characteristic speett as

0.5κ υみllat κ O.6,

1.O S υZ lat― c:ヽ 1.2

(6.19)

(6.20)

for the range of tempё rature l.5κ T/■ (4.Both of υ多llat and υZllat are larger than the abo、 e
theoretical predictions. Our numerical results indicate that the propagation of sound lnode in second

order viscous hydrodynaΠ lics exceeds the speed oflight. Thus the second order hydrodynaⅡ lic lnodels

、、rith bulk viscous e3ect lnust need some correction to preserve the causalit)4

1t shOuld be noted that these predictions ibr the characteristic speeds assume difFerent situations,

respectively.The kinetic results with Grad 14 moment approximation is obtained b57 cι αssづθαι Boltz_

mann equation in which quantuln enbcts are not included. It is con■ rmed that quantunl e3ects lnake

a qualitative diference to the behavior ofぐ /7rl at10W r Fη・ Quantum e■ cts should be taken into

account in the above argttents. The flё ld theOretical predictions are obtained by an application ofthe

chiral pertllrbation theory to ηοη―づηιeractづηg relativistic bosonic fluids in the hadron phase. However,

we nonr focus on the strongly interacting or coupled QCD systeIIl.The interaction between particles

can change the behavior of each characteristic speed.The conformal or non― conformal gauge/grⅣ ity

correspondence are powerful tools for investigations of the strongly coupled gauge theory. However,

it is not QCD itself but rather an ettctive model because Of its conformal invariance and/Or the

supersylnlnetry. One must attend to these di3erences when comparing the predictions each other or

employing theln on hydrodynamic silnulations.

Final軌 We estimate the relaxatiOn times 77r and 7n with ollr lattice results.FIom Eqs.(6.11)and

(6.12)with the thermodynamic relation c+P=Ts,the relaxation times are described as

77r=7FT' 札= ξ

OZ一 :υ子―C:)TS

“

.2⇒

The specific shear viscosity r7 f s is frequently presented in discussions of perfect fluidity of the hot
QCD matter created by ultra-relativistic heavy ion collisions. The value r1f s : ll@n) is conjecturei
as a lower bound by gauge/gravity correspondence [88]. On the other hand, comparisons of relativistic
viscous hydrodynamic results with experimental data 5 constrain an upper limit r7f s < 2-25 xLl(an)
[19, 21, 89]. F]om these limits of qf s, ql{r"(e + P)} on the lattice, and Eq. (6.21), r,, is roughly
estimated as rr - O$0-L)-O(10-2) fm. In a similar way, rn can be evaluated with a relation

sThe elliptic flow is often used as the experimental data due to its strong sensitivity to the shear viscosity (see, for
instance, Ref. [t8]). In general, particle production in a transverse plane with respect to a reaction plane ![, as a function
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ξ/s=2η /s(1/3-cζ )obtained肝om string theory 711=0(101)-0(10~2)fm.lVe,howeК r,note

that the pr6pagation of sound lnode violates the causality condition in our lattice lneasurements.

Although the above estimates are rough arguments,the viscous e3ects for the hot QCD matter

may relax with a short tilne compared tO a typical tilne scale of heavy lon collisions at the RHIC

and LHC～ 0(101)fm.These short relaxation times supports the validity of ideal h17drodynamic

models for ultra_relativistic heavy ion collisions. Ⅳloreover, in the hadron phase for a temperature

range 140≦ T≦ 200 MeV,77r iS predicted as 77r蟹 2-4 fm in Ref1341.ThiS large difFerence of 77'S

abo、電and belo¬「]Ъ may be COnsidered as a consequence of the decon6nement phase transition. ヽヽb
note that our estimates ofthe relaxation times are based on the assumption of QGP with low specinc

shear宙scosity.While this assumption is supportedけ the■rst principle calculations 130,311,there

is ncbt enough lmderstanding of it.New developments tte desirable for this subject.

summary

. nre measllred the thermodynaΠ uc quantities, the canonical correlation of energy lnomentum

tensor,the宙 scosity to relaxation time ratios,and the characteristic speeds with SU(3)1就 tice

gauge silnulation.

● To obtain the viscosity to relaxation tilne ratios,we have performed two regularization prescrip_

tions,1.e. the subtractioIIs of the wacuun■ contribution and the contact terms.

●While the behavior of η/η is mOStly dominated by not the canonical correlation of δ鴫′but the

contact terms,the correlation of δηこgi℃S a signincant contribution to ξ/711.

●We found the constraints of characteristic speeds O.5 κ υllat κ O・ 6 and l.O κ υZllat― c:κ l・ 2

from SU(3)lattiCe measurements and they are larger than any other theoretical predictions.

o The lattice results indicate that υT preser、 es but υι violates the causality condition in the second

order viscous hydrodynaⅡ lics,so that some correction may be required to bulk channel.

● The relaxatiOn times of hot gluonic matter are expected to be so short,0(10~1)-0(10~2),com―

pared to a tilne scale of heavy lon cOllisions,which supports the success of ideal hydrodynaⅡ lic

description Of the evolution of QGP.

of an azimuthal angle @ can be described as

"H : *ffi('. rE u^costn(g- '!.)r) , rc.22)

where u2 is the elliptic flow. It denotes an azimuthal anisotropy of the particle production. The RHIC and LHC observed
large a2 that supports collective behavior of the hot QCD matter.
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Chapter 7

Conclusions and Outlook

In this thesis,we measured the viscosity tO relaxation time ratios for tlle range of temperatllre O.5κ

T/■ (4 with SU(3)lattiCe gauge simulation.We■ rst formultted the relations bet¬ ℃en the ratio
and the canonical correlation of 7レ ンfOr quantum neld theory(subseCtiOn 5.2.2).The relations were

obtained ffoIIl an application of the relaxation tilne approxllnation to Kubo formulas. To obtain the

physical ratios ffom the relations,we performed two regularization prescriptions for the canonical

correlations on the lattice. One is the、 電cullm subtraction and another is the removal of cOntact terms

(SeCtiOn 5.3).

The canonical correlations include a temperatllre independent divergence. Vre took diferences

between the canonical correlations at T≠ O and T=O to remove the di■ /ergence(Subsection 5.3、 1).

In addition to this regularization prOcedllre, we also removed the contact terlns which depend On

temperatllre. The contact terms do not contribute to Kubo formulas due to the real_tilne integral

(SubSection 5.3.2).On the other hand,they give a inite contribution to the canonicd correlations.
Therefore the cOntact terms must be removed in lattice measurements of the cnnonical correlations,

lVe used the leading order OPE results for the estimates of contact terms(sectiOn 5,4).They are

expressed b1/the thermodynamic quantities,c+P and θ,which are lattice obser、ables.

We obtained the sum of 6+P iom measurements of写 り・direct157 and the trace anomaly θ by a
conventional approach with Wilson gauge action(subSection 6.3.2).By the irst principle calculation,

we determined the temperature deppndence of the ratio in shear and bulk channels,η /77r and ξ/7H
(SubSections 6.3.3 and 6.3.4).ヽ 石ヽe fOund that both channels show rapid increasing behavior above
■ but itS Origin is difFerent for each ratio.The ratio η/η iS mainly governed by not the canonical
correlation but the contact terms.In the bulk chttnel,the canonical correlation contributes ξ/7h aS
well as the contact terms.We constrained the free parameters of relat市istic dissipative hydrodynamic

models by these ana15/ses.

Then we analyzed the characteristic speeds oftransverse and soun(l modes,υ l and υL,fOr the same
temperature range(subSection 6.3.5).They relate to the ratios η/77r,(/711,and the thermo(サ namiC
quantities(sectiOn 4.3).nre fOund that υl in the hOt gluon medium takes O.5κ υ子(0・ 6 for

l.5κ T/■ κ4.This indicates that the propagation of this mode preser■7es the causality in the

second order hlrdrodynamics,On the other hand,■ om our lattice measurements,17e e■ /aluated υZ as
l・ O κ υZ― 罐κl・ 2 for l.5κ T/■ κ4.This means that the propagation of sollnd mode excesses

the speed of light. For the sake of callsalityЪ  some prescription should be required to the gluonic fluid

with bulk viscous ettct.

We compared ollr 6rst principle results of the characteristic speeds with other theoretical predic―

tiOns(sectiOn 6.4);kinetiC theory with moment approximation,■ eld theory with projection operator

method,and string theory with gauge/grⅣ ity COrrespondence.ヽ 1石e follnd that both of ollr lattice re―
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sults ofυ l and υL are larger than an37 other theoretical predictions. lヽb should note that each ttal)′sis

assllmes a diferent situation.

We estilnated the relaxation tillnes of shear and bulk currents for the hot gluonic lnatter under an

asstlmption of the 10w specinc shear viscosity η/s(seCtiOn 6.4).Both relaxation times take the value
Of O(10~1)-0(10~2)fm.The time scale is shorter than that of heavy ion collisions at the RHIC and

LHC.These are rollgh estimates but consistent with the ideal hydrodynaIIncal description of hot QCD

matter created by the relativistic heavy ion collisions. L〔 oreover our result of 77 iS Shorter than that

of hadronic matter Ъ ～ 0(1)fm.ThiS mtt suggest the deconinement phase transition.

We refer to several relnarks on the present study and future directions:

● Relaxation of correlation function

ln the present stu島らwe cOnsidered that each correlation function of Ъν decays exponentialけ
v‐ith single relaxation tilne. However several relaxation tilnes maり e対st for each dissipative

current. Also the relaxation tillnes lnay decay nOt exponentially but power law. In these cases,

the relaxation tilne approxilnation does not apply tO the correlation functions silnply.

● Newtonlan or Non,Newtoluan fluld

ヽヽ石e identi■ ed the relaxatiOn times in Eq。 (5.46)with the ones in Eq.(4.44),whiCh are derived
from a linearity between dissipative currents and thermod57nalllllc forces.This means that the

hot gluonic matter is NenrtOnian fluid,but it is non― trivial. If the linearity does not hold,1.e.

Non―NewtOnian■uid case,our formulation of the ratios lnay be lnodi■ ed.

● Improvement of statistical precision

The analyses of the ratios of transport coettcients need large amounts of data tt O(107).Espe―

cialltt the statistical errors are large in T/■ (1.5.ヽlb cannot make de■ nitive conclusiOns for

the observables there. To raise the statistical precision in the vicinity of lЪ ,one needs additional

enormous quantity of data and computer tilne. Hourever it may not be a practical approach.

Some prescription to reduce the statistical error is desired.

● Dynalnlcal quarks

Our lattice simulations are in the quenched approximation,i.eo with no d57namiCal quarks.Since

the gluons are doΠ linant in the relativistic heawり「ion collisions,the qualitative behavior of our

results lnay not change. However the contribution froIIl quarks is required for lnore quantitati、 e
and accurate comparison lⅣ ith experilnents.

● Ratios of other transport coettcients

Our formulation of the viscosit57 to relⅨ ation time ratios are applicable to ratios of other trans―

port coemcients. The heat conductivity and the difusion constant to corresponding relaxation

time ratios,κ/■ and D/7D,冨e Such examples.The former(latter)relates to the canonical

correl就lon of η4(δ

'μ

),and we need to take into∝ count d57namical quarks in lattice measllre―

ments.

● Specinc heat

The specinc heat cv relates tO a canonical correlation of δT44・ The Correlation does■ ot need the

subtraction of ttcuum and contact terms because of tempord translation symmetry of塊 4(See
appendix C)・ If One obtains cv from lattice measurements,the speed of sound can be evaluated

by a relation c:=s/Cv・ 石ヽe have the entropy densit5r s■ om lattice simulations,so that the

telnperature dependence of υL can be determined■ 7ith Eq.(4.64).

■om crettion to exploration of matter in extreme states;the hot/dence QCD matter physics

embarks on new era.
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Appendix A

QCD Thermodynamics

A.1 Simple model for QCD thermodynamics

Here we argue that the deconfinement phase transition occurs at zero baryon density with a simple
model. The main purpose is a derivation of the thermodynamic quantities in the hadron (confined)
and QGP (deconfined) phases. The energy densit5' e, the pressure P, and the entropl' density s are

written by using the partition function Z as

c=子写 ,PttT7,S=・
:ギ

1

Let us cOnsider free pion gas as a hadron phase.Its partition fllnction is g市 en br

rnZn: -dnv t !+ln(l - "-E(k)/r1, 
E(k): \F +@, @.2)J lzn)"

where dr. denotes the isospin degrees of freedom for pions, dn : 3. Setting rrl,v : 0 for simplicity
(without loss of generality), Eq. (A.2) becomes

lnzn:-'vrs /t- ''d"ffi J, dr rzln(7 - e-")

: a-ffir(4)c(4) : d*#n'r", .

ln the first line we used r: klT. In the second equality, we performed the integration by part .

is Riemanns's zeta function defined bv

(0=こ÷,         いつ
and c(4)=π 4/90.Thus the ellergy density and the pressure for the pion gas are gi℃ n by

cπ =写
響 寿

年 =ごπ
品

7T2T4,

鳥=T2:ギ肇L=απ藷7T2r4,

Sπ =ら
9072T3.

(A.1)

(A.3)

(A.4)

((S)

(A.6)

(A.7)

(A.8)
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Next,let us consider the QGP phase.We asslllne here that the QGP phase is composed of free

massless quarks and gluons.Eq。 (A.2)is applied to the gluon gas with the degrees of freedom of
gluons isち =(Spin)× (C010r)=2× (曜 -1).ThuS the gluon partition function reads

lnζg=dθ 雨
7T2T3.

On the othё r hand,the partition function of quarks is given by

hろ =らy:/券Цl+歩aりり,

(A.9)

(A.12)

(A.13)

(A.14)

(A.15)

(A.10)

where the baryon chemical potential equals to zero. The partition function for quark gas becomes

(A.11)

where the degrees of freedom of a quark is given by dn : (spin) x (q and q) x (color) x (flavor) :
2 x 2 x AI" x l[y. The factor 718 in Eq. (A.11) comes from the Fermi statistics of quarks (see

Appendix. L.2.2).
Fbom Eqs. (A.9) and (A.11), we obtain the partition function and the thermod5'namics quantities

in the QGP phase :

ln Z9=α9:::ケ
2T3,

ln Zp=ら
話

π
:T3, ら =ら +:ら ,

ヮ =ら
雨

π
2T4+3,

Pp=ら
発

π
274_B,

SP=ら
90π

2T3.

Here B is the bag constanf, which is introduced to incorporate the effect that the vacuum energy

density in the quark-gluon gas is higher than that in the hadron one.

We show the temperature dependence of the energ)r densitS', the pressure, and the entropy densitl'
schematicallS' itr Fig. A.1-A.3. The pressures P' and Po become the same value at some critical
temperature [,

場(■)=ら (Tc)・ (A.16)

Phase transition

Figure A.l-: e vs ?. Figure 4.2: P vsT. Figure A.3: s vs ?.



Since the higher pressrue phase is more stable, a phase transition occrus at 7". From Eqs. (A.7),
(A.I4), and (A.16), the critical temperature is written as

T!: =,?oB =. (A.17)-" - n2(dp_ d*)

In the case of tr/" : 3 and ,n[y : 2, each degree of freedom is given by dn : 16, dq : 24, and do : 37,
respectively. If one sets the bag constant Brl4 - 220 MeY, the critical temperature becomes T" = L60

MeV.

A.2 Derivation of partition functions

4.2.I Free pion gas

First we derivate the partition function of free pion gas. In the following, we assume the vanishing
chemical potential case. The thermodynamic potential Q, is given by

f d.3k E(h\
dtn: dnvT J @-rln(l - "n#), E(k): Jk, +n, (A.18)

Expanding the log term, Eq. (A.18) becomes

{rn:_d.nv, 
Io* ffinr?:r*

:-o*ry:i#o,(?, (A1e)

where we introduced modified Bessel function XrTr) i^the second equality,

/"OO

l* an k2e-'# : m2TKz (:\ (A.20)Jo -\T/

Using the expansion of Kz@) :2112 + O(no), Eq. (A.19) is calculated as

-2VT2 lr r.,*, , r o^,2*, , r o^,3-1* ...ls*: -d":ffi- lpKr(i) + FKr(T) + ,rKr(:, , I
.*zvr2 l(t 2 \ (t 2 \ (r 2 \ I: -d" 2n2 L\ir6f 

* )* \p W * ) 
* 

\su g;r * )* I
.vr4 S r .vr4- -d^' 1 ) .+ : -d"' -; e(a)' (A.21)

an=

Here we took the massless limit in the third line. Thus the partition function of free pion gas Eq. (A. )
is derived from Eq. (A.21),

rnz*:-Q'- d,-Yn2rs. @.22),7t- T -*"9o"
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L.2.2 Free quark-gluon gas

Since the same derivation for the free pion gas is applied to free gluon gas, the partition function of
gluons is given by

In.- Q' 'v '7g : -i : OnhnzT3. (A.23)

While pions and gluons are governed by the Bose statistics, quarks follow Fermi statistics. Thus the
thermodynamic potential for free quark gas is calculated to be

.V f d3k E(kl
Qc: dcT J 6rln(1 

-t- e--)

, m2vr2 S (_t)"*t o^ (r*\: -aq 2tr2 L--4-n2 \ r I

.*2vr2 lt 2 L 2 | 2 1

-_d 
_ t__ J___ -l2r2 lr, (?), 22 (+)2 ' J2 (+)2 j
trz-4 @

, v! S1: -eq nz Z-e#
: -dq(t - {r#r*, (^24)

In the last equality, we used the formula

r 1_11n+1t +-: (1 - z'-"X('). (A.2b)
n:L

We thus obtain the partition function of quark gas Eq. (A.11)

Inz Qo '7v,n: -"f - aoisln'rt. (A.2G)

Since a total partition function is given by a product of partition functions for each degree of freedom,
the partition function of quark-gluon gas is written as

tn Zo : tn zn * tn zn : aoftn2r|, d,o = d.n * Ior. (A.27)
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Appendix B

Coefficient of Contact Terms

In this appendix,we evaluate the coemcient of contact terms by a perturbative calculation of Euclidean

correlator

σμν″(″ ,ν)=(Ъν(2)Ъσ(ν)),             (B・ 1)

for free SU(瓦 c)gauge theory at inite temperature T(see also append破 in Ref.1901)。 We have

θμνρσ(■ ,ν)=((ら■2(π )― 亀ス3("))(のス3(π )一 亀ス多(・))(らスカ(ν)一 のス,(ν))(らスカ(ν)一 のス3(ν )))

=Σ
IoRsづ

e+② ω
♂に +助υ

((らスalP)一 鳥 ■z(Pl)0ン スa鯰 )一 のα五3o))「

×(Rρスカ(2)一 fンス,(R))“Lスカ(5)一 助ス3(S))),

(B.2)

where ΣJP≡ TΣれ∫ぎ争・The Fourier transbrmation Of θμνρσ(2,0)becomes

嚇0=ズ
β″/ん批賜にの         60

=ズ
β
 α7/α3″

c―
づTπ 】E〕 ノ1。 Rs Ct(P+°

)α

×《らス頴0-鳥ス30Xのンス頴② ~のα弓0× Rρ五わ0-助 40X助 スわ01」
ち∫

30》

Each terⅡl cOmpodng the correlator is calculated as fbl10¬ 「s

Σ IQRsく
P+②α

ろ cν Rρ陽

“

a(Plスlo)49)ス カ帽 ))

=ΣEIoRsを
lPI②α

ろ ονRρ場 (にalP)スヵに 》檸 30)46》 十 悴 alP)スヵ6))に

“"И

力解 )))

=ΣEノ
1。

Cづ
(P+9)α

F響ちFOLο
νJЪ Oσ島′δαβ―卜PしのνIりのρδαβδαβ)δ

αbδαb

=(堵 ―⇒Σ19げ
+②π

寿 みのν(ろοσ+島CD, (B.5)

where n7e used Feynman gauge

(Иa(P)スヵ(R))=lδnP+π Rρ O→
3δ

『
+ぅδαβδαb島.     lB.o



Calculating other terms as well, Eq. (B. ) reduces to

Gμνρσc)=(髯―⇒ズ
β
 aγ

/ご
31Σ

loc・
CP②“

×フニァメ2(ららのρOσ +ら鳥ομQン )+P2(Oνορδμσ+のンのσδμρ)+02(ろらδンσ+ら島δνρ)
+PC{2ろ Oνら +(ら Oσ +為 Oρ )らレ~(ろ Oρ +Ppομ)のσ―(為 Oσ +鳥 0ン )らρ
―けれQσ +島 Oμ )δンρ~0ものρ+らのン)らし}+(PC)2(らρδンσ+らσδνρ)]・    (B.7)

Let us consider μ=ρ =l and ν=σ =2,

θ1212C)=(曜―⇒ズ
β

 α7/ご3"Σ
/二
θttC―′一②π

×寿レψ
"の

+ノ

`+ゲ
」―

"の
続けみω+PO年  6助

Substituting r→ c andの → ―κ after P integration,one obtains

G12120)=(曜 1)T平/券
×
赫 F鮨1+た1)僣2+t21た 1た2+(C+K)2た;+κ

2鮨
1+た1ァ

ー2(c+κ)K{(91+た 1)た1+(92+ん 2)た2}+((0+κ)K)21.       (B,9)

In case of O=(魚 ,め ,the correlator reads

G1212(象)=(曜一、1)r2F/券
長
議 Fたそん;+(ο +K)2た,+κ

2た
I_4ο +K)Koそ +礎)+《0+κ)K)句 .

(B・ 10)

Let us calculate hllatsubara sum.

T平島=T軍が鵠=TT面訴専=―TttCttπ―轟≒)嘉

=~T平二焼4話嘉~二/嘉メ耳ナ島易
二
五出 身=2牲許旦=≒T,    

“
・⇒
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where n(k) denotes the Bose distribution function. Calculating other terms as well, one obtains

T平
0+κ)2=型募Ω'

Tttρ
+κ)2K2〒 ■絆顎流 +7光扇1,

T平浮喜警与=■絆ユ[∴ -7劣競1,

r平
    =_生宅響[T勇需+7島諭|

Tatting the lilnit 94~→ 00,the COrrelator becomes

91蝿
G221941=(曜 ~ザ

i務:生宅響 KたI+の -2た句

〒―押―⇒/券<1+狐り
=― :配一⇒/非ん3ぃう20)
=∞ -2発 (聘 Tlン

2T4.   ‐

/Jた
ん3η

(ん)==/αたた3 cβ

ん_1二 /α
たた

31_c_β
ん

=/α たた
3こ

θ
―れβん=2]/α んた

3c―れβλ

=豊Ё争〒6T4(0=壁 T4.

In the second equahty tt used a relttbn 3た『=た2(J=1,2,3)and the p61ar coordintte in the thrd

equality ln the last equalityt tre calculated as

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

The divergence in Eq. (8.16) is removed by zero-temperature subtraction of. Gn@d. Recalling the
pressure Eq. (A.7) and the degrees of freedom of SU(Af") gauge field (see also Appendix. A), the
coefficient of contart terms in the shear channel for the free gauge theory is given by

nLrryGrrr,r(q+)r-o: 
Cmzop(Toa)r-o: -ZrtfN? - 7)r2Ta : -2P : _'*rO . (8.18)

Here we used a relation e : 3P for the free gauge theory. Thus the fi.rst term in Eq. (5.85) can be
confirmed and the second does not appear because of e - 3P vanishes in the free gauge theory.
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Appendix C

Specific Heat

The speci■ c heat cv is related to a fluctuation of energy density δ62,

Cy=券 06り 。           (C.1)

Rewriting c with a component of the energy― momentum tensor T44,One obtains

(δ
62)=(δ:曜1)

=((Tノ
11/T 

αλ:T44(λ ))2)

‐
=写ズ

VTtt δttI“δ亀ズ叫    Ca
→ω■4(寡 )δ■40))・           (C.助

In the brth line,祀 used a translation syIIInetry of T44 With respect to time,T44(λ )=T44(弁 )・

Since Eq.(C.3)does nOt include an identical space― time point,the di℃ rgence and contact terms in

Eq.(C.2)ha、e nO C6ntribution to it.Thus the lneasureIIlents of specinc heat does not required the

regularization prescriptions. The specinc heat is given by

発=券 0名 )

→差0■4(寡 )δ■40))

=聡導0ユ4(等 )δ■40))嵐・        C・ 0

Furthermore,the speed of sound cs relates to the entroplr density s and cy as fo1lows,

C:=写 =1等鶏芦=多濤。      C・→
Using this relation with Eq.(4.64),the Characteristic speed of sound mode υL can be determined by
lattice measuFemellts.
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Appendix D

Tables of Numerical Results

Table D.1: (Z];I )lut and the energy density et'l'.

β 聡 鳩 (]班オ・)lat× 10° (■オ・)P× 10° Cι /■ 凡 。nf

6.499 32・
４

６

８

３２

-1636069(310)

-257173(129)

-72503(109)

-41(53)

-1636028(314)

-257132(139)

-72462(121)

0(― )

4.18820)

3.332<lo
2.968000

0(― )

300,000

1,000,000

1,000,000

1,000,000

6.205 32・
４

６

８

３２

-1488702(290)

-221949(231)

-55451(194)

-48(97)

-1488654(306)

-221901(251)

-554o3(217)

0(― )

3.8110(8)

2.8758(33)

2.2693(89)

0(― )

300,000

300,000

300,000

300,000

6.000
０●

Ｚ
●
０

４

６

８

１６

-1338696(301)

-171995(234)

-1317(191)

-94(136)

-1338602(330)

-171901(271)

-12加 (234)

0(― )

3.4268(8)

2.2278(35)

0.050106)

0(― )

300,000

300,000

300,000

300,000

6.000 166 ４

６

８

１６

-1338351(657)

-170683(528)

-6679(439)

-6(302)

-1338345(723)

-170677(608)

-6673(533)

0(― )

3.4262(19)

2.2120(79)

0.2733(218)

0(― )

500,000

500,000

500,000

500,000
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β 聴 馬 (Fz1'"' (FZ)「 (e - 3P) lTa N"orrf

6.499 326 ４

６

８

３２

-1.2771263(16)
-r.2767567(r4)
-1.27667r2(r2)
-r.2765707(6)

-0.0005556(17)
-0.0001860(15)
-0.0001005(13)

0(-)

0.3213(10)
0.5445(44)

o.e2ee(120)
0(-)

300,000
300,000
300,000
300,000

6.205 323 ４

６

８

３２

-1.22e30e1(53)
-1.2286418(46)
-7.2284464(39)
-1.228178r(20)

-0.0011310(57)
-0.0004637(50)
-0,0002683(44)

0(-)

0.5844(29)
r.2r2e(r3r)
2.2180(364)

0(-)

40,000
40,000
40,000
40,000

6.000 326 ４

６

８

１６

-L.1897434(23)
-r.1884324(20)
-1.1873814(19)
-1.1873692(13)

-0.0023742(26)
-0.0010632(24)
-0.0000122(23)

0(-)

r.0740(12)
2.4349(55)

o.o88o(164)
0(-)

300,000
300,000
300,000
300,000

6.000 16r ４

６

８

１６

-1.1897426(64)
-1.1884371(56)
-1.1874523(55)
-1.1873689(37)

-0.0023737(74)
-0.0010682(67)
-o.oooo834(66)

0 (-)

33.0738( )

2.4464(153)
o.6o3e(486)

0(-)

300,000
300,000
300,000
300,000

Table D.2: Tlace anomaly 0 : e - 3P : *g!)\I'2)olZg. Field strength tensor Fr, \s defined by
standard plaquette.

β 鍔 鳩 (鋳%)脱 ×10H (鳩%P× 1011 (y(5晴ち)/Tb)o N"orrt

6.499 323 ４

６

８

３２

r83r42(470)
1848e1(183)
185144(17e)
184837(25e)

-16e5(537)
54(317)
307(315)

0(-)

-0.0e0175(28569)
0.014543(85376)
0.261320(268130)

0(-)

300,000
2,000,000
2, 100,000
1,000,000

6.205 326 ４

６

８

３２

180885(316)
18329e(284)
183751(25e)
1836e3(367)

-2808(484)
-3e4(464)

58(44e)
0(-)

-0.140546(24225)
-0.167321 (9e835)

0.046448(359574)
0(-)

650,000
830,000

1,000,000
510,000

6.000 326 ４

６

８

１６

1801e4(363)
r82r5r(27e)
18398e(342)
183504(274)

-3310(455)
-1353(3e1)

485(438)
0(-)

-0.155537(21380)
-0.321861(93014)
0.364642(329306)

0(_)

500,000
850,000
580,000
890, ooo

β 颯 馬 (馬宅 )賦 ×101° (鳩ηЪ)「 文10・
U

(y(1晴ち)/T5)o Ato'f
6.000 166 ４

６

８

１６

r44325(2r4)
146128(206)
146777(208)
146975(20s)

29882650(
)

-847(2e3)
-1e8(2e5)

0(-)

-0.155654( 17550)

-0.251e81(87126)
-0.186080(277r47)

0(_)

900, ooo

1, 000,000
1,, 000,000
1, 000,000

Table D.3: Canonical correlation of shear channel with vacuum subtraction.
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β 鍔 鳩 (鳩 (δ鶴・ )2)1就 ×101° (馬 (δ鶴・ )2)「 ×101° 耗。nf

6.499 323 ４

６

８

３２

96267(252)

89064(89)

88028(86)

87485(125)

8782(281)

1579(153)

543(152)

0(― )

300,000

1,990,000

2,100,000

1,000,000

6.205 323 ４

６

８

３２

94471(165)

88178(137)

87257(124)

86856(171)

7615(238)

1322(219)

401(211)

0(― )

650,000

830,000

1,000,000

510,000

6.000 326 ４

６

８

１６

93224(187)

88014(136)

87003(161)

86727(131)

6497(277)

1287(261)

276(275)

0(― )

500,000

850,000

580,000

890,000

β 鍔 馬 ←N7(=身・ )つ
胤×109 ←N写 (=勢

上
)2)「 ×109 塩 nf

6.000 16。
４

６

８

１６

75056(112)

70180(98)

69645(99)

69610(98)

5446(149)

570(139)

35(139)

0(― )

900,000

1,000,000

1,000,000

1,000,000

Table D.4 Canonical correlation of δ鶴
■with V∝uum subtractbn.

β 町 鳩 (Ar7δ 7鳥
1・ δS)lat× 1011 (Ⅳ7δ]聯 Lδs)「 ×1011 凡 。nf

6.499 326 ４

６

８

３２

2387(715)

800(265)

285(255)

-431(368)

2818(804)

1231(453)

716(448)

0(― )

300,000

1,990,000

2,100,000

1,000,000

6.205 326 ４

６

８

３２

-1034(968)

680(1045)

-605(860)

-429(2023)

-605(2243)

1109(2277)

-176(2198)

0(― )

190,000

150,000

220,000

40,000

6.000 323 ４

６

８

１６

6366(644)

3760(490)

651(580)

967(470)

5399(797)

2793(679)

-316(747)

0(― )

500,000

850,000

580,000

890,000

β 町 馬 (Aみδ写り
1・δS)lat× 101U (馬δttLδ助辞×101U 凡 。nf

6.000 16・
４

６

８

１６

5039(391)

2952(358)

1019(360)

25(354)

5014(527)

2927(503)

994(505)

0(― )

900,000

1,000,000

1,000,000

1,000,000

Table D.5: Product of.6fi;r'and the SU(3) gauge action d,9 with vacuum subtraction.
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β 町 鳩 (Attδ SZ)lat× 10・
U

(ハ写δSZ)躍 ×101U 銑。nf

6.499 323 ４

６

８

３２

15079(45)

15277(18)

15254(17)

15271(25)

-192(51)

6(31)

-17(30)

0(■ )

300,000

1,990,000

2,100,000

11000,000

6.205 326 ４

６

８

３２

18031(69)

18390(81)

18397(67)

18747(167)

-71 6( 181

-357(186)

-350(180)

0(― )

190,000

150,000

220,000

40,000

6.000 326 ４

６

８

１６

21288(53)

22116(44)

22416(54)

22500(44)

-1212(69)

-384(62)

-84(70)

0(― )

500,000

850,000

580,000

890,000

β Ⅳ」 鳩 (Attδ SZ)lat× 10ν (N「δSZ)F× 10V 銑。nf

6.000 16・ 4

6

8

16

17117(32)

17732(32)

18141(34)

17968(33)

-851(46)

-236(46)

173(47)

0(― )

900,000

1,000,000

1,000,000

1,000,000

Table D.6: Canonical correlation of the trace anomalv with vacuum subtraction.

Table D.7: The viscositv to relaxation time ratios.

β 聡 馬 η/{η (6+P) ξ/{711((+P)
6.499 326 ４

６

８

0.49277(611)

0.53190(2337)

0.63621(8256)

0.34450(642)

0.40994(2337)

0.47220(8187)

6.205 326 ４

６

８

0.48985(587)

0.53687(3834)

0.68345(14919)

0.31665(1604)

0.30919(10985)

-0,08925(42872)

6.000 326 ４

６

８

0.50686(595)

0.53776(4044)

8.0868(6.5294)

0.35252(667)

0.47612(4687)

-1.2540(7.3648)

6.000 166 ４

６

８

0.50682(442)

0.57055(3615)

0.18675(101436)

0.36907(480)

0.47948(3730)

4.0027(9697)
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