|

) <

The University of Osaka
Institutional Knowledge Archive

Title New physics in pure and semi tauonic B decays

Author(s) |Watanabe, Ryoutaro

Citation |KFRKZ, 2013, HIHX

Version Type|VoR

URL https://hdl. handle.net/11094/27472

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



1%7/ j bb3D

New physics in pure and semi tauonic B decays

Ryoutaro Watanabe



New physics in pure and semi tauonic B decays

(Z ORF 29 B HPETFHARIZE T 2 5YHE)



Abstract

Recent experimental results on exclusive semi-tauonic B meson decays, B — D™ 7%, show sizable
deviations from the standard model prediction, while the recent results on pure-tauonic decay, B — 77,
reduce the deviation from the prediction. These results suggest a new physics in which the structure of
the relevant weak charged interaction may differ from that of the standard model. We study the pure-
and semi-tauonic B decays in a model-independent manner using the most general set of four-Fermi
interactions in order to clarify possible structures of the charged current in new physics. It turns out that
correlations among observables including tau and D* polarizations and ¢? distributions in B — D®7p
are useful to distinguish possible new physics operators. Further, we investigate some interesting models
to exhibit the advantage of our model-independent analysis. In addition, such model analysis puts
constraints on new physics model parameters from the combinations of B — 7 and B —» D15, As a
result, we find that two Higgs doublet models without tree-level FCNC and the minimal supersymmetric
standard model with R-parity violation are unlikely to explain the present experimental data, while two

Higgs doublet models with FCNC and a leptoquark model are consistent with the data.
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I. INTRODUCTION

The study of nuclear 8 decays have established the structure of weak interactions for
quarks and leptons in the first generation[l]. Following suit with this study, the B factories
and LHCDb experiments have investigated the counterpart in the second and third genera-
tions, and have reported a lot of their results on B meson decays. Since fermions in the
second and third generations have large masses, they are crucial keys to understand the
mechanism of Electroweak Symmetry Breaking (EWSB). In this respect, they are expected
to be relatively more sensitive to new physics unlike the first generation quarks and leptons.

The EWSB sector in a candidate of new physics beyond the standard model (SM) often
has a different structure from that of the SM. A well-known example is the two Higgs doublet
model (2HDM) of type II [2], which has the Higgs sector identical to that of the minimal
supersymmetric standard model (MSSM) (3] at the tree level. A pair of charged Higgs
bosons appears in this model, and its couplings to fermions are proportional to the involved
fermion masses and further enhanced if the ratio of vacuum expectation values, tan g3, is
large.

Among the B meson decays, B — 70 and B — D™ 75 contain both the heavy quark (b)
and lepton (7) in the third generation. Therefore these processes are relatively sensitive to
the effect of the charged Higgs bosons[4, 5], while they are described as processes mediated
by a W boson in the SM as shown in Fig. 1. From the experimental point of view, these
decay processes are rather difficult to be identified because of two or more missing neutrinos
in the final states. At (super) B factories, however, reconstructing one of the B mesons in
the ete~ — Y(4S) — BB reaction, one can compare properties of the remaining particles to
those expected for signal and background. This method allows us to identify and measure
the B meson decays including missing particles. The Belle and BABAR collaborations
reported their new results of B — 70 and B — D®77 respectively in the last year [6, 7]
using the full data set, and nowadays these decays get bear watching processes due to their
remarkable results shown below.

The pure-tauonic B meson decay B — 77 involves the product of the B meson decay
constant fp and the magnitude of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element
|Vl in the SM. Then if we use the value, fg = (191 &+ 9)MeV, determined by the lattice
QCD study|[8], we obtain |V,;| from this process in the absence of new physics. Before the



FIG. 1: W boson contribution to the decays.

B — 1 (Belle[6]) B — 7o (Average) CKM fit

[Vup| X 103|  3.34 4+ 0.69 4214047  3.38+0.15

TABLE I: Determinations of [V|.

Belle result recently updated, there was some large discrepancy between the values of |V
determined by B — 77 and the unitarity triangle fit of CKM matrix. This situation seemed
to suggest a existence of sizable new physics effect in this process. However, the latest result
reported by the Belle collaborations [6] turns out to be consistent with the prediction in
the SM (the fit from CKM triangle). In Table I, we summarize the determinations of |V,
where the average value is obtained by the combination of Belle [6] and BABAR [9] results.
The exclusive/inclusive semileptonic decays B — /B — X, {7 are also used to determine
|Vas|. However, there is also discrepancy among the values of |V,;| determined from B — 7l
and B — X, /(v beyond the uncertainties that come from hadronic amplitudes [10]. In this
thesis, we focus on the deviation between the values from the decay B — 77 and the indirect
determination by use of the unitarity triangle of CKM matrix.

The semi-tauonic B meson decays B — D®77 involve the CKM matrix element |Vep|
and the B — D®) transitions which are well-described by the Heavy quark effective theory
(HQET) [11]. The determination of |V;| is made by using the semileptonic decays B —
D™(5, where ¢ denotes light leptons e or p. The values determined by these decays are
not inconsistent with each other and the determination by inclusive decay [10]. Thus,
B — D®™{p are supposed to be less sensitive to the EWSB sector and assumed to be
described by the SM in this thesis. For a precise measurement and prediction of B — D®) 7,

it is useful to take the ratio of branching fraction to these light-leptonic decay modes. The



BABAR|[7] Average Prediction (SM)

R(D) (0.44 +0.07 0.42+ 0.06 0.305 =+ 0.012

R(D*)[0.33 £0.03 0.34 £ 0.03 0.252 + 0.004

TABLE II: Measurements and predictions of R(D™)) .

ratios of the branching fractions are defined by

B(B — DWr=p,)
B(B — D®(-5)’

R(DW) (1)

and their experimental and predicted values are summarized in Table II, where the average
values are obtained by the combination of BABAR (7] and Belle [12-14] assuming the gaus-
sian distribution. (For detail, see in appendix A.) As seen in Table II, the SM is disfavored
at 3.50 and then these results suggest an existence of sizable new physics effects. As shown
in Ref.[7], however, one finds that these excesses cannot be explained by a charged Higgs
boson in the 2HDM of type II at the same time. It is naively expected that the situation
on both the results of B — D™t and B — 77 is not suitable for the 2HDM because the
result of B — 77 is consistent with the prediction in SM as explained above.

Comparing the pure- and semi- tauonic B decays, the latter provides a wide variety of
observables besides the branching fraction. Hence, the semi-tauonic processes will allow us
to investigate the structure of the relevant charged current interaction at a future B factory.
There are many previous studies on such observables [15-29]. Among them we have been
investigating the utility for the tau and D* polarization and shown these quantities are useful
to identify the structure of the interaction in these decays [27, 29]. This thesis is mainly
based on our these studies.

In addition, we point out that combining the results of B — 7 and B — D™ allow
us to constrain some classes of new physics models, since these processes often correlate to
each other in some new physics models. The 2HDM is a typical example. The suppressed
and sizable new physics evidences in pure- and semi- tauonic processes implied by the recent
studies are expected to give strong constraints on some of new physics models. Therefore
it is useful to take pure- and semi- tauonic decays into account for the sake of new physics

effect in the charged current processes.



The rest of this thesis is organized as follows: In Sec. II, we present the most general
effective Lagrangian of b — g7 and the resultant amplitudes of B — 7 and B — D®) 1.
Experimental constraints are given in Sec. III. We discuss the utilities of the other quantities
in the search for new physics in Sec. IV and show the illustration for distinguishing the type
of new physics interactions in Sec. V. We analyze 2HDMs, MSSM with R-parity violation

and a leptoquark model in Sec. VI. Section VII is devoted to our conclusions.



II. MODEL INDEPENDENT FORMALISM
A. Effective Lagrangian for b — g7

The bottom quark decay including the tau-lepton, b — ¢77, is described by the four-
Fermi interaction of charged left-handed currents in the SM. Other four-Fermi operators
might be induced in the presence of new physics. The effective Lagrangian that contains all

conceivable four-Fermi operators is written as
Lo = ~2V2GrVy (1 + CL)OY + CLOY, + CL 0% + CLOL +CLO%),  (2)

where the four-Fermi operators are defined by

Oy, = b Ty (vr)r, (3)
Oy, = GRY*'br7eYu(vr)L, (4)
0%, = qbrTr(vVr)L, (5)
0%, = GrbrTr(vr)L, (6)
0% = Gro*’by TrowW(Vr)L, (7)

and C% (X = V32,512, T) denotes the Wilson coefficient of O% as the ratio of the SM
contribution. As for the tensor operator, we use the notation: o*” = (i/2) [y*,7"]. In later
analysis, we also consider the case for the neutrino flavor violating new physics operators
b — qr,, where the neutrino flavor is specified by ¢ = e, . We take all cases of £ = e,
1 and 7 into account in the contributions of new physics because the experiment does not
identify the neutrino flavor. Since then, the neutrino mixing does not affect the following
argument provided that the Pontecorvo-Maki-Nakagawa-Sakata matrix is unitary. Here we
assume that the light neutrinos are left-handed. The SM contribution is expressed by the
term of 1 in the right hand side of Eq. (2). We see that the tensor operator with the
opposite set of quark chiralities §r,0*"bg Tro . (V- ), identically vanishes, by use of the Fierz
transformations,

PTitho P Litha = —;11' > Py Tt 0T s, (8)
j



where T' = {1,v*,0%*//2,v*+°,7°} and

/11 1 1 1)
4-2 0 2 —4
F=]60 -20 6 |- (9)
42 0 —2—4

\1-11 -1 1)

B. Decay rate for B — 70

The calculation of the two body decay is straightforward. For B — 77, defining the B

meson decay constant as
{Olay*y°b|B) = fpp", (10)

we obtain the decay rate:

_ 3 1 mz ?
I'(B - 70) = §G2F|Vub|2f,23m3mf (1 -3 ) 11+ rwp|?, (11)
B

where the new physics contributions are summarized into ryp which is represented as

2
U U m u U
NP = OV1 —_ CV2 + _mb:; (CSI —_ CSZ) . (12)

-
We note that the tensor operator O% does not contribute to the two body decay since the
hadronic part (0|O%|B) cannot have anti-symmetric structure of momentum kinematically.
As seen in Eq. (12), the type of new physics operator does not much affect the contribution
to the decay rate. The enhancement factor m%/(mym,) ~ 3 in the scalar type contribution
is rather small compared to the case for B, — pu*pu~.} Nevertheless, one finds that B — 7o
are the most sensitive to the scalar interactions among the decays related to b — q7v due

to the pseudo scalar meson B and its two body decay.

C. Helicity amplitudes for B —» D®ri

The helicity amplitude of B — M7 (M = D, D*) is written as

! In this case, the scalar interaction is enhanced by the factor m%/(mym,) ~ 60. For detail, see Ref. [39].
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where A is the helicity of the tau lepton, Ay = s indicates the amplitude of B —s D710, and
Ay = £1,0 denotes the D* helicity defined in the B rest frame. The amplitude M’\”AM
represents the SM contribution and other terms in the right-hand side stand for new physics
contributions corresponding to the operators in Egs. (3)~(7). The SM amplitude is given by

[30, 31]
Gr

7

and the amplitudes that represent new physics contrlbutlons take the following forms:

Gry,

Mg = 2Ly, Z mHY LY (14)

M = 7 vaZmHé”&L* (G=1,2), (15)
Mg = —%VwCS,H*ML*T (i=1,2), (16)
G
MAT Am = \/gVCbCTZn)‘TI’\IH/\A/L)A\/\l (17)
AN

where H’s and L’s are the hadronic and leptonic amplitudes respectively as defined below;
A A = +£,0,s denote the virtual vector boson helicity. The metric factor 5, is given by
N+o = 1 and n; = —1. We treat the contraction of the Lorentz indices in O% as if two heavy
vector bosons are exchanged.

The leptonic amplitudes, Lﬁf, L* and L,’tj\, are defined by

LS\\T (q2,c0s 97) = Cu()‘)<7—(p7” /\T)DT(;D,,)]?’)'“(]. - 75)V‘r|0> ) (18)
LA (g, co86-) = (T(pr, Ae)T: (p0)|7(1 — 5)17]0) , (19)
Lg‘\g\,(qQ,cos 0:) = —iep(N)e(N)(T(pr, Ar) s (p, )| Fo* (1 — A () (20)

where €,()) represents the polarization vector of the virtual vector boson, g = p — phy(=
Py +pl) is the momentum transfer, and 6, denotes the angle between the momentum of the
tau lepton and that of the M meson in the rest frame of the leptonic system, to which we

refer as the g rest frame. The 7 helicity A, is also defined in the g rest frame. The explicit

11



formulae of the leptonic amplitudes for vector type operators are given by

L = +v2m,vsiné,

L = 2m,vcosé, ,

Lt = —2m,v,

L = V2y/¢?v(1 + cosb,) ,
Ly = —2v/¢?vsiné,

L; =0,

where v = /1 — m2/q%. The scalar type leptonic amplitudes are written as
T Y

LT = —2\/(]_2’1),

L= =0.

The tensor type leptonic amplitudes are represented as

L =0,
Ly, = —Li, = _\/-2.\/ q*vsinb. ,
Lt = -Lt, =L} =—-L{, = 2v/q*vcosb,

Li, = —L}, = 7vV2v/¢vsing,

Loy = —Lio= FV2mv(1 £cosb,),

Ly = —-LZ, =Lgy=—Ly,=—2m,usinb, ,
L7, = —L7 = —V2mv(1 £ cosb,) .

S

The formulae of the lepton amplitudes for different neutrino flavor are the same as the above

results as long as the mass of neutrino is very small and ignored.

The hadronic amplitudes, H{):‘&, H gy and H i‘f\‘f are defined by

(@) = €N {M(par, e (An)) lev*(1 — 7)ol B(ps)) ,

(4*) = €N (M (pa, e (M) ler*(1+7°)b| B(ps))
Hg(¢*) = (M(pu, e (Ou)) Ie(1 +7°)b| B(ps))

(4*) = (M(pum, € (M) le(1 — )bl B(ps)) ,

(4*) = dep(Nes(N) (M (par, € (Aag)) [eo™” (1 — v°)b| B(ps)),

12



where €(\ys) denotes the polarization vector of D* for A\yy = +1,0. The relations Hy \ =
Hy, , and H§ = HE, hold because of the parity conservation in the strong interaction.
Similarly, we find H g‘f“ = —-H g‘;’” for Apy = £1,0. The hadronic amplitudes of the vector
type operators for B — Dt defined in Egs. (36) and (37) are represented as

Hy, (") = Hy,+(¢") =0, (41)

Vw? —1
Hy o(¢®) = Hy,o(g?) = mpv/r(l +T)W Vi(w), (42)
w+1

Hy (¢°) = HY, (¢°) = mpvr(l — 1) —= Si(w), (43)
. " V¢ (w)
and those for B — D*7 are

H () = —H7,2(¢) = mpviAi(w) [w+1F Vo? — 1R (w)] | (44)
+1

Hy, 4(¢*) = —Hy,,(q*) = mB\/_mAl(w)[ w+7+ (w—1)Re(w)] (45)

Hy, (¢*) = —Hy, (¢°)
_ MV~ Al(w [=2r(w+ 1) + (1 = r*) Re(w) — ¢*(w) Ra(w)] , (46)

0 @)

others = 0, (47)

where @(w) = 14712 —2rw, r = my/mp, and w = pp-par/(mpmyy) is the velocity transfer
in B — Mrv. The form factors, Vi(w), S1(w), A;(w) and R;(w) are defined in Appendix D.
The amplitudes of the scalar type operators are expressed in terms of vector form factors

by applying the equations of motion of the quark fields:

HE (¢%) = Hg,(¢%) = mpvr(w+1)S1(w), (48)
Hg(¢%) = Hg(¢") =0, (49)
Hg (¢*) = —Hg, (")

mpvw? —1

= mAl(w) [—2r(w+ 1) + (1 — r*)Ro(w) — ¢*(w)Ra(w)] . (50)

13



Similarly, for the tensor operator, we obtain

H_(¢?) = Hi,() = mBﬁ—V;‘ng

Hiy(¢*) = £HL(d)

_ %Al(w) [0 -+ 1) + (1 + IVaZ — TR w)] | (52)
HY_(¢°) = Hy,(q%)

- Tﬁf!“l(w) [—(w+r)(w+ 1) + (w? — 1)Rs(w)] , (53)
HM(¢®) = —HWX (4D, (54)

[—(1 + 7r)*Vi(w) + 2r(w + 1)S1(w)], (51)

and others = 0. A definitions of form factors and a detailed derivation of these hadronic
amplitudes are found in Appendix B and Appendix D respectively.

The differential decay rate B — M0 is represented as

1 2
dFi;d = I | AMAm21 (g% cos 6,)|” d@s, (55)

where the three-body phase space d®j is given by

0-0- 2
dds = Y ¥ (1 - —%> dq*dcos 9, (56)

 256m3m% q>
and Q1+ = (mp £ mp)? — ¢>. Several decay rates used in the main text are obtained by

integrating Eq. (55) over ¢? and cos .. For notational simplicity, we define the following

quantities:
(D) =T/, D)= Y 1.5 (57)
Apr==£1,0
rop= Y YTk, Ty =Yr (58
Am=%1 Ar Ar

We note that the angle 6, (which has been defined as the angle between the momentum of
the tau lepton and that of the M meson in the ¢ rest frame) cannot be measured since we
generally do not know the tau momentum. However, it is in principle (at least) possible
to measure the direction of the tau remaining two-fold ambiguity if we know the position
of the B and 7 decay point using the decay vertex detector, which will be an additional
improvement of a super B factory. It is important to investigate an utility of such an

information in preparation for a super B factory, but this is beyond our work for now.?

2 The LHCb collaboration recently begun to analyze B — D*7& using such a method.

14



D. CKM matrix element, form factors and SM predictions

Precise determinations of |V,;| and |V,| are important issues to not only confirm the
CKM sector of the SM but also search for new physics in b — u, ¢ transitions. This also

require the correct estimations (or predictions) of hadronic amplitudes.

1. B— D™y

Here, we briefly review the recent determinations of |V3| in B — D®)¢ and the estima-
tions of their hadronic amplitudes. Using the helicity amplitudes shown in Egs.(21)-(26)
and (41)—(47), and replacing m, — my ~ 0, the differential decay rates in B — D¢ and
B — D*{v are given by

dl , _ Gr|Va|*’m} 5

dar N 2/, 2 1\3/2 2

dw(B — Dip) BT (1+7)*(w* = 1)**Fp(w)?, (59)
2,5

%(B — D*p) = %r:”\/w? — (w + 1)*P(w) Fp- (w)?, (60)

in the SM, where
4w
=(1— 2 _ Y 2 1
P(w) = (1= ) + —(w), (61)
and F’s indicate the contributions of the form factors represented as
Fp(w) = Vi(w), (62)

Fp-(w) = Aj(w) [2!32(“’) (1 + Z; iRl(w)) (63)

1/2
+[l—r+(w-— 1)(1—R2(w))]2J /V/P(w). (64)

In the framework of the HQET, one finds Fp(w) = Fp«(w) = &(w) in the heavy quark limit,
where {(w) is called as the (leading) Isgur-Wise function [32]. Containing 1/mg corrections,
the three additional undetermined functions x23 and 73, which are referred as sub-leading
Isgur-Wise functions, appear in B — D™®/¢5. We briefly review the HQET and show the
detailed expressions for the form factors including 1/mg corrections in Appendix. C. Luke’s
theorem [33] implies that the 1/mg corrections disappear at the zero recoil limit w — 1.
Thus, the absence of 1/mg corrections to the hadronic amplitudes reduce the theoretical

uncertainties, while we need the extrapolations of the distributions for B — D™)¢p, since

15



the distributions vanish at w — 1 as seen in Egs. (59) and (60). For the extrapolations, one
usually employs the following ansatz [34],

Vi(w) = Vi(1) [1 - 8p}z + (51.p7 — 10.)2% — (252.p3 — 84.)2%] , (65)
Ai(w) = A1(1) [1 - 804,z + (53p5, — 15)2% — (231p%, —91)2%] , (66)

where z = (vw + 1—+v/2)/(v/w + 1++/2) and R;(1) and Ry(1) are left as fitting parameters.

Based on these parameterizations, extrapolations and global fits from the experimental data

of the distributions result in [35]

Fp(1)|Ve| = (4.26 £0.07 £0.14) x 1072, (67)
p? = 1.186 £ 0.055, (68)

for B — D¢, and

Fp+(1)|Vas| = (3.59 £0.01 £0.04) x 1072, (69)
ph, = 1.207 £ 0.026, (70)
Ry (1) = 1.403 £ 0.033, (71)
Ry(1) = 0.854 £ 0.020, (72)

for B — D*(p. We cannot determine the overall factors Fp (1) (or equivalently V;(1)
and A;(1)) from the experimental data but can predict from the lattice studies which give

Fp(l) =1.074 £ 0.024 and Fp«(1) = 0.902 + 0.017 [10]. Finally we obtain

V| = (3.94£0.14 +£0.13) x 10~ (from B — D¢w), (73)
|Vis| = (3.96 £ 0.06 £ 0.08) x 1072 (from B — D*{7). (74)

These values are quite consistent with each other.

2. B DWrp

The amplitude in B — D77 involves two distinct form factors, Vi(w) and S;(w). The
form factor S; (w) does not contribute to B — D£v as seen above. In order to see new physics

effect in B — D1, we have to estimate S;(w) without experimental data. Applying the

16



HQET to the form factors, one find that S;(w) and V;(w) reduce to the Isgur-Wise function

in the heavy quark limit. Accordingly we parameterize it as
Si(w) = [1 + A(w)] Vi(w), (75)

where A(w) denotes the QCD and 1/mq corrections. As shown in Appendix D, we estimate

A(w) and give an approximate formula [29]:
A(w) = —0.019 4 0.041(w — 1) — 0.015(w — 1)2. (76)

As for B — D*7v, four form factors, A;(w) and R, 5 3(w), contribute. The w dependence
of A)(w) and the zero recoil limit of R, »(1) are extracted from experimental data of B —
D*¢p. The w dependence of R;s(w) is estimated by the HQET, while the leading terms
R1(1) and Ry(1) are left as fitting parameters determined above:

Ri(w) = Ry(1) - 0.12(w — 1) + 0.05(w — 1)2, (77)
Ry(w) = Ry(1) 4+ 0.11(w — 1) — 0.06(w — 1)2. (78)

The form factor R3(w) appears only in B — D*ri and is estimated as [27]
Rs(w) = 1 + As(w), As(w) = 0.22 ~0.052(w — 1) + 0.026(w — 1)%. (79)

The derivations of Rj o 3(w) using the HQET are shown in Appendix D.

The decay rates of B — D™y are then predicted by use of the parameters deter-
mined from B — D®)¢7 and predicted from the HQET. Taking the ratio of the decay rates
B — D™77 to the semileptonic decays B — D™{p further reduces the theoretical and
experimental uncertainties which mainly come from Fp)(1)|Vp|. We define the ratios as

D+(D®) + (DY)

®)) =
R(D™) = I'(B — D®w)

(80)

where T+(D®) are defined in Eq. (57) and T'(B — D"){p) are obtained by integrating
Egs. (59) and (60). The SM predictions and the measured values of R(D®)) are summarized
in Table II. Combining the excesses of the measurements give 3.50 deviation from the SM.

These results seem to imply that the sizable new physics effect contribute to B — D®) 77,

17



3. Determinations of |Vys|

Here in turn, we shortly review the determinations of |V,3|. The semileptonic transition
b — uwlp provides two avenues for determining |Vis[, that is, the extractions via inclusive
and exclusive decays.

The theoretical description of inclusive decay B — X, {7 is based on the HQET. Although
the total decay rate is theoretically predicted with uncertainties below 5%, it is hard to
measure the total decay rate by experiment because of the large background from B — X {7.
Instead, the partial decay rate in regions, where the rate of B — X {7 is suppressed, is used
to extract |V,p|. There are several models to estimate the shape of the distribution and their
results of |V,;,| are consistent with each other. The Particle Data Group [10] has reported

the arithmetic means of their values and errors:
|Vis| = (4.41 £0.15 £ 0.16) x 1073 (from B — X 0). (81)

Determination from exclusive decay is needed as a complemental check for that from
inclusive decay B — X,¢7 as shown above. For experiment, the identification of the final
meson provides better background rejection at the cost of the lower branching fraction, which
might be a crucial difficulty for b — wu transition due to doubly Cabibbo suppressed process.
For now, the decay B — wfv yields the most precise value of |V,,| among exclusive decays.
The relevant form factors for B — 7#i are calculated by the lattice QCD and light-cone
sum rules depending on the regions of momentum transfer. We omit the detail here and for
detail, see in Ref. [36]. As a result, the recent values of |V,| from B — mfi are averaged as

(10]
|Vus| = (3.23 £ 0.31) x 1072 (from B — 7fp). (82)

Most of contributions to the uncertainty come from lattice systematic and statistical errors.

As we have shown in Eq. (81) and (82), the deviation between the values of |V,,;| reaches
30. Therefore we cannot confirm the correct value of |V,;| in the studies of the determinations
from the inclusive and exclusive decay processes. Instead, we can predict |V,| indirectly by
use of the unitarity triangle of the CKM matrix. In terms of the Wolfenstein parameters, Vy;
is parametrized as Vi, = AN*(p — in), where A = 0.811 £0.017 and A = 0.225 £ 0.001 [10].

What is needed for this approach is the measured values of p and 5 without an information
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FIG. 2: Left: allowed regions that come from the experimental results of tan¢; (red) and
Amp,/Amp, (blue) in the p—n plane. Right: a prediction of V,; from the fit to the p—n plane

within 1o deviation (red region) and 20 deviation (orange region).

from V,;. This is done by measuring the angle ¢, which is parametrized as

tan ¢y = —1— (83)

1—p’
and the length of the side of the unitarity triangle opposite the angle ¢3, that is given by
the ratio of B;~By and B,—B, mixing and parametrized as

Amp, mp,,. 5.9 2 2
ZTBa _ ["Bag—242((1 _
s~ X (- pl+97) , (84)

where £ = 1.26 £+ 0.03 & 0.02 [37]. In the left panel of Fig. 2, we show the allowed regions
that come from the experimental results of tan ¢, (red) and Amp,/Amp, (blue) in the p—
plane. The measured values we used here are summarized in Ref. [38]. In the right panel,
we show the indirect allowed region of V,; from the fit to the values of p and 7. The vertical
axis indicates the absolute value of Vi, which is parametrized as |V = AN3 \/m , and
the horizontal axis represents the phase, tan(arg(V,;)) = —n/p. In this work, we treat the

value in this region as a reference value of V,. (This is equivalent to the value in Table I.)

4. Bo1p

The hadronic contribution to the decay B — 77 is summarized into the B meson decay

constant fp, which is calculated as fp = (191 + 9)MeV by the lattice QCD study[8]. In the
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absence of new physics (ryp = 0in Eq. (12)), thus we can extract |V,;| from the measurement
of B — 7. In Table I, we show the results, which are consistent with the predicted value
from the unitarity of CKM matrix. This mean that the new physics effect is suppressed in

B — 77 unlike in the case of B — D™ 7 as shown above.
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III. EXPERIMENTAL CONSTRAINTS

Let us consider first the constraint on the new physics effect from the measurement of
B — 7. We defined the Wilson coefficients as a ratio of the SM contribution (2v/2G V)
in Sec. II. In the following analysis of B — 7, we choose the central value of V,; determined
by the unitarity of CKM matrix as shown in Table I. We take the world average of B(B —
77) = (1.14 £ 0.23) x 107 as the measured quantity. Then we find that the constraint on

rnp turn out to be
|14 rnp|” = 1.53 4 0.28. (85)

One can see that the deviation is 1.70 and then ryp = 0 is not inconsistent with the
measurement for now. This result implies the new physics effect is suppressed in B — 75.

Then more precise measurement is favorable for the new physics search.

c P 3 c c
CV1 r - T N CV2 CS1

(9] leptoquark
C4, (= 4C7)

O

1A e
'\

-03]
-02 -01 00 01 02 03 o
-20 -15 -10 -05 0.0 -20 -15 -10 -05 0.0 -20 -15 -10 -05 0.0 0.5
(4 C (4
ReC% ReC% ReC%

FIG. 3: Constraints on the Wilson coefficient C§. The allowed regions within 95%(red line and
orange dashed line) and 99%(blue line and cyan dashed line) CL are shown. The regions in the
line (dashed line) are allowed when the values of R(D(™*)) are evaluated so as to be maximized
(minimized) within the hadronic errors. Allowed regions for lC;é"| are obtained by those for pure

imaginary C%. The leptoquark panel is mentioned in Sec. VI. .

21



Next we consider the constraints from B — D®7p. Unlike the case of B — 77, the
contribution of the new physics varies depending on the type of new physics operator. In
the following model-independent analysis of B — D®) 7, we assume that one of the new
physics operators in Eq. (2) is dominant except the SM contribution. This assumption allows
us to determine the dominant Wilson coeflicient from the experimental results of R(D) and
R(D*), and to see the feature of the contribution of new physics operator. It is also useful
to predict other observables as shown later. A situation beyond this assumption is discussed
in Sec. VI. In Fig. 3, the allowed region of the complex Wilson coefficient C% is shown
for each operator @%. The regions in the line (dashed line) are allowed when the values of
R(D®™) are evaluated so as to be maximized (minimized) within the hadronic errors. The
vector operators O, , describe the current experimental results [40]. The scalar operator
O, cannot satisfy the current experimental bounds. While the operator O, is favored
but need a large Wilson coefficient C§, for describing the experimental data, as is already
pointed out in Ref. [40, 41]. In addition, we find that the tensor operator Of reasonably
explains the current data.

We can translate these results into the cases of neutrino flavor violating operators. The

effects of such operators O%*, defined as

Oyt = ery*br Trvu(ve)r » (86)
Oyt = CrY*br Tevu(ve)r (87)
05t = crbrTr(ve)L, (88)
Og! = erbr Tr(ve)L (89)
OF* = ¢cpo*by Trow (Vo)L , (90)

are the same as those of 0% with ReC% = 0, because the new physics contributions do
not interfere with the SM amplitudes in these cases. Thus, we find no allowed region of
the Wilson coefficient within 99% confidence level (CL) for Og* nor Og?. The operators

Oy*, 0! and O7* are able to explain the present data.
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IV. THEORETICAL PREDICTIONS
A. Polarizations

There are several measurable quantities affected by new physics operators in B — D®)75
even though more than two particles are missing in the final state. In this work, we consider
the tau longitudinal polarization® in B — D7 and define the following quantity:
_I"(D)-T"(D)

I'+(D)+T-(D)’
where I'*(D) represents the decay rate with A, = £1/2 as defined in Eq. (57). The uncer-

P-(D) (91)

tainties that come from V,; and the normalization factor V(1) vanish in the above quantity.
For B — D*1 we also define P,(D*) in the same fashion. In addition we introduce the D*

polarization as

(D)
I'(Dp)+T(Dp)’
where D} 7y represents the longitudinally (transversely) polarized D* and I'(D} r) are de-

fined in Eq. (58). The uncertainties in P,(D*) and Pp+ due to V3 and A;(1) also disappear.

Pp. = (92)

The new physics operators are expected to affect these observables in various ways. Thus
it is important to study them at the same time in order to distinguish the underlying new
physics. Besides the above integrated quantities, ¢? distributions are potentially sensitive
to new physics. As we will illustrate below, the ¢? distribution of B — D77 decay rate is
helpful to discriminate two scalar operators.

It might be considered hard task to measure the tau longitudinal polarization due to
the missing neutrinos in the final state. The 7 in B — D®77 is identified by 7 — 7v or
T — ¢vv (£ = e,u) in the present B factory experiments?. Here we show how these decay
modes work as 7 polarization analyzer. We use a coordinate system in the ¢ rest frame such
that the direction of the B and D™ momenta is the z axis, and the 7 momentum lies in

the z-z plane. Then, we parameterize the 7 momentum as p# = E.(1, 3,sin0,,0, 3, cos b, ),

3 It is possible to define two distinct and independent 7 polarizations, namely the transverse polarization and
the longitudinal one. While the transverse polarization is generated by T violating interactions and/or
final state interactions, the longitudinal polarization is sensitive to the chiral structure of the relevant

interactions which we want to study.
4 The recent BABAR study [7] has used only the pure leptonic mode 7 — £vwv. This choice leads to the

cancellation of various sources of uncertainty in the ratios R(D(*)), because the signal B — D™*)7& and
normalization B — D*)¢ events are identified by the same particles in the final state.
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where E, = (¢> + m2)/(21/¢?) and B, = /1 — m2/E2. The differential rate of the decay
chain B — Mto (M = D, D*) followed by 7 — X is written as

ar il
T (B = M(r = X)7) = B(r = X)

where I'(M) = T'(M)* + T'(M)~ is the total decay rate of B — M7 as defined in Eq. (57),
P.(M; q?) is the ¢* distribution of P.(M), and (x is represented as

[Fx(¢% ¢x) + Pr(M;¢%) gx (4, ¢x)], (93)

_ E7T EZ

Ceov = £’ (94)

where Ey) is the m(£) energy in the g rest frame and B(r — X) denotes the branching

fraction of 7 — X. The functions fx and gx for 7 — 7 are well-known and given by

@0 =1/6-, 9@ ¢ =(2¢-1)/8, (95)
where we neglect the pion mass and omit the subscript for simplicity. The range of ¢ is
(1-74,)/2<¢ < (1+p8;)/2. As for T — £y, ignoring the £ mass, the decay distribution is
described by
16 ¢?

F60) = 5 Grgrl®( — B2) — 43+ 82, (96)
g@@)=—§aé%§mmu—£%ﬁwL (o7)

for 0 < ¢ <(1-5)/2, and
F@0) = gl + B+ 101+ B¢ - 16¢°, (98)
90 = go el AP 2L+ B)C-B1+3IC], (89

for (1 —4,)/2 < ¢ < (14 B;)/2. In is noted that the P.(M;q?) term in Eq. (93) vanish
when the function gx is integrated over (x. Accordingly we can determine P;(M; q°) by
measuring the (x distribution for fixed ¢? in Eq. (93). As a result, the polarization as defined
in Eq. (91) is obtained by integrating P,(M;¢*) over ¢*.

The statistical uncertainty of the ideal experiment is given by [42, 43|

SPX(M;q¢*) = (100)

vN SX M; q2)

where N(q?) is the number of signal events for fixed ¢ (or in a bin of ¢*, more practically)

and Sx (M ¢?) indicates “sensitivity” for measuring the tau polarization by use of successive
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tau decay 7 — X and is written as

2 9%x(@*,¢x) 2
Sx(M;q?) = / d ’ 101
i) = | [ s PR i oy
For the integrated polarization P.(M), we obtain
1
SPX(M) = ———— 102
(M) VN Sx(M) (102

where N is the total number of signal events and the integrated sensitivity S is given by

1 ,dT'(M) 1 -1z
Sx(M) = {W—)/ % dg?  Sx(M;q?)? ' (103)

Assuming the SM and neglecting the uncertainties in the form factors, we obtain
Sr(D) = 0.60, Sz (D) = 0.23, (104)
Sr(D*) =061, S (D*) = 0.20. (105)
These values vary less than 20% even in the presence of new physics taking the constraint
from the branching fraction into account. Thus we can naively evaluate the expected un-

certainties in the measurements of P,(D™). For example, the expected uncertainties in

P,(D®™) are calculated as

§P#(D)
B = (N ~ 500) (106)
SPE(D*)
By - 0 (N ~ 900) (107)

in the SM, where the number of the signal event is based on the recent BABAR study [7].
Then we find the present experiments do not have the ability to measure the polarizations
with sufficient accuracies due to less statistics. At the super B factory with integrated
luminosity of 50ab™!, N ~ 2000 and N ~ 5000 for the decays B — Dro and B —
D*r identified by 7 — 7 are obtained based on the Monte Carlo simulation in Ref. [44].
Similarly, N ~ 5000 and N ~ 8000 for the decays identified by 7 — £pv are obtained. Thus

the corresponding expected uncertainties are estimated as

SPEYD) _ .. SPF(D) _

W —_— 0.24, W —_ 0.1]., (108)
5PE(D) 5PF(DY) _

W —_ 0.11, W —_ 0.05- (109)

We can see that the polarizations with sufficient accuracies will be measured at the super

B factory.
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B. New physics effect

B =0 0.5

0.6 v, =m/2 04 2

Q04

0.0l=. 0.
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1Ck| 1Ck|

FIG. 4: Predictions on the branching ratios as functions of the absolute value of Wilson coefficient
|C%| for X = V19, 81,2,T. The predictions of new physics effects for the operators O%* are given by
the lines for §x = m/2 in these graphs. The light blue horizontal bands represent the experimental

values.

As shown above, it is worth studying the new physics effects on the polarizations while
they have not been measured yet. In Figs. 4 and 5, we show new physics effects on R(D®),
P,(D®) and Pp.. The horizontal axis is |C%| and three cases of §x = 0,7/2, and 7 are

ClVp

shown for illustration, where dx is the complex phase of C%. Effects of O%* are the same
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FIG. 5: Predictions on Pr(D), P.(D*) and Pp~ as functions of |C§| for X = Vj2,S512,T. The

predictions of new physics effects for the operators O%* are given by the lines for éx = 7/2.

as those of O% with dx = 7/2 as mentioned above. The width of each prediction indicates
uncertainties due to the form factors. We include £100% errors in the overall magnitudes of
A(w) and As(w) as uncertainties in addition to the ranges of p, p5 , R1(1) and Rp(1). The
horizontal bands with dashed boundaries in Fig. 4 represent the experimental values given
in Table II. From these results, we find that the sensitivity to the magnitude of the Wilson
coefficient varies depending on each operator. We note that the theoretical uncertainties are
sufficiently smaller than the present experimental accuracy. Therefore, we use the central

values of the theoretical predictions in the rest of this work unless otherwise stated.

C. Different standpoint: correlation between R(D) and R(D*)

Since we have seen that each new physics operator contributes to observables in different
ways as shown in Figs. 4 and 5, it is useful to examine correlations among observables for
the sake of discrimination of new physics operators. Here we study the correlation between

R(D) and R(D*). In the left panel of Fig. 6, we show R(D) and R(D*) in the presence of
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FIG. 6: Correlations between R(D) and R(D*) in the presence of new physics operators of O% (left)
and OF* (right) for X = Vi 9,512,T. The black dot in each panel indicates the SM prediction.

The light blue horizontal and vertical bands are the experimental values.

the new physics operators for O% (X = Vi 2,512 and T'). The shaded regions are predicted
by the indicated operators. As is known [28], R(D) is more sensitive to the scalar type
operators Og and Og, than R(D*). This is due to the angular momentum conservation
that gives an extra suppression factor for the vector meson. On the other hand, we find
that the tensor type operator Of exhibits the opposite behavior, that is, R(D*) is more
sensitive to O% than R(D). The vector type operator Of, gives a unique relation between
R(D) and R(D*), since it is just the SM operator and changes only the overall factor. The
vector type operator Of, that contains the right-handed quark current covers a wide region
in this plane.

The correlations between R(D) and R(D*) for the neutrino flavor violating operators
O%* are shown in the right panel of Fig. 6. As these operators do not interfere with the SM
one, they always increase R(D) and R(D*) with different ratios depending on X.

Once a future experiment gives precise values of R(D) and R(D*), we may exclude some

operators depending on the actual experimental values.

D. Different standpoint: correlations between decays rates and polarizations

As shown in Fig. 5, polarizations are also useful observables to identify new physics. Here

we show correlations between decay rates and polarizations in Fig. 7. The gray horizontal
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FIG. 7: Correlations between R(D®)) and P,(D®)), and R(D*) and Pp- in the presence of new

physics operators OF: "

(gray horizontal lines), OF, (light gray regions), Of};‘f (black dashed lines),
035" (magenta curves), OF (blue regions) and Oy (white dotted curves). The black dot in each

panel indicates the SM prediction. The light blue vertical bands show the experimental constraints.

lines represent the correlations for O7.*, the light gray regions (black dashed lines) for (9‘0,(2"5),
the magenta curves for the scalar operators (92:1?2"2, and the blue regions (white dotted curves)
for O The operator O, gives the same line as O} in B — Dri. The light blue vertical
bands show the experimental constraints on R(D) and R(D*).

We find specific features of the scalar operators in this figure. The polarizations P,(D®))
and Pp- are uniquely related to the corresponding decay rates in the presence of scalar

operators, because the scalar operators Og and O, contribute only to I'*(D®)) and I'(D}).

The definitions of polarizations may be rewritten as

[T+(D®) +T~(D®)] [1 - P,(D¥)] = 21~ (DY), (110)
[[(D3) + T(D})] (1 - Pp-) = T(D3). (111)

The right-hand sides of these equations are given solely by the SM contributions, and thus
the polarizations are definitely determined by the corresponding decay rates as seen in Fig. 7.
These specific correlations are prominent predictions of the scalar type operators, although
we cannot discriminate O%, from Og, by using these correlations.

As for the other operators, it is apparent that the SM operator Of. and Oy do not
affect the polarizations. While the quark right handed current (9{-’,(2"‘) has no effect on the
tau polarization in B — D77 because the axial vector part does not contribute to this
process. The operator Oy* in B — D*7¥ and the tensor operator O5* in both the processes
predict definite relations between the polarizations and the rates. The operator Of, in

B — D*77 and the tensor operator O% in both the processes have no such specific relations,
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but the covered regions are rather restricted.

The above correlations that include the polarizations definitely increase the ability to
restrict possible new physics. We might uniquely identify the new physics operator by these
correlations in some cases. However their usefulness depends on experimental situations as

we will see in the next section.
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FIG. 8: Three examples for the discrimination of new physics contribution: (a) R(D) =
0.21, R(D*) = 0.29, (b) R(D) = 0.37, R(D*) = 0.28 and (c) R(D) = 0.51, R(D*) = 0.25.

() ) ©
(R(D), R(D*))| (0.21,0.29) (0.37,0.28) (0.51,0.25)
X So Sa V2 I S1 Sa Va
Cf( —1.20+70.18|—0.81 +70.87 0.03 +70.40 0.16 +70.14|—0.50 +71.08 0.21 +¢0.56 0.18 10.53
P-(D) 0.02 0.44 0.33 0.22 0.60 0.60 0.33
B.(D*) —0.30 —0.35 —0.50 —0.26 —0.51 —0.51 —0.50
Pp+ 0.53 0.51 0.45 0.32 0.45 0.45 0.44

TABLE III: Predictions for the polarizations in each of three cases.

V. MODEL INDEPENDENT ANALYSIS

In this section, we illustrate several possibilities to restrict or identify new physics using
the observables discussed in the previous section and decay distributions. We suppose that
R(D) and R(D*) will be measured more precisely in a future super B factory experiment.
Then we will determine the Wilson coefficient C% associated with O% that is assumed to
be dominant except for the SM contribution and predict other observables.

Here we consider the following three cases of (R(D), R(D*)):

(a) (0.21,0.29) as shown in Fig. 8(a), in which Og, is unambiguously identified as the new

physics operator.

(b) (0.37,0.28) as shown in Fig. 8(b), in which O%,, 07, and Of are the candidates for

the new physics operator.

(c) (0.51,0.25) as shown in Fig. 8(c), in which 0%, 0g,,and 0%, are possible.
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FIG. 9: Distributions of w in B — D77 and B — D*77 for the case (c), wehre w = (m% — m3, —

¢®)/(2mpmys). The red, magenta, and light gray regions represent the distributions in the cases
of 0%, 0%, and Of, respectively, including the theoretical uncertainties. The w distributions in

B — D*r are almost identical for the three operators.

One of R(D) and R(D*) is chosen to be within the 20 range but the other is allowed to
deviate more. We note that OF* do not reproduce the assumed sets of R(D) and R(D*).
Table III summarizes the Wilson coefficient and the predicted polarizations for each case.

In the case (a), the dominant new physics operator is uniquely determined to be OF,.
The polarizations can be used to confirm that the deviation from the SM comes from the
operator Og,. Furthermore the assumption of one-operator dominance will be tested.

In the case (b), the dominant operator is O, , 07, , or O%. The predicted values of polar-
izations vary from operator to operator. We will determine the dominant new physics oper-
ator by measuring P,(D*) for example. Then the one-operator dominance will be checked
by looking up other polarizations.

In the case (c), the dominant operator is O% ,0g,, or Of,. The occurrence of OF, is
distinguished from that of Og or O%, by polarizations. Two scalar operators 0%, and O%,,
however, predict the same values of the polarizations as explained in Sec. IVD. Under
such a situation, ¢? distributions may discriminate between 0% and 0§,. In Fig. 9, we
present ¢* distributions for OF, , O%,, and Of, in the case (c). We note that the abscissa is
w = (m% —m2, — ¢*)/(2mpmy) instead of ¢>. The ¢? distribution in B — D7 turns out

to be useful for the discrimination in this case.
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VI. MODEL ANALYSIS

In this section, we discuss some new physics models which affect B — 77 and B — D®)rp

based on the results in Sec. III.

A. 2HDM with Z; symmetry

As known well, the charged Higgs boson in two Higgs doublet models (2HDMs) con-
tributes to the tauonic B meson decays and its effect is enhanced in some cases. In order
to forbid flavor changing neutral currents (FCNC) at the tree level, a Z, symmetry is often
imposed in this class of models and it results in four distinct 2HDMs [45-48] . Their Yukawa

terms are described as

Ly = —QrY Hyur — QLYaHadr — Ly YeHylr +hec. (type), (112)
Ly = —QrY,Hyup — QLYyHydg — LY, Hylp +hc. (typeII), (113)
Ly = —QrY,Hyup — QLYyHadp — L1 Y;H1€r +hc. (type X), (114)
Ly = —QpY,Hyur — QLY Hidp — LLY;Holp +hee.  (type Y), (115)
where H; o are Higgs doublets defined as
ht -
Hi = ’ y H,' = ’iUzHi, (116)
(vi + hD)/V2

and v; denotes the vacuum expectation value (VEV) of H;. The ratio of two VEVs is defined
as tan 3 = vy /v, and v = \/m = 246GeV. In type I, all masses of quarks and leptons
are given by the VEV of H,. In type II, the up-type quarks obtain their masses from H,,
while the down-type quarks and leptons from H;. In type X, Hs and H; are responsible to
the quark and lepton masses respectively. The masses of the down-type quarks are given
by H; and other fermions acquire their masses from H; in type Y. Under this definition vy
generates up-quark masses in any types of Yukawa interaction.

These 2HDMs contain a pair of physical charged Higgs bosons, which contributes to

B — 7 and B — D™ as shown in Fig. 10. The relevant Wilson coefficients introduced
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Typel Typell TypeX TypeY

&4| cot?3 tan?p -1 -1

Lu|—cot?p 1 1  —cot’f

TABLE IV: Parameters {4, in each type of 2HDMs.

bR UL
o) )
H™\ TR
vy,

FIG. 10: Charged Higgs contribution to the decays.

in Eq. (2) are represented as

” mym,
Cs, =04 =—— 3%, (117)
H*E
mM,m MM
cv = 7 “ c :__C__Zu, 118
Sz m%i 3 S m%li 3 ( )

where mpy+ is the mass of the charged Higgs boson. The parameters £; and &, are presented
in Table IV. One can see that the charged Higgs interaction which corresponds to Og°
affect B — 70 and B — D®77 in the same fashion. For the operator 0%,, the contribution
of the charged Higgs to B — 77 is very suppressed due to the small up quark mass. As
explained in Sec. I, a sizable new physics effect is needed in order to explain the experimental
measurement on R(D®), while the SM prediction on the branching ratio in B — 77 is
sufficiently consistent with the experimental result. Thus it is naively expected that OF, in
the 2HDMs is suitable to explain the recent experimental results in B — 7 and B — D®7p
at the same time. To have a sizable charged Higgs effect, |4, should be much larger than
unity taking the experimental bound on the charged Higgs mass into account. Then the
case of &, = 1 or & = —1 is not acceptable. The case of £, = —cot? 8 or & = cot? 8 with
cot? @ > 1 is unnatural since the top Yukawa interaction becomes nonperturbative. The
requirement for the top Yukawa interaction to be perturbative results in tan 3 = 0.4 [48].

Therefore, the operator OF, cannot have sizable effect on B — D®™71p in the 2HDM. While
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FIG. 11: Fit to tan 8/mpy+ using both B — 77 and B — D®)77 (black line), and only B — D®)7p
(black dashed line).

the type II of £; = tan? § is only the case to be sizable and only Cs in the 2HDM of type
IT is potentially enhanced. As we have shown in Sec. III, however, it is difficult to explain
the current experimental results in B — D™ 75 by Og_alone.

The analysis that depend on a model has the benefit of relating another quantities. In
the 2HDM, the contributions of the charged Higgs boson to B — 77 and B — D™ are
represented as the same variable as in Eq. (117). In Fig. 11, we show x? analysis of the
charged Higgs parameter tan 8/mpy+ in the 2HDM of type II. The Black line indicates the
result of combined analysis using the experimental data of B — 7& and B — D™®r5. The
Black dashed line represents the result using only B — D®75. Then we find that the
operator Og° in the 2HDM of type II for the largely contributed region is disfavored with
more than 99.9% CL. It is noted that for the region near the SM prediction, the confidence
level of exclusion from B — 77 and B — D® 15 is smaller than that from only B — D®rp,
This is because the result of B — 77 is near consistent with the SM prediction. The exclusion

for the sizable effect of tan #/mpy=+ is more powerful than the study in Ref. [7].
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B. 2HDM allowing tree level FCNC

A possible solution within 2HDMs is to violate the Zs symmetry at the cost of FCNC.

We introduce the following Z, breaking terms in the above four models:

ALy = —QLEZFIIUR — QrejH dp + h.c. (for type I and X), (119)
ALy = —Qre"Hyug — QreiHydp +hec.  (for type 1T and Y), (120)

where ¢, ; are 3 X 3 matrices that control FCNC and the quark fields are those in the weak
basis. To obtain the charged Higgs interaction in the mass basis, first let us rotate the quark

fields into
urry = UF®uypy,  dury — Uy Pdy, (121)

so as to diagonalize Y, 4. Then, the mass matrices are rewritten as

1
M, = —(v YL 4 v UM UR), 122
(¥ 4w ) (122)

1 D Lt nyrR
My(z,y) = 7 (de +yUq €Uy ) ; (123)

where Yul?d is the diagonal Yukawa matrix. The down-type quark mass term is represented
as My(ve, v1) for type I and X, and My(vy,v;) for type II and Y. At this stage, the Yukawa

terms are rewritten as

YP - y.pP
Ly + ALy = —01Viiem (%hg + eth) dp+ d Vo (ﬁhg + e;h;) ug + h.c. (1,X),

(124)

Ly + ALy =~V (Y—dDhg + e;h{“) dp + dp Vo (Y—uDh‘f + e;h;> ug + h.c. (IY),
V2 V2 (125)

125

where Vi = ULTUL is the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the basis that
diagonalize Y, 4 and we define ¢, = U, ql"fe;’ Uf (for ¢ = u,d). In turn, rotating the quark fields

into
urry = WEBuppy,  dygr — Wi (R)dL(R)7 (126)

the mass matrices are diagonalized:

1
D _ Lty Dy/R
ML \/5(”2 WEYPWE + o, eu), (127)
1
M(@9) = = (ewitvPwi+ yes), (128)
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Z Zg Zy
Typel —@“ cot B — € sin B(1 + cot? 3) ——% cot 8 + €gsin B(1 + cot? B) —‘/_2—1]M¢ cot 8

Typell @“ cot 3 — €, cos B(tan B + cot 3) ‘/_Lf/[“" tan 8 — egsin B(tan 8 + cot 3) ‘/_LvM‘ tan 8
TypeX @"‘ cot 3 — €y sin B(1 + cot? 3) —%Mi cot 3 + egsin B(1 + cot? ) ‘/_2—5\’[4 tan
TypeY @1‘ cot 3 — €, cos B(tan B + cot 3) —‘/%M‘i tan 8 — ;4 sin B(tan B + cot 3) ——‘/z—ML cot 3

TABLE V: The matrices Z,, 44 in each type of the 2HDM in the presence of the Z; breaking terms.

where we define ¢, = U:V Te;WqR. Then, rewriting the diagonal Yukawa coupling Yul?d in
Egs. (124) and (125) by use of the diagonalized quark masses M, and the extra coupling
€u,a that induce FCNC, the physical charged Higgs and fermion interacting terms take the

following form:
Ly = (arZ}Voxmdr + @ VekmZadr + P Zelr) HY + hec. (129)

where Voxm = WEV WY is the CKM matrix in the (true) quark mass basis. Table V
shows the expressions of Z, 4., where M, 4, denote the diagonal up-type quark, down-type
quark, and lepton mass matrices, and ¢, 4 represent matrices ¢, 5 in the quark mass basis as
defined above.

The FCNC in the down-quark sector is strongly constrained, so that efij is negligible
except for ¥ in the present analysis. The relevant Wilson coefficients, which include €% and
the enhancement factor tan 3, are given by

Cy, = Cs, ~ &egb sin Btan® 3, (type II), (130)

B \/im%i

¢ UM
1= 2
\/—Z_mHi

Although the positive interference to the SM contribution is possible depending on the sign

Cg, = & sinBtan B, (type X). (131)

of egb even in the 2HDM of type II, the situation is almost the same as Eq. (117). In Fig. 12,
we show the analysis for the fit to € in the 2HDM of type II assuming tan 3 = 50 and
mp+ = 500GeV as a illustration. Even for allowing the positive interference to the SM
contribution, the operator OF in this model cannot explain the both results of pure and
semi tauonic B decays.

On the other hand, constraints on the FCNC in the up quark sector are rather weak.

Recently the 2HDM of type II that allows FCNC in the up quark sector is studied to explain
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FIG. 12: Fit to € using both B — 75 and B — D™ (black line), and only B — D™ 75 (black

dashed line). We assume that egb is real, tan 3 = 50 and my+ = 500GeV as a illustration.

B — 77 and B — D™D at the same time [41]. Table V implies that the operator 0%
in types II and X might be significant for large tan 3. Then the corresponding Wilson

coefficient is given by
. Vie vm,

S = a3
2 V2V My
Vi vmr

B \/_Vub

In this case, the different components €& and euc of FCNC matrix are involved in B — 7o

(€5)* sin B tan 3, (132)

(et“) sin ftan 3. (133)

and B — D®™7. As seen in Fig. 3 the current experimental results of B — D™ 17 are
described by the 2HDM of the type II or X with FCNC provided that || ~ 1, while
€ is highly suppressed because of the enhancement factor Vi3/Vi,. If this is the case, we
expect sizable deviations in polarizations P.(D™)) and Pp. from the SM as designated by
the magenta curves in Fig. 7.

The large component € affects the top quark decay to charm quark. The Lagrangian

which induces the FCNC process in the up-quark sector is given by

_ [cos(a—pB) sin(a — () i
Lypyg= h H+ ———A| ¢ug +hec., 134
hH = UL V2sin g V2sin 8 v/2sin 3 iR ¢ (134)
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FIG. 13: Slepton and down squark contributions to the decays.

for all types of 2HDM, where h(H) is the light(heavy) physical CP even Higgs, A is the CP
odd Higgs, and « is a mixing angle between these two physical CP even Higgs. For example,
let us consider the decay ¢ — ch. The decay rate I'(t — ch) is calculated as

|€f¢|? cos?(a — ) m2\?
I'(t — ch) = == m —h
( o 64 sin’f ! ’ )

where m;, ~ 126GeV is obtained by the ATLAS [49] and CMS [50] experiments. While
the dominant top quark decay is expected to be t — bW. The decay rate I'(t — bW) is

represented as

|Veol* mi miy\ " miy
Tg-W)=-———7|1—— 1+2—- ). i
sl 167 v? m? T L6

Then the ratio of these decays is naively evaluated as

T(t—ch) _ 0 12|eff|2 cos?(a — f3)

I'(t — bW) sin? B ¢y

Therefore, the large value |€f¢| ~ 1 desired for B — D®7p gives at most 12% of the
branching ratio of the top quark dominant decay ¢t — bW. The top quark decay to charm
quark might be difficult to measure at the LHC experiment due to charm identification and
good target for the ILC experiment.

The charged Higgs effects on B — D® 7 in the minimal supersymmetric standard model
(MSSM) are the same as those in the 2HDM of typell at the tree level. Loop corrections
induce non-holomorphic terms €, 4 in Eq. (120) [51, 52]. However it seems difficult to enhance

é¢ to be O(1). Thus the sufficient enhancement of O, is unlikely in MSSM.
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FIG. 14: Fit to fi using both the experimental results of B — 77 and B — D®*)7. We assume

that fi is real and my = 500GeV as an illustration.
L

C. MSSM with R-parity violation

The R-parity violating (RPV) MSSM [53] may also affect both B — 7 [54, 55] and
B — D™ [55-57]. We consider the following superpotential:

1 ’ c
WRPV - iAkaLzLjEﬁ + )‘ijkLinDk y (138)

where A;j; and A, are RPV couplings and i,j,k are generation indices. In general, the
term N"U°¢D°D*°, which is relevant to the proton decay, is involved in the R-parity violating
theory, but it does not contribute to the decays we consider here at a tree level. Apart from
the charged Higgs contribution, there are two kinds of diagrams which contribute to the
tauonic B decays, that is, the slepton and down squark exchanging diagrams as shown in

Fig. 13. The corresponding effective Lagrangian is written as

3
PV Ny Na
LFY ==V ;nzm (W) Lbr Tr(vi)L + —::LTBQ (@) (7)g (7)gbo| ,  (139)
k=1 o i,

where my (m &, ) is the mass of the slepton (down squark) for the j-th generation and
Vij = V4, is a simple notation of the component of CKM matrix. Here we assume that the
slepton and down squark mass matrices are diagonal in the super-CKM basis for simplicity.

Using Fierz identity the second term in Eq. (139) is rewritten as
1
(@)e (T)g (F))pbr = 5(W)e*br 7o, (vi)z. (140)

The RPV Lagrangian involves the interaction which induces the lepton flavor violation. In

this case, b — ¢7¥ with neutrino flavor being different from tau-lepton is included.
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FIG. 15: An example of constraints on g; and go assuming gz = 0. The magenta (cyan) region is

allowed by the experimental results of R(D®)) (B(B — 77)).

Then, the corresponding coefficients for the scalar type operators are expressed as

(% = 1 23: v )‘3.7'3/\.17'23 oV — 1 §3 : V. /\2j3>‘;;€3 (1 41)
A BV — = mzj N e Ao - 5
gk= L Jk=1 5
3 ! 3
1 ~ A3j3Ajks 1 . AejsAiks
Cé = ——— Vig—s— = o i , (142
. W 2G Ve ;1 H mi?j - 2V2GFVy 5 b m? )
Jok= T Jk=1 £,

and we immediately see that the case that C’;E"”) is dominant contribution is disfavored as
discussed in Sec. III. The combined fits to the product of the RPV couplings, which we
define

3
fe =) XajsNiis, (143)
J=1

are shown in Fig. 14. Here we assume that one of the f’s for £k = 1,2,3 contributes to
B — 17 and B — D® 7. We also assume all the slepton masses to be my = 500GeV and
fx to be real as an illustration. Under this assumption, the contributions of f; to the decays
vary depending on Vuc and ng in Cf‘g‘;c. We note that the result of the fit to f3 is completely
same as in Fig. 12 due to Cg = C¥, in this case. As a result, however, a sizable effect of

any fi turns out to be disfavored at more than 99% CL.
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On the other hand, for the vector type operators, we obtain

3 1 1% 3 / 1%
1 ~ A33jA3g 1 ~ A3 A3k
Ccz—E: —L = Cl'ez____§ 7 28 144
i 2\/§GFVcbjk=l 2k 2m§':i 12 2\/§GFVcb o 2k 2771(22]' ( )
3 R I R
1 S N X 1 N
u J J Uvy J J
= E —— = — E . 145
T aVaGEV A 2 B aVaGKV S 2y ()

The Wilson coefficients Cf; has an allowed region for the results of B — D®7 as shown in
Fig. 3. The constraint on C}, from B — 77 is shown in Eq. (85). We can see that the RPV
couplings in CY, and C}; can satisfy requirements for these two constraints at the same time.
For illustration purpose to see that, we assume the RPV couplings to be real and define the

product of RPV couplings as

3
gk = D Xagj Ny, (146)
=1
assuming m & = 500GeV. The allowed regions for CY, and Cy, are rewritten as
s 3
—241 <) Vikge < —2.04, 0.04 <> Vige < 0.41, (147)
k=1 k=1
3 3
—0.75 <Y Varge < =0.71, 0.03 <> Vargi < 0.08, (148)
k=1 k=1

in terms of g at 90% CL. (We neglect the phase in Vi3 = Vj, for simplicity.) The conditions
in Eqgs. (147) and (148) are satisfied as in Fig. 15.

Let us turn and concentrate on another viewpoint. We find that at 90% CL,

|Cy,| >0.08, |Cy*| > 042, (149)

1

are required to explain the current experimental results of R(D®™). (This means that there
is no allowed region within |C’{}1| < 0.08. In other words, it is a necessary condition to
explain the data.) The minimal contribution of the RPV couplings, that cause the largest
effect on R(D™), is obtained in the case that the product of RPV couplings for k = 2 in
C‘C,E”‘) only contributes to B — D®)75. In that case, Eq. (149) is converted into

3 3

! 7 ! I£3
E :)‘333' 32§ E :)‘Z3j 325
j=1 j=1

assuming My = 500GeV. The condition of g, in Eq. (150) corresponds to the magenta

> 0.0, > 0.29, (150)

|92| =

region with g; = 0 in Fig. 15. However the same products of RPV couplings as in C‘C,EW) also
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contribute to B — X,vi [58]. The effective Lagrangian for b — svi is generally given by

V2a

Loy = —Gthth: (C{O7 + CrO%) + h.c., (151)

with the operators
O = sy"broLmve, (152)
Of = srY*br VL YVVL. (153)

According to Ref. [59], the branching fraction of B — X,v¥ are calculated and estimated as

|CLI” + ICRI?
[(CsM2

where (C%)M is the contribution of the SM, which is calculated as (C¥)M = —6.38 & 0.06.

B(B — Xwp) ~2.7x 107°. (154)

The relevant Wilson coefficients that come from the RPV interactions in b — svp, are

represented as

v !/ v 1 1
O3 = 5 D108, Ioh? = 3 S ICR, (155)
op )
where
3
, Noa: Ao
Cee — CZM’ (156)
j=1 J’
: 2 Nej2Nej3
CLt = 0y =P (157)
j=1 de
with
~ T
= — 158
V2aGFVa Vi (158)

The upper limit of the branching ratio is given by
B(B — X,wp) < 6.4 x 1074, (159)

at 90% CL [60], and then according to Eqgs. (154) and (159), we get |C¥%| < 31. Thus the
upper bound on the product of RPV couplings is estimated as

Z /\83_7 /\8’2]

when we assume my = 500GeV. We then find that the maximal allowed value for B —

<4x107, (160)

X,vi, which result in Eq. (160), contradicts with the minimal requirement for B — D®)1p

as in Eq. (150).
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As a consequence, the product of RPV coupling g, is hard to satisfy the constraints from
both B — D®)75 and B — X,vio. We have the same consequence for the case that R(D™)
and B(B — 7¥) are explained by g; with go = g3 = 0 as seen in Fig. 15. In this case,
< O(107%) [57].

Thus the RPV interactions ¢; and g, cannot explain the results of B — 7, B — D®rp

|g1] > 0.12 is required, but the study from B — X,vv implies ‘ZJ N3 A1

and B — X,vv at the same time. The interaction g3 does not contribute to B — X vv,
while the large value is needed for B — 70 and B — D™, The possibility for having
large value of g5 in order to explain the results of B — 7 and B — D™ is discussed in

Ref. [55, 61].

D. Leptoquark models

In the SM, the conservation of the lepton and baryon number is not based on a symmetry
but also an incidental issue. In extensions of the SM, a new physics model which violate these
conservation is often considered. The MSSM with RPV as shown above is a typical example
in this class of model. New particles which mediate quark-lepton transitions can potentially
contribute to leptonic quark decays (keeping the lepton and baryon number conservation).
Such a particle is called as leptoquark. There are ten independent leptoquarks that respect
the symmetry of the SM [62]. The effective Lagrangian with the most general dimensionless

couplings of the leptoquarks consists of the following terms:

QrioserS,, UgrLpSs, JRLLSQ, (161)
(Q°)rioo LTy, (@)rerTi, (d°)perTy, (162)
(Q°)rio20 L Ts, (163)
Qv LUV, dry.erUY, urv.erUl, (164)
(Q°)r o, LLUS, (165)
(@)nLoVE, (Q9)rvuerVe, (@)ryLiVy", (166)

and their hermite conjugate, where S®¥, T") and T are scalar leptoquarks, and V), U") and
U are vector leptoquarks. The subscript of the leptoquarks indicate the dimension of their
SU(2) representation. In Table VI, we summarize SU(3), x SU(2)w x U(1l)y quantum

numbers of leptoquarks.
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SU(3)e SU@)w U(L)y SU(3)e SU@)w U(L)y

Sy 3 2 7/6 U; 3 1 2/3
s, 3 2 1/6 U, 3 1 5/3
T, 3 1 1/3 Us 3 3 2/3
T/ 3t 1 4/3 Va3t 2 5/6
T; 3* 3 1/3 V] 3 2 -1/6

TABLE VI: Quantum numbers of leptoquarks.

br, \'\/TR
X UR

SLQ \
v

FIG. 16: Scalar leptoquark (represented as Sz) contribution to the decays.

Among them, the following leptoquark model is interesting in the sense that the tensor

operator is generated [63],
Liq = (\;Q'ech + NyupL’) S, (167)

where A() represents the leptoquark coupling. We show the relevant diagram in Fig. 16 and
the effective Lagrangian is represented as

* !
)‘33 )‘ie

El}? = ——=ETgbr (G)r(Ve)L
SLqQ
AssAie [ (- _ 1, _ vy~
= 2—2 (ui)RbLTR(w)L+—(u,~)RJ“ bLTRO'm,(V@)L , (168)
mg g 4

where mg,, is the scalar leptoquark S; mass. Both Og;('”) and (’);i("‘) appear at the same
time, however the Wilson coefficients are related to each other:

1 A\
Cu,' — 40u1 _ _ __. 33 13, 169
52 T 2\/§GF‘/;3 2m§LQ ( )
R
2v2GFVi3 2m§LQ

Clive = 4C™ = (170)
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FIG. 17: Correlations between R(D™) and P,(D®)), and R(D*) and Pp~ in the leptoquark model
of Eq. (167) are represented by green regions. Yellow regions indicate the constraints from both
the present experimental bounds on R(D) and R(D*). The black dot in each panel stands for the

SM prediction.

In this model, the products of the leptoquark couplings which contribute to B — 77 and
B — D™y are different®. Thus the experimental results of R(D®)) and B(B — 7i) give
independent bounds on the different leptoquark couplings.

Recollecting that the tensor type operator does not affect B — 77 as seen in Sec. II, the
situation is the same as the case for Ct = Cf, = C% = 0 in Eq. (12). For B — D®rp,
a case that two operators appear in a process at the same time is beyond our analysis in
Sec. III. But a similar analysis as the case of one dominant operator can be made since the
couplings are related in this model. The right-down panel in Fig. 3 shows the constraint on
the above Wilson coefficient C¢, (= 4C%). The relevant mass scale of the leptoquark could
be of the order of 500GeV:

AL, 500 GeV ) 2
Cg, =4C5 ~ 0.6 22 : 171
4 T 06< 0.4 > ( MSLq ) ( . )

We find that a rather small new physics contribution C§, = 4C% ~ +0.6¢ is sufficient to
explain the present data compared to the case for only Og, (The best fit value is C§, ~ —1.6
in this case). In Fig. 17, we show the correlations between decay rates and polarizations in
the above leptoquark model. The green regions represent the correlations, R(D®)-P,(D®*))
and R(D*)-Pp-, as in Fig. 7. Taking into account both the experimental constraints on
R(D) and R(D*) at the same time, we find the present allowed regions at 99% CL as shown
by the yellow regions.

% In the mass basis, the flavor mixing matrix like as the CKM matrix enters in the Lagrangian. In the case
we consider here, such a matrix can be absorbed into the redefinition of /\g-)‘
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VII. SUMMARY AND CONCLUSION

We have studied the exclusive pure- and semi-tauonic B decays, B — 77 and B — D®rp,
in the model-independent manner based on the effective Lagrangian including all the possible
four-Fermi operators. For the study from B — 75, we have seen that the Wilson coefficients
coming from new physics operators are suppressed. In particular the scalar type interactions

§, , are rather constrained due to the enhancement factor. For the study from B - DWrp,
it has turned out that the current experimental values of R(D™) are not explained by
the operator (9;1”[) nor OF* alone while the other operators O, (’)f,(l"‘), (’)?,(2"‘), and (’);("‘)
reasonably work under the assumption of one-operator dominance.

More precise data that will be given in a future super B factory experiment will allow us
to identify the relevant new physics operator among these operators if the deviation from the
SM persists. In addition, a lot of data will also allow us to measure the longitudinal tau and
D* polarizations. We have studied the new physics effect on these quantities and estimated
their statistical sensitivities to be measured. We have pointed out that correlations among
observables including the decay rates, the polarizations and ¢ distributions are useful to
distinguish the relevant operator from irrelevant one in new physics.

Furthermore, we have studied several interesting models that contribute to R(D®*)) and
B(B — 77) based on our model-independent analysis. In 2HDMs without tree-level FCNC
and MSSM, only Og* could be enhanced and thus are unlikely to explain the deviations of
R(D™) form the SM. Our combined fit to the parameter in the 2HDM of type II suggest
that this model is excluded with more than 99.9% confidence level.

While the contribution of OF,, generated in 2HDMs of type II and type X with FCNC,
could be sizable keeping the small contribution of O%, to B — 1. The above situation
depends on the magnitude of the t — ¢ FCNC parameter, which induce direct FCNC top
quark decay such as t — ch. We have found that the branching ratio of ¢ — ch turns out
to be at most 12% of the top main decay ¢ — bW when the experimental values of R(D™))
are obtained by the contribution of the charged Higgs boson in the 2HDMs of type II and
type X with FCNC. If this is the case, top decays might be more important for the ILC and
LHC experiments.

The MSSM with R-parity violation generates the operators Of and Oy, and then con-

tribute to B — 77 and B — D®) 1. We have seen that the interactions that enter these B
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meson decays are related to each other via the CKM matrix. The combined fit to the RPV
couplings in Of gives the same consequence as the 2HDMs without FCNC. The parameter
region that explains both R(D®)) and B(B — 77) exists in Oy, . However we have pointed
out that this allowed region is inconsistent with the experimental bound on B — X,vb.

The interactions that mediate leptoquarks potentially affect leptonic quark decays.
Among them, we have focused on the scalar leptoquark model that simultaneously induces
0%, and OF. This model is beyond our assumption which is imposed in model-independent
analysis. Then we have re-evaluated the constraint on the Wilson coefficient, the effect on
polarizations and correlations. We have seen that this model describes the data with a
relatively small Wilson coefficient in both B — 70 and B — D® 7 compared to the case
only for O, .

The conclusion is as follows. Both the decays B — 77 and B — D™ are powerful
tools to explore new physics in the charged current. Since these decays are often related in
new physics models, it is important to study their combinations. The semi-tauonic decays
have advantages to provide a wide variety of observables besides the branching fraction, such
as polarizations. These observables, including q? distributions, are quite useful in order to
clarify possible new physics model-independently. The model-independent analysis allow us
to see the new physics features in the decays, while the fit to the specified model parameter

gives the concrete bound on new physics model.

Acknowledgments

I am very grateful to Minoru Tanaka for his great advises, encouragements, stimulating
discussions and collaborations. I am very grateful to my supervisor Prof. Tetsuya Onogi
for various supports and encouragements. I would like to thank Andrey Tayduganov for
useful comments and discussions. Finally, I thank all members of particle physics theory
group at Osaka University. This work is supported in part by the Grant-in-Aid for Science
Research, Ministry of Education, Culture, Sports, Science and Technology, Japan, under

Grant No. 248920.

48



APPENDIX A: COMBINATION OF MEASUREMENTS

Here we show the way to combine two independent measurements assuming the gaussian
distribution. Suppose that z; + dx;, y; £ dy; and p; are the measurements of z, y including
the errors and their correlation, which are obtained at the experiment i. In this case, x?

distribution of the quantities z and y is represented as

) 1 [z—z)® W) 200 —5)(y—y) ' (A1)

A - * oy? 00y,

7

When the two independent experiments A and B observed z,y and obtained their values,

the combined measurements are derived from the sum of x? distribution:
Xa+ X5 = X& (A2)

where C indicates the combined result. The central values z¢, yc, their errors éz¢, dyc and

the correlation po are written as

To = (5.’1,‘% Zy + pc dxc dyc Ly, (A3)
yo = 8y Zy + pc bz dyc Za, (A4)
with
W,
0%¢ = Wow, — w2 (A5)
W,
Sy = z A
e = wow, —wz’ (A6)
Way
= e A7
pe W W, (A7)

where W and Z are represented as

1 1
D A D D emsr ML DY eyt B

#e= Z [(1 —p)oz?  (1- p?)éwiéyj Z [(1 —p)y?  (1— p?)owidy;

(A9)

APPENDIX B: FORM FACTORS

Here we derive consistent definitions of form factors. In order to know the correct forms of

the amplitudes, it is helpful to write down the properties of the parity P and time-reversal T
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transformations in B — D® transitions. For the meson states, the parity transformations

are written as

P|B(ps)) = —|B(05)), (B1)
P|D(pp)) = —|D(Pp)), (B2)
P|D*(pp,€)) = |D*(pp,€)), (B3)

where p = (po,p) and p' = (po, —p). We choose the time-reversal transformations ¢ as

follows:
T |B(pp)) = +|B(pp)), (B4)
T |D(pp)) = +|D(pp)) (B5)
T |D*(pp,€)) = |D*(pp,€))- (B6)

Then we see the following relations:

(D(pp)| 2| B(ps)) = (D(pp)|eb| B(rs)) (B7)
(D(pp) |ev"b| B(ps)) = (—1)“<D (Pb) | ev*b| B(vs)) (B8)
(D(pp) |ea*b | B(pg)) = (—1)*(-=1)"(D(pp) |eo*b| B(pp)), (B9)
(D*(pp,¢€) | eb| B(ps)) = (—1)(D*(pp,¢€)|eb| B(rp)), (B10)

(D*(pp,€) |ev°b| B(pp)) = (D*(pp,6)|075bl3(p3)> (B11)
(D*(pp,€) | &v*b| B(ps)) = (=1)(=1)*(D*(pp,€) |&v*b| B(Pp)), (B12)
(D*(pp,€) | &v*+°b| B(pg)) = (-=1)*(D* pb,f’)|57“75b|1§(p39 ) (B13)
(D*(pp,€) | e0"b| B(ps)) = (—1)(=1)¥(=1)"(D*(pp,€)|c0*b| B(rp)), (Bl4)

6 Depending on a choice of phase, we can select and define reasonable form factors.
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where (—1)° = 1 and (~1)" = —1 for parity transformations, and

(D(pp) |2b| B(ps)) = (D(¥p)|eb| B(ps))", (B15)
(D(pp)|ev*b| Blps)) = (-=1)*(D(pp)|ev*d| B(¥s))" (B16)
(D(pp) |eo™b| B(pp)) = (—1)(=1)*(=1)"(D(pp) |eo*b| B(p))",  (B17)
(D*(pp,e)| | Blps)) = (D*(pp,€) || B(rp))", (B18)
(D*(pps€) | &7°0| Bpe)) = (D*(pp,€) |&v°b| B(v))", (B19)
(D*(pp,€) |ev*b| B(ps)) = (—1)*(D*(pp,€) |ev*b| B(pp))", (B20)
(D*(pps€) | &v"7°b| B(pg)) = (—=1)*(D*(pp,€) [ev*+°b| B(pp))", (B21)
(D*(pp,€)|ea*b| B(pp)) = (—1)(=1)*(—1)" (D*(pp,€) |20*b| B(p))", (B22)

for time-reversal transformations. Due to these properties in the strong interactions, one

find that B — D™ amplitudes take the following forms:

<D(pD) | Efy“b| B(p3)> = y/mpmp [hy(w)(v + ¥+ h_(w)(v—v)¥], (B23)

(D(po) || Blps)) = vmamp(w + Lhs(w), (B24)

(D(po) |20*b| Blpa)) = —ivmpmphr(w)(v*v” - v*v*), (B25)

(D*(pp,€)| 3" | B(ps)) = i/mpmp-hy (w)e"™ & vju,, (B26)
(D*(pp,€) |17 | B(ps)) = ympmos | hay(w)(w + 1)e

~hp (W)€ -V — hag(w)(e - 0)],  (B2Y)

(D*(pp,€)| 26| B(pp)) = —v/mamp: (¢" - v)hp(w), (B28)

(D" (90, )| 2™ | B(ps)) = —y/mpmpe &% by (w)e3 (v + ),
+hry (w)e, (v — V'),
Fhry ()(€ - 0) (v + V) (0 = V)] (B29)

0123 _

where v* = ph/mp, V¥ = pi;/mpy, w=v-v and e —1. The amplitudes corresponding
B M

to the operator co#*v5b are given by the following identity,

oy = _%waﬂaaﬂ. (B30)
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APPENDIX C: HEAVY QUARK EFFECTIVE THEORY

Here we briefly review the heavy quark effective theory (HQET). HQET is a useful

approximation to treat the hadronic matrix element in the presence of a heavy quark.

1. Heavy quark limit

We consider a heavy quark field () with its mass to be mg. We define the four momentum

of @ as
P = mqvt + b, (c1)

where v?2 = 1 and k is a residual momentum which determines a scale of interaction of
off-shell quark Q). For heavy quarks in hadron, & is the oder of Aqcp. Suppose @) is divided

into two fields Q! and Q" as follows:
Q(z) = 7" (Qy(z) + Qu(2)) (C2)
where

Qi) =m0, Qltw) = el 2 () (C3)

Using these representations, QCD Lagrangian of the quark field @ is written as
Laoco = Qi) —mq)Q
= Qi(iv- D)@, — Qu(iv- D +2mQ)Qy + Q,(iP)Qy + Q(iP)Q,,  (C4)

where D,, = 9, +igt®GY, is the QCD gauge covariant derivative. As seen in the first term of
Eq. (C4), the field @, describes mass-independent part of Q. From Eq. (C4), the equation

of motion is represented as
(- D +2mQ)Qy = (iP1)Q,, (C5)

where D = D* — (D - v)v*. When we integrate out Q" using Eq. (C5), we can represent

the heavy quark field ) and QCD Lagrangian Lqcp as

Q) = e (14— ) i) (o)
[rQCD = Qi (iv -D+ (ZEL);’U—Y)—:TWLQ(ZEJ')) Qi (C7)
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In the limit mg — oo, which is referred as heavy quark limit (HQL), Lqcp turns out to be
Liger = @, (iv- D) Q. (C8)
Therefore, the QCD Lagrangian for the heavy quark field ) in the HQL is mass-independent

and thus has the flavor and spin symmetry. Since Q(z) = e~"™ev*Q! () in the HQL, we see

the following relation,
Q"Q = Qi Q. = QLo Q. (C9)
Thus the effective Lagrangian £§§’2;2ET generates the same quark propagator and QCD vertex

as the full QCD Lagrangian at the leading order in 1/mg and a,(mg).

2. Classification and representation of mesons

As seen above, a heavy quark has a spin symmetry in the HQL. Thus a total angular
momentum J of a hadron which contains a heavy quark can be divided into two conserved
spins Sg, S¢ so as to J = Sg+S,, where S¢ indicates a spin of heavy quark and S, represents
a spin of light degrees of freedom. We define these quantum numbers as J? = j(j+1), 8% =
so(sg + 1) and S7 = s,(s¢ + 1). Ground state mesons containing a heavy quark @ are
composed of a heavy quark with sg = 1/2 and some light degrees of freedom (effectively to
be light antiquark q) with s, = 1/2. Therefore they form a multiplet of mesons with total
angular momentum j =1/2® 1/2 =0 1 and their parity p = —1.

We define the corresponding pseudo-scalar (j* = 07) and vector (j» = 17) meson field
operators as P® and P;ff, respectively. For example, the fields PS and P;¢ indicate D and
D* mesons respectively. The meson fields P9 and P;S should be represented as a single

field HY because they belong to the same multiplet. The simple and consistent definition

turns out to be

e =122 (- p9). (C10)

The projective operator (1 + ¢)/2 retains only the particle component of the heavy quark
field Q. The conjugate field of H? is expressed as

_ . 1+
HS = A°HY1° = (Pvl?ffy“ + PvQT'yS) 5 yﬁ (C11)

The relative phase between the first and second terms in Eq. (C10) depends on the definition

of the meson states as shown later.
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3. Hadronic matrix element in HQET : leading order

From here, we concentrate on the transition from the B meson to the D or D* mesons.
B — D®™) transition consists of the quark current ZI' b where I" = 4* or 4*+% in SM and the
others I' = 1,~°, 0*” may appear in new physics models. Since the b and ¢ quarks have the
heavy masses my and m, respectively, the corresponding fields are defined as b, and ¢, in

the HQET. Similarly to Eq. (C9),
cl'b=¢, b, (C12)

in the HQL. In order to evaluate the hadronic matrix element (D™ (p')|eT" b|B(p)), we should
relate ¢, I' b, as the meson covariant fields HS and H¢,. Lorenz covariance and heavy quark

spin transformation require the following representation:
&y b, = Tr (X (w)HSTHY) (C13)

where w = v - v and X(w) = Xo(w) + X;(w)p + Xo(w)y' + X3(w)gy is the most general

form. Using the properties such as

JHY = H, HIy=-HQ, yHS=—HS, H%f=1HY, (Cu)

we can rewrite Eq. (C13) into the following form:
ey Tby = (Xo — X1 — Xo + Xa)Tr (HETHY) = —€(w)Tr (HSTHY) (C15)

where £(w) is called as Isgur-Wise function [32]. Then the hadronic matrix elements are

represented as

(D) &by | B(v)) = &(w )('Uu"'v;lz)’ (C16)
(D(V')] 27u7°bs | B(v)) = (C17)
(D(v')| evby | B(v)) = §(w)(1+UJ), (C18)
(D()|ev7°by | B(v)) = (C19)
(D(V)| Eyoubs |B(v)) = i&(w) (vivw — vyu,) (C20)
(D(W)|8v0u"°by |B(v)) = E(w)euvagv™v”, (C21)
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for B — D transitions and

(D" (v, )| b |B(V)) = E(w)epmas €0/, (C22)
(D" (v, )l et |Bv)) = —i€(w) [(1+w)es — (- v) ], (C23)
(D"(v,€)] &by |B(v)) = 0, (C24)
(D*(v), )] ewsby |B(v)) = —&(w) (¢"-v), (C25)
(D*(v', )| Gwouby |B(v)) = &(w)emap e (v +v)°, (C26)
(D"(v, ) &vawsby |B)) = —i€(w) |6 (v +v), = (' +0), ], (C20)

for B — D* transitions, where ¢ indicates a polarization vector of D* meson and we define

the normalization for hadronic state in HQET as
(HW', K )| H (v, k)) = 20%6,,/(27)383 (K — k). (C28)

As seen in these results, the heavy quark symmetry implies that B — D and B — D*
transitions induced by any currents ¢I'b are parametrized as a common variable £(w). In

addition, we see £(1) = 1 from the heavy quark flavor symmetry.

4. Radiative corrections : a;(mg) expansion

In general, a renormalization of an effective field differs from that of its original filed.
Thus we must take into account such a difference as a radiative correction in the effective
theory. This procedure is often called as matching between a full theory and an effective
theory. Here we briefly review the matching of b — ¢ currents between QCD and HQET.
By means of HQET operators, the QCD currents &y*b and &y*yb are represented as

ey = CY (1) &by + CY (1) 8uv*by + Cy (1) Ev™by, (C29)

&v'y°b = Cff (1) e y#y°by + O3t (1) iy v y°by + Cft (1) 1G4 b, (C30)

where C}"* are Wilson coefficients which include effects of radiative corrections and p indi-
cates a renormalization scale. The operators in HQET also depend on the renormalization
scale but we omit its label. The right-hand sides of these relations include all dimension
three operators with the same quantum numbers as Zv* b and €v#9®b. These are the re-

lations at the HQL and higher dimension operators emerge at and after the NLO of 1/mg

expansion. Here we review the matching at the HQL.
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The HQET is constructed to reproduce correctly the low momentum behavior of the
full QCD but cannot describe the physics at a high momentum scale u > mg. Thus the
computation of the matching is perturbatively done at the scale 4 = mg. In actual b — ¢
transition case, the matching scale is chosen to be y = \/mym, = m, which means that the
transition to HQET is made simultaneously for both b and ¢ quarks. ” At lowest order in

a,(m) expansion, the matching condition is trivially,
CY (m) =1+ 0(as(m)), C3 (m)=0(ax(m)), Cy (m)=0(as(m)), (C31)

Cf (m) = 1+ Olas(m)), C3' (m) = O(as(m)), C5' (m) = O(as(im)). (C32)

The radiative correction at a low momentum scale (4 < /m) is obtained by renormalization
group equations. When we consider such a correction, the relation between the heavy quark

field and the covariant representation of meson field in Eq. (C15) has to be redefined as
ey by = —€&(w,p)Tr (HETHY), (C33)

since the operators in the HQET depend on a renormalization scale p as stated above. Thus

the matrix elements for the physical transitions B — D™ are represented as

(D) e BO) = O (1) — Lo (Y () + O ()| €w, 1) vy + 0,
L ()~ OF ()€, 1) — o), (C34)
(D" (0, )| E1b |B@)) = CY (0w, i)epmas €10, (C35)
(D*(V, €)| 2y, 7°b | B(v)) = —iCP(p)é(w, p)(1 + w)el, — iCs () (w, 1) (€° - v) v,
+i (C(p) — C3'(w)) E(w, ) (" - v) v, (C36)

Since the physical transitions do not depend on a scale u, we can redefine the product

CYA ()€ (w, 1) 50 as to
CPA(mé(w, 1) = CYE(w), (C37)

where CA'iV’A and é (w) indicate p independent renormalized Wilson coefficient and Isgur-Wise

function respectively. According to Ref.[11], the coefficients CA'Z-V’A determined by renormal-

7 We can consider two different transition scales for b and ¢ quarks in general. For example, see Ref.[64].
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ization group scaling from 7 take the following forms:

CY't = Aw) <1 4 2(m) — Calme) g 2“;5:7’) 9(z,w)

+a_s(7:_nc_) [Z( )+ = (f(w) ir(w))] > (C38)
Oy = atw) (420 dadtind () 2 new), (o)
OV = FA(w )2“8(  ho(z,w), (C40)

where the above functions are defined in Ref.[11]. The factor A(w) stands for the leading

logarithmic scaling effect.

5. Nonperturbative corrections : 1/mg expansion

In turn, we consider the hadronic matrix element including 1/mg correction. Expanding

Eq. (C6) by 1/mg, we obtain

Q(z) = e~tmev= (1 + iPr +0 ( )) Q (z). (C41)
mg

2mQ

For b — c transition, the modified currents up to 1/mg term are given by

(——
iD iD
clb=c, | T — BT + T —£ | b, 4
cl'd c,,( Yl +’y2mb>b (C42)
Similarly to Eq. (C13), the above HQET operator is related to meson covariant fields as

&yiD,Tb, = (H(C)FH(”)M v v)) (C43)

GyTiDuby = —(byi D, Tey)t = —Tr (Hﬁf)ngb)Mu(v',v)) . (C44)
The most general form of M, (v,v') is expressed as

My(v,v) =np(v+ ), +1-(v =) — N3V (C45)

Thus, B — D®) transitions, which come from the flavor changing b — c current at the order

of 1/mg, are parametrized as the functions 74 3(w). The 1/mg corrections to the vector
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form factors defined in Egs. (B23), (B26) and (B27) are represented as,

1 1
n —_— —
oW = (w0 1+ (0 = D1 ) (4 ) (c46)
1 1
n _ - —
o2 = (e ) +1.) + 3m) (2 = ) (©47)
1 1 1
n —_ -— — — —
5hV =-1n- (mc + mb> 3 (_mb> s (048)
11 s (1 2—w
’,’ —_— ——n — —
ity =me (e ) P (L 20, (C49)
1
o, = +10) () (c50)
oh%, =n L) - (- +n3) L (C51)
A3 + me - me .

There are another sources of 1/mg corrections, which come from the higher dimensional

operators in the HQET Lagrangian:

au,,G‘“’

[’g{lggET = Qv J- Qv - Qv ma Qva (052)

which are given by expanding Eq. (C7). The first and second terms indicate the higher
dimensional kinetic and chromomagnetic energy contributions respectively. These terms

contribute to B — D) transitions in the following form:

D? _ _ol+9 _
OIF AL A, 2L - _ XL p® @2TF rp®
(DY) ild xT( Cy o v 0>|B) m (D |Tr(Hv, 5 TH, >|B), (C53)
2
(DW|ifd*z T —¢, o] By et )B) = (D(*)IT AT ”H(b) |B), (C54)
Yom,

e ' - 1+9¢ ~

Dildde T -z, 02# D® 2 Al o = (O} >
< | dx ( C'Ug 4m 2mc ITrX.u'H'UO- 2 v | )’
(C55)

. = 0WG \a 1 1+ _

DMl e T -6 b, Tpv ) BY = — (DM Telx’ H(f)l'\ uuH(b B
(DOlifate T (~eTb| B b )1B) = 5 (D Te(x;, AOT 1B,
(C56)

where the general forms of X 53 are defined as

Xl“/ = 2X2(U,LL7V - 'UV'Y/L) + i4X30';w7 (057)
X;Iw = 2X2(UL7V - U;I/’Yu) + i4X30uu7 (058)

and y; are the functions of w. Thus, B — D®) transitions, which come from the HQET

Lagrangian at the order of 1/m¢, are parametrized as the functions x;23(w). The 1/mg
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corrections to the vector form factors are represented as,

5HX = xa (mi + mib) — 2((w = 1)xz — 3xs) (mi + ;,,—,Ll—b) , (C59)
ShX =0, (C60)
6K = 1 (;11— + ;11—6) — 2y (mi) —2((w - 1)x2 - 3xs) (mi) , (Co1)
%, = ((nll +) ) -2u(5) —2(@-Du-3w (). (o
h3, =26 () (C63)
5%, = xa (mim + L) =200+ () = 2(w - D= 300 () - (Co

While the 1/mg corrections to the B — D®) form factors are parametrized as six unde-
termined functions in general as seen above, several functions relate to each other and one
can reduce six functions to three independent functions. By use of the equation of motion,

(iv' - D)ey = 0, the undetermined functions 74 3 relate to each other:
4 (w)(w + 1) + - (w)(w — 1) +n3(w) = 0. (C65)

The 1/m¢ expansion is also applied to a expression of a meson mass by means of a heavy
quark mass in the HQET. The meson mass M, containing heavy quark with its mass my,

is represented as

M=mg+A+0(1/mg), (C66)

where A indicates the contribution at the order of (1/mg)° term in 1/mg expansion, and
thus A does not depend on heavy quark mass and flavor. In terms of A and the Isgur-Wise

function £(w), the function 7_(w) can be represented as

1-(w) = —5AE(w). (C67)

This equation is derived from the following relation:

i0, (64Ty) = A(v, —v,)eThy, (C68)
—
= yiD,Tb, + eyTiD,b,. (C69)

The corrections 0h7, 6hy,, 0h7, and 6h), have the same contributions in the x; term, which

come from higher dimensional kinetic energy term, while k] = h{, = kY = b}, = £{(w) in
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the HQL. Thus, we can effectively vanish x; contribution by redefining Isgur-Wise function

as

£+ (L + L) e (C70)

me my
As a consequence, the relevant 1/mg corrections to the B — D®) form factors are rewritten

and summarized as,

o = -2((w= e = 3xa) (- + ). (cm)
sy = (56-20) (=) - m+2w-va-ow) (=), (@)
- () (1)

+ (L3 GRe = m) ~ 200 - D+ 6x) (7). (7
Sha, = _%ﬂ (A€ +n3 — 2(w + 1)x2) (mi) : (C75)
e (o)) (2

+(Fe-m- 2=+ on) (=), (o)

by using the sub-leading Isgur-Wise functions, X2 3,73 and A. According to QCD sum rules,
one predict A = 0.50 £ 0.07GeV [65] and the approximate expressions for these functions

are obtained, using QCD sum rules [66], as

ms/€ ~ 0.62A, (C77)
x2/€ ~ —0.06A, (CT8)
x3/€ = 0.04(w — 1)A. (C79)

60



6. Summary

To summarize, the final expressions for the form factors including o and 1/mg corrections

are represented as

. N w+1 - A A A A

hefé=CF = XY + C) 4 Dy (o4 2 ) (C80)
c_wtloay vy p (A_A

hfé="Tley — e+ b (m =), (C81)
FU . A . A

hy /€ = CY + D}, (H) + D?, (E) , (C82)
.. . A . A

_AA 1 [ D 2 [ A

b= 0404, (o) + B4, (5). (83
A A . A

ha,/€ = Cf + Da, (;77) , (C84)

ha, /€ =CA — Cf + D} A + D? A (C85)

Az 1 3 As me As me )

where C}” /4 are shown in Egs. (C38)-(C40) and D; are approximately represented as D, ~
0.36(w—1), D_ ~ —0.08(w—1), D}, ~ 0.5—0.08(w—1), D% ~ —0.12+0.36(w — 1), D} =
0.17(w—1), D3, ~ 0.60(w—1), D4, ~ —0.93+0.41(w—1), D}, =~ —0.19+0.33(w~1), D}, ~
—0.12 + 0.36(w — 1).
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APPENDIX D: HADRONIC AMPLITUDES
1. Expressions

Using the definitions as shown in appendix B, the hadronic amplitudes given in Eqgs. (36)

and (37) are represented as

Hy, . = Hy,, =0, (D1)
Hiyo = Hipg =mBﬁ————V\/“§_(;)1 [(1+ ) (w) — (1= r)h_(w)] (D2)
Hy, , = Hy,, = mB\/;_in\/—(?) [(1 =) (w+ 1)k (w) — (1 +7)(w—1h_(w)], (D3)
Hi,t = _H‘q/:z,?

S [(w+1)hA1(w)$\/w2 - 1hv(w)] : (D4)
H?/l,o = —H‘Olz,o

= MV [ = @)+ (0 - D) bl (0D
Hy, , = —Hy,,

= maﬁ% [—(w + Dhg, () + (1 = rw)ha,(w) + (w — r)hag(w)], (D6)

and others = 0. In the heavy quark limit, we obtain hy(w) = ha, ,(w) = hy(w) = &(w) and
h_(w) = ha,(w) = 0.
For the scalar and pseudo-scalar operators, the hadronic amplitudes in Egs. (38) and (39)

are represented as

Hg = H§, =mpVr(w+1)hs(w), (D7)
Hi = Hg =0, (D8)
H} = —H3, = —mp\/rvw? — Lhp(w). (D9)
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For the tensor operator, the hadronic amplitudes in Eq. (40) are represented as

HS_(¢%) = H3,(¢") = —mpVrvuw? — 1hr(w), (D10)
Hiy(q?) = +HE(Q)
-yl
qolw

x [y (w) + by (w) + (w £ Va? = )by (w) = hry(w))] ,  (D11)
HS (¢*) = Hy,(q*)
= —mpVT [(w+ 1)hp (w) + (w ~ Dhg,(w) + 2(w® — g (w)] , (D12)

and the rest is obtained by H;% (¢%) = —Hy* (¢%) and others = 0.

2. Redefinitions of vector types form factors

We obtain the expressions for the vector types form factors using the HQET in ap-
pendix C. The remaining unknown function is the leading Isgur-Wise function £(w). In
order to evaluate this function by using dispersion relations, it is convenient to redefine the

form factors as follow [34]:

Vilw) = hylw) = Tooh (), (D13)

Si(w) = hylw) — e (), (D14)

Ai(w) = hga,(w), (D15)
_ hy(w)

Ry(w) = P () (D16)

According to Ref.[34], Vi(w) and A;(w) are parametrized as in Egs. (65) and (66) respec-
tively. For S;(w) and R;(w), we estimate [27]

Sy (w)/Vi(w) = 0.981 + 0.041(w — 1) — 0.015(w — 1)?, (D19)
Ri(w) = 1.40 — 0.12(w — 1) + 0.05(w — 1)?, (D20)
Ry(w) = 0.85 + 0.11(w — 1) — 0.06(w — 1)?, (D21)
Rz(w) = 1.22 — 0.052(w — 1) 4 0.026(w — 1), (D22)
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by using the modified form factors including HQET corrections as shown in the previous

appendix.

3. Evaluations for scalar and tensor types form factors

In order to evaluate the amplitudes in the case of scalar or tensor type interaction, we

have to valuate the form factors defined above. For naive estimation, it is useful to take into

account the equations of motion in the quark currents, that result in
10, (¢y*b) = (mp — m,)éb,
10, (67“75b) = — (mp + m,) &y°b,

0y (ed*"b) = — (my + mc) &yb — (i10"¢) b+ &(i0"D),

which lead to the following relations among form factors:

l+rw A?
hs(w) = hy(w h w)+ O
s(w) = ha(w) ~ -2 2h () + (mQ)

= Sl(w)+O<A2),
mg

hp(w) = —— [+ Dhay () + (rw — 1)ha,(w) — (w — rha, (w)] + O (miQ)

(D23)
(D24)
(D25)

(D26)

1+r
I I
= ho(w) - 25T A
hrw) = hyfu) - 13 rh—< )+ (mQ) , o
hr (w) = %—— [(1 — 1) (w + Vhg, (w) — (14 7)*(w— l)hv(w)] +0 A ,(D29)
2¢*(w) ) mQ
) = S ) - i +0 (), (D30)
) = ey 2+ Dy () = () () — gy o)
—(1+7)hy(w)] + O (F%) . (D31)

where we have used mp(ary = my) + A + O (A2/my)). The absence of 1/mg corrections

in Eq. (D26) is confirmed by the heavy quark expansion without resort to the equations

of motion. Thus we employ hg(w) = Si(w) = [1 + A(w)] Vi(w), where A(w) involves the

1/mg corrections. On the other hand, there exist unknown 1/mg, corrections in Eq. (D27).
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We ignore them, but use the axial vector form factors A;(w) and Ry 3(w) including 1/mq
corrections as described in Sec. II. Similarly to the case of the scalar type form factors, we
ignore the unknown 1/mg corrections in the tensor type form factors, and employ the vector

and axial vector form factors with the 1/mg corrections.

[1] For instance, R. E. Marshak, Riazuddin and C. P. Ryan, THEORY OF WEAK INTERAC-
TIONS, John Wiley & Sons (1969).
[2] For a review, e.g., J. F. Gunion, H. E. Haber, G. Kane and S. Dawson, The Higgs Hunter’s
Guide, Frontiers in Physics series, Addison-Wesley (1990).
[3] See, e.g. H. P. Nilles, Phys. Rept. 110, 1 (1984); S. P. Martin, A Supersymmetry Primer, in
Perspectives on Supersymmetry II, G.L. Kane (ed.), World Scientific (2010). hep-ph/9709356.
[4] B. Grzadkowski and W. S. Hou, Phys. Lett. B 283, 427 (1992).
[5]) W. S. Hou, Phys. Rev. D 48, 2342 (1993).
[6] I. Adachi et al. (Belle Collaboration), arXiv:1208.4678 [hep-ex].
[7] J. P. Lees et al., Phys. Rev. Lett. 109, 101802 (2012). arXiv:1205.5442 [hep-ex].
[8] H. Na, C. Monahan, C. T. H. Davies, R. Horgan, G. P. Lepage, and J. Shigemitsu, Phys. Rev.
D86,034506 (2012).
[9] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 81, 051101(R) (2010). arXiv:0809.4027
[hep-ex].
[10] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[11] M. Neubert, Phys. Rep. 245, 259 (1994). hep-ph/9306320.
[12] A. Matyja et al. (Belle Collaboration), Phys. Rev. Lett. 99(2007)191807. arXiv:0706.4429 [hep-
ex|.
[13] I. Adachi et al. (Belle Collaboration), arXiv:0910.4301 [hep-ex].
(14] A. Bozek et al. (Belle Collaboration), Phys. Rev.D 82, 072005 (2010). arXiv:1005.2302 [hep-
ex|.
[15] K. Kiers and A. Soni, Phys. Rev. D 56, 5786 (1997). hep-ph/9706337.
[16] C.-H. Chen and C.-Q. Geng, Phys. Rev. D 71, 077501 (2005). hep-ph/0503123.
17
[18] U. Nierste, S. Trine and S. Westhoff, Phys. Rev. D 78, 015006 (2008). arXiv:0801.4938 [hep-

]
]
] C.-H. Chen and C.-Q. Geng, JHEP 0610, 053, 2006. hep-ph/0608166.
]

65



[20]
1]
[22]

23]
[24)
25)

[26]

[27]
28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
(37]

(38]
39]

[40]

[41]

ph].

S. Trine, Talk given at 34th International Conference on High Energy Physics (ICHEP 2008),
Philadelphia, Pennsylvania, 30 Jul - 5 Aug 2008. arXiv:0810.3633 [hep-ph].

J. F. Kamenik and F. Mescia, Phys. Rev. D 78, 014003 (2008). arXiv:0802.3790 [hep-ph].

Y. Sakaki and H. Tanaka, arXiv:1205.4908 [hep-ph].

D. Birevica, N. Kosnikb, and A. Tayduganov Phys. Lett. B716, 208 (2012). arXiv:1206.4977
[hep-ph].

J. A. Bailey, et al., Phys. Rev. Lett. 109, 071802 (2012). arXiv:1206.4992 [hep-ph].

A. Celis, M. Jung, X.-Q. Li, and A. Pich, arXiv:1210.8443 [hep-ph].

S. Fajfer, J. F. Kamenik and I. Nisandzi¢, Phys. Rev. D 85, 094025 (2012). arXiv:1203.2654
[hep-ph].

A. Datta, M. Duraisamy, and D. Ghosh, Phys. Rev.D86, 034027 (2012). arXiv:1206.3760
[hep-ph].

M. Tanaka and R. Watanabe, arXiv:1212.1878.

M. Tanaka, Z. Phys.‘ C 47, 321 (1995). hep-ph/9411405.

M. Tanaka and R. Watanabe, Phys. Rev. D 82, 034027 (2010).

K. Hagiwara, A.D. Martin, and M.F. Wade, Nucl. Phys. B327, 569 (1989).

K. Hagiwara, A.D. Martin, and M.F. Wade, Z. Phys. C46, 299 (1990).

N. Isgur and M.B. Wise, Phys. Lett B232, 113 (1989); Phys. Lett B237, 527 (1990).

M. E. Luke, Phys. Lett. 252, 447 (1990).

I. Caprini, L. Lellouch, and M. Neubert, Nucl. Phys. B530, 153 (1998). hep-ph/9712417.
The Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag/, 2011.
R. Kowalewski and T. Mannel, “Determination of Vcb and Vub,” in PDG review.

E. Gamiz, C. T. H. Davies, G. P. Lepage, J. Shigemitsu and M. Wingate (HPQCD Collabo-
ration), Phys. Rev. D 80, 014503 (2009).

Y. Amhis (The Heavy Flavor Averaging Group), arXiv:1207.1158[hep-ex].

W. Altmannshofer, P. Paradisi and D. M. Straub, JHEP 04, 008 (2012)

S. Fajfer, J. F. Kamenik, I. Nisandzi¢ and J. Zupan, Phys. Rev. Lett. 109, 161801 (2012).
arXiv:1206.1872 [hep-ph].

A. Crivellin, C. Greub, and A. Kokulu, Phys. Rev. D86, 054014 (2012). arXiv:1206.2634 [hep-

ph].

66



[42] A. Rougé, in the proceedings of the Workshop on Tau Lepton Physics, Orsay (1990), eds.
M. Davier and B. Jean-Marie (Editions Frontiéres, 1991) p. 213. FPRINT-91-06, 1991.

[43] M. Davier, L. Duflot, F. Le Diberder, and A. Rouge, Phys. Lett. B306, 411, 1993.

[44] T. Aushev et al., arXiv:1002.5012 [hep-ex]

[45] V. D. Barger, J. L. Hewett, and R. J. N. Phillips, Phys. Rev. D 41, 3421 (1990).

[46] Y. Grossman, Nucl. Phys. B 426, 355 (1994).

[47) A. G. Akeroyd and W. J. Stirling, Nucl. Phys. B 447, 3 (1995); A. G. Akeroyd, Phys. Lett.
B 377, 95 (1996); J. Phys. G 24, 1983 (1998).

[48] M. Aoki, S. Kanemura, K. Tsumura, and K. Yagyu, Phys. Rev. D 80, 015017, 2009.

[49] G. Aad et al. (ATLAS Collaboration), Phys. Lett. B716, 1 (2012).

[50] S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B716, 30 (2012).

[51] H. Itoh, S. Komine and Y. Okada, Prog. Theor. Phys. 114, 179, 2005. hep-ph/0409228.

[52] A. Crivellin, Phys. Rev. D 83, 056001 (2011).

[53] R. Barbier et al., Phys. Rep. 420, 1 (2005).

[54] G.-C. Cho, H. Matsuo, Phys. Lett. B703, 318 (2011).

[55] N. G. Deshpande, and A. Menon, arXiv:1208.4134 [hep-ph].

[56] J. Erler, J. L. Feng, and N. Polonsky, Phys. Rev. Lett. 78, 3063 (1997).

[57] M. Chemtob, Prog. Part. Nucl. Phys. 54, 71 (2005).

[58] Y. Grossman, Z. Ligeti, and E. Nardi, Nucl. Phys. B465, 369 (1996), Nuclear Phys. B480,
753 (1996).

[59] W. Altmannshofer, A. J. Buras, D. M. Straub, and M. Wick, JHEP 04, 022 (2009).

[60] R. Barate et al. (ALEPH Collaboration), Eur. Phys. J. C 19, 213 (2001).

[61] Y. Sakaki, M. Tanaka. A. Tayduganov, and R. Watanabe, in preparation.

[62] W. Buchmuller, R. Ruckl, and D. Wyler, Phys. Lett. B191, 442 (1987); Phys. Lett. B448,
320(E) (1999).

[63] J. P. Lee, Phys. Lett. B 526, 61 (2002).

[64] T. Miki, T. Miura and M. Tanaka, hep-ph/0210051.

[65] M. Neubert, Phys. Rev. D46, 1076 (1992).

[66] M. Neubert, Z. Ligeti and Y. Nir, Phys. Lett. B301, 101 (1993); Phys. Rev. D47, 5060 (1993);
Phys. Rev. D49, 1301 (1994).

[67] A. Crivellin, Phys. Rev. D 81, 031301 (2010)

67






