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The thesis is mainly taken from the author’s five papers ([1, 2, 3, 4, 5]), and is divided into two parts
corresponding to two classes of Besicovitch almost periodic functions.

Part I deals with Besicovitch almost periodic functions, that is, functions f: R — C which belong to the
closure of trigonometric polynomials under some Besicovitch g-norm (1 < ¢ < o)

1T 1/a
nm¢:@§?<ﬁ/;vmw@ :

It is well known that Besicovitch almost periodic functions possess mean values and limit distributions. Here
the mean value of a function f is defined as M[f] = Hm7 o0 57 ffT f(t)dt, provided that the limit exists,
and the limit distribution is the probability distribution on C to which the sequence of probability measures
vp{r: f(r) € A}, A € B(C), converges as T' — o0, vy being the uniform probability measure on [T, T].

For every Besicovitch almost periodic function f, the mean value a(\) = M[f(t)e™*M] exists for all A € R,
and those A for which a()) # 0 are at most countable, called the Fourier exponents of f. The formal series

F®) ~ D ae
A
is called the Fourier series of f.
In Chapter 1, we study Besicovitch functions with Fourier series of the forms

o0
F@) ~ Y ame™t,
m=1

where {\,} is a strictly increasing sequence of non-negative numbers tending to infinity, called a Dirichlet
sequence. We construct a suitable probability space where these functions f can be extended to random
variables. For these functions, their Fourier series are shown to be convergent in norm with the usual order
(1 < g < 00). This result is similar to the convergence in norm of classical Fourier series. Besides, a version of
the Carleson-Hunt theorem is investigated.

Chapter 2 concerns with general Dirichlet series of the form

oo
E ame ™, s=o+it €C,
m=1
where a,, € C, and {\,,} is a Dirichlet sequence. Suppose that the above series converges absolutely for o > o,
and has the sum f(s). Then f(s) is an analytic function in the half-plane D := {s € C: 0 > 0,}.
Assume that the function f(s) is meromorphically continuable to a wider half-plane Dy == {s € C : ¢ >
00},00 < 0, and satisfies some mild conditions. Then for fixed o > 09, f(o + it) is shown to be a Besicovitch
almost periodic function with the Fourier series

o0
flo+it) ~ Z ameAmI T Amt,
m=1

Thus the limit distribution of f(o + it) is well identified by using the probability space developed in Chapter 1.
Moreover, using this probability space, we can also identify limit distributions of general Dirichlet series in the
space of analytic functions and in the space of meromorphic functions.

Part IT deals with Besicovitch limit-periodic arithmetical functions, that is, functions f: N — C which belong
to the closure of periodic functions under some Besicovitch g-norm (1 < g < 00)

1N 1/q
1£1lq += limsup (N;If(n)l"> :

Besicovitch limit-periodic arithmetical functions also possess mean values and limit distributions. Here the
mean value of a function f is defined as M[f] := imy_.oo & 271:;1 f(n), and the limit distribution is considered
as follows; if the limit
N
i X <
J\;ilnOQ ¥ Z exp (isRe f(n) +itIm f(n)), (s,t) €R?,
n=1
exists and it coincides with the characteristic function of some probability distribution on R? = C, then we call
it the limit distribution of f. Note that the space of periodic functions is spanned by {eq/, : 7 = 1,2,...,1 <
a < r,ged(a,r) = 1}, where e, stands for the function eq: n — €*™*@". Thus, a limit-periodic function f has

the following Fourier series

fa)~ > careasr(),
rEN;
1<a<ri(am)=1

where ¢,/ := M[f(n)eq/r(n)] and (a,r) denotes the greatest common divisor ged(a,r) of a and 7.

Let Z be the ring of finite integral adeles with its normalized Haar measure A. In Chapter 3, (Z, B(Z), A) is
shown to be a good probability space where limit-periodic functions can be considered as random variables.
Dealing with the problem of convergence of Fourier series, for each n € N, we consider a finite Fourier expansion
of a function f € D? as

Sn(f) = Z <f: ea/r> €a/r-
rln;
1<a<ri(a,r)=1
Then our result is that, for 1 < ¢ < oo, ||Sp(f) — fllq = 0Oasn — 0in 7. This gives an approximation for
limit-periodic functions by periodic functions. The natural extensions of additive and multiplicative functions
are considered at the end of this chapter.

Chapter 4 deals with the distribution of k-th power free integers. Let X*)(n) be the indicator function of
the set of k-th power free integers. Then X *)(n) is a multiplicative limit-periodic function. The mean value of
X ) (n) exists and it is equal to

L
(k)

where ¢ is the Riemann zeta function. Using a result in Chapter 3, we extend X *)(n) to a random variable on

N
. 1 "
MX®) = lim &5 X®(m) =
n=1

the probability space (Z, B(i), ) in a natural way. Then investigating the rate of L?-convergence of



N
K 1 .
S,(\j”)(a:) = E X®(z4n), zel,
n=1

we obtain the estimate of the mean square convergence rate

1 (k) 1 2
i Sy g ot - -N 1/k
lim . (N <SN (m) C(l )>> const .
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AR, BRICENSEx OBEERHAHESB L OBASBEEC W THRERIRADLOMELLLOT
b5, FEMOFBRICOVTIRT TIC 2 MOABINEFTAM & RWHRICHRESTHY, £ 3MBIEFLZRETH
MAHELTWNS.

RIS BN B O IS, IEEATBEI RS RIENRNEEO L O, RERNICEZZHETH Y 2135,
FHECER ST L IFEND bOREED b bRERERLERREDL LI R LORHD I LEIEI 1 OHLE
T\, 7= & 21T 1930 4E{X1Z Besicovitch 2%, 4 H, Besicovitch ME%@T&&@L&%@&E%E% L, FHE
BLOEBBAMICONVWTEIR L, Fo T 1960 ERITIL Novoselov NEKBRDO 27 MLTHLIERET T —V
BEXOEOMECHET S Hoar BRREN D25 HEEME AV CRKOMBIZOWTH LT 7o —F &5
L7z, ARXTH, SOFENFENCRASETHS 2 L 2BERRTNFELRACTRLTNS. T2b5 1K«
o0 2% LT q-Besicovitch HEAMIKFI SEDELMBEBM L HRET 7 — VR ED Haar BERREICESL
Lo-Z2 M SRR CTh D = & ZFHEH L T, Besicovitch MAMII* EEOREREKL LTERMLT D Z &I
MLz, BREVERAE LT, k BORFEEERVEEOSHOFHEMIC OV T, Riemann FREZRE L
FHEAORKEN [EWIZ) V22 % (Riemann FREZAWVTIZ) FEALTVS.

Bohr DA #IBIE M3 Riemann zeta BIK DO EHEHICFITRER LORBEVENET S L 2HEE LTV
%. ZHIWCBILTH Besicovitch b BLE SN MBEIMMEDEX (T b £/ Besicovitch W & T
NnN3) #5%, zeta BEM AR LARVEK CORBEVEHRT 2 DICHV. AT Besicoviteh #EE
B A OERERELBRERERRT I ENTHRICAD L) RERERMORELEAD ZLICEII L. Th
RIS A Fourier MHEE 2 — LT A LiCbRoTHY, MAMBMKICHIT S Fourier ¥ L°
ISR RIS DV THMICRR Uic. 29 LIEEBROEZELWEAE LT, %D Dirichlet MEDESMRICH
FAHEBCRBLOBVWVEEZEZ 20D 5. L CHBRBHEOZEMIZET 55D Dirichlet HEDE
SEEHIL, TONBFOKRETHD Laurincikas DFEFRICE ¥ vy TREOM YD . 2 ZHE, BEICRY LF Tk
B, RRIXOFELI o THEINICZLEIHFETRETHD.

UED &S IcARIE, BRSO REROMBEERFOICR I #ES 25X, TOETREMRTFO
FHEERE L CESOF L AMNREEZETNE. LoT, ARXEEE (B%) o¥Ihxe LTHAHECHS
HbOLBOSD.





