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Preface

The theory of almost periodic functions, established by H. Bohr, fl&y be considered from
two different points of view. On the one hand, an almost periodic function is a continuous
function possessing a certain structural property which is a generalization of pure periodic
functions, and on the other it is the limit of trigonometric polynomials under the uniform
norm.

Corresponding to the two different points of view, further development of the theory
of almost periodic functions to generalize this theory went in two different directions. The
first direction was developed by W. Stepanov and H. Weyl, which led to two important
classes of almost periodic functions: Stepanov almost periodic functions and Weyl almost
periodic functions.

The second direction of generalizations was that followed by A.S. Besicovitch. Besi-
covitch enlarged the class of almost periodic functions by considering the convergence of
sequences with respect to some Besicovitch q-(semi)norm (1 < S < oo) rather than uniform
convergence. Here the Besicovitch q-norm of a function /: R. -+ C is defined as

‖ノ9:=

Then a function is called Besicovitch almost periodic function if it is a limit of trigonometric
polynomials under some Besicovitch q-norm. Besicovitch almost periodic functions look
Iike random variables because they possess mean values and limit distributions. On the
other hand, iike periodic functions, they have "Fourier series" in the form of a general
trigonometric series

,f (f ) - Lo^r,^*, .

For arithmetical functions (functions defined on N), a function /: N -+ C is called
Besicovitch almost periodic arithmetical function if it belongs to the linear closure of

{eo: a e RIZ,} under some Besicovitch g-(semi)norm (1 ( q < oo)

ll/lls :: Iimsup
-A/-+oo

where eo stands for the function e(t: n + 
"2rian 

. Besicovitch almost periodic arithmetical
functions also have mean values, limit distributions and "Fourier series".

This research is to study particular classes of Besicovitch functions: Besicovitch almost
periodic functions with Fourier exponents belonging to a Dirichlet sequence and Besicov-
itch limit-periodic arithmetical functions. We will present recent results on the following
problems.

(1) Constructing probability spaces where Besicovitch functions in these classes can be

considered as random variables.
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lV Preface

(2) Convergence of Fourier series.

(3) Some applications: value distributions of general Dirichlet series; natural extensions
of additive/multiplicative arithmetical functions, and the distribution of k-th power
free integers.

This thesis is mainly taken from the author's five papers ([10, 1I,1,2,13, 14]), and is
divided into two parts corresponding to two classes of Besicovitch functions.

Part I deals with Besicovitch almost periodic functions, that is, functions /: IR. -+ C
which belong to the closure of trigonometric polynomials under some Besicovitch q-norm
(1 ( q < m). In this case, the mean value of a function / is defined as

1 f'r
Ml/l : ,I l -o J_rt1)at.

provided that the limit exists, and the limit distribution is the probability distribution on
C to which the sequence of probability measures

u7{r : f(r) e A}, A e B(C.),

converges as ? -+ oo, where z7 denotes the uniform probability measure on [-?,?] .

For every Besicovitch almost periodic function f , the mean value

a()) : Mlf (t)e-i^'l : .lim : f f p)e-i^tdt' ?-roo Zi J _f -

exists for all .\ e JR., and those ) for which a()) is non-zero are at most countable, called
the Fourier exponents of /. The formal series

f (t) - !c(,\)ei)t
,\

is called the Fourier series of /.
In Chapter 1, we study Besicovitch almost periodic functions with Fourier series of the

forms 
m

f(t)-lo^r-'^-'.
rn:l

where {,\-} is a strictly increasing sequence of non-negative numbers tending to infinity,
called a Dirichlet sequence. We will construct a suitable probability space where these
functions f can be extended to random variables. For these functions, their Fourier series

are shown to be convergent in norm with the usual order (1 < q < m). This resrrlt is

similar to the convergence in norm of classical Fourier series. Besides, a version of the
Carleson-Hunt theorem is investigated.

Chapter 2 concerns with general Dirichlet series of the form

S-\
)_,a^e-n*t. s:ollf €C.

where a^ € C,and {)-} ,, rl-rrr"ntet sequence. Suppose that the above series converges

absolutely for o ) oo and has the sum /(s). Then /(s) is an analytic function in the
half-plane D :: {s€ C : o ;, oo}.
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Assume that the function /(s) is meromorphically continuable to a wider half-plane
Ds :: {s e C : o } o6),oo I oaand satisfies some mild conditions. Then for fixed o } os,

f (o + zf) is a Besicovitch almost periodic function with the Fourier series

f (o +if ) - i a^s_ ;^or-i\'nt 
.

m:7

Thus the limit distribution of f (o * if) is well identified by using the probability space

developed in Chapter 1. Moreover, using this probability space, we can also identify limit
distributions of general Dirichlet series in the space of analytic functions and in the space

of meromorphic functions.
Part II deals with Besicovitch limit-periodic arithmetical functions, that is, functions

/: N -+ C which belong to the closure of periodic functions under some Besicovitch q-

norm. The mean value of a function f is defined as

. ,A'I

Ml/l :: ;*#|fl"1.n:I

and the limit distribution is considered as follows: if the limit

-I/
hm | )_-""0 (zsRe f (") +i,trmf (n,)), (",t) e tR2,

N--+oo rV f

exists and it coincides with the characteristic function of some probability distribution
on lR2 3 C, then we call it the limit distribution of /. Note that the space of periodic
arithmetical functions is spanned by {"olr:r:I,2,...,1 ( cr,( r,gcd(a,r) :1}. Thus, a

limit-periodic arithmetical function / is a Besicovitch almost periodic arithmetical function
with the following Fourier series

∫(η)～ calreolr\n )t

,.,Jf,).,,:,

where calr t: M[/(" Wnl and (a,r) denotes the greatest common divisor gcd(c,r) of
a and r.

Let Dq denote the space of q-limit-periodic arithmetical functions and let Dq be the
quotient space of Oq with respect to the null-space Af (p01 ,: { f € Dq : ll/lln : 0 }. Let
2 b" th" ring of finite iltegral adeles with its normalized Haar measure ).

In Chapter 3, (Z,B(Z),.\) is shown to be a good probability space where limit-periodic
arithmetical functions can be considered as random variables. In fact, every function in
Dq can be extended to a random variable in Lq (2,1). The limit distribution of the original
function coincides with the distribution of the extended random variable. In addition, the
space Da is isometrically isomorphic to Ls(Z,\.

Dealing with the problem of convergence of Fourier series, for each n € N, we define a

finite Fourier expansion of a function f e Dq as

S,t(∫ ):= (∫,Cα /r)Cα /r.

r22;

1く αくr;(α ,r)=1

Then our result is that,for lく 9<OO,

Sれ (ノ )一 ノ|19→ O as η→ Oin Z, ノ∈D9.
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This gives an approximation for limit-periodic arithmetical functions by periodic arith-
metical functions. The natural extensions of additive and multiplicative arithmetical func-
tions will be considered at the end of this chapter.

Chapter 4 deals with the distribution of k-th power free integers. Let yw) (n) be the
indicator function of the set of k-th power free integers, that is,

v@) t^, ._ I l, (Vp : prime , pk I n),1L \"i '- \ o, (3p : prime, pk l r).

Then X(k)(n) is a multiplicative limit-periodic arithmetical function. The mean value of
Y{r,) @) exists and it is equal to

ril I
MfX{t)1 : Iim *fX,ol(n)= -- -L-- , N;; N 2_ ((,k),

where ( is the Riemann zeta function. Using a result in Chapter 3, we exten4 ;(r) (n) to a
random variable on the probability space (2, B(Z), 

^) 
in a natural way. Then investigating

the rate of .L2-converqence of

.N
c(k)1.1 ._ r \- rz(klr - , .r5),''(r) t: N \Xt^'(r*n). 

r €2.

we obtain the following result

1 M / / 1 rr2

;'+np, (t (tif',-,- #)) * cortst Nt/r

Note that a conjecture that

vE > 0. x (sf,)t*) - l) : o (N,/2t+e) . A/ -+ oo.
\-u' ((k)/ \ /

has not been proved yet. Our result may be called as a mean square version of this
coniecture.
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Notations and symbols

Notations and symbols

A:: B A is defined bv B (B:: A as well).
+ weak convergence of probability measures.
)* ) convergence in distribution of random elements.

Ls-:-+ convergence in Lq.

"lb b is divisible by a.

L.H.S. left-hand side.
R.H.S. right-hand side.

i.i.d. independent and identically distributed.
w.r.t. with respect to.

a.e. almost everywhere.
a.s. almost surely.
N :: {I,2,.. . }, the set of all natural numbers.
Z :: {. . . , -2, -1,0, 7,2, . .. }, the set of all integers.

A :: the set of all rational numbers.
R :: the set of all real numbers.
C :: the set of all complex numbers.

gcd(a, b) :: the greatest common divisor of a and b.

lcm(a, b) :: the least common multiple of a and b.

J4 or i :: the imaginary unit.
B(S) :: the Borel (o-)field of a topological space ,S.

1 rr lF 1jlMf/l :: _lim .- I f ftlat. or _lim | / f (t)dt.or ^lim *) .f t"),T--+x ll J_7- T-+x: I Jto - 1v-* 1\ 
-_1'

the mean value of function /.
E[X] i: the mean (expectation) of random variable X, (the probability

space is clear in the context).
B{e) [X] :: the mean (expectation) of random variable X with respect to the

probability measure P.
/ f \1/q

llf llr"6,n',,4 :: I I lf @)lqdm(r) I (llf ll"" or llf llr'6,,"7 as well), where
\Jx /
(X,B,rn) is a measure space.

Xl



Chapter 0

Preliminaries

0.1 Convergence of probability measures

0.1.1 Weak convergence in metric spaces

Let(S,p) beametricspaceandlet6(s) denotetheBorelo-field of ^9. Let{P2},,65and
P be probability measures on (S,6(5))'

Definition 0.1-. We say that {Pr,} converges weakly to P as n -+ 6i and write P,, + P,

if for all bounded continuous functions ./: 5 + R,

lim I for,: I for.
n_+(e J q J S

Since two probability measures P and Q coincide it Isf dP: fsf dq for all bounded,

uniformly continuous real functions /, it follows that the sequence {Pr} cannot converge

weakly to two different limits.
The Portmanteau theorem provides useful conditions equivalent to weak convergence.

Theorem O.2. The followi'ng fiue conditions are equ'iualent:

(i) P" ? P;

(ii) 
"G f 

d,Pn -+ I, f ap for all bounded, uni'formly cont'inuous f ;

(iii) limsup,, P,"(F) < P(F) for all closed F;

(iv) Iim inf 
" 

P^(G) >- P (G) for all open G ;

(v) Pr(A) -+ P(,a) for allP-conttnur,ty sets A. Here aP-cont'inui,ty set'is a set A whose

boundary 0A satisfi'es P(0,4) : O.

This is Theorem 2.1 from Billingsley [4]'
Let (,9,, p,) be another metric space and let 6(5') be the Borel o-field of S'. We

consider a measurable (or B(S) 16(,5')-measurable) mapping h: S -+ ,S', that is, a mapping

h satisfies
h-t(9,s'D c 6(s).

Then each probability measure P on (^9, 6(5)) induces on (,5" B(S')) a probability measure

ph-1 defined by Ph-l(A) :P(h-|A),A e B(S'). Let Dl denote the set of discontinuities

of h. Then Dh € B(S) and we have the mappi'ng theorem.

Theorem o.3. If P,, * P and' P(Dil : 0, then P"h-: + Ph-1 ' In partr'cular' i'f

h: S -+ St i,s conti,nuous and Pr, * P, thenPnh-t +Ph-'.
This is Theorem 2.7 from Billingsley [4].



Chapter 0. Preliminaries

0。 1.2  Convergence of randollrl elements

A mapping X fl・ om a probability space(Ω ,F,P)tO a metric space(S,ρ )iS Said tO be a

random element ifit is F/β (S)―measurable,that is,

Xl(β (S))⊂ F・

An Rζ―valued or C― valued randolln element is usually called a random variable. The d,strj―

う包ιづθη of χ is the probability measure Px=PX~l on(S,β (S))deined by

Px(■)=P(χ
~1ス

)=P(ω :χ (ω )∈ ス)=P(X∈ ■
)・

Let{χπ}η∈N and X be random elements.

Deinition O.4.ヽ 石ヽe stt that the sequence{Xη }COnVerges in distribution to χ,and write

xη ム χ,if the sequence of distributions(Pxη }COnVerges weakly to Px as η→∞.

If X and y are S―valued random elements deined on the same prObability space

(Ω,F,P),then it makes sense to speak of the distance ρ(X,y)・ In the sequel,let(S,ρ )

be a separable metric space.Then ρ(X,y)iS a random ttriable.

Deinition O.5.ヽ 1石e stt that the sequence{X72}COnК rgё s in probability to χ if for every

ε>0,

鳳
P(ρ (χれ,X)≫ ε)=0・

Theorem O。 6. Tん c cθηυθηθηCC tη prο bα bづιづ
`ν

づηpιづCS tん c cθ 77υθηθ26θ づηαづsιれbzιづθ2.

This is a consequence of Theorem 3.l from Billingsley[41.

Theorem O。 7.Zθι{Zら }η∈N,{χた}にN αηα{χた,n}た ,れ∈N ιC S―υαιttθJ ttη αθm cιθttθη;s.■ s

samc tんαι

←)

χた,η
ム χた αs η→ oo;

(ii)

χたム χ  αsた → ∞
;

(iii)/Or eυ θη ε>0,

鳳
hm Sup P(ρ (χた,れ ,L)≫ ε)=0・

動 cη 耽 ム χ αsη → ∞ .

This is TheOrem 3.2 fl・ om Billingsley 14].

0。 1.3  Weak convergence in Rd and characteristic functions

The characteristic fllnctionり に)of a probability metture P on(Rd,β (Rd))iS deined by

αJ=(dp咄

where(■ ,■)denotes the inner product ofェ and″ in Rd.Note that the characteristic

function 9 uniquely deterlllines the probability measure]P.



0.1. Convergence of probability measures

Theorem O.8. Let {Pn} and,P be probabi,li,ty measures on (Rd,6(Rd)) and let gn(r) and

gQ) be the correspondzng characteri,sttc functi,ons. Then Pr, * P, i'f and only i'f

gn\r1 -+ p(r) for alt r e Rd.

The following theorem is L6vy's famous continuity theorem.

Theorem O.9. Let {P,} be probabi,li,ty rneasures an (1Rd,6(Rd)) and let p,(r) be the

correspondi,ng characterzsti,c funct'ions. Assume that

pn|) -+ plr) for all r e Rd.

andthatgQ) i,s continuous atthepoi.ntr: (0,...,0). Thentherei,s aprobabi,l'ity measure

P on (Rd,6(Rd)) such, that P", * P, and 9Q) i,s the characteri'sti,c functi'on of P.

Proofs of these theorems can be found in Section 29 of Billingsley [4].

0.1.4 Weak convergence in topological groups and Fourier transforms

A measure P on (,S,6(5)), ,S being a compact topological space, is said to be regular if
for every e > 0 and every E e B(S), there is a compact set M and an open set I/ with
M c E C [/ and P(U\ M) < e. It is known that if 5 is metrizable, then any probability
measure on (S,6(5)) is regular. Let G be a compact topological group. A measure P on

(G,B(G)) is said to be invariant if

P(A) : P(rA):P(Ar)

for all A e B(G) and all r €. G, where rA and Az denote the sets {ry t ll e A} and

{Ar t y e A}, respectively.

Theorem O.1O. Let G be a compact topologi,cal grow. Then there'is a uni;que'inuariant
regular probabtlzty measure mH on (G, B(G)), called the normali.zed Haar rneasure.

Now let G be a locally compact abelian group. Let G denote the collection of all
continuous homomorphisms of G into the unit circle 7 : {z €C : lzl : 1}. The members

of d are called the characters of G. Under the operation of pointwise multiplication of
functions, G i. un abelian group. With the compact open topology, G becomes a locally
compact abelian group.

We have the following results (see also Walters 146, Section 0.7] and its references).

(i) G is compact, if and only if d is discrete.

(ii) (Duality theorem). (6) ir naturally isomorphic (as a topological group) to G, the

isomorphism being given by the mapping G > g r+ Xg, where XnQ): XG) for all

X€G.

(iii) If Gt,Gz are locally compact abelian groups, then G1??" : dr x Gz. (Here

"x" denotes the direct product.) Helce all characters of G1 x G2 are of the form
(g,h)+xk)d(h), where X€Gr,6e Gz.

(iv) If f is a subgroup of d, then

H:{geG:y(g):1,VX€f}

is a closed subgroup of G and 1QE\ : r.
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(v) If fI is a closed subgroup of G and H + G,then there exists a character X € e, X + 7

such that X(h) : l- for all h e H.

(vi) Let G be compact. Then finite linear combinations of characters are dense inC(G),
the space of complex-valued continuous functions on G. The members of d form an
orthonormal basis for L2 (G, m 11).

We get back to the case G being compact abelian group. The Fourier transform of a
probability measure P on (G, B(C)) is a function defined on the characters gronp d,

g(r): I r(g)aP(g). re G.
JG

By the property (vi) above, it is clear that 9(1) uniquely determines the probability
measure P. Let 16 denote the trivial character of G, the character that is identically
equal to 1. Then the Fourier transform of the normalized Haar measure mH is as follows

t" ', [t' if 1:10'9(\) : 
Jr\\9)amu 

(9t : 
10. if r I ro.

We have the following continuity theorem.

Theorem O.IL. Let G be a compact abeh,an group. Let {P"} be probabi.li,ty measures on
(G,B(G)) and g"(y) be the correspond'ing Fourier transforms. Assume that

s,(x) -+ s(x) fo, aU v e G.

Then there i,s a probabi,li,ty measureP on (G,B(G)) such thatP, )P, and g(y) is the
Fourier transform of P.

This is a special case of Theorem 1.4.2 from Heyer [23].

O.2 Ergodic theory

O.2.I Discrete time

This section is taken from Chapter 1 of Walters [46].
Let (X, B,m) be a probability space.

Definition 0.12. (i) A transformation T: X -+ X is said tobe measurable if :f-r lq C
B.

' (ii) A transformation 7: X -+ X is said to be measure-preseruing if 7 is measurable
and m(T-rB) : m(B) for all B e B.

LetT: X -+ X be ameasure-preservingtransformation. If T-rB: B for B e B,then
also ?-1(X\B) : X\B and we could study ? by studying the two simpler transformations
716 and Tlxts. If 0 < m(B) ( 1, this has simplified the study of T. If ^(B):0 (or
m(B): 1), we can ignore B (or X \ B) and we have not significantly simplified 7 since
neglecting a set of zero measure is allowed in measure theory. This raises the idea of
studying those transformations that cannot be decomposed as above and of trying to
express every measure-preserving transformation in terms of these indecomposable ones.

The indecomposable transformations are called ergodic.



0.2. Ergodic theory

Definition 0.13. Let (X,B,m) be a probability space. A measure-preserving transfor-
mation T of (X,B,m) is called ergodr,c if the only members B of B with ?-1.B : B satisfy
m(B): 0 or m(B) :1.

There are several other ways of stating the ergodicity condition and we present some

of them in the next two theorems.

Theorem O.L4. If T: X -+ X i,s a measure-preseru'ing transformati,on of the probabi,li,ty

space (X,B,m), then the followi,ng statements are equi'ualent:

(i) T i,s ergodzc;

(ii) the only members B of B wi,th mlT-rBLB) : 0 are those wi,th m(B) : 0 or
*(B) : 7, where T-r BAB i: (T-r B \ B) U (B \ 

"-18);
(iii) /or euerg A e B wi,th m(A) > 0, we haue m(uffi=rf-"A) : l;

(iv) for euerg A,B e B wi,th m(A) > O,m(B) ) 0, there erists an n > 0 wi,th m(T-"4)
B) >0.

Theorem O.LI. If T: X -+ X rs a measure-preseru'ing transformati,on of the probabi,ti,ty

space (X,B,m), then the followi,ng statements are equ'iualent:

(i) T i,s ergodi,c;

(ii) wheneuer f i,s measurable and (f oT)(r): f (r),Yr € X, then f is constant a.e.;

(iii) wheneuer f r,s measurable and (f o:l)(r): f (r) a.e., then f i,s constant a.e.;

(iv) wheneuer f e L'(X,m) and 1f oT)(r): f ("),Yr e X, then f is constant a.e.;

(v) wheneuer f e L2(X,m) and ff oT')@): f (r) a.e., then f i.s constant a.e.

These are Theorem 1.5 and Theorem 1.6 from Walters [46].
Now we consider a rotation T(r): ar of. a general compact group G. The measure

involved is.the normalized Haar measure mH on B(G).

Theorem O.L6. Let G be a compact group and letT(r): ar be a rotation of G. Then
T i,s ergodi,c, i.f and only i,f {o"}P-- i,s dense i,n G. In part'icular, if T i,s ergodi,c, then
G i,s abeli,an.

This is Theorem 1.9 from Walters [46].
The following is the well-known Birkhoff ergodic theorem. The proof can be found in

Walters [46, Theorem 1.14].

Theorem O.L7. Suppose thatT: (X,B,m) -+ (X,B,m) i,s measure-preserai,ng (where we

allow (X,B,m) to be o-fini,te) and f e Lr(X,m). Then

1n'
1 \- rrrkt 't tnH,, \",t

conuerges almost euerywhere to a functzon f* e L'(X,m). Also f* oT - f o."., and i,f
m(X) 1crc, then I f.a*: I fdm. Inparti,cular, i,f T i,s ergodi,c on aprobabi,Ii,ty space

(X.B.m). then for all f e L'(X.-).

1-I- |
lim : ) /(f'(r)7 : I fdm. m-o.e. r e X.

n--+& n 
-, 

J
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O.2.2 Continuous time

Let (X, B,m) be a measure space.

Definition 0.18. An automorphism of the measure space (X,B,rn) is a one-to-one map-
ping ? of the space M onto itself such that for all A e B we have TA,T-1A e B and

mlA) : mlTA) : m(T-t A).

The measure m is said to be an 'inuariant measure for the automorphism 7.

Definition 0.19. An endomorphi,sm of the space X is a surjective (not necessarily one-
to-one) mapping ? of the space M onto itself such that for all A e B we have T-1A e B
and

m(A) : m1f-t A1'

Definition 0.20. Suppose {?t} is a one-parameter group of automorphisms of the mea-
sure space (X,B,m),t e lR, that is, T'+"(r) :ft(T"(r)) for all l,s € IR and r e X. Then

{"t} is said to be a fi,ow if for any measurable function /(r) on X, the function f (Ttr) is

measurable on the Cartesian product X x IR.

The measurability condition appearing in this definition may also be stated in the
following (equivalent) form: the mappin1 $: X x R -+ X given by the formula ,lt@,t) :
dII'r 1S measllraDle.

Definition 0.21. Suppose {?t} is a one-parameter semigroup of endomorphisms of the
measure space (X, B,m),, € R+ ,: {" : s ) 0}, that is, Tt+"(r) : Tt(T"(r)) for all
f, s € lRa and r € X. Then {"t} is said to be a semi.fl,ow if for any measurable function

/(r) on X, the function f lT'r) is measurable on the Cartesian product X x R.a.

We have introduced four fundamental objects studied in ergodic theory: automor-
phisms, endomorphisms, flows and semiflows in measure spaces. Frrrther the expression
"dynamical system" stands for any of these objects. The measure space itself is said to
be the phase space of the dynamical system.

Definition 0.22. The measurable function g is called 'inuariant with respect to the au-

tomorphism ? (endomorphism ?, flow {Tr}, semiflow {?t}) if for all r € X, we have

g(Tr) : g(x) : glT-t r)
(g(Tr) : s(r),
g(T"r) : g(r) for all t € IR,

g(T'r) : s@) for all t € R.+).

In other words, an invariant function assumes constant values on every trajectory of
the dynamical system, that is, an invariant function is a function on trajectories.

Definition 0.23. The set A e 6 is said tobe inuari,ant with respect to the automorphism
7 (endomorphism ?, flow {7t}, semiflow {"'}) if its indicator 1a is an invariant function.

In the case of an automorphism T, the invariance of the set A means that TA: A:
T-rA; in the case of an endomorphism ? or a flow (semiflow) {?t}, the invariance means

that ?-1(,4) : A or T-tA: A for all t e R (l e IRa).
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Definition 0.24. The measurable function g is said to be i:nuarr,ant mod 0 with respect
to the automorphism ? (endomorphism 7, flow or semiflow {"t}), if

S(f ") 
: g(r) : g(T-rr) almost everywhere

@Q") : g(r) almost everywhere,

g(T'r): g(r) for any t € R(R+) for almost all r).

Lemma O.25. If g 'is an'inuari,antmod0 functton, then there erists an i,nuariant functi,on
!1 such that g - gy almost euerywhere.

This is Lemma 1 (p. 13) from Cornfeld et al. l7l.

Definition 0.26. The set A e 6 is called 'inuariant mod 0 with respect to the automor-
phism ? (endomorphism 7, flow {7'}, semiflow {"t}) if its indicator l-a is an invariant
function mod 0 with respect to the automorphism ? (endomorphism ?, flow {7t}, semi
flow {7t}).

Definition O.27. A dynamical system on a probability space (X,B,rn) is said to be

ergodi,c if the measure rn(A) of any invariant set,4 equals 0 or 1.

Lemrna O.28. If a d,ynam'ical system'is ergod,'ic, then any i.nuariant functi,on'is constant
on any set of full rneasure.

This is Lemma 2 (p. 14) from Cornfeld et al. [7].
Now assume that {gt : t € R.} is a continuous one-parameter subgroup of the abelian

compact group G. Such a subgroup defines a flow {Tt} on G by the formula

Trr:gtt, r€G.

It is obvious that this flow preserves the normalized Haar measure mg.

Theorem O.29. The followi,ng condi,ti,ons are equ'iualent:

(i) the fl,ow {Tt} i,s ergodi,c;

(ii) the one-parameter group of homeomorphisms {Tt} is m'in'imal, that i,s, for all r e G,
the trajectory {Ttr: f e R.} i,s dense i,n G.

This is Theorem 1/ (p. 99) from Cornfeld et al. l7l.
The following is the Birkhoff-Khinchin ergodic theorem.

Theorem O.3O. Suppose that (X,B,m) i,s a probabi,litA space and f e L|(X,m). Then

for almost euery (i,n the sense of the measure m) r € X, the followi,ng li,mi,ts erist and are

equal to each other

r n-l t n-l I n

Iim lf /(r^r) : Iim 1f ./tr-kr): tim ;-l . f /(z-^r.) ::,f*\rJ.
n--+d)n/-r" ' n-oonL" n-+cxt2n+I/-t"'

ft:O k:0 k:-n

i,n the case of an automorphr,sm T; for almost euer!) r € X , the followi,ng li.mi,t eri,sts

-t n-l

lim 1\- rrrk "\ -. f*/ "\n'ii'&n /-J\r r)-'J \r)'
k-0



Chapter 0. Preliminaries

i,n the case of an endomorphi,sm T; for almost euery r € X , the following li,mi,ts erist and
are equal to each other

,rip I [' f e'*,or: ,]im 1 [' rrr_'r)dr: ri- ] [' y1r'r1or:: f*(r).t*-f Jo"' ' r+ootJo" t-+cn2t1-,

i,n the case of a fl,ow {Tt}; for almost eaery r € X , the followi.ng li,mtt eri,sts

ri- I [' y1r'r7or:, f*(r).t-+cn t Js "

i,n the case of a semiflow {Tt}.
Further f.(7"): f.(r) or f*(Ttr): f*(r) wheneuer the ri,ght-hand si,des of these

equat'ions erist. Moreuer

f*e Lr(x,m)and, If.o*: Ifo*..tJ
In parti,cular, i,f the dynami,cal system 'is ergod'ic, then f* : I f dm.

0.3 Martingales

This section is taken from Doob [8] and Durrett [9].

0.3.1 Conditional expectation

Let (0, -F, P) be a probability space and let I be a sub-o-field of F. In this section, we

only consider lR-valued random variables. Let Y : (Q, F, P) -+ IR be an integrable random
variable. Then the conditi,onal erpectat'ion of Y gi,uen Q, denoted byE(Yl9), is defined to
be any random variable Z lhat has

(i) Z € 8, that is, Z is Q-measurable, and

(ii)
ff

Joz(u)dP(cu) 
: 

JoY(w)dP(w). 
for all A e 8.

It is clear that if the conditional expectation of Y given Q exists, then it is unique P-almost
surely. Let us prove the existence of the conditional expectation. Since Y is integrable,
the function rp defined by

r
plA) :: I v1r1aY1r1, A € g,

Ja

is o-additive on Q and is absolutely continuous to the probability measure P. Thus, accord-
ing to the Radon-Nikodym theorem, there exists a 9-measurable function Z satisfying (ii).
This proves the existence.

Now let {Xt}t.r be any family of random variables. Let g : o(Xt : t € T) be the
smallest o-field of O such that X1's are measurable. Then the conditi,onal erpectati,on of
Y gi.uen {Xr}t.r, denoted by E(f lX1 ,t e T), is defined to be

E(Ylg).

Erample 0.37. (i) If y € 9, then E(Ylg) : Y.
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(li)SuppOSe that y is independent Of g,that is,for all B∈ β(R)and五 ∈g,

P({yCB}∩ ■)=P(yc3)P(И )

Then

E(yg)=Ely].

Here are some properties of the cOnditional expectation.

(i)COnditional expectation is linear:

E(αy+zlσ)=αE(ylg)十 E(Zlσ
)

(ii)If yく z,then

E(ylg)く E(Zσ ).

(面)If耽 ≫O and耽 ↑y wtth Ely]<∞ ,then

E(y72g)↑ E(ylg).

(市)If 9 iS COn℃ x and Ely],E[19(y)|]<∞ ,then

9(E(ylσ))く E(9(y)lg).

(V)If gl⊂ g2,then

E(E(ylg2)lgl)=E(y gl).

(宙)If y∈ g and EIZI],El yzl]<∞ ,then

E(yzlg)=yE(Zlg).

(宙i)SuppOSe E[ly12]<∞.Then E(yg)iS the random ttriable Z∈ g that minimizes

the “mean square erroノ EIly_z12].

0.3.2  卜任artingales,deflnitiOn and cOnvergence theOrems

Let{J]2)be a fJι ηαι
`θ

η,that is,an increasing sequence of sub― σ_flelds Of F,

■ ⊂ 乃 ⊂ … ⊂ F.

・     We flrst cOnsider the case of real― nlued marting」e.Let{χη}η∈N be real― valued random
唸 riables.A sequence{χ η}お Said tO be ααの サθご tO{JL}f χ η ∈ 為 fOr al1 2.

DeflnitiOn O。 32.A sequence{」 χη}れ ∈N iS Said to be a mα ttjηθα;C(StlpPCrmα rtじηgα ;θ or

stι ttα ttjηgα Jc)(With respect to万 れ)if

(1)E[|」 rη lI<∞ ,

(11){χπ}iS adapted to(′ ]ι },

(iil)E(Xη +11J五 )=χη fOr all η (Ecrη +11Fl)く Xη Or EcXl+11Jl)≫ χη fOr all η).
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E"α ttρ Jθ O.33. (i)COnsider a sequence{ξ η}Ofintegrable independellt random variables
with EIξη]=0・ Let

Xη =ξl+…・+ξn,

and為 =σ (ξ l,一・,ξれ)・
Then{X72}iS a martingale with respect to{為 }.Indeed,

the Lct that EIlχη l<∞ and」Xれ ∈jL are clear.Let us check the condition(111)・

Since attl is independent of九 1,we have

E(X,2+1.為 )=E(χれら )十 E(ξη+1ヽ亀 )=χ n+Ela+ll=ス Ъ.

Here we have just used the linearity of conditional expectation and Example O.31(ii).

(ii)COnsider a sequence{ξ れ}Ofintegrable independent random variables with E[ξ η]=1・
Let

」κη=ξ l―・ξn,

and馬2=σ (ξ l,…・,ξπ).Then{χれ}iS a martingale with respect to{Fち }・
As above,

we need only to check the condition(ili)・ USing the property(vi)Of COnditional

expectation and Example O.311ii),祀 hⅣe

E(χれ+lνL)=E(χ nξれ+l Jπ )=Xη E(ξη+lνL)=ス LEIξη+11=スЪ・

Theorem O。 34.〃 {χれ}づS α ttα 脅焼θαιθ υ.r.ι.JI αあα ヮ づS a cθηυcχ ル ηCιづθη ttlttん

E[9(X?2)|]<∞ ル r αιι η,ιんθη 9(χれ)づS α Sabttα 7・ rづηθαιθ υ.r.オ.JL.θ θηSθ 9包θηιιν′ゲ

p≫ l αηα E[IXη lpl<∞ ル r αιι η,ιんcη lχη P tS α Sabπα焼れθαιθ υ.r.ι.為 .

Theorem O。 35。 J{X72}づ S a Sabttα電 れ θαιc υ.r.ι.Jh αηα 9 ts αη jη C“αSれθ cοηυθχ

ル nCιづθη ttlttん E19(χ π)ll<∞ ル r αιι η,ιんθη 9(χη)'S α SZι ttα 滝れ θαιθ υ.r.ι.JL.θ θηSC―

9包 CηιJν,μ

'ゲ

{Xη }tS α Sabttα付づηθαιc,ιんθ2(χ η ― α)+tS α Sttbttα rt771θ αιθ′ μリ グ {χη}

,s α stlppθ 9篭αrιづηθαιθ′ ιんθη χη∧α ts α sttpρCrmα ttι
jη

θαJθ .  Hctt α づs α θοηsιαηι αηα

(χη_α
)十 :=maX{χれ―α,0},χη∧α=min{χゎα

}・

These are Theorem 5.2.3 and Theorem 5.2.4 from Durrett p].

Theorem O。 36(Martingale convergence theorem)。 J/χη づS α Sab777α琵れ gα Jθ υづιん

sup E卜寸 ]<∞ ,

ιんθη αs η→ ∞ ,Xη Cθηυcηθs α・S・ ιο α ιづmづιX υづιんEIlχ l]<∞・

This is Theorem 5.2.8 from Durrett 191.

An ilnportant special case of this theorelll is the folloM/ing.

Theorem O.37.J Xn≫ 0 0S α S切9permα rιれθαιθ,ιんθη αs η → ∞ ,χn→ χ α.s.αηα

E[X]<E[Xll.

Theorem O.38(Zp ma対 mum inequality)。 ιθ
`{χ

η}ιθ α Sabmα滝771θαιC αηα Jct

Xれ :=15kηχ就.

Thenforl(p(oo,

Consequently, i,f {Y"} 'is a mart'ingale andY} :: rl&x1gpg2 lYr"l, then

珊 く(芦 )pЩ
χゎ件

到馴く(芦 )p到
‰降
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Theorem O.3g @e convergence theorem). A {X"} 'is a mart'ingale wi,th supEfiX"lr] <
n, where p > l, then Xn -+ X a.s. and i,n Lp.

These are Theorem 5.4.3 and Theorem 5.4.5 from Durrett [9].
We now turn to the case of complex-valued martingales. The definition of complex-

valued martingale is the same as that of real-valued martingale. Note that {Xn : Un +
riV,r), where Un atdVn are real, is a martingale w.r.t. {t"}, if and only if {t/"} and {V"}
are martingales w.r.t. {f"}.
Theorem 0.40 (Doob's martingale convergence theorem). Let {X"} be a (real or com-
pler) marti.ngale. Then {lX"l} i,s a submarti,ngale and we haue the followi,ng.

(i) fflim"*- E[l&l] : K < n, then limrr*- Xn:: X* erists a.s. and E[lX-l] < 1{.
In parti,cular, K I @, xf the Xr's are all real and )- 0 or all real and ( 0.

(ii) The followi,ng condr,tzons are equi,ualent:

(a) K I n, and the random uariables Xt, X2,.. . , X* const'itute a marti,ngale;

(b) the random uariables Xr, Xz, . . . are uni,formly i,ntegrable;

(") K{crcandEllx-lJ:K;
(d) l( 1n and lirn,,-oo E[|X* - X"l] = 0.

(iii) 1, for some p > 7,lim,rr*E|X"lp] ,'-crc, then th,e condr,ti,ons of (ii) are sati;sfi,ed,

E|X."lP] ,-cn, and

J$n1|x* - x^lal:0.

Conuersely, i,f the condi,ti.ons of (ii) are sati,sfied and i.f EllX."ln] < x-' for some q > l,
then

E|x"lnl ( E|x-lql.

This is a part of Theorem 4.1 from Doob f8l.
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Chapter 1

Besicovitch Almost Periodic
Functions With Fourier E*ponents
Belonging to a Dirichlet Sequence

1.1 Introduction

A function /: R -+ C is called Besicovitch almost periodic if it is a limit of trigonometric
polynomials under some Besicovitch q-(semi)norm (1 ( g < -),

/'t ;T tl/q
ll/lls ': Iimsup lm J_rttttllodt)

Let Bq denote the quotient space of the q-Besicovitch almost periodic functions (80-a.p.
for short) with respect to the null space Ns : {f t llf llo:0}. Then Bq is a Banach space.

It is well known that Besicovitch almost periodic functions possess mean values and limit
distributions. Here the mean value of a function / is defined as

1rTMl/l : ]*m J_rf ttat.

provided that the limit exists, and the limit distribution is the probability distribution on

C to which the sequence of probability measures

u7{r:f(r)eA}, AeB(C),

converges as T -+ oo, where z7 denotes the uniform probability measure on [-7,?].
For every function f e Bq, the mean value

a()) : M[/(r)e-i)'] : .ti- : f 1ft)e-i^tdt
1-+@ zt J _7,

exists for all ) e R, and those ) for which a(.\) is non-zero are at most countable, called
the Fourier exponents of /. The formal series

f (t) - f a())e')1
I

is called the Fourier series of /. Dealing with the problem of constructing trigonometric
polynomials approximating Besicovitch almost periodic functions in norm, Besicovitch
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and Bohr [3] showed that a Bochner-Fej6r sequence of a function / does converge to the
function itself. Note that a Bochner-Fej6r sequence contains trigonometric polynomials
whose exponents are the Fourier exponents of /.

Let A be a subgroup of 1R.4, the real line with the discrete topology. We consider the
space Bq(A) of Besicovitch almost periodic functions whose Fourier exponents belong to
A,

Bq(A) ,: {./ € Bq : a(\): 0 if 
^ 

/ A}.

Let I be the dual gro^up of A and z be the normalized Haar meas.,r" or. I. Then the
spaces Bs(A) and -Lq(A, z) are isometrically isomorphic under the isomorphism 7n which
maps a Bq-a.p.function

f(t)-!a())e')'
,\€A

to an Lq(i,z) functio"Tq(f) with the usual Fourier series

4(/)(r) - f a())11(r).

^€A

where for A e A, x.r(r) : r()), (z e [) is a character of I. Moreover, the ]imit distribution
of / coincides with the distribution of Tq(f)

The main aim of this chapter is to study Besicovitch almost periodic functions whose
Fourier series are of the forms

m:I

where {,\-} is a strictly increasing sequence of non-negative numbers tending to infinity,
called a Dirichlet sequence. Let A be a subgroup of IR4, generated by {)-}, and let A be

the dual group of A with the normalized Haar measure v. Then the limit distribution of
/ coincides with the distribution of an trq(fr, z) function

∫0～ ΣαれC→
λ″

,

■(ノ )(″ )～ Σ  
απχ λm(″ )・

(1・
1)

(1.2)

For q ) 1, we will prove in this chapter,a":;" Fourier series (1.1) converges in norm with
the usual order, which gives another way to approximate this kind of Bq-a.p.function by
trigonometric polynomials. Equivalently, by the isometric property, the Fourier series (1.2)
converges in ,Lq(A, z) with the usual order. In addition, we will show that the Fourier
series (1.2) converges almost everywhere (with respect to u). This result is analogous

to Carleson's theorem for classical Fourier series on l},2trl, and in fact is a consequence

of Carleson's theorem in multi-dimensional case. However, to apply Carleson's theorem
to our present case, we need to introduce another way to identify limit distributions of
functions of the forms (1.1). as we will see later.

L.2 General theory of Besicovitch almost periodic functions

Recall that if a function f is Ba-a.p., then the mean value

£１
一π‐ｉｍ̈

f (t)e-i^t dtα(λ)=NIIIノ (ι )C~.λ
ι
]=
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ｒ

exists for all real、 zalues of λ,and
入,say,

Let α222=～lI∫
(ι )C~'λ

mtl.Then

f (t) -T o^"'^^r

is the Fourier series of /.
Let us introduce an algorithm for the approximation of / by trigonometric polynomi-

als 13]. If p's are Q-linearly independent numbers, we consider Bochner-Fej6r polynomials

σ
(移 ll移 :IIlβ l)(ι

)= (1-響 )…
・
(1-響 )α

m♂
λ″

is non― zero only for at inost a countable set of、アalues of

入1,入 2,… …

、vhere

入れ=νlβl+・ …+r/pら ,

and αm is to be interpreted as zero、vhen the above linear combination of β's doeS not

belong to the Fourier exponents ofノ .We Will use the notation σ3(ι )inStead of the detailed

notation

σ
樅惚

=β

D°
・

Let αl,α2,…・ be a sequence ofく 2-linearly independent positive numbers(whiCh gen―

erally is ininite but in particular cases mtt be inite)such that every exponent入 772m叩

be expressed as a inite linear form in the α's with rational coemcients,

λm=r772,lα l+rm,2α 2+・ …十 rm,9れ α
9れ

.

ヽヽ石e put

βl=器 ,β2=蒜
"…

,βた=赤 ,

where Arl,」 v2,…・,ゴvた are pOSitive integers.The result on the approxillnation of B9-a.p.

fllnction by Bochner― Feier p01ynOmials is as follows.

Theorem l。1(p,Theorem I珂
)。
 rんCS鶴鶴 σ3(ι )6θηυθηθS tθ ノ(t)づη ιんθ Bcs,cθ υづιcん

9-ηθrm,αsた → ∞ ,M→ ∞ ,乃 → ∞ ,… .,αηα
齢

→ ∞ ,赫 → ∞ ,… …

Rθ ttα rt・ 1.2.A sequence of Bochner― Fei6r p01ynOmials

σ31(ι ),σ 32(ι )'…・

is called Bochner― Fej6r seqllence if the basic numbers βl,… .,βたand the indices 21,… 。,電た
satisfy the COnditions of the above theorem.

1.3  Probability space associated with Besicovitch allnost
periodic functions

l.3.l  Besicovitch functions whose Fourier exponents belong to a sub―
group

Let A be a subgroup of Rd,the real line、 vith the discrete topology.ヽ 石ヽe consider the space

B9(A)of BeSiCO宙 tch almost periodic fllnctions whose Fourier exponents belong to A,

39(A):={ノ ∈B9:α (λ)=O if λ¢A}

=the linear closure of{CJλ
ι
:λ ∈A}with respect to the ・|19 norm.
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The second identity follows from the convergence of a Bochner-Fej6r sequence to the
function^itself (Theorem 1.1).

Let A be the dual group of A. Since A is discrete, it follows that A is a compact abelian
group. Thus, thele is a unique norma"lized Haar measure u on A. For ) e A, let X1 denote
the character of A which maps r e A to r()),

X^\r): r()), r e f.
Then {11}16n ar€ the characters of I.

For t € lR, let e; be the element of I defined by

e1()) : six' '\ e A'

Then the mapping R. ) I F+ et ei is continuous, and hence is Borel measurable. Conse-
quently, probability measures ur. ott (R,6(R)) induce on (A,6(A)) probability measures

Qr(A):ur(r i er € A), AeB(i).

Theorem L.3. The sequence of probabi,li,ty measures {Qr} conuerges weakly to the nor-
mali,zed Haar measure u as T -+ m.

ProoJ. For any character X.\, (tr e A) of fr, it i, clear that

l^xx@)aar@) 
: + l:,ys(e)dt:

={学
,|

→スχλOごν。)

ご
λ

Ｃぽ割』Ｈ
判as 7-+m.

Since the linear space spanned by the characters {11}16n is dense in C(I), the space

of continuous functions on A, the assertion of this theorem easily follows. (See also the
continuity theorem for probability measures on compact abelian group (Theorem 0.11).)

If A is dense in lR., then {"r}r.n are distinct. The only subgroups of IR that are not
dense are isomorphic to the additive group of the integers. In this case, A is the classical
circle A : {z e C.: lzl:1}, et: €t+To for some Ts } 0, and {e1}1.p : 1.

Lemma L.4. Unlesr fr ,r a ci,rcle, the characters {e1}16p are dl,stinct and, form a d,ense

one-pararneter subgroup of l\.

Proof. Let ,9 be the closure of {e1}1sp. Obviously. Qr(S) : 1 for any T > 0. Since the
set ,9 is closed, it follows from the property of weak convergence that

u(s) > t'ff:o er(s) : 1.

Thus, the complement of S, S' : fr \ S is open and has z-measure zero, which implies
that ,Sc : 0 by the property of the Haar measure. The proof is complete. n

Theorem L.5. Tt, [ + [,1i e R), d,efined, bg Tt(r) : r,€tt i,s an ergod,ic fl"ow (wi,th

respect to the Haar measure u).
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Proof . We need to verify the measurability of the flow {Tt}16p. It is clear that the mapping

/:lR.xfr-+fr
(t,r) r+ e,r

is continuous (with respect to the product topology on n x l). Hence ilis 6(R) I
B(L)lB(L)-measurable. Consequently, for any measurable function f (r) on A, the func-

tion f (Ttr) is 6(R) I6(A)-measurable.
The ergodic property of the flow {Tt}rep, which is equivalent to the denseness

{"r}r.o in A, follows (see Theorem 0.29).

We construct an isometric isomorphism Tn: Bq(/\) -+ .Ls(A,z) as follows. For a
trigonometric polynomial p(t) whose exponents belong to A of the form

19

ｏｆ

□

we define

\._ , i\+p(t) : ) 'o())e'"' , (I t finite subset of A),
z-2
ncl

,s-Tq(p)(r) : >a())11(r) € c(A) c Lq(1\,u).
)€1

Then it follows from the property of weak convergence that

lfTlfT
|X o J -rlnft)lq 

dt : ]tyLn J -rlrn{n){e1)lq 
dt

f-f: 
,19_ J^lrn@{r)lqdQrQ) 

: 
J^lro@)Q)lqdu(r).

and hence,

llpllq : llrn(dll r, 6,4. (1.3)

Thus, Tn can be continuously extended to an isometric mapping from Bq(A) 1o tru1i,u).
Indeed, Iet / € gu(l\).Then there exists a sequence of trigonometric polynomials {pn}t,
whose exponents belong to A, which converges to /, that i., llpr - f lln -+ 0 as ,k -+ oo.

In particular,{p!"}n is a Cauchy sequence in Bq(A). By (1.3), {Tn@*)}* is also a Cauchy

sequence in trq(l,u), and hence, the limit 1im6;- Tn@i exists in trq(I, u). LetTn$)::
1im6;- Tn@,r). It is clear that Tn is well defined; moreover) it follows from (1.3) and from
the continuity of norms that

ll/lln: llTq(f)llrnr.[.,r. f e Bs(A). (1.4)

This implies that Ъ is illiectiVe.on the other hand,■ iS SuttectiК  Since the linear space

spanned by the characters{χ λ}λ∈A iS dense in Z9(κ ,ν)臭nd B9(A)is complete.Therefore

■ iS an iSOmetric isomorphism between 39(A)and L9(A,ν ).

Theorem l.6.Fθ r lく 9<∞ ′

BC(A)笙 Z9(A,ν ).

TheOrem l.7(117,Correspondence Theorem])。 T/1θ tsθmθηんtsm■ んαS ιんθル;Jθυづηθ
pttρθ7・fjcs.

(1)写2づSα Jれθαr tsθ ttθ trづθ鶴鋼9Pじηθルリ鶴 B9(A)θ ηιθ Z9(A,ν ).

(ii)■ (∫ )=7し (∫ )・
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(iii)f/1/γ =1ル +1/9(γ ≫1),αηごノ∈Bp(A),g∈ B9(A),ιんθη ЛυJαθT's tη θ9包αιづιν
づmpJじ csノg∈ Br(A)α ttd

写(力)=写 (ノ)■ (g).

(iV)Jノ んαS tんθ ttarづ θr scrJcs Σ λ∈Aα (入 )♂
λt,ι

んθη ■ (ノ),αS αル ηCtづθη じη L9(A,ν ),んαS

tんc Foarじ cr scれ cs

■げ)0)～ Σα鰺)χλ。)・

λ∈A

f7t pα rιjθ
ttιαr,MF]=EI■ (ハ l.

(V)動θιづ鶴づιごづstrづ bttι jθηげ∫CοれCtacs υづιんιんcαづsιれbttιじοηげ■(∫ )・

Pηげ (う and(i五 )are Clear.(五 )eadly f0110ws iom the inequ」 ity‖ αl― lbll≦ lα
― bl fOr

any α,b∈ C.(市)f0110WS from the Lct that the conヽ 配rgence in BC or in L9(A,ν )implies
the convergence of each Fourier coemcient.

To prove(v),let∫ ∈B9(A).Then there is a sequence of trigonometric polynomials

{pη }WhOSe exponents belong to A converging toノ with respect to the ll・ |19 nOrm,sa)Ъ

浮
=LII%―

ノ|19=0.

Let θT:(Ω ,P)→ [― T,T]be a random variable unifOrmly distributed on[― T,T]。 We put

XT,れ :=pn(θT).

Note that the distribution of χT,72 is the prObability lneasure r/TP万
1. Thus,by the lnapping

theOrem(TheOrem O.3),

xT,π ム ■(pπ)aS T→ ∞,       (1.5)

because■ (pη )iS COntinuous.Moreover,by theお omet五c property of■ ,■ (pn)conVerges
tO場 (ノ)in L9(A,ν ),whiCh implies that

場(pη)ム ■(∫)as 2→ 。o.       (1.6)

In addition,for any ε>0,using Chebyshev's inequalit,lM″ e have

歎陶β―玲|>→ く:寡£レηO―ノ0隣 ,

whereン争 :=ノ
(θT),and hence,

1雪LI巴 p歎陶 β―珊 ≫→く
:漂コLレπ一洲1=Q  田

Therefore,by using Theorem O.7,lve get the desired result

玲 ム ■(∫)as T→ OO・         □



1.3. Probability space

t.3.2 Besicovitch functions whose Fourier exponents belong to a Dirich-
let sequence

Consider a Dirichlet sequence {)-},

and let

Bo({A^}):: the linear closure of {e-i)-t1 with respect to the ll.lln norm.

Let A be a subgroup of 1R4, generated by {)-}, and let I b" th" dual group of A with the
normalized Haar measure u as in the previous subsection. Then the limit distribution of
a function f e Ba({\^}) with the Fourier series

.f(t) - f o^r-'^^'.
m:l

coincides with the distribution of an trq(fr, z) function

TnU) - i. o*r-^* e Lq(i,u).-q\J / 

^-t,

We now introduce another way to identify distributions of functions in Bq({)-}). Let

? : {s e C : lsl : 1} be the unit circle on the complex plane, and let

o: fr r-,
tn:l

where 1rn: j for all m € N. With the product topology and pointwise multiplication, the
infinite-dimensional torus O is a compact topological abelian group. For T ) 0, we define
a probability measure Qr on (0,6(CI)) by

Qr(A) :: ur(r : (s-ir\^ )-ex € 1), A e B(O).

Let
z: @z*.

m€N

where Zrn : Z for all rn € N. Then the dual group of O is isomorphic to Z and the dual
group of Z is isomorphic to Q. Each k: {k^: rn e N} € Z,where only a finite number
of krn are non-zero, is identified with a character

a r+ wh : flw(m)k*

of O. Here c-.,(m) is the projection of u € f) oiro ,-.Conversely, each 0r € O is identified
with a character 1k r-+ uL| of Z.

Recall that for a probability measure Q on (Q,S(CI)), the Fourier transform 9(a)(k) of
Q is defined by

Ｏ
Ｚ

s@)&) ;: B(Q) t b):; (+ a(m)k^) oo, k e z

Then we construct the probability measure P on (O,6(fl)) as follows.

(1.8)
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which completes the proof.

The following theorem is similar to Theorem 1.7(v).

Theorem I.LO. Let f e Bt({),,"}) wi,th the Fouri,er seri,es

/ _ t aTns-i^-t.

Then the sequence oJ probabi,ti,ry *"orur"T

u7(r:f(r)eA), AeB(C),

conuerges weaklg to the distri,buti,on of f(r) - D^a^u(m) € ,s(O'P). Here f(w) -
l*a,nu(m) means that f belongs to the l'inear closure of {u(;m)}^6s 'uzth respect to the

Lq(Q'P) norm and 
o^: I f (u)u(m)dp(c.,,).

JO

Theorem L.8. There i,s a probabi,h,ty measureP on (O,B(f))) such that the sequence of
probabi,li,ty measures {Q7} conuerges weakly to P as ? -+ oo. The Fouri,er transf orm of P
rs gzuen by

^,,-, - l', tf Dfr:r\,nk,n:6,vtrr-\0. dL;^ t^^k-+0.
Moreouer i,f {^r"} i,s Q-lznearly i,ndependent, then P coi,nci,des wi,th the normal'ized Haar
measure on dl.

Proof . The Fourier transform gr(b) of the measure Q7 is of the form

r/* \ t tr/* \
gr(k): / (|| wk^(m)loer:+ /_(f[,-itx^*^ls,Jo \,"^i / zt J-r \i-1 /

( t, if ;;ff:, \qk*: Q,
I: { exp{-irDfr:r\*k*} - exp{eTlff:, 

^mkm\ . if )-r_:.\,,.k,. + 6.|. - 2ir Dn_1 \,,k^
Hence, the limit

s(k)::,h g,(r) : 
{;: ll 3$:l }:i:rz:,

exists for every k. The continuity theorem (Theorem 0.11) implies that there exists a
probability measure P on f) such that {Q7} converges weakly to P as 7 -+ oo. More-

over, 9(k) is the Fourier transform of P. Now, if {)-} is Q-linearly independent, then

Dff:, \^k-: 0 holds iff k,n: 0 for all m. It then follows that P coincides with the
normalized Haar measure on f,). I

Lemma L.9. {w(m)}-ex zs an orthonormal system in L2(Q,P), that i's,

E(P) [,(m ,),(-,)]: {1. {,:,")T,i:

Here E(P) denotes the erpectati.on wi,th respect to P.

Proof . Let m1 I *2. Take ! : {k^: rn € N} such that k-, : 7,k*r: -1 and the others

are zero. We have Dff:r \*k^: )-, - \rn, f 0. Therefore

E(P)lr1tn1 )qntr)l: g(k) : 0.



L.4. Converqence results

We are now in a position to characterize the dual group of A and the support of P.
Recall that A is a subgroup of Ra generated by {)-}. Hence, the mapping

to: Z -+ ll,

A.: (A.,n) ++ - L^^O^

is an onto group homomorphism. Thus by tnl nr.t isomorphism theorem in abstract
algebra,

L= Zlkercp.

Here ker g: {k e Z:l^\,nk,n:0} is a (closed) subgroup of Z. Let

K : {w e O: cu&: 1 for all k e kerrp}.

Then 1{ is a closed subgroup of f), called the anni,hi,lator of ker g. The result on the
duality between subgroups and quotient groups ([42, Theorem 2.7.2)) gives the following.

Theorem l.lL. The dual group of lt i,s isomorphi,c to the subgroup K of Q.

Since K is a closed, and hence a measurable subset of 0, the normalized Haar measure

u on K can be regarded as the probability measure P'on Q defined by

P'(A):: u(An q. A e B(Q.

Let us now calculate the Fourier transform of P'. First, by the duality, ker g is the
annihilator of 1{ because l( is the annihilator of kerg (142, Lemma 2.1.3]), or ker g can
be rewritten as

kerp : {k : wh: I for all cu € K}.
This implies that a character ft of O, restricted on K, is the trivial character of 1f if and
only if k e ker cp. Thus we obtain the Fourier transform of P/,

e(p,)(&): IrLae,: [#ar:{|. if ke kere.

Ja Jx |.0. otherwise.

It follows that P : P/ because P and P' have the same Fourier transform. Moreover, by
the property of Haar measure, supp(z) : K. Hence supp(P) : 6. Combining all the
above, we get the following.

Theorem 1-.1-2. (i) supp(P) : I{.
(ii) Plft' : u, the normal'ized Haar measure on K.

L.4 Convergence results

I.4.L Classical Fourier series

Let trq([O, 2tr)) be the space of q-th power Lebesgue integrable functions f : l0,2tr] -+ C
endowed with the norm

/ 1 r2r r, l/q

ll/11r,,110,2"1; : ( ; I ltt"l!a"1\zr Jo /
For / e Ls(P,2rl), the Fourier coefficients an are defined by the formula

αη==,ア
ズ

2π

∫(″ )C~を
η″d",  η∈Z.
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Then the series 
m

f(r)- t anein'

is called the Fourier series of /. For nO a 
^, 

*l

Srr(/)(") : t anein'.

lnl(N

Theorem 1.13 (126, Theorem II.1.5]). For 7 < Q ( m, the parti.al sums 571(f) of any

f e Ls(l},2trl) conuerge to f i.n Lq(l},2rl) as ly' -+ oo.

This theorem is equivalent to the following.

Theorem l,L4 (126, Theorem II.1.1l). For 7 < Q ( oo, there r,s a constant Kn such that

foranyfeLq(l},2rl)
| | 

S,^,' (/) 
| | ;c 11o,zrl) < Kn ll / ll r' ([o,zn]) .

Indeed, let S,r,, be a continuous linear operator on.Lq(10,2n]) defined as / -+ S,^r("f),
whose operator norm is denoted bv llSrollq. Now if the sequence {Sry(/)} converges to /,
then {S1,.(/)} is bounded for every / € ,s([0,2n]). Therefore, {llS,r,'lln} is bounded by the
uniform boundedness principle. Conversely, assume that there is a constant Kn such that
forany f eLq(10,2n)),

| | 
S,^r ( / ) ll rn qo,z^11 < Kn 

I | / | | z,' ( [0,zzr] ) 
.

Let f e Lq([0,2T]). Given any € ) 0, there is a trigonometric polynomial P(r) :
Dnb&ok" satisfying llf - Pllr,<to,znl) ( el(Kn + I). For N greater than the degree of
P, we have ,Sry(P) : P, and thus

llSr,,(/) - fll7op,ur1; : llSru(/) - Sru(P) + P - f llrn{o,z"y

E lls,^r(/) - sru(P)ll7,e 11o,zrl) + llP * flluqop"1l

< Kr=: + =-1 : s.' "Kn+I' Kq+1

which completes the proof of the equivalence between the above two theorems.
Carleson [6] showed that the Fourier series of an tr2([0,2n]) function converges almost

everywhere. Later on Hunt [24] generalized this to .Lr([0,2n]),Q < p < oo). This result
is now known as Carleson's theorem or the Carleson-Hunt theorem.

Theorem 1.15 (The Carleson-Hunt theorem). For 1 < q < m, the partial sums S7'r(f)
of any / e la(fO,2nl) conuerge almost euerywhere to f as N -+ oo.

' 
To prove this, we consider the maximal function

Nn/(") ': i,l;; lsrr(/)(r)l .

The almost everywhere convergence is a consequence of the following maximal inequality.

Theorem 1.16 ([6, 24]). For I < q ( oo, there zs a constant Cn such that for ang

f e Lo(l},2nl), we haue

llNa/ ll'tlo,r"r) < Cs ll / ll ro (o,zr))'
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The multi-dimensional version of this maximal inequality was investigated by Feffer-
man [16] . For our purpose, we only mention a special case of Fefferman's result. Let
f e Lo(l},Ar)d) with Fourier coefficients {an}bezo, where d e N, d> 2 being fixecl. For

u : (ut,. . .,ud) € (R+)d, we consider the maximal function

N{ro/(r) ': :lB I _R, 
orei{&'r) 

1.

(&,q)<b

Here N* : NU {0} and (r,g) denotes the inner product of r and y in JRd,

d

(r,a):L"trt, L: (rt,...,ra),a: (at,...,gd) € Rd.

J: s'

Lemma 1.17 ([16, 22]). For 7 < q { oo, for any 9: (ut,...,ud) € (R+)d and, any

f € Ls(l},2nlo),
llMIs,/ llz,, t ll,2rld) ( Cq ll / llr t lo,2r)d),

where Cn i,s the constant i,n Theorem 7.76.

L.4.2 Convergence of Fourier series of Besicovitch almost periodic func-
tions

Recall that supp(P) : X is isomorphic to the dual group of A. 1{ itself is a compact
abelian group and its normalized Haar measure z coincides with Plsupp(p). A summable
function on K has Fourier series

f (w) - | atr)t.r(cr).
)eA

For q ) 7, let Hq(K, {)-}) (or Hq(fr, {l-})) be the subspace of La(K,u) : Lq(9,P)
consisting of those functions / whose Fourier coefficients ci,()) are zero except for .\ e

{-)r,-12:...}. A function f e Hl(K,{^-}) has Fourier series of the form

f (r) - io^r-^^: i a^u(m).
m:l rn:l

Next, we will establish the maximal inequality for functions in flq(f), {,\-}). Let

tM I

N4/(r) :: sup lf o-r(rn)l .

Mro lEr I

Theorem L.I8. For I < q < a, and for any f e Ha(Q, {)-}),

llNn/ ll z,' ro,p t < C qll f ll re(o,P),

where Cn i,s the constant i,n Theorem I.76.

We need some preliminary results before proving Theorem 1.18.

Lemma L.19. Let M e N and let {)-}r<-<,lz be positi,ue numbers. Then there are

Q-li,nearly zndependent posr,ti.ue numbers {po}r<o<" such that

{),n}r(m<M C O N*pp.
1(p(P
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Proof. We prove by induction on M. Of course, there is nothing to do if M : l. Assume
that this lemma holds for some M ) 1. We now prove it for M * 1. Let {)-}1g-g,vr1r be
positive numbers. By the induction hypothesis, there are Q-linearly independent positive
numbers {pr}r<o<l' such that

{tr-}r<-<,y c O ^.ro.1(p(P

Case 1: )na11 is Q-linearly independent with {po}r<o<". Simply set pp11 : )14111, w€

obtain the desired result

{)-}r<-<,nnr+r C O N*pp.
1(p(P*1

Case 2: )ya1 is Q-linearly dependent with {pr}1gp(pi namely there are rational numbers

{ko}r<o<p such that 
p

\nr+r:Dror,
P:t

Let Pt : {p t ko > 0} and Pz : {p : k, < 0}. If P2 : 0, then

\w+t e O Q.p,o,
1(p(P

where Q* : Q+ U {0}. Thus with a suitable number I'I € N, by letting p;: (IlN)pp,p:
1,...,P,weget

)1a11 € O X.r;.
1(p(P

Clearly,

{)-}r<-<,y c O ^.r;.1(p(P

Therefore this lemma holds for M +7 if P2:0. Next we consider the case PzlA. Let
p2 € Pz. It is enough to construct positive numbers {Ai}rge<p that

( { r,',1r"r", is Q-linearly independent.

{ {)-}r<-<,,r C Or<p< pQ*tt!p, (1'9)

l.)nrnr :t'r:rt ;lo, ki . Q, (p : r,...,P); PL : {p t kL < 0} :Pz\ {pz}.

To construct {pi}r<o<p,let {rr}r6p, be positive rational numbers satisfying

(r-
!/:p€Pr'P:-kTr'
t0.ro lkp4plFpr. pePt.

The existence of {rp}pep, is ensured because

0()u+r: t kppp*Lrrro< I kp4plkp,tf,p,.
p€Pr P€Pz P€Pt

Let
, lro-ftofkp)Hoz. PePr.

Fp: \'P l.Po' P/Pt'
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Clearly, {pi},<o<p is Q-linearly independent and

{Pp}r<p<p c O O-r;
1(p(P

Thus

{)-}rs-g,vc O *-ro. O O-r;.
l(p(P l(p(P

Let us consider the representation of )aa+r with respect to {p,|}srap,

),v1+r : D krro+ I kp4p : D *rfuo - Qolkr)pr,) + t kp4p
p€Pt p€Pz pePt pePz\{pz}

:tkppL+ t krio
p€Pt pePz\{pz}

Hence the sequenc" {pl}r<p<p satisfies the condition (1.9). The proof is complete. I

For each ,&1 e N, let Q7,1 : [IX:r7- (with the product topology and pointwise
multiplication). Ona is also a compact topological abelian group. The projection prpl
from 0 onto f)y is continuous. Let P 1e,1 :: P o pr-n| . We can check that

9u(ktu)1 : !t' it DX:'\Ynk^: Q' 
'l 
(M\ 

'|,

[0, it Dx:r^^r* +;:, k(u) - (kr' ' ' ' 'knt) ' ,$"ru^'
is the Fourier transform of P1a.

For the sequence {tr-}r<-<,1.r, Iet {pp}rgp<p be positive numbers as in Lemma 1.19

and let {k^o} c N* be the coordinates of {)-}r<-<,lr with respect to {pp}r<pgr, that is,

P

)- : I k^pFp, (m: L,..., M).
P:I

Let f2! : lIo:r7o (with the product topology, pointwise multiplication) and let m| be

the normalized Haar measure on O'". Define jvt Q'p -+ 01a as

P

(r'(p))r<o< p ,+ (u(m))r<-<,r2, u(m) : n r'(p)o*, .

P:7

Then the mapping j y is also continuous. The following lemma easily follows from the
calculation of the Fourier transform and from the continuity of jy.

Lemma1.20. (i) PM:^'p" j-t.
(ii) supp(P u) : jy(Q'p).

Proof of Theorem 7.78. Step -1. Assume that only a finite number of {a-} are non-zero)

that is, an M € N exists such that em:0 if m > M. Since the maximal function in this
case only depends on the first IV coordinates, in what follows we identify Q,14 with Q. For
each k : (kr, ...,kp) € N*P, Iet

l' .. sP
or: l1^' tt Ptl kpFp: )- for some rn) (1 ( - < M)'

|. 
0, otherwise.

″
‘

９
ん
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Then when ω=」llf(ω
′
),We have that for any L∈ N,

Σ αmωい)=Σ αとω・ ,

m<L         ん∈N*P
(と ,μ )<λ L

where μ=(μ l,… .,μ P)・ Therefore

M力MOつ )=11:|ん
IPα

A・
04・

(1,μ)<b

lt follows frOm the multi― dimensiOnal maximal inequality(Lemma l.17)that

‖Mlノ (プχ(ω
′
))|lz,(ΩЪ,れ卜)く ら||∫ (プ M(ω

′
))L9(Ω卜,mり .

NIIoreover,by Lemma l.20,v′ e have

‖■llノ (ω )|lzq(Ω M,PM)=‖ M∫ (力r(ωり)||五 c(ΩЪ,mり ,

‖ノ(ω)L9(Ω flr,PM)=||ノ (プM(ω
′
))IL。 (Ω3,mЪ )・

TherefOre

‖ヽ 1ノ (ω )IL9(Ω M,PM)く C91ノ (ω )I L9(Ω M,PM)・

StcP 2. 1ヽ石e no、v prove the maxilnal inequality in general case. For each if∈ N,let

M岡ノ0=。f‰ 1屁
αmωぃ)「

Then MII(M)ノ (ω )inCreasingly converges to M∫ (ω)as y→ ∞・ COnsequentlェ

‖Mノ |IL9(Ω,P)=爵
吼

‖M(M)∫ L9(Ω ,P).

Applying Step l to a fllnction g(ω )of the form

gO)=ΣE αれωい)十 1E bπωい),

m=l         m=lf+1

■f′ and{bれ }being arbitrary,we obtain

'         ‖Mθ (ω )L90,P)く のlθ (ω )|IL9但 ,P)・

Moreover,for g(ω )Of that fOrm,祀 hNe M(M)ノ (ω )く Mク (ω),WhiCh implies that

‖M(M)ノ (ω )|IL9(Ω,P)く ら
g(ω )|IL9(Ω,P).

By choosing a sequence of g(ω )COnverging to∫ (ω)in z9(Ω ,P),We arrive at

‖M(M)∫ (ω)L9(Ω ,P)く ら |∫ (ω)L9(Ω ,P).

The proof is cOnaplete by letting_llf一→oo. □



1..4. Convergence results

Theorem L.21. For 1 < q < @, Lt)e haue the followi,ng.
(i) For any f (t) -la*e-ix^t e Bq({ )-}), the parti,al sums

M

Su(f)(t): t aps i^^t

conueT-ge to f in the ll.lln norm as M -+ m.
(ii) Equi,ualently, for any f (w) -la*w(m) e Hs(O, {)-}), the partial sums

M
Su(f)(r): I a,nw(m)

conuerge to f i,n Lq(Q,P) os M -+ a.

Theorem 1.21 is a consequence of the maximal inequality (Theorem 1.18) and the
following result whose proof is similar to the proof of the equivalence between Theorem 1.13
and Theorem 1.14.

Lemma L.22. The followi,ng two condi,ti,ons are equiualent:
(i) for any f (w) -la^w(m) e I{c(f,), {)-}),

M
Stt(f)(r): t a-w(m) f\ t as M -+ n;

tn:l

(ii) there'is a constant Kq) 0 such that for anA f e Hq(Q, {)-}),

lls u (f)ll u ro,P) < K qll f ll r., p,pt.

Theorem 1.23. ForI < q ( oo, andfor any f(u) -\a,,u(m) e fla(fl,{),*}), the
parti,al surris Sp1(f)(w) conuerge P-a.e. to / as M -+ o.

Proof. By applying Theorem 1.18 to the function f - SuU), we obtain

ll-tl
ll sup ls-(/) - sr17;1;1 < cnlll - su(f)llz,n1c,,ey.
ll^>tr '" ' 

llz,ntsz,pt

Thus sup->mlS^(f) - Su(f)l converges to 0 in LI(Q,P) as M -+ oo. It follows that
there is a subsequence {Mr} c N such that

sup lS,,(/)(r) - 574rff)@)l -+ 0 as ,k -+ oo for P-a.e. ar € fl.
m)-Mn

Hence {^9,u(/)(r.,)},rz is a Cauchy sequence for P-a.e. c,., € O. Consequently, the limit

f'(r): nlrm 
Su(f)(a)

exists for P-a.e. ar € CI. On the other hand, the function / is the trq-limit of {S,y(/)}
(Theorem 1.21). Therefore / : ft for P-a.e. c,.r € f), which completes the proof of Theo-
rem 1.23. I
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Chapter 1. Besicovitch Almost Periodic Functions

1。 4。3  The linearly independent case

ln this section,we consider the case when{入 m}iS Q― linearly independent and give another

prooお of Theorem l.18,Theorem l.21 and Theorem l.23.Assume that{入 m}is Q― linearly

independent. Then the probability lneasure lP coincides M″ ith the normalized Haar ineasure

On Ω.Under P,the sequence{ω (971)}becomes independent.

P印げげ7Lθθttm l.21 αηα T77θθ
“
nl.23.Let

∫(ω)～ Σ  
αmω (m)∈ ∬9(Ω

,{入π}).

π=1

Then{Sllf}M∈ N iS a martingale with respect to the■ ltration

九y=σ (ω (1),… .,ω (■f)),

because{ω(m)}iS a Sequence of independent random vttiables with means zero,where
SM:=SM(ノ ).On the other hand,■ 対 ng if,we consider{】乞 }L>lf Of the form

rlf

均=ΣE αmωぃ)十 Σ bれωい),     (1・ 10
π=l        if<mく L

where{bm}iS an arbitrary sequence of complex numbers.Then{ン ■}L>Ar iS also a mar―

tingale,and hence,{yL19}L>M iS a submartingale.Consequently,

E(P)[ISM 91=E(P)IlyAf 9]く E(P)[|ン■91.

Since there is a sequence of{ン 乞}Of the above form which conヽ 配rges to∫ in Z9(Ω,P),it
follo、vs that

E(P)[SM 9〕 くE(P)[ノ 91<∞。           (1・ 11)

Thus,if 9>1,then by Doob's martingale convergence theorem(see Theorem O.40(面 )),

the sequence{島 7}COnverges P― a.e.and converges in ι9(Ω,P)tO a random ttriable S∞ .

It is clear that

S。。(ω)～ Σ  
α222ω (m)

名配 ==1

is the Fourier series of S∞ .This implies that S。。=ノ,P― a.e。 ,which complete the prooお
of Theoreln l.21 and Theoreln l.23.                                            □

PηげげT72Cθttm l.18.Let

端 :=1群
動 1銑 |・

Then by L9 maximum inequality(see Theorem O.38),we obtain

EIPl聞 判 く
(芦 )9ゴ

動
ド 冽 判く

(芦 )9ゴ
助

Ⅳ 円 <鳴

where the secOnd inequality follows from(1.11)・ Note that S揚 (ω)increasingly converges
tO ⅣI∫ (ω).COnsequcntly

ゴDⅣ川判=爵吼
ゴD聞 判く(芦 )9ゴ

動Ⅳ昨   □



I.4. Convergence results

Theorem 1.24. Let f e H' (0, {)-}) wi,th the Fourier series f (r) - Iil-r a^a(m).
Then the parti,al sums {Sy,a(/)(r)} conuerge P-a.e. and conuerge rn Lt (CI,P) to f as

M-+n.

Proof. Similarly as in the proof of Theorem 1.21 and Theorem 1.23, we have

Bre)1swlJ ( B(prll/ll < _.

Moreover, taking the sequence {Yr} of the form (1.10) converging to / in rt(Q,P), then
the sequence {E(P)(rrlfd} also converges in tt(CI,P) to p(P)(/lfir). Consequently,

Ee)gfM): snr'

This implies that the sequence {S.'rz} is uniformly integrable. Therefore, by Doob's mar-
tingale convergence theorem (see Theorem 0.40(ii)), {,Sy} converges to a limit ,9"o almost
everywhere and converges in Lr. h then follows that the Fourier series of ,9"o coincides
with that of /, and hence S- : f ,P-a.e.
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Chapter 2

Value Distributions of General
E)irichlet Series

2.I Introduction

A general Dirichlet series is a series of the form

fo^"-^^", s:o*i,teC, (2.1)
m:l

where a- e C, and {)-} is a Dirichlet sequence,

0{Ar()z("'; .\--+oo.

Suppose that the series (2.1) converges absolutely for o ) oo and has the sum /(s). Then
/(s) is an analytic function in the half-plane D:: {s € C: o;, oo}.

Limit theorems for general Dirichlet series on the complex plane, in the space of analytic
functions as well as in the space of meromorphic functions have been studied relatively
completely through papers [18, 19, 37,32,33, 34, 35]. Let us mention here the most recent
results. For ? > 0, denote by ,, the uniform probability measure on [0, T). Let IJ(D) be
the space of analytic functions on D equipped with the topology of uniform convergence
on compacta. Then the limit theorem for the absolutely convergent general Dirichlet series
in the space of analytic functions was proved in [31].

Theorem 2.1. There erists a probabi.li,ty rneasure P on (H(D),8(H(D))) such that the
sequence of probability measures

u7(r: f (t+ir) e A), Ae B(H(D)),

. conuerges weakly to P as 7 -+ oo.

Suppose that /(s) is meromorphically continuable to a wider half-plane Ds ;: {s €
C: o ) o0j,o0 ( o*. Moreover) we require that all poles of /(s) in Dg are included in a
compact set and that the following two conditions are satisfied.

(i) /(") is of finite order in any half-plane o )- o1(o1 ) o0), that is, there exist constants
rz ) 0 and to ) 0 such that the estimate

holds uniformry for o , or'.(o 

+ it) : o(lll")' ltl ) to' (2'2)
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(ii) For o ) os such that {o -li,t: I e R.} does not contain any pole of /(s),
T

ノ(σ 十Jι )2ごt=ο(T), T→ ∞・

Let C。。be the Riemann sphere

21sl― s21

C U {oo}, and d be the sphere metric on C*

(2.3)

deined

け

This metric is compatible with the topology of C-. Let M (D6) denote the space of mero-
morphic functions g: Do + (C-,d) equipped with the topology of uniform convergence
on compacta. Then the limit theorem in the space of meromorphic functions was obtained
in [32].

Theorem 2.2. Suppose that condtti,ons (2.2) and (2.3) are satisfied. Then there erists a

probabi,li,ty measure P on (M(Do),8(M(Ds))) such that the sequence of probabi,li,ty mea-
SUTCS

u7(r: f(s+ir) e A), AeB(M(Ds)),

conuerges weakly to P as T -+ x:.

The limit theorem on the complex plane was obtained in [33].

Theorem 2.3. Suppose that condi,ti,ons (2.2) and (2.3) are sati,sfied. Then for each o )
os, there erists a probabi,li.ty measure Po on (C,6(A)) such that the sequence of probabili,tg
rneasures

u7(r: f (o+ir) e A), Ae B(C),

conuerges weakly to Po as 7 -+ oo. In other words, for each o ) os, the li,mi,t di,stri,buti,on

of f (o't i,t) eri.sts.

To identify the limit probability measures in the above three theorems, some additional
conditions are necessary. Suppose that the sequence of exponents {)-} is Q-linearly
independent. Let Q: flff:, 1-be the infinite-dimensional torus as defined in Section 1.3

and ms be the normalized Haar measure on f,). Assume further that, for o ) os,

α(Sl,S2)=
ν
//1+sl12ν//1+s22'

Then it was proved in[34]

に 銅 =濤 蔦 嗣 =頃甲
…

Q

Σ  lα
π 12θ

-2入れσ
(10g m)2<∞ .

m=1

that for σ>σO,the series

OO

∫し,0=Σ 
αmω (m)θ λησ

m=1

(2.4)

converges almost everywhere, and hence is a complex-valued random variable on the prob-
ability space (fl,B(O),mg). Moreover, the limit probability meastre Po in Theorem 2.3

coincides with the distribution of the random variable f (o,r). In addition, under condi-
tions (2.2)-(2.4), it was proved in 119] that /(s,0.,) defined by

ノい,0=Σ αれω(m)C λms
m=1



General theory

is an ff(Ds)-valued random element and the limit probability measure in Theorem 2.2

coincides with the distribution of f (s,u).
This chapter is devoted to identify the limit probability measures without assumption

of linear independence of {)-}. Under conditions (2.2) and (2.3), we will show that for
fixed o t o11, f (o *zf) is a B2-almost periodic function with the Fourier series

f (o +ir) - i a-e-^^or--i\-t.
m:)-

Therefore, the limit distribution of f (o *it) exists and coincides with the distribution of
an L2(Q,P) function 

m

f (".r):: a^e ^^ow(m).

Here (Q,6(CI),P) is the probability space developed in Section 1.3. Moreover, as we

proved in Chapter 1, the series f (o,r) converges P-almost everywhere without any further
assumption. Consequently,

f (".r): i a*w(m)e-^^'
m:l

is a well-defined .F1(Ds)-valued random element on the probability space (Q,6(Cl), P), and
its distribution coincides with the limit probability measure in Theorem 2.2.

2.2 General theory

The main aim of this section is to approximate the function /(") bV a sequence of absolutely
convergent Dirichlet series. If the function /(s) is analytic in Ds, we can find this kind
of result in 135, 18]. We begin with a result on the mean value of absolutely convergent
Dirichlet series.

Theorem 2.  (cf. [45, S9.5J). For any oy ] oo, uni,formly tn o 2 or, we haue

lfToo
lil # | _ltt" + it)fdt: t la^l2p-2^^o.t --+x) Zl J -T m:I

The following formula is known as Perron's formula . We will use the Dirichlet series

defined in that formula to approximate the function /(s).

Lemma 2.5 (ct. 145, $9.43]). For 6 > 0, ) ) 0, and c ) 0, c ) oa - o, u:e haue

f o-"-^- s"-k^nd)^ :, 1,i 
['*'*f (+) f@ * w)5-*dw.L*rtl" " 2ri)J"_;,o \^/"

n-f

where I denotes the Gamrna functi,on.

Let

(2.5)

- /^\ S --.\-s--(e^-6)^ ,\ -g.l.a(s) t: L.a-e-o^-p " '' . (  > 0,d > 0).
m:I

It is clear that the Dirichlet series gt,5(s) is absolutely convergent for any s € C. The
sequence {gr,a(")}o approximates the function /(s) in the following sense.
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Corollary 2.6. Let K be a compact subset r,n D. Then for fired l > 0,

Iim lim sup + /t ,,ro l/(s + it) - ss,5(s + it)ldt : 0.
5-+O 7-*- I Js sek

Proof . Let L be a simple closed contour lying in D and enclosing the set K and let d6
denote the distance of L from the set K. It follows from Cauchy's integral formula that

sup l/(s + it) -e.\,6(s+ir)l < :- f lf(z + it\ - ss,5(z + i,t)lld,zl,
s€K 

| '"./ v^.o\" | (w,/l \ 
2t61a JTtr 

\' ' uu)

then by the Cauchy-Schwarz inequality,

/ \2 tLt r
(sup l/(s + it) -e),6(s * Ol) . e#ip J 

"lttz 
-t it) - s^,6(2 + iqf@zl.

Here lll denotes the length of the contour.L. Thus when 7 ) max"q;lImzl,

/7 fr .-\'
(; /. su; l/(s + tt) - e).6(s + it)ldt 

)
7 frl .. .\2

= ; J, [sup 
l/ts + it) - e),d(s + rt)l) dt

.+ l, (#* l,ve+ tr) - esa(z+ 
'1l2laz1) 

at

: #tr I,G l,' v'z-t it) - exa(z 1-it)l'at) la'l

" #;p l"G l_i,,r,". z * it)- e.,.a(Re z-r it)l'ar) ta.l'/
. 4lLl2 1 f" ,,

" d#ip:yy, * J_,,1f 
," + it) - sxa@ + it)f il-

where o1 : Irlirtz€ lP;e z > oo. Now, uniformly in o ) oy,

" 1 f21- oo

1*. - J-rrltl" + it) - s^,6(o + iill2: t la,nl2s-2\^o (1 - e-("^-d)r;2,
m:7

by applying Theorem 2.4 to the function /(s) - g.r,a("). Therefore,

/t rr \2
Iimsup ( ; / supl/(s+ 1f) -g.r.a(s+tf)ldt )T +a \r JO seK /

4tLt2 3
< #, I lo*l'"-zx^ot (l - "-(e^^ 

6)^ 
Sz .

m:I

The above series is dominated bv lil:, laTnl2s-2\^or < oo for any d > 0, and each term
converges to 0 as d -+ 0. Thus by the dominated convergence theorem, we arrive at

胆鶏
l撃

=潔

F:ズ

T翌
騰 +0州 S+0隣 =0

□The proof is complete.
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If there is no pole in De or /(s) is analytic in D6, we have the following version of
Theorem 2.4.

Theorem 2.7 (ct. 145, S9.51]). Let f (s) denote the analyti,c conti.nuat'ion of the functi,on

f (t),o ) oo to the half-plane o ) a. Assume that f (s) 'is regular and of fini,te order for
o ) o, and that

p.6)

(2.7)

メθr σ>α ,αηα ttηグθrmινづη αην strゎ ct<σ lく σくσ2・

Consequently if∫ (S)iS analytic in DO,the statement of Corollary 2.6 is still true for

any compact subsetス「 of」90. We are no、 v in a position to extend Corollary 2.6 to our

considering case in which all poles ofノ (s)in DO are included in a compact set.It then
f01lo、vs that the number of poles are flnite. The poles and their orders are denoted by

Sl,… ・,Sr and ηl,.… ,ηr,reSpectively.

Proposition 2.8.Zθ ι](bθ a cθ 衛フαcι Sttbsct tη DO.Tんεηル r fχθα λ>σα― σO+1,

鳳
1響 lイ 避

K針 0-嫌 刊 隣 =Q

υんctt ιO ts α pο sづιづυθ ttα J ηanιcr sαιJQゎづηθ

腱 勢
{Im S}十 ιO>max{Im sl,・ ・・,Im Sr).

Pη9二 From COrollary 2.6,we can assume without loss of generality that the compact

subset κ is included in the strip σO<σ <σα―卜1. Let Z be a silnple closed contour lying

in the strip σO<σ <σα―卜1,enclosing the set K and

聖 ]{Im S}十
ιO>max{Im sl,…・,Im Sr)・

Then Z lies in the strip σlく σくσ2,Where

σl=mttRes>σ O, σ2=理TRes<σα+1.

Choose α∈ (σo,σ l)Such that all poles sl,… ・,Sr lie in the haliplane σ>α .

For s=σ +tt with σ∈[σ l,σ 21 and S¢ {Sl,… 。,ST},by mOVing cin the formula(2.5)to
C=α―σ,we pass a pole at ttl=0,with residue λ∫(s),p01eS at trl=sl― s,… 。,ttl=Sγ ―S.

Since λ>σ ―α,no other pole is passed. Therefore,by the residue theorern,v″e obtain

ぬ。0-胴 =万鳥頂/11[II・やズS+0お
ωαυ

十
iゞLRes(「 (11)ノ(S+復ノ)δ

~tt,SJ―
―S)

′=1

=:」 (S)十 J(S).                (2.8)

Observe that

Resl「lや炸 十ぽ 勁→ =菖 Ψ 鰊 姜声 う
°

L=

£げい十の「洗=OC),T→∞・

鳳寡£げいのレ=2♭硼も場Ъ

″
‘

０
０

rんθη
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where (k) denotes the k-th derivative with respect to ur and

a(k. s,) = ,--] * lim l(t,, * w)(w -(""r - s))n,)'n'-o "(,,ll .

lrti- k - l)! u'Ji,^-'L\" I

Thus, for fixed 6 ) 0,

/n \
J(s): o(r,lrrtlls; -s,| 1, n:max{nr,"',n,}-r' (2'9)

\ffi' A t/

Now, an argument similar to the one used in the proof of Corollary 2.6 shows that

e f sup l/(s + it) -g.r,a(s + tt)lat\
\7 Jt. sek'- /

: o ( ?'p # [" ,rro + it) - s^.6@+ irtl'at) .

\ae[a1 .a2] ar Jtt /

where f1 : min"Ez,{Ims}*to ) max{Imsl,...,Imsr}. For o € [or,o2] and t)h,the
point s : o -l it does not belong to the set {s1,...,s"}, thus the relation (2.8) implies

lsx.d@+ ?r) - f(o +ir)12 < z(VO + iill2 +Q@+ir)|'?).

Note that in the proof of Theorem 2.7 (see [45, S9.51]), we have the following

1fT
; J-rll(o + iDl2dt : 0(62"-2")

uniformly with respect to 7 and o e lor, o2]. lt follows that

Iim limsup sup + f' [@ + iDl2dt
d-+0 7e6s- oeloi.ozl 41 J t r

( lim limsup sup + f' [@ + iDl2dt: lir4 o(52o'_2oS : g.
d-+0 7-_y- oeloi,o2) 41 J 2,f ' d-+0

On the other hand, by Stirling's formula, there is a constant A > 0 such that uniformly
in the strip o/ ( o { d", we have

lf (o + it)l: O(e-Attt1, f -+ oo,

where o' < minT{Re((s, - "") l\} and o" ) maxi{Re((ri - "t) l\} being chosen before-
hand. This, together with (2.9), implies that

1r2T/tr2T\
Iimsup sup +l lJ@+it)l2dt:o(limsup--1 / "-Atdt) 

:0.
T+C oqlo1.ozl 41 1,, ' \ r-o' 4T Jr, /

The proof is complete by combining the above two estimates. n

As a consequence of Proposition 2.8, we have the following.

Proposition 2.9. Let K be a compact subset i,n Ds. Then for fired ), ) oo - o6 * 1

lim Iim sup : /" .,ro d(/(s + i.t), ss,5(s + it))dt : 0.
d+0 746e- I ../6 se6



2.3. Limit theorems for general Dirichlet series on the complex plane

2.3 Limit theorems for general Dirichlet series on the com-
plex plane

Let (O, B(A), P) be the probability space defined in Section 1.3. We consider Bfo, to > 0
being fixed, the space of one-sided Besicovitch almost periodic functions, that is, functions
/: [0,oo) -+ Cu {oo} which belong to the linear closure of {ei^t:,\ e R} with respect to
the one-sided Besicovitch q-norm (1 ( q ( -),

/t 7T \l/s
ll/lln,,, :: limsup (; l" lf (t)lqdt)

Then the following results for one-side Besicovitch almost periodic functions are similar
to those of Besicovitch almost periodic functions. They are taken from Theorem 1.8,
Lemma 1.9, Theorem 2.10 and Theorem 1.23. Note that in this chapter z7 denotes the
uniform probability measure on [0,7] while in the previous chapter, z7 denotes the uniform
probability measure on [-?, ?].

Theorem 2.10. (i) The sequence of probability measures {Q7} conuerges weakly to P
as T -+ @, where

Qr(A) :: ur(r : (e-i'\^1 ex € 1) , A € B(CI).

(ii) {c"'(m)}meN ?s an orthonormal system in L2(Q,P).

(iii) Let /: [0, oo) -+ C be a one-si,ded B?^-o.p. functzon wi,th Fou,ries series of the form

oo

f(t)-la^e-i),,,t.
M:I

Th,en, 
oo

f(u):\a*a(m)
m:l

conuerges forP-a.e. aJ € CI and conuerges in L2(Q,P). Moreouer, the sequence of
probabi,lity Tneasures

u7(r:f(r)eA), AeB(C),

conuerges weakly to the dtstributi,on of f (u).

Lemma 2.LL. For o ) os, we haue f (o + it) € B?^ wi.th the Fourier series

f (o +ir) - i eme-^^os-i\*t,
tn:l

whereto2 0 'is a number such that {o -ti,t:t) ts} does not conta,in ang pole of f (s). In
part'icular.

鳳lイげけの「洗=2降州もれσ<∞ .

Pηρ′Fix λ>σα―σ。+1.For each η∈N,we deine

gη O):=gぇ e λ.15・ l=Σ E 
αmeXp{一 び

λm λ→ λ

}c 
λnS=Σ

 
αmυ (鶴,→ C入 れ S.

272=l                      m=1

(2.10)
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The Dirichlet series gn is absolutely convergent for s∈ C.Thus,it is clear that gη (σ +jι )∈

Bλ br any to≫ 0,whCh has the bnowing FOuHer seHes

θηし+0～ Σαれυい,→ C~λ mσ cttλ
帯

.

222=1

For σ>σO,let tO>O be a nulnber such that{σ  tt tt:ι >to}∩ {Sl,… .,Sr}=0・ Then in

宙ew of the proof of Proposition 2.8 with κ={σ },We have

鳳
1摯

LttFlイ Ⅸσ刊 一頸σ切 陶 =Q

Note that for each m∈ N,υい,η)→ O aS η→Oo.Thusノ (σ tt jι)∈ Bλ and

OO

ノ(σ +tt)～ Σ〕αmc―
λm σθ一似mι

772=l

is the Fourier series ofノ (σ tt jι
)・
                                 □

As a consequence of Theorell■ 2.10 and LelnIIla 2.11,、 ve have the follo、 ving。

Theorem 2.12. Fο r σ >σO,

ノし,0=Σ 
αm「λησωい)

π =1

CθηυCηθSルrP―α・C.ω ∈ Ω αηd θθηυθη cs jη L2(Ω ,P)・ ν θttθυcら ιんθ Sθgacη ccげ Pη bα―

bヴιじιν mθαsarcs

r/T(γ :∫ (σ 十を7)∈ ■),ス ∈β(C)

CθηυCηCS υθαんιν ιο ιんθα,strづ bttιじθηげ∫(σ ,ω)αS T→ ∞・

2.4  Lillllit theorems for general E)irichlet series in functional

spaces

2.4.l  Absolutely convergent case

Recall that D=(s∈ C:σ >σα}and〃 (D)denOtes the space of analytic functions on D
equipped、 vith the topology of unifornl convergence on compacta. For s∈ I),ω ∈Ω,let

f (t,r),: D a*e-^^'w(m).

Then /(s, c,.') is an fl(D)-valued random element on the probability space (Q, B(O), P)' In
addition, we will prove that f (t,r) is continuous as a mapping from f) fo H.(D).Indeed,
let {u@)7 be a sequence converging to r,,r in 0. We need to prove that {/(s, ,("1)} converges

to /(s, w) in H(D). Given a compact subset K c D,let o1 : min"671Res ) ao. We have

:』
ノ。

'ω

°)~炸,0くΣ 
αmlθ λmゆ0い)ωい)・

1



2.4. Limit theorems for GDS in functional spaces

Since !ff: llarnle-^-"t ( oo, it follows from the dominated convergence theorem that

;3; l/(s, a\)) - /(s,r..')l -+ o as n -+ @.

Thus, the mapping 
"f(s,r,.,) is continuous. Consequently, the sequence of probability mea-

sures {Q7l(",r)-t}r on (II(D), B(H(D))) converges weakly to P/(s,r,,')-1 as ? -+ oo.

Obviously, we have

u7(r: /(r+ ir) e A): Qr(r: f (s,u) e A), Ae B(H@)).

Therefore, we have just proved the following theorem.

Theorem 2.I3. The sequence of probabi,lity measures

u7(r: /(r+ ir) e A), AeB(H(D)),

conuer-ges weakly toPy asT -+ x, wherePl denotes the di,stri,buti,on of the H(D)-ualued
random element f (",r).

2.4.2 General case

Recall that Ds: {s € C: o ) os}. There is a sequence {Kn} of compact subsets of Ds
such that (i) to : ULr I("; (ii) Kn C Kn+Lj (iii) if 1{ is a compact set and K C Do,
then 1( C Knfor some n. Then for f ,g e H(Ds), Iet

ガ,の =Ё 2η耳ギ黎響写饗鼎
名

~ 1+Sups∈
蛇 |ノ (s)一 g(S)|・

The topological space∬ (DO)beCOmes a complete separable metric space.Similarly,for

ノ,ク ∈χ(Do),let

ズノ,の :=Σ rnI SupS晩 <ノo,gO)
+sups∈κπ α(∫ (S),9(S))・

Then if(DO)alSO becomes a separable metric space.

Lenll■a2.14.

ノ(S,ω)=Σ  
αmC λがω(m), S∈ D0

m=1

づs α Tcιι―αげηCα ∬(Do)―υαιacα ttηαθm cιθttθηt.Bcsjα cs,ヵ r αην f"θα S∈ DO,

∫←,0=Σ 
αmc λmSωい)

π =1

6θηυCηCSルrP―α.C.ω ∈Ω αηごθθηυθηcs tη Z2(Ω ,P).

P知のl By TheOrem 2.12,for any σl>σO,the series

∫けbO=Σ 
αmc λησlωい)

772=1

converges for P― a.e. ω ∈ Ω. Therefore by a fundamental property of general Dirichlet

series,for P― a.e.ω ∈Ω,the series

∫C,0=Σ 
αηC λmSωい)

m=1

41
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converges uniformly on each compact subset of the half-plane {s e C : o ) oy}. Let
A2 denote the set of a,r € f) for which the series f (t,r) converges uniformly on compact
subsets of the half-plane {s e C ; o ) os+ 7ln}. Obviously, P(A") : 1 for all n € N.
Now if we take 

m
A: ) A,.

n:7

then P(,4) : 1, and, for c.,,r €,4, the series /(s,r,,,) converges uniformly on compact subsets
of. Ds. It follows that /(s, c..,) is an fI(D6)-valued random element defined on the probability
space (Q,6(0), P). tr

For each n € N, we define a random element gr(s,a): Q -+ fI(Ds) as

9n(s, w),: 
: 

a^u(m, n)e-^^" u(m).

Lemma 2.15.

J$nrer lnb,(.,r),f (.,r))'] :0.

ProoJ'. Let 1( be a compact subset in D6. We will show that

,,$e(el llh'(w)12): g' (2'11)

where

h"(r),::;rp lg"(",r) - /(',r)1.

To prove (2.Il),let -L be a simple closed contour lying in D6 and enclosing the set 1{ and
Iet d denote the distance of .L from the set K. For c,.r € f) for which f (t,r) e H(Do),
Cauchy's integral formula implies that

h.(r):::p lgn(r,r)- f(r,rll < 
roa! l"tn,(",r)- f(2,w)lld,zl,

then by the Cauchy-Schwarz inequality, we obtain

^ t/.1 f
lh,(r)1'? E --r:! I lg,(z.u) - f(z.r)l'larl.

\.z7To)" J L

Let o1 :rnirr"67,Rez ) o6. For z: o *i,t(o 2 ot), from Lemma2.l4, we have

ル,0=Σ αれC ληzωぃ),lin z2(Ω ,Pl),
η =1

、vhich implies

EIPllgηし,0-ル ,01句 =Σ αη′11-υ (m,→
2c2λ mσ

れ =1

く Σ  αm21_υぃ ,2)12c2λ
mσlく ∞ .

m=1
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Therefore,

E(P)flh,(o)l2l <tr"r f-lrl f ,, \ I

L\## J rln"(z' 
u) - f (z' w)f\'l)

:,=1tr1.- [ ntPtlg,(r,w) - f(z,u)l2llazl
l2t6)2 J 2- 

LrY'r\-'- / l

lrl2 oo

'L' I lo-l'll - u(m,n)l2e 2^^ot.< 
en6p 

^,_,
Our desired result (2.1I) follows from the dominated convergence theorem. The above
result holds for any compact subset K in Ds. Therefore, taking the definition of the
metric p into account, we obtain

,$ o(el IPG,( , a) , f (' ,') )'] : o'

The proof is complete.

Corollary 2.16. (i) For any 6 ) 0,

/\iim P lob,(. u). f (..,t)) >-, ) : o.

(IU

Pn. -!+Py as n -+ @)

r

wherePn. andPy denote the di,stri,buti,ons of the H(Ds)-ualued or M(Ds)-ualued random
elements g, and f , respecti,uely.

Proof. (i) follows from Lemma 2.75 by Chebyshev's inequality. (ii) follows from (i)
Theorem 0.6.

For every compact subset K of D0, Proposition 2.9 claims that

J51 t,L* + I,' ::p 
d(e,(s + i,t), f (s + it))d,t : 0.

Thus, by Chebyshev's inequality, for any e ) 0,

-$li-supur(, I p(s,(. * i,r), f(. + tr))> r) : o.
n--+oo ?_+oo \

(2.r3)

Since the Dirichlet series grr(s) is absolutely convergent in D6, it follows from Theorem2.73
that

1/T(γ :gη (S+づ7)∈ ・)二》P,.as T→ ∞
,

(2.14)

where the weak convergence still holds in the space of meromorphic functions M(D6).
Therefore, (2.I2) (2.14) imply the limit theorem for /(s) in the space of meromorphic
functions M (Do).

Theorem 2.L7. Suppose that condi,ti,ons (2.2) and (2.3) are satisfied. Then

f(r,r): i a^e-^^"w(m), s € D6
rn:l

i,s a well-defined H(D6)-ualued random element. Moreouer, the sequence of probabi,li,ty
rneasuTes

u7(r: /("+ ir) e A), Ae B(M(Ds)),

conuerges weakly toPy asT -+ n, wherePy denotes the di,stri,butzon of f (t,r).

(2.12)

ｂｙ

□
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Remark 2.18. If thestripDl: {s € C:o1 <o <oz}(oo < 01 < oz ( -) containsno
pole of /(s), then in view of the proof of Theorem 2.17 we can assert the following.

"The sequence of probab'ili:ty measures

u7(r: /(s+ ir) e A), Ae B(H(D1)),

conaerges weakly toP y as T -+ n, whereP y denotes the di,stributi,on of the H(D1)-ualued
random element f (t,r)."
Remark 2.19. Theorem 2.72 and Theorem 2.I7 are extensions of the main results in 134]

and [19], respectively. Comparing with proofs in [34, 19], the basic idea does not change
but a number of arguments are reduced. For instance, we use .L2-convergence instead of
using the tightness of measures and ergodic theory.
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Chapter 3

Limit-periodic Arithmetical
Functions and The Ring of Finite
Integral Adeles

3.1 Introduction

Chapter 3 and Chapter 4 mainly concern with arithmetical f'unctions, real or complex
valued functions defined on the set of all natural numbers N. For simplicity, we sometimes
omit the term "arithmetical".

An arithmetical function f : N -+ C is called limit-periodic if it is a limit of periodic
arithmetical functions under some Besicovitch q-(semi)norm (1 ( g < oo),

‖ノ|19

Limit-periodic arithmetical functions, in some sense, look like random variables because
they possess mean values and limit distributions. Here the limit distribution of an arith-
metical function .f is considered as follows; if the limit

rt
^lit * I""o (/l sRe/(n) + JttIml(n)). (s.r) e R2.
,u-- ,n n:l

exists and it coincides with the characteristic function of some orobabilitv distribution on
R' - C, then we call it the limit distribution of /.

This chapter deals with the problem of finding an appropriate probability space where
Iimit-periodic functions can be considered as random variables. The ring of finite integral
adeles 2, bgether with the Borel field B(2) and the normalized Haar measure ), is shown
to be a good candidate. Indeed, let Dq denote the space of q-limit-periodic functions.
Then every function in Oq can be extended to a random variable in Lq(Z,)). The limit
distribution of the original function coincides with the distribution of the extended ran-
dom variable. In addition, the quotient space Dq of.^Dq with respect to^the null-space
N(O01 ,: {f €Dq: ll/lln:0} is isomorphic to Ls(Z,^), which means (Z,B(Z),)) is a
good candidate. In fact, the ring of finite integral adeles 2, which was initiated by [39]
and has been studied by several papers and books [10,28, 36,37,44], has become an
useful tool for studying probabilistic properties of limit-periodic functions. It is called the
limit-periodic compactifrcation of Z. Besides, to investigate the probabilistic properties

ヽ
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η∫
Ⅳ
▼ん
祠

１

一Ⅳ

／

′

‐

ヽ

ヽ・中』
〓



48 Chapter 3. Limit-periodic Arithmetical Functions

of arithmetical functions, there are other compactifications, for example, the almost even
compactification used to investigate almost even functions 127]; the Bohr-compactification
used to investigate almost periodic functions [37] and the Stone-eech compactification
used to investigate a wilder class of arithmetical functions which contains the Mobius
function 125].

This chapter also concerns with the convergence of Fourier expansions of limit-periodic
functions. First of all, we define the scalar product (f ,S) of functions ,f,grN -+ C to be
the limit 

r -f,'

\f .g) ,:,Jg: i f rt,)e(,)
n:I

provided that it exists. Then {eo}oeqlzbecomes an orthonormal system, where eo stands
for the function edi n t+ exp(2trfian). Note that the space of limit periodic functions is
spanned by {eo}oee1z. Moreover, for each f e Dq, the Fourier coefficients {(f ,e.)}oeqlz
exist and the formal series

, - 
^H,urf.eo)eo

is called the Fourier series of /. Next, for each n € N, we consider a finite Fourier expansion
ofafunctionfeDqas

島 (ノ ):= (ノ ,Cα /r)Cα /r,

,.,.ili;,,,:,

where (a, r) denotes the greatest common divisor gcd(a, r) of a
following result about the convergence of Fourier expansions of

and r. Then, we have the
limit-periodic functions

Ds.‖税(∫ )一 ∫|19→ O as η→Oin Z, ノ∈

From this a similar result for almost-even arithmetical functions easily follows. These
results give an apprbximation for limit-periodic functions (resp. almost-even functions) by
periodic functions (resp. even functions), and they are the generalizations of 143, Theorem
VI.5.11.

The convergence of Fourier expansions in the special case q : 2 is easily seen since

{e.-}d€elz is an orthonormal basis of the Hitbert space D2. To extend this result to
general q, the idea here is to apply the interpolation of norms and of linear operators
tool, a major tool in harmonic analysis, which was successfully used by Bochner to prove
the convergence of Fourier series on Ln(ll,2rl),I < q < oo (see [26, Chapter IV]). The
isomorphism between Dq and. 1u12,\) makes it easy to apply this tool as we will see in
Section 3.3.

This chapter is organized as follows. In Section3.2, the probability space (V,,BjV,),^)
is introduced. Then the natural isometric isomorphism 7n between Dq and Lu(Z,),) is

defined. Moreover, the inverse of Tn can be obtained by Lebesgue's density theorem
(Theorem 3.21).. {he beginning of Section 3.3 deals with the convergence of Fourier
expansions in Lt(2,)). By using the interpolation of norms and of linear operators tool
and the dual property, we obtain the convergence of Fourier expansions in Lq(Z,,\) for
all 1 ( g < oo. At the end of this section, we deduce the above convergence in Dq
(Theorem 3.27) by the isometric property of To and its consequence on the convergence of
Ramanujan expansions of almost-even functions. The natural extensions of additive and
multiplicative functions will be considered in Section 3.4.



3.2. The ring of finite integral adeles

3.2  The ring of flnite integral adeles: basic properties and

connection to lilnit…periodic arithmetical functions

3。 2。 l  The ring of inite integral adeles and sOme basic properties

This section deals、 Ⅳith the construction and properties of the ring of lnite integral adeles.

Results are taken iom p9,4到 .For a prime p,the p― adic metricら is deined by

αp(χ ,ν):=inf{p~J:pJI("― ン)},  ・ ,ν ∈Z,

where p`|(χ ―ν)means that(χ ―ν)iS diViSible byノ .The completion of Z by αP is denoted
by Zp. By extending the algebraic operations`1'and`× ' in Z continuously to those in

ZP,the compact metric space(ZP,ら )becOmes a ring,called the ring of padic integers.
In particular,(ZP,ら )iS a compact abelian group with respect to`+'.According to the
general theory of connpact groups, there is a unique normalized Haar measure ttp V`ith

respect to`+'on the lneasurable space(ZP,β (Zρ ))・

Deinition 3。 1。  (i)Let{P,}窪 1,2=Pl<p2<・ …,be the sequence of all primes.

(ii)Put

2:=Πら,,.λ :=Π λ2.
t=l          j=1

For"=(″o),ν =(ν,)∈ Z,We deine

ρし,0‐ SL多らtけらの,χ tt ν‐し,十 協),χν=Oj銑 )・

t=1

By these deinitions,Z becomes a ring,called ιんcれηθげ fηづιθれι

"鶴
ι ααcιes.(Z,′ )iS

again a compact metric space,and both`十 'and`× 'are continuous.In particular,(Z,ρ )

is a compact abelian group、 vith respect to`1'and itS normalized Haar lneasure on the

Borel ield β(Z)is nOthing but入 .

Deflnition 3.2。  (i)ヽVe identitt Z With the diagonal set{(2,η ,。・・)∈ Z× Z×・…}⊂ Z.

0糧
鯰 に うT糖 (脱夕革ぢ,格∬i∬ 器 iイir(二靴 配 ご)メょ

fOr∬ ∈Z and N∋ 鶴≫2,there exists a unique ι∈(0,1,…・,鶴 -1}SuCh that
χ―ι∈ ?ηZ.This J is denOted by″ mod m.For m=1,we always set χ mod m:=0.
Obviousl)L if″ ∈Z,this deinition coincides、 vith the usual lnodulo operation.

(iii)For χ,ν ∈ Z,、ve deine the greatest common di宙 sor of χ and ν by

gCd(χ ,ν):=Sup{m∈ N:(″ mOd m)=(ν mod m)=o}・

Obviousl)Ъ  for χ,ν ∈Z,this deinition coincides、vith the usual gcd.

Let us give some fundamental properties of Z and λ.

Lemma3.3(ChineSe remainder theorem,cf.21,Theorem 1211)。 ■SSamc ml,… .,m`∈ N
ιθ bc cθ―p7・2mc.Tんθη,ルr αην αl,・ ・・,αι∈ Z,ιんcた c"づsts αη η ∈ Z sacん ιんαι η =
c(mOd ml),を =1,… 。,ι .助 js η tsしηり9zc T ιθ mod Π:=lm・ .

Lemma 3.4.N′ :={(η ,2,…・)∈ Z:η ∈N}づs αθηSCれ Z・
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P"のl The chinese remainder theorem implies that fOr any ι,m∈ N and any ηl,… .,ηι∈

N,there exists an η∈N such that n=η づmod pr,づ =1,… .,ι .This means that N′ is

dense in Z× Z× …・ 、vith respect to the metric ρ.                                 □

As we identitt Z With Z′ ={(η ,2,… ・)∈ Z:η ∈Z}(Deinition 3.2(1)と by a bij"tion

Z∋ η→ (2,η ,・ …)∈ Z′ ,Lemma 3.4 implies that Z is a dense subring of Z.Thus Z is a
compactincation of Z. It is called the lilnit― periodic compactiication of Z or N.

Lemma 3.5。 (i)Zθι p bθ α Prtttθ αηdブ ∈N.T71enノ Zρ じS CJθ scα αηα ttθ η.

(ii)五θι P,9 ιθごJsれηcι Pれmcs αηαノcN・ Tんθη υθんαυθノ Z9=Z9.

Pηイ (i)It iS easy to see thatノ Zp={"∈ Zp:ら (″,0)く p′ },and hence it is closed.

Sinceら (χ ,0)∈ {pα :α =0,1,...,∞ }for att χ∈ら,記 mtt Wnteノ ZP={χ ∈ZP:

ら(・ ,0)<p~′
+1},WhiCh implies it is open.

(ii)ノ Z9⊂ Z9is obvious,so let us prove p7Z9⊃ Z9.To this end,it is enough to show

that there is an χ∈ Z9such thatノ
"=1.For any鶴

∈ N,there exists an"π  c N such
that rmノ =l mOd 9772.Then for any η>777,w℃ haて (″η―″πι)ノ =O mod9れ .Since

gCd(ノ ,9m)=1,We see χπ―χ772=O mOd 9772,which means that{χ 222}需=l iS a cauchy
sequence in Z9.Then putting":=limm→∞

"れ
,We haveノ″=l in z9.        □

Lemma 3.6.Zcι 鶴∈N αηαι∈{0,1,一・,m-1}.

(i)T72C SCι (鶴 Z ttι )'S CιοSCα αηα θPθη.

O ρm:2→ p,4ぉωttη ttθい,W加“ρm。 ={:観麻∬=Q

(面)2=∪鷹51(m2+ι ),υんづcん じsα ごづ巧θれι Zηじθ寛.

P印げ (i)Let n=Π ppα
P(772)be the Lctorization of m into primes,where αp(m)=0

except for initely llnany prilnes p. Then,Lelnlna 3.5 imphes that

m2=Π鶴ろ=Π pα'い
)ら

,

p         p

and that each Pα p(m)ZP is closed and open. Therefore,γ ttZ is also closed and open in Z.

Finally,since the shift Z∋ χ吟 (χ tt ι)∈ Z iS a homeomorphism,mZ tt ι is also closed

and open.

(ii)Since(i)implies that ρ尻1({■ )=m2is closed and open,the statement is obvious.

(iii)From the denseness of Z in Z,and tom the COntinuity and closedness ofthe mapping
χ tt mχ 十 :,it fo1lows that ttZ tt ι=鶴 Z tt ιo Since Z=∪ 鷹51(mZ ttι ),thiS implies

2=∪ い2+ι ).

`=0

Next we check the dittointness of this union.Let鶴 ≫2 and ι,ι′∈(0,…・,m-1}be
distinct integers.By o,ス :=い2+ι )∩ 鰤2+J′)iS Open.Ifス ≠0,then Z∩ ス≠0,

because Z is dense in Z. But then,taking an η∈Z∩ ノ4,we see fronl the observation of
←)that  

朽ズη_ι
,の くp α2(m), ら(η

_〆 ,0)く p αPい),っ :p五me.

This implies that pα 2(m)|(ι _J′
)fOr each prime p,that is,7721(ι ―ι

′
),WhiCh is impossible.

Thusノ4 should be empty.                                                     □
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υ

Corollary 3.7. For ang I e Z, the rnapping

Z∋ ″吟
(l + r) mod rn

∈ 10,1)

ν(■)=

Then ν is clearly shitt inttriant,and hence ν=λ ,so that λ(ι
■)=λ (ι Z)λ (■ )・

By Lemma
3.6 and the shift invariance ofハ ,we see

J-1

1=λ )́=Σ×lι 12+の =lι l× lι lの ,

づ=0

from which,(3.1)immediately follows.                        □

Lemma 3.9。 (i)Zθι∫:Z→ C be a cθ ηι焼しθttsルη6ιじοη.動θη{ノ (2)}η∈zづS α ttη j―

ル鶴ιν Jづ鶴じ;―perづθαづc sc9包 θηθθ′ιんαιづs,

Vε >0,ヨ ιO, 7ぬ C IN SttCん ιんαι

l∫

(2)一 ∫

(η

lnodllprO)

(ii) Conuersely, i,f {f(")}".u i,s^a^uni,formly li,mi,t-p^eri,odi,c sequence, then there ts a

un'ique continuous functton f : Z -+C such that f (n): f (n) for eachn €2.

Proof. (i) Obvious by the definition of the metric of 2.
(ii) If / is a periodic sequence with period rn € N, it is of the form f (") : DL, f (1,) p,n(, -
i'),n € Z. Then f1r) ,: DLr f (l)p^(" - i,),r e 2, i, th. continuous function with the
property f lz : /. Note that a general / satisfying (3.2) is a uniformly convergent limit of
a sequence of periodic sequences, and hence it has again a continuous extension f Sin""
Z is densely embedded in 2, the uniqueness of / is obvious. n

For a periodic sequence {S(n)}"ez with period m and its unique continuous extension
j(r), it is easy to see that

η
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i,s continuous.

Lemma 3.8. For any I e Z\ {0} and" ang A e 812), we haue tA e B(2) and

1

)(1,4): ;^(A).
l,l

Proof. Since 2 is a complete separable metric
one-to-one and measurable, we have lA e B(2)
probability measure on Z defined by

λ
(ι
■

)

space and the map Z ∋ χ 卜〉ιχ ∈ Z is

(cf.[41,Theorem I.3.91).Let ν be a BOrel

■ ∈β(Z).

<ε ,  Vη ∈ Z。  (3.2)

(3.1)

In general, we

(3.3)
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Lemma 3.10。 J∫ :Z→ Cづ S Cθηι焼 鶴θas,ιんcη

かのXの =J吼井
π
苫

1人はれ∈Z

か 0×けれ。md→司くら

1井Σ九〇0-井Σ九0儘 mod→
|<ら

∀ⅣCN.

“

.4)

The conuergertce 'is uni,form in ns € Z.

Proof. Let f tZ -+ C be continuous and set /r,o(r) : f (no* r),ns e 2. By the uniforrn
continuity of f , a family {fn,);no €Z) satisfies (3.2). For simplicity, set ^.:lItftpTo.Then we see for any ns e Z,

By(3.3),

ｒ九
〔
Ｆ
ん
同

１
一
鶴

〓π
αλ

鶴
ｄＯｍχん

ノ
ル

AlsO,by a silnple calculatiOn

l,1ケ
|ノれ。(η l・Od 7η)=

η=0
井

([全
≒矛二」卜0+W

ｄ

い
Σ
同

鳥Σ原→―井(島
+l‐

lk~

十井
鰤
菫
°dれ
九0。 .

″=0

ハ
リ

消Σ
ｒ〓。

０

　

ヽ

ノ

九
　
　
胤1)mOd

ん。(r)

In the above and in what follows, the symbol ltl stands for the largest integer not exceeding
teIR.

From these, it follows that

lr lry:l I c

I lrf ,"(r mod m)Xdr) - 
" 

f ,f,o(n mod.)l < #-llfll-.ItL n:o | "

Therefore, choosing an "1y'6 € N so large that (ZlNs)mllfll- < e, we have that for any
l/ ) l/o and any n6 € N,

lr ., n6f.nr'-1 
|

I l.f t,lNa..t - * I /(n)l< 3e. il
IJZ rY n:o I

Remark 3.11. As a matter of fact, (3.4) is a consequence of the following general theorem.

Theorem 3.L2. Let G be a compact group, and let r e G. Then, if the sequence {r"}7r
i,s dense i,n C, i,t i,s uni.formly rl,i.stributed,; that,is, N-r Dlu:, 6rn cofi,uerles weakly to th,e

normali,zed Haar measure of G os ly' -+ n, where 6r- denotes the Dirac measure at rn.
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For details, see [30, Theorem IV.4.2]. In the present case, setting G ;: Z and r ::7,
we see the desired weak convergence

(3.つ

n:I

because N/, which is generated by r : 1, is dense in 2.

Theorem 3.L3. The shi,fts rr+ r*7 and,r+ r- I onthe compactmetr'ic groupZ or"
ergodi,c.

Proof. The denseness of Zinh (Lemma 3.4) implies the ergodic properties of these shifts
(see Theorem 0.16). I

3.2.2 Connection to limit-periodic arithmetical functions

Let D be the space of periodic arithmetical functions, that is,

O :: Linc l"o/r rr : 1,2,....1 ( a ( r.gcd(a,r) : 1]'

and let D" be the linear closure of O with respect to the uniform norm

ll/ll" ': sup l/(n)1, f , N -+ C.
n€N

Functions in D" are called uniformly limit-periodic functions or uniformly limit-periodic
sequences. Recall that the space of q-limit-periodic functions Oq is just the linear closure
of O with respect to the Besicovitch q-norm.

Denote bv C(2) the space of continuous function" onZ endowed with the supremum
norm

ll/ll ,: sup lfrr)1, f e c@).
'x? I'

Then the spaces D" and C(2) are isomorphic under the isomorphism Tu:Du -+ C(2),
which maps /^e D" 7o the unique continuous extension of / from N to Z. The preimage of
the function f e C(Z) under 71, is just the restriction of / to N (Lemma 3.9). Let f e D"
with / ,: T"(f) e C(Z). Then it follows from Lemma 3.10 that

井ゞむδれ→λ as Ar→ ∞,

鳳井二Kず =かが相a
and hence for any∫ ∈つし

,

‖∫19=‖ rし (∫)L9,

、vhere

nLぼ=an矧気→
功

,「∈ノにけ

(3.6)

The continuous linear operator Tu on Du can now be continuously extended to a

continuous linear operator Tn: Dq -+ Lq(2,)) since O'is dense in Dq. For instance, let

f e D'|. Then there exists a sequence of periodic functions {/a}76 converging to f , that
it, ll"fr - fll, -+ 0 as k -+ oo. In particular, {f*}n is a Cauchy sequence in Dq. By (3.6),

{f:"Uil}r, is also a Cauchy sequence in Lq(2,)), and hence the limit lim4** T"(fd exists
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in ι9(Z,入 ).Let■ (∫):=limた→∞■(ル ).It iS Clear that Ъ is Well deined;moreo(r it
follows ti・om(3.6)and frOm the continuity of norms th就

ノ9=||■ (ノ)L9, ∫∈D9.          (3.7)

This implies that 
Ъ  is illiectiVe.on the Other hand,■ iS Suttecti(Since C(Z)iS dense

in Z9(Z,入 )and D9 is complete.Thus we ha√ e prOved the following theorem.

Theorem 3.14(p6,Theorem 2.司
)。

乃rlく 9<∞ ,

D9堅 Z9(Z,λ ).

Rcmαrた 3.1唆  (i)Let χ:2→ sl={ZCC:|″ |=1}be a character of the compact
group Z,that is,χ  is a continuous function satisfying

χ(″ +ν)=χ (χ )χ (ν), χ,ν ∈ Z・

Then χ ==じ (θα)fOr SOme α ∈ Q/Z.COnveFSely,for each α ∈ Q/Z,the image aン :=

写ん(Cα )iS a character of the compact group Z.Consequently,Theorem 3.14 implies
that 2Ъ (9)=Linc[亀 :α ∈Q/Zl iS dense in Z9(Z,入 ).Functions in Linc[亀 :α ∈

Q/Z]are periodic fllnctions.In addition,{亀 }α∈Q/z iS an orthonormal basis of the
Hilbert space Z2(2,λ)With respect to the scalar product(ス の:=の スπ)爾λ(αχ).

(ii)For a periodic fllnctionノ ,we alWttS think of■ (∫)=乳 (ノ)althOugh場 (∫)iS unique
only all■ ost surely

The following are some properties of 2b.

(i)■ iS Shift inttriant and multiplicati(ly shift invariant

τX∫ (η 十・))=■ (ノ)(2+・),(η ∈N),

■(ノ(b))=■ (ノ)(b),(b∈ N),

whereノ
(b)(η)=ノ (bη),η ∈N and■ (∫ )(b)(χ)=■ (ノ )(b"),″ ∈Z・

(ii)

■(ハ =17b(∫ )・

This follo、vs from the inequality αl― bllく
lα

―b,α,bCC.

(面)If 1/γ =1/p+1/9(γ ≫1)andノ ∈DP,g∈ D9,then Hё lder's inequality implies

ノク∈Dr and

写(∫θ)=場 (ノ)■ (g).

(iV)If∫ ∈D9,thenノ 19∈ Dl(143,Theorem VI.2.91)and

Tl(|∫ 19)=|■ (ノ )9・

P"げ げ(iV)・ WithOut loss of generality,assume that∫ ≫0.This proof is somewhat

similar to the proof of[43,Theorem VI.2.91.Let a:=Tl(ノ 9)1/9・ ヽヽb Will show that

a=■ (∫ ).

Given an ε>0,■rst choose a real― valued periodic functionん such that‖ ∫9-ん‖1く (ε /2)9

and then choose a polynolnial o M″ ith the property

降0陣 Cが引く:h‖ く同υ・
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The composition Q o h is also a periodic function, and moreover,

Tn(Qoh):QoTn@)::Qoi.

Next we use inequalities

(i) la-U1u(lac-6e1 ina,b)0,
(ii) (a + b)o ( 2q-t @q + bq) in a,b ) 0,

(iii) |max(O, a) - max(0, b)l < lo - bl, if o, b € IR,

to estimate the following

lf (n) - Qft@))l'< {ltw - max(0. h(nf /ol+ 
lmax(o. 

h(n)1'/o - eft@Dl}'
( 2q-r {VOf - htu)l + 

lmaxto. 
h(nyrto - A(h("))l'}

< 2s-r {lttrtn - h(n\r + (9)'} 
.- t"' " \2/ )

Now taking the Besicovitch q-norm, we have

llf-Aohlln{e,
which implies

llTnff) - Tn(Q o h)lllc ( e.

The same argument as above, with noting that lt(r)l < Ilhll,, r e 2, yields

l?('t - Q(fr@;lc s 2e-r {lOeY -" | /E\s)
q- h\t)l+ \) |

Then, integrating the above with respect to ), we see

lll-aofilln,, (2q-r {|f -fril,,+ f:)'} :2a-,{llfn -ftllr+ (:'n',,La - lrru ",1 \2/ ) - t," \zJ i<u"'
Hence,

llrnff) -0llr, < ll"r(/) - rn(Q o h)llry + llQ " i -9117" 4zr.
The proof is complete by letting e -+ 0. I

For each n € N, let rr,(r), r €2, denote the smallest positive residue of r modulo n,
that is, rn(r): r mod n,if r mod n > 0, and rn(r): n,if r mod n:0.
Proposition 3.16. The functi,on /: N -+ C is q-li,mi,t-periodi,c, i,f and only if for euerg
sequence {r*}u C N conuergi,ng to0 i,nZ, llf - f (r"r(.))lln -+ 0 as k -+ oo.

Proof. The sufficient condition is obvious since the functions /(r,,.(.)) are periodic. For
' the necessary condition, assume that / is q-limit-periodic. Let {np)p C N be a sequence

converging to 0 in Z. This means that for every fixed rn € N, all except finitely many nk
are multiples of m. Hence it is enough to show that for any given e ) 0, there is a positive
integer rn satisfying

llf - f(rm(.))lln <e for attt>.7.
To see this, first choose a periodic function 9 near ,f , say, llf - glln ( e/3. Let a be a
period of g. Then by the definition of the Besicovitch q-norm, we have

1N
,',VT:o* f V@) - g(n)lq : llf -sll; < (;)'

ft: l

55
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Therefore,

that

there exists an integer lll ∈ バT, 、vhich can be chosen tt a lnultiple of α, such

嘉羞Ⅸ→悧壕が09b洲列・
Since both f (rL^()) and g are periodic with period follo、vs that

‖ノ(γι222(・ ))~gllc=

Consequently,

ｂ
２ε

一
３

く

ｉｔ
　
力

ｈ
　
　
ヽ
州
―
ノ

ηｇ一η
∫

ｈ
〒
ん
祠

１
一ｈ

／′‐１＼

all l》 1.

llf (:'m(')) - fllq ( ll/("2-(')) -glln+ llg- /llq < e for attt27,

which completes the proof. n

Let fir be the space of functions f t ? - C for which f (rno@D l- /(r) for some

sequence {ru}n c N converging to 0 in ? [39, Proposition 10]. From our viewpoint_, for
r > t, the space 5' is just the space L'(2, 

^) 
with restricted condition that 

"f lx : T;'(f).
More exactly, Iet f e L'(2,)) and 1 t:!;t(f) e D'. Since )(N):0, there is a function

/' in the class of equivalent functions of / whose values on N are assrrmed to coincide with
/. Then, by Proposition 3.16, f' e $'. Therefore, Proposition 20 and Proposition 26 in

[39] can now be rewritten as follows (see also [28,36]).

Proposition3.17. Letf €.Dq and,?:fnj). Thenthefollowingthreestatementshold,.

(i)lN

Ml/l :: .li- *f f(rl : Elll.
N_+m 1V .Lt "

n:l

(ii) For (s,l) e R2,

Mfexp (J=tsRe/ + Jlt I^/)] : Elexp (J=sRef+ Jltt-D]

(ノ,Cα)=(∫ ,亀 ), α∈Q/Z・ (3.動

Rθmαrん 3.18.Proposition 3.17(ii)claims that every limit― periodic arithmetical fllnction

∫∈D9has lilnit distribution and its lilnit distribution coincides、 vith the distribution of

ノ=場 (ノ )∈ Z9(Z,入 ).

Theorem 3.19.Zθι∫ ∈ Z9(Z,λ
)・

5助 Cη ιんθtt θ
",sts 

αル ιJ mθαs包宅 sん♯ れυαれαηι sθ ι

Ω⊂Z υttん tんθメθ:Jουjηθ P"pc焼うcs.

(1)ん ∈D9ル αιι χ∈Ω,υんθ留ん(2):=∫ (χ +2),2∈ N・

(ii)τКん)=∫ (χ 十・)ル αιι χ∈Ω・

(iii)

ズ朝増″〃∈Ωん~ん‖9=O πηψrmり れΩ.
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Pηィ Let f∈ ι9(2,2)and{ヌ m)}れ be a sequence of periOdic fllnctions con℃ rging to f

Recall that the shift Z∋ χ卜→χ+l iS ergodic(Theorem 3.13).Then fOr each m∈ N,by
the ergodic theorenl,there exists a full measure shift invariant set Ωηl such that

J塩井ゞむヌリo+→―ス″十ず=E]βO―Л判,χ∈Ωη・

57

(3.9)

n=1

Let Ω=∩ m Ωm.It is clear that Ω is shift invariant and λ(Ω)=1.It now follows from
(3.② that

llf:^) - f,llq:ll1^) -fll",, re{r, (3.10)

出 鷲緊詰 翼1鱒よ、諸群 《 trrお
dmd輔均 =βりし→呻 ∬e

l(3.10),We seeん ∈D9and=ズん)=ノ ("十
。
)

for all χ∈Ω.

Next we prove(iil).Given an ε>0,there exists an m such that

FOカ タ<:.

Now,due tO the shift invariant property of the Haar llleasure λ
,

FOo+う R"十・l■9=ばリーЛ夕<]"∈ 2

0n the other hand,the functionヌ m)is uniformly continuous since 2 is compact.Thus,

there is a δ>O such that lヌ772)(")一 βm)(ν
)|<ε/3 when ρ(",ν )<δ・It f0110ws that

l男
″)(η

)― 月
m)(2)|<ε

/3 for all η c N,and hence ll厖
m)_月m)‖しくε/3,if ρ(・ ,ν)<δ・

Finally,fOr″ ,ν ∈Ω with ρ(χ ,ν)<δ ,We ha、re

‖ん一ん19く ‖ん―厖772)9+‖月π)一 月
m)19+‖

巧
m)_ん

9

く ば ―β
OL9+陽 0-巧 →

隔 十 Fa_Л 夕 <:+:

TheOrem 3.19 is thus proved.

RC772α 帰 3.20.Letノ ∈ι9(Z,ハ ).Then by Theorem 3.19(面 ),the limit

Ω」几0ん
=:ノ ∈D9

exists.MOretter,we ha、re■
(ハ =ノ .

TheOrem 3.21.五ct f∈ Z9(2,入 )αηα∫=71(う・乃r θαcん δ>0,Pat B(δ ):={″ ∈2:
ρ(0,χ)<δ }.ιθι

鼠→=為兎⑥ Rη十→Xの ,η∈N
Tん cη,ん ∈D9αηα tt CθηυθηCS tθ ルη D9 αSδ → 0.

P知 9′ For each δ>0,using Hё lder's inequality,we have

臓州=為鷹(の

い勲J

□

ε〓

ε

一
Ｑ
υ

十

一δＢλ

ヽ

、

‐

′

／

χ
αλ

χ＋η
〈ズく為に。
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It follows that

脆OFく
お 鬼。

白η+矧卸 →=お
か

η+矧‰ OXの

=満ち繭‰いうXの ,

and hence,

井Ё臓がくお場mド←と中→碗 剛
Note that the integrand of the aboК  integralis bounded by lノ (χ )9。 MOreover,

井Ё聯初→X刷 器Ⅳ→鳴
り the ergOdic theorem(χ tt χ-l is ergodic,Theorem 3.13).ThuS,letting_Ar→ ∞ in

(3.11)and using Lebesgue's dominated con℃ rgence theorem,祀 arri(at

‖力 9く ‖ノ|IL・・

The above inequality guarantees that tt iS a 9_limit―periodic fllnction.Indeed,let{β り
}772

be a sequence ofperiodic fllnctions converging to fin Z9(2,λ )・
Then ttm)is also periodic

and耐→ ―力‖9く ‖β
→ 一Л 夕 → 0-17二

)嗣 bws血乱For each m,fron■ the uniforllll continuity

房Oo F→釧≪為 ∠r°け→―βOoKの
B(δ )

→ o as δ―〉O unifonnly in η.

Consequentし,|1月
η)―

ノ
(m)|19く

1外
π)一

∫
い )||し → O aS δ→ 0・ In addtbn,鴫 hⅣe the

follo、ving estilnate

‖角―ノ9く ‖カー月
272)|19+‖

月
m)_ノ (π)9+ノ (m)一 ノ|19

く211f― βm)|IL9+‖ 湾
772)_∫

(772)|19.

Therefore,

limsup lん ―/9く 2‖
「

―βm)|IL9.

δ→0

The proof is complete by letting η2-■〉∞ .                                       □

E"α ttPιθ 3.22.Letた ∈{2,3,… .}。 Let∫ :N→ {0,1}be the indicator ftlnction of the set

ofた―th po、ver free integers,that is,

則=仕 簿:=跳篤:メニ踏
and let∫ :Z―→{0,1}be a natural extension ofノ deined by

肋‐仕路:=誼 i驚メ重跡
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Then f=13,where B=∩ P(2ヽ Pた2)∈ β(2).It is well known thatノ ∈D9fOr all

lく 9<∞.MOreover,■ (∫)=ノ ,as vtt will see in Section 3.4.For m∈ N,put
■m:=鶴 Z={鶴 χ :″ ∈ Z}・ For any sequence{η ι}ι COnVerging to O in Z,by changing
B(δ)tO Иπ′in the proof of Theorem 3.21,we also ha′ e
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九ιし)=轟九Aη +→λω蜘/as J→ ∞.

Next, we calculate {f",}t for a special sequence n7

the l-th prime. We have

:=Πp<a pι :=Π:=lp:,where pι denotes

λ(B∩ (■ηι tt η))

λ(■πι)  
・九 0= =

The numerator can now be expressed as

^(B 
n (A,, *n )) : x (nfZ\ pril) e, (An,* , ))

\p /

=λ

=入

入範ιムPたの∩に陶+→
)鳥 (1-井 )・

The secOnd last equality holds since the sets(∩
PくPι

(2ヽ pん 2)∩ (■ηl+η ))and{(2＼ pた 2)}p>p:

are independent. Fix ι≫た。 For each Pく pι ,ヽVe see

スη
`+η

=ηι2+η ⊂pた2+η .

It fol10ws that inι  tt η⊂(Zヽ ρた2),if η mod Pた ≠0,while(ス nι +2)∩ (2、 Pた2)=o,
otherwise. Therefore,

£̀い

物吼切=傷ηれ出朝メ附
Consequentlェ

原→=僣物←~討 '路譜∫附
In partたular,九′(2)=Πρ>2(1-力 ),fη

お ん―th power iee.Thus,{九 !(η)}`COnVerges

tOノ (2)unifOrmly on the set ofん ―th power iee integers.However,the convergence is not
unifOrm on N at all.Indeed,gi■ 7en any ηJ,tab η =p揮 1,fOr example.Then ttι (電)=

Π P>2(1-歩 ),WhChお
not near∫ (2)=0.HOttVer,{九 ι}ι COnК rges toノ h D9 br」 1

1く 9<∞ as stated above.
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3.3  Convergence of Fourier expansiOns

3.3.l  Convergence of Fourier expansions in ι9(Z,λ
)

For each η∈N,deine an Operttor Sη :L9(Z,λ)一〉Z9(Z,入)as

税(め = Σ (λち/→亀/ゎ「∈Z9ク,け
rれ

;

1くαくτ;(α,7)=1

1t is easy to see that Sn is a continuous linear operator and has the■ nite operator norm

‖島‖9・
The bll側hg bmmaお dmihr to p6,Theorem H.1.1].

Lemma 3.23.Zθι{ηた}ん ⊂ N bθ α Sθ9zθηCC Cθηυθηれθ ιθ Oれ Z.Tんθη ιんθルιJθυれθ ιυθ

6θηαづιづθηs αrc e9し づυαJθηιメ

(1)力 r αJJノ ∈五9(Z,λ
),

‖乱た(ノ)一 ∫|IL9→ O αsた →∞;     (3.12)

(ii)ιんθtt Cχづsts α cθηsιαηι K9 sacん ιんαι‖乱た|19く κ9ルr αιιた・

Pηげ (1)→ (li)・
If the sequence{島 た(ハ }た COnVerges toノ,then{乱 ん(∫ )}ん iS bOunded for

every∫ ∈Z9(Z,λ
)・

Therefore,|ISれた9 iS uniformly bounded by the uniform boundedness
principle.      ^     

Λ

(iり → (i)・
Letノ c Z9(Z,入

)・
Given an ε>0,there is a periodic fllnction a such that

ll∫ ―σ L9く ε/(κ9+1).Let 772 be a period of a・ Recall that the convergence of{η た}た

ilnplies that all except initely llllany ηんare ll■ultiples Of 7孔 。 No、v,if ηんis a lnultiple of 777,

then Sれた(D=σ ,and hence

‖島た(∫)一 ノIL9=‖ 島ん(ノ)一 島た(0+す ―ノILq

く|1島た(∫)一 島た(DIIL9+σ ―∫|IL9

幾希 十希 毛
v/hich completes the prOof.                                                    □

Lenllna 3.24.Fθ r aιι η∈N,

‖乱|11く 6,

‖島 2く 1・

れ θιんcr υοtts,Xl=6 αηdスち=l Sαιじ功 tん c CθηαづιjοηげZCmmα 3.23(ii)ルr θυCrν
sc9acnθθ{ηた}ん CθηυCTjηθ ιθ Oれ Z.

Pηげ Since{亀 }α∈Q/z iS an orthonormal basis of ι
2(2,λ

),it h。lds that

‖鳥 (DIIL2く |IЛ IL2, f∈ E2(2,λ), η∈N.

Therefore,|IS,22く l fOr alり ∈N.

Let us■ ow show that‖ S,tllく 6 for all η∈N.F破 an η∈N and let f∈ Zl(2,λ ).It

follows from the deinition of Sn that

(ノ ,砲 /η)=(島 (/),a/2), 1く αくη
,
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and hence, for any periodic function g with period n, we have

\f,o): (^9"1.0,a1

Assume first that the function / is real. fnen .9"(/) is real, too. Let A : {r e 2 :

3"(f)@) )0). Itisclearthatla(r) isaperiodicfunctionwithperiodn. Hence,wehave
the following estimate

f t^/ l,9, t Dt,) - l(')l .r(a')
lnl 'l

I /^ ^:l ^ (s"t"it(rt -.1(r)).rtart/,rn{3'tfr-i>o}\ "'"" '/
t /^ 

^ 
,;., .\,..* 

lonls"tft-f<oj (/('l - s"(/)(r)) )(dr)

: I G,ritr*l -.tr'l))(dr) +2 | ^ (fet-.9"(.i)(')).rra")
J,q \ "" '/ Jen13,(f)-f.01 t" /

<t,9"f/r -f,to)+2 1 ^ f1"Sx1a"1
,4 n{sn (/)-/<0}

I t^ | / t^ |

<0+2 / l/(')l \@r):2 | l/(')1.\(dr).
JAt I JAt I

By the same argument, we also have

f t^ r f r^ |

/ ls,(/)(r) - I@)1.\(dr) <2 I l/(r)l ),(dr).
Jrt I Jacl""l

Combining the above inequalities) we see

113,ril - f|r, : I ls,Gtr,t - f@tlxton * [ l3"t.Or'r - ftill.r1a'yJnt I Jrr I

/ t t^ r f r^ r \<2{/ l/(')lXdr) + I lft*ll)idrl l:2llfllL'.
\JAr I JArt | /

Consequently,

tt^9"r.Dllr' < 11,9"( h - fll",+ llillr' < 3llfllr'.
In the general case, write the complex-valuecl function /as f :0 + t/-i, where j andi
are real-valued functions. Then S"(f) : S"(0)+ r/-I S"(h), and hence the above estimate
implies

lls,(/)llz,'(lls"(f)llz,'+lls"(h)llz,'<s(llAlll,'+llhlll,') <6ll/llz,'.

' This means that ll^9"111 ( 6. The proof is complete. n

Next, we will use the theory of interpolation of norms and of linear operators to show
the existence of a const ant Kn satisfying the condition of Lemma 3.23(ii) for any 1 < q < 2.

We will apply the following two results.

Lemma 3.25 (126, Theorem IV.1.2]). Let B (resp. B') be a normed linear space with
two cons'istent norms ll'lls andll'll1 (resp. ll.ll'o anall'll). L"tll.ll" (resp. ll'llt.) denote the
r,nterpolating norrn,O < a { L Let S be a, li,near transformati,on from B to Bt which i,s

bounded as

(s, ll.lli) g (8,, ll.lli), r:0,1.
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Then S 'is bounded as

(8, ll.ll") -!r (s', ll.ll;),
and i,ts norm llSll" sati,sfies

llsll" < llsllJ-"llsll?

Lemma 3.26 ([26, Theorem IV.1.3]). Let (X,u) be a nrcasure space, B: LLIL*(r),
and let 1 { po ( pr ( oo. Let ll.ll1 denote the norms i,nduced on B by Lpi(u), an,d let

ll.ll" denote the i,nterpolati,ng norms. Then ll.ll" coi,ncides wr,th the norm i,nduced on B by

LP'(u\ where

να= (=ム ,ゲa=∞
).

p021

poa+pt(l-o-)

Let(■ ,ν)=(Z,λ)and B=L∞ (Z,λ )in Lemma 3.26,moreover let pO=l and Pl=2.
Then for l<9<2,the interpolating norm‖ ・

|lα COincides with the五
9 norm‖・I L9,Where

α=2(1-1/9).
Let B=B′ =Z°°

(Z,入)in Lemma 3.25 and‖ 。
|lo=‖・16=‖・ Ll; ・ 1=‖・1=‖。

|IL2,

respectively Then the norms‖・|lo and‖・|1l are COnsistent[26,IV.3.11.F破 an η ∈ N,

and let S=Sπ 3.Lemma 3.24 claims that‖ SI10く 6 and llS l く1.Now,applying
Lemma 3.25 to α=2(1-1/9),We See

‖Sα く61α・lα =62/91.

Since the interpolating norms ll。
|lα =‖・|la COincide with the Z9 norm‖ ・|IL9,it f01lows that

‖島2(D IL9=‖ S(Dlα く ‖Sl α‖Л L9く 62/91/~IL9,「 ∈Z∞ (2,λ ).

This implies‖ Sη l19く 62/9-l because L∞ (2,λ)is dense in Z9(2,λ )・
Therefore,for l<

9<2,constants K9=62/9 1 satistt the cOndition of Lemma 3.23(ii).
Ne難,conSider P,9>l Suclthat 1/p+1/9=1・ It is、vell known that the dual space

Of Zp(Z,入 )COincides with Z9(Z,λ ).MOreover,it is easy to veritt that the dual map of

")cdnddes宙

th詣),where詣)and詣 )denote the same operttor a but on dttrent

spaces LP(Z,入 )and Z9(Z,入 )・
It now f01lows fl・ om the duality that

‖島|♭ =‖島‖9・

TherefOre,constants K9 in Lemma 3.23(ii)e対 St fOr all lく 9<∞ .COnsequently for any

sequence{ηた}た ⊂ N COnverging to O in Z and for any∫ ∈Z9(Z,入 )(1く 9<OO),n‐ e have

‖乱た(∫ )一 ∫|IL9→ O αsた →∞. (3.13)

3..3.2 Convergence of Fourier expansions of limit-periodic functions

Now we turn to the study of Fourier expansions of limit-periodic functions. For each

n € N, define Sr; Dq -+ Dq as

Sπ (ノ):= (∫,Cα /r)cα /r, /∈ D9・

rπ
;

1く αくγ;(α ,r)=1

Letノ ∈DC and∫ :=7b(ノ )∈ Zg(Z,λ ).Recall that by Proposition 3.17,we hⅣe

(∫ ,Cα/r)=(ノ ,亀/r), T,α ∈N.
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Consequently, Tn(S"(f)) : S"(/). Therefore, for any n € N,

lls"(/) - flln: lls"t.fll -fll"".
The above equality, together with (3.13), gives us the convergence of Fourier expansions
of limit-periodic functions, namelyl

Theorem 3.27. Let {nn}* C N be a sequence conuerg'ing to 0 i,nZ. Then for euery

functi,on f i,n Dq (1 ( q ( *), we haue

&lj1 lls"- (/) - /lln : o' (3.14)

3.3.3 Convergence of Fourier expansions of almost-even functions

Let cr,r : 7,2, . . . , be the Ramanujan sums,

e,(n):: t eo/,(n).
1(a(r,(a,r):1

Let E denote the space of even functions. Then, by [43, Theorem IV.1.1],

E : Linc fc, : r : 7,2,...1.

Denote by $a the linear closure of E with respect to ll.lls. Functions in Eq are called
q-almost-even arithmetical functions. Moreover, {p(r)-t/2rr}r:r,r,... is an orthonormal
basis of the "Hilbert space" !32, where rp(r) is the Euler function, p(r) : #{1 < o ( r :

(o,r) :1). For almost-even functions, the following result is a version of the convergence
of Fourier expansions.

Corollary 3,28. Let {n*}* C N 6e a sequence conuerg'ing to 0 in 2. Then for euery

function f mtsq (1 ( q ( *), we haue

H- ll t ",(f) ", - fll : o, (3.1b)
k+crcll z-J " llq

rlnk

where a,(f) : {p(")}-t(f,"r),r :7,2,..., denote the Ramanujan coeffici,ents of the

function f .

Proof. Since Eq C Dq, the proof is complete, if we can show that for any .f € Eq ,

\-L",U) c, : Sno(f). (3.16)
rlnk

Let us first show that (3.16) holds for f e ,B.Take / € E of the form

f :T b,,,.
r€I

where 1 c N is a finite set and {br}rer C C. Then a,(f) : br, if r € -I, and ar(f) : 0,
otherwise. Thus.
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Therefore,

R.H.S.of(3.16)=

ヽヽ石e have

６３

％
　
　
ｏｆ

一一　

Ｓ

Σ
¨
〓Ｌ．Ｈ
К
　
争

し
　
　
い

Σ
珈
Σ

一一　
　
　
〓

θ
■
υ

〓

Σ
¨

く

Σ
珈

I)rlnp

This means that (3.16) holds for any 
"F e E. Since both sides of (3.16) are continuous

operators with respectto f , it follows that (3.16) holds for any f e |B'1. !
Erample 3.29. Consider again the indicator function / of the set of k-th power free integers.
Define /': N -+ lR as

.f'(r) : I ,trlf 1;; .

aln

where p denotes the Mobius function. Recall that / is multiplicative: /(p1) : 1, if I < k,
and f (pI):0, otherwise. Then // is also multiplicative. Moreover, for each prime p and
l>7,

( 't :tt-t-
f'(p'): p(t)f (pt)+ t'@)f (pt-t): f (p') - f (pl-t): {^-'' " l- ^l

I u, otnerwrse.

Thus,

oo lrl//*\l 
- 

/ lfl/-\l lttt^2\t \ / 1\I!+ : [I ( 1a u_]t.!J + a:?+ ) : l-T { I+ + ) . - (3.r7)

=, 
n LL \ p pz / -: \ p',/

vv

Therefore, by [43, Theorem VIII.2.1], the Ramanujan coefficients o"(/) are equal to

a,(f): t '+
ol5X.'ff'"

Ler {n} C N be a sequence converging to 0 inL. Since / € ,8q(1 ( q ( oo) (see

Lemma 3.33), for each n1, the Fourier expansion coincides with the Ramanujan expansion
as we have shown in the proof of Corollary 3.28,

Sn,(.f)(n):to,(f)c,(n):fc,(n) t ry: t ry f c,tu).
rtnt rlnt ,!11".ff,, 

* l(d<oo * rlnl:r ct

ΣECr(2)={:1 11lrllise. (3.1助

No、v,the 1/1ё bius inversion formula implies that

ズ→=澪 /° =1ユ禦澪
。0・

Therefore

A→ 乳00=1ュ禦(平
%O Jttμ %°

)・

09
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Recall that we have the convergence of Ramanujan expansions as follows

llS",(/) -/lln+0 as l-+oo.

On the other hand, we can show that {S",(/)(n)h converges pointwise to f (n) as I -+ oo.

Indeed, fix n € N. It follows easily from (3.18) that

65

Let D(nt): mina{d I gcd(n1,d)}. Then D(") -+ oo as / -+ oo. Moreover, we have

澪
Cr師)く η brttα .

げ0-乳001=D属
<∞
禦(平

%0-源
ldの

°
)

く Σ 鳴型2η →O as ι→∞.

D(ηι)くd<∞

Note that the condition(3.17)is enOugh to ensure the pointwise convergence of Sれ ι(∫ )(η ).

Comparing with i43,Theorem VHI.2.1(市 )],We need an additional condition to ensure

Σαrげ)Crぃ)=ル);η ∈N・

r=1

3.4 Lilllllit…periodic additive and multiplicative arithmetical

functions

A fllnctiOn/:N→ C is called additive(resp・ multiplicatiК )if

ノ(mη)=∫ (m)十 ノ(η )(resp・ ノ(mη)=∫ (m)ノ (η))Whenever(m,η )=1・

Let∫ be an additi((resp.a multiplicative)functiOn.For each prime p,deine a fllnction

んaS         

ん(η)=∫ (pん ), if η∈PたNヽ Pた
+lN, た=0,1,… …

Then the functionノ can be expressed by

ル)=Σん。)。esp・ ル)=Πルし))・    6・ 2の

NOte that for each η∈ N,the ininite sum(resp.product)iS actually a nnite one.NOw,
extendル tO a random variableん :Z→ C in a natural wtt as

ら(χ )=∫ (pん ), if χ∈Pた 2ヽ Pた
+12, た=o,1,… …

Then{ル }p iS a Sequence of independent random、ariables.It is ob宙 ous that if we re―

place{ん
(η)}p in the expression(3.20)by{ル (・ )}P,then the sum(reSp.product),in

general,is nOt inite at all.Does this sum(resp・ product)cOnttrge?For additive func―

tion,NovOselov[391 proVed the following results.

TheOrel■ 3.30(cf.[39,Proposition 46,471)。 Zθιノ∈ 99 ιC αη αdαjιをυcルnctづθη・ Tん cη

ιんes鶴%n

R・):=Σ ら(″ )

p

COηυθηcsルrλ―a.e.■ ∈Z.νοttθυcら ■(ノ)=∫・
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The tool used to deal with additive functions is Kolmogov's three series theorem.

For multiplicative functions, Novoselov [39] only gave some sufflcient conditions for which

TIoi, converges. This section deals with multiplicative case and our result is the following.

Theorem 3.3L. Let f e nn be a multi,plicatiue functzon wtthMlfl10. Then the product

f@) ,: lI frr,l
p

conuerges for )-a.e. r e 2. Moreouer, fo(f) : f .

The following is a key lemma to show Theorem 3.31.

Lemma 3.32 (cf. [5, Ttreorem 1]). (i) Let {X"}" be a sequence of i,ndependent compler

rand,om uaTiables wi,thBlx,) f o. Assume that ll" E[lx"l] conuerges andffnE[x"]
conuerges to a non-zero li,mi,t. Then X :: ff' Xn conuerges almost surely. Moreouer,

X i,s i,ntegrable and

Eilxll < II"il""ll.
TL

(1i) If, i,n addi,ti,on, llnnllx"lql conuerges for q ) 7, then

E[x] : ll"t""l, Ellxlnl : fltllx"lnl.

P"げ ←)Let

鴫 ‐
週 努 諭

・

Then{■42}れ iS a martingale.It follows frOm our assumptions that

E‖銑I=暑詈宰計,η∈N,

is bounded.Therefore,by Doob's marting』 e convergence theorem(TheOrem O.40),the

limit

if:=lim Afれ

e対sts almost surely.Consequently,the limit X:=Π π」χη also e対 sts almost surely Next,

applying Fatou'slemma,we see

E[χ l]く lれ
麓
fEIΠ χたII=浮塩 Π

EIχた]=Π EIXπ ].

た=1           た=l          η

(il)If,in addition,Πη EllXnlql COnVerges fo■ 9>1,then{EIIA421q]}η  iS bOunded.It
follows fI・Om Theorem O.40(面 )that(■イη}η COnverges to"「 in Z9。 Consequently,

E1/1f]=駆戦Elllf72]=1,

到 M問 =鳳 到鴫 問=M・

The proofis complete by noting that X=_lf ΠれELχη].              □
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For each prime P,比 おeasy to see that the random耽 Hableん iS integrable,f and only

those of /, that is,

(ノ ,θr)=(ノ ,3), r∈ N, (3.21)

where a:=7L(cr).Indeed,ノ ∈99 implies∫ 19∈ 役
1・ Then Lemma 3.33(li)applying for

l∫ 19 implies the cOnvergence of the product ΠpEIIル 19]・
Therefore,by Lemma 3.32(li),

かりじ―井)=←
―DttΨ <唸

The expectation can be expressed by

可廟=かめ
(多
―戸島耳)=←一:)ニザ・

The folloヽ Ving properties of multiplicative functions、 vith non― zero llllean Value can be fOund

in[43,Chapter VIIl.

Lemma 3.33.Zθιノ∈99 ιθ α maJォゎJづεαttjυθルηθιグθη υjサんMIノ]≠ 0・ 動 θη ttθ ルιJουづηθ

んθιαs.

(i)∫ C ttg.

(ii)

M団 =平
←

一
;)(1+響

+ザ ー )=平
到 力 ・

L pα 7・ttCttιαr,ル r θυθη pr,mc,E[ぁ I≠ 0.

P宅げげ T71θθ宅鶴3.31.Since 99⊂ 01,it is enough to proК Theorem 3.31 for the case

9=1.Let∫ ∈01 be a multiplicative function with VII[メI≠ 0・ Then l∫ |∈ つl With

Nl[げ ]≫ INII[ノ]|>0・ MOreover,the ftlnction lノ l iS alSO multiplicatiК  andノ IP=|ん |・

Now,applying Lemma 3.33(ii)tO fllnctiOns∫ and lノ |,We have the following。

(i)The product ΠP E[|ル I cOnverges.

lii)The product ΠPElル]conК rges to the nOn― zero vdue M『
1・

These mean that the sequence{ル }P SatiSies the condition of Lemma 3.32(i).Therefore,

A→ :=Πらし),入―a.e.χ ∈2.

P

Next,we will proヽ 配that Tl(ノ )預 ノ.ThiS pr00f is divided into three steps.
Stの 1.Чhen g>1,MIIノ

1判 =E[|ノ q and the Ramanttan coettdents of/cdncide wtth

E‖Л判=Π EIIら 判=MIノ 判.

p

Next,we will prove(3.21).It f0110ws from the f01lowing expression of the Ramantlian sum

Cr(η)=Σ ttπ dr μ(γ /ご)ご =Σ
dγ μ(γ /ご)α l、 (2),that

らし)=Σμ。/の αld20)・
αlr

(3.22)
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Therefore,(3.21)will h01d,if

(∫,ldN)=(ノ ,ld2), α∈N。          (3.23)
Let us prove(3.23).Fix α∈N and write d=Π

p∈ r pα
(p),where f is the set of primes P

such that α(p)>0.Then(∫ ,ldN)iS represented as([43,Theorem VHI.4.41)

協 ヾ=M1/1碁
件

絆 十
磐 早 +…

)(1+響
+撃 一

)‐
,

or it can be rewritten as

げ,1ハ)=Π E[ら lpα Oメ ΠE[ら
].

p∈f           p/1

The sequence{ん }Pグr alsO Satisies the condition of Lemma 3.32(ii)beCause r is a inite
set.Therefore,

EIΠら]=Π EIら
].

p¢I     P/1

This implies that

(ス ld2)=E[Π んΠlPα o月 =E[Πらlpαo2Πλ
]

p   p∈ f             p∈I        P“ I

=E[Πら12α o月 E[Πん]=Π EIら lpα OメΠE[ん]=げ,ld● .

p∈ r           p¢ r      p∈ I           P/1

Stの 2.ヽ 石ヽe will pro(■ (∫)=ノ in the special ctte 9=2.Since the ftlnction∫ ∈92 is

a multiplicatiК  fllnction with non― zero mean value,Lemma 3.33(i)implies thatノ ∈磐2.

Moreover,{9(r)-1/2cr)r∈N iS an orthonOrmal basis of the Hilbert space磐
2,thuS we ha/e

Parseval's identity tt follows

:Ψ珊 =Ⅶ麻
It then follo、 vs that

魯鼎 柵f蝸
Note thatャ (r)1/2a}r∈ Nぉ an orthonormalsystem in L2(2,入 ).Now Parse稔1's identitbs

fOrノ andノ imply

こ 需
Cr些 ノ as E→ ∞

,

こ需a堕「器R…

In addition,it is clear that

乳
([11先辞

Cr)=』
11気禁

a,



Consequently,

xA(r);g 
o,D*,, G-#) .*('-;) o,*E,, ^P

f (pk)l>K lf (pk)l>K

I / 1\ trr--krt
<;(r-:) f U)!--!r--as as K-+oo.l(\ p/ o/r, p*

lf (pk)l>2

where, we have used the fact that

I f,91 . oo, ([43, Theorem VII.5'1, Definition VII.1.2]).Z-/ DK
P; k>-l;

lf (pk)l>z

' Therefore,

lll') - fll",: I lVn\{,) - ft )l)(dr)
J 4(x)

{ 
J o,n,2lf 

(')l'\(dr) + o as 1{ -+ oo'

Thus, the statement(ii)/ has been proved. Finally, the statement(ii) and the statement(ii)/,
together with the continuity of Ty, imply that 

"r(/) 
: /. The proof of Theorem 3.31 is

J.4. Additive and multiplicative arithmetical functions

and hence, letting R -+ oo, we obtain Tzff) : f.
Step 3. Now we turn back to the case q : 1. Following the first proof of [43, Theorem
VII.4.1], we define the multipticative function fV) Ay truncation of / for K > 2

ρ的=僣ハ
Iじ出II

Then the following two statements hold.

0 fK e D2.

(ii) ll/(r() - /llr -+ 0 as K -+ x.
The statement(ii) implies that M[/(r()) + O when K is large enough because Mlfl + 0.

Therefore, when 1( is large enough, the natural extension V'o) : n"rt9 is well defined

and moreover by Step 2, Tr$6)7 : Vn). We also have

(ii)' llflr() - fll", -+ 0 as 1{ -+ oo.

Let us prove^statemen(ii)'. It follows from the defiqition ot fxl that lflK)(")l < l,i(r)1,
and hence lf\K)@) - flll < zlfr")l for )-a.e. r e 2. P*

It is clear that

ス(κ):={χ ∈2:ヌK)(χ
)≠ R")}.

4(K)⊂  ∪ (ρ
た
2ヽ P考

+12)(λ―a・ e。 ).

p;た >1;

∫(pた )>K

□complete.





Chapter 4

The Distribution ofた―th Power
FYee Integers

4.I Introduction

For,ke {2,3,...}, let y(x)(Q,n€Z,betheindicatorfunctionof thesetof k-thpower
free integers, that is,

7,-(r)(n) ,: { l, [];;fn:,,iin,i.ri,
I t-\

and let Sl?'(-), m e Z, denote the frequency of k-th power free integers between m -t 7

and m a ly', that is, 
A,

.slf)r-;,: + i x(k\1m + n1."N \,,,, ._ 
W 4,, \,,(

Then it is well known that for each m € Z.

,. ^(k), I
J15 sil'(^) : C&), (4.1)

where ( is the Riemann zeta function.
Many researchers have been interested in estimating the error Slf ) (-) - 1l e &). Under

the Riemann hypothesis, there is a conjecture about this;

ve > 0. lr (s$'(m)- +) : o (xrlz*+') . ty' -+ oo. 14.2)\ '" <(k)/ \ /
' As is mentioned in [40], this conjecture should hold, but it is quite unlikely that it will

be proved in near future, because it is related to the Riemann hypothesis so closely. In
particular, in the case of k : 2, there have been many challenges to this conjecture,
assuming the Riemann hypothesis, such as [1, 2, 20, 3B]. Refer to [40] for an overview of
this topic.

In this chapter, we study the probabilistic aspects of this problem. We take here a
compactification method which has been developed in Chapter 3. Let us give an overview
of this chapter.

Recall that2 denotes the ring of finite integral adeles and we consider the probability
space (2,8(2),^). Since X(ft)(n) is a multiplicative limit-periodic function, it has the
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natural extension 1(t)(r) as a random variable on (2,8(2),^). As a consequence of
ergodic property of the shift r + r + | on2, we get the following law of large numbers

,JTLsjf'(r) ::;55#i",*, (r+n): B;7s(*)1 : #, \-a.e. r e2, (4.3)

which is the adelic version of (4.1).
The main aim of this chapter is to study the convergence rate of the law of large

numbers (4.3). With the help of the explicit formula for the random variable S$) gi,rert
in Section 4.2, we can estimate the rate of convergence in Section 4.3 as follows;

r [ (" ( s,l' -+) )'] - const . N,/k .

L\ \'," q\k)/) )

Finally, in Section 4.4, the last estimate is translated into the language of Z as

t ! / / I \\2
JtXn I (t(s$'t-)-#)) -const'Nt/k (corollarv 4.r7)'

trr, -.;;;J,5,: )." *"' ,"t,'::,:":or the conjecture (42) rtshourd be noted
that we do not need the Riemann hypothesis to prove this and nevertheless get the same
exponent as in the conjecture.

4.2 Explicit formula for S,r,'

In what follows, we fix an integer k > 2. It is known,nu, 76(r)in) is multiplicative and
ytD(Q € Dq for all 1 ( q < oo. However, for the sake of completeness, let us give the
proof here. It follows from the definition of X(k)(n) that X(k)(n) is multiplicative and

y(t")@): fl(r - pex(n)).
p

For each .L e N, let Xf) ,: flo<o, Q - prr"(n)). Then Xf) converges 1o;(ft) in Dq.
Indeed, observe that

1x(*)1n; - xy'(n)l ( L, oor(r),
PlPr

which implies.

rIN..rlNI
#f |;rtk)inl-xf)@tl . out I p1,(n): ^I;t p,r,(n) < I p'' n:l ' n:lplpr p)pr" n:I p>pL

Thus,

} i;xtk)1n; - xf)@)l
n:I n:I

1

a 
,+ror 

- o as .L _+ oo.

Since the functions Xf) ar" periodic and converge to X(ft) in the ll.lln norm, it follows
that X(ft) € Dq for all 1 { q < m. Hence as we proved in Section 3.4,

y(n)@): ll(t - por"(r)), r e2,
p
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is the natural extension of X(k)(rr).
If we put

B(0:=∩ (2、 Pた 2)∈ β(2),

ρ

then it iS Clear that」κ(た)=13(た),and thus,

叩Ч=入o均 =平
(1-井)=島・

Recall that the shift Z∋ χ l→ χ+l iS ergodic(Theorem 3.13).Then applying the

ergodic theorelll toス「(た ),v″e obtain

SPO=井
羞
XOけ →彎 到XЧ =お い aπ め ,

which is the adelic ttrsion of(4.1).

lVe are now h a podtbn to JVe the exttctt brlnllla br SPo).島 r eaCh Z∈ N,bt

χlりo)=Π (1-ヶ (″ )),

pくpL

Ⅳ

SttL。):=井 Σχメし+0,
れ=1

ML:={鶴 =pFl・・・p2ι ∈N:0く αl,...,α Lく L}・

Rcmα rた 4.1. From now on, if there is no confusion, 、ve wi1l oIInit(・ )in fOrmulae. For

example,」て、vill be considered asス「(ん )and s。 。n.

Len■ Ina 4。 2.Fθr cacん Ar∈ N,

SN,L(χ )ヱ
奎 T Slv(χ )● οれ ι211tSc cθηυθη Cη CCノ ,        (4.4)

Sェズ→=濫バ0停 井(空鋼 半 二―鰐 μ )),的
υんθtt μ αcnο tθs ιんε几イσbづzsルιnCtづθη.

P印げ The cOnttrgence(4.4)is obViOus.ヽ 石ヽe now prtte(4.5).The deinition of SN,L(χ )

glves
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ヽ

、

‐

′

／

η十χ
し

ρ
Ⅳ
い，々
祠

１
一Ⅳ

／

ｆ

‐

ヽ

＼

ＺμΣ
咄

〓 (4.6)

Here we have

1g I r/v*rmodukr
N )_ P$(r * n) : 

,^,, L----;i-l
| (Nlrtnoduk (l/+r) modzk\: F \---iF- ----;k- )
1 1 ((w+r)moduk rmodzk\: 
ur - lr,t \-- - ---e- ) l4'7)

Therefore, substituting e.7) into (4.6), we obtain (a.5). The lemma is proved. I

The following is a key lemma in this chapter.

Lemma 4.3 (cf. 144, Lernrna 8]). For u,,u € N and A, z €2, we haue

l/(u+r) modu xmodu\/(.*r) modu xmodu\lEr ll \v ' */ ---"* '

L\ u ?.t /\ u u /)
_ (ymod (u.u))A(z mod (u.u)) /., _ (ymod (u.u))V(z mod (u.u))\

1,.,}\'- tr.,4 7

where the erpectatzon E works on r, and,

(u, r) : gcd(2, u),

{u,u}: Icm(z, u): the least common multi'ple of u and u.

Proof. We divide the proof into four steps.
Step 1. For c,b,c € N with (b,c) :1 and for r e Z, it holds that

1 fi (r + sac) mod ob : r rn\d o 
+b ,.1 . (4.8)b4 ab ab 2b

This is shown in the following way. Since (b, c) : 1, by a similar argument of 127, Theorem
56], we have

{ (r + sac) mod ab : s :0, 1,...,b- 1 }
: {(r* sa) mod ab : s :0, 1,.. .,b - 1}.

Thus, it is enough to prove (4.8) only fot c : 1. Moreover, we have

{ (" + sa) mod ab : s :0, 1,.. .,b - 7}
: {(, I a*so) mod ab ; s :0, 1,...,b- 1 },

so that we have only to prove (4.8) for r:0.,1,...,a- 1. But then, for s:0,1,....b- 1,

we have (r * so,) mod ob : r I so, consequently,

r $tr*sa)mod ab _ 73t+ s& - x, b-1
b1 "b 

: b1 ,b : ob- %'

Thus (4.8) is valid.
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Step 2. By the fact that for z e Z,

(z I sac) mod ri,b : (z mod ab + sac) mod ob,

(z mod ob) mod a: z mod at

and by Step 1, it is easy to see that for a,b,ceN with (b,c):1 and r,A €2,

1S / @*r*sac) modcb (r*sac) modab\
uL^\ * - 

"b )
t ((y*r) modo xmodc\=t\ o - 

" )
Therefore, for any periodic function f :2 -+ lR with period tzc, we have

f / ( ,, -r r) mod ab r mod ob\ 
", 

.-,'lt L("-;, )f @l

[by the shift invariance of .\]

:1F Bl((y:L r+ sa_c)moaaa _ (z*sac) modab) 
r,-+.ro.ylb- L\ ab ab /" I

ftH (fu+r*sac) modab (r*sac) modab\",-,1:Ell5 t--Lbfu\ ab nb /"".l
: ln | (@ + rl moa o 

- 
r mod a) 

./t.,llb-L\ a (L /" ')

Step 3. Set a :: (r, ,), b :: ula, c :: u lo' and / to be

?,, (z*r) modu rmodu
JtL'):: , - , '

Then Step 2 implies that

" 
f / 

(y.+ r) moa u - 
r mod u) ((z + r) moa u - 

r mod u)l
"L\ u , /\ u u ll

-l /@-lr)modab .rmodob\ 1(z-l r)modac rmodac\l:'[\ ,a - ,b /\ * - * )1
1 | /tg+r)moda rmodo\ /(z*r)modac rmodac\l:tnl( , - " )( * - * )l

By letting y,b,c and /(r) in Step 2 be 2,c,1 and

(y*r) moda_rmoda,
aa

respectively, we see that the last line above is equal to
'r f /r:p l{ rs*r) moda' 

- 
rmoda) ((z+r)moda - "-ooo)l . (4.9)

b."L\ a a /\ a a /)
Step l. Without loss of generality, we assume that g mod a ( z mod a. By Corollary 3.7,

the integrand of (4.9) is continuous, and it is periodic with period a. Therefore, Lemma
3.10 implies that

(4.9) :f1r((y+r) noao_smoda) ((z+s) moda _smoda). (4.10)
bcoL" ̂ \ a a / \ a a /
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Moreover. it is clear that

(y+s) moda smoda

and that

(4.10)=

The lemma is proved.

A small modification of 144, Lemma 9] gives the following.

Lemma 4.4. For any bounded functr.on 11: N -+ R , i,t holds that

―Ψ={革ヒif Oく S<α ―Z modα
,

一z mod αく s<α .1, if α

尭:(。
くs<層mod α

望三
t芦

整ltt・
:1・

十 Σ T(響 →α―z mod αくs<α―υ mOdα

+α
_ty=禽tく s<α (2」

翌
:些

Ll-1) (竺
・ 響

二重-1))

競(Ψttla_2111“→
十
T      (響

-1)(‐‐lnOd α―ν lnOd α)

+ (Ψ -1)(響 -1)(ν lnOd α))

発 :(ν
 mOdα)(1-Z modα

)

T      (1-重
翌
〒1+|二 )

(1-1竺
聖堅塾Lニギ寄挙争翌堅些⊆二主[)

¨

一
α
¨

一
α

ｒ

ｌ

ノ

ヽ

―

、

〓
, if 0(s< a-ymoda,
*1, if a-gmoda(s(4,

(z+s)moda

Finally, dividing the sum (4.10) into three parts and using the above expressions, we arrive
at

□

還lΨЩ。,0=2堕Ψ型募←

還1響響Щい,0)三二鱚 嘉←―
Lernina 4.5。 Лθr cα cん zV∈ N,

言μし)(【
畳弓翼望

づs cθηυcηθηι jη 五2(2,λ
).

∞＜

＞

　

　

　

・

２「
ハ引

竿 )=a鴫 鳩 (4.11)
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Proof. Fix an ,n/ e N. For finite sets lL and Nd such that L c MI C N, Lemma 4.3 and

Lemma 4.4 imPlY that

EI(恩 μoば 生
宗

些 生 一
ギ )

一】μ°)(1壁場半
二―・等ギ))21

=缶
恩 Lヽμ

°μ°EI(埜墜
察

空 生―型
半

二
)

×
((Ar+″

)lnOd υ
ん
_″ lllod υた

)]

=鶴恩Ⅷμ°μ°
£≒務響L←―型t等ギ

)

Ⅳ
仏属ヽLI協響

N篤

忍 L紫 等

旦 → 0器 L/N.

The lemma is oroved.

and ,9ry,7,

vergences

theorem.

Theorem

By letting Nd I N in the proof of Lemma 4.5, and then IL I N, it follows that

I lr(r) ((JV + r) moa ztu 
- 

r mod uk 
) g ?(r,.a/) as n- ,z N. (4.12)

fl-'*'\ uk uk ) -\*'-"/

On the other hand.

言
型

`:2=ζ

li下   (abs。
lute convergence),

L3 s,√
 by the bounded con、Zergence theorem.  Therefore, using these con―

in the formula(4.5),we ha√e an explicit formula for Sr)as in the following

4.6。 乃r θαθんN∈ N,αs αη θ9Zαんινれ五2(2,入
),ιんθル

“

θυ
`町

んο:ごs,

球)0=島 一井言
μO(些場 ■ 三―篭 等 )・

“
・ 0

4.3  Estilllllate of the Z2_nOrIIIl and lillrlit points in Z2

Ls∝■。n42 we pO(d tllat N(SNO―
島 )=―

Tし ,め and

い こ面(場塑―ギ )鰤政狗.

(4.lo
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Let us calculate the explicit formula for the L2-norm of T(r,lf). BV using Lemma 4.3
and Lemma 4.4, we have

Ell r(r ru ) t2l :,rT_, 
| 
(,?U r r, I (q1{#4 _' Tr.'- ) )']

= rim Ef t u(u\u(u\((l/+r) moduk-rmoduk)
Lt_+us Lr?.r'' "''\ uK uK /

/ (N + r) mod trk r mod uk\ I
\-----;-))

: urT"",I fi# ('nr moa t''')o) (t - " i:lJ? ''-)

- ; s(u)rrlu) (lr -oa (u, u)k) (, _ l/ mod (u. u)k\

,-*-*lt. rlr \'" "'-* '*" ' ./ \ --T;if- )
=:4P(.nr-oa"-) ('-tt#4) 1,I(' fr) (4 1b)

where in the last line, we have applied Lemma 4.4 to

H(n): Hw(n),: (ro mod nk) (r - 
t 

1?o "-)
Let

tl^\.- lufu)lr,,).- ilr_H
Then / is multiplicative, and moreover the following conditions hold:

①平留≠<∞
: い)平旦守」<∞

;

0花Ψ <鳴  0シノ≠‐
Indeed,by deinitiOn,

ズ勁=毒 =洗;ズめ=叩 =2け
Therefore,

平留≠=Σ雨≒万<∞
,

平
旦学工=Σ満 <∞

,

which pro、res(i)and(ii)・ The Series in(iii)iS O Since∫
(Pι )=0,(ι =2,3,… .)。 (iV)iS

obvious dnce/お podtiVe.Since/sajdes(i)←V),the mean ttlue M『l eXiSts and is
non―zero(see[1司 ).MOreOVer,by[43,Lemma VH.1.6],

NII『]=II(1+ノ (p)-1_∠皇1)=II(1-:)(1+」
手]ち

)・
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°°
{χ }(1-{″ })

″1/た +1

where {r} denotes the fracti,onal part o.f r.
Note that

Ettr(' N)t2l : ll (r- +) i t,, ) { +} (' - {+})"r i \ pr),2" 'lnr) \ tn*)/
Consequently, Proposition 4.7 gives us the main result of this section.

Theorem 4.8.

((2-力 )

Proposition 4.7. ,4s N -+ oo,

」塩Ⅳ~1/た
E[IT(″,Ⅳ)121=

It remains to calculate

Lemma 4.9.
1t
EJ,

山+0),

(27)11「 (力 )Sin兌

√

九

１

一
た

ノ

Ｍ

ノ
ｔ

Ⅳ〓

ヽ

―

ノ

ー

＞

リ

Ⅳ
一瀞
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ヽ

ｔ
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／

ｒ

ｔ

ヽ

ヽ

ｔ

ｒ

ノ

Ⅳ
一が
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り

ヽ
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］
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椰

血

ヽ
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‐

′
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＼

、

′

ノ

■

ノ =:Cた 。

the Proposition 4.7.

ξ(2-力 )
∞

{″ }(1-{″ })
αχ=

χ1/た+1
(2π)1~l「 (力 )Sin,

一{″})iS as followsProof. The Fourier series of the function {z}(1

{″}(1{″})=:一 争ЁΨ
η=1

=争
(手

一
ゞ L堅

翌

1,三

二

)

=争を生帯鰐望卜ecause
=二こ中・

Terllll、vise integration yields that

′

一６
〓

１
一′

∞▼ん
祠

:プF°

{∬ }(1~{″ })αχ=:υ
(°

°
ttЁ

tt・

i:三
二

:|≒Tご
χ

=:ら
,1争ズ

°°
ti留ドα″

=:争二十ズ
∞
だ碁輸解

=:ん二森ズ
∞
済の

=耳」色理「(:.アI力 :肯
:[争
αν)((2-l).
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lVe here note that fl・ om a formula ∫∫
°塾

〕群
笙α

"==函マ号ヂ嘉+≡戸
(0<包 <2,υ >0)

:プ|∞ 絆
dν =ノ

F° lν

一:-l Sin2 νごν

=ズ
∞

(―ν
-1)′

Sin2 ναν

=_ν  isin2ν lF_ノ|∞
(―ν一カ)2 sin ν cos ναν

=ズ
∞
Tの =紹為・

Substituting this into the above,、 ve have

:.li°

C{"}(1-{χ
})α″三

角 2「 (:)sin g:ξ (2-:)

c(2-力 )

(27)1 lΓ (l)Sin税
・

The prOOf is complete.                                                     □

In order tO prove Proposition 4.7,v″ e need the follo、 ving lemma.

Lernma 4。 10.Lθι{αη}η bθ α θθ名ヮiθ″sc9鶴 CηθC.PZt Sれ :=α l十・… +αη.ASSamc tんα;

ιんθ
"θ

θ
"づ

sts α θοηSιαηι c∈ C sacん ιんαι

汁→C αS Ⅳ→∞・       に1の

動θ2,力 r αην s C(0,∞ ),

ⅣS Σ霧給→:αS Ⅳ→∞・
η=Ⅳ

P印げ Let s"=Σιく″αι,(χ ∈R十 ),be an extension of sη as a function on R十 .clearly

hm.→∞ s″ ル =c・ First,祀 check the cOnvergence of Σ η許 ・ For Ⅳ ,M∈ N,_lV<χ
,

=け⇒ガflち
山絆十π}罫可

=け⇒ノキ井―寿ギ∵嘉+#糸・

“

・lη
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Tllis tells us that Σれ許 rお COnvergent.Next,lettil■gM→ ∞ in the above,and then

multiplying thiS by NS yield that

81

ⅣS思瀞=い⊃ⅣSf子丼 ポ暑¥

:(s*rl, ffi#-ffi?
From Lebesgue's dominated convergence theorem, the assertion follows immediately. n

Proof of Propositi,on 4.7 . Let us consider

i,,"){{} (' - {{})3,,,", lro J \^ \r* ) )
: t rr,){+} ('-{+}). t rht{+} ('-{#})

n<Nl/k 
"1"*J\ lnr)/ nfr,*"' Ln'J\ tn")/

:.F,*/(,) {#} ('-{*}) .'",T,_ #-N".n,r#
By Lemma 4.10,23 Ar→ ∞

,

Ⅳ

π澪 /ん

9=NVん
llA-7λ

声
‐

and

π耳/た

1:|)=N聯 (四十4う ,印

rv2 >, #: N'\/k (,*''*,'o-' t #) :111'\tk (#q *,(r)) . (4.1e)

n>r^vr/k \ n>Ntrk" /

It will follow from Lemma 4.7I and Lemma 4.I2 below that

t rh){4} ('- {*}) : ru'/* (rurtrtl l,* 
ttffi!)a'+otrr) e20)

,G,0" I n" J

The proof is complete by combining the estimates (4.18) (4.20). n

Lemma 4.LL, As ly' -+ m,

ηF/ん {#}(1{半 })=Ⅳ
▼た

(1/∞
量鵠轟型dχ十∝⇒

).

Proof. In the proof, we will us Euler-Maclaurin's formula: for any I eCr(la,b]), we have

Σ
体
α→=Ib岬"←4-→ 9。){+Ib←分一分は̈

諷 S十 ⇒f子 7″まヽ 面百:争
―

デギ:≒ 雫

9(・):={:羊 }(1-{::}), 
χ≫1・

Note that Euler-Maclaurin's formula still holds for functions which are continuous on [4, b]

and have continuous derivative except at finitely many points' Let

(4.21)
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Thenり cヽonthuou&Now,f(占
)1/た

<χ く(γ )1/た
br SOme podive mteger ι,then

and hence

p'(x):r(+-,) -ry+ - 4i : (r{+} - t) +' -\r* ")rk+r rfr+l \-[r*) ') 
14"+r'

It follows that g has continuous derivative except at finitely many points in any bounded
interval. For I € N,-L ( l/, by applying Euler-Maclaurin's formula to the function rp with
o: (+)t/r und b: Nrlk, and noting thar 9@) : gQ): 0, we obtain

=Ib{]|}(1-{f:})dχ +ブ
|♭ ({χ

}― :)(2{::}-1)井α"
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The pr00fis completeけ letting Ⅳ→∞.

Lemma 4。 12.スsⅣ → ∞
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Proof. Put

(χ ∈ R+)・

: o(Nr/k).



α二bα

η9し)― /bS090山十■の90-象の90・
Of course, the above formula still holds

except at finitely many points in [a,b].
b : Nr/k. Then by applying the above
noting that /(4,) : f (b): 0, we get

Given an 6' > 0, there exists an No
have

such

In addition,

lηJ/ん

αη
{i争 }(1-{#})

く
:Ar1/た

+:Ar1/た =ε Ar1/た 。

The lemma is proved.

Estimate of the ,L2-norm and limit points in /,2

Then it is not so difficult to check this formula; for g € Cl([o,b]),1 < a <b < oo, we have
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if p is continuous and has continuous derivative

Now, for,L e N,, < lr, let o: (f)t/k ur.a

formula to the function cp defined in (4.21) and

井α触

蝸 .If α>蝸 ,祀

=げ象→
(2{併}-1)井引

くε′ゴVん
i4b」
与d"    (because lS″ |く ε′χ)

=響。A・ l―ド科り
く響計1

=響
(弁)°

刊ル

=♂Ⅳ聯占ル性

23α
η
{i斜 }(1-{ギ:})

where c=sup αη <cЮ .Now,given ε>0,choose an Z such that c/Z1/た <ε/2.Next,
choose ε′satおいng♂吾[Z(た

1)/た <ε/2.Then there e対 sts an tt aS abOve.For Ⅳ bdng

hrge enough such that α=(γ )1/た
>‐lVO,we hⅣe

く Cν =C(1:)1/た ,

□
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Let

玲0-議賓州=洗とい+→―島)・

By Theorem 4.8,limN→ ∞ EIlyAr121=cた >0.■ ol■■this,we mv expeCt thtt the sequence

{ンうv}N COnК rges in distribution.We could not proК  this yet.However,considering the

L2_lilnit,、 ve get the folloM″ ing result.

Theorem 4。 13.{yyV}N=1,2,… んαS nο れmtt pοれιjη L2(2,λ ).

Lemma 4.14.乃 rf″ Cご 2■
rcN,

爵吼 ElyAfyA7]=0・

Pηげ Similarly as in showing the equality(4.15),by uSing Lemma 4.3 and Lemma 4.4

again,、ve ha■ 7e

ЦttЪ 切軍Ъ刷 =鳳 EK忍バo伴弓 評 二
鰐 ギ ))

×
(凛μO絆墜

饗
些 生―型

半
二

))|

=鳳 ΣД→嵐→EI(堕学型―■μ)
し,υ くび

×(  ―ギ 月
=J吼しΣ響響Jf・f,N頓しの

=ゑ器 助,M仏→

=2Ψ″工<→寡←弁)'

、vhere

動 ,ⅣO‐ ((M modめ
∧O modηり ←

―些 型 堕
半

堕 些 金
)

is a bounded functiOn. It is easy to see that

Oく If71f,N(2)く HN(η),  ∀η∈N・

Thus,

0く E陥 玲 ]=χ ▼幼Ⅳv幼
こ

Ψ
輸 'NO寡 ←

―
弁 )

くνv幼Ⅳv瀦こΨ輸0嘉←―紛



4.4. Mean square convergence rate

=脇蒜こΨ輸0寡←―紛
=f基:E‖玲向→O as χ→∞.

The lemma is proved.                                         □

Pηげ げ 動 θθκ鶴 4.13.For O<Ⅳ <M,we consider

EI11lY― ンらv2]=E[ンlv12]+EIンらv21_2E[ンらvy/vI.

From Lellllna 4.14 and Theoren1 4.8,it fol10ws that

靭吼
EI聯 ―玲 向=E]玲 句+α >Q>0.

This implies that{1lv}Ⅳ  has no limit point in Z2(2,入 ).The theorem is proved.   □

Rcmα 7・ A・ 4.15.Since{|lyArl12}N iS bOunded,the sequence of probability measures{λ 0

1気Fl}N On R iS tight.Therefore,for any subsequence{場 }′
there exists a subsubsequence

{N:}such that{入 o ll勇
1}′

 C° n、rerges weaklyЪ  or{16Y;}′  COnverges in distribution.

4.4  ⅣIean square convergence rate

Recall that since χ(2)is multiplicative and X(2)∈ D9fOr all lく 9<∞ ,■ (χ (η))=
χ(χ )fOr all lく 9<∞ .In particular,場 (χ (2))=X(")・ Property(i)of■ (SectiOn 3.2)
ilnplies that for each Ar∈ N,

乃鰤0-島)=鰤0-轟
)・

Thus,by the isollnetric of島 ,lVe get the following result.

Len■ lna 4。 16.Fθ r cα c71 Ar∈ N′

鳳 舟Ё (S・
0島 )2=EI(鈴

―
島 )21. 四

The convergence(4.22)together with the estimate in Theorem 4.8 gives us the estimate

of the mean square convergence rate,namely;

Corollary 4.17._4s Ar_→ oo,

爵吼券Ё(Nけ
)0-轟

))2～
QⅣ 7亀

υんθtt θん,stんθ cθ nstαηιづη Tllθθ
“

鶴 4.8.
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