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Preface

The theory of almost periodic functions, established by H. Bohr, may be considered from
two different points of view. On the one hand, an almost periodic function is a continuous
function possessing a certain structural property which is a generalization of pure periodic
functions, and on the other it is the limit of trigonometric polynomials under the uniform
norm.

Corresponding to the two different points of view, further development of the theory
of almost periodic functions to generalize this theory went in two different directions. The
first direction was developed by W. Stepanov and H. Weyl, which led to two important
classes of almost periodic functions: Stepanov almost periodic functions and Weyl almost
periodic functions. :

The second direction of generalizations was that followed by A.S. Besicovitch. Besi-
covitch enlarged the class of almost periodic functions by considering the convergence of
sequences with respect to some Besicovitch ¢g-(semi)norm (1 < g < 0o) rather than uniform
convergence. Here the Besicovitch g-norm of a function f: R — C is defined as

1 T 1/q
Il o= timsu (5 [ iscopar)

Then a function is called Besicovitch almost periodic function if it is a limit of trigonometric
polynomials under some Besicovitch g-norm. Besicovitch almost periodic functions look
like random variables because they possess mean values and limit distributions. On the
other hand, like periodic functions, they have “Fourier series” in the form of a general

trigonometric series
t) ~ E amettmt.

For arithmetical functions (functions defined on N), a function f: N — C is called
Besicovitch almost periodic arithmetical function if it belongs to the linear closure of
{€q : @ € R/Z} under some Besicovitch ¢-(semi)norm (1 < g < o0)

1 N 1/q
[£llg := limsup (N ; If(n)l"> :

where e, stands for the function ey: n — e>™@", Besicovitch almost periodic arithmetical
functions also have mean values, limit distributions and “Fourier series”.

This research is to study particular classes of Besicovitch functions: Besicovitch almost
periodic functions with Fourier exponents belonging to a Dirichlet sequence and Besicov-
itch limit-periodic arithmetical functions. We will present recent results on the following
problems.

(1) Constructing probability spaces where Besicovitch functions in these classes can be
considered as random variables.

iii



iv Preface

(2) Convergence of Fourier series.

(3) Some applications: value distributions of general Dirichlet series; natural extensions
of additive/multiplicative arithmetical functions, and the distribution of k-th power
free integers.

This thesis is mainly taken from the author’s five papers ([10, 11, 12, 13, 14]), and is
divided into two parts corresponding to two classes of Besicovitch functions.

Part I deals with Besicovitch almost periodic functions, that is, functions f: R — C
which belong to the closure of trigonometric polynomials under some Besicovitch g-norm
(1 € g < 00). In this case, the mean value of a function f is defined as

provided that the limit exists, and the limit distribution is the probability distribution on
C to which the sequence of probability measures

ve{r: f(r) e A}, A e B(C),

converges as T — oo, where v denotes the uniform probability measure on [—T, T).
For every Besicovitch almost periodic function f, the mean value

a(X) = M{f(H)e~) = Jim o / F(t)e

exists for all A € R, and those A for which a()) is non-zero are at most countable, called
the Fourier exponents of f. The formal series

£ ~ 3 a(Ne

A

is called the Fourier series of f.
In Chapter 1, we study Besicovitch almost periodic functions with Fourier series of the

forms
m .
f(t) ~ Z ame—z)\mt7
m=1

where {A\;,} is a strictly increasing sequence of non-negative numbers tending to infinity,
called a Dirichlet sequence. We will construct a suitable probability space where these
functions f can be extended to random variables. For these functions, their Fourier series
are shown to be convergent in norm with the usual order (1 < ¢ < oo). This result is
similar to the convergence in norm of classical Fourier series. Besides, a version of the
Carleson-Hunt theorem is investigated.

Chapter 2 concerns with general Dirichlet series of the form

[o0]
Z ame M. s=o0+it € C,

where a,, € C, and {\,,} is a Dirichlet sequence. Suppose that the above series converges
absolutely for ¢ > o, and has the sum f(s). Then f(s) is an analytic function in the
half-plane D :={s € C:0 > g,}.
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Assume that the function f(s) is meromorphically continuable to a wider half-plane
Dy :={s€C:0>0p},00 < 0, and satisfies some mild conditions. Then for fixed o > oy,
f(o +it) is a Besicovitch almost periodic function with the Fourier series

o @)
flo+it) ~ Z ame ‘T Amt
m=1

Thus the limit distribution of f(o + it) is well identified by using the probability space
developed in Chapter 1. Moreover, using this probability space, we can also identify limit
distributions of general Dirichlet series in the space of analytic functions and in the space
of meromorphic functions.

Part II deals with Besicovitch limit-periodic arithmetical functions, that is, functions
f: N — C which belong to the closure of periodic functions under some Besicovitch g¢-
norm. The mean value of a function f is defined as

and the limit distribution is considered as follows; if the limit

N k
o1 . . 2
A}gnooN;exp(zsRef(n)+ztImf(n)), (s,t) € R?,

exists and it coincides with the characteristic function of some probability distribution
on R? = C, then we call it the limit distribution of f. Note that the space of periodic
arithmetical functions is spanned by {eq/, : 7 =1,2,...,1 < a < r,ged(a,r) = 1}. Thus, a
limit-periodic arithmetical function f is a Besicovitch almost periodic arithmetical function
with the following Fourier series

f(n) ~ Z ca/rea/r(n)a

reN;
1<a<r;(a,r)=1

where ¢,/ := M[f(n)eq/,(n)] and (a,r) denotes the greatest common divisor ged(a,r) of
a and r.

Let D9 denote the space of ¢-limit-periodic arithmetical functions and let D? be the
quotient space of D9 with respect to the null-space N(D7) := {f € D9:||fllq =0}. Let
7 be the ring of finite integral adeles with its normalized Haar measure .

In Chapter 3, (Z, B(Z), \) is shown to be a good probability space where limit-periodic
arithmetical functions can be considered as random variables. In fact, every function in
D9 can be extended to a random variable in Lq(i, A). The limit distribution of the original
function coincides with the distribution of the extended random variable. In addition, the
space D7 is isometrically isomorphic to LI(Z, X).

Dealing with the problem of convergence of Fourier series, for each n € N, we define a
finite Fourier expansion of a function f € D? as

Sn(f) = Z (f, ea/r> €a/r-
rln;
1<agry(a,r)=1

Then our result is that, for 1 < g < o0,

1S2(f) = flly =0 as n—0inZ feD.
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This gives an approximation for limit-periodic arithmetical functions by periodic arith-
metical functions. The natural extensions of additive and multiplicative arithmetical func-
tions will be considered at the end of this chapter.

Chapter 4 deals with the distribution of k-th power free integers. Let X (*)(n) be the
indicator function of the set of k-th power free integers, that is,

: k
& .. J 1, (Vp:prime, p*{n),
X (n) '_{ 0, (3p:prime, p* | n).

Then X®)(n) is a multiplicative limit-periodic arithmetical function. The mean value of
X®)(n) exists and it is equal to

1 & 1

where ( is the Riemann zeta function. Using a result in Chapter 3, we extend X &) (n) to a
random variable on the probability space (Z, B(Z), A) in a natural way. Then investigating
the rate of L?-convergence of

we obtain the following result

. LYY
s 35 (v (1m0 ) ) om0

Note that a conjecture that

1
Ve>0, N (555’(7;1) - c_(k_>> =0 <N1/2k+5) . N o oo,

has not been proved yet. Our result may be called as a mean square version of this
conjecture.
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Notations and symbols

xi

Notations and symbols

A:=8B

=

d
—

L4
_)
alb
L.H.S.
R.H.S.
ii.d.
w.I.t.

ged(a, b)
lem(a, b)
vV—1ori

B(S)

E®P)[X]

1 £l a(x.,B:m)

A is defined by B (B =: A as well).
weak convergence of probability measures.

convergence in distribution of random elements.

convergence in L9,
b is divisible by a.
left-hand side.
right-hand side.
independent and identically distributed.
with respect to.
almost everywhere.
almost surely.
{1,2,...}, the set of all natural numbers.
{..,=2,-1,0,1,2,...}, the set of all integers.
the set of all rational numbers.
the set of all real numbers.
the set of all complex numbers.
the greatest common divisor of a and b.
the least common multiple of a and b.
the imaginary unit.
the Borel (o-)field of a topological space S.
T N

1T .1 .1
lim — f(t)dt, or Thm T/ f(t)dt, or A}gnooﬁz:f(n),

T—o0 2T -T

the mean value of function f.

the mean (expectation) of random variable X, (the probability
space is clear in the context).

the mean (expectation) of random variable X with respect to the
probability measure P.

1/q
(/le(fv)lqdm(ﬂf)> (IIfllie or [fllLacxm) as well), where

(X, B, m) is a measure space.



Chapter 0

Preliminaries

0.1 Convergence of probability measures

0.1.1 Weak convergence in metric spaces

Let (S, p) be a metric space and let B(S) denote the Borel o-field of S. Let {Pp}nen and
P be probability measures on (S, B(S)).

Definition 0.1. We say that {P,} converges weakly to P as n — oo, and write P, = P,
if for all bounded continuous functions f: S — R,

lim fdPn—/fdP.
S

n—oo

Since two probability measures P and Q coincide if [ fdP = [¢ fdQ for all bounded,
uniformly continuous real functions f, it follows that the sequence {P,} cannot converge
weakly to two different limits.

The Portmanteau theorem provides useful conditions equivalent to weak convergence.

Theorem 0.2. The following five conditions are equivalent:
(i) Prn=P;
(ii) [ fdPn — [4 fdP for all bounded, uniformly continuous f;
(iii) limsup, Pn(F) < P(F) for all closed F;
(iv) liminf, Py(G) = P(G) for all open G;
(v) Pn(A) = P(A) for all P-continuity sets A. Here a P-continuity set is a set A whose
boundary DA satisfies P(0A) = 0.

This is Theorem 2.1 from Billingsley [4].

Let (S',p') be another metric space and let B(S’) be the Borel o-field of S’ We
consider a measurable (or B(S)/B(S’)-measurable) mapping h: S — §’, that is, a mapping
h satisfies

R~U(B(S") C B(S).
Then each probability measure P on (S, B(S)) induces on (S’, B(S")) a probability measure
Ph~! defined by Ph~1(A4) = P(h™'A), A € B(S’). Let Dy, denote the set of discontinuities
of h. Then D, € B(S) and we have the mapping theorem.

Theorem 0.3. If P, = P and P(Dy) = 0, then P,h ! = Ph~l. In particular, if
h: S — § is continuous and Pn, = P, then P,h~! = Ph™L

This is Theorem 2.7 from Billingsley [4].
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0.1.2 Convergence of random elements

A mapping X from a probability space (§2, F,P) to a metric space (S, p) is said to be a
random element if it is F/B(S)-measurable, that is,

X~ HB(S)) C F.

An R-valued or C-valued random element is usually called a random variable. The distri-
bution of X is the probability measure Px = PX ™! on (S, B(S)) defined by

Px(A) =P(X !'A)=P(w: X(w) € ) =P(X € A).
Let { X, }nen and X be random elements.

Definition 0.4. We say that the sequence { X, } converges in distribution to X, and write
Xn Ny's , if the sequence of distributions {Px, } converges weakly to Px as n — oo.

If X and Y are S-valued random elements defined on the same probability space
(Q, F,P), then it makes sense to speak of the distance p(X,Y). In the sequel, let (S, p)
be a separable metric space. Then p(X,Y") is a random variable.

Definition 0.5. We say that the sequence {X,} converges in probability to X if for every
e >0,
lim P(p(Xn, X)>¢) =0.

n—o0

Theorem 0.6. The convergence in probability implies the convergence in distribution.
This is a consequence of Theorem 3.1 from Billingsley [4].

Theorem 0.7. Let {Yy, }nen, { Xk tken and {Xin bk nen be S-valued random elements. As-
sume that

(i)
Xin 4, X as n— oo;
(ii)
X X as k- Qs
(iii) for every e > 0,

lim limsup P(p(Xgn, Yn) =€) =0.

k—00 n—oo

ThenYni>X as n —r 00.

This is Theorem 3.2 from Billingsley [4].

0.1.3 Weak convergence in R¢ and characteristic functions

The characteristic function (7) of a probability measure P on (R?, B(R?)) is defined by

<,0(z)=/ ei(z&)dP(QL
Rd

where (7,z) denotes the inner product of 7 and z in R?. Note that the characteristic
function ¢ uniquely determines the probability measure P.
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Theorem 0.8. Let {P,} and P be probability measures on (R4, B(R?)) and let pn(1) and
@(1) be the corresponding characteristic functions. Then P, = P, if and only if

on(T) = (1) for all T € R%

The following theorem is Lévy’s famous continuity theorem.

Theorem 0.9. Let {P,} be probability measures on (R% B(RY)) and let pn(1) be the
corresponding characteristic functions. Assume that

on(1) = @(1) for all T € RY,

and that o(1) is continuous at the point T = (0,...,0). Then there is a probability measure
P on (R, B(RY)) such that P, = P, and p(1) is the characteristic function of P.

Proofs of these theorems can be found in Section 29 of Billingsley [4].

0.1.4 Weak convergence in topological groups and Fourier transforms

A measure P on (S, B(S5)), S being a compact topological space, is said to be regular if
for every € > 0 and every E € B(S), there is a compact set M and an open set U with
M Cc EcU and P(U\ M) < ¢. It is known that if S is metrizable, then any probability
measure on (S, B(S)) is regular. Let G be a compact topological group. A measure P on
(G, B(G)) is said to be invariant if

P(A) = P(zA) = P(Ax)

for all A € B(G) and all * € G, where zA and Az denote the sets {zy : y € A} and
{yz : y € A}, respectively.

Theorem 0.10. Let G be a compact topological group. Then there is a unique invariant
reqular probability measure my on (G, B(G)), called the normalized Haar measure.

Now let G be a locally compact abelian group. Let G denote the collection of all
continuous homomorphisms of G into the unit circle v = {z € C : |z| = 1}. The members
of G are called the characters of G. Under the operation of pointwise multiplication of
functions, G is an abelian group. With the compact open topology, G becomes a locally
compact abelian group.

We have the following results (see also Walters [46, Section 0.7] and its references).

(i) G is compact, if and only if G is discrete.

(ii) (Duality theorem). (G) is naturally isomorphic (as a topological group) to G, the
isomorphism being given by the mapping G > g — X, where X (x) = x(g) for all
x € G.

(i) If G1,Go are locally compact abelian groups, then GS<\GS = G x Gs. (Here
“x” denotes the direct produg\t.) Hence all characters of G x G, are of the form
(g,h) — x(g)d(h), where x € G1,6 € Ga.

(iv) If I is a subgroup of G, then
H={geG:x(g)=1vxel}

is a closed subgroup of G and (CT/T{ )=T.
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(v) If H is a closed subgroup of G and H # G, then there exists a character y € G, x # 1
such that x(h) =1 for all h € H.

(vi) Let G be compact. Then finite linear combinations of characters are dense in C(G),
the space of complex-valued continuous functions on G. The members of GG form an
orthonormal basis for L2(G, m).

We get back to the case G being compact abelian group. The Fourier transform of a
probability measure P on (G, B(G)) is a function defined on the characters group G,

o(x) = /G \(@)dP(g). x€G.

By the property (vi) above, it is clear that g(x) uniquely determines the probability
measure P. Let yo denote the trivial character of G, the character that is identically
equal to 1. Then the Fourier transform of the normalized Haar measure myg is as follows

_ _ 17 ifX=X07
900 = [ xaim() = {0’ i

We have the following continuity theorem.

Theorem 0.11. Let G be a compact abelian group. Let {P,} be probability measures on
(G,B(G)) and gn(x) be the corresponding Fourier transforms. Assume that

gn(x) = g(x) for all x € G.

Then there is a probability measure P on (G, B(G)) such that P,, = P, and g(x) is the
Fourier transform of P.

This is a special case of Theorem 1.4.2 from Heyer [23].

0.2 Ergodic. theory

0.2.1 Discrete time

This section is taken from Chapter 1 of Walters [46].
Let (X, B, m) be a probability space.

Definition 0.12. (i) A transformation 7: X — X is said to be measurable if T"1(B) C
B.

" (ii) A transformation T: X — X is said to be measure-preserving if T is measurable
and m(T~!B) = m(B) for all B € B.

Let T: X — X be a measure-preserving transformation. If T='B = B for B € B, then
also T71(X\B) = X\ B and we could study T by studying the two simpler transformations
T|p and T|x\p. If 0 < m(B) < 1, this has simplified the study of T If m(B) = 0 (or
m(B) = 1), we can ignore B (or X \ B) and we have not significantly simplified T since
neglecting a set of zero measure is allowed in measure theory. This raises the idea of
studying those transformations that cannot be decomposed as above and of trying to
express every measure-preserving transformation in terms of these indecomposable ones.
The indecomposable transformations are called ergodic.
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Definition 0.13. Let (X, B, m) be a probability space. A measure-preserving transfor-
mation T of (X, B, m) is called ergodic if the only members B of B with T~ B = B satisfy
m{(B) =0or m(B) = 1.

There are several other ways of stating the ergodicity condition and we present some
of them in the next two theorems.

Theorem 0.14. If T: X — X is a measure-preserving transformation of the probability
space (X, B,m), then the following statements are equivalent:

(i) T is ergodic,

(ii) the only members B of B with m(T " 'BAB) = 0 are those with m(B) = 0 or
m(B) = 1, where T"'BAB = (T7'B\ B)U(B\ T 'B);

(ili) for every A € B with m(A) > 0, we have m{US>_ T "A) =1;

(iv) for every A, B € B with m(A) > 0, m(B) > 0, there exists an n > 0 with m(T""AN
B) > 0.

Theorem 0.15. If T: X — X is a measure-preserving transformation of the probability
space (X, B, m), then the following statements are equivalent:

(i

T is ergodic;

(ii) whenever f is measurable and (f o T)(z) = f(z),Vz € X, then f is constant a.e.;
= f(z) a.e., then f is constant a.e.;
(iv) whenever f € L*(X,m) and (f o T)(x) = f(x),Vz € X, then f is constant a.e.;

)

) (
(ili) whenever f is measurable and (f o T)(z)
) )=

) =

(v) whenever f € L2(X,m) and (f o T)(z) = f(z) a.e., then f is constant a.e.

These are Theorem 1.5 and Theorem 1.6 from Walters [46].
Now we consider a rotation T'(x) = az of a general compact group G. The measure
involved is the normalized Haar measure mpy on B(G).

Theorem 0.16. Let G be a compact group and let T(z) = az be a rotation of G. Then
T is ergodic, if and only if {a™}32 _ is dense in G. In particular, if T is ergodic, then
G is abelian.

This is Theorem 1.9 from Walters [46].
The following is the well-known Birkhoff ergodic theorem. The proof can be found in
Walters [46, Theorem 1.14].

Theorem 0.17. Suppose that T: (X, B,m) — (X, B, m) is measure-preserving (where we
allow (X, B,m) to be o-finite) and f € L'(X, m). Then

-3 AT @)
k=1

converges almost everywhere to a function f* € LY(X,m). Also f*oT = f a.e., and if
m(X) < oo, then [ f*dm = [ fdm. In particular, if T is ergodic on a probability space
(X,B,m), then for all f € LY(X,m),

— k — -
nh_}n;oanT /fdm, m-a.e. x € X.
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0.2.2 Continuous time

Let (X, B, m) be a measure space.

Definition 0.18. An automorphism of the measure space (X, B,m) is a one-to-one map-
ping T of the space M onto itself such that for all A € B we have TA,T"!4 € B and

m(A) = m(TA) = m(TLA).
The measure m is said to be an invariant measure for the automorphism 7.

Definition 0.19. An endomorphism of the space X is a surjective (not necessarily one-
to-one) mapping T of the space M onto itself such that for all A € B we have T4 € B
and

m(A) = m(T71A).

Definition 0.20. Suppose {T"} is a one-parameter group of automorphisms of the mea-
sure space (X,B,m), t € R, that is, T**%(z) = T*(T?(x)) for all t,s € R and z € X. Then
{T*} is said to be a flow if for any measurable function f(z) on X, the function f(T%z) is
measurable on the Cartesian product X x R.

The measurability condition appearing in this definition may also be stated in the
following (equivalent) form: the mapping ¢¥: X x R — X given by the formula 9 (z,t) =
Tz is measurable.

Definition 0.21. Suppose {T"} is a one-parameter semigroup of endomorphisms of the
measure space (X,B,m), t € Ry = {s : s > 0}, that is, T""(x) = TYT*(z)) for all
t,s € Ry and z € X. Then {T"} is said to be a semiflow if for any measurable function
f(x) on X, the function f(T"z) is measurable on the Cartesian product X X R,.

We have introduced four fundamental objects studied in ergodic theory: automor-
phisms, endomorphisms, flows and semiflows in measure spaces. Further the expression
“dynamical system” stands for any of these objects. The measure space itself is said to
be the phase space of the dynamical system.

Definition 0.22. The measurable function g is called invariant with respect to the au-
tomorphism 7' (endomorphism T, flow {T"}, semiflow {T*}) if for all z € X, we have

9(Tz) = g(z) = (T 'z)
(9(Tz) = g(),

g(T'z) = g(z) for all t € R,
g(Ttz) = g(z) for all t € Ry).

In other words, an invariant function assumes constant values on every trajectory of
the dynamical system, that is, an invariant function is a function on trajectories.

Definition 0.23. The set A € B is said to be invariant with respect to the automorphism
T (endomorphism 7', flow {T"}, semiflow {T*}) if its indicator 14 is an invariant function.

In the case of an automorphism T, the invariance of the set A means that TA = A =
T-1A; in the case of an endomorphism T or a flow (semiflow) {T*}, the invariance means
that T~ (A) = Aor T 'A=Aforallt e R (t € R,).
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Definition 0.24. The measurable function g is said to be invariant mod 0 with respect
to the automorphism T (endomorphism 7', flow or semiflow {T"}), if

g(Tz) = g(z) = g(T 1z) almost everywhere

(9(Tz) = g(x) almost everywhere,
T

g(T'z) = g(z) for any t € R(Ry) for almost all z).

Lemma 0.25. If g is an invariant mod O function, then there exists an invariant function
g1 such that g = g1 almost everywhere.

This is Lemma 1 (p. 13) from Cornfeld et al. [7].

Definition 0.26. The set A € B is called invariant mod O with respect to the automor-
phism 7 (endomorphism T, flow {7}, semiflow {T*}) if its indicator 14 is an invariant
function mod 0 with respect to the automorphism 7' (endomorphism 7', flow {7}, semi-
flow {T7}).

Definition 0.27. A dynamical system on a probability space (X, B,m) is said to be
ergodic if the measure m(A) of any invariant set A equals 0 or 1.

Lemma 0.28. If a dynamical system is ergodié, then any invariant function is constant
on any set of full measure.

This is Lemma 2 (p. 14) from Cornfeld et al. [7].
Now assume that {g; : ¢ € R} is a continuous one-parameter subgroup of the abelian
compact group G. Such a subgroup defines a flow {T?} on G by the formula

T'x =gz, z€G.
It is obvious that this flow preserves the normalized Haar measure my.
Theorem 0.29. The following conditions are equivalent:
(i) the flow {T*} is ergodic;

(ii) the one-parameter group of homeomorphisms {Tt} is minimal, that is, for allz € G,
the trajectory {T'x : t € R} is dense in G.

This is Theorem 1’ (p. 99) from Cornfeld et al. [7].
The following is the Birkhoff-Khinchin ergodic theorem.

Theorem 0.30. Suppose that (X,B,m) is a probability space and f € LY(X,m). Then
for almost every (in the sense of the measure m) x € X, the following limits exist and are
equal to each other

n

n—1 n—1
Tm LS AT = T S AR = i o Y ST = ),
k=0 k=0

n—>002n+1]c

=—-n

in the case of an automorphism T; for almost every x € X, the following limit exists

n—1
Jim 23 f(T4) = £(),
k=0
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in the case of an endomorphism T'; for almost every x € X, the following limits exist and
are equal to each other

1 [t t t
lim ;/0 fTz)dr = tllglo% f(T Tz)dr = tlim 1 /_tf(TTac)dT =: f*(x),

t— 00 0 —o00 2t

in the case of a flow {T*}; for almost every x € X, the following limit exists

o1
lim —
t—oo t

/0 F(TTx)dr =: f*(2),

in the case of a semiflow {T*}.
Further f*(Tz) = f*(z) or f*(T'z) = f*(z) whenever the right-hand sides of these
equations exist. Morever

f*e LY X, m) and /f*dm:/fdm.

In particular, if the dynamical system is ergodic, then f* = [ fdm.

0.3 Martingales

This section is taken from Doob [8] and Durrett [9].

0.3.1 Conditional expectation

Let (Q, F,P) be a probability space and let G be a sub-o-field of F. In this section, we
only consider R-valued random variables. Let Y: (2, F,P) — R be an integrable random
variable. Then the conditional expectation of Y given G, denoted by E(Y'|G), is defined to
be any random variable Z that has

(i) Z € G, that is, Z is G-measurable, and
(i)
/ Z(w)dP(w) = / Y(w)dP(w), forall Aeg.
A A
It is clear that if the conditional expectation of Y given G exists, then it is unique P-almost
surely. Let us prove the existence of the conditional expectation. Since Y is integrable,
the function ¢ defined by

p(A) = /AY(w)dP(w), Aeg,

is o-additive on G and is absolutely continuous to the probability measure P. Thus, accord-
ing to the Radon-Nikodym theorem, there exists a G-measurable function Z satisfying (ii).
This proves the existence.

Now let {X;}ter be any family of random variables. Let G = o(X; : t € T) be the
smallest o-field of Q such that X;’s are measurable. Then the conditional expectation of
Y given {X;}ier, denoted by E(Y| X, t € T'), is defined to be

E(Y|9).

Ezample 0.31. (i) Y € G, then E(Y|G) =Y.
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(ii) Suppose that Y is independent of G, that is, for all B € B(R) and 4 € G,
P{Y e B}nA) =P € B)P(A).

Then
E(Y|G) = E[Y].

Here are some properties of the conditional expectation.

(i) Conditional expectation is linear:

E(aY + Z|G) = aE(Y|G) + E(Z|G).

(ii) f Y < Z, then
E(Y(9) < E(Z]9).

(iii) If Y, > 0 and Y, 1Y with E[Y] < oo, then
E(Y[G) 1 E(Y]G).

(iv) If ¢ is convex and E[|Y|], E[|¢(Y)|] < oo, then

p(E(Y]G)) < E(p(Y)(G).

(v) If G C Go, then
E(E(Y|G2)|G1) = E(Y|G1).

(vi) If Y € G and E[|Z|], E[|]Y Z|] < oo, then

E(Y Z|G) = YE(ZG).

(vii) Suppose E[|Y|?] < co. Then E(Y|G) is the random variable Z € G that minimizes
the “mean square error” E[[Y — Z|?].

0.3.2 Martingales, definition and convergence theorems

Let {F,} be a filtration, that is, an increasing sequence of sub-o-fields of F,
FiCFaC - CF.

We first consider the case of real-valued martingale. Let {X, }nen be real-valued random
variables. A sequence {X,} is said to be adapted to {F,} if X,, € F, for all n.

Definition 0.32. A sequence {X,},cy is said to be a martingale (suppermartingale or
submartingale) (with respect to JF,,) if

(i) E[[Xn[] < oo,
(i) {X,} is adapted to {F,},

(iii) E(Xn+1[Fn) = Xy, for all n (E(X11|Fn) < Xn or E(Xp 11| Fn) = X, for all n).
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Ezxample 0.33. (i) Consider a sequence {, } of integrable independent random variables
with E[¢,] = 0. Let
Xn=8+ -+,

and F, = o(£1,...,&n). Then {X,} is a martingale with respect to {F,}. Indeed,
the fact that E[|X,|] < co and X, € F, are clear. Let us check the condition (iii).
Since &,41 is independent of F,,, we have

E(Xnt11Fn) = E(Xn|Fn) + E(§nt1|Fn) = Xp + E[én11] = X
Here we have just used the linearity of conditional expectation and Example 0.31(ii).

(il) Consider a sequence {&, } of integrable independent random variables with E[¢,] = 1.
Let

anél"'gny

and F,, = 0(&1,...,&,). Then {X,} is a martingale with respect to {F,}. As above,
we need only to check the condition (iii). Using the property (vi) of conditional
expectation and Example 0.31(ii), we have

E(Xn—i—llfn) = E(Xngn-i-l’]:n) = XnE(§n+1l-Fn) = XnE[gn-H] = Xn.

Theorem 0.34. If {X,} is a martingale w.r.t. F, and ¢ is a convex function with
Ello(Xn)|] < oo for all n, then ¢(X,) is a submartingale w.r.t. F,,. Consequently, if
p =1 and E[|X,[P] < oo for all n, then | X,|P is a submartingale w.r.t. F,.

Theorem 0.35. If {X,} is a submartingale w.r.t. F, and ¢ is an increasing convex
function with E[|o(X,)|] < oo for all n, then ¢(Xy) is a submartingale w.r.t. F,. Conse-
quently, (i) if {Xy,} is a submartingale, then (X, — a)* is a submartingale; (i) if {Xn}
is a suppermartingale, then X, A a is a suppermartingale. Here a is a constant and
(Xp —a)t = max{X, — a,0}, X, A a = min{X,, a}.

These are Theorem 5.2.3 and Theorem 5.2.4 from Durrett [9].

Theorem 0.36 (Martingale convergence theorem). If X, is a submartingale with
sup E[X;I] < oo,

then as n — 0o, X, converges a.s. to a limit X with E[|X]] < oo.

This is Theorem 5.2.8 from Durrett [9].
An important special case of this theorem is the following.

Theorem 0.37. If X, > 0 is a suppermartingale, then as n — oo, X, = X a.s. and
E[X] < E[X)].

Theorem 0.38 (L? maximum inequality). Let {X,} be a submartingale and let

X, := max X7I.
" 1<m<n m

Then for 1 < p < oo,
p
% p
Bix7) < (L) Elon)
p
Consequently, if {Y,} is a martingale and Y} := maxi<men |Ym|, then

Byl < (L) Bivr
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Theorem 0.39 (L? convergence theorem). If {X,} is a martingale with sup E[|X,|P] <
oo, where p > 1, then X,, — X a.s. and in LP.

These are Theorem 5.4.3 and Theorem 5.4.5 from Durrett [9].

We now turn to the case of complex-valued martingales. The definition of complex-
valued martingale is the same as that of real-valued martingale. Note that {X, = U, +
iV, }, where U, and V;, are real, is a martingale w.r.t. {F,}, if and only if {U,} and {V,,}
are martingales w.r.t. {Fn}.

Theorem 0.40 (Doob’s martingale convergence theorem). Let {X,} be a (real or com-
plez) martingale. Then {| X, |} is a submartingale and we have the following.

(i) Iflimy oo B[| Xp|] = K < 00, then limy, o0 Xn = Xoo ezists a.s. and E[| X|] < K.
In particular, K < 00, if the X;,’s are all real and = 0 or all real and < 0.

(ii) The following conditions are equivalent:

(a) K < 00, and the random variables X1, Xa, ..., X constitute a martingale;
(b) the random variables X1, Xa, ... are uniformly integrable;
(c) K < and E[| Xxl|] = K;
(d) K < o0 and limg,_,00 E[| X — Xnl] =0.
(iii) If, for some p > 1,limy_,o0 E[|Xp[P] < oo, then the conditions of (il) are satisfied,

E[| Xx|P] < 00, and
lim E[|Xso — Xalf] = 0.
n—rod

Conversely, if the conditions of (ii) are satisfied and if E[| X« |?] < oo for some g > 1,
then
E[[ X5 |?] < E[[Xool]-

This is a part of Theorem 4.1 from Doob |[8].
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Chapter 1

Besicovitch Almost Periodic
Functions With Fourier Exponents
Belonging to a Dirichlet Sequence

1.1 Introduction

A function f: R — C is called Besicovitch almost periodic if it is a limit of trigonometric
polynomials under some Besicovitch g-(semi)norm (1 < ¢ < 00),

1 /T 1/q
= lims —/ t th) .
151 = timsup 5 [ 176)

Let B? denote the quotient space of the g-Besicovitch almost periodic functions (B9-a.p.
for short) with respect to the null space N9 = {f : || f||; = 0}. Then B? is a Banach space.
It is well known that Besicovitch almost periodic functions possess mean values and limit
distributions. Here the mean value of a function f is defined as

T

provided that the limit exists, and the limit distribution is the probability distribution on
C to which the sequence of probability measures

ve{T: f(r) € A}, A€ B(C),

converges as T — oo, where vr denotes the uniform probability measure on [T, 7.
For every function f € B9, the mean value

exists for all A € R, and those A for which a(\) is non-zero are at most countable, called
the Fourier exponents of f. The formal series

F() ~ D a(he
A

is called the Fourier series of f. Dealing with the problem of constructing trigonometric
polynomials approximating Besicovitch almost periodic functions in norm, Besicovitch
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and Bohr [3] showed that a Bochner-Fejér sequence of a function f does converge to the
function itself. Note that a Bochner-Fejér sequence contains trigonometric polynomials
whose exponents are the Fourier exponents of f.

Let A be a subgroup of Ry, the real line with the discrete topology. We consider the
space B(A) of Besicovitch almost periodic functions whose Fourier exponents belong to
A?

BYA):={feBl:a(A)=0if A& A}.

Let A be the dual group of A and v be the normalized Haar measure on A. Then the
spaces BY(A) and Li(A,v) are isometrically isomorphic under the isomorphism T, which

maps a B%-a.p. function
F£) ~ > a(N)e
A€A

to an LI(A, v) function T,(f) with the usual Fourier series

T,(f)(@) ~ > aX)xa(z),

AEA

where for A € A, xa(z) = z(A), (z € A) is a character of A. Moreover, the limit distribution
of f coincides with the distribution of T4(f).

The main aim of this chapter is to study Besicovitch almost periodic functions whose
Fourier series are of the forms

o0

Z z)\mt (1‘1)

m=1

where {\;,} is a strictly increasing sequence of non-negative numbers tending to inﬁgity7
called a Dirichlet sequence. Let A be a subgroup of Ry, generated by {A;,}, and let A be
the dual group of A with the normalized Haar measure v. Then the limit distribution of
f coincides with the distribution of an LI(A, v) function

Ty(f) () ~ Zamx 2 (@ (1.2)

For ¢ > 1, we will prove in this chapter that the Fourier series (1.1) converges in norm with
the usual order, which gives another way to approximate this kind of B?-a.p. function by
trigonometric polynomials. Equivalently, by the isometric property, the Fourier series (1.2)
converges in Lq(K, v) with the usual order. In addition, we will show that the Fourier
series (1.2) converges almost everywhere (with respect to v). This result is analogous
to Carleson’s theorem for classical Fourier series on [0, 2], and in fact is a consequence
of Carleson’s theorem in multi-dimensional case. However, to apply Carleson’s theorem
to our present case, we need to introduce another way to identify limit distributions of
functions of the forms (1.1), as we will see later.

1.2 General theory of Besicovitch almost periodic functions

Recall that if a function f is BY%-a.p., then the mean value

T—)oo

a(\) = M[f(t)e ™ = lim ﬁ/ Flt)e ™ ™Mdt



1.3. Probability space associated with Besicovitch almost periodic functions 17

exists for all real values of A\, and is non-zero only for at most a countable set of values of
A, say,
A1, A9y ...

Let an, = M[f(t)e”*=!]. Then
f(&) ~ Z ametm?

is the Fourier series of f.
Let us introduce an algorithm for the approximation of f by trigonometric polynomi-
als [3]. If 3’s are Q-linearly independent numbers, we consider Bochner-Fejér polynomials

1% v, .
O’(nl,ng,...,nk) (t) = Z (1 - ’—n—ll—l) st (1 — %) ame”‘mt,

B1.82,-.Bk << k
—n<vp<ng
where
Am =181+ + vpfBp,
and a,, is to be interpreted as zero when the above linear combination of 3’s does not

belong to the Fourier exponents of f. We will use the notation o(t) instead of the detailed
notation

B1,825--,Bk
Let a1, a9, ... be a sequence of Q-linearly independent positive numbers (which gen-
erally is infinite but in particular cases may be finite) such that every exponent A, may
be expressed as a finite linear form in the o’s with rational coefficients,

U(nl,ng,...,nk) (t)

Am =Tm 101 + m202 + -+ Tm g, O, -

We put
e ) _ %k
BI_NI!MBQ NQ!"”’ﬁk Nk;"
where Ni, N, ..., Ny are positive integers. The result on the approximation of B?-a.p.

function by Bochner-Fejér polynomials is as follows.

Theorem 1.1 ([3, Theorem II]). The sum op(t) converges to f(t) in the Besicovitch

g-norm, as k — oo, N1 = 00, No = 00,..., andﬁ—ll!—)oo, ﬁ—j!—»oo,....

Remark 1.2. A sequence of Bochner-Fejér polynomials
op,(t),08,(t), ...

is called Bochner-Fejér sequence if the basic numbers 31, ..., B¢ and the indices ny, ..., ng
satisfy the conditions of the above theorem.

1.3 Probability space associated with Besicovitch almost
periodic functions

1.3.1 Besicovitch functions whose Fourier exponents belong to a sub-
group

Let A be a subgroup of Ry, the real line with the discrete topology. We consider the space
BY(A) of Besicovitch almost periodic functions whose Fourier exponents belong to A,

BYA):={feBl:a(N)=0if AZA}

= the linear closure of {e** : X € A} with respect to the ||||; norm.
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The second identity follows from the convergence of a Bochner-Fejér sequence to the
function itself (Theorem 1.1).

Let A be the dual group of A. Since A is discrete, it follows that Aisa compact abelian
group. Thus, there is a unique normalized Haar measure v on A. For X e A, let x denote
the character of A which maps z € A to z(A),

X)\(I) = 'T()‘)v MAAS K

Then {xx}rea are the characters of K.A
For t € R, let e; be the element of A defined by

e:(A) =M, A e A

Then the mapping R >t +— e, € A is continuous, and hence is Borel measurable. Conse-
quently, probability measures v on (R, B(R)) induce on (A, B(A)) probability measures

Qr(A) =vp(t:e, € A), AeBQ).

Theorem 1.3. The sequence of probability measures {Qr} converges weakly to the nor-
malized Haar measure v as T — oo.

Proof. For any character x», (A € A) of JA\, it is clear that

1 T 1 T

Jxo@dere) = g [ otedt =gz [ N
1, ﬁA:Q
= ezAT _ e—z/\T . # 0’

2¢AT ’
—)/\X,\(zb)dl/(x) as T — oo.
A

Since the linear space spanned by the characters {xa}rea is dense in C’(K), the space
of continuous functions on A, the assertion of this theorem easily follows. (See also the
continuity theorem for probability measures on compact abelian group (Theorem 0.11).)

O

If A is dense in R, then {e;}cr are distinct. The only subgroups of R that are not
dense are isomorphic to the additive group of the integers. In this case, A is the classical
circle A = {z € C : |z| = 1}, e; = ezo1, for some Ty > 0, and {e;}rer = A.

Lemma 1.4. Unless A is a circle, the characters {et}ter are distinct and form a dense
one-parameter subgroup of A

Proof. Let S be the closure of {e;}icr. Obviously, Qp(S) = 1 for any T' > 0. Since the
set S is closed, it follows from the property of weak convergence that

v(S) =2 limsup Qr(S) = 1.

T—o00

Thus, the complement of .S, S¢ = A \ S is open and has v-measure zero, which implies
that S¢ = {) by the property of the Haar measure. The proof is complete. O

Theorem 1.5. Tt: A — A, (t € R), defined by T'(x) = xet, is an ergodic flow (with
respect to the Haar measure v).
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Proof. We need to verify the measurability of the flow {T"};cg. It is clear that the mapping

v:RxA—A
(t,z) — erx

is continuous (with respect to the product topology on R x A). Hence it is B(R) ®
B(A)/B(A)-measurable. Consequently, for any measurable function f(z) on A, the func-

o~

tion f(T'z) is B(R) ® B(A)-measurable.
The ergodic property of the flow {T*};cr, which is equivalent to the denseness of
{et}ter in A, follows (see Theorem 0.29). O

We construct an isometric isomorphism T7: BI(A) — Lq(K,y) as follows. For a
trigonometric polynomial p(t) whose exponents belong to A of the form

p(t) = Xja(/\)e“‘t7 (I : finite subset of A),
Ael

we define

T,(p)(z) =Y aMxa(@) € CA) C LUA,v).
A€l

Then it follows from the property of weak convergence that

17 LT
1 1 q
lim /A . p@"dt = lim 25 | |Ty(p)(er)|dt

= Jim_ /A T, () ()] 9dQr(z) = /A Ty (p) (@) v (),

and hence,
Hqu = HTq<p)“Lq(K,V)- (1.3)

Thus, T, can be continuously extended to an isometric mapping from BI(A) to Li(A,v).
Indeed, let f € BI(A). Then there exists a sequence of trigonometric polynomials {py},
whose exponents belong to A, which converges to f, that is, ||px — fllq = 0 as & — oc.
In particular, {px}x is a Cauchy sequence in BY(A). By (1.3), {T,(px)}+ is also a Cauchy
sequence in L(A, v), and hence, the limit limy_,o T, (py) exists in Lq(K, v). Let T,(f) :=
limg_y00 Ty(pi)- It is clear that Ty is well defined; moreover, it follows from (1.3) and from
the continuity of norms that

1fllg = 1 Te(N oy, € BUA). (1.4)

This implies that Ty is injective. On the other hand, 7T} is surjective since the linear space
spanned by the characters {xx}aea is dense in LI(K, v) and B?(A) is complete. Therefore
T, is an isometric isomorphism between BY(A) and LI(A,v).

Theorem 1.6. For 1 < q < o0,
BY(A) = LYA,v).

Theorem 1.7 ([17, Correspondence Theorem]). The isomorphism T, has the following
properties.

(i) Ty is a linear isometric mapping from BY(A) onto Lq(/A\, v).

(i) Ty(If]) = Ta(H)]-
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(iii) If 1/r = 1/p+1/q (r 2 1), and f € BP(A),g € BI(A), then Hélder’s inequality
implies fg € B"(A) and

T (f9) = Tpo(F)T4(9)-

(iv) If f has the Fourier series Y cp a(N)e™, then Ty(f), as a function in Li(A,v), has
the Fourier series

T,(f)(x) ~ > a(Axalz).

AeA

In particular, M[f] = E[Ty(f)].
(v) The limit distribution of f coincides with the distribution of Ty(f).
Proof. (i) and (iii) are clear. (ii) easily follows from the inequality ||a| — |b]| < |a — b| for
any a,b € C. (iv) follows from the fact that the convergence in BY or in L9(A, v) implies
the convergence of each Fourier coefficient.

To prove (v), let f € BY(A). Then there is a sequence of trigonometric polynomials
{pn} whose exponents belong to A converging to f with respect to the |-||; norm, say,

Tim flpn — £l = 0.
Let 6r: (Q,P) — [~T,T] be a random variable uniformly distributed on [-T,T]. We put

XT,n = pn(eT)-

Note that the distribution of Xr,, is the probability measure vrp,; . Thus, by the mapping
theorem (Theorem 0.3),

X1 5 Ty(pn) as T — oo, (1.5)

because Ty(pr) is continuous. Moreover, by the isometric property of T, T,(p,) converges
to T,(f) in L9(A,v), which implies that

T,(pn) -5 Ty(f) as n — oo (1.6)

In addition, for any £ > 0, using Chebyshev’s inequality, we have

- 11 7
- > < ~amr n - )
P(Xr = ¥rl > 9) < 2 [ lonlt) = Fl0)
where Y1 := f(0r), and hence,
~ 1
lim limsupP(| X1, — Y| 2 ¢) < = lim |p, — f|l1 = 0. (1.7)
n—=00 T o0 £ n—00

Therefore, by using Theorem 0.7, we get the desired result

YTi>Tq(f) as T — oo. O
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1.3.2 Besicovitch functions whose Fourier exponents belong to a Dirich-
let sequence

Consider a Dirichlet sequence { A\, },
0 A <A< Ay — 00,
and let

BY({A\n}) := the linear closure of {e~**"} with respect to the ||-||, norm.

Let A be a subgroup of Ry, generated by {\,,}, and let A be the dual group of A with the
normalized Haar measure v as in the previous subsection. Then the limit distribution of
a function f € B?({\;,}) with the Fourier series

oo
f(t) ~ Z ame—i)\mt’
m=1
coincides with the distribution of an L4(A, v) function
oy o~
Ty(f) ~ D_ amX-an € LU(A,0).

m=1

We now introduce another way to identify distributions of functions in B({\,}). Let
v ={s € C:|s| =1} be the unit circle on the complex plane, and let

[ ¢]
Q = H 77727
m=1

where 7, = v for all m € N. With the product topology and pointwise multiplication, the
infinite-dimensional torus € is a compact topological abelian group. For T > 0, we define
a probability measure Q1 on (2, B(Q?)) by

Qr(A) =vr(r: (e pen € A), A€ B(Q).

Z =P Znm,

meN

where Z,, = Z for all m € N. Then the dual group of €2 is isomorphic to Z and the dual
group of Z is isomorphic to Q. Each k = {k,, : m € N} € Z, where only a finite number
of k,, are non-zero, is identified with a character

w s Wk = l—[w(m)km
m

Let

of 2. Here w(m) is the projection of w € 2 onto ~,,. Conversely, each w € € is identified
with a character (k — w&) of Z.

Recall that for a probability measure Q on (€2, B()), the Fourier transform g(@ (k) of
Q is defined by

g (k) = E@ k) = / <Hw(m)km> dQ, ke Z. (1.8)
Q m

Then we construct the probability measure P on (2, B(2)) as follows.
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Theorem 1.8. There is a probability measure P on (Q, B(Q))) such that the sequence of
probability measures {Qr} converges weakly to P as T — oo. The Fourier transform of P
is given by

0, if %, Amkm # 0.

Moreover if {Am} is Q-linearly independent, then P coincides with the normalized Haar
measure on 1.

g(k) = {1’ if Zﬁzl Amkm =0,

Proof. The Fourier transform gr(k) of the measure Qr is of the form

oo T 00

1, if 7% Ak = 0,

= q exp{~iT 301 Amkm} —exp{iT 3500 1 Amkm} o0
f 1 Amk .
—2UT S, Amkm o 2y Ak 70

Hence, the limit
1, if S0 Amkm =0,
0, if >0 i Amkm #0,

exists for every k. The continuity theorem (Theorem 0.11) implies that there exists a
probability measure P on 2 such that {Qr} converges weakly to P as T' — oco. More-
over, g(k) is the Fourier transform of P. Now, if {A;,} is Q-linearly independent, then
Y ooo_1 Amkm = 0 holds iff k,, = 0 for all m. It then follows that P coincides with the
normalized Haar measure on {2. [

g(k) := lim gr(k) = {

Lemma 1.9. {w(m)}men is an orthonormal system in L*(Q, P), that is,

1, ifml = may,

E® [w(mﬂm} = {O, if m1 # ma.

Here E(P) denotes the expectation with respect to P.

Proof. Let my # mgy. Take k = {ky, : m € N} such that k,, = 1, ki, = —1 and the others
are zero. We have 3 > 1 Apkm = Am; — Am, # 0. Therefore

E®) [wim)w(ms)] = g(k) =0,
which completes the proof. O

The following theorem is similar to Theorem 1.7(v).

Theorem 1.10. Let f € BY({\,}) with the Fourier series
f ~ Zame‘i)\mt'
m
Then the sequence of probability measures

vp(r: f(r) € A), A€ B(C),

converges weakly to the distribution of f(w) ~ > amw(m) € LI(Q,P). Here f(w) ~
S amw(m) means that f belongs to the linear closure of {w(m)}men with respect to the
L1(Q,P) norm and

i = / F (@)@ (m)dP(w).
Q
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We are now in a position to characterize the dual group of A and the support of P.
Recall that A is a subgroup of Ry generated by {\,,}. Hence, the mapping

w: Z—=A
k= (km) = =Y Amkm
m

is an onto group homomorphism. Thus by the first isomorphism theorem in abstract

algebra,
A 2= Z/ker p.

Here kerp ={k€ Z:)  Ankm = 0} is a (closed) subgroup of Z. Let
K={weQ:wh=1forall k € ker p}.

Then K is a closed subgroup of €2, called the annihilator of ker p. The result on the
duality between subgroups and quotient groups ([42, Theorem 2.1.2]) gives the following.

Theorem 1.11. The dual group of A is isomorphic to the subgroup K of Q.

Since K is a closed, and hence a measurable subset of 2, the normalized Haar measure
v on K can be regarded as the probability measure P’ on Q defined by

P'(A) = v(ANK), AeB(Q).

Let us now calculate the Fourier transform of P’. First, by the duality, ker¢ is the
annihilator of K because K is the annihilator of ker ¢ ([42, Lemma 2.1.3]), or ker ¢ can

be rewritten as
kerp={k:wf=1forallwe K}.

This implies that a character k of 2, restricted on K, is the trivial character of K if and
only if k € ker p. Thus we obtain the Fourier transform of P/,

' 1, ifkek
Q(P)(E)=/wﬁdp’=/ w&d,j:{ , ifk € kerg,
Q K

0, otherwise.

It follows that P = P’ because P and P’ have the same Fourier transform. Moreover, by
the property of Haar measure, supp(v) = K. Hence supp(P) = K. Combining all the
above, we get the following.

Theorem 1.12. (i) supp(P) = K.
(ii) P|x = v, the normalized Haar measure on K.

1.4 Convergence results

1.4.1 Classical Fourier series

Let L9([0,27]) be the space of g-th power Lebesgue integrable functions f: [0,27] — C

endowed with the norm
1 2T 1/‘1
Ifll ao,27)) = <%/0 |f($)|qda:> )

For f € LY([0,27]), the Fourier coefficients a,, are defined by the formula

1 2w

an = 5= ; f(@)e ™ dz, ne€Z.
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Then the series

Theorem 1.13 ([26, Theorem I1.1.5]). For 1 < q < oo, the partial sums Sn(f) of any
f € LY[0, 27]) converge to f in LI([0,27]) as N — oo.

This theorem is equivalent to the following.

Theorem 1.14 ([26, Theorem II.1.1]). For 1 < ¢ < oo, there is a constant K, such that
for any f € L3([0, 2])
1Sn (F) | Laqo,2n)) < Kol fllzaco,on))-

Indeed, let Sy be a continuous linear operator on LI([0,27]) defined as f — Sy (f),
whose operator norm is denoted by [|Sy||q. Now if the sequence {Sn(f)} converges to f,
then {Sn(f)} is bounded for every f € LI([0, 2x]). Therefore, {||Sn||¢} is bounded by the
uniform boundedness principle. Conversely, assume that there is a constant K, such that
for any f € LI([0, 27]),

1SN (F)llzaco,2n)) < Kol Fllzaqo,2m))-

Let f € L%([0,2n]). Given any ¢ > 0, there is a trigonometric polynomial P(z) =
Yok bre*?® satisfying ||f — Pllraqo2n) < €/(Kq+1). For N greater than the degree of
P, we have Sy (P) = P, and thus

ISN(f) = fllzeqoam) = ISN(f) = Sn(P) + P — fllLa(o,2m))
< ISn(f) = SN (Pl ago,2n)) + 1P = FllLago.2n))

£ £
<K =
qKq+1+Kq+1

g,

which completes the proof of the equivalence between the above two theorems.

Carleson [6] showed that the Fourier series of an L?([0, 27]) function converges almost
everywhere. Later on Hunt [24] generalized this to LP([0,27]), (1 < p < oo). This result
is now known as Carleson’s theorem or the Carleson-Hunt theorem.

Theorem 1.15 (The Carleson-Hunt theorem). For 1 < g < oo, the partial sums Sy (f)
of any f € Li([0,2r]) converge almost everywhere to f as N — oo.

To prove this, we consider the maximal function

Mf(z) := ]S\TLL%ISN(JC)(QJ”)I'

The almost everywhere convergence is a consequence of the following maximal inequality.

Theorem 1.16 ([6, 24]). For 1 < ¢ < oo, there is a constant Cy such that for any
f € L0, 27]), we have
M1 ago,2m)) < Call fllLago,2a))-



1.4. Convergence results 25

The multi-dimensional version of this maximal inequality was investigated by Feffer-
man [16]. For our purpose, we only mention a special case of Fefferman’s result. Let
f € L9([0,27]%) with Fourier coefficients {ak}ezd, where d € N,d > 2 being fixed. For

v=(v1,...,v9) € (RT)Y we consider the maximal function
M® f(z) := sup ayeike) ’
b>0 peN-d
(kw)<b

Here N* = NU {0} and (z,y) denotes the inner product of z and y in RY,

(@)= 2y, z=(@1,....2a)y = (v1,---,va) € B

Lemma 1.17 ([16, 22]). For 1 < q < oo, for any v = (v1,...,v5) € (RY)? and any
f e L([o, 27,
IM £l agio.2m1¢) < Call £l aio,2m14):

where Cy is the constant in Theorem 1.16.

1.4.2 Convergence of Fourier series of Besicovitch almost periodic func-
tions

Recall that supp(P) = K is isomorphic to the dual group of A. K itself is a compact
abelian group and its normalized Haar measure v coincides with P|g,,np). A summable
function on K has Fourier series

fw)~ Y a(M)xaw).
AEA

For ¢ > 1, let HY(K,{\n}) (or H1(Q,{A\n})) be the subspace of LY(K,v) = LI(Q,P)
consisting of those functions f whose Fourier coefficients a(\) are zero except for A €
{=A1,=X2,...}. A function f € HI(K, {\,}) has Fourier series of the form

F@) ~ S amxoa, = 3 amew(m).
m=1 m=1

Next, we will establish the maximal inequality for functions in H9(2, {A,}). Let

M

Mf(w) := ;{uﬁ)

amw(m)’ .
1

m=

Theorem 1.18. For 1 < q < oo, and for any f € HY(Q, {\n}),

IMfllLagap) < Cyll fll e, p)s
where Cy is the constant in Theorem 1.16.
We need some preliminary results before proving Theorem 1.18.

Lemma 1.19. Let M € N and let {A\n}i1<cm<m be positive numbers. Then there are
Q-linearly independent positive numbers {up}1<p<p such that

{Mm}ti<ms<nm C @ N*pp.
I<p<P
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Proof. We prove by induction on M. Of course, there is nothing to do if M = 1. Assume
that this lemma holds for some M > 1. We now prove it for M + 1. Let {A\p }1<mear+1 be
positive numbers. By the induction hypothesis, there are Q-linearly independent positive
numbers {u,}1<p<p such that

{Am h<msm C @ N*pp.

1<pgP

Case 1: Apry1 is @-linearly independent with {up}hi<pcp. Simply set ppy1 = Apr41, we
obtain the desired result

*
PDmhicmem1 € P N,
1<p<P+1

Case 2: A\pr4q is Q-linearly dependent with {1y }1<p<p; namely there are rational numbers
{kp}lgpgp such that

P
Marer =Y kpiip.
p=1
Let Py = {p:k, >0} and Py = {p: kp < 0}. If Py =0, then

AM+1 € @ Q" pp,

1<psP

where Q* = QT U{0}. Thus with a suitable number N € N, by letting p, = (1/N)pp, p =
1,..., P, we get
Ayl € @ N*,u;,.

1€pgP

Clearly,

{)\m}lgmgMC @ N*;L;
1<pgP

Therefore this lemma holds for M + 1 if P, = . Next we consider the case Py # (). Let
p2 € Pa. It is enough to construct positive numbers {y,}1<p<p that

{1y} 1<p<p is Q-linearly independent,
{)‘m}léméM C @1gpgp Q*u;,, (1-9)
)\]W+1 = 25:1 k;)/”é)? k;) € Q, (p =1... 7P)7Pé = {p : k;;J < O} =P \ {p2}‘

To construct {uy,}1<p<p, let {rp}pep, be positive rational numbers satisfying
ZpePl p = —kp,,
0 <rp < kptp/tip,, PE P

The existence of {rp}pep, is ensured because

0<Aus1= 3 kot + D kpitp < > Kpptp + Ky iy
PEP pEP? pEP1

Let
ul — Hp — (Tp/kp)y‘pzv pE Pla
P Hp, P g 7Dl-
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Clearly, {1} 1<p<p is Q-linearly independent and

{nphicpcr € € Q'

1<pgP

Thus
{Amticmenm C @ N*up, C @ Q* 11y,

1<psP 1<pgP

Let us consider the representation of Aysy1 with respect to {u;,}1<p<p,

Mrer= Y kot + Y kppp = Y Eplip — (rp/kp)ups) + Y Fopp

PEP PpEP2 pEP pEP2\{p2}
=2 kept D ket
peP1 peP2\{p2}
Hence the sequence {11,}1<p<p satisfies the condition (1.9). The proof is complete. O

For each M € N, let Q3 = Hnﬂleym (with the product topology and pointwise
multiplication). €, is also a compact topological abelian group. The projection pras
from Q onto Q,; is continuous. Let Py :=Po pr;/fl. We can check that

1, if M_ Amk :Ov
1 Zm—l mim k(M) = (kl,...7kM) € @ Zm’

g (M) = : —
0, if Zrl\r/zlzl Amkm # 0, 1<msM

is the Fourier transform of P,,.
For the sequence {Am}1<m<ar, let {upti<pcp be positive numbers as in Lemma 1.19
and let {kyp} C N* be the coordinates of { A\, }1<m<ar With respect to {up}1<p<p, that is,

P
Am:kap,up, (m=1,...,M).
p=1

Let Q) = ]_[5:1 vp (with the product topology, pointwise multiplication) and let m/p be
the normalized Haar measure on Q. Define jpr: Q5 — Qar as

P
(W (P)1<p<p P (WM)1cmenr, w(m) =[]/ (p)ire.
p=1

Then the mapping jys is also continuous. The following lemma easily follows from the
calculation of the Fourier transform and from the continuity of jas.

Lemma 1.20. (i) Py = m)p 0 53/

(i) supp(Par) = jar (Up)-

Proof of Theorem 1.18. Step 1. Assume that only a finite number of {a,} are non-zero,
that is, an M € N exists such that a,, = 0 if m > M. Since the maximal function in this

case only depends on the first M coordinates, in what follows we identify Q,; with €. For
each k = (ki,...,kp) € N*F_ let

o = {a,m if Zf;:l kppp = A for some m, (1 <m < M),

0, otherwise.
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Then when w = jp(w'), we have that for any L € N,

Z amw(m) = Z aﬁw,ﬁy
m<L keN*?
(&vﬁ)<AL
where u = (u1,...,up). Therefore

Mf(jn(w')) = sup
b>0

It follows from the multi-dimensional maximal inequality (Lemma 1.17) that
VS G @D | o, gy < Call £ G WD)l L mg) -
Moreover, by Lemma 1.20, we have
HMf(w)HLq(QM,PM) = “Mf(jM(w/))”Lq(pr,m%) ’
If )l a@rr,Par) = 1 Gne (W Lagrry me,)-

Therefore
HMf(w)HL‘I(QM,PA{) < CQHf(w)I|Lq(QA4,PA4)‘

Step 2. We now prove the maximal inequality in general case. For each M € N, let

Then M) f(w) increasingly converges to Mf (w) as M — oo. Consequently,
IMf]lLea,p) = A}i_rfloo”M(M)fHLq(Q,P)-

Applying Step 1 to a function g(w) of the form

M M’
9@) = Y anwm) + > baw(m),
m=1 m=M+1

M’ and {b,,} being arbitrary, we obtain
IMg(w)llze(a,py < Cyllg(w)llLaa,p)-
Moreover, for g(w) of that form, we have M(™) f(w) < Mg(w), which implies that
IMM) £(w)ll za.p) < Collg(W)ll La(a,p)-
By choosing a sequence of g(w) converging to f(w) in LI(2, P), we arrive at
IMP £ ()| Lae,p) < Coll £ (W)l e, p)-

The proof is complete by letting M — oco. O
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Theorem 1.21. For 1 < q < oo, we have the following.
(i) For any f(t) ~ 3 ame™nt € BI({\y}), the partial sums

M
Su(f)(t) = Z ame Mt
m=1
converge to f in the ||-|lg norm as M — oo.

(i) Equivalently, for any f(w) ~ > amw(m) € HY(Q, {\n}), the partial sums

M
Su(H@) = 3 amw(m)
m=1

converge to f in LY(Q,P) as M — oco.

Theorem 1.21 is a consequence of the maximal inequality (Theorem 1.18) and the
following result whose proof is similar to the proof of the equivalence between Theorem 1.13
and Theorem 1.14.

Lemma 1.22. The following two conditions are equivalent:
(i) for any f(w) ~ 3 amw(m) € HY (2, {Am}),
M q
S (f)(w) = Z amw(m) b oas M- oo
m=1

(ii) there is a constant K > 0 such that for any f € HI(Q, {\n}),

1S58 (Pl aa,py < Kol fll e, py-

Theorem 1.23. For 1 < q¢ < oo, and for any f(w) ~ > amw(m) € HI(Q, {\n}), the
partial sums Spy(f)(w) converge P-a.e. to f as M — co.

Proof. By applying Theorem 1.18 to the function f — Sps(f), we obtain

sup |Sm(f) = Su(f)]

m2M

< Collf = Sm(H)llzeapy-
Li(Q,P)

Thus sup,,s s |Sm(f) — Sm(f)| converges to 0 in L4(2, P) as M — oo. It follows that
there is a subsequence {M}} C N such that

sup |Sp(f)(w) — Sm, (f)(w)] =0 as k— oo for P-ae we Q.

m> My
Hence {Sy(f)(w)}nm is a Cauchy sequence for P-a.e. w € Q. Consequently, the limit
Flw) = Tim_ Sy(f)w)
exists for P-a.e. w € Q. On the other hand, the function f is the L9-limit of {Sx;(f)}

(Theorem 1.21). Therefore f = f’ for P-a.e. w € , which completes the proof of Theo-
rem 1.23. ]
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1.4.3 The linearly independent case

In this section, we consider the case when { )\, } is Q-linearly independent and give another
proofs of Theorem 1.18, Theorem 1.21 and Theorem 1.23. Assume that {\,} is Q-linearly
independent. Then the probability measure P coincides with the normalized Haar measure
on . Under P, the sequence {w(m)} becomes independent.

Proof of Theorem 1.21 and Theorem 1.23. Let
o0
Fw) ~ > amw(m) € HAQ, {An}).
m=1

Then {Sa}men is a martingale with respect to the filtration
Far = o(w(l),...,w(M)),

because {w(m)} is a sequence of independent random variables with means zero, where
Sar = Su(f). On the other hand, fixing M, we consider {Y7}1>as of the form

M
Y. = Z amw(m) + Z bmw(m), (1.10)
m=1

M<m<L

where {bn,} is an arbitrary sequence of complex numbers. Then {Y7}r>u is also a mar-
tingale, and hence, {|Y7|?}r>m is a submartingale. Consequently,

E®[ISy ] = E®[|Ya]*] < EP[Y2)9).

Since there is a sequence of {Y7} of the above form which converges to f in LI(Q, P), it
follows that
E®[15x %) <EP[If]] < oo. (1.11)

Thus, if ¢ > 1, then by Doob’s martingale convergence theorem (see Theorem 0.40(iii)),
the sequence {Ss} converges P-a.e. and converges in LI(2, P) to a random variable Su.
It is clear that

Soo(w) ~ Z amw(m)
m=1

is the Fourier series of So. This implies that S = f, P-a.e., which complete the proofs
of Theorem 1.21 and Theorem 1.23. O

Proof of Theorem 1.18. Let

Then by L9 maximum inequality (see Theorem 0.38), we obtain

q q
EFsyl < (L 17) B sl < (SL5) BT <

where the second inequality follows from (1.11). Note that S},(w) increasingly converges
to M f(w). Consequently

q
Byl = Jim B < (L) BP0 =
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Theorem 1.24. Let f € HY(Q,{\n}) with the Fourier series f(w) ~ Y oo amw(m).
Then the partial sums {Sp(f)(w)} converge P-a.e. and converge in L'(S,P) to f as

M — oo.
Proof. Similarly as in the proof of Theorem 1.21 and Theorem 1.23, we have
E®5y ) <EP[I£]] < co.

Moreover, taking the sequence {Yz} of the form (1.10) converging to f in L1(Q,P), then
the sequence {E®)(Yz|Far)} also converges in L'(Q2, P) to E(P)(f|Far). Consequently,

E®)(f|Fu) = Sur.

This implies that the sequence {Sys} is uniformly integrable. Therefore, by Doob’s mar-
tingale convergence theorem (see Theorem 0.40(ii)), {Sa} converges to a limit S, almost
everywhere and converges in L. It then follows that the Fourier series of Sy coincides
with that of f, and hence S, = f,P-a.e. O






Chapter 2

Value Distributions of General
Dirichlet Series

2.1 Introduction

A general Dirichlet series is a series of the form
o0 B
Z ame M, s=o +it e C, (2.1)
m=1

where a,, € C, and {\;,} is a Dirichlet sequence,
0 A <<y Ay — 0.

Suppose that the series (2.1) converges absolutely for o > o, and has the sum f(s). Then
f(s) is an analytic function in the half-plane D := {s € C: 0 > 0,}.

Limit theorems for general Dirichlet series on the complex plane, in the space of analytic
functions as well as in the space of meromorphic functions have been studied relatively
completely through papers [18, 19, 31, 32, 33, 34, 35]. Let us mention here the most recent
results. For T > 0, denote by vr the uniform probability measure on [0, T]. Let H(D) be
the space of analytic functions on D equipped with the topology of uniform convergence
on compacta. Then the limit theorem for the absolutely convergent general Dirichlet series
in the space of analytic functions was proved in [31].

Theorem 2.1. There exists a probability measure P on (H(D),B(H(D))) such that the
sequence of probability measures

vr(t: f(s+1it) € A), A€ B(H(D)),
converges weakly to P as T — oc.

Suppose that f(s) is meromorphically continuable to a wider half-plane Dy := {s €
C:0 > 00},00 < 0q. Moreover, we require that all poles of f(s) in Dy are included in a
compact set and that the following two conditions are satisfied.

(i) f(s)is of finite order in any half-plane o > o1(o1 > 0y), that is, there exist constants
a > 0 and tp 2 0 such that the estimate

flo+it) = O(|t]*), |t = to, (2.2)

holds uniformly for o > o;.
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(ii) For o > o such that {o + it : t € R} does not contain any pole of f(s),
T
/ |f(o +it)]2dt = O(T), T — oo. (2.3)
-7

Let Cs be the Riemann sphere C U {oc}, and d be the sphere metric on Co, defined
by

2187 — ;
d(s1,s2) = [51 — 52 d(s,00) = ———2— d(o0,00) =0, (s, s1, 52 € C).

VI sV (522 VI+sP’

This metric is compatible with the topology of C. Let M{Dy) denote the space of mero-
morphic functions g: Dy = (Cx, d) equipped with the topology of uniform convergence
on compacta. Then the limit theorem in the space of meromorphic functions was obtained
in [32].

Theorem 2.2. Suppose that conditions (2.2) and (2.3) are satisfied. Then there exists a
probability measure P on (M (Dq), B(M(Dy))) such that the sequence of probability mea-
sures

vr(r: f(s+ir) € A), A€ B(M(D)).

converges weakly to P as T — oo.

The limit theorem on the complex plane was obtained in [33].

Theorem 2.3. Suppose that conditions (2.2) and (2.3) are satisfied. Then for each o >
oo, there exists a probability measure P, on (C, B(C)) such that the sequence of probability

measures
vr(T: f(o+it)e A), AeB(C),

converges weakly to Py as T — oo. In other words, for each o > g, the limit distribution
of f(o +it) exists.

To identify the limit probability measures in the above three theorems, some additional
conditions are necessary. Suppose that the sequence of exponents {Ap} is Q-linearly
independent. Let © = [],~_; ¥m be the infinite-dimensional torus as defined in Section 1.3
and mpy be the normalized Haar measure on ). Assume further that, for o > oy,

oo
Z |am|2e" ™7 (logm)? < cc. (2.4)
m=1
Then it was proved in [34] that for o > o0y, the series

flow) =) amw(m)e

m=1

—Amo

converges almost everywhere, and hence is a complex-valued random variable on the prob-
ability space (2, B(2), mp). Moreover, the limit probability measure P, in Theorem 2.3
coincides with the distribution of the random variable f(o,w). In addition, under condi-
tions (2.2)-(2.4), it was proved in [19] that f(s,w) defined by

f(s,0) = 3 amew(m)e >
m=1
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is an H(Dg)-valued random element and the limit probability measure in Theorem 2.2
coincides with the distribution of f(s,w).

This chapter is devoted to identify the limit probability measures without assumption
of linear independence of {A,,}. Under conditions (2.2) and (2.3), we will show that for
fixed o > oq, f(o + it) is a B2-almost periodic function with the Fourier series

a + zt Z ameé Am T iAmt,
Therefore, the limit distribution of f(o + it) exists and coincides with the distribution of
an L%*(Q), P) function
o0
= Z ame 7 w(m).
m=1

Here (Q,B(Q2),P) is the probability space developed in Section 1.3. Moreover, as we
proved in Chapter 1, the series f(o,w) converges P-almost everywhere without any further
assumption. Consequently,

o0
= Z amw(m)e=ms
m=1

is a well-defined H(Dy)-valued random element on the probability space (2, B(Q2), P), and
its distribution coincides with the limit probability measure in Theorem 2.2.

2.2 General theory

The main aim of this section is to approximate the function f(s) by a sequence of absolutely
convergent Dirichlet series. If the function f(s) is analytic in Dy, we can find this kind
of result in [35, 18]. We begin with a result on the mean value of absolutely convergent
Dirichlet series.

Theorem 2.4 (cf. [45, §9.5]). For any a1 > 04, uniformly in o > o1, we have
T

1
lim — f(o+t)2dt = am|2e=2Am7,
s Z|

The following formula is known as Perron’s formula . We will use the Dirichlet series
defined in that formula to approximate the function f(s).

Lemma 2.5 (cf. [45, §9.43]). For § > 0,A > 0, and ¢ > 0,¢c > 04 — 0, we have

i e mSe= (@) 27;)\ /C+ZOO r (%) fls+w)d “duw, (2.5)
m=1
where I' denotes the Gamma function.
Let
grs(s Z e o=@ (X 50,8 > 0).

It is clear that the Dirichlet series gy s(s) is absolutely convergent for any s € C. The
sequence {gxs(s)}s approximates the function f(s) in the following sense.
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Corollary 2.6. Let K be a compact subset in D. Then for fized X > 0,

1 T
lim lim sup — / sup | f(s + it) — gas(s + it)|dt = 0.
60 7o T Jo sek

Proof. Let L be a simple closed contour lying in D and enclosing the set K and let dg
denote the distance of L from the set K. It follows from Cauchy’s integral formula that

sup s+ i) = ars(s+ 0] < gz [ 170 +i8) = gl + i8],

then by the Cauchy-Schwarz inequality,
2
(sup |f(s=+it) —gas(s+ zt)l) < / |f(z +it) — gas(z +it)|}|dz|.
seK (271'6
Here |L| denotes the length of the contour L. Thus when T > max,¢, |Im 2|,

T 2
(% | suplrs+ i) = gnals + it)ldt)

sEK

. 2
g%/o (sup|f(8+it)—gx,d(s+it)|> dt

sEK

1T L : ,
< T/o ((27T5K)2 /L |f(z +it) — grs(z + zt)IQ\dz|> dt
_ L] 1 /T , '
B (27r(5K)2/L (f/o |[f(=+it) - gA,5(2+Zt)|2dt) |dz|

< JL/ <l /2T F(Rez +it) — (Rez+z’t)|2dt) dz|
T @2rok)? Jo\T J or a0
4L 1

2T
K 55 Sup -+ o+ it) — o+ it 2dt,
(270K)2 550, AT /_ (71 = rslo +it)]

where o1 = min,c;, Rez > 0,. Now, uniformly in ¢ > o1,

1

2T
. 2 —2)\mcr o —(erm&)rN2
Tll_{ﬂ _4T/ |f(o +it) — grs(o +it)] E lam|“e € ),

by applying Theorem 2.4 to the function f(s) — g s(s). Therefore,

17 2
lim sup (—f/ sup | f(s + it) —g,\,5(3+it)\dt>
0

T—00 sEX

2 [oe]
2471? 22|am|2 TAn1(1 - e @O,
K)? A=

The above series is dominated by >, |am|2e~2 %1 < oo for any 6 > 0, and each term
converges to 0 as § — 0. Thus by the dominated convergence theorem, we arrive at

1 T
lim limsup—/ sup |f(s + it) — grs(s + it)|dt = 0.
=0 700 0 seK

The proof is complete. O
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If there is no pole in Dy or f(s) is analytic in Dy, we have the following version of
Theorem 2.4.

Theorem 2.7 (cf. [45, §9.51)). Let f(s) denote the analytic continuation of the function
f(s),0 > g, to the half-plane o > a. Assume that f(s) is reqular and of finite order for
o > «, and that

T
/ |f(a+it)|?dt = O(T), T — oo. (2.6)
-T
Then
1 T 2 2 _—2)\ a
Jim = [ |f( + it)|?dt = Z\a; (2.7)

for o > «, and uniformly in any strip a < o1 <0 < 3.

Consequently, if f(s) is analytic in Dy, the statement of Corollary 2.6 is still true for
any compact subset K of Dy. We are now in a position to extend Corollary 2.6 to our
considering case in which all poles of f(s) in Dg are included in a compact set. It then
follows that the number of poles are finite. The poles and their orders are denoted by
$1,...,8 and nq,...,n,, respectively.

Proposition 2.8. Let K be a compact subset in Do. Then for fited A > 0, — 09 + 1,

T

1
lim lim sup — sup |f(s +it) — grs(s+it)|dt =0
80 7400 to s€K

where tg is a positive real number satisfying

min{Im s} + t9 > max{Imsy,...,Ims,}.
seK

Proof. From Corollary 2.6, we can assume without loss of generality that the compact
subset K is included in the strip o9 < 0 < 0, + 1. Let L be a simple closed contour lying
in the strip og < 0 < 04 + 1, enclosing the set K and

mln{Im s} +to > max{Imsi,...,Ims,}.
seL

Then L lies in the strip o1 < 0 < 02, where

o1 = minRes > g9, 09 = maches < o, + 1.
s€

seL
Choose a € (09, 01) such that all poles s1,...,s; lie in the half-plane o > a.
For s = o+it with o € [01,02) and s & {s1,..., sr}, by moving ¢ in the formula (2.5) to
¢ = a— 0o, we pass a pole at w = 0, with residue Af(s), poles at w = s1 —s,...,w = s, — 8.

Since A > 0 — «, no other pole is passed. Therefore, by the residue theorem, we obtain

a—0+100 w
grs(s) — f(s) = 1‘ / () (s +w)d~"dw

2T —o—ioo

Res (I‘(%)f(s +w)d™v, 55 — s)

1

Jj=
=:1(s) + J(s). (2.8)

3

Observe that

Res (F(%)f(s +w)dY, s - 8) _ Z a(kk,!sj‘) (F(%)(s—w)(k)
k
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where (*) denotes the k-th derivative with respect to w and

Thus, for fixed § > 0,
J(s)=0 (Z 'F(k)(s—j/\_—s)o , n=max{ny,...,ny — 1. (2.9)
k=0

Now, an argument similar to the one used in the proof of Corollary 2.6 shows that

<% /tT sup | f(s +it) — gxrs(s + z't)|dt>2

o SE€EK

1 2T .
=0 sup — [ |f(oc+it)—grs(o+it)]%dt ),
o€loy,02] AT ty

where ¢ = minger{Ims} + tg > max{Imsy,...,Ims,}. For o € [01,09] and t > ¢;, the
point s = o + it does not belong to the set {s1,...,s,}, thus the relation (2.8) implies

lgra(0 +it) = flo +it) 2 < 2(|I(0 + i) + T (0 + it)]?).
Note that in the proof of Theorem 2.7 (see [45, §9.51]), we have the following
L [I(o + it)|*dt = O(6%772%)
T | 1

uniformly with respect to 7" and o € [01, 02]. It follows that

2T

1
limlimsup sup — I(o +it)|)%dt
d—0 T—00 0’6[0’1,0‘2] 4T 11 | (
. 1 2T 5 N )
< limlimsup sup -— I(o +it)|*dt = lim O(6°°*~**) = 0.
00 7400 o€lo1,02] 4T 72T, ( )J 4—0 ( )

On the other hand, by Stirling’s formula, there is a constant A > 0 such that uniformly
in the strip ¢’ < o < ¢”, we have

IT(0 + it)| = O(e™4lt),  t = oo,

where ¢/ < min;{Re((s; —02)/A)} and ¢” > max;{Re((s; — 01)/A)} being chosen before-
hand. This, together with (2.9), implies that

1 [2r 1 2T
limsup sup — |J(o +it)|?dt = O <lim sup — e_Atdt> =0.
T—oo g€lo1,02) 4T t1 T—00 1
The proof is complete by combining the above two estimates. ]

As a consequence of Proposition 2.8, we have the following.

Proposition 2.9. Let K be a compact subset in Dg. Then for fited A > 04 —og+ 1

1 T
lim limsup—/ sup d(f(s+1it),gas(s+it))dt = 0.
020 700 0 seEK
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2.3 Limit theorems for general Dirichlet series on the com-
plex plane

Let (2, B(2), P) be the probability space defined in Section 1.3. We consider Bf , tg > 0

to?
being fixed, the space of one-sided Besicovitch almost periodic functions, that is, functions

f:[0,00) = CU {00} which belong to the linear closure of {e*** : \ € R} with respect to
the one-sided Besicovitch ¢g-norm (1 < g < 00),

1 (T 1/q
Ifloso = timsup (7. [ Ifopar)
T—o00 t

0

Then the following results for one-side Besicovitch almost periodic functions are similar
to those of Besicovitch almost periodic functions. They are taken from Theorem 1.8,
Lemma 1.9, Theorem 2.10 and Theorem 1.23. Note that in this chapter vy denotes the
uniform probability measure on [0, T'] while in the previous chapter, v denotes the uniform
probability measure on [T, T].

Theorem 2.10. (i) The sequence of probability measures {Qr} converges weakly to P
as T — oo, where

Qr(A) =vp(r: (™) en € 4), A€ B(Q).

(ii) {w(m)}men is an orthonormal system in L?(Q, P).

(ili) Let f:[0,00) = C be a one-sided BE -a.p. function with Fouries series of the form

%)
)~ S et
m=1

Then N
F@) =Y amw(m)
m=1

converges for P-a.e. w € Q and converges in L?(€), P). Moreover, the sequence of
probability measures

vr(r: f(r) € A), A€ B(C),
converges weakly to the distribution of f(w).

Lemma 2.11. For o > oy, we have f(o + it) € Bt20 with the Fourier series
o0
flo+it) ~ Z ame AmTe Amt,
m=1

where tg > 0 is a number such that {o + it : t > to} does not contain any pole of f(s). In
particular,

1 (T >
lim —/ [f(o+it)[dt = ) |am[?e™ 7 < 0. (2.10)

T—oo T
to m=1

Proof. Fix X\ > g, — 09 + 1. For each n € N, we define

oo oo
gn(8) = gy e-rn(8) = Z g exp{—ePm A A e Ams — Z amv(m,n)e”*ms,
m=1 m=1



40 ' Chapter 2. General Dirichlet Series

The Dirichlet series g, is absolutely convergent for s € C. Thus, it is clear that g,(o+it) €
Bf0 for any tg = 0, which has the following Fourier series

(o +it) E amv m,n)e —Amo g =iAmt

For o > 0g, let to > 0 be a number such that {o + it : ¢t > to} N {s1,...,8,} = 0. Then in
view of the proof of Proposition 2.8 with K = {c}, we have

1 T
lim limsup = |f (0 +it) — gn(o +it)2dt = 0.

n—0%0 T _yno to

Note that for each m € N, v(m,n) — 0 as n — oo. Thus f(o + it) € BE and
fo +it) z ame ™I e iAm?

is the Fourier series of f(o + it). O
As a consequence of Theorem 2.10 and Lemma 2.11, we have the following.

Theorem 2.12. For ¢ > oy,

e o]
w) = Z ame ™ w(m)
m=1

converges for P-a.e. w € Q and converges in L2(Q), P). Moreover, the sequence of proba-
bility measures
vp(r: flo+ir) € A), AeB(C)

converges weakly to.the distribution of f(o,w) as T — co.

2.4 Limit theorems for general Dirichlet series in functional
spaces

2.4.1 Absolutely convergent case

Recall that D = {s € C: 0 > 0.} and H(D) denotes the space of analytic functions on D
equipped with the topology of uniform convergence on compacta. For s € D,w € (2, let

)= Z ame”mSw(m).
m=1

Then f(s,w) is an H(D)-valued random element on the probability space (€2, B(Q2),P). In
addition, we will prove that f(s,w) is continuous as a mapping from {2 to H (D) Indeed,
let {w ”)} be a sequence converging to w in 2. We need to prove that {f(s,w(™)} converges
to f(s,w) in H(D). Given a compact subset K C D, let 01 = minsex Res > g,. We have

seK

sup [ £(s,0™) = f(5,0)] < 3 |amle o™ (m) — w(m)].
m=1
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Since "0, |am|e™*m91 < o0, it follows from the dominated convergence theorem that

sup ’f(&w(”)) — f(s,w)] >0 as n— oo.
seK

Thus, the mapping f(s,w) is continuous. Consequently, the sequence of probability mea-
sures {Q7f(s,w)™'}r on (H(D),B(H(D))) converges weakly to Pf(s,w)™! as T — oc.
Obviously, we have

vp(T: f(s+i1) € A) = Qr(w: f(s,w) € A), A e B(H(D)).
Therefore, we have just proved the following theorem.
Theorem 2.13. The sequence of probability measures
vp(t: f(s+it) e A), A€ B(H(D)),
converges weakly to Py as T — oo, where Py denotes the distribution of the H(D)-valued
random element f(s,w).
2.4.2 General case

Recall that Dy = {s € C: 0 > 0¢}. There is a sequence {K,} of compact subsets of Dy
such that (i) Do = (Jo2; Kp; (i) Ky C Kpya; (iii) if K is a compact set and X C Dy,
then K C K, for some n. Then for f,g € H(Dy), let

- ¢ —-n SupsGKn If(s) - g(S)[
S nz::l Ty SUpserc, |f(s) —g(s)]

The topological space H(Dp) becomes a complete separable metric space. Similarly, for
fag S M(DO)a let

SUPse k., A(f(5),9(s))
1+ supseg, d(f(s),9(s))

Then M (Dy) also becomes a separable metric space.

pifg):=> 2"
n=1

Lemma 2.14. o
f(s,w) = Z ame ™ *3w(m), s € Dy
m=1

is a well-defined H(Dy)-valued random element. Besides, for any fized s € Dy,
o
f(s,w) = Z ame” m5w(m)
m=1

converges for P-a.e. w € Q and converges in L?(), P).

Proof. By Theorem 2.12, for any o; > oy, the series
(eo.0]
flo1,w) = Z ame M7 w(m)
m=1

converges for P-a.e. w € Q. Therefore by a fundamental property of general Dirichlet
series, for P-a.e. w € (), the series

fls,w) = i ame M 5w(m)
m=1
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converges uniformly on each compact subset of the half-plane {s € C : ¢ > o1}. Let
A, denote the set of w € Q for which the series f(s,w) converges uniformly on compact
subsets of the half-plane {s € C: 0 > 09 + 1/n}. Obviously, P(4,) = 1 for all n € N.
Now if we take
>0
= m A

n=1

then P(A) = 1, and, for w € A, the series f(s,w) converges uniformly on compact subsets
of Dyg. It follows that f(s,w) is an H(Dg)-valued random element defined on the probability
space (2, B(Q), P). O]

For each n € N, we define a random element g,(s,w): @ — H(Dy) as
w) = Z amv(m, n)e " w(m).

Lemma 2.15.
lim E® [p(gn(-,w), f(-,w))?] = 0.

n—o0

Proof. Let K be a compact subset in Dy. We will show that

lim E®)[|h, (w)?] = (2.11)

n—o0
where

hn(w) = sup |gn(s,w) — f(s,w)|.
sEK

To prove (2.11), let L be a simple closed contour lying in Dy and enclosing the set K and
let 0 denote the distance of L from the set K. For w € Q for which f(s,w) € H(Dy),
Cauchy’s integral formula implies that

‘ 1
hn(w) = sup lgn(s,w) — f(s,w)] < 53 /L lgn(2,w) — f(z,w)||dz|,

then by the Cauchy-Schwarz inequality, we obtain

L
| (w) 2 2|7r<5| /]gn (z,w) (z w)]2]dz|.

Let 01 = min,e; Rez > 0¢. For z = 0 +it(o = 01), from Lemma 2.14, we have
oo
w) =Y ame M *w(m), (in L*(Q,P)),
which implies

|am]2|1 — v(m, n)]26_2>""”

WE

EPllgn(z,w) = f(z,w)] =

m=

8

1
|am |21 = v(m, n)[2e” P < oo

<
m=1
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Therefore,

BO ()] < P | L [ iga(eie) - fePla

- % /L E®)[|ga(z,w) — £(2,0)]ldz|

o0

L 2 22X
< E lam ||l — v(m,n)|?e “ mL.
2 m 3
(27d) —

Our desired result (2.11) follows from the dominated convergence theorem. The above
result holds for any compact subset K in Dy. Therefore, taking the definition of the
metric p into account, we obtain

lim E® [p(gn(-,w), f(-,w))?] = 0.

n—0o0

The proof is complete. O

Corollary 2.16. (i) For any ¢ > 0,

lim P(p(gn(-,w), f(-w)) > €) = 0.

n—oo
(ii)
P, LN P; as n— oo, (2.12)

where Py, and Py denote the distributions of the H(Dg)-valued or M(Do)-valued random
elements g, and f, respectively.

Proof. (i) follows from Lemma 2.15 by Chebyshev’s inequality. (ii) follows from (i) by
Theorem 0.6. 0

For every compact subset K of Dy, Proposition 2.9 claims that
1 /T
lim limsup = / sup d(gn(s + it), f(s + it))dt = 0.
=0 Too 0 sek
Thus, by Chebyshev’s inequality, for any € > 0,

lim limsup vy (T s plgn (- + i), f(- +1i7)) = 5) =0. (2.13)

n—00 T—00

Since the Dirichlet series gy (s) is absolutely convergent in Dy, it follows from Theorem 2.13
that
vp(T 2 gn(s+1i7) € +) LN P,, as T — oo, (2.14)

where the weak convergence still holds in the space of meromorphic functions M (Dy).
Therefore, (2.12)-(2.14) imply the limit theorem for f(s) in the space of meromorphic
functions M (Dy).

Theorem 2.17. Suppose that conditions (2.2) and (2.3) are satisfied. Then
o0
f(s,w) = Z ame *™w(m), s € Dy
m=1

is a well-defined H(Dy)-valued random element. Moreover, the sequence of probability
measures

vp(t: f(s+ir) € A), A€ B(M(Dy)),

converges weakly to Py as T — oo, where Py denotes the distribution of f(s,w).
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Remark 2.18. If the strip D; = {s € C: 01 < 0 < 03}(0p < 01 < 02 < 00) contains no
pole of f(s), then in view of the proof of Theorem 2.17 we can assert the following.
“The sequence of probability measures

vr(r: f(s+it)e A), A€ B(H(Dy)),

converges weakly to P as T — oo, where Py denotes the distribution of the H(D1)-valued
random element f(s,w).”

Remark 2.19. Theorem 2.12 and Theorem 2.17 are extensions of the main results in [34]
and [19], respectively. Comparing with proofs in [34, 19], the basic idea does not change
but a number of arguments are reduced. For instance, we use L2-convergence instead of
using the tightness of measures and ergodic theory.
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Chapter 3

Limit-periodic Arithmetical
Functions and The Ring of Finite
Integral Adeles

3.1 Introduction

Chapter 3 and Chapter 4 mainly concern with arithmetical functions, real or complex
valued functions defined on the set of all natural numbers N. For simplicity, we sometimes
omit the term “arithmetical”.

An arithmetical function f: N — C is called limit-periodic if it is a limit of periodic
arithmetical functions under some Besicovitch ¢-(semi)norm (1 < g < 00),

1 N 1/q
1£llg := limsup (N; If(n)lq> :

Limit-periodic arithmetical functions, in some sense, look like random variables because
they possess mean values and limit distributions. Here the limit distribution of an arith-
metical function f is considered as follows; if the limit

lim —Zexp V—1sRef(n) +v~-1tIm f(n)), (st)€R?

Nooo N

exists and it coincides with the characteristic function of some probability distribution on
R? = C, then we call it the limit distribution of f.

This chapter deals with the problem of finding an appropriate probability space where
limit- periodic functions can be considered as random variables. The ring of finite integral
adeles Z, together with the Borel field B(Z ) and the normalized Haar measure A, is shown
to be a good candidate. Indeed, let D7 denote the space of g-limit-periodic functions.
Then every function in D7 can be extended to a random variable in L9(Z, A). The limit
distribution of the original function coincides with the distribution of the extended ran-
dom variable In addition, the quotient space D? of D7 with respect to the null-space
N(®D?) :={feD?:|fllq =0} is isomorphic to LY(Z, /\), which means (Z, B(Z), ) is a
good Candldate. In fact, the ring of finite integral adeles Z, which was initiated by [39]
and has been studied by several papers and books [10, 28, 36, 37, 44], has become an
useful tool for studying probabilistic properties of limit-periodic functions. It is called the
limit-periodic compactification of Z. Besides, to investigate the probabilistic properties
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of arithmetical functions, there are other compactifications, for example, the almost even
compactification used to investigate almost even functions [27]; the Bohr-compactification
used to investigate almost periodic functions [37] and the Stone-Cech compactification
used to investigate a wilder class of arithmetical functions which contains the Md&bius
function [25].

This chapter also concerns with the convergence of Fourier expansions of limit-periodic
functions. First of all, we define the scalar product (f, g) of functions f,g: N — C to be
the limit

provided that it exists. Then {eq }aco sz becomes an orthonormal system, where e, stands
for the function e, : n +— exp(2mv/—1an). Note that the space of limit periodic functions is
spanned by {eq }qcq/z. Moreover, for each f € DY, the Fourier coefficients {(f, €a) }acq/z
exist and the formal series

f~ Y (frea)ea

a€Q/Z

is called the Fourier series of f. Next, for each n € N, we consider a finite Fourier expansion
of a function f € DY as ‘

Sn(f) = Z (fa ea/r) €a/r
1<a<:1;?c;,r):l

where (a,7) denotes the greatest common divisor ged(a,r) of a and r. Then, we have the
following result about the convergence of Fourier expansions of limit-periodic functions

15.(f) = flq—=0 as n—0inZ, fe DI

From this a similar result for almost-even arithmetical functions easily follows. These
results give an approximation for limit-periodic functions (resp. almost-even functions) by
periodic functions (resp. even functions), and they are the generalizations of [43, Theorem
VI1.5.1].

The convergence of Fourier expansions in the special case ¢ = 2 is easily seen since
{ea}acq/z is an orthonormal basis of the Hilbert space D?. To extend this result to
general g, the idea here is to apply the interpolation of norms and of linear operators
tool, a major tool in harmonic analysis, which was successfully used by Bochner to prove
the convergence of Fourier series on L9([0,27]),1 < ¢ < oo (see [26, Chapter IV]). The
isomorphism between D? and LQ(Z7 A) makes it easy to apply this tool as we will see in
Section 3.3.

This chapter is organized as follows. In Section 3.2, the probability space (Z, B’A(i), A)
is introduced. Then the natural isometric isomorphism T, between DY and LI(Z, X) is
defined. Moreover, the inverse of T, can be obtained by Lebesgue’s density theorem
(Theorem 3.21). The beginning of Section 3.3 deals with the convergence of Fourier
expansions in Ll(i, A). By using the interpolation of norms and of linear operators tool
and the dual property, we obtain the convergence of Fourier expansions in LI(Z, A) for
all 1 < ¢ < oo. At the end of this section, we deduce the above convergence in D9
(Theorem 3.27) by the isometric property of Tj, and its consequence on the convergence of
Ramanujan expansions of almost-even functions. The natural extensions of additive and
multiplicative functions will be considered in Section 3.4.
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3.2 The ring of finite integral adeles: basic properties and
connection to limit-periodic arithmetical functions

3.2.1 The ring of finite integral adeles and some basic properties

This section deals with the construction and properties of the ring of finite integral adeles.
Results are taken from [29, 44]. For a prime p, the p-adic metric d, is defined by

dp(z,y) == inf{p~" :pl|(z - y)}, =z yE€EL,

where p'|(z — y) means that (x —y) is divisible by p’. The completion of Z by d,, is denoted
by Z,. By extending the algebraic operations ‘+’ and ‘x’ in Z continuously to those in
Zy, the compact metric space (Zy, dp) becomes a ring, called the ring of p-adic integers.
In particular, (Zp,dp) is a compact abelian group with respect to ‘4-’. According to the
general theory of compact groups, there is a unique normalized Haar measure A, with
respect to ‘+’ on the measurable space (Z,, B(Z,)).

Definition 3.1. (i) Let {p;}2,,2 =p1 < p2 < ---, be the sequence of all primes.
(ii) Put
N 0 o @]
Z = Hpr A= H)\pi.
i=1 i=1
For z = (z;),y = (i) € Z, we define

oo

1
plz,y) == gd Sz, ), cHyi=(xi+y), zy:=(ziy).
i=1

By these definitions, 7 becomes a ring, called the ring of finite integral adeles. (Z, p) is
again a compact metric space, and both ‘4’ and ‘x’ are continuous. In particular, (2, Q)
is a compact abelian group with respect to ‘+’ and its normalized Haar measure on the
Borel field B(Z) is nothing but A.

Definition 3.2. (i) We identify Z with the diagonal set {(n,n,...) € ZXZx -} C Z.

(ii) For N>m > 2 and [ € {0,1,...,m — 1}, we define mZ+1:={mz+1:z € Z}.
Then we have Z = Uﬁal(mz + 1), which is a disjoint union (Lemma 3.6 (iii)). So,
forr € Zand N> m > 2, there exists a unique [ € {0,1,...,m — 1} such that
z—1 € mZ. This [ is denoted by « mod m. For m = 1, we always set x mod m := 0.
Obviously, if x € Z, this definition coincides with the usual modulo operation.

(iii) For x,y € Z, we define the greatest common divisor of z and y by
ged(z,y) :=sup{m € N : (x mod m) = (y mod m) = 0}.
Obviously, for x,y € Z, this definition coincides with the usual ged.

Let us give some fundamental properties of 7 and .

Lemma 3.3 (Chinese remainder theorem, cf. [21, Theorem 121}). Assumemy,...,m; € N
to be co-prime. Then, for any ay,...,a; € Z, there exists an n € Z such that n =
a; (mod my;), i =1,...,1. This n is unique up to mod Hézl mi.

Lemma 3.4. N := {(n,n,...) € Z: n € N} is dense in Z.
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Proof. The Chinese remainder theorem implies that for any [, m € N and any ny,...,n; €
N, there exists an n € N such that n = n; mod pI",4 = 1,...,l. This means that N is
dense in Z x Z x --- with respect to the metric p. L]

As we identify Z with Z' = {(n,n,...) € Z:ne Z} (Definition 3.2 (i)) by a bijection
Z>3>nw (n,n,...) € Z', Lemma 3.4 implies that Z is a dense subring of Z. Thus Z is a
compactification of Z. It is called the limit-periodic compactification of Z or N.

Lemma 3.5. (i) Let p be a prime and j € N. Then p’Z, is closed and open.
(ii) Let p,q be distinct primes and j € N. Then we have p'Zq = Z,.

Proof. (i) It is easy to see that p/Z, = {z € Z, : dp(x,0) < p7}, and hence it is closed.
Since dp(x,0) € {p™@:a =0,1,...,00} for any = € Z,, we may write p/Z, = {z € Zj, :
dp(z,0) < p~9+1}, which implies it is open.

(ii) p’Z, C Zq is obvious, so let us prove PZs D Zq. To this end, it is enough to show
that there is an = € Z, such that p/z = 1. For any m € N, there exists an z,, € N such
that z;,p’ = 1 mod ¢™. Then for any n > m, we have (z, — Z;m)p’ = 0 mod ¢™. Since
ged(p/, q™) = 1, we see T, — T, = 0 mod ¢, which means that {z,,,}5°_; is a Cauchy
sequence in Zg. Then putting z := limy, 00 T, We have pPr=1in Zyg. O

Lemma 3.6. Let m € N and ! € {0,1,...,m —1}.

(i) The set (mz + 1) is closed and open.

~ 1 ] dm=20
(ii) pm: Z — {0,1} is continuous, where pm(x) =13 e mo. e
0, otherwise.
(i) Z = Uﬁal(mi + 1), which is a disjoint union.

Proof. (i) Let m = prap(m) be the factorization of m into primes, where ap(m) = 0
except for finitely many primes p. Then, Lemma 3.5 implies that

mZ = HmZp = Hpa"(m)Zp,
P P

and that each paP(m)Zp is closed and open. Therefore, mZ is also closed and open in A
Finally, since the shift 735z (x+1) € 7 is a homeomorphism, mZ + 1 is also closed
and open.

(ii) Since (i) implies that pr_nl({lj) = mZ is closed and open, the statement is obvious.
(iii) From the denseness of Z in Z, and from the continuity and closedness of the mapping
x — mx + {, it follows that mZ + 1 = mZ + [. Since Z = Uﬁ_ol(mZ + 1), this implies

m—1
Z=JmZ+1).
=0

Next we check the disjointness of this union. Let m > 2 and [,!’ € {0,...,m — 1} be
distinct integers. By (i), A := (mZ + 1) N (mZ + 1) is open. If A # §, then Z N A # 0,
because Z is dense in Z. But then, taking an n € Z N A, we see from the observation of
(i) that

dp(n —1,0) < por(m) dp(n—1',0) < p~2™) Vp : prime.

This implies that p»("™ | (I —1') for each prime p, that is, m | ([ — ), which is impossible.
Thus A should be empty. O
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Corollary 3.7. For anyl € Z, the mapping

= (I+ x) mod m

7>z €1[0,1)

m

is continuous.

Lemma 3.8. For any | € Z\ {0} and any A € B(Z), we have A € B(Z) and

A(A) = —A(A). (3.1)

Proof. Since Z is a complete separable metric space and the map Z>zwlzelis
one-to-one and measurable, we have [A € B(Z) (cf. [41, Theorem 1.3.9]). Let v be a Borel
probability measure on Z defined by

v(A)= 2L Ae B(Z).

Then v is clearly shift invariant, and hence v = ), so that A(I4) = A(|I|Z)A\(4). By Lemma
3.6 and the shift invariance of X, we see
|1
1=XNZ) = Y MUZ+1) = |IA(12),
=0

from which, (3.1) immediately follows. O

Lemma 3.9. (i) Let f: Z — C be a continuous function. Then {f(n)}nez is a uni-
formly limit-periodic sequence, that is,

lo
Ve > 0,3ly, mo € N such that|f(n) — f <n mod le"o) <e YneZ (3.2
i=1

(i) Conversely, if {f(n)}nez is_a_uniformly limit-periodic sequence, then there is a
unique continuous function f: Z — C such that f(n) = f(n) for each n € Z.

Proof. (i) Obvious by the definition of the metric of Z.

(ii) If f is a periodic sequence with period m € N, it is of the form f(n) = > /", f(i)pm(n—
i),n € Z. Then f(z) := S fDpm(z — i),z € Z, is the continuous function with the
property ﬂz = f. Note that a general f satisying (3.2) is a uniformly convergent limit of
a sequence of periodic sequences, and hence it has again a continuous extension f Since
Z is densely embedded in Z the uniqueness of f is obvious. O

For a periodic sequence {g(n) }nez with period m and its unique continuous extension
g(x), it is easy to see that

/Z fj / ol — M)A (de)

1 m
= 29 =1&£%o—29 (33

In general, we have the following lemma.
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Lemma 3.10. If f: Z - C is continuous, then

no+N-—1

/f im 1 > fn), Vg el (3.4)

n=ng
The convergence is uniform in ng € Z.

Proof. Let f: Z — C be continuous and set fro(z) = f(ng + z),n0 € Z. By the un1form
continuity of f, a family {f,,;no € Z} satisfies (3.2). For simplicity, set m := Hl i
Then we see for any ng € Z,

~ )

’/ano(x)A(daz) - /2]‘”0(95 mod m)A\(dz)| < ¢

<& VNeN.

1 N-1 1 N—-1
5 Z:; Fro(m) = 37 2 Jnolr mod )

By (3.3),

m—1
/A o (z mod m)A(dz) = % > Frolr)
Z r=0

Also, by a simple calculation

N-1 m—1 (N— 1) mod m

3 2 dlmmodm) = | [FIE] S ffr) 4 ralr
r=0
1= 1 /1 (N-1)mod m =
:—W_LT:O an(r)—j\f—<E+ ;fno
1 (N—1) mod m
+ ‘]\—7 Z fno (7')
r=0

In the above and in what follows, the symbol |¢| stands for the largest integer not exceeding
teR.
From these, it follows that

N-1

‘/fno x mod m)A(dzx) ——ano (n mod m)| <

< —mllfHoo-

Therefore, choosing an Ny € N so large that (2/No)m| fllc < €, we have that for any
N > Ny and any np € N,

'I‘L()+N 1

{/zf(x) )~ > fin

n=ng

< 3e. O

Remark 3.11. As a matter of fact, (3.4) is a consequence of the following general theorem.

Theorem 3.12. Let G be a compact group, and let © € G. Then, if the sequence {x"}5°
is dense in G, it is uniformly distributed; that is, N~! Zgzl dzn converges weakly to the
normalized Haar measure of G as N — oo, where 6.~ denotes the Dirac measure at x".
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For details, see [30, Theorem IV.4.2]. In the present case, setting G := 7 and z := 1,
we see the desired weak convergence

N
%Zén:A as N — oo, (3.5)

because N, which is generated by x = 1, is dense in 7.

Theorem 3.13. The shiftsx — z+ 1 and x — x — 1 on the compact metric group 7 are
ergodic.

Proof. The denseness of Z in Z (Lemma 3.4) implies the ergodic properties of these shifts
(see Theorem 0.16). O

3.2.2 Connection to limit-periodic arithmetical functions

Let © be the space of periodic arithmetical functions, that is,
D :=Ling [eg)r 17 =1,2,...,1 < a < rged(a, ) =1],
and let ©Y be the linear closure of ® with respéct to the uniform norm

| flle :==sup|f(n)l, f:N—=C.
neN

Functions in ®* are called uniformly limit-periodic functions or uniformly limit-periodic
sequences. Recall that the space of g-limit-periodic functions ®9 is just the linear closure
of ® with respect to the Besicovitch ¢g-norm.

Denote by C (i) the space of continuous functions on Z endowed with the supremum
norm

Ifll = sup|f(z)], feC(@).

€L

Then the spaces ©* and C(i) are isomorphic under the isomorphism T3,: D% — C(i)
which maps f € D" to the unique continuous extension of f from N to Z. The preimage of
the function f e C(Z ) under T, is just the restriction of ftoN (Lemma 3.9). Let f € ©
with f := T,(f) € C(Z). Then it follows from Lemma 3.10 that

ngnooNZ!f Wl = [ 1F) ),

and hence for any f € D%,
1fllg = 1Tu(H) e, (3.6)

where
N N 1/q - .
1o = ( / |f<w>|qx(dx>) . Feri@n,.
7

The continuous linear operator T, on D% can now be continuously extended to a
continuous linear operator T,: D9 — Lq(i, A) since ®" is dense in D9. For instance, let
f € D4. Then there exists a sequence of periodic functions {fx}x converging to f, that
is, || fe — fllg = 0 as k — oo. In particular, {fi}x is a Cauchy sequence in D?. By (3.6),
{Tu(fr) }x is also a Cauchy sequence in Lq(i, A), and hence the limit limy_, o T, (fx) exists
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in Lq(i7 A). Let Ty(f) := limpoo Tu(fi). It is clear that T, is well defined; moreover it
follows from (3.6) and from the continuity of norms that

1fllg =1 Te(H)llLe,  f € DI (3.7)

This implies that 7} is injective. On the other hand, T is surjective since C (Z) is dense
in LY(Z, X\) and DY is complete. Thus we have proved the following theorem.

Theorem 3.14 ({36, Theorem 2.1]). For 1 < ¢ < oo,
DY = LYZ, \).

Remark 3.15. (i) Let x: Z — S = {z € C: |z| = 1} be a character of the compact
group 7Z, that is, x is a continuous function satisfying

x(x+y) = x(@)x(y), z.y€L

Then x = Ty(eq) for some a € Q/Z. Conversely, for each o € Q/Z, the image e, :=
T.(eq) is a character of the compact group Z. Consequently, Theorem 3.14 implies
that T,(D) = Ling|€y : a € Q/Z] is dense in L4(Z, \). Functions in Ling[é, : o €
Q/Z] are periodic functions. In addition, {€s}4cq/z is an orthonormal basis of the
Hilbert space L2(Z A) with respect to the scalar product ( f, =[5 f( x)g A(dz).

(i) For a periodic function f, we always think of T,(f) = T, (f) although T;(f) is unique
only almost surely.

The following are some properties of Ty.

(i) T, is shift invariant and multiplicatively shift invariant

Ty(f(n+) =Te(f)(n+:), (ne€N),
Ty(foy) = To(Hpy, (BEN),

where f(y(n) = f(bn),n € N and Ty(f) . (z) = Ty(f)(b2), « € Z.
(i)
To(I£) = 1To(f)]-

This follows from the inequality ||a| — |b|| < |a — b,a,b € C.

(iii) f 1/r = 1/p+1/q (r 2 1) and f € DP,g € D9, then Holder’s inequality implies
fg € D" and
T:(fg9) = To(f)To(g)-

(iv) If f € D9, then |f|9 € D! ([43, Theorem VI.2.9]) and
T f1%) = 1T (NI

Proof of (iv). Without loss of generality, assume that f > 0. This proof is somewhat
similar to the proof of [43, Theorem VI.2.9]. Let § := Tj(f9)/9. We will show that

g= Tq(f)-

Given an £ > 0, first choose a real-valued periodic function h such that || f9—hlj1 < (g/2)?
and then choose a polynomial () with the property

Q1) — {max(0,0}/9) <= in [t < [
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The composition () o h is also a periodic function, and moreover,
Ty(Qoh) =QoTy(h) =:Qoh.

Next we use inequalities

(i) la =07 <|a? -9 ina,b>0
(ii) (a+5)?<2 a?+b%) ina,b>0,
(iii) | max(0, a) — max(0,b)| < |a—b|, ifa,beR,

to estimate the following

) = QA" < {[£n) = mas(0, ()] + fmax(0,h(m)'/* = QA
<27 {|f( ) —h(n)| + lmax (0, h(n))/9 — Q(h(n))‘q}
<2 {|fmy7 — nm) + (5)°}-

Now taking the Besicovitch g-norm, we have

I ~Qohly<e

which implies
1T4(f) = Tg(Q@oh)|lre < e

The same argument as above, with noting that |h(z)| < hllu, z € Z, yields
. -~ 1 (|- £\4
[3(2) - QRN <27 {[g@)7 - k()| + (5)"}
Then, integrating the above with respect to \, we see

19 - ol <27 {13 =Rl + (5)'} =2 {urm -+ (5) ) <

Hence,

)

ITo(f) = Gllze < ITo(F) = To(Q o B)l|La + |Q 0 b — §lla < 2¢
The proof is complete by letting £ — 0. O

For each n € N, let r,(2),z € Z, denote the smallest positive residue of  modulo n,
that is, r,(z) = z mod n, if z mod n > 0, and r,(z) = n, if x mod n = 0.

Proposition 3.16. The function f: N — C is g-limit-periodic, if and only if for every
sequence {ny}r C N converging to 0 in Z, || f — f(r4,(:))]lq = 0 as k — <.

Proof. The sufficient condition is obvious since the functions f(rp,(-)) are periodic. For
the necessary condition, assume that f is ¢g-limit-periodic. Let {n;}, C N be a sequence
converging to 0 in Z. This means that for every fixed m € N, all except finitely many ny
are multiples of m. Hence it is enough to show that for any given £ > 0, there is a positive
integer m satisfying

If = Frim(Dllg < = forall 1> 1

To see this, first choose a periodic function g near f, say, ||f — gll; < £/3. Let a be a
period of g. Then by the definition of the Besicovitch g-norm, we have

lmmm%—E:MWr —gml"=11f - glg < (5)"

N—>oo
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Therefore, there exists an integer m € N, which can be chosen as a multiple of a, such
that

Z|f n) —g{n)|? < 29 (3>q foralll>1

Since both f(r;,,(+)) and g are periodic with period Im, it follows that

im 1/q
17 )) = gl = (% S 1) - g(n)lq> <% foraniz1
n=1

Consequently,

£ (rim () = Fllg S 1f(rim (1)) = glla + g = fllg <& foralll>1

which completes the proof. O

Let $" be the space of functions f: Z — C for which frn, () AN f(x) for some
sequence {ng}r C N converging to 0 in Z [39, Proposition 10]. From our viewpoint, for
r > 1, the space )" is just the space L(Z, /\) with restricted condition that Fin = _l(f).
More exactly, let f € L™(Z,A) and f := T L(f) € . Since A(N) = 0, there is a function
f’ in the class of equivalent functions of f whose values on N are assumed to coincide with
f. Then, by Proposition 3.16, f’ € H". Therefore, Proposition 20 and Proposition 26 in
[39] can now be rewritten as follows (see also [28, 36]).

Proposition 3.17. Let f € D? and f: To(f). Then the following three statements hold.
(i)
L N
Mf] = lim — ; f(n) =

(ii) For (s,t) € R?,
M[exp (vV—1sRe f+ -1t Imf)] :E[exp(\/—_lsRe]?-f— \/—_ltlmﬂ].

(iii) R
(frea) =(f,€a), a€Q/Z (3.8)

Remark 3.18. Proposition 3.17(ii) claims that every limit-periodic arithmetical function
ji € D7 has limitA distribution and its limit distribution coincides with the distribution of
f=T,(f) € LYZ,N).

Theorem 3.19. Let f € Lq(z, A). Then there exists a full measure shift invariant set
Q C Z with the following properties.

o~

(i) fr € D? for all x € Q, where fr(n):= f(x+n),n € N.

o~

(i) To(fz) = f(xz+-) for all z € 2.

(iii)
lim - =0 um ly in Q.
p(l’,y)ﬂl 0;z,y€2 Hfz fy”q u Zform ywm
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Proof. Let f € LY(Z, A) and {f(m)}m be a sequence of periodic functions converging to f.
Recall that the shift Z 5 2 — 2 4 1 is ergodic (Theorem 3.13). Then for each m € N, by
the ergodic theorem, there exists a full measure shift invariant set €2, such that

N
Jm <SG 0 - Fladm = BIF - Y, seQn (39
n=1

Let Q = ), Q4. It is clear that Q is shift invariant and A(Q) = 1. It now follows from
(3.9) that ~
£ = fellg = £ = fllo, z €9, (3.10)

where fim)(-) = flm) (z+-). Moreover, fa(cm) is periodic and T, ( fém) )= Fim) (z+-) because
FU is periodic. Therefore, letting m — oo in (3.10), we see f, € DY and To(fz) = flz+)

for all z € 2.
Next we prove (iii). Given an ¢ > 0, there exists an m such that

IF™ = Fllee < 5

Now, due to the shift invariant property of the Haar measure A,
~ ~ £ ~
17 @ +) = Fla+ e = 7™ = Fls < 5.z e

On the other hand, the function f(m) is uniformly continuous since 7 is compact. Thus,
there is a § > 0 such that |j/”\(m) (z) = f™(y)| < ¢/3 when plx,y) < 6. It follows that

1™ (n) = £5™(n)| < e/3 for all n € N, and hence ||£™ — £l < €/3, if p(z,y) < 6.
Finally, for z,y € Q with p(z,y) < §, we have

1fz = Fyllg < e = 8 lla + 1A = £ g + 1™ = fullg

~ m ~ £ £ 3
<P =Tl + 1A = S50+ 1F™ = fllee < 5+ 5+ 5 ==

Theorem 3.19 is thus proved. O
Remark 3.20. Let f € LY(Z, \). Then by Theorem 3.19(iii), the limit

li r = D1
Qalér—lro f f <

exists. Moreover, we have Ty(f) = f

o~

Theorem 3.21. Let f € LYZ,\) and f = T, \(f). For each § >0, put B(§) := {z € Z:
p(0,z) <&}, Let

1 N
fs(n) = W/B((s) f(n—l—x)/\(dx), n € N,

Then, fs € D7 and fs converges to f in D? as & — 0.
Proof. For each § > 0, using Holder’s inequality, we have

o~

fin + 2)A(da)

509 = 5555 | o

(B(9))

i 1/q
VYIRS Fin+a T (a=1)/q,
<A@w»(é@V(+)“W>> A(B(E) s
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It follows that

f(n)]7 < ——

S NBO) /B(J) |f(n + )2\ (de) = A(B /|f(n+x 171 (s (2) A(dz)

1 ~
- NB(3)) /2 |f(@)|"1 p(s)(x — n)A(dz),

and hence,

1 & 1
¥ sl < s L@ <N213<5><x—n>) Mdz).  (311)
n=1 n=1

Note that the integrand of the above integral is bounded by \fA(:E)|q . Moreover,

N
% S 1ps)(@—n) = A(B@) as N - oo,

n=1

by the ergodic theorem (x — x — 1 is ergodic, Theorem 3.13). Thus, letting N — oo in
(3.11) and using Lebesgue’s dominated convergence theorem, we arrive at

I f5llg < I Fllze.

The above inequality guarantees that f5 is a ¢-limit-periodic function. Indeed, let {f(m)}m
be a sequence of periodic functions converging to f in Lq(i7 A). Then fém) is also periodic
and || £ = fsllg < 1F"™ = fllza =0 as m — co.

For each m, from the uniform continuity of ﬂm it follows that

(m) () — Flm) 1 Flm) Fim)
£ (n) — f\™(n)| < / ™ (n+zx A(dzx
70 = F 0 < 5y g T 09 = T )
—0 as ¢ — 0 uniformly in n.
Consequently, | f; Fm g < |Ifs Fim _ £, = 0 as § — 0. In addition, we have the
following estlmate
s = Flla < s = £ Mg + 155" = £ g + 15 = Fllg
<2llf - f(m lze + £ = 70
Therefore,
tim sup | fs = fllg < 21F = ™ e
The proof is complete by letting m — oo. O

Ezample 3.22. Let k € {2,3,...}. Let f: N — {0,1} be the indicator function of the set
of k-th power free integers, that is,

£(n) 1, (Vp: prime, n mod p* #0),
n):=
0, (3p:prime, n mod p* = 0),

and let f: Z — {0,1} be a natural extension of f defined by

() 1, (Vp:prime, z mod p* #0),
z) =
0, (3p: prime, z mod p* =0).
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Then f = 1p, where B = ﬂp(z\pki) € B(Z). Tt is well known that f € D9 for all
1 € g < oo. Moreover, Ty(f) = f, as we will see in Section 3.4. For m € N, put
Ap =mZ = {mz : z € Z}. For any sequence {n;}; converging to 0 in Z, by changing
B(d) to Ay, in the proof of Theorem 3.21, we also have

fay(n) = )\(—14115 " Flin+ x)A(dz) LAY f as [ — o0

Next, we calculate { f,, }; for a special sequence n; := Hpgpl ph=

the I-th prime. We have

Hi:l pﬁ, where p; denotes

M(B-n)N Anz) ABN(Ap, +n))

I == ay T A

The numerator can now be expressed as

MB N (An, +1) = X [ Z\PFZ) N (An, + n))
p

=2 (N@\FD N (A +m) 0 () (E\PD)

PP pP>py

2 [ N @\P*Z) (A, + 1) Hx(z\pkz)

<P pP>pr
~ ~ 1
P<P1 p>pi p

The second last equality holds since the sets ((,«,, (Z\p*Z)N(Anp, +n)) and {(Z\P*Z)} pop,
are independent. Fix [ > k. For each p < p;, we see

Anl+n:nlz+nCpk2+n.

It follows that A, +n C (Z\ p*Z), if n mod p* # 0, while (A,, + n) N (Z\ p*Z) = 0,
otherwise. Therefore,

() (Z\p*Z) N (An, +n) =

PP

Anl+n> (Vpgplvpkfn%
0, (3p < pi.p* | n).

Consequently,

fry(n) = {Hp>pl (1 B #) , (Vp<pi,p¥tn),
| 0 (3p <pi,p* | n).

In particular, fy, (n) = Hp>pz (1 — #), if n is k-th power free. Thus, {fn,(n)}; converges

to f(n) uniformly on the set of k-th power free integers. However, the convergence is not
uniform on N at all. Indeed, given any n;, take n = pf_H, for example. Then f,,(n) =

Hp>pl (1 — 517;), which is not near f(n) = 0. However, {fy,}; converges to f in D9 for all
1 < ¢ < 00 as stated above.
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3.3 Convergence of Fourier expansions

3.3.1 Convergence of Fourier expansions in LI(Z, \)

For each n € N, define an operator Sy, : LI(Z, ) — LY(Z, ) as

SoH= > (Few)eur FeLUZN).
1<a<:|;?;,r):1

It is easy to see that §n is a continuous linear operator and has the finite operator norm
|Snllg- The following lemma is similar to [26, Theorem II.1.1].

Lemma 3.23. Let {ng}r C N be a sequence converging to 0 in Z. Then the following two
conditions are equivalent:

() for all f € LY(Z,\),

o~

18, (F) = flle = 0 as k — oo; (3.12)

(ii) there ewists a constant K, such that ||Snkl|q Ky for all k.

Proof. (i) = (ii). If the sequence {Snk(f)};C converges to f, then {Snk(f)}k is bounded for
every f € LY(Z,)\). Therefore, ||§nk |lg is uniformly bounded by the uniform boundedness
principle. N

(ii) = (i). Let f € Lq(i7 A). Given an & > 0, there is a periodic function g such that
lf —9llee < €/(Kq+1). Let m be a period of g. Recall that the convergence of {ny}
implies that all except finitely many ny are multiples of m. Now, if n, is a multiple of m,
then §nk (9) = g, and hence

150 () = fllza = 180 (f) = Sni(@) + 9 — fllLe
<80 (F) = Sne@llze + 1 = Fllzo
€ €
< K bl
Kol Kyl -
which completes the proof. O
Lemma 3.24. For all n € N,
|Snll1 <6,
150l < 1

In other words, K1 = 6 and Ky = 1 satisfy the condition of Lemma 3.23(ii) for every
sequence {ny}r converging to 0 in Z.

Proof. Since {€a}aeq,z is an orthonormal basis of LQ(Z7 A), it holds that

Hgn(f)”L? < ”f”[ﬂ, fG LQ(Z, A), meN.

Therefore, ||Sp|l2 < 1 for all n € N.
Let us now show that || S, i <6forall neN. Fix ann € N and let fe Ll(Z A). I
follows from the definition of S, that

o~

(fr8am) = (Sa(F)Eapm), 1<a<n,
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and hence, for any periodic function g with period n, we have

o~

(f,8) = (Su(£),9)-

Assume first that the function f is real. Then Sp(f) is real, too. Let A = {z € Z :
So(f)(z) > 0}. Tt is clear that 14(x) is a periodic function with period n. Hence, we have
the following estimate

—~ —~ o~ ‘

(i) - 7o)
/ o D) - F
(f)-

) 7
{Sn(
/ (f( ) = 3alF) () Ald)
n{Sn(f) f<0

A(dz)

SNe—’

A(dx)

AR

< (Sn(f) = Fr1a)+2 / Flz)A(dx)
AN{Ea(H-F<o}

<O+2/A‘f(x) )\(dm):2/A’f(x) | Mda

By the same argument, we also have

I,

Combining the above inequalities, we see
(D) - fla >[ Ad) + /
A

2</A\f(x) Adz) +

IS0 (Pt < 18a(F) = Flloy + 1 Fllzr < 3102

In the general case, write the complex-valued functionAf as f= g+v-1 h, where § and h
are real-valued functions. Then S, (f) = Sn(g)++v—1Sn(h), and hence the above estimate
implies

A(dz) + 2 /A m{§n<f>—f<0}( (z) —Sn(f)(x)) A(dz)

5:(Nta) - )|y <2 [

o~

150(f) = Fllos =

w(F(@) - fla)| Ada)
o)) =20l

Consequently,

152 (Pl < 18a@llzr + 15a®)lzr < 301Gt + Rl p) < 6l1F] L

This means that ||S,||; < 6. The proof is complete. O

Next, we will use the theory of interpolation of norms and of linear operators to show
the existence of a constant K satisfying the condition of Lemma 3.23(ii) for any 1 < ¢ < 2.
We will apply the following two results.

Lemma 3.25 ([26, Theorem IV.1.2]). Let B (resp. B') be a normed linear space with
two consistent norms ||-||o and ||-||1 (resp. |||l and |||\ ). Let ||-|la (resp. ||||) denote the
interpolating norm, 0 < a < 1. Let S be a linear transformation from B to B’ which is
bounded as S

(B, lI-1;) = (B II;), =01
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Then S is bounded as
S
(B [Illa) = (B, 1112,

and its norm ||S||o satisfies
ISlla < ISl SIS

Lemma 3.26 ([26, Theorem 1V.1.3]). Let (X,v) be a measure space, B = L' L*®(v),
and let 1 < pp < p1 < oo. Let ||-||; denote the norms induced on B by LPi(v), and let
|-lle denote the interpolating norms. Then ||-||o coincides with the norm induced on B by
LPe(v) where

_ PoP1 _ Do , _
o T —a) (— T Y= OO) :

Let (X,v) = (Z,\) and B = L>®(Z, A) in Lemma 3.26, moreover let pgp = 1 and p; = 2.
Then for 1 < ¢ < 2, the interpolating norm ||-||o coincides with the L? norm ||-||zq, where
a=2(1-1/q). R

Let B = B’ = L**(Z, A) in Lemma 3.25 and [|-o = (|-l = l[-l21; [I]x = ]2 = 1]l 22,
respectively. Then the norms ||:|jo and ||-|J; are consistent [26, IV.3.1]. Fix an n € N,
and let S = S,|p. Lemma 3.24 claims that ||S|o < 6 and [|S|; < 1. Now, applying
Lemma 3.25 to a = 2(1 — 1/q), we see

“SHa < 61—a L1 = 62/(1—1'
Since the interpolating norms ||-||o = |||, coincide with the LY norm ||-||zq, it follows that
152 (Pllzs = 1IS(N)lla < ISllall fllze <675 fllze,  f € L®(Z,N).

This implies ||Su]l; < 6297} because L®(Z, \) is dense in LY(Z, \). Therefore, for 1 <
q < 2, constants K, = 62/97! satisfy the condition of Lemma 3.23(ii).

Next, consider p,q > 1 such that 1/p+ 1/q = 1. It is well known that the dual space
of LP(Z, A) coincides with Lq(i, A). Moreover, it is easy to verify that the dual map of

§7(Lp ) Coincicles with S\,(f), /yvhere §7(1p ) and §7(f) denote the same operator §n but on different
spaces LP(Z,\) and L4(Z, A). It now follows from the duality that

]]gn”p = I|§n“q

Therefore, constants K in Lemma 3.23(ii) exist for all 1 < ¢ < co. Consequently, for any
sequence {ng}x C N converging to 0 in Z and for any f € LY(Z, ) (1 < ¢ < 00), we have

”S\nk(]?) — AHLq -0 as k— oo. (3.13)

3.3.2 Convergence of Fourier expansions of limit-periodic functions

Now we turn to the study of Fourier expansions of limit-periodic functions. For each
n € N, define S,,: DY — D7 as

Su(f):= D (frea) o fED
rin;
1<a<r;(a,r)=1

Let f € D? and f:: Ty(f) € Lq(i7 A). Recall that by Proposition 3.17, we have

(freasr) = (frCapr)s ma€N.
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o~

Consequently, T,(Sn(f)) = §n(f) Therefore, for any n € N,
152(f) = Fllg = 18a(F) = flle-

The above equality, together with (3.13), gives us the convergence of Fourier expansions
of limit-periodic functions, namely;

Theorem 3.27. Let {ni}x C N be a sequence converging to 0 in Z. Then for every
function f in D9 (1 < ¢ < 00), we have

Jim 1S, (/) = fll = 0. (3.14)

3.3.3 Convergence of Fourier expansions of almost-even functions
Let ¢,,7 = 1,2,..., be the Ramanujan sums,
er(n) = Z €a/r(n).
1<a<r,(a,r)=1
Let B denote the space of even functions. Then, by [43, Theorem IV.1.1],
B =Linc[¢:r=12,...].

Denote by B9 the linear closure of B with respect to ||:||;. Functions in 87 are called
g-almost-even arithmetical functions. Moreover, {@(r)'l/ 20,»}7-:1’27“, is an orthonormal
basis of the “Hilbert space” B2, where ¢(r) is the Euler function, ¢(r) = #{l1 < a < r:
(a,r) = 1}. For almost-even functions, the following result is a version of the convergence
of Fourier expansions.

Corollary 3.28. Let {nx}r C N be a sequence converging to O in Z. Then for every
function f in B7 (1 < q¢ < o©), we have

I — 1] =0, .
kl}%“%ar(f)c f‘q 0 (3.15)
where a.(f) = {@(r)} Yf, e)r = 1,2,..., denote the Ramanujan coefficients of the

function f.
Proof. Since B9 C D9, the proof is complete, if we can show that for any f € B9,
S ar(f) er = S (f)- (3.16)
ring
Let us first show that (3.16) holds for f € B. Take f € B of the form
f = Z by cr,
rel

where I C N is a finite set and {b,},ec; C C. Then a.(f) = b,, if r € I, and a,(f) = 0,
otherwise. Thus,
LHS. of (3.16)= > bycr.

For the R.H.S. of (3.16), observe that for 1 < a < 7, (a,r) = 1, we have

b., ifrel,
(7 ea/r> B {0, otherwise.
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Therefore,
RHS. of (3.16) = ) _ Do breap= 3 b > eapr
Ior|ng 1<agr,(a,r)=1 Iaring  1<a<r,(a,r)=1
= > bre, =LHS. of (3.16).
Ior|ng

This means that (3.16) holds for any f € %B. Since both sides of (3.16) are continuous
operators with respect to f, it follows that (3.16) holds for any f € B9. O

Ezample 3.29. Consider again the indicator function f of the set of k-th power free integers.
Define f/: N = R as
=>_u@f (3),

dln

where p denotes the Mobius function. Recall that f is multiplicative; f(p!) =1, if [ < k,
and f(p' ) = 0, otherwise. Then f’ is also multiplicative. Moreover, for each prime p and
121,

if =k,

otherwise.

F®) = p) @) + wp) G = ) - f = {0—1’

Thus,

© 1 #(n ! I(n2 1
Zlfi)l:H<1+lfép)’+’f;€)'+...>=H<1+ﬁ><oo. (3.17)

n=1 P p
Therefore, by [43, Theorem VIII.2.1], the Ramanujan coefficients a,(f) are equal to

wipy= 3 L9

1<d<oo;
d=0 mod r

Let {n;} C N be a sequence converging to 0 in Z. Since f € BY1 < g < o0) (see
Lemma 3.33), for each ny, the Fourier expansion coincides with the Ramanujan expansion
as we have shown in the proof of Corollary 3.28,

SN =Y aNem=Yem 3 LD v HD s
ring r|ny 1<d<o0; 1<d<oo rlngrld
d=0mod r

We have
. if d
> er(n) = {d’ it d] " (3.18)

0, otherwise.
rld
Now, the Mé&bius inversion formula implies that
/
d
=Y ra= Y HEam.
din 1<d<oo r|d

Therefore

s =sunm= 3 AT em- ¥ aw). e

1<d<o0 rid rlngr|d
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Recall that we have the convergence of Ramanujan expansions as follows
1Sn, (f) = fllg— 0 as — oc.

On the other hand, we can show that {Sp,(f)(n)}; converges pointwise to f(n) as | — oo.
Indeed, fix n € N. It follows easily from (3.18) that

Z cr(n)

r|d

<n forall d.

Let D(n;) = ming{d # gcd(n;,d)}. Then D(n;) — oo as [ — co. Moreover, we have

3 @(Zcr(n)— > CTWN

D(ny)<d<oc rid ringrid

[f(n) = Sn, (F)(n)] =

< Z VISTd)I%L——)O as [ — oo.

D(ny)<d<o©

Note that the condition (3.17) is enough to ensure the pointwise convergence of Sy, (f)(n).
Comparing with [43, Theorem VIII.2.1(iv)], we need an additional condition to ensure

S ar(f)er(n) = f(n), neN.
r=1

3.4 Limit-periodic additive and multiplicative arithmetical
functions

A function f: N — C is called additive (resp. multiplicative) if
f(mn) = f(m)+ f(n) (vesp. f(mn) = f(m)f(n)) whenever (m,n) = 1.

Let f be an additive (resp. a multiplicative) function. For each prime p, define a function

fp as
fon) = ), if nep*N\p™'N, k=0,1,....

Then the function f can be expressed by

n) = Z fp(n) (resp. f(n pr (3.20)

Note that for each n € N, the infinite sum (resp. product) is actually a finite one. Now,
extend f, to a random variable fp 7 — C in a natural way as

f(@) = f@"), if zepZ\pTZ k=0,1,....

Then {f/;}p is a sequence of independent random variables. It is obvious that if we re-
place {f,(n)}, in the expression (3.20) by {fp(x)}p, then the sum (resp. product), in
general, is not finite at all. Does this sum (resp. product) converge? For additive func-
tion, Novoselov [39] proved the following results.

Theorem 3.30 (cf. [39, Proposition 46, 47]). Let f € D7 be an additive function. Then
the sum
) = Z fo(z)
P

converges for A-a.e. x € Z. Moreover, Ty(f) = f
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The tool used to deal with additive functions is Kolmogov’s three series theorem.
For multiplicative functions, Novoselov [39] only gave some sufficient conditions for which
Hp fp converges. This section deals with multiplicative case and our result is the following.

Theorem 3.31. Let f € D9 be a multiplicative function with M[f] # 0. Then the product
fl): H folx)

o~

converges for l-a.e. Tt € A Moreover, Ty(f) = f.
The following is a key lemma to show Theorem 3.31.

Lemma 3.32 (cf. [5, Theorem 1]). (i) Let {Xn}n be a sequence of independent complex
random variables with B|X,] # 0. Assume that [], E[|X,|] converges and I, E[X,]
converges to a non-zero limit. Then X := [[,, X, converges almost surely. Moreover,
X is integrable and

E[X|] < HE1X|

(ii) If, in addition, 1], E[|Xn|?] converges for ¢ > 1, then
= [[EX:), ElX)) HEHX 1]

Proof. (i) Let
HZ»l Xk
M, = =0
" Hk:lE[Xk]

Then {M,}, is a martingale. It follows from our assumptions that

[z E0Xel]
E[|M,|] = T B €N,

is bounded. Therefore, by Doob’s martingale convergence theorem (Theorem 0.40), the
limit

M = lim M,

n—oo

exists almost surely. Consequently, the limit X := [], X, also exists almost surely. Next,
applying Fatou’s lemma, we see

E[X]] < hmmeyH Xil] = lim HE|Xk| [TEIX.0.

k=1 n

(ii) If, in addition, [], E[|X,|? converges for ¢ > 1, then {E[|M,|]}, is bounded. It
follows from Theorem 0.40(iii) that {M,}, converges to M in L4. Consequently,

E[M] = lim E[M,] =1

n—>00

M7 = Jim B{M7 = LRl

The proof is complete by noting that X = M [], E[X5]. 0
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For each prime p, it is easy to see that the random variable fp is integrable, if and only

glﬂp"n ( p,}H) <1 _ _> L) (f Wl
The expectation can be expressed by
Zf<p>( kﬂ):(l_%)gfﬁk)‘

The following properties of multiplicative functions with non-zero mean value can be found
in [43, Chapter VII].

if

Lemma 3.33. Let f € ©9 be a multiplicative function with M|[f] # 0. Then the following
holds.

(i) fe B
(ii) , ,
M[f]:H(l—Z—D) <1+%+%’;—)+-~) =[] =l

p p

In particular, for every prime, E[JZ;] # 0.

Proof of Theorem 3.31. Since D7 C D!, it is enough to prove Theorem 3.31 for the case

= 1. Let f € D! be a multiplicative function with M[f] # 0. Then |f| € D! with
M| f] = M[f]| > 0. Moreover, the function |f]| is also multiplicative and |f|, = |fp|.
Now, applying Lemma 3.33(ii) to functions f and | f|, we have the following.

(i) The product HpEHJ?pH converges.
(ii) The product HPE[]?,,] converges to the non-zero value M[f].

These mean that the sequence {fp}p satisfies the condition of Lemma 3.32(i). Therefore,

f(x pr ), A-ae. x€ Z.

Next, we will prove that T1(f) = f This proof is divided into three steps.
Step 1. When q > 1, M[|£|9] = E[|f]%] and the Ramanujan coefficients of f coincide with
those of f, that is, N
<f7 C7‘> = <f7er> r €N, (321)

where ¢, := T,(¢,). Indeed, f € D9 implies |f|? € ’Dl Then Lemma 3.33(ii) applying for
|f|¢ implies the convergence of the product ], E[| fp| ]. Therefore, by Lemma 3.32(ii),

E[f]9 = HElfp = M[| f|%). (3.22)

Next, we will prove (3.21). It follows from the following expression of the Ramanujan sum
cr(n) = X gy (r/d) d = 3g, p(r/d) d14n(n), that

= p(r/d)d1z(x).

dlr
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Therefore, (3.21) will hold, if
(f.lan) = (f,1,5), deN. (3.23)

Let us prove (3.23). Fix d € N and write d = Hpelpa(p), where I is the set of primes p
such that a(p) > 0. Then (f, 14y) is represented as ([43, Theorem VIII.4.4])

a(p)+1 2 -1
{f, Law) = f]H< o) f§<p>+1)+'")(”f—fh%*“) )

pel

or it can be rewritten as

(f, law) = HE[fp pa<p>z]HE ol

pel pgl

The sequence {J?p}pgj also satisfies the condition of Lemma 3.32(ii) because I is a finite

set. Therefore, R -
B[] 7) =[] Bl

pgl pgl

This implies that

[H K11 a(p)z} = E[anlpa(mz 1T J?p}

pel pel pgl

= E[prlpa@)i}E[pr} = [[EGL ezl [TEG] = (1),

pel pel pel pgI

Step 2. We will prove T,(f) = fin the special case ¢ = 2. Since the function f € ©? is
a multiplicative function with non-zero mean value, Lemma 3.33(i) implies that f € B2,
Moreover, {p(r)~1/2¢, },en is an orthonormal basis of the Hilbert space B2, thus we have
Parseval’s identity as follows

X0 Cr 2
> W20l i = naps
r=1

It then follows that

N

3 “—’;(A—; .

Note that {¢(r) ~1/28,} ,n is an orthonormal system in LQ(Z A). Now Parseval’s identities
for f and f imply

— p(r)

R R o e -

Z 80,(7’; G —% f as R— oo
r=1

In addition, it is clear that
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and hence, letting R — oo, we obtain Th(f) = f.
Step 3. Now we turn back to the case ¢ = 1. Following the first proof of [43, Theorem
VII1.4.1], we define the multiplicative function f) by truncation of f for K > 2

FEO k) = {f(pk)’ if | £(p*)] < K,
L if |f(p*)| > K.
Then the following two statements hold.
(i) fK ed2
(ii) “f(K) — flli = 0 as K — oo.

The statement(ii) implies that M[f¥)] # 0 when K is large enough because M[f] # 0.
Therefore, when K is large enough, the natural extension ]?(K ) = Hp f;K) is well defined
and moreover by Step 2, To(f5)) = &) We also have

i) (| FE) — fllz2 — 0 as K — oco.

Let us prove statement(ii)’. It follows from the definition of FE) that |5 ()| < |f(2)],
and hence |ﬂK)($) — f(z)] € 2|f(x)| for M-a.e. x € Z. Put

AR = {2 eZ: [P () # f(2) }.

It is clear that R R
AR Y (ka\ pk+1Z) (\-ae.).

i k=21,
FR)>K
Consequently,
1 1 1 1 £ (")]
e £ (b))
; ) p'%l' pk pktl K » p%} o
f(P*)I>K If(*) > K
1 1 k
<E<1__> Z li@kj__)() as K — oo,
p p; k=21; p
|F(p*)|>2

where, we have used the fact that

k
Z —_If(ll’c ) < 00, ([43, Theorem VIL5.1, Definition VII.1.2]).
; . P
p; k21
|f(p*)|>2

Therefore,
1799 = Flys = [ 1F*)@) = Fla)iriea
< / 2|f(x)|/\(dx) -0 as K — oo
A(K)

Thus, the statement(ii)’ has been proved. Finally, the statement(ii) and the statement(ii)’,
together with the continuity of Ty, imply that Ti(f) = f. The proof of Theorem 3.31 is
complete. .






Chapter 4

The Distribution of k-th Power
Free Integers

4.1 Introduction

For k € {2,3,...}, let X®)(n),n € Z, be the indicator function of the set of k-th power
free integers, that is,

: k
(k) — 1 (Vp:prlmeap Tn)v
X {o, (3p : prime, p* | n),

and let S](\If) (m),m € Z, denote the frequency of k-th power free integers between m + 1
and m + N, that is,

N
5O (m S xm

1
- N
Then it is well known that for each m € Z,

lim S )( )-L

where ( is the Riemann zeta function.

Many researchers have been interested in estimating the error sk N ( )—1/¢(k). Under
the Riemann hypothesis, there is a conjecture about this;

Ve>0, N <S§§)(m) - ﬁ) =0 (Nl/z’”&) , N o0 (4.2)

As is mentioned in [40], this conjecture should hold, but it is quite unlikely that it will
be proved in near future, because it is related to the Riemann hypothesis so closely. In
particular, in the case of k = 2, there have been many challenges to this conjecture,
assuming the Riemann hypothesis, such as [1, 2, 20, 38]. Refer to [40] for an overview of
this topic.

In this chapter, we study the probabilistic aspects of this problem. We take here a
compactification method which has been developed in Chapter 3. Let us give an overview
of this chapter.

Recall that Z denotes the ring of finite integral adeles and we consider the probability
space (Z, B(Z),)). Since X*)(n) is a multiplicative limit-periodic function, it has the
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natural extension X®)(z) as a random variable on (Z, B( ),A). As a consequence of
ergodic property of the shift x — z + 1 on Z we get the following law of large numbers

1

) Aae. z € Z, (4.3)

lim S¥(z) = lim = (k) ( (k)] —
N E>n<>o ( N 1—I>noo Z X :L' + n [X ]
which is the adelic version of (4.1).

The main aim of this chapter is to study the convergence rate of the law of large
numbers (4.3). With the help of the explicit formula for the random variable S](\l,c) given
in Section 4.2, we can estimate the rate of convergence in Section 4.3 as follows;

E{ <N (51(5) - C—(lk—)))z} ~ const - N'/¥.

Finally, in Section 4.4, the last estimate is translated into the language of Z as

M 2
1 (k) 1 1/k
il — ~ -N 1 A7),
A/}grloo 7 m§:1 (N (SN (m) C(k))) const (Corollary 4.17)

This may be called as a mean square version of the conjecture (4.2). It should be noted
that we do not need the Riemann hypothesis to prove this and nevertheless get the same
exponent as in the conjecture.

4.2 Explicit formula for Sy

In what follows, we fix an integer k > 2. It is known that X*)(n) is multiplicative and
X®)(n) € DT for all 1 < q < co. However, for the sake of completeness, let us give the
proof here. It follows from the definition of X *)(n) that X*)(n) is multiplicative and

X® () = T[(1 = ppe()).
P
For each L € N, let Xék) = [[,<p, (1 = ppr(n)). Then ch) converges to X®) in D9,
Indeed, observe that
X®(n) - X[ < Y o),
P>pPL
which implies,

N N
%Zp((’“)( — x®n NZ > ppr(n) = —jlqupk(n) <Y ]%.
n=1

n=1p>pr P>PL n=1 p>prL
Thus,

' N N
® _ x®) o L B ) — x© = lim = S X E () — x®)
X0 = X0, = i 32X )~ X007 = g 3 X0 )= X )

1
<Z—k—>0 as L — oo.

p>prL p

Since the functions Xék) are periodic and converge to X*) in the |||, norm, it follows
that X*) € D4 for all 1 < g < oo. Hence as we proved in Section 3.4,

X® () = H(l —ppr(2)), wE A

P
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is the natural extension of X(k)(n)_
If we put R )
BY = (\2\#'7) € BD),
P

then it is clear that X*) = 15k, and thus,

EX®) = xB®) =]] (1 ~ %) = i—)

Recall that the shift Z > z — z + 1 is ergodic (Theorem 3.13). Then applying the
ergodic theorem to X®) | we obtain

L

RO (A-ae. z € 7Z),

N
S (z) = % S XM (4 ) 2 0] =

n=1

which is the adelic version of (4.1).
We are now in a position to give the explicit formula for S](\l,c) (z). For each L € N, let

x®(z) = I - i),

PSPL

N
k 1 k
Sy (@) =5 X[ + ),

n=1
My ::{u:pf1~--p%LEN:Oéal,‘..,aLgL}.

Remark 4.1. From now on, if there is no confusion, we will omit *) in formulae. For
example, X will be considered as X (k) and so on.

Lemma 4.2. For each N € N,

Sn..(z) Lo Sn(z) (pointwise convergence), (4.4)
1 1 ((N+z)moduf =z moduF
Svae) = 3 o) (3 - (BEDEd 2 ) )
uweEMy,

where y denotes the Mébius function.

Proof. The convergence (4.4) is obvious. We now prove (4.5). The definition of Sy 1(x)
gives

r=11<i1 < <1 <L

1+y Y (1) pyt o (2 +7)

r=11<i1 << <L

N L
:%Z <1+Z Z <_1)Tpp§1(x+n>'"prr(x'*'")
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1 N
= E (7\/: E a: +n > . (4-6>
Here we have

N
1 1 N+mmodu
_§ pu’“(l“i_n):_“ J
anl N

1 N+mm0du (N%—z:)modu’C
N uk
_ik__((N+m)modu _:Emoduk>. (47)
N uk uk
Therefore, substituting (4.7) into (4.6), we obtain (4.5). The lemma is proved. O

The following is a key lemma in this chapter.

Lemma 4.3 (cf. [44, Lemma 8]). For u,v € N and y,z € Z, we have

B K(y+m) mod u _ z mod u) ((z+x) modv :cmodv)}

_ (y mod (u,v)) A (2 mod (u,v)) (1 _ (ymod (u,v)) V (2 mod (u, v)))
{u,v} (u,v) i

where the expectation E: works on x, and

(u,v) = ged(u, v),

{u,v} = lem(u,v) = the least common multiple of u and v.

Proof. We divide the proof into four steps.
Step 1. For a,b,c € N with (b,¢) = 1 and for z € Z, it holds that

(4.8)

1« x+sac)m0dab z mod a b—l
5;0 ab ab %

This is shown in the following way. Since (b, ¢) = 1, by a similar argument of [21, Theorem
56], we have

{(x+sac)modab:s=0,1,...,6—1}
={(r+sa)modab:s=0,1,...,b—1}.

Thus, it is enough to prove (4.8) only for ¢ = 1. Moreover, we have

{(x+sa)modab:s=0,1,...,b—1}
={(z+a+sa)modab:s=0,1,...,b—1},

so that we have only to prove (4.8) for x = 0,1,...,a—1. But then, for s =0,1,...,b6—1,
we have (z + sa) mod ab = x + sa, consequently,

0“

~1

=
(z + sa) mod ab a:+sa_w b—1
bZ AT

1
b ab 2

»
I
o

Thus (4.8) is valid.
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Step 2. By the fact that for z € A

(z + sac) mod ab = (z mod ab + sac) mod ab,

(2 mod ab) mod a = z mod a,

and by Step 1, it is easy to see that for a,b,c € N with (b,¢) = 1 and z,y € Z

lb_zl (y + = + sac) mod ab  (z + sac) mod ab
b = ab ab
1 ((y—i—x) moda xmoda)

b a a

Therefore, for any periodic function f: 7, — R with period ac, we have
(y+7) mod ab  x mod ab
E [( ab ab f(z)
[ the shift invariance of A]

1 (y+ x + sac) mod ab  (z + sac) mod ab f(z + sac)
b4 ab ab
b—1
1 Y+« + sac) mod ab  (z + sac) mod ab
bg( ab ab /(@)
1 (y+x)moda zxmoda
=7 [ - a )f(x)}
Step 3. Set a := (u,v),b =u/a c:=v/a and f to be

f(z) = (z+x)modv xmodv‘

v v
Then Step 2 implies that

E [((y+m) mod u xmodU) ((z+x) mod vz mod v)]

u u v v
_E [((y—}-x) mod ab  x mod ab) ((z+:c) mod ac = mod ac)]
ab ab ac ac
_ lE [((y—}—x) mod a  z mod a) ((z+3:) mod ac  z mod ac>]
b a a ac ac

By letting y,b,c and f(z) in Step 2 be z,¢,1 and

(y+x)moda xmoda

a a
respectively, we see that the last line above is equal to
lE [((y+x) mod @ z mod a) ((z—HE) mod @  z mod a)] ' (4.9)

be a a a a

Step 4. Without loss of generality, we assume that y mod a < z mod a. By Corollary 3.7,
the integrand of (4.9) is continuous, and it is periodic with period a. Therefore, Lemma
3.10 implies that

11% ((y-}—s)moda smoda)((z+s)moda smoda)
=0

a a

(4.9) = (4.10)

bcas a a
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Moreover, it is clear that

y mod a )
(y+s)moda smoda | — — if 0 < s <a—ymoda,
¢ “ g_;&da_y ifa—ymoda<s<a,
a
and that
z mod a .
(z+s)ymoda smoda e’ if 0 <s<a-zmoda,
_ - d
a a £1mo a—l, fa—zmoda<s<a.
a

Finally, dividing the sum (4.10) into three parts and using the above expressions, we arrive
at

(4.10) _11 Z y mod a z mod a

a a
0<s<a—z mod a

ymod a {zmoda
R Il G i)

a—z mod a<s<a—y mod a

y mod a zmod a
ez () ()

a—y mod a<s<a

(a — z mod a)

bca

_ 11/ ymodazmoda
N a a

+ymoda<zmoda_1> (z mod a — y mod a)

a a
+(ymoda_1) (zmoda_1> (ymoda))
a a
11 zmod a
it 1—
=t (ymoda)< " )

__ymod (u,v) _ zmod (u,v)

i (=)

:(y mod (u,v)) A (z mod (u, v)) (1 _ (y mod (u,v)) V (2 mod (u,v))> .
{u,v} (u,v)

The lemma, is proved. 0

A small modification of [44, Lemma 9] gives the following.

Lemma 4.4. For any bounded function H: N — R, it holds that

U NIH(n
Zlm{u)g}kl’H u,v) |_Z|M H |H<1+ ) 0,
) H(n 2
u{(u)gik v Z |u(n \ H <1_ F)'

ptn

u,v=1

Lemma 4.5. For each N € N,

as ) mo Uk I 11 Uk
Z,u(u)<(N+ Jmoduw? _ zmod )z:T(m,N) (4.11)

u U

u=1

is convergent in L*(Z, \).
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Proof. Fix an N € N. For finite sets . and M such that . ¢ M C N, Lemma 4.3 and
Lemma 4.4 imply that

o (35 (et emonety

ueEM

(N+z) mod u* 2 mod uk\\?
=D nlw) o R

u€EL

(N +z)mod u*¥  z mod uk)

D O [

u,veM\L
(N +z) mod v* 2 mod ¥
% vk ok
N mod (u,v)* N mod (u,v)*
= p(u) p(v) 1-
w vgl\:/ﬂ\IL {u’ /U}k (u’ U)k
S
u,veM\L {U v}
Ip(u)p(v)|
<N Y et |50 as LN
u,veN\L
The lemma, is proved. O
By letting M 7 N in the proof of Lemma 4.5, and then I. /N, it follows that
N k
Z,u ( +wkmodu _mmo;lu )—L—iT(x,N) as L "N (4.12)
u€EL u u
On the other hand,
o
w(u) 1
Z —E = RO} (absolute convergence), (4.13)
u=1

2
and Sy, L) Sy by the bounded convergence theorem. Therefore, using these con-
vergences in the formula (4.5), we have an explicit formula for S]Qf) as in the following
theorem.

Theorem 4.6. For each N € N, as an equality in LQ(Z A), the following holds;

e k
*) ) 1 1 Z (N + ) mod u* _zmodu

uF uk

4.3 Estimate of the L?-norm and limit points in L?

L
C(k)

mod u* mod u¥ -~
<(N+:c) du® =z Su > (in LA, ).

In Section 4.2, we proved that N <SN(17) - ) = ~T(x,N) and

M= u(u)

u=1

uk u
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Let us calculate the explicit formula for the L2-norm of T(zx, N). By using Lemma 4.3
and Lemma 4.4, we have

B{T(z, N)] = lim E[( 3 u(w) <(N +2) mod u*  z mod uk))j

U—oo uk uk
ugsU

- lim E[ S () <(N+:v) mod u¥  z mod uk>

U—oo uk u’“

(N + z) mod v* 2 mod ov*
X vk vk

_ p(u)p(v) (N mod (u,v)k) <1 _ N mod (u,v)k)

MEUNS L (u, v)*
|u(n)| k N mod n* 2
=Z ( dn) 1= I1 =) @)
pin
where in the last line, we have applied Lemma 4.4 to

H(n) = Hy(n) == (N mod nk) (1 - w) .

nk

Let
[pu(n)]

Hp\n (1 - z% )
Then f is multiplicative, and moreover the following conditions hold:

Zf<p)_1<oo; (i) Z|f(10)—112<
p p
2 x
111) ZZ ’f p )| (lV Zf p—l # -1.
=1

p (22

fn) =

Indeed, by definition,

f) = —5 = =i f0H=0,1=23,..).
Therefore,

P

p

If(p) =1]* _ 4 -
2 P _Zp(p’“—2)2< ’

p

p—2

which proves (i) and (ii). The series in (iii) is 0 since f(p') = 0,(I = 2,3,...). (iv) is
obvious since f is positive. Since f satisfies (i)—(iv), the mean value M]f] exists and is
non-zero (see [15]). Moreover, by [43, Lemma VII.1.6],

M[f]=H(1+ f(p;—l _ fg)) =H<1—%> <1+p]}:k:12>'

p p
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Proposition 4.7. 4s N — oo,

n=1
where {x} denotes the fractional part of .

Note that
N

Bl M =TT (1- ) gf(n) (21 0-{%

Consequently, Proposition 4.7 gives us the main result of this section.

Theorem 4.8.

S f(n) { }(1_{%}): N (Mm% /0°° {x}ﬁ/;{f})

da+ o))

]

Jim NTVEB(T(z, NP = ( p

It remains to calculate the value of the integral in Proposition 4.7.

Lemma 4.9.

= {}1-{z}), __ (@-D
k/o _—17k+—I—d - (27()1’*1“( )sin%'

Proof. The Fourier series of the function {z}(1 — {z}) is as follows

o0
1 Ccos 2NTx
) E :——2—
n=1

%(7% X:: cos 2n7rm)

{z}(1—{z}) =

| =
3

o0

xO
2 sin? nrz
== 0
s n<
n=1

Termwise integration yields that

1 < 1— cos2nmz 1 7
:—22———2—— {because Zﬁ—F

1 (1 - 1—19> (1 * 119 B %)) (27r)1€(%21“—(§))sin E

oo . 9
RRCHC )| /mzzsm__g”__} da
k 0 zl/k+ k Jo 7r2n:1 n?  prtl
zléi%/msminwmd
kT ~n“Jo kTl
12 i 1 /°° sin?y iig
_Eﬂznzl n? Jo ()5 +1nm
oo

()i )
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We here note that from a formula: fooo S“;,’jm dr = 2F(u) ——r

1 [®sin?y 1 1.4 .
) = [t e
y

o0 1
o

m<u<2v>®

1 o0 o0 1
=—-y & sin2y‘0 —/ (—y~*)2siny cos ydy
0
*° gin 2y 25t

= 1 dy 1 in X :

0 G 2F(75) %

Substituting this into the above, we have
/°° {2} —{a}), _ 2 w26 —¢(2- 1)

k Jo gl/k+1 72=% 2I(3) sin g% k
¢2-3%)
(27r)1_FF( ) sin g

Ll

The proof is complete. v O
In order to prove Proposition 4.7, we need the following lemma.

Lemma 4.10. Let {a,}, be a complex sequence. Put s, := ay + -+ + a,. Assume that
there exists a constant ¢ € C such that

SWN —c as N — oc. (4.16)
Then, for any s € (0,00),
o0
N?® Z njil —>-§— as N — oo. (4.17)
n=N

Proof. Let s; = Y ;. ai,(x € RT), be an extension of s, as a function on RT. Clearly
limg 00 82/ = ¢. First, we check the convergence of > S2r. For N,M € N, N < M,

Y e Y e
nstl nstl
N<n<M N<nsM

_ 1 1 SN_1 SM
= D n T (ny 1)+ ) T Net t 3
N<n<M~-1

1 /
= " do — N1 4 oM
- _Ts—%—l Ns+1 Ms+1

N<n<M~1
Lgg 1 SN_1 SM
o Z x3+2 NSt T M+l
N<n<M~1

Sz SN-1 SM
= (s+ 1)/N pore Ll o Ry

:(SH)/MS_x dr sy N-11  su 1
Ny zxtl N—-1 N N M Ms
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This tells us that ) -S%r is convergent. Next, letting M — oo in the above, and then

multiplying this by N°¢ yield that

o0

an ® s, dx sy_1 N -1
stns+1:(s+1)Ns/N T N—-1 N

n=N
> s, 1 dr sy_i1 N-—-1
= 1 oz bl
(s + >/N z @/NYHN N-1 N

o0
sy dy sy—1 N —1
= 1 —
s+ | Ny N-1 N

From Lebesgue’s dominated convergence theorem, the assertion follows immediately. [J

Proof of Proposition 4.7. Let us consider
oo} ({3 })
- 2 (- () 2 (e} 0-{F)

ngNl/k n>N1/k

N N f(n) 2 (n)
- 2 so{g (- () X Ao X S
n<N1/k n>N1/k n>N1/k

By Lemma 4.10, as N — oo,

N Y %ZQ _ NV ((Nl/k)kl 3 _f_T(LZ_)> _ Nk (kM—[i:E -|-o(1)>, (4.18)

n>NL/k n>N1/k
and
2 f(n)_ 1/k 1/k\2k—1 f(n) _ arl/k M
N YD = NURL(NY) Y x| =N o
n>N1/k n>N1l/k
Tt will follow from Lemma 4.11 and Lemma 4.12 below that
N NN _ ik 1 > {z}(1 - {z})
ng
The proof is complete by combining the estimates (4.18)-(4.20). Ll
Lemma 4.11. As N — oo,
N NN _ e (L =31 = {=})
2, {3} (- {e)) = ([ i P,

Proof. In the proof, we will us Euler-Maclaurin’s formula: for any ¢ € C ([a,b]), we have

> pln) = /bw(w)dfc - <{w} - %) p(z) Z+ /ab ({x} - %) o (z)dx.

a<n<b a
Note that Euler-Maclaurin’s formula still holds for functions which are continuous on [a, b]
and have continuous derivative except at finitely many points. Let

= ({2, e an
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. . . N 1/k N 1/k .. .
Then ¢ is continuous. Now, if (H—l) <z« (T) for some positive integer [, then

0= (5 () (- (3.

g) = 9 N l Nk Nk N Nk
vl =2\ - g~ mm = (29 @ () o
It follows that ¢ has continuous derivative except at finitely many points in any bounded
interval. For L € N, L. < N, by applying Euler-Maclaurin’s formula to the function ¢ with

a= (%)l/k and b= NV* and noting that @(a) = ¢(b) = 0, we obtain

<%>w§<m {%} (1 - {%D
LB LoD 6 ) 2

1 Nk
Tk yl/kH dy |

1k B 1/k
N Pyl }/kiy})d +/1 ({(%) }_ %) (2{y} — 1dy

Nl/’c 1-—
E{y)( 1/kiy})d +O(L).

and hence

[ change variable y = N/zFiz =a s y=Liz =b— y= l;dz =

Note that the above estimate O(L) is uniform for L, N. Choose L = L(N) satisfying
L(N) < N; L(N) — 00; L(N) = o(N'/*), we see that

> (- {5

n<N1/k

N N N N
O 31 Gl € ) R O o G )
ng(Lg‘I’V))l/k (L(N))l/k<n<N1/k

N NYEE {y3(1 - {y})
~0 (g )+ N [ s oy

1 L 1— 1 L(N)
(3 [ 0 () o (SR )

The proof is complete by letting N — oo. l

Lemma 4.12. As N — oo,

Proof. Put
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Then it is not so difficult to check this formula: for ¢ € C!([a,b]),1 < a < b < 00, we have

b
> anpln) = = [ S@)(@)de + S(@ela) - SEo(E)
a<n<b a
Of course, the above formula still holds if ¢ is continuous and has continuous derivative
except at finitely many points in [a,b]. Now, for L € N,L < N, let a = (%)1/1C and
b = NY*_ Then by applying the above formula to the function ¢ defined in (4.21) and

noting that f(a) = f(b) = 0, we get
agé%{%}O’{%})=—AZW0@{%}—Q§$¢L

Given an ¢’ > 0, there exists an Ny such that |S;| < €'z for all z > Np. If a > Ny, we

have
N N b N Nk
S o{arf ({7} || s ({5} 1) e
a<n<b
v
< E‘/Nk/ ﬁdm (because |S;| < €'x)
a
e'Nk
k-1
< E,Nka—k—Fl
k-1
B S NE [ L\ K®-D/E
T k—1\N

VL =

e} (- ()

N Vk
Scy=c|— )
cy =c ( L>
where ¢ = sup |an| < co. Now, given ¢ > 0, choose an L such that ¢/L'/* < /2. Next,
choose ¢’ satisfying 5’%L(k_1)/k < £/2. Then there exists an Ny as above. For N being

(a—k+1 _ b—k+1)

In addition,

large enough such that a = (%)l/k > Ny, we have
N N
> a1 {x
n n
ng<N1/k
N N N N
<[ Ze {5} (- {3+ | 2, e - {3))
n<a a<n<b

N Mk k
< rarl/k (k—1)/k
\c<L> +e'NYA——L

< gNl/k + %Nl/k — ENl/k.

The lemma is proved. U
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Let
1 1 & 1
Yv(@) = —am L@ N) = 7 Z_:l (X(x )= C—(k_)) .

By Theorem 4.8, limy o0 E[|Yn|?] = Cx > 0. From this, we may expect that the sequence
{Yn}n converges in distribution. We could not prove this yet. However, considering the
L?-limit, we get the following result.

Theorem 4.13. {Yn}n=12.. has no limit point in Lz(i, A).
Lemma 4.14. For firted N € N,

lim E[YyYy] = 0.
M—oo

Proof. Similarly as in showing the equality (4.15), by using Lemma 4.3 and Lemma 4.4
again, we have

E[T(z, M)T(x,N)] = lim E [( > u(u) ((M + xikmod Wtz m;)’? uk>>

ugsU
(N + z) mod v¥ xmodvk
x (2wl oF oF
vgU
L (M + x) mod u*  x mod uF
= lim u(U)M(v)EK ) o
u,v<U
((N + ) mod v*  z mod vk)]
>< J—
vk vk
= lim Z “ v ((u,v))
U—>oou ’
=35 PO b (1 0)
u,veEN

Sl (2

where

M mod n*) v (N mod n*
Hyn(n) = ((M mod n¥) A (N mod nk)> (1 _ (M modn )nk( Hocn )>
is a bounded function. It is easy to see that
OéHMﬁN(n) QHN(TL), Vn € N.

Thus,

1 - lu(n)] 2
0 < E[YarYn] = M2k N1/2k Z nk Hy,v(n) 1- o
n=1

N 172k N 1/2k kN ok
n=1
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NV 1 & u(n)| 2
= M1/2k Nl/k Z nk HN(n) H <1 - ﬁ)
n=1 pin

N1/2k 9

The lemma is proved. U

Proof of Theorem 4.13. For 0 < N < M, we consider
E[|Yy — YnI?] = E[[Yu[*] + E[|[Yn[’] — 2E[Y) Yn].
From Lemma 4.14 and Theorem 4.8, it follows that

lim E[|Ya — Yn|?] = E[[Yu|?] + Cr = Cy > 0.
M—=oo

This implies that {Yy}x has no limit point in L2(Z, A). The theorem is proved. O

Remark 4.15. Since {||Yn||2}~ is bounded, the sequence of probability measures {\ o
Yy 11y on R is tight. Therefore, for any subsequence {N. i }; there exists a subsubsequence
{Nj} such that {Ao Y!}; converges weakly, or {YNJ< }; converges in distribution.

J

4.4 Mean square convergence rate

Recall that since X(n) is multiplicative and X (n) € D9 for all 1 < ¢ < oo, Tg(X(n)) =
X (x) for all 1 < g < oo. In particular, 75(X(n)) = X (x). Property(i) of T, (Section 3.2)
implies that for each N € N,

T <SN(n) - ﬁ) = (SN(HU) - ﬁ) :

Thus, by the isometric of 75, we get the following result.

Lemma 4.16. For each N € N,

S s (S

m=1

The convergence (4.22) together with the estimate in Theorem 4.8 gives us the estimate
of the mean square convergence rate, namely;

Corollary 4.17. As N = oo,
1 (k) 1 2
M — - ~ 1/k
N}lm i EZI (N (SN (m) Q(k))) CpNY*F,

where Cy, is the constant in Theorem 4.8.
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