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Abstract

This thesis discusses an oscillator-based true random number generator (TRNG) which
is robust to environmental fluctuation. Random number generated from physical random
sources is a key component of a security system, such as cryptography and authentication,
because of its unpredictability, and many instruments for random number generation have
been studied. This thesis focuses on an oscillator-based TRNG, which utilizes random jitter
of the oscillator as a random source, since it is easily implemented on silicon and it is inher-
ently robust to deterministic noise compared to a direct amplification method. However, it is
difficult to design an oscillator-based TRNG with circuit simulations, because ordinary sim-
ulators do not take the jitter into account directly. An efficient design methodology tailored
to the oscillator-based TRNG is demanded. In addition, the amount of jitter is generally in-
sufficient while the randomness of output bit stream depends on the jitter amount. Frequency
dividers help accumulate the jitter, but they reduce the throughput of the TRNG. Thus, an
oscillator which has large jitter yet operates at high frequency is required. Bias of output bits
is another critical issue for the TRNG. Probability of ‘1’ occurrence depends on duty cycle
of an internal oscillator of the TRNG, whereas the duty cycle fluctuates by environmental
variations. Consequently, post-silicon online tuning of duty cycle is indispensable.

This thesis firstly presents a design methodology for the oscillator-based TRNG based on
a stochastic behavior model. The model is used to evaluate the randomness of the TRNG.
Measurement results of a prototype TRNG fabricated in a 65 nm CMOS process show that
the proposed model well reproduces the behavior of the TRNG. The stochastic model also en-
ables a worst-case-aware design of the TRNG. This thesis analytically confirms that the worst
case the methodology considers results in the lowest randomness of outputs. The proposed
worst-case-aware design methodology determines design parameters according to the worst
χ value of a poker test under deterministic noise. Experimental results with a noise-aware
gate-level simulator implemented for validation purpose verifies the efficiency of the worst χ
evaluation. Also, a design example is presented to exemplify the proposed worst-case-aware
methodology.

Secondly, this thesis proposes an architecture of a jitter amplifier to improve the random-
ness of the oscillator-based TRNG. Jitter of an oscillating signal is intensified by chang-
ing a propagation delay of a latency-controllable (LC) buffer. Two types of LC buffer, viz.
two-voltage LC buffer and single-voltage LC buffer are presented. This thesis also derives
an expression to estimate the gain of the jitter amplifier, and analyzes sufficient conditions
for proper amplification. The oscillator-based TRNGs with the jitter amplifiers are imple-
mented with a 65 nm CMOS process. Area of the amplifier with the two-voltage LC buffer is
3,300 µm2, while the amplifier with the single-voltage LC buffer occupies 1,700 µm2. Mea-
sured jitter gain of the jitter amplifier with the two-voltage LC buffer is 8.4, and that with the
single-voltage LC buffer is 2.2. The jitter amplification enhances the entropy of bit streams,
and makes the output random bits pass the all tests of the NIST test suite. The proposed jitter



iv Abstract

amplifier attains higher throughput per area than frequency dividers in most cases.
Finally, this thesis describes a system that self-calibrates duty cycle to remove the biasing.

In the proposed system, a duty cycle monitor measures the duty cycle of an oscillating signal,
and a duty cycle corrector adjusts the duty cycle according to the measured value. A TRNG
with the proposed monitor and the corrector is fabricated in a 65 nm CMOS process. The duty
cycle monitor measures the duty cycle with a resolution of 0.16 % and the duty cycle corrector
achieves 0.11 % of resolution in average at 20 ◦C. In addition, the monitor reduces the
necessary time for estimating duty cycle to be 3,500 times smaller than output bit sampling.
Employing the self-calibration system, the variation of probability of ‘1’ occurrence due to
the temperature fluctuation becomes 1/18 times smaller.

Integrating these accomplishments, this thesis realizes generation of highly random num-
bers even under environmental fluctuation, and contributes to development of highly secure
systems.
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Chapter 1

Introduction

This chapter describes the background and the objectives of this thesis. This thesis fo-
cuses on random number generation for security system. Requirements for an on-chip ran-
dom number generator include robustness to environmental fluctuation, such as power supply
noise and temperature fluctuation, as well as high throughput and small area. The purpose of
this thesis is to design a hardware random number generator which is tolerant to supply noise
and temperature fluctuation. The following sections describe the background of the random
number generation, introduce an oscillator-based TRNG, which this thesis focuses on, and
finally present the objectives of this thesis.

1.1 Background
This section describes how random number is utilized for security and introduces several

kinds of random number generators. Methods to evaluate randomness and to enhance ran-
domness with post processing are also shown.

1.1.1 Random number for security purpose

High-quality random number generation is highly demanded and essential for security [1].
Cryptosystems and authentication systems suppose the usage of random numbers. For ex-
ample, random numbers are used as the keys and initial vectors for the cipher block chaining
(CBC) mode in common key cryptosystems, and Vernam cipher also needs random num-
bers whose size is more than the plain text [2]. Secure sockets layer (SSL) requires random
numbers to generate the keys for data encryption [3]. At the first step of Diffie-Hellman key
exchange, a server and a client individually generate random numbers [4]. Challenge-and-
response authentication and digital signature also require random numbers [5].

Statistical randomness and unpredictability of the random numbers are important for se-
curity applications. For example, in 1995, Goldberg and Wagner [6] pointed out a security
flaw of Netscape browser. The cause of this problem was insufficient unpredictability of the
secret keys, which was generated from predictable numbers such as time and process ID.
Markettos et al. [7] presented a way of attacking the random number generator, and degraded
the randomness of bit streams generated from an EMV payment card. The authors claimed
that a person could withdraw cash masquerading another person with the attacking method.
Thus, deterioration of random numbers degrades the quality of security system.

Pseudo random number, which is easily generated by deterministic calculation [8], is pre-



2 Chapter 1 Introduction

dictable when a malicious attacker knows the initial state of the pseudo random number
generator, and then, it is not suitable for security purposes.

On the other hand, true random numbers are produced from physical random sources, and
all bits in bit streams are independent of the other bits and the probabilities of 1/0 occurrences
are identical. Note that this thesis hereafter calls a random number generator which utilizes
physical random source as a true random number generator (TRNG), while it is sometimes
called a physical random number generator or a hardware random number generator in lit-
erature. Because true random numbers cannot be predicted by computational methods, they
are advantageous for security purposes. True random number generators are implemented on
microprocessors as well as smart card ICs [9]. For example, 22 nm Intel microarchitecture
implements a true random number generator and supports instructions to utilize the random
numbers [10, 11].

1.1.2 True random number generators

There are many kinds of methods for true random number generation. Hu et al. [12] em-
ployed unpredictable movement of the mouse. Rohe [13] used radioactive decay of ameri-
cium as random source. Yoshizawa [14] also employed radioactivity. Recently, chaos in
semiconductor laser attracts attention as a source of a high speed TRNG [15–21]. For in-
stance, Kanter et al. [18] demonstrated a TRNG based on a chaotic semiconductor laser,
which attained 300 Gbps of throughput. A light quantum is another random source being
studied for the TRNG [22–24]. In addition, Yamanashi and Yoshikawa [25, 26] presented a
TRNG which utilized a sensitivity of a superconductive circuit to obtain a random bit stream
from thermal noise. These TRNGs require special hardware to exploit random sources, which
degrades their utilities and availabilities. Accordingly, on-chip TRNGs have been widely
studied because of the cost of fabrication and the utility.

Oscillator-based TRNG, which utilizes jitter of oscillators as a random source, is a pop-
ular method for generating true random number [27–40]. The TRNG is easy to implement,
process-portable, and process-scalable, because it simply consists of digital circuits, i.e. os-
cillators and a sampler. In addition, the TRNG is tolerant to deterministic noises [44]. This
thesis therefore focuses on the oscillator-based TRNG and explains the detail in Sec. 1.2.

Direct amplification is a traditional method for true random number generation [41–45].
This method amplifies internal noise, typically thermal noise from resisters or transistors
with amplifiers, and generates a bit stream comparing the voltage of the amplified noise with
a threshold voltage. Figure 1.1 illustrates a simple TRNG with direct amplification method.
The TRNG in Fig. 1.1 outputs ‘1’ when the amplified noise is more than 0 V and otherwise
‘0’, since the threshold voltage is GND. On the other hand, the amount of thermal noise is
generally small [46], and hence the method needs a high-gain wide-band amplifier, which
occupies large area and consumes much power. The designers need to at least tune the design
parameters of analog circuits, and in some cases, redesign the analog circuits when the TRNG
is fabricated in another technology. Although Matsumoto et al. [47] used SiN MOSFET as
a source of large noise and shrunk the size of the amplifier, the SiN MOSFET requires the
special process. In addition, randomness of bit streams is sensitive to deterministic noises,
such as power supply noise, substrate noise, and so on [44], and then, the TRNG should be
shielded from the deterministic noises.

Chaos-based TRNG implements a chaotic system and utilizes its sensitivity to the input
[48–58]. Figure 1.2 shows an example of chaos-based TRNG which implements Bernoulli
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Figure 1.1: Basic TRNG with direct amplification method.

shift map [58]. The chaos system utilized in the TRNG is expressed as follows:

Xn = [2(Xn−1 + e(n))]mod1.0, (1.1)

where Xn is a stochastic variable and e(n) represents random noise. The TRNG in Fig. 1.2
realizes Eq. (1.1) with pipelined analog-to-digital converter. The bit sequence generated from
the iterations of Eq. (1.1) is uniformly distributed and its spectrum is flat. Eq. (1.1) includes a
term of random noise e(n), and then, the internal states of the system after sufficient number
of iterations is unpredictable even if the initial state is known. Since the chaotic system helps
improve randomness even through e(n) is quite small, the randomness of output is robust to
deterministic noise. The randomness comes from the character of the chaotic system rather
than the input noise [58]. The TRNG, however, requires complicated analog circuits and
consumes large current.

TRNGs which are based on metastability of the circuits are recently studied [59–71]. Fig-
ure 1.3 shows a schematic and simulated voltages of the metastability-based TRNG. In the
initial state, CLK is LOW, and therefore both A and B are HIGH. The cross-coupled inverters
get into a metastable state and the internal nodes go the intermediate voltages when CLK rises.
Then, the metastable state is solved by internal random noise. One of the internal nodes, A or
B, is pulled up and the other node is pulled down. Consequently, the cross-coupled inverters
get into one of two stable states. Thus, the TRNG generates a random bit every cycle of
CLK. Since the core element, which is the cross-coupled inverters, is a latch, the TRNG is
implemented with digital circuits. However, the process variation between the two inverters
and the deterministic noise bias the final state, and then the TRNG must be accompanied with
precise calibration.

In addition, there are other methods studied. Tanamoto et al. utilized MRAM cells [72,73].
Brederlow et al. used random telegraph noise [74]. Xu et al. used hot-electron injection [75,
76]. MOSFET after soft breakdown were utilized as large noise source in [77–80]. Fibonacci
and Galois ring oscillator were used as random sources [81, 82]. Modified ring oscillator
(MRO) and transition effect ring oscillator (TERO) were proposed in [83, 84].
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Figure 1.3: An example of metastability-based TRNG and simulated voltages of
each node in a 65 nm CMOS process.

1.1.3 Methods of randomness evaluation

Specifications of randomness of TRNGs need to be considered since various security appli-
cations utilize the TRNGs. Generally, it is difficult to theoretically demonstrate that a TRNG
for cryptography attains enough randomness. The TRNG should prove that the generated
bit streams cannot be distinguished from the ideal random numbers. The proof is, however,
impossible because it requires trials of an infinity number of judgement algorithms [85]. Con-
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sequently, the researchers choose several algorithms to test the randomness of generated bit
streams. There are several tests for randomness evaluation, and major tests are introduced in
this section. Note that randomness of TRNG in this thesis just means the statistical random-
ness of output data, and unpredictability is not specifically discussed.

FIPS140-2 [86] provides four statistical randomness tests, i.e. monobit test, poker test,
runs test and long runs test. The poker test divides a 20 kbit sequence into 5,000 consecutive
4 bit segments, and counts the number of occurrences of 16 possible 4 bit values. χ value is
calculated as following:

χ =
16

5000
×

15∑
i=0

[ f (i)]2 − 5000, (1.2)

where f (i) denotes the number of each 4 bit value i, and i is 0 ≤ i ≤ 15. Pass range is
2.16 < χ < 46.17.

NIST 800-22SP [87] presents a test suite for cryptography application, which consists of
15 tests. The test suite gives sets of p-value and pass proportion. If the p-value is 0.0001 or
more and the pass proportion is within (1 − α) ± 3

√
α(1 − α)/nseq, then the bit stream passes

the test. Here, α is the significance level and nseq is the number of sequences. Pareschi et
al. [88] analyzed the testing strategy of the NIST test.

Marsaglia [89] presented a set of randomness tests, called Diehard tests. AIS31 [90, 91] is
an evaluation criteria for TRNGs, in which 9 statistical tests are defined. Knuth [92] described
12 kinds of randomness tests. Crypt-X [93] is a commercial test for randomness evaluation.
L’ecuyer and Simard [94] introduced TestU01, which is a C library for empirical testing of
random number generators. Udawatta et al. [95] presented a statistical method for TRNG
testing.

This thesis employs the randomness tests described in FIPS140-2 and NIST 800-22SP
since they are the most popular tests and widely used in TRNG literature.

1.1.4 Post processing

Post processing of the generated bit stream is often employed in order to enhance the
randomness, and representative correctors for postprocessing are introduced here.

Von Neumann corrector [96] splits the input bit stream into groups of two bits, and then,
the corrector outputs ‘1’ for “01”, ‘0’ for “10”, and nothing for “00” and “11”. The corrector
compensates the bias between the occurrences of ‘1’ and ‘0’ since it reduces the number of
series of identical bits. On the other hand, the corrector drastically reduces the throughput of
the TRNG, since it discards about 3/4 of input bit stream even when the input has sufficient
randomness.

XOR corrector [97] outputs XOR of successive two bits of inputs. The corrector adjusts
the number of occurrences of ‘1’ and ‘0’ when the input bits are independent of each other
while it reduces the throughput by half.

SHA-1 mixer [36] increases the randomness of outputs by mixing the bit stream with a
hash function, SHA-1. Mathematical theories for randomness extractions are also presented
[85,98–105]. However, the circuits for the mathematical functions dissipate additional power
and occupy large area.

Consequently, this thesis aims at developing a TRNG that can attain sufficient randomness
without post processing.
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Figure 1.4: Basic oscillator-based TRNG.

1.2 Oscillator-based true random number generator
As described in Sec. 1.1.2, an oscillator-based TRNG is a popular random number gener-

ator and is easy to implement. Thus this section focuses on the oscillator-based TRNG. This
section reviews the principle and design issues of the oscillator-based TRNG.

1.2.1 Principle of oscillator-based TRNG

Figure 1.4 has a block diagram of a basic oscillator-based TRNG, which consists of a
sampler and two distinct oscillators; one is fast and the other is slow. The sampler acquires
bits from the fast oscillator (D in Fig. 1.4) using the signal of the slow oscillator as the clock
(CK in Fig. 1.4). The oscillators inherently have jitter because of internal noise, and hence the
rise timing of the slow oscillator signal fluctuates from the viewpoint of the rising edges of the
fast oscillator. The oscillator-based TRNG generates random numbers exploiting this jitter as
a random source. Though the throughput of the TRNG is unstable since the frequency of the
clock for the sampler is slightly but randomly fluctuated, a first-in first-out (FIFO) interface
can easily stabilize the throughput.

Random period jitter, which originates from internal random noise such as thermal, shot,
and random telegraph noise, has been called ‘jitter’ for the sake of brevity in this thesis. Then,
the amount of the jitter is defined as the standard deviation of periods. Note that the timing
fluctuations of the edges of the slow signal relative to the fast oscillator is the source of the
randomness in the TRNG, as will be discussed in detail in Sec. 2.2.2.

In addition, the jitter is assumed to be temporally independent in this thesis. For validating
this assumption, an example of auto correlation function (ACF) of the jitter of an oscillator is
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Figure 1.5: Normalized auto correlation function of jitter of a ring
oscillator.

given. A normalized ACF of a 251-stage ring oscillator with 16-frequency divider fabricated
in a 65 nm CMOS process is shown in Fig. 1.5. The period of 512 cycles were measured
with a real-time oscilloscope, the mean of the periods was subtracted from each measured
period, and then the normalized ACF was calculated. Figure 1.5 shows that the ACF of the
jitter was similar to the Dirac delta function, which means the jitter of the ring oscillator can
be assumed to be temporally independent.

1.2.2 Difficulty in designing oscillator-based TRNG

It is necessary to estimate the randomness of TRNGs and obtain appropriate design pa-
rameters for designing a TRNG that satisfies given performance specifications. Despite the
necessity of randomness evaluation, it is difficult to simply simulate oscillator-based TRNGs
because the jitter of oscillators is not directly considered in ordinary circuit simulators such as
Synopsys HSPICE [106] and NanoSim [107]. They could simulate oscillator-based TRNGs
by modeling jitter with pseudo-random numbers through Verilog-A [108], for example, but
it takes an unacceptably long time for simulations, although randomness tests require long
bit streams. Furthermore, the oscillation periods for the two oscillators and their jitter are on
different orders of magnitude and hence the time steps for transient simulations must be kept
small to ensure that the simulations are accurate. Therefore, an efficient behavioral model and
a method of evaluating the randomness of oscillator-based TRNGs are necessary to guide ex-
plorations into design space and meet the design specifications. Also, a design method that
takes into consideration deterministic noise is required because a TRNG should guarantee
sufficient randomness even when unwanted noise or malicious attacks occur.

Petrie and Connelly [44, 58] modeled a slow oscillator under random noise and determin-
istic signals as a voltage-controlled oscillator (VCO). They discussed the required jitter to
produce sufficient randomness and the effects of deterministic noise with a poker test [86].
They also discussed the frequency ratio of the two oscillators when it was small (about 15).
Although the reference [44] claimed that a larger frequency ratio resulted in better random-
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ness, this tendency was from an assumption about the behavior of an oscillator-based TRNG
and insufficient quantitative evaluation in terms of frequencies was provided. In addition,
their proposed model [44] could not be used to evaluate the effect of deterministic noise ac-
curately when the noise frequencies were higher than that of the slow oscillator, and therefore
design with the model could not ensure sufficient randomness under high-frequency noise.
Moreover, the model was not validated with hardware measurements. Bucci et al. [39] in-
troduced numerical formulas that gave the transition probability between successive bits as a
function of the average and the standard deviation of oscillation periods and the initial phase
difference between the two oscillators. However, they did not test randomness [86, 87, 89]
rigorously, and did not consider deterministic noise. Bernard et al. [109] proposed a math-
ematical model of a TRNG using two jittery clocks with rationally related frequencies, and
the model could be used to evaluate entropy per bit and bias on the generated bit stream.
Their model, however, did not take deterministic noise into consideration. Baudet et al. [110]
modeled the oscillators of a TRNG with a phase-oriented approach, and they provided for-
mulas for entropy rates. They also introduced a method of measuring jitter by filtering out
deterministic jitter. Ergün [28] modeled a chaotic oscillator that was used as a slow oscillator,
and he provided design guidelines based on estimates of entropies. The model was, however,
tailored for a chaotic oscillator and a VCO, and hence it could not be used for other types of
oscillator-based TRNGs.

1.2.3 Requirement of large jitter

Although jitter is the source of randomness of the oscillator-based TRNG, the amount of
internal noise, i.e., jitter is so small that it is very difficult to generate highly random bit
streams with a naive circuit structure.

Balachandran and Barnett [37] claimed that the amount of jitter should be at least six times
as large as the period of fast oscillator to attain sufficient randomness. For example, the
period of a 7-stage ring oscillator implemented with a 65 nm CMOS process is 220 ps from
circuit simulation, and then, 220 × 6 = 1320 ps of jitter is required. On the other hand, the
jitter amount of a 251-stage ring oscillator with 64-frequency dividers is measured as 100 ps,
which is quite smaller than the necessary value. Thus, to design an oscillator with large jitter
is one of the most challenging subjects for oscillator-based TRNG design.

Frequency dividers help increase the amount of jitter by accumulating the jitter of the
oscillator, but they significantly degrade throughput [38, 112]. Bucci et al. [39] utilized a
triangular wave oscillator, which is sensitive to random noise and produces large jitter. The
oscillator, however, requires analog circuits, and they consume large power and area. Ergün
and Özog̃uz [27] presented a TRNG with a chaotic oscillator. The chaotic oscillator mod-
ulated the slow oscillator of the TRNG, and the timing fluctuations of the slow edges were
intensified. The timing fluctuations depend on the employed chaos system rather than the
random noise. In addition, the chaotic oscillator needs inductors, and then, the TRNG is not
scalable.

1.2.4 Requirement of finely tuned duty cycle

The probability of ‘1’ occurrence of output bit stream is 0.5 for ideal random numbers, and
little bias between ‘1’ and ‘0’ occurrences is preferred.

Researchers of TRNGs grappled with the bias issue. Bock et al. [34] and Bucci and
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Luzzi [38] adjusted the probability of ‘1’ by controlling the rise timings of the fast signal.
Bucci et al. [39] also used T flip-flop to remove the biasing of the output bits. Besides, Srini-
vasan et al. [64] presented a metastability-based TRNG whose bias of outputs was eliminated
by changing the clock timings for the latch in metastable state. Majzoobi et al. [70] adjusted
the two rising edges of the signals to a D flip-flop, and thereby probability of output being ‘1’
became 0.5.

Biasing of output bits from an oscillator-based TRNG depends on the duty cycle of fast
oscillator [28] as well as the offset of the sampler [111], and therefore, the duty cycle should
be finely tuned. The probability of ‘1’ occurrence, p, should be 49.875 % ≤ p ≤ 50.125 %
to pass the frequency test of NIST tests, and the range of acceptable probability is 0.250 %.
On the other hand, the probability of ‘1’ occurrence with a 7-stage ring oscillator in a 65 nm
CMOS process varies from 31.5 % to 44.7 % because of the process variation, and the range
from the largest and the smallest is 13.2 %. Also, temperature also changes the probability
of ‘1’ from 37.6 % to 38.0 % when the temperature varies from 0◦C to 100◦C, and the
range is 0.4 %. The simulated probabilities are separated from 50 % because the simulations
ignore the offsets of the samplers. Note that careful circuit design and layout can make the
probability of ‘1’ 50 % at a typical operating condition in a typical process corner, but the
variation after the fabrication still remains. Consequently, the oscillator-based TRNG with
sufficient statistical randomness requires post-silicon online tuning of duty cycle.

1.3 Objective of this thesis
For ensuring security systems, TRNGs are required to produce good random numbers

robustly even under environmental fluctuation and deterministic noises. The purpose of this
thesis is to realize an oscillator-based TRNG which is robust to deterministic noises and
fluctuation of temperature. To achieve the purpose, this thesis studies the following subjects;

• a worst-case-aware design methodology based on a stochastic behavior model consid-
ering deterministic noise,
• a jitter amplifier to attain the slow oscillator with large jitter, and
• a self-calibration system to finely tune the duty cycle of the fast oscillator.

Figure 1.6 outlines a structure of this thesis in which the subjects correspond to Chapters 2,
3, and 4, respectively.

Firstly, this thesis proposes a stochastic behavior model of the oscillator-based TRNG, and
presents a design methodology considering the worst case under deterministic noise with the
proposed model. A design methodology is required to determine appropriate design param-
eters considering deterministic noise, as is described in Sec. 1.2.2. This thesis proposes a
stochastic behavior model to efficiently determine the design parameters. Also, the thesis
identifies a class of deterministic noise under which the randomness gets the worst. The
proposed design methodology can be used to estimate the worst χ value of a poker test di-
rectly without generating bit streams. Then, the design space can be efficiently explored and
the methodology guarantees sufficient randomness in a hostile environment. The proposed
model was validated by hardware measurement.

Secondly, this thesis presents an additional circuit to the oscillator-based TRNG, which
amplifies jitter amount of the slow oscillator. As explained in Sec. 1.2.3, oscillators with large
jitter and high frequency are required in order to attain highly random bits without decreasing
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Figure 1.6: General structure of this thesis.

throughput. This thesis proposes an architecture of jitter amplifier circuit for oscillator-based
TRNG. The thesis derives an equation for the estimation of the gain of the jitter amplifier,
and analyzes sufficient conditions for proper operation.

Thirdly, a self-calibration system for duty cycle of the fast oscillator is presented. Duty
cycle of the fast oscillator is an important parameter, which significantly affects the 1/0 ratio
of output, and it should be adjusted even under dynamically changing environments, as pre-
sented in Sec. 1.2.4. This thesis proposes a duty cycle monitor and a duty cycle adjuster for
the fast oscillator. Cooperation of the proposed circuits enables the duty cycle tuning of the
fast oscillator under dynamic temperature fluctuation.

The rest of this thesis is organized as follows. Chapter 2 describes the worst-case-aware
design methodology for noise-tolerant TRNG with stochastic behavior modeling. Chapter 3
proposes a jitter amplifier, which intentionally amplifies the amount of jitter of the slow os-
cillator. Chapter 4 presents a self-calibration system, which automatically adjusts duty cycle
of the fast oscillator. Chapter 5 gives concluding remarks.
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Chapter 2

A Worst-case-aware design
methodology with stochastic
behavior modeling

This chapter presents a worst-case-aware design methodology for an oscillator-based true
random number generator (TRNG) that produces highly random bit streams even under de-
terministic noise. This chapter proposes a stochastic behavior model to efficiently determine
the design parameters, and identifies a class of deterministic noise under which the random-
ness gets the worst. They can be used to directly estimate the worst χ value of a poker test
under deterministic noise without generating bit streams, which enables efficient exploration
of design space and guarantees sufficient randomness in a hostile environment. The proposed
model is validated by measuring prototype TRNGs fabricated with a 65 nm CMOS process.

2.1 Introduction
TRNG requires to estimate the randomness of a TRNG and find appropriate design param-

eters, as referred in Sec. 1.2.2. Simulation of an oscillator-based TRNG is difficult, however,
because the jitter of oscillators is not directly considered in ordinary circuit simulators and
modeling of the jitter with pseudo-random numbers takes an unacceptably long time. There-
fore, an behavioral model and a methodology of fast randomness evaluation are necessary
to guide explorations into design space. In addition, a design methodology that takes into
consideration deterministic noise is required because a TRNG should guarantee sufficient
randomness even under unwanted noise.

The author of this thesis [111] proposed a procedure for designing an oscillator-based
TRNG with a stochastic behavior model. They determined the design parameters with
the model without taking deterministic noise into account, and then evaluated robustness
to power-supply noise with bit generation. The procedure, however, required iterations of
explorations of design space and checking of robustness until ad hoc design modifications
attained sufficient robustness to the supply noise. Moreover, the randomness under deter-
ministic noise was evaluated with only a small subset of possible deterministic noises. In
reality, the number of possible deterministic noises is infinite. Thus, the identification of the
worst-case through a number of simulations is impossible, and hence the procedure did not
guarantee the randomness under deterministic noise.
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This chapter proposes a worst-case-aware design methodology using a stochastic behavior
model. Key design parameters are explored and determined with the stochastic model. The
worst randomness under deterministic noise is quickly evaluated with a number of design
parameters using a model without bit generation, and appropriate design parameters are de-
termined so that the TRNG passes tests and satisfies the required specifications, which makes
design iterations unnecessary. The proposed worst-case-aware design methodology guaran-
tees enough randomness even under any waveform shapes of deterministic noise, because the
worst case derived in this work is the theoretically-proven worst case, and there are no deter-
ministic noises worsen than the worst case. This contribution comes from an identification of
the class of deterministic noise which causes the worst situation.

The behavioral model this chapter proposes utilizes a Markov chain, and it is used to
quickly estimate the worst χ value of a poker test (defined in the FIPS 140-2 [86]) under
any deterministic effects without generating a bit stream. The principal design parameters,
which are average periods of oscillators, the duty cycle of the fast oscillator, and the use of
correctors are determined guided by the estimated χ values and target χ values. The quality
of TRNG outputs could be quantitatively evaluated with other standard randomness tests as
well when necessary since the model could also generate a bit stream. It should be noted that
the proposed methodology can be applied to all types of oscillators, since the parameters of
interest are independent of the topology or type of oscillator. Furthermore, this chapter tests
and validates the proposed model with hardware measurements of an oscillator-based TRNG
implemented with a 65 nm CMOS process.

The three main contributions are:

• to propose the worst-case-aware design methodology to guarantee sufficient random-
ness under deterministic noise,
• to verify the efficiency of the worst-case-aware design methodology with gate-level

TRNG simulation, and
• to identify the class of deterministic noise under which the randomness gets close to

the lowest.

The rest of this chapter is organized as follows. Section 2.2 proposes a behavioral model
with a Markov chain and a procedure for evaluating randomness. Section 2.3 explains the
validation of the model with hardware measurements. Section 2.4 proposes a methodology
to calculate randomness in the worst case without bit generation. The efficiency of the pro-
posed design methodology is proven with gate-level noise-aware TRNG simulation, which is
explained in Section 2.5. Section 2.6 presents an example to illustrate how appropriate design
parameters are derived and Section 2.7 is the conclusion.

2.2 Proposed stochastic behavior model
This section proposes a behavioral model of oscillator-based TRNGs using a Markov

chain.

2.2.1 Behavioral model of oscillator-based TRNG

A Markov chain is a discrete-state/discrete-time stochastic process, {Xn} = {X0, X1, X2, . . .},
where {Xn} is a sequence of random variables, which satisfies, for each r, a Markov property,
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Figure 2.1: Application example.

i.e., [113]

P(Xr= xr|Xr−1= xr−1, Xr−2= xr−2, . . . , X0 = x0)=
P(Xr = xr|Xr−1= xr−1). (2.1)

This means that next state Xn+1 only depends on current state Xn and is independent of past
states X0, X1, . . . , Xn−1.

Before explaining the proposed model, the author will describe some assumptions about
the model. This section have assumed that jitter in the oscillators is temporally independent,
as described Sec. 1.2.1. This assumption means that the section takes into consideration
thermal noise, shot noise, and/or 1/f noise but not deterministic noise (this will be considered
in Section 2.4) such as power-supply noise, substrate noise, and external noise. Given this
assumption, a Markov chain can be applied to the behavioral modeling of an oscillator-based
TRNG.

The fast oscillator waveform of one cycle is divided into m spans and each span is regarded
as a state in the proposed model. Thus, a Markov chain that has m-state space is constructed.
Let us suppose the n-th rising edge is the timing of a slow oscillator. Here, the proposed
model defines this timing as time n. The fast oscillator at this rise timing stays in one state
of the m states defined above. The Xn denotes the state at time n. The TRNG generates the
n-th bit corresponding to Xn, since each state corresponds to low or high. Figure 2.1 outlines
an example where the model is applied to a TRNG where m = 8. The TRNG takes state 1 at
time n and state 6 at time n + 1, and then Xn = 1 and Xn+1 = 6. In this example, since states
0, 1, 2, and 3 are low and states 4, 5, 6, and 7 are high, the n-th output is 0 and the (n + 1)-th
output is 1.

2.2.2 Model construction and use

This subsection explains the process of evaluating randomness with the Markov model. 1)
The transition matrix and 2) state probability vector are calculated, and then 3) random bit
streams are generated and evaluated with statistical randomness tests. Each step is explained
in what follows.

Calculation of transition matrix
This step is to construct transition matrix PPP that characterizes the state transition of the

Markov chain. The matrix size is m × m when the model has m-state space. An element of
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matrix pi, j is the probability of a transition from i to j (0 ≤ i, j ≤ m − 1). Transition step
a is the number that the state proceeds to and is defined as {( j − i) + m} mod m. Let qi(a)
denote the probability that the next state will advance by a from state i. Assuming a Gaussian
distribution, pi,i+a is calculated as:

pi,i+a =

∞∑
l=−∞

qi(a + l · m)

=

∞∑
l=−∞

∫ l·tfast+(a+1)tspan

l·tfast+a·tspan

fi(x)dx, (2.2)

fi(x) =
1
√

2πσi
exp

− (x − µ)2

2σ2
i

 , (2.3)

where tfast is the average period for the fast oscillator, and tspan is the time range for one state
and is defined as tfast/m. The fi(x) is the probability density function of a Gaussian distribu-
tion whose standard deviation, σi, depends on the current state. Note that the proposed model
can handle any other distribution shapes as long as they are independent of time, even though
a Gaussian distribution has been adopted as a representative shape in this section. The µ is
a remainder where the average period for slow oscillator tslow is divided by that of the fast
oscillator. It is most likely that the next timing for sampling will advance by µ from the cur-
rent. The next sampling timing is distributed more uniformly as σi increases. The pi, j(i > j)
can also be obtained from Eq. (2.2) since pi, j+m is equal to pi, j while extending the maximum
range of j. Thus, PPP can be derived with Eq. (2.2).

Let us explain Eq. (2.2) using the situation in Fig. 2.1 as a simple example, where m is 8,
Xn is ‘1’, and Xn+1 is ’6’. Figure 2.2 explains the summation and integration in Eq. (2.2).
When tfast is sufficiently large, i.e., tfast >> σi (top of Fig. 2.2), p1,6 is approximately obtained
as q(6 − 1)=

∫ 6·tspan

5·tspan
f (x)dx. However, as tfast is comparable to or smaller than σi (bottom of

Fig. 2.2), q(5 + 8 × (−1)), q(5 + 8 × 1), · · · should not be ignored. As σi becomes relatively
larger than tfast, more terms of q should be summed up, and finally Eq. (2.2) is obtained.

To easily take jitter from both oscillators into consideration, this section introduces a vari-
ance constant and equivalent jitter. An oscillator is composed of stage elements (called gates
after this), such as inverters, and the jitter characteristics of gates are an important factor in
their design. To discuss this factor, this section defines variance constant r as the variance in
the stage delay divided by the average stage delay. Due to this definition, the variance con-
stant of an oscillator composed of n gates with r variable constants is conveniently equal to
r. The variance constant characterizes the jitter of an oscillator. The variance constant of the
fast oscillator, rfast, and that of the slow oscillator, rslow, can differ. For instance, the variance
of periods of the slow oscillator is rslowtslow.

Next, Fig. 2.3 shows an example of waveforms to explain equivalent jitter. Equivalent jitter
σ is the time fluctuation between the rise edge of the slow oscillator and the previous rise edge
of the fast oscillator, and is defined as the standard deviation of the time span between the two
edges (denoted as Tdiff). The fluctuation of Tdiff results from the jitter of the slow rising edge
at tslow and of the fast rising edge at δ + Ntfast. Here, δ is the initial time difference between
the oscillators, and the jitter for the slow edge is rslowtslow. N cycles of fast oscillation elapse
per cycle of the slow signal where N = ⌊ tslow−δ

tfast
⌋, and then jitter accumulates in the meantime,

since tslow is larger than tfast. Then, the variation in the rise edge at δ+Ntfast is rfast (δ + Ntfast).
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The two oscillators have different circuits, and hence the rise edges at tslow and δ + Ntfast
are independent of each other. Therefore, the variance in Tdiff is rslowtslow + rfast (δ + Ntfast).
When the current state is i in the Markov chain, the initial time difference is approximated as
δ ≈ tfast − itspan. The error in this approximation, which degrades the accuracy of the model,
gets smaller as the size of state-space m = tfast/tspan increases, because the error is always less
than tspan. Finally, equivalent jitter is expressed as:

σi =

√
rslowtslow + rfasttfast

(
N + 1 − i

m

)
. (2.4)



16 Chapter 2 A Worst-case-aware design methodology with stochastic behavior modeling

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100

P
ro
b
a
b
il
it
y

State

n=1

n=2

n=3

n=inf.

P{X
1
=15} = 1.17×10-4

Figure 2.4: State probability vectors with progression of time.

The parameter of m affects the accuracy and run time for evaluation. To precisely the
model behavior, tspan(= tfast/m) should be sufficiently smaller than σi. The size of m in the
experiments will be discussed in Section 2.6.4.

Calculation of state probability vector
Given the transition matrix, the next state probability vector, πn+1πn+1πn+1, is calculated from the

current one, πnπnπn as:

πn+1πn+1πn+1 =


P{Xn=0}
P{Xn=1}
...

P{Xn=m − 1}


T

p0,0 p0,1 · · · p0,m−1
p1,0 p1,1 · · · p1,m−1
...

...
. . .

...
pm−1,0 pm−1,1 · · · pm−1,m−1


= πnπnπnPPP. (2.5)

Transition matrix PPP is independent of time n because of the Markov property, and hence
πnπnπn can be calculated with initial state probability vector π0π0π0; πnπnπn = π0Pnπ0Pnπ0Pn. Figure 2.4 plots an
example of πnπnπn transitions where the initial states are 0s. Because the average periods of the
fast and slow oscillators are 0.3 ns and 50 ns, µ is calculated as 50 ns mod 0.3 ns = 0.2 ns.
The variance constants of the oscillators are both 1.8 × 10−14 s.

Bit generation and randomness tests
Duty cycle d is defined as the ratio of the number of states that are high to the number of

all states m in the model. For example, when states 0 to 29 are low and states 30 to 99 are
high (m = 100), d is (70/100)× 100 = 0.7. When the next state probability vector, which can
be obtained from the current state, and the duty cycle are given, the next state and the next
output are stochastically determined with pseudo-random numbers generated by computer.
Repeating this process generates a successive bit stream. Randomness is evaluated by testing
the generated bit stream with arbitrary statistical tests.
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Postprocessing with correctors (e.g., the XOR [97] and von Neumann correctors [96]) is
a popular technique to improve randomness, as referred in Sec. 1.1.4. When the bit stream
is generated by the model, arbitrary correctors can simply be applied to the random numbers
and statistical tests are then executed.

Besides, it is difficult to analytically evaluate randomness using probability computations
without generating bit streams. For example, calculation of χ of a poker test requires the four
successive probabilities of ‘1’ occurrence, (pn, pn+1, pn+2, pn+3). The probabilities, however,
depend on the state at n − 1, which is not uniquely determined. Consequently, bit genera-
tion with simulating the state transitions and statistical randomness evaluation are necessary.
Note that evaluation of worst-case randomness, which will be presented in Sec. 2.4, does not
require bit generation.

2.3 Model validation with hardware measurements
The proposed Markov model is implemented with MATLAB [114], and validated with

measurements of a prototype TRNG fabricated with a 65 nm process.

2.3.1 Test structure

Figure 2.5 shows the test TRNG, chip photos, and block diagrams. The test TRNG was
fabricated with e-shuttle 65 nm process. This test chip includes 5-, 7-, and 15-stage ring
oscillators (ROs) as fast oscillators using standard cells with minimum channel length. A
251-stage RO of the slow oscillator is composed of low-leakage standard cells with 10-nm
longer channel length. All stage elements of the ROs are static CMOS inverters and 2-input
NAND gates. The periods of the ring oscillators are 178.3 ps for the 5-stage RO, 243.2 ps
for the 7-stage RO, 502.6 ps for the 15-stage RO, and 10.0 ns for the 251-stage RO from the
circuit simulations. Four-, 64-, 512- and 4096-frequency-dividers are also implemented as
slow oscillators.

A body biasing technique is adopted to finely tune the duty cycle of fast oscillators. Al-
though a frequency divider could adjust the duty cycle, a perfect duty cycle of 50% does
not necessarily result in a balanced occurrence of 1/0 due to the input offset of the sampler.
Figure 2.6 shows an example of duty-cycle adjustment when four body voltages (VNW A,
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Figure 2.6: Adjustment of duty cycle with body-biasing technique.

VNW B, VPW A, and VPW B) are applied to every other inverter in the 5-stage RO. The
time when inout is high depends on the delay of the NMOSs in the 1st, 3rd, and 5th inverters,
and the PMOSs in the 2nd and 4th inverters. The time for low is complementarily affected
by the other MOSs. The duty cycle increases when forward biases are applied to VNW A
and VPW B, and reverse biases are applied to VNW B and VPW A, so that the time for
high increases and the time for low decreases. Thus, the duty cycle could be freely chosen
by changing the four voltages. This work assumes that the body voltages are provided sep-
arately and isolated from VDD, which means deterministic VDD noise does not affect body
voltages.

2.3.2 Metric of randomness

The randomness evaluation is mainly carried out with a poker test in this research, because
the result of a poker test can easily be calculated in the worst case evaluations of randomness
presented in Section 2.4. However, several randomness tests have been proposed such as the
NIST test suite, Diehard tests and FIPS140-2 tests, as described in Sec. 1.1.3. Even though
the NIST tests and Diehard tests are preferred for testing whether test data are sufficiently
random or not, they are difficult to use in comparing multiple test streams because they return
many p-values as scores for a test stream. Therefore, entropy of a bit stream is widely used
for evaluating randomness variations or differences. Figure 2.7 compares a poker test and
an entropy test. The poker test returns χ values as results, and a pass mark of χ is 2.16 <
χ < 46.17. The vertical axis for the χ value is inversed because smaller χ indicates higher
randomness. The figure shows that the χ of the poker test is well correlated with the entropies,
which indicates that the poker test can be used for approximate evaluations of randomness.

2.3.3 Validation with poker test

One hundred sequences of 20-k random bit streams were generated with the test chip and
measured with a logic analyzer. This section also generated the same number of bits using the
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Figure 2.7: χ of poker test vs. approximate entropy.

proposed model. The size of state space was set to 100. The other parameters for the model
were determined as follows. This experiment measured the periods of the slow oscillator (the
251-stage ring oscillator with 64-frequency divider) with a real time oscilloscope, and then
estimated the variance constant from the measured periods. In this measurement, the fast
oscillator was stopped. The trigger jitter of the employed real-time oscilloscope (Tektronix
DPO70804 [115]) is 1 psrms, and it is negligibly small because the measured jitter of 251-
stage ring oscillator with 64-frequency divider was 113 ps. The estimated variance constant
was 2.6 × 10−14 s∗. On the other hand, since it is difficult to directly measure the signal
of the fast oscillator, we obtained the average period from circuit simulation and estimated
the jitter of the fast signal assuming that the fast and the slow oscillators have the identical
variance constant. Namely, the variance of the fast signal was calculated as the variance
constant multiplied by the average period which was from circuit simulation. For the same
reason, the duty cycle of the fast oscillator was estimated from measurements assuming that
1/0 probability represented the duty cycle [28], instead of direct waveform measurement.
Strictly speaking, the probability of ‘1’ occurrence has a little difference from the actual duty
cycle because of the input offset of the sampler. On the other hand, they are highly correlated,
and then this section regarded the probability of ‘1’ occurrence of the output bit streams as
the duty cycle of the fast oscillator.

Figure 2.8 plots the measured and simulation results for the poker test with 5- and 15-stage
fast oscillators. The horizontal axis plots the frequency ratio of the oscillators, and it was
varied by changing the configuration of the frequency divider. The duty cycle for the fast
oscillators were adjusted to within 50±3% by body biasing. The results for both simulations
and measurements in Fig. 2.8 show that increasing sampling sparseness s, which means that
the sampler captures data once per s rising edges of the clock, viz., enlarging the jitter of the
slow oscillator [116], improves the quality of random bit streams. The χ value for the 5-stage
ring oscillator estimated by the model satisfies the pass mark when the frequency ratio is

∗ The variance constant is different from that used in the other sections and the other chapters, since the mea-
sured slow oscillator consisted of the low-leakage standard cells while the oscillators in other section consisted
of the standard cells with minimum channel length.
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Figure 2.8: Randomness vs. sampling sparseness and fast av-
erage period.

2933 and higher. On the other hand, the frequency ratio of 8310 is necessary for the 15-stage
ring oscillator. Thus, the fast oscillator with higher frequency reduces the frequency ratio to
pass the test, and consequently increases the throughput of the TRNG.

Figure 2.9 plots the poker test results obtained by changing the duty cycle for the fast
oscillators. This evaluation used the 7-stage ring oscillator as the fast oscillator and employed
the 512-frequency-divider. In this experimental configuration, the frequency ratio between
the oscillators was large enough to pass the poker test. The duty cycle for the fast oscillator
varied from 44 % to 58 %. The same figure indicates that the unbalanced duty cycle for
the fast oscillator degrades randomness. The simulations and the measurements are well
correlated, which means the analysis using the proposed model is valid. Also, this result
exemplifies that a fast oscillator with unbalanced duty cycle limits the randomness of a TRNG
even when the frequency ratio is large enough.

2.4 Estimation of worst-case randomness
This section proposes a methodology of evaluating the worst χ value of a poker test under

deterministic noise that utilizes a Markov model but does not require any bit generation.

2.4.1 Consideration of deterministic noise

Deterministic noise (e.g., power-supply noise, substrate noise, and external noise) induces
deterministic fluctuations in the rise timings of oscillators, and it appears as variations of µ in
Eq. (2.3) and representative phases x0. Here, the representative phase is defined as the time
interval from the rising edge of a fast oscillator to the rise timing of a slow oscillator imme-
diately after the fast oscillator without any random jitter, and then 0 ≤ x0 < tfast. Assuming
that jitter has a Gaussian distribution, the representative phase is equal to the average of Tdiff
in Fig. 2.3. Figure 2.10 illustrates a representative phase for oscillating signals.

A state that contains a representative phase corresponds to the mode of states. For example,
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n = 1 in Fig. 2.4 indicates that the mode value is 65 and the representative phase is tfast ×
64/100 ≤ x0 < tfast × 65/100. Further, the 1/0 occurrence of a bit stream is the most biased
where the representative phases of cycles are fixed to the same value, which is the center
number of high/low states. Thus, the worst case under deterministic noise corresponds to a
condition where every representative phase is fixed at the middle state of the low states (duty
cycle < 0.5) or high states (duty cycle > 0.5). This middle state will be denoted by smiddle
after this. The proof can be found in the Appendix A.

The discussion in this section focuses on the class of harmful noise rather than wave-
form shapes and how to deliver such harmful noise to TRNG. The proposed estimation of
the worst-case randomness considers the theoretically worst situation without investigating
waveform shapes of the deterministic noise. On the other hand, it is difficult to associate
the worst case with the physical attacking method since the noise delivery through physi-
cal attacking is totally dependent on the implementation. The mapping of the worst-case to
attacking way is another interesting topic to study and one of the future works.
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2.4.2 Worst evaluation of χ

Assuming the worst case discussed above, this section estimates the worst χ value under
deterministic noise using the Markov model. Additional constraints are given to calculations
of the transition matrix and state probability vector to estimate the worst χ value.

First, initial vector π0 in Eq. (2.5) is set so that the probability of state smiddle is 1 and
the probabilities of the other states are 0. For example, when states 0 to 29 are low and
states 30 to 99 are high (m = 100), the initial probability of state 64 (or state 65) is 1 and
the others are 0. The representative phases with this constraint are fixed and the bias of 1/0
occurrence becomes the largest, which makes the randomness of output the lowest. Then, µ
in Eq. (2.3) is fixed to 0 and does not depend on the periods of oscillators, which means that
the representative phase does not change cycle by cycle.

The reason why bit generation is not required is that the temporally-successive probabilities
of ‘1’ occurrence can be directly calculated using the proposed model. The computation of χ
requires the four successive probabilities of ‘1’, (pn, pn+1, pn+2, pn+3), where the probabilities
depend on the state at n − 1, in−1. On the other hand, from the discussion in Sec. 2.4.1, for
the worst case evaluation, in−1 can be fixed to smiddle. In this case, (pn, pn+1, pn+2, pn+3) can
be subsequently computed. Note that the representative phase is fixed in the transition matrix
computation for the worst case evaluation. Consequently, the consideration of the worst case
enables the worst χ value evaluation without bit generation.

Once the state probability vector is computed, the worst χ value can be directly calculated
with the proposed model without bit generation. The probabilities of ‘1’ occurring at succes-
sive outputs, p1, p2, · · · , are calculated with the corresponding state probability vectors and
duty cycle. Note that pn is not independent of p1, p2, · · · pn−1 and the correlation with the past
bit stream is taken into consideration in calculating the state probability vector. The worst χ
is computed from [86] as:

χ =
16

5000
×

15∑
i=0

(5000 × ξi)2 − 5000, (2.6)

where ξi is the probability that the four successive bits will be equal to i. For instance, ξ10 is
the probability of (1010)2 and is described as p4(1 − p3)p2(1 − p1). The ξi can be calculated
with the Markov model from the probabilities of the occurrences of ‘1’ or ‘0’, which differs
from the conventional way of counting each i in long generated bit sequences.

2.4.3 Corrector considerations

To estimate the worst χ with a corrector, the probabilities of ‘1’ occurring after correction,
p′n, need to be computed from pn. The p′n can be computed as p′n = p2n−1 p2n + (1− p2n−1)(1−
p2n) for the XOR corrector, whereas the Von Neumann corrector is difficult to apply since it
may discard bits boundlessly and computing p′n with it is not easy.

2.5 Validation of worst case-aware design
This section experimentally confirms that the proposed worst case computation guaranteed

the worst χ with gate-level TRNG simulations by taking power-supply noise into account.
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Here, the discussion on attacks is not supported by measurement, since it is difficult to accu-
rately inject the noise that the author really wants to give due to measurement environment.
For example, though on-chip noise generator [117] could generate power supply noise, it is
difficult to control the waveform of the noise due to the distortion by the packages, the bond-
ing wires, and the decoupling capacitances. On the other hand, the simulation is preferable
to the chip measurement for analyzing the impact of deterministic noise, because the simula-
tion can inject the exact noise. The section therefore has implemented the gate-level TRNG
simulator, which enables us to flexibly control the waveform, frequency, and amplitude of the
injected noise.

2.5.1 Simulations considering deterministic noise

A gate-level simulator that takes into consideration fluctuations in all gate delays is devel-
oped. Each gate delay is denoted as td,(gate).

td,(gate)(t) = td,offset,(gate)(Vdd(t)) + td,random, (2.7)

td,offset,(gate)(t) =
a(gate)

(Vdd(t) − Vth(gate))α(gate) + b(gate)
, (2.8)

where (gate) denotes the types of gates. The td,offset,(gate) is the gate delay without any random
noise. To express the dependence of delays on supply noise, this section uses a gate-delay
model (Eq. (2.8)) based on an alpha-power law MOSFET model [118]. Parameters a(gate),
b(gate), α(gate), and Vth(gate) are obtained by fitting them to the results from circuit simulations.
Vdd(t) represents the function of a noise-induced supply voltage waveform. The td,random
represents a random timing fluctuation originating from random noise, and it is calculated as
Gaussian random number whose average is zero and variance is r × td,offset,(gate) where r is the
variance constant of the oscillators.

Figure 2.11 explains three-step bit generation, denoting the first rise timings of the fast
and the slow ROs as t(1)FAST and t(1)SLOW and the timings of n-th rising edges as t(n)FAST,
t(n)SLOW. 1) Calculate the next timing for the rising edge of slow RO t(2)SLOW from cur-
rent rising timing t(1)SLOW. 2) From t(1)FAST and t(1)SLOW, find t(n)FAST that satisfies equalities
t(n−1)FAST < t(2)SLOW < t(n)FAST. 3) Generate one bit from t(2)SLOW, t(n−1)FAST, and t(n)FAST
taking into account the duty cycle of the fast RO.

The time interval between the successive rising edges is the sum of td,(gate)(t) for two rounds
of the slow oscillator. Additionally, when a frequency divider is used for the slow oscillator
and the sampling sparseness is s, the gate delays for 2s rounds are summed.

2.5.2 Simulation results

Randomness under supply noise of various frequencies is evaluated with the simulator, and
compared to the worst randomness estimated with the Markov model.

Figure 2.12 plots the poker test results (a) without any deterministic noise and under power-
supply noise. The figure also plots the worst χ values estimated with the Markov model.
This section generated 100 sequences of 20-k bits for the test. (b) One hundred kilohertz,
(c) 10 MHz, and (d) 100 MHz of sinusoidal noise whose amplitudes were 100 mV were
superposed to the DC supply voltages of 1.2 V for ROs. This evaluation used a 5-stage RO
whose average period was 178.3 ps and duty cycle was 51% at 1.2 V as a fast RO. The r
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Figure 2.11: Concept behind noise-aware gate-level simulation.

of the ROs was 1.77 × 10−14 s referring to the results obtained from measurements of ROs
fabricated with a 65 nm process. Equivalent jitter for the Markov model was calculated with
r and the periods of ROs. Figure 2.12 indicates that randomness depends on the frequency of
deterministic noise. It can also be seen that randomness under or without deterministic noise
is not worse than the results estimated as being the worst case, which verifies the idea of the
worst χ evaluation in Section 2.4. The χ values in Fig. 2.12 fluctuate for the low frequency
ratios. The fluctuation is caused by µ in Eq. (2.3) and the deterministic noise, since they shift
the representative phases x0. Therefore, the impact of the deterministic noise on the χ value
varies depending on the frequency ratio and the noise frequency.

Figure 2.13 shows the χ of a poker test when the period of sinusoidal noise was finely
varied. The figure also shows the worst χ value and the pass mark for the poker test. Ten
sequences of 20-k bits were generated with the simulation. Five-stage RO, whose duty cycle
was 51%, and 251-stage RO with a 9-frequency-divider, whose average period was 73.4 ns,
were used as the fast and slow ROs. The r of ROs was 1.77 × 10−14 s. It can be seen that the
pass/fail for the poker test depends on the period of deterministic noise. In addition, Fig. 2.13
indicates that the χ values can approach the worst case especially as the period of power-
supply noise decreases. Thus, the risk that deterministic noise will degrade randomness to
the worst case should not be ignored. The proposed worst case-aware design methodology
effectively guarantees randomness even under unwanted noise.

2.6 Exploration of design space with proposed model
This section presents an example to illustrate how to derive appropriate design parameters

with the proposed worst-case-aware design methodology. Here, the design space consists
of the frequencies of oscillators, the duty cycle of a fast oscillator, and whether the TRNG
employs correctors. The design space is explored by evaluating the χ of a poker test when
changing the design parameters within feasible values. In Section 2.6.1, only frequencies of
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Figure 2.12: Evaluation of randomness under and without deterministic noise.
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Figure 2.14: Evaluation of randomness to design fast and slow oscillators.

oscillators are explored as a simple example. The allowable shift of duty cycle from 50% can
be investigated, though it is not included in this example. Then, Section 2.6.2 shows how
to consider the XOR corrector. Section 2.6.3 demonstrates that our design methodology can
consider the injection locking attack by changing variance constant. Section 2.6.4 discusses
the required size of state space for valuable evaluation as a supplement.

2.6.1 Design of fast and slow oscillators

This subsection explains the design of fast and slow oscillators for TRNG with the given
design constraints to follow and circuit information on a 65 nm CMOS process. The variance
constant of each gate r is 1.77 × 10−14s, which was derived from the measurements of ROs
in a 65 nm process. Since it is self-evident that the most advantageous duty cycle for the fast
oscillator, which is equal to the 1/0 probability here, is 50 %, the duty cycle does not need to
be explored. The actual duty cycle of the fabricated oscillator has some error from the optimal
value due to process variations. Therefore, the duty cycle of the fast RO is within 50±0.05 %
here. To simplify the discussion, no correctors have been employed. Ten million bits per
second, which is a typical value in a smart card [47], or higher throughput, are required.

First, the periods for several oscillators that could be used as fast ROs were estimated by
simulating the circuits. Here, fast oscillators with different numbers of stages (3, 5, and 7)
were evaluated for the sake of simplicity, and their periods corresponded to 113.5 ps, 178.3 ps,
and 243.2 ps. Second, the worst χ values for TRNGs with each of the fast ROs were evaluated
with the Markov model varying the frequencies of slow ROs.

Figure 2.14 plots the estimated χ values. The duty cycle was set to 50.05% assuming the
least preferable case. This section estimated achievable throughputs for all fast ROs. Now
that the required throughput is 10 Mbps, the number of stages of fast ROs should not exceed
five. When a 3-stage RO is adopted, the number of stages of slow ROs is determined so that
the slow oscillator frequency is 20.5 MHz or less. However, for a 7-stage RO, the frequency
should not exceed 4.5 MHz, which means more stages, i.e., a larger area is necessary, and
furthermore multiple TRNGs are needed to satisfy these requirements.

To further investigate randomness, 100 Mbits of bit streams from the model were evaluated
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Table 2.1: NIST randomness test results. p-value/pass proportions have been listed in
each cell. Bold fonts have been used for passed tests.

Test name 21 [MHz] 10 [MHz]
Frequency 0.1281 / 0.99 0.0051 / 0.98
BlockFrequency 0.0037 / 0.99 0.1626 / 0.99
CumulativeSums 0.0805 / 0.99 0.0010 / 0.97
Runs 0.0000 / 0.00 0.0478 / 0.99
LongestRun 0.0000 / 0.04 0.1917 / 0.96
Rank 0.3669 / 0.98 0.8514 / 1.00
FFT 0.0000 / 0.70 0.9781 / 0.99
NonOverlappingTemplate 0.0000 / 0.00 0.0060 / 0.98
OverlappingTemplate 0.0000 / 0.00 0.0118 / 0.99
Universal 0.0000 / 0.03 0.3345 / 0.98
ApproximateEntropy 0.0000 / 0.00 0.6163 / 0.99
RandomExcursions 0.0000 / 0.95 0.1088 / 1.00
RandomExcursionsVariant 0.0106 / 0.98 0.0352 / 1.00
Serial 0.0000 / 0.00 0.1453 / 1.00
LinearComplexity 0.9241 / 1.00 0.1223 / 0.99

by using the NIST test program. The fast oscillators were 3-stage ROs and the frequencies
of the slow oscillators were 10 MHz and 21 MHz. As Fig. 2.14 shows, the former parameter
set achieves sufficient randomness and the latter does not. Table 2.1 summarizes the results
obtained from the NIST tests. The randomness failed nine tests with the 21 MHz slow os-
cillator, which demonstrates the insufficiency of randomness. However, the 10 MHz slow
oscillator attained such a high degree of randomness that it passed all the tests. The efficiency
of the proposed design methodology was verified since these results are consistent with those
in Fig. 2.14.

Different oscillator topologies and logic styles, such as the current mode logic for faster
ROs, can be also explored in actual designs. Here, power consumption, in addition to area,
becomes a key performance metric and a more complex design space has to be explored. The
proposed evaluation of randomness using the worst χ is effective in terms of CPU time to
achieve such purposes.

2.6.2 Effect of XOR corrector

Figure 2.15 plots variations in the worst χ with the XOR corrector as the frequency ratio
of the oscillators changes. The r is 1.77 × 10−14 s, and the fast oscillators are 5-stage ROs
(average period and frequency are 178.3 ps and 5.6 GHz) whose duty cycle is set to 50%.
Figure 2.15 indicates that the XOR corrector improves the estimated χ values. The XOR
corrector, however, reduced the throughput of the TRNG by half. The minimum frequency
ratios that pass the poker test are 701 without the corrector and 244 with the XOR corrector.
Consequently, the throughputs without a corrector and with the XOR corrector correspond to
5.6 Gbps / 701 = 8 Mbps and (5.6 Gbps / 204) / 2 = 11.5 Mbps. This means that the XOR
corrector is effective even when the duty cycle of the fast oscillator is balanced.
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Figure 2.15: Improvement in χ value with XOR corrector.

2.6.3 Injection locking attack

Frequency injection [7] is a state-of-the-art attack on oscillator-based TRNGs that utilizes
injection locking in ring oscillators to reduce the amount of jitter and degrade randomness.
The proposed model can deal with injection locking attacks by decreasing variance constant.
In this section, the slow oscillator is injection-locked and its variance constant rslow is reduced
while the jitter of the fast oscillator is constant, because an oscillator with high frequency is
difficult to be injection-locked. As a preliminary experiment using another small test structure
fabricated in the same process, the author measured the variance reduction of a ring oscillator
under injection locking. A noise generator attacked a 2-input NAND gate in 293-stage ring
oscillator. The measurement showed that the variance of the periods decreased to 1/16, and
thus this section employed 16 as a factor of variance reduction. In addition, this section
evaluates the randomness of the output when the variance constant for the slow oscillator is
zero as an extreme case.

Figure 2.16 plots the worst χ as a function of the frequency ratio of oscillators and the three
curves correspond to rslow = 1.77 × 10−14 s, rslow(= 1.77 × 10−14/16) = 1.11 × 10−15 s, and
rslow = 0 s. Here, the fast oscillator is a 5-stage RO and its duty cycle is 50%. Figure 2.16
indicates that small rslow requires a low frequency for the slow oscillator to pass the random-
ness test. If the injection locking reduces rslow from 1.77 × 10−14 s to 1.11 × 10−15 s or 0 s,
the throughput decreases by half to sustain sufficient randomness.

Let us examine the throughput reduction above. When the frequency of fast oscillator
is constant, the required equivalent jitter to attain sufficient randomness is almost constant.
As Eq. (2.4) shows, equivalent jitter, σi, originates from slow oscillator, rslowtslow, and fast
oscillator, rfasttfast. When the slow oscillator is under ideal injection locking, the variance
constant for slow oscillator becomes zero and rslowtslow = 0 while rfast and jitter component
from fast oscillator is unchanged. The variance of fast oscillator during a period of slow
oscillator, rfasttfast(N + 1 − i/m), is approximately proportional to frequency ratio, and hence
increasing frequency ratio can sustain equivalent jitter. For example, if rslowtslow without
injection locking is equal to rfasttfast(N + 1 − i/m), increasing the frequency ratio by a factor



2.7 Conclusion 29

0 1000 2000 3000

0

20

40

60

80

100

120

Frequency ratio

o
f 

p
o

k
e

r 
te

st

r_slow=0.0

r_slow=1.11e-15

r_slow=1.77e-14

χ

Pass mark

Figure 2.16: χ value vs. frequency ratio with different variance constants.

of 2 is reasonable with the slow oscillator under ideal injection locking.

2.6.4 Size of state space

The size of state space m affects the accuracy of the model as explained in Section 2.2.2.
Figure 2.17 plots the estimated χ values when m is varied. The r is 1.77 × 10−14 s. The
fast oscillator is a 5-stage RO and its duty cycle is 50%. These are typical settings in the
experiments of this chapter. The frequencies of the slow oscillator are 5, 10, and 20 MHz.
Figure 2.17 shows that as m becomes larger, the χ value converges, and a large state space is
necessary for the conversion when the estimated χ is high (viz., randomness is low). In the
range of χ being below 1000, an m of 100 enables an approximate estimate of randomness
and an m of 1000 is sufficient for precise analysis. This chapter therefore employed 100 or
1000 of m in the experiments discussed in this section.

In the case that m is 100 and the slow frequency is 20 MHz, tspan = tfast/m is 1.8 ps, which
is 1/23 of the equivalent jitter σ. This result also suggests a guideline that tspan should be less
than about σ/25.

2.7 Conclusion
This chapter presented a worst-case-aware design methodology for oscillator-based

TRNGs. A behavioral model of a TRNG and a methodology of evaluating the worst ran-
domness under deterministic noise were proposed. This chapter confirmed the effectiveness
of the proposed model through hardware measurements and comparisons obtained with a
gate-level noise-aware TRNG simulator, which was tailored to evaluate randomness under
deterministic noise. The proposed design methodology aided us in designing an oscillator-
based TRNG that satisfied performance specifications even under a hostile environment.
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Chapter 3

Jitter amplifier for slow oscillator

This chapter proposes a jitter amplifier for an oscillator-based true random number gener-
ator (TRNG). Two types of latency-controllable (LC) buffer, which are the key components
of the proposed jitter amplifier, are presented. This study derives an equation to estimate the
gain of the jitter amplifier, and analyzes sufficient conditions for the proposed circuit to work
properly. The proposed jitter amplifier was fabricated with a 65 nm CMOS process. The
jitter amplifier with the two-voltage LC buffer occupies 3,300 µm2 and attains 8.4x gain, and
that with the single-voltage LC buffer achieves 2.2x gain with an 1,700 µm2 area. The jitter
amplification of the sampling clock increases the entropy of a bit stream and improves the
results of the NIST test suite so that all the tests pass whereas TRNGs with simple correctors
fail. The jitter amplifier attains higher throughput per area than a frequency divider when the
required amount of jitter is more than two times larger than the inherent jitter in our test-chip
implementations.

3.1 Introduction
As discussed in Sec. 1.2.3, in general, the jitter of the oscillator is not sufficient for gen-

eration of highly random number. Frequency dividers accumulate the jitter of the oscilla-
tor, reducing the throughput of the TRNG [38, 112]. Bucci et al. [39] utilized a triangular
wave oscillator for a jittery oscillator, though it consumes large power and area. Ergün and
Özog̃uz [27] presented a TRNG with a chaotic oscillator. The timing fluctuations of the os-
cillator depend on the employed chaos system rather than the random noise. The chaotic
oscillator required inductors, which reduces its scalability.

This chapter proposes a jitter amplifier for an oscillator-based TRNG [119,120]. Figure 3.1
illustrates the structure and the operation of a TRNG employing the jitter amplifier. The
fast oscillating signal (D in Fig. 3.1) is sampled with a jittery slow clock whose jitter is
amplified with the jitter amplifier (CK in Fig. 3.1), which results in a random bit stream. This
timing jitter increases as the period jitter of the slow oscillator, and hence this chapter focuses
on the period jitter of the slow oscillator and discusses how to amplify it. Note that the
jitter of the oscillator is assumed to be temporally independent in this thesis, as discussed in
Sec. 1.2.1. This assumption is used to analyze the behavior of the jitter amplifier in Sec. 3.2.
As is referred in Sec. 1.2.1, FIFO stabilizes the throughput of the oscillator-based TRNG
though the throughput is unstable due to the jitter of the oscillator. This chapter therefore
focuses on the randomness of the bitstream from the sampler to clarify the efficiency of the
proposed jitter amplifier. To obtain the theoretical substantiation of jitter amplification, the
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Figure 3.1: Oscillator-based TRNG with jitter amplifier.

gain of the jitter amplification is analytically estimated. Furthermore, sufficient conditions
for proper amplification is analyzed, which helps the jitter amplifier to be integrated with the
TRNGs. Two kinds of test chips were fabricated with a 65 nm process to validate the proposed
amplifier. The measurements demonstrate that the proposed circuit improves randomness
with a small increase in area without degrading throughput.

The reminder is organized as follows. Section 3.2 presents the proposed jitter amplifier
and analyzes its behavior. Section 3.3 presents and compares two types of implementations.
Section 3.4 explains the results obtained from measurements. Section 3.5 concludes this
chapter.

3.2 Behavior of jitter amplifier

3.2.1 Concept behind jitter amplification

Figure 3.2 shows a block diagram of the jitter amplifier. The proposed jitter amplifier
consists of an LC buffer and a timing generator. The LC buffer is designed so that each buffer
delay td could be changed by ctrl from td f to tds, where td f < tds. That is, the buffer operates
in fast mode until the ctrl rise edge arrives, and after that it works in slow mode. Details on
the implementations of the LC buffer and the timing generator will be given in Sec. 3.3.

Figure 3.3 illustrates the concept behind jitter amplification, where the jitter of the input
oscillating signal in is amplified. The timings of rise edges of in fluctuate since the input
signal has jitter. To exemplify how the temporally fluctuated signals are processed in the
jitter amplifier, let us consider an early rising signal ine and a late rising signal inl, and their
outputs oute and outl, respectively. ine rises at tine and inl rises at tinl (tine < tinl), and oute
rises at toute and outl rises at toutl. The total latencies of the LC buffer for ine and inl are
dbu f e = toute − tine and dbu f l = toutl − tinl. Here, ctrl rises while in is propagating through the
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Figure 3.2: Block diagram of jitter amplifier.

LC buffer, namely, the rise timing of ctrl tctrl is tine < tctrl < toute and tinl < tctrl < toutl. Note
that tctrl is constant for both tine and tinl since ctrl is generated by the timing generator which
is distinct from the slow oscillator. The time intervals of fast mode are d f aste = tctrl − tine

for ine and d f astl = tctrl − tinl for inl, where d f aste > d f astl from tine < tinl. Longer time for
fast mode reduces time for slow mode and results in smaller total latency of LC buffer, and
therefore, dbu f e < dbu f l. This means that the later rising edge of in causes larger latency in
the LC buffer. In order to validate the jitter amplification, time differences at in and out are
compared as follows:

toutl − toute = (tinl + dbu f l) − (tine + dbu f e)
= (tinl − tine) + (dbu f l − dbu f e)
> (tinl − tine). (3.1)

Therefore, the time difference between the early and the late rise timings at in, which indicates
the input jitter, is intensified at out by the variable latency of the LC buffer. Thus, the jitter of
in is amplified.

3.2.2 Analysis of behavior

Preparation
In this section, the behavior of the jitter amplifier is analyzed and an equation to estimate

the gain of the jitter amplification is presented. Figure 3.4 shows a timing chart to explain
the behavior of the jitter amplifier. A timing of the n-th rising edge of in is defined as tin(n) =

0 (n ∈ N), and the corresponding rise edges of ctrl and out are tcrise(n) and tout(n), where
tin(n) < tcrise(n) < tout(n). Here, a rise edge of ctrl is generated by the timing generator from a
previous edge of in, and tcrise(n+1) depends on tin(n). The amount of input jitter given to the jitter
amplifier is represented as the standard deviation during the time interval of tin(n+2) − tin(n+1)
and output jitter is the standard deviation of tout(n+2)−tout(n+1), and gain of the jitter amplifier is
output jitter divided by input jitter. tin(n) needs to be considered to derive the output jitter since
tcrise(n+1) depends on tin(n) and tcrise(n+1) affects the rise timing of out, tout(n+1). Also, timing
information before tin(n) is not needed since tin(n+1) and tcrise(n+1), which are the necessary
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timings for deriving the output jitter, are both generated from the same timing tin(n).
The n-th period of in is represented as a stochastic variable Din(n) = tin(n+1)− tin(n). The time

interval from the n-th rising edge of in to the (n+1)-th rise edge of ctrl is a stochastic variable
Dcrise(n) = tcrise(n+1) − tin(n). Din(n) represents the period of the slow oscillator and Dcrise(n)
represents the latency of the timing generator. The stochastic process

{
Din(n)

}
is assumed to

be independent and identically distributed, and its element Din(n) is assumed to be normally
distributed.

{
Dcrise(n)

}
also assumed to be independent and identically distributed, and Dcrise(n)

is assumed to be normally distributed. The above assumptions are reasonable because the
delay elements which construct Din(n) and Dcrise(n) are fluctuated by the internal noises and
the noises are temporarily independent. The assumption is also supported by the measured
ACF of the jitter of the ring oscillator in Fig. 1.5. The mean of Din(n) is µin and its variance
is σ2

in, and the mean of Dcrise(n) is µcrise and its variance is σ2
crise. That is, Din(n) ∼ N(µin, σ

2
in)

and Dcrise(n) ∼ N(µcrise, σ
2
crise). Din(n1) is independent of Dcrise(n2) for arbitrary n1 and n2

(n1, n2 ∈ N) since the slow oscillator is distinct from the timing generator.
Figure 3.5 shows the behavior of the LC buffer for n-th rising edge of in. Here, let us

introduce an analogy that a signal is propagating on a line at a certain speed. The length of
the line, that is the distance between start and end points, is l and it corresponds to the length
of the LC buffer. Note that the length l is an abstract length rather than a concrete size of
the buffer chain. The latencies for a sufficiently small length ∆l are ∆Db f (n) for fast mode
and ∆Dbs(n) for slow mode. The stochastic process

{
∆Db f (n)

}
is assumed to be independent

and identically distributed, and
{
∆Dbs(n)

}
are also assumed to be independent and identically

distributed. ∆Db f (n) and ∆Dbs(n) are assumed to be normally distributed, their means are µb f

and µbs, and their variances are σ2
b f and σ2

bs, namely, ∆Db f (n) ∼ N(µb f , σ
2
b f ) and ∆Dbs(n) ∼

N(µbs, σ
2
bs). This is because the delay elements which constructs ∆Db f (n) and ∆Dbs(n) are

fluctuated by the internal noise, and the noise is temporarily independent. Then, for example,
the latency of LC buffer in fast mode is calculated as l∆Db f (n)/∆l. Practically, the amount of
jitter is much smaller than the periods, therefore, σb f and σbs are much smaller than µb f .

∗

Here, Din(n1), Dcrise(n2), ∆Db f (n3) and ∆Dbs(n4) are independent of each other for arbitrary n1,
n2, n3 and n4 (n1, n2, n3, n4 ∈ N).

Gain derivation
From now, an analytical expression of gain is derived. Firstly, the amount of input jitter is
σin since tin(n+2) − tin(n+1) is Din(n+1).

Here, ∆Db f (n) is rewritten as µb f + Db f r(n), where Db f r(n) ∼ N(0, σ2
b f ). Now that σb f is

much smaller than µb f ,
∣∣∣−Db f r(n)/µb f

∣∣∣ << 1 holds. Though, strictly speaking,
∣∣∣Db f r(n)

∣∣∣ is not
always smaller than µb f due to the normal distribution, the probability of

∣∣∣Db f r(n)
∣∣∣ ≥ µb f is so

small that it can be ignored in actual situations. According to Taylor expansion, 1/∆Db f (n)

∗ If the jitter amount is sufficiently large, the jitter amplification itself is not required.
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Figure 3.5: Fast and slow modes of LC buffer.

can be approximated as follows;

1
∆Db f (n)

=
1
µb f

1

1 + Db f r(n)

µb f

=
1
µb f

1 −
Db f r(n)

µb f
+

∞∑
k=2

(
−

Db f r(n)

µb f

)k


≈ 1
µ2

b f

(
µb f − Db f r(n)

)
. (3.2)

In order to identify the dominant factors, σk
b f /µ

k
b f and σk

bs/µ
k
b f (k ≥ 2) are approximated as

zeros since σb f and σbs are much smaller than µb f .
Under these conditions, the variance of tout(n+2) − tout(n+1) is calculated as;

Var[tout(n+2)−tout(n+1)]≈
{
2(a+1)x2−2(2a+1)x+(2a+1)

}
σ2

in

+ 2σ2
bs

{
l
∆l
− µcrise − µin

µb f

}
, (3.3)

where a = σ2
ctrl/σ

2
in and x = µbs/µb f (a > 0, x > 0). The detailed derivation can be found

in Appendix B. The first term of Eq. (3.3) shows that the input jitter is magnified by the
mechanism explained in Sec. 3.2.1 This magnification of the input jitter is independent of the
rise timing of ctrl. The second means the additional jitter appended during the slow mode.
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From Eq. (3.3), the gain of the jitter amplifier is calculated as follows;

Gain2 ≈
{
2(a + 1)x2 − 2(2a + 1)x + (2a + 1)

}
+ 2
σ2

bs

σ2
in

{
l
∆l
− µcrise − µin

µb f

}
. (3.4)

Because the second term of Eq. (3.4) is positive, a sufficient condition for Gain > 1 is;

2(a + 1)x2 − 2(2a + 1)x + (2a + 1) > 1,

0 < x <
a

a + 1
, 1 < x. (3.5)

In actual situations, Gain > 1 is attained since µbs is larger than µb f , i.e., x > 1. In addition,
in case of x > 1, Gain becomes larger monotonically as x increases. On the other hand, when
x is 0 < x < a/(a + 1), the circuit amplifies the jitter in the inverse way. In this case, µbs

is smaller than µb f , and then the early rising edge at in rises late at out and the late edge of
in rises early at out. Though the analysis suggests such an implementation, the following
discussion focuses on 1 < x.

3.2.3 Constraints on LC buffer and input signal

In the discussion so far, it is assumed that tin(n) < tcrise(n) < tout(n) holds for arbitrary n. In
addition, the circuit should be initialized without hindering the amplifying operation. Thus,
the timing generator should adjust the timings of ctrl appropriately. However, the precision
of the adjustment is limited and furthermore the signals have jitter, which restricts the length
of the LC buffer and the frequency of input signal. The conditions for the proposed circuit to
amplify the jitter properly are explained here.

In Fig. 3.4, the timing of the n-th falling edge of ctrl is defined as tc f all(n). The time interval
from the n-th in to the (n + 1)-th fall edge of ctrl, which represents the latency in the timing
generator, is Dc f all(n) = tc f all(n+1) − tin(n). Dc f all(n) is normally distributed, and its mean is µc f all

and its variance is σ2
c f all, that is, Dc f all(n) ∼ N(µc f all, σ

2
c f all). Here, Dc f all(n1) is independent of

Din(n2), Dcrise(n3), ∆Db f (n4) and∆Dbs(n5) for arbitrary n1, n2, n3, n4 and n5 (n1, n2, n3, n4, n5 ∈ N).
The sufficient condition for the proper function is tin(n+1) < tcrise(n+1) < tout(n+1) <

tc f all(n+1) < tin(n+2). If this condition is satisfied, a rise edge of in propagates through the
LC buffer in fast mode firstly, and then propagates in slow mode until the edge goes through
the buffer.

In actual design, µrise and µ f all, which are the average latencies in the timing generator and
correspond to µcrise and µc f all, are discretely controlled rather than continuously. Therefore,
µrise and µ f all are expressed as µrise = µrise o f f set + s∆µrise and µ f all = µ f all o f f set + t∆µ f all

(s, t ∈ Z, s, t ≥ 0), where ∆µrise and ∆µ f all represent the adjustment steps of µrise and µ f all.
For example, as will be discussed in Sec. 3.3.1, our implemented timing generator employs
counters whose clock signal is given by internal ring oscillators, and then ∆µrise and ∆µ f all

are equal to the periods of the clocks. Note that, with ∆µrise → 0 and ∆µ f all → 0, the
following discussion can be applied to an ideal timing generator which can control µrise and
µ f all continuously.

Here, let us suppose µrise o f f set < µin − m
√
σ2

rise+σ
2
in + (l/∆l)µb f − mσb f

√
(l/∆l) and

µ f all o f f set < µin−m
√
σ2

f all+σ
2
in+(µin − mσin) are satisfied, as will be derived in Appendix C.
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These conditions mean that the offsets of the timing generator, µrise o f f set and µ f all o f f set, are
small enough for the rise and fall edges of ctrl to be adjusted into the proper range. Under
these conditions, the sufficient conditions are expressed as the following two equations;

∆µrise+2m
√
σ2

rise+σ
2
in <

l
∆l
µb f − mσb f

√
l
∆l
, (3.6)

∆µ f all+2m
√
σ2

f all+σ
2
in< (µin−mσin)−

 l
∆l
µbs+mσbs

√
l
∆l

 .
(3.7)

The derivations will be presented in Appendix C. Here, a coefficient m (m > 0) is introduced
to bound the normal distribution. To be more precise, the upper bound of a normal distribution
N(µ, σ2) is defined as µ+mσ and the lower bound is µ−mσ. Intuitively, Eq. (3.6) means that
the range of tcrise(n+1) added by the step of µrise is smaller than the minimum latency of the LC
buffer. Eq. (3.7) means that the range of tc f all(n+1) added by the step of µ f all is smaller than the
minimum time interval between the rise edges of out and the next in. The number of stages
of LC buffer is limited because the length of LC buffer is restricted from the Eqs. (3.6)(3.7)
and l is proportional to the number of stages.

Eqs. (3.6)(3.7) represent the constraints for designing the jitter amplifier. For obtaining a
proper jitter amplification, the timing generator should control the timings of ctrl rise and fall
edges, as will be shown in Sec. 3.3.1. The edges of ctrl, however, cannot be adjusted into
the ranges of proper function if Eqs. (3.6)(3.7) are not satisfied. Thus, the designer should
confirm that the constraints are satisfied in designing the jitter amplifier.

Also, with rearranging the Eq. (3.7) for µin, the constraint on the period of input signal is
derived;

∆µ f all+2m
√
σ2

f all+σ
2
in+mσin+

 l
∆l
µbs+mσbs

√
l
∆l

<µin.

(3.8)

Thus, the input frequency, 1/µin, is limited by Eq. (3.8).
As an example, the constraints are verified for a jitter amplifier this section has imple-

mented, which will be shown in Fig. 3.11(a). µin and σin are from measurement results of a
251-stage ring oscillator with a 64-frequency divider, employing 1.2 V and 0.7 V of supply
voltages. ∆µrise, ∆µ f all, σ2

rise, σ2
f all, lµb f /∆l, lµbs/∆l, lσ2

b f /∆l and lσ2
bs/∆l are calculated from

the measurement results considering that the average and the variance of the latency are pro-
portional to the number of stages. m is set to 3. Then, the left and right terms of Eq. (3.6) are
calculated as 3.7 × 10−9 and 1.5 × 10−8, and those of Eq. (3.7) are 3.8 × 10−9 and 4.1 × 10−7.
Consequently, our implemented circuit can amplify the jitter properly.

3.3 Implementation

3.3.1 Implementation of timing generator

The timing generator is responsible for generating ctrl, and its implementation is illus-
trated in Fig. 3.6. When in rises, the edge detector generates a negative pulse, and the 1-bit
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Figure 3.6: Block diagram of timing generator implemented in this section.
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Figure 3.7: Timing chart of timing generator. Clock signals (clk e/o) are omitted.

counter selects the path which delivers the reset signal (xrst e/xrst o). When a negative pulse
is generated, a ring oscillator is enabled (en e/o) and its corresponding counter starts to in-
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Figure 3.8: Implementation of two-voltage LC buffer.

crement after being initialized. Every time the counter value (cnt e/o) exceeds predefined
values (cstart/cend), a pulse generator produces rise and fall edges. The timing generator
has two (even and odd) paths to generate ctrl for every in rise edge because the increment of
the counter starts at the rising edge of in and ends after the next rising edge. The mismatch
between the even and odd paths due to process variation affects the timing of ctrl rising edge,
µcrise. However, the impact on the gain of jitter amplifier is limited, since µcrise affects only
the second term of Eq. (3.4) and the second term can be ignored with large x. Debug signals
(dbug) output ctrl when in and out rise. dbug must be 2’b10 since ctrl is low at the rising edge
of in and high at the rising edge of out for proper function. If dbug is 2’b11, for example,
it means that ctrl rises before the edge of in, and therefore the rise timing of ctrl should be
delayed by cstart. Thus, the debug signal can be used for adjusting the rise/fall timings of
ctrl.

Figure 3.7 shows the behavior of the signals in the timing generator. When in rises, the 1-
bit counter flips parity. If parity is zero, a negative pulse is generated as xrst e, and the M-bit
counter cnt e is initialized and starts increment. While cnt e is between cstart and cend-1,
the pulse generator makes a pulse ctrl e. In the same way, when parity is one, xrst o resets
cnt o, and ctrl o is produced. Finally, ctrl e and ctrl o are ORed and its output becomes ctrl.
With properly selected values of cstart and cend, ctrl rises between rise edges of in and out,
and falls between out and the next in, namely, Eqs. (3.6) and (3.7) are satisfied.

3.3.2 Implementations of LC buffers

Various LC buffer implementations are possible that change the element delay depending
on the control signal. This section presents two implementations that use voltage scaling, i.e.,
two-voltage and single-voltage implementations. Other implementations of the LC buffer, for
example, could change the loading and/or the drive strength of the buffer elements.

Figure 3.8 shows the two-voltage LC buffer. The VDD of the buffer (VDBUF) is varied
to change the buffer delay from high voltage (VDBUFH) to low (VDBUFL) by using PMOS
switches according to ctrl. The jitter gain varies depending on what voltages are selected for
VDBUFH and VDBUFL. The sizes of the PMOSs should be determined so that the switch-
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Figure 3.9: Implementation of single-voltage LC buffer.

ing time while VDBUF changes from VDBUFH to VDBUFL should be sufficiently small
comparing to the latency of the LC buffer.

Figure 3.9 depicts the single-voltage LC buffer. The VDD of the buffer (VDBUF) can
be gated from global VDD with PMOS, and can be shorted to the ground by the NMOS
transistors. The decoder generates select signals of the multiplexers, where the external signal
scnum determines the number of HIGH select signals. The delay element, XOR and AND
make a short pulse whose width is equal to the delay of the delay element. Each multiplexer
passes the input pulse signal when its select signal is HIGH. The ctrl and sc are LOW in fast
mode, and VDBUF is close to VDD. When the operation mode is switched to slow mode by
the rising edge of ctrl, the HIGH signal is first input to the PMOS, which makes the VDBUF
float. Parasitic capacitances connecting to VDBUF are discharged, VDBUF is lowered, and
consequently, the buffer element delay increases.

Figure 3.10 shows simulated waveforms of the single-voltage LC buffer. Parasitic capaci-
tances and resistances of the wire and the diffusion layers were extracted from the layout, and
the well capacitances were also taken into account in the simulation. The number of HIGH
sc is three. out buffered is out signal in Fig. 3.9 after propagating through a buffer. It can be
seen that VDBUF drops when pulses are input to sc, and VDBUF recovers after the fall edge
of ctrl. The edges of sc are sharp enough because sufficiently large buffers were inserted after
the multiplexers in Fig. 3.9. In contrast to the two-voltage LC buffer, after VDBUF gets float
and dropped, the voltage of the LC buffer is decreasing gradually as the rise and the fall edges
of in propagate through the buffer. As Eq. (3.1) suggests, on the other hand, the single-voltage
LC buffer amplifies the jitter when the delay in the LC buffer increases from fast mode to slow
mode. Since the discussion in Sec. 2.2 assumes that the average delay in slow mode, µbs, is
constant, the gain estimation with Eq.(3.4) is not accurate for the single-voltage LC buffer.
The jitter gain changes depending on the number of shorted NMOSs, which can be changed
by scnum, and how long the duration of sc is, since they affect voltage drop at the beginning
of slow mode. The pulse width, which is determined by the delay element in Fig. 3.9, and
the sizes of the switching transistors should be specified considering parasitic capacitance of



42 Chapter 3 Jitter amplifier for slow oscillator

 0.6

 0.8

 1

 1.2

 3e-08  4e-08  5e-08  6e-08  7e-08  8e-08

 0

 0.4

 0.8

 1.2

 0

 0.4

 0.8

 1.2

 0

 0.4

 0.8

 1.2

 0

 0.4

 0.8

 1.2

Time [s]

V
o

lt
a

g
e

 [
V

]

in

ctrl

sc[0]

out_buffered

VDBUF

Figure 3.10: Waveform example of single-voltage LC buffer.

VDBUF since the time interval during changing VDBUF should be sufficiently small.
Even though the two-voltage LC buffer requires an additional one or two analog pins for

VDBUFH and VDBUFL, they can provide stable VDBUF, which makes the estimate of gain
Eq. (3.4) reasonably accurate. The single-voltage LC buffer, on the other hand, is suitable for
low cost implementation since no additional pins are necessary. The jitter gain, however, is
difficult to accurately estimate due to the gradual decrease in VDBUF in slow mode. Another
issue is the difficulty of predicting the amount of potential drop because it is not easy to
accurately estimate parasitic capacitance such as well junction capacitance at the design time.

3.4 Results from experiments

3.4.1 Implementation of chips

Prototype oscillator-based TRNGs with a two-voltage LC buffer (chip A) and with a single-
voltage LC buffer (chip B) were fabricated with a 65 nm CMOS process (Fig. 3.11). A
31-stage ring oscillator and a 251-stage ring oscillator with a 64-frequency divider are im-
plemented as fast and slow oscillators in chip A. A 7-stage ring oscillator and a 251-stage
ring oscillator with a four-frequency divider are the fast and slow oscillators of chip B. The
number of frequency division for the slow oscillator in chip B was set to four so that the
oscillating frequency became lower than 50 MHz taking into account some safety margin,
since the signal with more than 100 MHz cannot be delivered to the outside of the chip due
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to bonding wire inductance. On the other hand, the slow oscillator in chip A is accompanied
with 64-frequency divider, since the internal ring oscillators in the timing generator is slower
than that of chip B and then lower frequency was required to achieve jitter amplification.†

Basically, higher frequency of fast oscillator is desirable for randomness [39], and then 7-
stage ring oscillator was selected for chip B. On the other hand, the slow oscillator of chip A
was slower as mentioned above and then it had larger intrinsic jitter. To clearly demonstrate
the contribution of the jitter amplification to randomness improvement, a slower fast oscil-
lator was selected in chip A. Note that the slower slow oscillator means lower throughput,
and hence it is not desirable. For attaining higher throughput, a faster slow oscillator with
insufficient jitter should be adopted and in this case jitter amplification becomes necessary
to achieve sufficient randomness. The duty cycles of the fast oscillators, which determines
the probabilities of 1/0 occurrences, could be finely adjusted by using body biasing tech-
nique [111]. The VDD for the fast oscillators is supplied through a dedicated external pin. A
1,000-stage inverter chain and a 800-stage inverter chain were employed for the LC buffers
of chip A and chip B, respectively. The number of stages of LC buffer was determined to
satisfy the constraints in Eqs. (3.6) and (3.7). Since the slow oscillator of chip B is faster than
chip A, the buffer in chip B was set smaller. The areas of the jitter amplifiers are 3,300 µm2

for chip A and 1,700 µm2 for chip B. This area difference mainly comes from the implemen-
tations of the fast oscillator. In chip A, P-wells of every gate are separated to supply distinct
body voltages. On the other hand, the gates share the identical body voltage in chip B, and
therefore, the area is smaller than chip A.

In the following, this section first evaluates the jitter gain of two implementations of the
jitter amplifier with two-voltage and single-voltage LC buffers. On the other hand, now that
the implementations of the timing generators and the oscillators as well as the LC buffers are
different between the Chip A and the Chip B, the impact of the jitter amplification on the
improvement in randomness cannot be directly compared. Therefore, the randomness after
the jitter amplifiers will be discussed separately for each chip.

3.4.2 Jitter gain

The gains of the jitter amplifiers were measured using a real-time oscilloscope. Figure 3.12
plots the measured jitter gains for the two-voltage LC buffer under different temperatures.
The gains estimated with Eq. (3.4) are also shown. Here, assuming that the variance of the
delay is proportional to the number of gates, a is calculated as the number of gates through
which the rising edge of in propagates until the rise edge of ctrl divided by that during a
cycle of the slow oscillator. The internal ring oscillator was 83-stage ring oscillator, cstart
was 195, and the slow oscillator was 251-stage ring oscillator with 64-frequency divider.
Then, a is {83 × 2 × (195 + 1)}/(251 × 2 × 64) = 1.01. x was computed from simulation
results of 251-stage ring oscillator at various VDDs. For example, because the periods of
the ring oscillator were 8.2 ns with 1.2 V of VDD and 62.8 ns with 0.6 V, then x at 1.2 V
of VDBUFH and 0.6 V of VDBUFL was 62.8/8.2 = 7.7. The second term of Eq. (3.4) is
ignored because it gets sufficiently small comparing to the first term as x increases. The X-
axis is the difference in voltage defined as VDBUFH - VDBUFL, where VDBUFH is fixed
to 1.2 V. Figure 3.12 shows that a larger difference in voltage achieves higher gain. This is

† The timing generator of Chip B is the revised version of Chip A, and therefore its internal oscillator was
designed faster in order to decrease ∆µrise and ∆µ f all.
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Figure 3.11: Chip photos. (a) Chip A employing two-voltage LC buffer. (b) Chip B
using single-voltage LC buffer.

consistent with Eq. (3.4), since the larger voltage difference increases x. Also, decreasing
temperature increases jitter gain because the sensitivity of the buffer delay to supply voltage
becomes larger and x increases at lower temperatures. It attains 8.4 times gain at 25 ◦C. The
estimated gain agrees well with the measurements.

Figure 3.13 shows the measured gain for the single-voltage LC buffer, where the number of
shorted NMOSs is varied. The estimation is not shown since, as referred in Sec. 3.3.2, it is dif-
ficult to calculate the gain of the single-voltage LC buffer. Larger numbers of shorted NMOSs
yield higher gain of jitter amplification. The gain increases as temperature decreases, which
is consistent with the results in Fig. 3.12. It should be noted that randomness monotonously
improves as the jitter of the slow clock increases, and hence the magnitude of jitter amplifier
gain is important yet its stability is not required.

3.4.3 Approximate entropy

Approximate entropies were calculated for the output bit streams of 16 Mbits measured
by a logic analyzer at 25 ◦C, following the NIST SP800-22 [87]. Figure 3.14 shows the
approximate entropies when (a) the difference in voltage in the two-voltage LC buffer and
(b) the number of shorted NMOSs in the single-voltage LC buffer were changed. The pass
marks for the NIST tests (= 0.69099) are also plotted, where the entropy of an ideal RNG is
loge 2 = 0.693. Fast oscillators for (a) and (b) are the 31-stage ring oscillator whose VDD is
0.9 V and the 7-stage ring oscillator whose VDD is 1.2 V, respectively, and their duty cycles
are adjusted within 50 ± 0.8 %. Figure 3.14 clearly demonstrates that the proposed jitter
amplifiers improve randomness and enable sufficient entropies. The approximate entropy
of Fig. 3.14(a) without jitter amplification (leftmost point) is relatively high compared to
Fig. 3.14(b) and is improved less significantly than (b), because the slow oscillator of (a) had
lower frequency and its intrinsic jitter was larger.
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Figure 3.12: Jitter gain for two-voltage LC buffer. Temperatures are (a) 0◦C, (b)
25◦C, (c) 60◦C and (d) 90◦C.

3.4.4 Comparison with post-processors using NIST test

This section will discuss the advantages of the proposed jitter amplifier here by comparing
it with simple post-processors, i.e., a XOR corrector [97] and a von Neumann corrector [96].

After a sufficient number of bits were generated from the TRNG without any correctors
or jitter amplifiers, 100 Mbits of streams were obtained with the XOR corrector and von
Neumann corrector. The same amount of random bit stream was also generated by the TRNG
with jitter amplification with the two-voltage LC buffer. Then, their qualities were evaluated
with the NIST test suite. The 31-stage ring oscillator at 0.9 V was the fast oscillator for the
TRNG, and its duty cycle was adjusted within 50±0.1%. Depth of the XOR corrector is one.
This evaluation applied 1.2 V of VDBUFH and 0.7 V of VDBUFL for the LC buffer, and then,
the voltage difference was 0.5 V. Temperature was 25 ◦C. Table 3.1 lists the test parameters
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Figure 3.14: Approximate entropies. Pass marks (=0.69099) are also given. Tempera-
ture was 25◦C. (a) Two-voltage LC buffer. (b) Single-voltage LC buffer.

this section employed, and the parameters satisfy recommendations given in NIST SP800-
22. From Table 3.1, the pass range of the pass proportion for runs test is between 0.986 and
0.990, and the pass range for the other tests is between 0.961 and 1.000.

Table 3.2 summarizes the NIST test results. With neither a corrector nor a jitter amplifier
(plain), seven tests failed, which evidences the low randomness of the raw outputs. The
XOR corrector degraded the results for the NIST tests because XOR operation for a poorly
random bit stream unbalanced its occurrences of 1/0, and what is worse, the corrector reduced
throughput by half. Though the results can be improved with employing the depth of two
or more, it unacceptably decreases throughput. Even though the von Neumann corrector
increased the number of passed tests, six tests still failed. Additionally, the throughput after
the corrector was 0.26 times smaller than that of “plain” in this case, where the reduction in
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Table 3.1: Setup for NIST randomness tests. The other necessary parameters are auto-
matically decided by the testing program provided by NIST.

Name Value
Block length for BlockFrequency 20000
Block length for NonOverlappingTemplate 9
Block length for OverlappingTemplate 9
Block length for ApproximateEntropy 10
Block length for Serial 16
Sequence length for LinearComplexity 500
Significance level 0.01
Test data for Runs 20 Kbits × 5000 seqs.
Test data for the other tests 1 Mbits × 100 seqs.

Table 3.2: NIST randomness test results. P-value / pass proportion have been listed in
each cell. Bold fonts indicate passed tests.

Test name Plain XOR corrector
Von Neumann

corrector Jitter amplifier

Frequency 0.6993 / 0.99 0.0000 / 0.00 0.0270 / 0.99 0.1296 / 0.97
BlockFrequency 0.0095 / 1.00 0.0000 / 0.00 0.8832 / 0.98 0.2133 / 0.99
CumulativeSums 0.4944 / 0.98 0.0000 / 0.00 0.2248 / 0.99 0.0032 / 0.97
Runs 0.0000 / 0.26 0.0000 / 0.02 0.0000 / 0.94 0.1376 / 0.99
LongestRun 0.0000 / 0.01 0.0000 / 0.00 0.0000 / 0.91 0.9558 / 1.00
Rank 0.0156 / 1.00 0.3838 / 1.00 0.1917 / 1.00 0.6163 / 1.00
FFT 0.8165 / 1.00 0.0000 / 0.79 0.7981 / 1.00 0.3669 / 0.99
NonOverlappingTemplate 0.0000 / 0.00 0.0000 / 0.00 0.0000 / 0.15 0.0072 / 1.00
OverlappingTemplate 0.0000 / 0.00 0.0000 / 0.00 0.0000 / 0.28 0.1626 / 1.00
Universal 0.0000 / 0.00 0.0000 / 0.00 0.0028 / 0.98 0.3041 / 0.99
ApproximateEntropy 0.0000 / 0.00 0.0000 / 0.00 0.0000 / 0.31 0.8514 / 0.98
RandomExcursions 0.0267 / 1.00 - / - 0.0805 / 0.98 0.0554 / 1.00
RandomExcursionsVariant 0.0190 / 1.00 - / - 0.0127 / 0.98 0.0909 / 0.98
Serial 0.0000 / 0.00 0.0000 / 0.00 0.0000 / 0.94 0.3669 / 0.97
LinearComplexity 0.4559 / 1.00 0.3838 / 1.00 0.3191 / 0.97 0.7981 / 0.99

throughput depended on the original bit stream. The jitter amplifier significantly improved
the randomness of TRNG output to pass all the tests. Note that the deteriorations in p-values
found in the frequency and FFT tests could be ignored since they were within the pass range.
In this experimental setup, the voltage difference higher than or equal to 0.5 V is necessary to
pass all NIST tests, and below 0.5 V some NIST tests failed. Because the LC buffer keeps the
sampling frequency of TRNG unchanged, the same throughput as that for “plain” could be
achieved. Thus, the jitter amplifier enables the target TRNG to generate a sufficiently random
bit stream without degrading throughput.

3.4.5 Comparison with frequency divider

Dividing the slow oscillator output with a frequency divider, which often consists of
serially-connected two-frequency dividers, is a simple solution to obtain large jitter. The
two-frequency divider means the simplest asynchronous frequency divider which consists
of an inverter and a DFF. 2n-frequency divider is easily constructed by connecting n two-
frequency dividers in series. For example, 16-frequency divider consists of a series of four
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Figure 3.15: Normalized throughput per area vs. required magnification.

two-frequency dividers. Though there are many frequency dividers whose factors of divi-
sions are not 2n, their areas depend on the implementations. Thus, this section considers only
2n-frequency dividers which consist of n two-frequency dividers. Here, the p-th period of the
slow oscillator is tslow(p) ∼ N(µslow, σ

2
slow), where µslow is the average of the slow periods and

σ2
slow is the variance. tslow(p) is independent of tslow(p+k) , for k ∈ Z. When the slow oscillator

is divided by md, the variance is accumulated during md cycles of the slow oscillator. And
then, the average period of the divided signal is mdµslow and the variance is mdσ

2
slow. Since

the jitter is defined as a standard deviation of the periods, the jitter of the slow oscillator is
σslow and that after a md-frequency divider is

√
mdσslow, and thus the amount of the jitter is

multiplied by
√

md with a md-frequency divider, whereas the frequency becomes 1/md times
smaller.

The jitter amplifier and the frequency divider are compared here using throughput per
area of TRNG as a metric. Let us improve the jitter of a slow oscillator whose area is Aosc,
frequency is Fosc, and jitter isσosc. When the required jitter isσreq, the required magnification
of jitter is Mreq = σreq/σosc. To attain Mreq with two-frequency dividers whose area is
Adiv, ⌈log2 M2

req⌉ dividers are necessary. The required area is Aosc + Adiv⌈log2 M2
req⌉ and the

throughput is Fosc/2⌈log2 M2
req⌉. On the other hand, when a jitter amplifier is used whose area is

A ja and achievable jitter gain is G ja, ⌈Mreq/G ja⌉ amplifiers are necessary. The area is Aosc +

A ja⌈Mreq/G ja⌉ and the throughput is Fosc. Here, the throughput per area of the jitter amplifier
is divided by that of the frequency divider, and this value indicates whether the jitter amplifier
is superior or not. The condition under which the throughput per area of the jitter amplifier is
superior to that of the frequency divider is:

1 <
Fosc

Aosc + A ja⌈Mreq

G ja
⌉

/ Fosc/2⌈log2 M2
req⌉

Aosc + Adiv⌈log2 M2
req⌉
. (3.9)

This means the jitter amplifier is superior in throughput per area, when the right hand term of
Eq. (3.9), called as the normalized throughput per area, is more than one.
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Figure 3.15 shows the normalized throughput per area as the required magnification Mreq

changes. The normalized throughput per area was calculated from the right term in Eq. (3.9)
using the parameters value below. For chip A, Aosc = 495.0 µm2, A ja = 3300.0 µm2, Adiv =

8.0 µm2, and G ja = 8.4. As for chip B, Aosc = 478.0 µm2, A ja = 1663.0 µm2, Adiv = 8.0 µm2,
and G ja = 2.2. The areas for the slow oscillator, two-frequency divider, and jitter amplifier
are based on the layouts of chips A and B. The gain of the jitter amplifier was set to the largest
value observed in the measurement. Figure 3.15 indicates an oscillator-based TRNG should
employ a jitter amplifier when required jitter magnification is larger than 2.0. With this jitter
magnification, chip A with the proposed jitter amplifier passed all NIST tests as shown in
Sec 4.4. On the other hand, TRNGs with the same magnification by frequency divider and
chip B are assumed to pass NIST tests while NIST tests were not carried out for them. Large
jitter magnification is required when designing a good TRNG that generates highly random
numbers at high throughput yet occupies a small area. The jitter amplifier is more suitable
than the frequency divider for such purposes.

3.5 Conclusion
A jitter amplifier for an oscillator-based TRNG has been developed with a 65 nm CMOS

process. The results from measurements demonstrated that it efficiently amplified the jitter of
the sampling signal and enabled a TRNG with high throughput yet a small area with sufficient
random bit stream quality. One of the fabricated jitter amplifier attained 8.4x of jitter gain
occupying 3,300 µm2, the other amplifier achieved 2.2x gain with area of 1,700 µm2. In
addition, this chapter tested and confirmed that the jitter amplifier was better than simple
correctors and a frequency divider in most cases.
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Chapter 4

Self-calibration system of duty
cycle under dynamic environmental
variation

This chapter describes a self-calibration system of duty cycle for fast oscillator. A duty
cycle monitor and a duty cycle corrector are presented. A prototype oscillator-based TRNG
employing the proposed system is developed with a 65 nm CMOS process. The monitor
estimates the duty cycle with an average resolution of 0.16 % and the duty cycle corrector
tunes the duty cycle with resolution of 0.11 % in average at 20 ◦C. The duty cycle monitor
accelerate the estimation of duty cycle compared to output bit sampling, and the required
time for estimation is 3,500 times smaller. The proposed system reduces the variation of
probability of ‘1’ occurrence from 0.90 % to 0.05 % even when the temperature varies from
5 to 60 ◦C.

4.1 Introduction
Removal of biasing between the probabilities of ‘1’ and ‘0’ is a critical for the oscillator-

based TRNG design, as is discussed in Sec. 1.2.4. Online tuning of the duty cycle of the
fast oscillator is required to overcome temperature fluctuation. This section does not consider
the process variation, which is another concern about the biasing, since it is a static variation
and is compensated before shipment. Bhatti et al. [121] presented a method of duty cycle
measurement and correction using a random sampling technique. This method samples the
objective signal with a random clock from a chaotic oscillator, counts the numbers of ‘1’ and
‘0’, and calculates the proportion of ‘1’ as the duty cycle. The method, however, takes a lot
of time to count the number of ‘1’ and ‘0’.

This chapter presents a self-calibration system of duty cycle for the oscillator-based TRNG.
The system includes a duty cycle monitor and a duty cycle adjustment circuit. When the duty
cycle is changed by environmental fluctuation, the proposed monitor measures the duty cycle
of the fast oscillator and the information is fed back to the duty cycle corrector. The duty cycle
corrector tunes the duty cycle of the fast oscillator, and thus, the bias between the occurrences
of ‘1’ and ‘0’ is removed.

The reminder of this chapter is organized as follows. Section 4.2 describes the behavior of
the self-calibration system. Section 4.3 proposes the monitor of duty cycle, and Section 4.4
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Figure 4.1: An oscillator-based TRNG with the proposed self-
calibration system.

explains the duty cycle corrector. Section 4.5 shows the experimental results. Conclusions of
this chapter are given in Section 4.6.

4.2 Behavior of self-calibration circuit
Figure 4.1 shows an oscillator-based TRNG with the self-calibration system for the fast os-

cillator. The proposed system consists of the duty cycle monitor, the duty cycle corrector, and
the corrector controller. Temperature information, which is provided by an external thermal
sensor, is also given to the corrector controller.

The duty cycle monitor receives the oscillating signal of the fast oscillator and measures the
duty cycle. The outputs of the monitor are digital signals, which enables easy processing in
the corrector controller. Note that the duty cycle monitor and the sampler are also affected by
environmental fluctuations such as temperature variation, and therefore, the same digitized
monitor outputs does not always mean the same probability of ‘1’ when the temperature
changes. Accordingly, this thesis preliminarily measures target digitized monitor outputs,
which produces the target probability of ‘1’, in various temperatures. The non-volatile mem-
ory contains a table of the target monitor outputs. The controller gets the monitor output,
and look up the target monitor output from the table whose key is temperature. Then, the
controller outputs the control signals to the duty cycle corrector so that the measured output
gets close to the target. The duty cycle corrector varies the duty cycle of fast oscillating signal
according to the control signals. Note that the thermal sensor and the non-volatile memory
can be fabricated on the same chip though the TRNG in Fig. 4.1 implements them as external
components.
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4.3 Duty cycle monitor
Figure 4.2 illustrates a concept of the proposed duty cycle monitor. Output bit sampling,

which is a method of duty cycle estimation, is also shown for comparison. This method,
whose principle is similar to the random sampling method, gathers the output bits from the
sampler and calculates the proportion of ‘1’ as the duty cycle. Note that output bit sampling
uses jittery slow oscillator as the random clock while the random sampling method employs
the chaotic oscillator, and then output bit sampling requires several cycles of the slow oscil-
lator. On the other hand, the proposed monitor directly measures time differences between
HIGH and LOW of the fast signal and obtains the duty cycle. The monitor estimates the duty
cycle within one cycle of the slow oscillator, which is much smaller than output bit sampling.

Figure 4.3 has a block diagram of the duty cycle monitor and schematics of the internal
circuits. The monitor circuit mainly consists of two duration to delay converter (DDC) and
a Vernier time to digital converter (TDC) [122, 123]. The DDC includes P-type DDC and
N-type DDC. The DDCs receive the oscillating signals from the fast oscillators through the
duty cycle corrector and output rising edges. The output signal from P-type DDC rises earlier
as the duty cycle of the fast oscillator gets lower, and that from N-type DDC rises earlier as
the duty cycle gets higher. Consequently, the time difference between the two rising edges
from the P-type DDC and the N-type DDC becomes larger as the duty cycle increases, where
the edge from the N-type DDC is earlier than the P-type. The Vernier TDC digitizes the time
difference between the rise edges from the two DDCs and transmits the information to the
controller. In this work, 63 bit Vernier TDC is implemented. The variable delay after N-type
DDC in Fig. 4.3 adjusts the time difference into the input range of the TDC.

The DDC includes serially-connected DDC units whose schematics are also shown in
Fig. 4.3. This work implements six DDC units. This section here explains the behavior
of the P-type DDC unit, and the similar explanation is valid for N-type DDC unit. The P-type
DDC unit gets the signal from the fast oscillator (fast), and positive and negative resets (rst
and xrst), which are generated with the signal of the slow oscillator. The voltage of the nega-
tive input node (xin) is equal to rst for the first DDC unit and otherwise the node is connected
to the output node (out) of previous unit. The P-type DDC unit consists of five transistors.
CM2 and CM5 represent the parasitic capacitances of M2 and M5 whose gate areas are larger
than the other transistors. Figure 4.4 illustrates waveforms at the nodes in the P-type DDC
unit. V(CM5) and V(CM2) mean the input voltages to M5 and M2. In an initial state, xrst
is LOW, and rst and xin of the first unit are HIGH. CM2 is charged through M4 and CM5
is discharged through M3. After that, xrst is pulled up and rst and xin of the first unit are
pulled down while the fast oscillating signal is input to fast. M1 and M2 charge CM5 while
fast is LOW. The transistors do not fully charge CM5 within a cycle of fast and V(CM5) in
Fig. 4.4 increases gradually rather than stepwise, because the frequency of fast is high, and
RC product of CM5 and on-resistance of M2 is much larger than the cycle time of the fast
oscillator. This enhances the resolution of the proposed monitor since the difference between
the time of HIGH and LOW accumulates during several cycles. M5 is turned on when CM5
is sufficiently charged up. CM2 is discharged through M5, and then, LOW signal is output to
the next DDC unit. The NOT gate in Fig. 4.3 inverts the fall edge from the last DDC unit and
generates a rise signal as an output of the P-type DDC. A propagation delay of the DDC unit
depends on the time for charging CM5, and therefore, the delay gets smaller as the duty cycle
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Figure 4.2: Concept of the duty cycle monitor. Output bit sampling is also shown for comparison.

of fast increases.

4.4 Duty cycle corrector
The duty cycle corrector this section presents is a programmable delay cell. The prop-

agation delay for rising input is controllable while the delay for falling input is constant.
Figure 4.5 shows the behavior of the delay cell. An oscillating signal is input to in and is out-
put to out being delayed through the cell. The time of HIGH and LOW of in are THIGH and
TLOW , and those of out are T ′HIGH and T ′LOW , respectively. The propagation delay for fall edge
is D f all and that for rise edge is Drise, which is controlled with ctrl. Here, T ′HIGH = THIGH −
Drise + D f all and T ′LOW = TLOW + Drise − D f all as illustrated in Fig. 4.5. Then, the duty cycle
of in, din, and that of out, dout, are expressed as follows:

din =
THIGH

THIGH + TLOW
, (4.1)

dout =
T ′HIGH

T ′HIGH + T ′LOW

=

(
din +

D f all

THIGH + TLOW

)
+

Drise

THIGH + TLOW
. (4.2)

The programmable delay cell tunes dout by changing Drise.
Figure 4.6 shows a schematic of the programmable delay cell, namely the duty cycle

corrector. An oscillating signal is input to in and is output to out. A programmable in-
verter [64] and a normal inverter whose input capacitance is Cinv compose the corrector. The
programmable inverter consists of inverters connected in parallel, one of which includes gat-
ing transistors to control NMOS drive strength. A rising signal of in propagates through the
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Figure 4.3: Circuit diagram of the duty cycle monitor. (Length/Width)



56 Chapter 4 Self-calibration system of duty cycle under dynamic environmental variation

Time [s]

V
o

lt
a

g
e

 [
V

]

fast

xrst

rst

V(C
M5
)

V(C
M2
)

 0

 0.4

 0.8

 1.2

 3e-09  4e-09  5e-09  6e-09  7e-09  8e-09  9e-09  1e-08

 0

 0.4

 0.8

 1.2

 0

 0.4

 0.8

 1.2

Figure 4.4: Waveforms inside a P-type DDC unit.

Drise Dfall

in

out

T
HIGH

T
HIGH

’ TLOW’

T
LOW

Drise

Programmable delay cell

in out

ctrl

Figure 4.5: Behavior of programmable delay cell for duty cycle correction.

programmable inverter by discharging Cinv with the NMOSs, and the NMOS drive strength
depends on the number of gating transistors which are turned on. The control signal, ctrl,
thus changes the delay for a rise signal in the programmable inverter. On the other hand, the
PMOS drive strength depends on the sizes of the PMOSs, M1 and M3, and it is constant.
Consequently, the duty cycle corrector tunes the duty cycles by changing the propagation
delay for a rise input.
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4.5 Experimental results
This section describes a test chip which implements the proposed self-calibration system

and experimental results.

4.5.1 Test structure

An oscillator-based TRNG with the proposed self-calibration system was fabricated with
a 65 nm CMOS process (Fig. 4.7). The area for the duty cycle corrector is 190 µm2 and that
for the duty cycle monitor is 2,790 µm2. The fast oscillator is a 7-stage ring oscillator whose
average period and frequency are 350 ps and 2.9 GHz from circuit simulation. The proposed
corrector and the monitor of duty cycle are also implemented. A 293-stage ring oscillator
with 16-frequency-dividers are the slow oscillator. Average period and frequency of the slow
oscillator are 150 ns and 6.7 MHz from measurement with a real time oscilloscope.

The probability of ‘1’ occurrence was roughly estimated as 42 % from measurement re-
sults, and then, the target probability of ‘1’ was set as 42.00 % in this section though an ideal
probability was 50.00 %. Careful layout in designing TRNG and the body biasing technique
discussed in Sec. 2.3.1 deal with the offset of the probability. This section focuses on dy-
namic variations such as fluctuation of temperature rather than static variations, and thus, the
section does not discuss in detail the issue of the offset compensation.

4.5.2 Resolution of duty monitor

Figure 4.8 shows the relationships between the measured monitor outputs and the proba-
bilities of ‘1’ occurrences at temperatures of 5, 20, 40 and 60 ◦C. The VDD for DDC was
0.9 V and the others were 1.2 V. The number of the on-transistors in the duty cycle corrector
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Figure 4.7: Chip photo of a TRNG with self-
calibration system.

was varied from 1 to 17, and only the measurement at 5 ◦C changes the number of transistors
by twos. This experiment measured the outputs from the duty cycle monitor through the cor-
rector controller, which converts the bit length of the measured value from 63 bits to 6 bits
by encoding. One hundred of outputs from the duty cycle monitor were obtained with a logic
analyzer and their average was calculated. One hundred sequences of 100 kbits of random
bits were used to estimate the true probability of ‘1’ as a reference. Fig. 4.8 shows that the
measured output value of the monitor is linear to the probability of ‘1’, which validates the
functionality of the proposed duty cycle monitor. This section also derived first order approx-
imations, y [%] = ax+b, from the measurement results and displayed them in Fig. 4.8. Here,
the coefficient a represents the average resolution of the duty cycle monitor. The monitor
at 20 ◦C, for example, increments the output value when the input duty cycle increases by
0.16 %. The average resolutions of the monitor were from 0.14 to 0.20 % and they were
small enough, since the frequency test of NIST tests requires the range of probability to be
within 0.25 %.

4.5.3 Quickness of duty cycle measurement

It is important to estimate the duty cycle of fast oscillator quickly with high accuracy,
when considering environmental fluctuation with high frequency such as power supply noise.
Employing the average of the several duty cycles enhances the accuracy, but it decreases
the speed of the estimation. This subsection evaluates the measurement quickness of the
proposed duty cycle monitor. For comparison, the output bit sampling method is considered
here, which gathers a bit sequence and calculates the proportion of ‘1’ occurrence as the duty
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Figure 4.8: Probabilities of ‘1’ occurrences vs. measured values of monitor outputs.
Broken lines represent the first order approximations.

cycle.
Figure 4.9 shows the accuracies of duty cycle estimation with the duty cycle monitor and

with the output bit sampling. The y-axis represents the standard deviation of measured 100
duty cycles, which corresponds to the statistical accuracy of the duty cycle estimation. The
x-axis is the time spent to measure a duty cycle. In other words, it is the required time to
attain the corresponding accuracy. The VDD for the DDC of the duty cycle monitor was
0.9 V and the others were 1.2 V. Note that the measured output value of the monitor was
digital data whose bit length was 6 bits, and the value was converted into the duty cycle. The
first order approximation of the probability of ‘1’ at 25 ◦C was y = 0.15x + 38.59, and then,
the measured output value was multiplied by 0.15. For example, when a standard deviation
of measured output values is 3.0, the converted accuracy of duty cycle is 3.0×0.15 = 0.45 %.
Fig. 4.9 indicates that the required time with the proposed monitor is 3,500 times as small as
the output bit sampling when setting a pass mark of accuracy to 0.25 % as an example.

4.5.4 Resolution of duty cycle corrector

Figure 4.10 shows probabilities of ‘1’ occurrences when the number of on-transistors of
the duty cycle corrector is varied. Temperatures were 5, 20, 40 and 60 ◦C. This evaluation
measured 100 sequences of 100 kbits to obtain the probability of ‘1’. This subsection also
derived first order approximations of the measurement results, which are found in Fig. 4.10.
Fig. 4.10 shows that the proposed corrector has good linearity, since the measured probabil-



60 Chapter 4 Self-calibration system of duty cycle under dynamic environmental variation

0.01

0.1

1

10

100

1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05

S
td

e
v

 o
f 

d
u

ty
 c

y
cl

e
 [

%
]

Required time [cycle]

Duty cycle monitor

Output bit sampling

(x3500 faster)
0.25
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ities are well correlated with the approximated linear expression. The coefficient of x in the
linear expression represents the average resolution of the duty cycle corrector. The corrector
tunes the duty cycle with average resolution of from 0.11 to 0.15 %, which is sufficiently
small compared to the acceptable range of the frequency test of 0.25 %.

4.5.5 Tolerance to temperature

This subsection explains stabilization of probability of ‘1’ by self-calibration system. As
a preparation, target output values of the duty cycle monitor were set for each temperature
from Fig. 4.8. For example, the first order approximation of the duty cycle monitor at 40 ◦C
is y = 0.14x + 39.49, and then, x is set to 18 when y is 42.00. Table 4.1 lists the target
output values of the duty cycle monitor. This section manually set the target output values for
each temperature while they would be stored in the non-volatile memory and automatically
according to the thermal sensor output in Fig. 4.1.

Figure 4.11 plots the probabilities of ‘1’ occurrences under temperature fluctuation with
and without the self-calibration. The VDD for the DDC was 0.9 V and the others were 1.2 V.
The probability without the calibration spans from 41.55 to 42.46 %, and the range is 0.90 %.
On the other hand, the probability with the calibration is within 41.96 to 42.01 %, and the
range is 0.05 %, which is small enough to pass the frequency test of NIST tests explained
in Sec. 1.2.4. Thus, the proposed calibration system makes the quality of output bit stream
robust to temperature fluctuation.
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Figure 4.10: Probabilities of ‘1’ occurrences vs. the number of on-transistors in duty
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Table 4.1: Target output values of duty cycle monitor.

Temperature [◦C] Target value
5 6’d29
20 6’d23
40 6’d18
60 6’d14

4.6 Conclusion
This chapter proposed a system to self-calibrate the duty cycle of fast oscillator, which

includes a duty cycle corrector and a duty cycle monitor. A oscillator-based TRNG with the
proposed system was implemented with a 65 nm CMOS process. The proposed monitor and
the corrector attained sufficient performance to pass the frequency test of the NIST test set.
Estimation of duty cycle with the proposed duty cycle monitor is 3,500 times faster compared
to the output bit sampling with counting ‘1’ occurrences. The proposed system reduced the
variation of the probability of ‘1’ due to temperature fluctuation to be within 0.05 %.
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Chapter 5

Conclusion

Many security applications need unpredictable random numbers, which are generated from
physical random sources. This thesis focuses on an oscillator-based TRNG among various
types of TRNGs because of its compatibility with on-chip integration and inherent robust-
ness to deterministic noise. An computationally efficient model for randomness evaluation
is required to design an oscillator-based TRNG which produces sufficiently random numbers
even under deterministic noises. The amount of jitter of an oscillator, which is the random
source of the TRNG, is not enough to attain enough randomness, and then an oscillator with
large jitter is demanded. Environmental variability, such as temperature change, biases a
probability of ‘1’ occurrence of output bits. The output biasing of an oscillator-based TRNG
depends on the distortion of oscillator duty cycle, and therefore, a self-calibration of duty
cycle is indispensable.

Chapter 2 proposes a stochastic behavior model of the oscillator-based TRNG and a worst-
case-aware design methodology using the model. The design methodology evaluates the
worst χ value of a poker test under deterministic noise not requiring bit generation. The
proposed model is validated with hardware measurement of an oscillator-based TRNG which
is fabricated in a 65 nm CMOS process. It is experimentally verified that the worst-case-
aware design methodology efficiently estimates the lower bound of randomness. In addition,
the chapter exemplifies a design space exploration with the proposed methodology.

Chapter 3 describes a jitter amplifier, which increases the amount of jitter and enhances
the quality of output. A core element of the proposed circuit is a LC buffer controlled by a
timing generator. The chapter presents two types of LC buffer, and implements an oscillator-
based TRNG for each LC buffer with a 65 nm CMOS process. The measurement results
confirms that the proposed circuit amplifies the jitter and improves randomness. The chapter
also derives an analytical expression to estimate the jitter gain, and the estimated gains are
well correlated to the measurements. The jitter amplifier attains higher throughput per area
than a simple method of jitter accumulation with frequency dividers.

Chapter 4 explains a self-calibration system of duty cycle to remove the biasing. The pro-
posed system includes a duty cycle monitoring circuit and a duty cycle adjustment circuit.
The evaluation of duty cycle with the proposed monitor is quite faster than output bit sam-
pling. The proposed method is suitable for quickly catching up with environmental variation.
An oscillator-based TRNG accompanied by the self-calibration system is fabricated with a
65 nm CMOS process. Measurement results show that the duty cycle monitor and the duty
cycle corrector achieve sufficiently high resolutions. The self-calibration system effectively
reduces the biasing of output bits under temperature variation.
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Table 5.1: Comparison with other TRNGs.

Bucci2003 [42] Bucci2008 [38] Pareschi2010 [57] Srinivasan2010 [71] This work

Principal Direct amp. Oscillator-based Chaos-based Metastable-based Oscillator-based
Technology 180 nm 90 nm 180 nm 45 nm 65 nm
Area 25,000 µm2 13,000 µm2 126,000 µm2 4,004 µm2 7,500 µm2

Normalized area 1,563 µm2 3,250 µm2 7,875 µm2 4,004 µm2 3,595 µm2

Throughput 40 Mbps 1.74 Mbps 80 Mbps 2.4 Gbps 2 Mbps
NIST SP800-22 NIST SP800-22

Randomness FIPS140-1 AIS31 Entropy eval. FIPS140-2
Assessment Knuth Entropy eval.

NIST SP800-22
Autocorrelation eval. Entropy eval.

Run length eval. Worst χ eval.
Post processing XOR LSFR - - -

For a comparison, let us assume a TRNG designed with the proposed circuits so that it
generates highly random numbers. The fast oscillator is a 7-stage ring oscillator whose fre-
quency is 2.9 GHz from circuit simulation, and its duty cycle is adjusted by body biasing
technique. The slow oscillator is a 251-stage ring oscillator with a 64-frequency divider and
its output frequency, which is the throughput of the TRNG, is 2 MHz. The jitter amplifier
with the two-voltage LC buffer and the self-calibration system are implemented. The sampler
is similar to that in Fig. 4.7. Total area of the TRNG is 7,500 µm2. With this configuration,
the TRNG is expected to attain enough entropy and pass NIST test suite and FIPS140-2 ran-
domness tests, because the slow oscillator and the jitter amplifier are similar to those of the
chip A in Chapter 3 and the frequency of the fast oscillator is higher than that of the chip A.
In addition, the worst χ value of the TRNG is calculated as 0.1 when duty cycle is 50.1 %,
variance constant is 1.77 × 10−14, and jitter gain is 8.4, which means the TRNG guarantees
enough randomness under deterministic noises.

Table 5.1 shows the performance comparison to other recent TRNGs. The normalized area
is the scaled area when the TRNGs are assumed to be fabricated in 45 nm CMOS process.
For example, the area of this work is 7,500 µm2 and the technology is 65 nm, and then, the
normalized area becomes 7, 500 ×(45/65)2 =3,595 µm2. From Table 5.1, this work attains the
smallest normalized area in the TRNGs which pass NIST test suite without post processing.
Additionally, this work has a significant advantage that the TRNG can guarantee sufficient
randomness even when deterministic noises are imposed.

Consequently, this thesis attains an oscillator-based TRNG which generates highly ran-
dom numbers even under deterministic noises and environmental fluctuation. The proposed
TRNG is process-portable and process-scalable since it can be implemented with digital cir-
cuits. In addition, the designers do not need to care the deterministic noises in designing the
TRNG, since the proposed circuit guarantees enough randomness even under deterministic
noises. Though deterministic noises and environmental fluctuation degrade the randomness
of a bit stream and lower the quality of security system, the robust TRNG can decrease such
risks. Thus, the TRNG enhances the reliability of security system such as cryptosystem and
authentication.

Finally, the future direction and the remaining works are remarked in the following. The
worst-case-aware design methodology presented in Chapter 2 employs χ value of a poker test
as a metric of randomness. Evaluation of χ value, however, is a simple randomness test, and
then, more profound evaluation is required to enhance the reliability of the design method-
ology. For example, entropy of a bit stream is a widely accepted as a metric of randomness.
Then, the direct worst entropy estimation with the proposed stochastic model is one of the



65

future works.
The quickness of duty cycle estimation with the proposed monitor is compared to the

output bit sampling in Sec. 4.5.3. On the other hand, recent TRNGs [38, 71] update their
operating configurations every cycle to remove the bias. The speed of compensation is higher
than the output bit sampling, while the accuracy of estimation of biasing is not high since it
utilizes only one output bit for the estimation. Accordingly, to compare the proposed system
with the recent studies is a future work of this thesis.

In addition, a self-calibration system of jitter amount is another future work. Although
injection locking attack is discussed in Sec. 2.6.3, the reduction in the amount of jitter is
still a concern for the oscillator-based TRNG. A TRNG with tolerance to the jitter reduction
will include a jitter monitoring circuit and frequency dividers whose number of division is
controlled according to the monitored amount of jitter. Estimation of jitter amount from
output bits will be another choice, though its algorithm should be carefully selected for the
circuit not to consume large area and power.
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Appendix A

Mathematical proof of the worst
case under deterministic noise

In Section 2.2, the representative phases of cycles are fixed to the center of the HIGH period
(duty cycle > 0.5) or the LOW period (duty cycle < 0.5), to evaluate the worst randomness.
This appendix here clarifies that such condition results in the worst entropy, which is a popular
metric of randomness.

In this appendix, t is defined as a time interval from a rising edge of fast oscillator to
the next rising edge of slow signal (0 ≤ t < tfast). Assuming a Gaussian distribution, the
probability density function of t is

f (t) =
1
√

2πσ
exp

(
− (t − t0)2

2σ2

)
. (A.1)

where t0 is the representative phase.
Due to the definition of t, the fast signal is HIGH for 0 ≤ t < dtfast and is LOW for

dtfast ≤ t < tfast, where d is the duty cycle of the fast oscillator. Thus, pn, which is the
probability of ‘1’ occurrence at the n-th bit in successive bits, can be calculated by integrating
f (t) as follows:

pn=

∞∑
l=−∞

∫ ltfast+dtfast

ltfast

1
√

2πσ
exp

(
− (t − t0n)2

2σ2

)
dt, (l ∈ Z), (A.2)

where t0n is the representative phase for the n-th bit. In the following discussion, duty cycle
d is 0.5 ≤ d < 1, which means that the HIGH period is longer. The same discussion is doable
for 0 ≤ d < 0.5 with a substitution of d′ = 1 − d. tfast and d are assumed to be independent
from n, because their fluctuations are considered as the random jitter or the variation of t0n.

The derivative of pn with respect to t0n is derived.
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∂

∂t0n
pn =

1
√

2πσ

∞∑
l=−∞

∫ ltfast+dtfast

ltfast

t − t0n

σ2 e−
(t−t0n )2

2σ2 dt.

=
1

√
2πσ

∞∑
l=−∞

[
exp

(
− (t − t0n)2

2σ2

)]ltfast+dtfast

ltfast

=
1

√
2πσ

∞∑
l=−∞

{
− exp

(
− (ltfast + dtfast − t0n)2

2σ2

)
+ exp

(
− (ltfast − t0n)2

2σ2

)}
. (A.3)

(ltfast + dtfast − t0n)2 is compared with (ltfast − t0n)2.

(ltfast + dtfast − t0n)2 − (ltfast − t0n)2 = −2dtfastt0n + (2ldt2
fast + d2t2

fast). (A.4)

When Eq. (A.4) = 0, t0n becomes

t0n = tfast(l +
d
2

). (A.5)

Here, l is 0 because of the definition 0 < t0n ≤ tfast, and therefore, t0n = 0.5dtfast.
Under the condition of t0n < 0.5dtfast,

(ltfast + dtfast − t0n)2 > (ltfast − t0n)2, (A.6)∫ ltfast+dtfast

ltfast

t − t0n

σ2 exp
(
− (t − t0n)2

2σ2

)
dt > 0, (A.7)

∂

∂t0n
pn > 0. (A.8)

On the other hand, under the condition of t0n > 0.5dtfast,

(ltfast + dtfast − t0n)2 < (ltfast − t0n)2, (A.9)∫ ltfast+dtfast

ltfast

t − t0n

σ2 exp
(
− (t − t0n)2

2σ2

)
dt < 0, (A.10)

∂

∂t0n
pn < 0. (A.11)

Thus, pn attains the maximum value with t0n = 0.5dtfast. When t0n is 0.5dtfast for every n,
pn becomes a constant p′ irrelevant to n, and obviously 0.5 ≤ p′ < 1.

On the other hand, entropy for a bit stream H is defined as

H = −p log p − (1 − p) log(1 − p), (A.12)

where p is a probability of ‘1’ occurrence across the bit stream. Assuming the condition
of 0.5 ≤ p < 1, H becomes the minimum in case that p is the maximum [124]. From
these discussion, it is proved that the randomness gets the worst when t0n is always 0.5dtfast,
namely, the representative phases of cycles are fixed to the middle point of HIGH period.
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Appendix B

Calculation of output jitter

In Sec. 3.2.2, the gain of the proposed jitter amplifier is discussed. This appendix will detail
the calculation of the amount of the output jitter. Note that the definition of the notations are
found in Sec. 3.2.2.

In order to obtain the output jitter, tout(n+2) − tout(n+1) is calculated;

tout(n+1) = tcrise(n+1) +

(
l −

tcrise(n+1) − tin(n+1)

∆Db f (n)
∆l

)
∆Dbs(n)

∆l

= Dcrise(n) +

(
l −

Dcrise(n) − Din(n)

∆Db f (n)
∆l

)
∆Dbs(n)

∆l
, (B.1)

tout(n+2) = tcrise(n+2) +

(
l −

tcrise(n+2) − tin(n+2)

∆Db f (n+1)
∆l

)
∆Dbs(n+1)

∆l

= Din(n)+Dcrise(n+1) +

(
l−

Dcrise(n+1)−Din(n+1)

∆Db f (n+1)
∆l

)
∆Dbs(n+1)

∆l
, (B.2)

tout(n+2) − tout(n+1) = (Din(n) − Dcrise(n) + Dcrise(n+1)) − (Din(n) − Dcrise(n))
∆Dbs(n)

∆Db f (n)

+ (Din(n+1) − Dcrise(n+1))
∆Dbs(n+1)

∆Db f (n+1)
− l
∆l

(∆Dbs(n) − ∆Dbs(n+1)). (B.3)

From Eq (3.2), 1/∆Db f (n) is approximated as follows;

1
∆Db f (n)

≈ 1
µ2

b f

(
µb f − Db f r(n)

)
=
∆D′b f (n)

µ2
b f

, (B.4)

where ∆D′b f (n) = µb f − Db f r(n) follows normal distribution whose mean and variance are µb f

and σ2
b f . Here, ∆D′b f (n1) is independent of Din(n2), Dcrise(n3), ∆Db f (n4) and ∆Dbs(n5) for arbitrary
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n1, n2, n3, n4 and n5 (n1, n2, n3, n4, n5 ∈ N). From Eq. (B.4), Eq. (B.3) is approximated as;

tout(n+2)−tout(n+1) ≈
(
Din(n)−Dcrise(n)+Dcrise(n+1)

)
−∆Dbs(n)

 1
µ2

b f

(Din(n)−Dcrise(n))∆D′b f (n)+
l
∆l


+∆Dbs(n+1)

 1
µ2

b f

(Din(n+1)−Dcrise(n+1))∆D′b f (n+1)+
l
∆l

 ,
(B.5)

where the first, second and third terms are called hereafter as (A), (B), and (C).
(A) and (B + C) are not independent of each other since they share the same random vari-

ables. Therefore, Var[A+ B+C] = Var[A]+Var[B+C]+ 2Cov[A, B+C]. The mean and the
variance of (A) are;

E[A] = µin − µcrise + µcrise = µin, (B.6)
Var[A] = σ2

in + σ
2
crise + σ

2
crise = σ

2
in + 2σ2

crise. (B.7)

The mean of (B +C) is;

E[B +C] = −µbs

 1
µ2

b f

(µin − µcrise)µb f +
l
∆l

 + µbs

 1
µ2

b f

(µin − µcrise)µb f +
l
∆l


= 0. (B.8)

(B) is independent of (C) since they do not share the same random variables, and therefore,
Var[B+C] = Var[B]+Var[C]. From Var[XY] = Var[X]Var[Y]+E[X]2Var[Y]+E[Y]2Var[X]
where X and Y are independent of each other, the variance of (B) is calculated as follows;

Var[B] = Var

∆Dbs(n)

 1
µ2

b f

(Din(n)−Dcrise(n))∆D′b f (n)+
l
∆l




= Var[∆Dbs(n)]Var

 1
µ2

b f

(Din(n)−Dcrise(n))∆D′b f (n)+
l
∆l


+ E[∆Dbs(n)]2Var

 1
µ2

b f

(Din(n)−Dcrise(n))∆D′b f (n)+
l
∆l


+ E

 1
µ2

b f

(Din(n)−Dcrise(n))∆D′b f (n)+
l
∆l

2

Var[∆Dbs(n)]. (B.9)
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Here,

E

 1
µ2

b f

(Din(n)−Dcrise(n))∆D′b f (n)+
l
∆l

 = µin−µcrise

µb f
+

l
∆l
,

(B.10)

Var

 1
µ2

b f

(Din(n)−Dcrise(n))∆D′b f (n)+
l
∆l


=

1
µ4

b f

Var[(Din(n)−Dcrise(n))∆D′b f (n)]

=
1
µ4

b f

{
(σ2

in+σ
2
crise)σ2

b f +(µin−µcrise)2σ2
b f +µ

2
b f (σ

2
in + σ

2
crise)

}
. (B.11)

From Eqs. (B.10)(B.11), Eq. (B.9) is calculated as;

Var[B] =
µ2

bs+σ
2
bs

µ4
b f

{
(σ2

in+σ
2
crise)σ2

b f +(µin−µcrise)2σ2
b f

}
+

(µ2
bs+σ

2
bs)(σ

2
in+σ

2
crise)

µ2
b f

+ σ2
bs

{
µin−µcrise

µb f
+

l
∆l

}
.

(B.12)

Var[C] is also calculated in the same manner;

Var[C] =
µ2

bs+σ
2
bs

µ4
b f

{
(σ2

in+σ
2
crise)σ2

b f +(µin−µcrise)2σ2
b f

}
+

(µ2
bs + σ

2
bs)(σ

2
in + σ

2
crise)

µ2
b f

+ σ2
bs

(
µin − µcrise

µb f
+

l
∆l

)
.

(B.13)

Therefore, Var[B +C] becomes;

Var[B+C]=
2(µ2

bs+σ
2
bs)

µ4
b f

{
(σ2

in+σ
2
crise)σ2

b f +(µin−µcrise)2σ2
b f

}
+

2(µ2
bs+σ

2
bs)(σ

2
in+σ

2
crise)

µ2
b f

+2σ2
bs

{
µin−µcrise

µb f
+

l
∆l

}
.

(B.14)

In order to obtain the variance of (A)+(B+C), the covariance of (A) and (B+C) is calculated.

Cov[A, B +C] = E[A(B +C)] − E[A]E[B +C]
= E[A(B +C)]. (B.15)



72 Appendix B Calculation of output jitter

(A) + (B +C) is calculated as follows;

A(B +C) = −
∆Dbs(n)∆D′b f (n)

µ2
b f

(Din(n)−Dcrise(n))2 −
∆Dbs(n)∆D′b f (n)

µ2
b f

(Din(n)−Dcrise(n))Dcrise(n+1)

+
∆Dbs(n+1)∆D′b f (n+1)

µ2
b f

Din(n+1)(Din(n)−Dcrise(n)+Dcrise(n+1))

−
∆Dbs(n+1)∆D′b f (n+1)

µ2
b f

Dcrise(n+1)(Din(n)−Dcrise(n))

−
∆Dbs(n+1)∆D′b f (n+1)

µ2
b f

D2
crise(n+1)

− l
∆l
∆Dbs(n)(Din(n)−Dcrise(n)+Dcrise(n+1))

+
l
∆l
∆Dbs(n+1)(Din(n)−Dcrise(n)+Dcrise(n+1)). (B.16)

Here, because (Din(n) − Dcrise(n)) and Dcrise(n+1) are normally distributed, they can be changed
into standard normal distribution by standardization. Also, the square of the standard normal
random variable has chi-squared distribution whose degrees of freedom is one. Therefore,
the means of (Din(n)−Dcrise(n))2 and D2

crise(n+1) can be obtained from the means of chi-squared
distribution. Because of (Din(n) − Dcrise(n)) ∼ N(µin − µcrise, σ

2
in + σ

2
crise) and Dcrise(n+1) ∼

N(µcrise, σ
2
crise), the means of their squares are;

E[(Din(n) − Dcrise(n))2] = σ2
in + σ

2
crise + (µin − µcrise)2, (B.17)

E[D2
crise(n+1)] = σ

2
crise + µ

2
crise. (B.18)

Then, Cov[A, B +C] is calculated;

Cov[A, B +C] = − µbs

µb f
(σ2

in + 2σ2
crise). (B.19)

From Eqs. (B.7)(B.14)(B.19), Var[A + B +C], is calculated as;

Var[A + B +C] =
(
1 − 2

µbs

µb f

)
(σ2

in + 2σ2
crise)

+
2(µ2

bs + σ
2
bs)

µ4
b f

(σ2
in + σ

2
crise)σ2

b f +
2(µ2

bs + σ
2
bs)

µ4
b f

(µin − µcrise)2σ2
b f

+
2(µ2

bs + σ
2
bs)

µ4
b f

µ2
b f (σ

2
in + σ

2
crise) + 2σ2

bs

(
µin − µcrise

µb f
+

l
∆l

)
. (B.20)

σk
b f /µ

k
b f and σk

bs/µ
k
b f (k ≥ 2) are approximated as zeros since σb f and σbs are much smaller

than µb f . With a = σ2
crise/σ

2
in and x = µbs/µb f , the output jitter Var[A+B+C] is approximated;

Var[A+B+C] ≈
{
2(a+1)x2−2(2a+1)x+(2a+1)

}
σ2

in

+ 2σ2
bs

(
l
∆l
− µcrise−µin

µb f

)
. (B.21)
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Appendix C

Derivation of constraints

In Sec. 3.2.3, the constraints on LC buffer is discussed. Here, this appendix will present
the process in which Eqs. (3.6)(3.7) are derived.

The sufficient condition for the jitter amplifier to work properly can be expressed as two
conditions;

tin(n+1) <tcrise(n+1)< tout(n+1), (C.1)
tout(n+1) <tc f all(n+1)< tin(n+2). (C.2)

The constraint on tcrise(n+1), Eq. (C.1), is rewritten as follows;

0 < tcrise(n+1) − tin(n+1) < tout(n+1) − tin(n+1). (C.3)

The right side of Eq. (C.3) is the delay in the LC buffer, and then it is not less than the latency
in the LC buffer in fast mode. Then, the sufficient condition of tcrise(n+1) is;

0 <tcrise(n+1) − tin(n+1)<
l
∆l
∆Db f (n+1),

0 < Drise(n) − Din(n) <
l
∆l
∆Db f (n+1). (C.4)

Introducing the coefficient m, Eq. (C.4) is expressed as the following two conditions;

0 < (µrise − µin) − m
√
σ2

rise + σ
2
in, (C.5)

(µrise − µin) + m
√
σ2

rise + σ
2
in <

l
∆l
µb f − mσb f

√
l
∆l
. (C.6)

They can be rewritten as conditions of µrise.

µin + m
√
σ2

rise + σ
2
in < µrise, (C.7)

µrise < µin − m
√
σ2

rise + σ
2
in +

l
∆l
µb f − mσb f

√
l
∆l
. (C.8)

Here, µrise is expressed as µrise = µrise o f f set + s∆µrise(s ∈ Z, s ≥ 0). Also, µrise o f f set assumed
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to be less than the right side of Eq. (C.8). Then, the sufficient condition is;

∆µrise<µin−m
√
σ2

rise+σ
2
in+

l
∆l
µb f −mσb f

√
l
∆l
−

(
µin+m

√
σ2

rise+σ
2
in

)
,

∆µrise+2m
√
σ2

rise+σ
2
in<

l
∆l
µb f −mσb f

√
l
∆l
. (C.9)

Next, the condition of tc f all(n+1), Eq. (C.2), is;

tout(n+1)−tin(n+1)< tc f all(n+1)−tin(n+1)< tin(n+2)−tin(n+1). (C.10)

The left side of Eq. (C.10) is the delay in the LC buffer, and then it is not more than the
latency in the LC buffer in slow mode. Then, the sufficient condition of tc f all(n+1) is;

l
∆l
∆Dbs(n)< tc f all(n+1)−tin(n+1)< tin(n+2)−tin(n+1),

l
∆l
∆Dbs(n)<D f all(n)−Din(n)<Din(n+1). (C.11)

Eq. (C.10) is expressed as the two equations with the coefficient m;

l
∆l
µbs+mσbs

√
l
∆l
< (µ f all−µin)−m

√
σ2

f all+σ
2
in, (C.12)

(µ f all−µin)+m
√
σ2

f all+σ
2
in<µin−mσin. (C.13)

They can be rewritten as conditions of µ f all.

l
∆l
µbs+mσbs

√
l
∆l
+µin+m

√
σ2

f all+σ
2
in<µ f all, (C.14)

µ f all<µin−m
√
σ2

f all+σ
2
in+(µin−mσin) . (C.15)

Here, µ f all is expressed as µ f all = µ f all o f f set + t∆µ f all (t ∈ Z, t ≥ 0). In addition, µ f all o f f set is
assumed to be less than the right side of Eq. (C.15). Then, the sufficient condition is;

∆µ f all<µin−m
√
σ2

f all+σ
2
in+(µin−mσin)−

 l
∆l
µbs+mσbs

√
l
∆l

−µin−m
√
σ2

f all+σ
2
in,

∆µ f all+2m
√
σ2

f all+σ
2
in< (µin−mσin)−

 l
∆l
µbs+mσbs

√
l
∆l

 .
(C.16)
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