Title	Studies on the Palladium－and Platinum－Mediated Cleavage of Carbon－Sulfur Bond of Thioesters and Their Addition to Alkynes
Author（s）	Minami，Yasunori
Citation	大阪大学，2010，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／2748
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／
Osaka University

Studies on the Palladium- and Platinum-Mediated Cleavage of
 Carbon-Sulfur Bond of Thioesters and
 Their Addition to Alkynes

Yasunori Minami

Osaka University

Studies on the Palladium－and Platinum－Mediated Cleavage of Carbon－Sulfur Bond of Thioesters and Their Addition to Alkynes

（パラジウム及び白金錯体によるチオエステル類の炭素—硫黄結合 の切断及びアルキンへの付加反応に関する研究）

Yasunori Minami

Osaka University

Preface

The studies described in this thesis has been carried out (2004-2010) under the supervision of Professor Nobuaki Kambe at the Department of Applied Chemistry, Graduate School of Engineering, Osaka University.

The objective of thesis is concerned with the studies on transformation of thioesters and iminosulfides with alkenes via cleavage of carbon-sulfur bond in the presence of transition-metal catalysts and the mechanistic insight into the reaction of thioesters with low-valent transition-metal complexes.

Department of Applied Chemistry
Graduate School of Engineering, Osaka University
Suita, Osaka, Japan
March, 2010

Yasunori Minami

Contents

General Introduction 1
Chapter 1 Transition-Metal Catalyzed Regioselective Acylthiolation of Alkynes Using Thioesters
1-1 Introduction7
1-2 $\mathrm{Pd} /$ dppe-Catalyzed Aroylthiolation of Alkynes Using $\mathrm{Ar}^{1} \mathrm{C}(\mathrm{O}) \mathrm{SAr}^{2}$ 7
1-3 Pt-Catalyzed Trifluoroacetylthiolation of Alkynes Using $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{SR}$ 10
1-4 Reaction Mechanisms 11
1-5 Conclusions 12
1-6 Experimental Section 12
1-7 References and Notes 27
Chapter 2 Pd-Catalyzed Regioselevtive Iminothiolation of Alkynes: Remarkable Effects of CF_{3} Group of Iminosulfides
2-1 Introduction 29
2-2 Pd-Catalyzed Iminothiolation of Various Alkynes Using Iminosulfides 29
2-3 Oxidative Addition of $\mathrm{RC}(=\mathrm{NPh}) \mathrm{S}-p$-tolyl to $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ 32
2-4 A Proposed Reaction Mechanism 32
2-5 Synthesis of Furan Derivatives 33
2-6 Conclusions 34
2-7 Experimental Section 34
2-8 References and Notes 47
Chapter 3 One-Pot Syntheses of 2,3-Dihydrothiopyran-4-one Derivatives by Pd/Cu- Catalyzed Reactions of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Thioesters with Propargyl Alcohols
3-1 Introduction 49
3-2 The Pd/Cu-Catalyzed Reaction of α, β-Unsaturated Thioesters with Propargyl Alcohols 49
3-3 Reaction Mechanism 52
3-4 Reaction of Acid Chloride, Thiol and Propargyl Alcohol 54
3-5 Conclusions 54
3-6 Experimental Section 54
3-7 References and Notes 61
Chapter 4 Reactions of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Thioesters with $\operatorname{Pt}(\mathbf{0})$: Implication of Dual Mechanism Leading to the Formation of Acyl Platinum
4-1 Introduction 63
4-2 Reactions of $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{SAr}$ with a Platinum (0) Complex 64
4-3 Reactions of Thioesters Having a $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}$ Group with a Platinum (0) Complex 65
4-4 Reactions of Thioesters Having $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}$ Group with $\mathrm{Pt}(0)$ Complex 68
4-5 Proposed Dual Reaction Routes 69
4-6 Activation Parameters 71
4-7 Conclusions 72
4-8 Experimental Section 72
4-9 References and Notes 98
Summary 100
List of Publications 101
Acknowledgement 102

General Introduction

Homogeneous transition metal-catalyzed reaction is one of the most important subjects in synthetic chemistry for the facile and accurate construction of a wide range of organic frameworks. It is well-known that carbon-halogen bonds are readily cleaved by the transition metal complexes, which normally act as promoters for a range of synthetic transformations (Scheme 1).

Scheme 1. Oxidative Addition of Carbon-Halogen Bond to TransitionMetal Complex

Recently, catalytic reactions inspired by using other heteroatom functionalities in place of halogens are examined by many research groups (Scheme 2). On the basis of environmentally-

$$
\begin{aligned}
& \text { Scheme 2. Oxidative Addition of Carbon-Heteroatom Bond to } \\
& \text { Transition-Metal Complex } \\
& \qquad \mathbf{C}-\boldsymbol{E}+\mathbf{C} \\
& \left(\begin{array}{c}
\boldsymbol{E}, \text { Heteroatom } \\
\text { Functionality } \\
\text { (B, Si, Sn, N, O } \\
\text { S, Se, etc.) }
\end{array}\right)
\end{aligned}
$$

friendly molecular transformation, an important example would be the addition reactions of carbon-heteroatom bonds to carbon-carbon unsaturated bonds that proceeds through perfect atom-economical transformation in principle to form new carbon-carbon and carbon-heteroatom bonds in a single operation. A wide range of substrates such as carbon-sulfur, ${ }^{1-2}$-nitrogen, ${ }^{3}$-silicon, ${ }^{4}$-tin ${ }^{5}$ and -boron ${ }^{6}$ bonds were employed for this purpose.
The author aimed at the development of new catalytic insertions of alkynes into carbon-sulfur bond employing thioesters ($\mathrm{R}^{1} \mathrm{C}(\mathrm{O})-\mathrm{SR}^{2}$). Thioesters are readily accessible molecules, stable under air and useful building blocks. In organometallic chemistry, the reactivity of thioesters toward transition metal complexes (oxidative addition of carbonyl-sulfur bonds of thioesters to
transition metal complexes) lies in between esters ${ }^{7}$ and acid chlorides (Eq. 1). ${ }^{8}$ For an example,

$\mathrm{X}=\mathrm{Cl}>\mathrm{SR}>\mathrm{OR}$
the oxidative addition of thioester to group 10 zero-valent metal complex takes place smoothly to afford acylmetal complex under room temperature. On the other hand, oxidative addition of esters hardly proceeds. Actually, thioesters have been extensively employed as substrates in transition-metal catalyzed reactions (Scheme 3); decarbonylation, ${ }^{9}$ reduction to aldehydes, ${ }^{10}$ cross-coupling ${ }^{11}$ and addition to carbon-carbon unsaturated bonds. ${ }^{1 \mathrm{~b}, 2 \mathrm{~d}}$ Our group also has developed a series of Pt catalyzed regio- and stereoselective decarbonylative addition of thioester ($\mathrm{R}^{1}=\mathrm{Ar}$, hetAr, vinyl) to alkyne (Eq. 2). ${ }^{2}$ Moreover, stoichiometric reactions of

Scheme 3. Transition-Metal Catalyzed Reaction Employing Thioester

"Cross-Coupling"
"Addition"

$$
\begin{gather*}
\mathrm{R}^{1}=\mathrm{Ar}, \text { hetAr } \tag{2}\\
\text { vinyl }
\end{gather*}
$$

thioesters with transition metal complexes were studied. Rh and Fe complexes arising from the oxidative addition of thioesters were reported by Shaver and Rauchfuss (Fig. 1). ${ }^{12}$ In these cases, directing groups (nitrogen and phosphorus) promoted the oxidative additions to Rh and Fe complexes. Our group have also discovered that the decarbonylation from acylplatinum complexes was promoted by the coordination of a lone pair of heteroatom to platinum in the reaction of thioesters with zero-valent platinum complexes (Scheme 4). ${ }^{9 \mathrm{~d}}$ This effect was also observed in the catalytic decarbonylation of thioesters. From these points of view, The author thought that thioesters may have the great potential as substrates for catalytic and stoichiometric reactions.

Figure 1.

Scheme 4. Transition-Metal Catalyzed Reaction Employing Thioester

Moreover, The author also focused on iminosulfides $\left(\mathrm{R}^{1} \mathrm{C}\left(\mathrm{NR}^{2}\right)-\mathrm{SR}^{3}\right)$ as analogues of thioesters. Iminosulfides are promising building blocks to introduce iminocarbon groups into other organic chemicals. However, in the field of transition-metal catalyzed reactions, the transformation using iminosulfides remains much less explored. To the best of my knowledge, only one reaction employing iminosulfides has been reported by Takemoto (Eq. 3). ${ }^{13}$ The

author expected that the catalytic reaction using iminosulfides should proceed taking into account the results from the study on the reaction using thioesters.

This thesis describes studies on the catalytic reaction of thioesters and iminosulfides with alkynes as well as those mechanistic aspects of the oxidative addition of thioesters to low-valent transition metal complexes.
In chapter 1, Pd and Pt catalyzed CO-retained addition of thioesters to alkynes was examined (Eq. 4).

In chapter 2, Pd catalyzed addition of iminosulfides to alkynes was summarized (Eq. 5).

In chapter 3, one-pot cyclization of α, β-unsaturated thioesters with propargyl alcohols in the presence of $\mathrm{Pd} / \mathrm{Cu}$ catalyst and bases was disclosed (Eq. 6).

Finally, the mechanism of oxidative addition of α, β-unsaturated thioesters to $\operatorname{Pt}(0)$ complexes is described in chapter 4 (Eq. 7).

References

(1) (a) Choi, N.; Kabe, Y.; Ando, W. Tetrahedron Lett. 1991, 32, 4573. (b) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899. (c) Tanaka, M.; Hua, R. Pure Appl. Chem. 2002, 74, 181. (d) Nakamura, I.; Bajracharya, G. B.; Mizushima, Y.; Yamamoto, Y. Angew. Chem. Int. Ed. 2002, 41, 4328. (e) Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishi, K.; Mizushima, Y.; Dridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 15423. (f) Kamiya, I.; Kawakami, J.; Yano, S.; Nomoto, A.; Ogawa, A. Organometallics 2006, 25, 3562. (g) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2006, 45, 4473. (h) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. Org. Lett. 2007, 9, 263. (i) Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Org. Lett. 2007, 9, 4081. (j) Ananikov, V. P.; Orlov, N. V.; Kabeshov, M. A.; Beletskaya, I. P.; Starikova, Z. A. Organometallics 2008, 27, 4056.
(2) For reviews, see: (a) Kuniyasu, H.; Kurosawa, H. Chem. Eur. J. 2002, 8, 2660. (b) Kuniyasu, H.; Kambe, N. Chem. Lett. 2006, 35, 1320. (c) Kuniyasu, H.; Kambe, N. J. Synth. Org. Chem. Jpn. 2009, 67, 701. For recent examples, see: (d) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 9706. (e) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. Org. Lett. 2008, 10, 101. (f) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504. (g) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957. (h) Toyofuku, M.; Murase, E.; Nagai, H.; Fujiwara, S.; Shin-ike,
T.; Kuniyasu, H.; Kambe, N. Eur. J. Org. Chem. 2009, 3141.
(3) (a) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem. Soc. 2008, 130, 6058. (b) Yoshino, Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2009, 131, 7494, and references therein.
(4) Suginome, M.; Ito, Y. Chem. Rev. 2000, 100, 3221, and references therein.
(5) (a) Shirakawa, E.; Yoshida, H.; Kurahashi, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 1998, 120, 2975. (b) Shirakawa, E.; Yamasaki, K.; Yoshida, H.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 10221. (c) Hua, R.; Onozawa, S.; Tanaka, M. Organometallics 2000, 19, 3269. (d) Nakao, Y.; Satoh, J.; Shirakawa, E.; Hiyama, T. Angew. Chem. Int. Ed. 2006, 45, 2271. (e) Shi, Y.; Peterson, S. M.; Haberaecker III, W. W.; Blum, S. A. J. Am. Chem. Soc. 2008, 130,2168 , and references therein.
(6) (a) Suginome,M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 6358. (b)

Suginome, M.; Yamamoto, A.; Murakami, M. Angew. Chem. Int. Ed. 2005, 44, 2380. (c) Suginome, M.; Yamamoto, A.; Murakami, M. J. Organomet. Chem. 2005, 690, 5300. (d) Suginome, M.; Yamamoto, A.; Sasaki, T.; Murakami, M. Organometallics 2006, 25, 2911. (e) Suginome, M.; Shirakura, M.; Yamamoto, A. J. Am. Chem. Soc. 2006, 128, 14438. (f) Yamamoto, A.; Ikeda, Y.; Suginome, M. Tetrahedron Lett. 2009, 50, 3168.
(7) (a) Nagayama, K.; Kawataka, F.; Sakamoto, M.; Shimizu, I.; Yamamoto, A. Chem. Lett. 1995, 367. (b) Nagayama, K.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1999, 72, 799. (c) Kakino, R.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2001, 74, 371. (d) Chatani, N.; Tatamidani, H.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 4849. (e) Kakino, R.; Narahashi, H.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2002, 75, 1333. (f) Gooßen, L. J.; Ghosh, K. Eur. J. Org. Chem. 2002, 3254. (g) Gooßen, L. J.; Paetzold, J. Angew. Chem. Int. Ed. 2002, 41, 1237. (h) Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615. (i) Tatamidani, H. Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597. (j) Murai, M.; Miki, K.; Ohe, K. Chem. Commun. 2009, 3466.
(8) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition-Metal Chemistry; University Science Books: Mill Valley, CA, 1987. (b) Grabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; Wiley-Interscience: New York, 2003.
(9) (a) Goto, T.; Onaka, M.; Mukaiyama, T. Chem. Lett. 1980, 709. (b) Osakada, K.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1987, 28, 6321. (c) Wenkert, E.; Chianelli, D. J. Chem. Soc. Chem. Commun. 1991, 627. (d) Kato, T.; Kuniyasu, H.; Kajiura, T.; Minami, Y.; Ohtaka, A.; Kinomoto, M.; Terao, J.; Kurosawa, H.; Kambe, N. Chem. Commun. 2006, 868.
(10) For a review, see: (a) Fukuyama, T.; Tokuyama, H. Aldrichimica Acta 2004, 37, 87. For selected examples, see: (b) Fukuyama, T.; Lin, S.-C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050. (c) Kuniyasu, H.; Ogawa, A.; Sonoda, N. Tetrahedron Lett. 1993, 34, 2491. (d) Kanda, Y.; Fukuyama, T. J. Am. Chem. Soc. 1993, 115, 8451. (e) Miyazaki, T.; Han-ya, Y.;

Tokuyama, H.; Fukuyama, T. Synlett 2004, 477. (f) Kimura, M.; Seki, M. Tetrahedron Lett. 2004, 45, 3219.
(11) For reviews, see: (a) see reference 10a. (b) Dubbaka, S. R.; Vogel, P. Angew. Chem. Int. Ed. 2005, 44, 7674. (c) Seki, M. Synthesis 206, 18, 2975. (d) Prokopcová, H.; Kappe, C. O. Angew. Chem. Int. Ed. 2009, 48, 2276. For selected examples, see: (e) Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 3189. (f) Zeysing, B.; Gosch, C.; Terfort, A. Org. Lett. 2000, 2, 1843. (g) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260. (h) Tokuyama, H.; Miyazaki, T.; Yokoshima, S.; Fukuyama, T. Synlett 2003, 1512. (i) Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Org. Lett. 2003, 5, 3033. (j) Yu, Y1.; Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554. (k) Ikeda, Z, Hirayama, H.; Matsubara, S. Angew. Chem., Int. Ed. 2006, 45, 8200. (1) Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1132. (m) Mori, Y.; Seki, M. Adv. Synth. Catal. 2007, 349, 2027. (n) Yang, H.; Liebeskind, L. S. Org. Lett. 2007, 9, 2993. (o) Ooguri, A.; Ikeda, Z.; Matsubara, S. Chem. Commun. 2007, 4761. (p) Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 15734.
(12) (a) Shaver, A.; Uhm, H. L.; Singleton, E.; Liles, D. C. Inorg. Chem. 1989, 28, 847. (b) Royer, A. M.; Rauchfuss, T. B.; Gray, D. L. Organometallics 2009, 28, 3618.
(13) Takeda, H.; Ishida, T.; Takemoto, Y. Chem. Lett. 2009, 38, 772.

Chapter 1

Transition-Metal Catalyzed Regioselective Acylthiolation of Alkynes

Using Thioesters

1-1. Introduction

$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$-catalyzed intermolecular regio- and stereoselective decarbonylative arylthiolation of alkynes $\mathrm{HC} \equiv \mathrm{CR}(\mathbf{1})$ by $\mathrm{R}^{1} \mathrm{C}(\mathrm{O}) \mathrm{SR}^{2}\left(\mathbf{2}, \mathrm{R}^{1}=\mathrm{Aryl}\right)$ (Scheme 1, left) ${ }^{1}$ to produce vinylsulfides (3) has already been reported by our group. However, straightforward intermolecular addition of $\mathrm{C}(\mathrm{O})$-S bond of 2 to 1 producing enones has not yet been realized (Scheme 1, right). ${ }^{2}$ The author expected that catalytic addition of $C(O)-S$ bond to alkyne should proceed by the modulation of transition-metals, ligands and substituents in thioesters. Disclosed herein are the intermolecular regioselective aroylthiolation $\left(\mathrm{R}^{1}=\right.$ Aryl) and trifluoroacetylthiolation $\left(\mathrm{R}^{1}=\right.$ CF_{3}) of $\mathbf{1}$ to afford enone derivatives ($\mathbf{4}$ and $\mathbf{5}$). The compounds containing polyfluorocarbon substituents have attracted much attention lately due to medical, material and agrichemical application. ${ }^{3}$

Scheme 1. Decarbonylative vs. CO-Retained Carbothiolation of Alkynes (1) Using Thioesters (2).

1-2. Pd/dppe-Catalyzed Aroylthiolation of Alkynes Using $\mathrm{Ar}^{1} \mathbf{C}(\mathrm{O}) \mathrm{SAr}^{2}$

To test the idea, the attempted reaction of 1-octyne ($\mathbf{1} \mathbf{1} ; \mathrm{R}=n-\mathrm{C}_{6} \mathrm{H}_{13}, 1.2 \mathrm{mmol}$) with $\mathrm{Ar}^{1} \mathrm{C}(\mathrm{O}) \mathrm{SAr}^{2}\left(\mathbf{2 a} ; \mathrm{Ar}^{1}=p\right.$-tolyl, $\left.\mathrm{Ar}^{2}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 1.0 \mathrm{mmol}\right)$ in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (0.05 mmol) under toluene reflux gave an aroylthiolation product, $\left(\mathrm{Ar}^{1} \mathrm{C}(\mathrm{O})\right)(\mathrm{H}) \mathrm{C}=\mathrm{C}\left(n-\mathrm{C}_{6} \mathrm{H}_{13}\right)\left(\mathrm{SAr}^{2}\right)(4 a)$ in 10% yield (cis:trans $\left.=39: 61\right)$ together with 50% of an $\mathrm{Ar}^{1} \mathrm{SAr}^{2}(6 a)^{4}$ and 20% of a hydrothiolation product $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(n-\mathrm{C}_{6} \mathrm{H}_{13}\right)\left(\mathrm{SAr}^{2}\right)(7 a)^{5}$ (run 1, Table 1). Next, the effects of various ligands were examined with $\operatorname{Pd}(\mathrm{dba})_{2}$ as a palladium(0) source. No reaction occurred without an additional ligand (run 2, Table 1). The reactions using other monodentate ligands such as $\mathrm{P}(p \text {-tolyl })_{3}, \mathrm{P}(o \text {-tolyl })_{3}, \mathrm{P}(2 \text {-furyl })_{3}, \mathrm{PCy}_{3}, \mathrm{P}(n \text { - } \mathrm{Bu})_{3}$ and $\mathrm{PMe}_{2} \mathrm{Ph}$ also were not satisfactory: 6a and 7a were generated as major products (runs 3-8,

Table 1. The Effects of Ligands under the Pd-Catalyzed Reaction of 1a with $\mathbf{2 a}{ }^{\mathbf{a}}$

run	ligand	solvent	time (h)	3 a (\%)	4a (\%) (cis:trans)	6 a (\%)	7 a (\%)
1	$\mathrm{PPh}_{3}{ }^{\text {b }}$	toluene	12	n.d.	10 (39:61)	50	20
2	none	toluene	12	n.d.	n.d.	n.d.	n.d.
3	$\mathrm{P}(p \text {-tolyl })_{3}$	toluene	12	n.d.	9 (35:65)	34	22
4	$\mathrm{P}(0-\text { tolyl })_{3}$	toluene	12	n.d.	n.d.	2	n.d.
5	$\mathrm{P}\left(2\right.$-furyl) ${ }_{3}$	toluene	12	n.d.	n.d.	8	5
6	PCy_{3}	toluene	12	n.d.	$1(1:>99)$	22	38
7	$\mathrm{P}(n-\mathrm{Bu})_{3}$	toluene	12	n.d.	6 (50:50)	30	22
8	$\mathrm{PMe}_{2} \mathrm{Ph}$	toluene	12	n.d.	8 (50:50)	16	16
9	dppm	toluene	12	n.d.	6 (67:33)	17	6
10	dppe	toluene	12	n.d.	53 (33:67)	12	14
$11^{\text {c }}$	dppe	benzene	20	n.d.	$78^{\text {d }}$ (39:61)	n.d.	16
12	dppe	benzene	1	n.d.	14 (>99:1)	n.d.	n.d.
13	dppp	toluene	12	n.d.	16(39:61)	30	25
14	dppb	toluene	12		15 (39:61)	36	35
$15^{\text {e }}$	$\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$	toluene	13	$75^{\text {f }}$	8 ($799: 1$)	n.d.	n.d.

${ }^{2}$ Unless otherwise noted, the solution of $\mathbf{1 a}(1.0 \mathrm{mmol}), \mathbf{2 a}(1.2 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(0.05 \mathrm{mmol})$, and ligand (0.12 mmol for Entries $3-8,0.06 \mathrm{mmol}$ for Entries $9-16$) was stirred under toluene (0.5 mL) reflux. Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{b} \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.05 \mathrm{mmol})$ as a catalyst. ${ }^{\text {c }}$ The formation of $\mathrm{Ar}^{1} \mathrm{C}(\mathrm{O}) \mathrm{C} \equiv \mathrm{CR}$ was detected in 10% yield. ${ }^{\text {d }}$ Isolated yield. ${ }^{e} \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}(0.05 \mathrm{mmol})$ as a catalyst. dba $=$ dibenzylideneacetone, tolyl $=$ methylphenyl, $\mathrm{Cy}=$ cyclohexyl, $\mathrm{dppm}=$ 1,1-bis(diphenylphosphino)methane, dppe $=1,2$-bis(diphenylphosphino)ethane, $\mathrm{dppp}=1,3$-bis-(diphenylphosphino)-propane, $\mathrm{dppb}=1,4$-bis(diphenylphosphino)butane.

Table 1). On the other hand, the reaction with dppe afforded $\mathbf{4 a}$ in 53% (cis:trans $=33 / 67$) yield with 12% of $\mathbf{6 a}$ and 14% of $7 \mathbf{a}$ (run 10 , Table 1). Gratifyingly, when the reaction was carried out under benzene reflux, the formation of $\mathbf{6 a}$ was suppressed and $\mathbf{4 a}$ was obtained in 78% yield (cis:trans $=39: 61$) with 10% of $\mathrm{Ar}^{1} \mathrm{C}(\mathrm{O}) \mathrm{C} \equiv \mathrm{CR}$ after 20 h (run 11, Table 1). When conducted for a short period of time (1 h), the reaction selectively provided cis-4a (14%), which indicated that cis-addition kinetically took place (run 12, Table 1). ${ }^{6,7}$ The employment of other bidentate ligands such as dppm, dppp and dppb significantly decreased the yield of $4 \mathbf{a}$ (runs $9,13,14$, Table 1). It must be noted that 3a, the product of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$-catalyzed decarbonylative arylthiolation (run 15 , Table 1), was not detected under these Pd-catalyses (runs 1-14, Table 1). No formation of 4 a was confirmed with $\mathrm{Pt}\left[\left(\mathrm{CH}_{2}=\mathrm{CHSiMe}_{2}\right)_{2} \mathrm{O}\right], \mathrm{Ni}(\operatorname{cod})_{2}$ $(\operatorname{cod}=$ cyclooctadiene $)$ or $\mathrm{RhCl}(\operatorname{cod})_{2}$ in the presence of dppe.
Prompted by these results, the effects of bidentate ligand on the decarbonylation of 2a were

	$\mathrm{Pd}(\mathrm{dba})_{2}(5 \mathrm{~mol} \%)$ ligand ($6 \mathrm{~mol} \%$)	$\mathrm{r}^{2} \mathrm{SAr}{ }^{3}$
	toluene (0.5 mL)	
	reflux, 12 h	6a
$\mathrm{Ar}^{3}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	dppe	4\%
2a	dppp	12\%
	dppb	36\%

$p-\mathrm{MeC}_{6} \mathrm{H}_{4}-\mathrm{l}$	$\mathrm{Pd}(\mathrm{dba})_{2}(5 \mathrm{~mol} \%)$ dppe ($6 \mathrm{~mol} \%$)	
+	$\xrightarrow[\text { toluene (} 0.5 \mathrm{~mL} \text {) }]{\text { der }}$	6a
$\mathrm{Na}-\mathrm{SC}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{OMe}$	reflux, 12 h	83\%

tested (Eq. 1). While 6a was produced in 12% and 36% yield with dppp and dppb ligands, respectively, decarbonylation hardly took place with dppe as a ligand (4\%). On the other hand, the reaction between $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{I}$ and $\mathrm{NaSC}_{6} \mathrm{H}_{4}-p-\mathrm{OMe}$ catalyzed by $\mathrm{Pd}(\mathrm{dba})_{2}(5 \mathrm{~mol} \%) /$ dppe ($6 \mathrm{~mol} \%$) produced $\mathbf{6 a}$ in 83% yield (Eq. 2). These facts indicated that dppe suppresses the decarbonylation from thiocarbonyl complex. ${ }^{8}$
The results of the $\mathrm{Pd} /$ dppe-catalyzed aroylthiolation of alkyne (1) by $\mathrm{Ar}^{1} \mathrm{C}(\mathrm{O}) \mathrm{SAr}^{2}$ (2) are summarized in Table 2. The reaction with $\mathbf{2 a}\left(\mathrm{Ar}^{2}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ afforded a better yield of desired $\mathbf{4}$ (78% of $\mathbf{4 a}$, run 1, Table 2) compared to the reactions with $\mathbf{2 b}\left(\mathrm{Ar}^{2}=\mathrm{Ph}, 53 \%\right.$ of $\mathbf{4 b}$, run 2, Table 2) and $\mathbf{2 c}\left(\mathrm{Ar}^{2}=p-\mathrm{FC}_{6} \mathrm{H}_{4}, 46 \%\right.$ of $\mathbf{4 c}$, run 3, Table 2$)$. In sharp contrast to the

Table 2. Pd/dppe-Catalyzed Aroylthiolation of 1 Using 2a

	1	2				4	
run	1	R	2	Ar^{1}	Ar^{2}	4	(\%) (cis:trans) ${ }^{\text {b }}$
1	1 a	$n-\mathrm{C}_{6} \mathrm{H}_{13}$	2a	p-tolyl	$p-\mathrm{MeOC} \mathrm{C}_{6} \mathrm{H}_{4}$	4a	78 (39:61)
2	1a		2b	p-toly1	Ph	4b	53 (28:72)
3	1 a		2 c	p-toly 1	$p-\mathrm{FC}_{6} \mathrm{H}_{4}$	4 c	46 (28:72)
4	1 a		2 d	p-tolyl	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	4 d	n.d.
5	1 a		2 e	Ph	Ph	4 e	66 (26:74)
6	1a		$2 f$	$p-\mathrm{FC}_{6} \mathrm{H}_{4}$	p-tolyl	4 f	57 (26:74)
7	1a		2 g	3-pyridyl	p-tolyl	4 g	74 (28:72)
8	1a		2 h	2-furyl	p-tolyl	4h	55 (25:75)
9	1 a		2 i	p-tolyl	$\mathrm{CH}_{2} \mathrm{Ph}$	4 i	$10^{\text {c }}$ (26:74)
10	1a		2 j	$t-\mathrm{Bu}$	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	4 j	n.d.
11	1b	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Cl}$	2 a			4 k	70 (33:67)
12	1 c	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CN}$	2 a			41	50 (28:72)
13	1d	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{Me}$	2 a			4 m	80 (25:75)
14	1 e	$\mathrm{CH}_{2}\left(\mathrm{c}-\mathrm{C}_{5} \mathrm{H}_{9}\right)$	2a			4 n	66 (27:73)
15	1 f	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}_{2}$	2 a			40	65 (47:53)
16	1 g	Ph	2a			4 p	$40(75: 25)$
17	1a		2k		O)SePh	4 q	$3^{\text {c }}$ ($>99: 1$)

[^0]Pt-catalyzed decarbonylative arylthiolation, no reaction took place when a thioester with $\mathrm{Ar}^{2}=$ $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ (2d) was employed (run 4, Table 2). Phenyl and $p-\mathrm{FC}_{6} \mathrm{H}_{4}$ groups at Ar^{1} somewhat lowered the reactivity (runs 5 and 6 , Table 2). Thioesters $\mathbf{2 g}\left(\mathrm{Ar}^{1}=3\right.$-pyridyl) and $\mathbf{2 h}\left(\mathrm{Ar}^{1}=\right.$ 2-furyl) reacted with $\mathbf{1 a}$ to furnish the corresponding adducts $\mathbf{4 g}$ and $\mathbf{4 h}$ in $\mathbf{7 4 \%}$ and 55% yields, respectively (runs 7 and 8 , Table 2). On the other hand, a thioester with a benzyl group on sulfur (2i) gave a low yield of $\mathbf{4 i}(10 \%$, run 9 , Table 2), and the reaction with t - $\mathrm{BuC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{OMe}(\mathbf{2 j})$ did not produce $\mathbf{4 j}$ (run 10, Table 2). Terminal alkynes having chlorine (1b), a cyano group (1c), a methoxy carbonyl group (1d), a cyclopentyl group (1e), $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CHMe}_{2}(\mathbf{1 f})$ and a phenyl group (1g) all underwent an aroylthiolation by $\mathbf{2 a}$ to afford $\mathbf{4 k} \mathbf{- p}$ in moderate to good yields (runs 11-16, Table 2). The reactions of $\mathbf{1 a}$ with a selenoester $(\mathbf{2 k} ; \mathrm{PhC}(\mathrm{O}) \mathrm{SePh})$ took place to provide aroylselenation product $\mathbf{4 q}$, albeit in a very low yield (3%, run 17, Table 2).

1-3. Pt-Catalyzed Trifluoroacetylthiolation of Alkynes Using $\mathbf{C F}_{3} \mathbf{C}(\mathbf{O}) \mathrm{SR}$

Next, the reactions with CX_{3}-substituted thioesters ($8 ; \mathrm{CX}_{3} \mathrm{C}(\mathrm{O}) \mathrm{SR}$) were examined. The treatment of 1-octyne ($\mathbf{1 a}, 0.75 \mathrm{mmol}$) with $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{Me}(8 \mathrm{a} ; \mathrm{X}=\mathrm{F}, 0.5 \mathrm{mmol})$ in the presence of $\mathrm{Pd} /$ dppe under benzene and xylene reflux both gave trifluoroacetylthiolation product 5 a in low yields: $\left(\mathrm{CH}_{3}\right)\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}\right) \mathrm{C}=\mathrm{C}(\mathrm{H})\left(n-\mathrm{C}_{5} \mathrm{H}_{11}\right)(\mathbf{1 0 a})$ derived from $7 \mathbf{7 a}$ was

Table 3. Reaction of 1 a with 8^{a}

${ }^{\bar{a}}$ Unless otherwise noted, the solution of $1 \mathrm{a}(0.75 \mathrm{mmol}), 8(0.5 \mathrm{mmol})$, catalyst (0.025 mol$)$ and solvent (0.5 mL) was stirred under reflux for 10 h . Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{\mathrm{b}} \mathrm{Pd}(\mathrm{dba})_{2}(0.025 \mathrm{mmol})$ and dppe (0.03 mmol$) .{ }^{c}$ Isolated yield. ${ }^{\mathrm{d}} \mathrm{Ni}(\mathrm{cod})_{2}(0.025 \mathrm{mmol})$ and PPh_{3} (0.1 mmol). ${ }^{\mathrm{e}} 7$ a was obtained in 8% yield. cod $=1,5$-cyclooctadiene.
generated as a major product (runs 1 and 2, Table 3). Intriguingly, the reaction using $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ as a catalyst under xylene reflux conditions remarkably improved the yield of 5a $(78 \%$, cis:trans $=18: 82),{ }^{9,10}$ compared to benzene or toluene reflux conditions (runs 3-5, Table 3). Intercepting the reaction at the early stage (cis:trans $=59: 41$ after 30 min) also indicates the involvement of cis-addition (run 6, Table 3). Inferior catalyses were shown by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (run 7, Table 3) and $\mathrm{Ni}(\operatorname{cod})_{2} / 4 \mathrm{PPh}_{3}$ (run 8 , Table 3). On the other hand, the reaction employing $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{Me}(\mathbf{8 b} ; \mathrm{X}=\mathrm{H})$ and $\mathrm{CCl}_{3} \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{Me}(\mathbf{8 c} ; \mathrm{X}=\mathrm{Cl})$ in the presence of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ hardly produced the corresponding $\mathbf{5 b}$ and $\mathbf{5 c}$ (runs 9 and 10 , Table 3). Of noted, contrary to the case of Pt-catalyzed decarbonylative carbothiolation, the products 9 of decarbonylative trifluoromethylthiolation were not detected in all cases even with the same $\mathrm{Pt}(0)$ catalyst.
The results of Pt-catalyzed trifluoroacetylthiolation of alkyne (1) by $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{SR}^{\prime}$ are shown in Table 4. Some substituents in aryl-S groups (8d; $\mathrm{R}^{\prime}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathbf{8 e} ; \mathrm{R}^{\prime}=\mathrm{Ph}, \mathbf{8 f} ; \mathrm{R}^{\prime}=$ $p-\mathrm{ClC}_{6} \mathrm{H}_{4}$) hardly interfered with the addition reactions (runs 2-4, Table 4). Unlike the case of the reaction with $\mathbf{2}$, thioesters possessing an sp 3-carbon substituent such as benzyl ($\mathbf{8 g}$) and n-decyl groups ($\mathbf{8 h}$) on sulfur also reacted with $\mathbf{1 a}$ to produce $\mathbf{5 g}$ and $\mathbf{5 h}$ in 51% and 41% yields, respectively (runs 5 and 6, Table 4). Addition of $\mathbf{8 e}$ to alkynes $\mathbf{1 b}-1 \mathrm{e}$ proceeded to afford the product 5i-1 in good yields (runs 7-10, Table 4).

Table 4. Pt-Catalyzed Trifluoroacetylthiolation of 1 Using $8^{\text {a }}$

1			$\xrightarrow[\text { xylene, reflux, } 10 \mathrm{~h}]{\text { cat. } \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}}$		
run	1	8	R'	5	(\%) (cis:trans) ${ }^{\text {b }}$
1	1a	8 a	p-tolyl	5a	78 (18:82)
2	1 a	8 d	$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	5d	$64(11: 89)$
3	1 a	8 e	Ph	5 e	82 (24:76)
4	1a	8 f	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	5 f	69 (34:66)
5	1a	8 g	$\mathrm{CH}_{2} \mathrm{Ph}$	5g	51 (30:70)
6	1a	8h	$n-\mathrm{C}_{10} \mathrm{H}_{21}$	5h	41 (18:82)
$7^{\text {c }}$	1b	8 e		$5 i$	83 (29:71)
$8{ }^{\text {c }}$	1c	8 e		5 j	79 (29:71)
$9^{\text {c }}$	1d	8 e		5k	87 (26:74)
10	1e	8 e		51	70 (36:64)

${ }^{\text {a }}$ Unless otherwise noted, $1(0.75 \mathrm{mmol}), 8(0.5 \mathrm{mmol}), \mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}(0.025$ mmol), and xylene (0.5 mL) under reflux for $10 \mathrm{~h} .{ }^{b}$ Isolated yield. ${ }^{\circ}$ xylene $(2.0 \mathrm{~mL})$.

1-4. Reaction Mechanisms

A plausible reaction mechanism of the present regioselective CO-retained addition of thioesters (2,8; $\mathrm{R}^{1} \mathrm{C}(\mathrm{O}) \mathrm{SR}^{2}\left(\mathrm{R}^{1}=\right.$ Aryl or $\left.\mathrm{CF}_{3}\right)$) to alkynes $(\mathbf{1} ; \mathrm{HC} \equiv \mathrm{CR})$ was depicted in

Scheme 2. The oxidative addition of 2 or $\mathbf{8}$ to $\mathrm{M}(0) \mathrm{L}_{\mathrm{n}}\left(\mathrm{ML}_{\mathrm{n}}=\mathrm{Pd}(\mathrm{dppe})\right.$ or $\left.\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{\mathrm{n}}\right)$ complex triggers the reaction to afford $\mathrm{ML}_{\mathrm{n}}\left[\mathrm{C}(\mathrm{O}) \mathrm{R}^{1}\right]\left(\mathrm{SR}^{2}\right)(11) .{ }^{11}$ Subsequent regio- and stereoselective insertion of alkyne 1 into the S-M bond of 11 generates $\mathrm{ML}_{\mathrm{n}}\left[\mathrm{C}(\mathrm{O}) \mathrm{R}^{1}\right]\left[(\right.$ cis $\left.)-\mathrm{CH}=\mathrm{C}\left(\mathrm{SR}^{2}\right)(\mathrm{R})\right]$ (12), ${ }^{12}$ which can react with another 1 to produce 7 and $\mathrm{Ar}^{1} \mathrm{C}(\mathrm{O}) \mathrm{C} \equiv \mathrm{CR}$ as by-products. Finally, the C-C bond- forming reductive elimination of cis-4, 5 from 12 with regeneration of $\mathrm{M}(0) \mathrm{L}_{n}$ completes the catalytic cycle. cis-to-trans isomerisation of the product can be explained as follows: the oxidative addition of a vinyl-C-S bond of cis-isomer to a $\mathrm{M}(0) \mathrm{L}_{\mathrm{n}}$ complex to produce $\mathrm{ML}_{\mathrm{n}}\left[(\right.$ cis $\left.)-\mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{H})\left\{\mathrm{C}(\mathrm{O}) \mathrm{R}^{1}\right\}\right]\left(\mathrm{SR}^{2}\right)($ cis-13 $),{ }^{13}$ cis-to-trans isomerization of $13,{ }^{14}$ and the reductive elimination of trans-4, -5 from trans-13.

Scheme 2. A Plausible Mechanism for the Transition Metal-Catalyzed

 Acylthiolation of Alkynes (1) Using Thioesters (2 and 8).

1-5. Conclusions

The present study substantiated that the decarbonylative arylthiolation of alkynes by thioesters is converted into CO-retained, atom-economical, regioselective carbothiolation. The author found that two simple factors; changing the catalysts from $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ to $\mathrm{Pd}(\mathrm{dba})_{2} / \mathrm{dppe}$ or by employing $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O})$ as a carbon functionality of thioesters even under $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$-catalyzed conditions, are keys to achieve the acylthiolation.

1-6. Experimental Section

General Comments: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in CDCl_{3} and toluene- d_{8} solution were recorded with JEOL JNM-Alice $400(400 \mathrm{MHz})$ spectrometer. The chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectra were recorded relative to $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard, and the chemical shifts in the ${ }^{13} \mathrm{C}$ NMR spectra were recorded relative to CHCl_{3} ($\delta 77.0$). The IR spectra were measured by a Perkin-Elmer Model 1600 spectrometer. Mass spectra (EI), high-resolution mass spectra (HRMS) and elemental analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Melting points were measured by a

MPA100 Optimelt Automated Melting Point System. Preparative TLC was carried out using Wakogel B-5F silica gel. All reactions were carried out under a N_{2} atmosphere. Unless otherwise noted, commercially available reagents were used without purification. All solvents were distilled before use. Thioesters $\mathbf{2 a}-\mathbf{j}, \mathbf{8 b}$ were prepared by the reactions of the corresponding acid chlorides with thiols in the presence of pyridine in THF solution, and selenoester $\mathbf{2 k}$ was prepared by the reaction of the benzoyl chloride with PhSeMgBr in THF solution. Thioesters $\mathbf{8 a}$, $\mathbf{c - h}$ were synthesized according to the literature (J. Am. Chem. Soc. 2000, 122, 11260.).

The Spectrum Data or Registry Number (RN) of Thio- and Selenoesters (2 and 8):

 p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{O}-$ p- CH_{3} (2a): RN : 53271-44-6. $\boldsymbol{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{5}$ (2b): RN: 21122-34-2. \boldsymbol{p} - $\mathbf{C H}_{3} \mathrm{C}_{6} \mathbf{H}_{4} \mathbf{C}(\mathbf{O}) \mathrm{SC}_{6} \mathrm{H}_{4}$-p- $\mathrm{NO}_{\mathbf{2}}$ (2d): RN : 77750-05-1. $\mathbf{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathbf{O}) \mathrm{SC}_{6} \mathrm{H}_{5}$ (2e): $\mathrm{RN}: ~ 884-09-3 . \quad \boldsymbol{p}-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathbf{O}) \mathbf{S C}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (2f): $\quad \mathrm{RN}: ~ 90172-74-0 . \quad 3-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NC}(\mathrm{O})-$ $\mathbf{S C}_{6} \mathrm{H}_{4}$ - $\boldsymbol{p}-\mathrm{CH}_{3}$ (2g): RN: 52064-00-3. 2- $\mathbf{C}_{5} \mathbf{H}_{3} \mathbf{O C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathbf{C H}_{3}$ (2h): RN: 17357-39-0. $\boldsymbol{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{SCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ (2i): $\mathrm{RN}: 17577-21-8 . \boldsymbol{t}$ - $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{C}(\mathbf{O}) \mathrm{SC}_{6} \mathrm{H}_{4}$ - $\boldsymbol{p}-\mathbf{O C H}_{3}$ (2j): RN : 132381-65-8. $\mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C}(\mathbf{O}) \mathbf{S e C}_{6} \mathbf{H}_{5}$ (2k): $\mathrm{RN}: 38447-68-6 . \mathbf{F}_{3} \mathbf{C C}(\mathbf{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3}$ (8a): RN : 75072-07-0. $\mathbf{H}_{\mathbf{3}} \mathbf{C C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{4}$-p- $\mathbf{C H}_{\mathbf{3}}$ (8b): $\mathrm{RN}: 10436-83-6 . \mathbf{C l}_{3} \mathbf{C C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{4}-\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}}$ (8c): $\mathrm{RN}: 56956-67-3 . \quad \mathbf{F}_{3} \mathbf{C C}(\mathbf{O}) \mathrm{SC}_{6} \mathbf{H}_{\mathbf{5}}$ (8e): RN: 2378-04-3. $\mathbf{F}_{\mathbf{3}} \mathbf{C C}(\mathbf{O}) \mathrm{SC}_{6} \mathbf{H}_{4}$-p-Cl (8f): RN: 181820-16-6. $\left.\mathbf{F}_{\mathbf{3}} \mathbf{C C}(\mathbf{O}) \mathbf{S C H}_{\mathbf{2}} \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{5}} \mathbf{(8 g}\right)$: $\mathrm{RN}: 714-05-6$.
p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathbf{O}) \mathrm{SC}_{6} \mathrm{H}_{4}$-p-F (2c): white solid; mp $98-100{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 7.10(\mathrm{dd}, J=8.6,2.9 \mathrm{~Hz}, 2$ H), 7.23 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6,116.3(\mathrm{~d}, J=22$ $\mathrm{Hz}), 122.7(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=189 \mathrm{~Hz}), 133.7,137.0(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 144.6,162.2$, 164.7, 189.4; IR (NaCl) 3066, 3044, 2926, 1695, 1667, 1604, 1590, 1574, 1491, 1434, 1409, $1390,1318,1293,1228,1218,1206,1179,1157,1124,1116,1096,1013,903,850,826,811$, $789,718,646,624,544,499,497,430 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $246\left(\mathrm{M}^{+}, 1.1\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FOS}: 246.0515$. Found: 246.0507 .

$\mathbf{F}_{3} \mathbf{C C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{4}-\boldsymbol{p} \mathbf{- O C H}_{\mathbf{3}}$ (8d): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 3.85(\mathrm{~s}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 55.4,115.5,115.9\left(\mathrm{c}, J_{\mathrm{C}-\mathrm{F}}=290 \mathrm{~Hz}\right)$, $132.3,136.1,161.7,184.2\left(\mathrm{c}, J_{\mathrm{C}-\mathrm{F}}=39.4 \mathrm{~Hz}\right.$); IR (NaCl) $2945,2842,1890,1794,1716,1594$, $1575,1496,1464,1442,1296,1277,1257,1206,1163,1031,937,828,742,604 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $236\left(\mathrm{M}^{+}, 59\right)$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}: 236.0119$. Found: 236.0097.

F $\mathrm{F}_{3} \mathbf{C C}(\mathbf{O}) \mathbf{S}-\boldsymbol{n}-\mathbf{C}_{10} \mathbf{H}_{21}(\mathbf{8 h})$: colorless oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.39(\mathrm{~m}, 14 \mathrm{H}), 1.65(\mathrm{tt}, J=7.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,22.7,28.6,28.7,29.0,29.3,29.4,29.5$, $31.9,115.6\left(\mathrm{c}, J_{\mathrm{C}-\mathrm{F}}=289 \mathrm{~Hz}\right), 184.5\left(\mathrm{c}, J_{\mathrm{C}-\mathrm{F}}=39.4 \mathrm{~Hz}\right) ; \mathrm{IR}(\mathrm{NaCl}) 2927,2856,2362,1709$, 1468, 1283, 1205, 1165, 956, $744 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $270\left(\mathrm{M}^{+}, 0.28\right)$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{OS}: 270.1265$. Found: 270.1258 .

Reaction of $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{OCH}_{3}$ (2a) with 1-Octyne (1a) in the Presence of

 $\operatorname{Pd}(\mathrm{dba})_{2} / \mathrm{dppe}$ (run 11 of Table 1, run 1 of Table 2): General Procedure of Palladium-Catalyzed Aroylthiolation of Alkynes Using Thioesters: Into a two-necked 3 mL reaction glass were added $\mathrm{Pd}(\mathrm{dba})_{2}(28.8 \mathrm{mg}, 0.05 \mathrm{mmol})$, dppe $(23.9 \mathrm{mg}, 0.06 \mathrm{mmol}), 1 \mathbf{a}(132$ $\mathrm{mg}, 1.2 \mathrm{mmol}), \mathbf{2 a}(258 \mathrm{mg}, 1.0 \mathrm{mmol})$ and benzene $(0.5 \mathrm{~mL})$ under a N_{2} atmosphere. After the solution was refluxed for 20 h , the resultant mixture was filtered through Celite, the solvent was evaporated, and the resultant crude product was dried in vacuo. cis-4a and trans-4a were obtained in $30 \% ~(112 \mathrm{mg})$ and $48 \% ~(175 \mathrm{mg})$ yields by preparative TLC using hexane and ethyl acetate (40/1) as an eluent.
trans-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathbf{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OCH}_{3}$ (trnas-4a): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.46(\mathrm{~m}, 2 \mathrm{H})$, $1.68-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$; N.O.E. experiment: Irradiation of the vinyl singlet at $\delta 6.25$ resulted in a 17.0% enhancement of the signal at $\delta 7.55$ (aryl doublet); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,21.4,22.6,29.3,29.9,31.6,34.1,55.4114 .5$, $115.3,120.6,128.0,129.0,137.1,137.2,142.5,160.9,168.1,187.1$; IR (NaCl) 2955, 2927, $2856,1645,1606,1592,1568,1556,1493,1462,1440,1361,1290,1250,1210,1181,1051$, 1032, 830, 818, $732 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $368\left(\mathrm{M}^{+}, 15\right)$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 74.96; H, 7.66. Found: C, 74.74; H, 7.47.

cis- $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(n-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{OCH}_{3} \quad$ (cis-
4a): yellow solid; mp $42.0-44.0{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.10(\mathrm{~m}, 4 \mathrm{H}), 1.14-1.25$ $(\mathrm{m}, 2 \mathrm{H}), 1.38-1.44(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3$ H), $3.83(\mathrm{~s}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$; N.O.E. experiment: Irradiation of the vinyl singlet at $\delta 7.01$ resulted in a 8.9% enhancement of the signal at $\delta 2.23$ (allyl triplet) and 17.5% enhancement of the signal at $\delta 7.88$ (aryl doublet); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,21.5,22.4,28.6,29.9,31.3,37.0,55.3,114.5,115.3,122.1,128.1,129.1$, $136.3,137.2,142.6,160.6,166.4,188.2$; IR (KBr) 2928, 2857, 1632, 1607, 1592, 1570, 1534, 1493, 1463, 1298, 1246, 1180, 1096, 1084, 911, 863, 831, 806, $733 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{e} 368\left(\mathrm{M}^{+}, 25\right)$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{~S}: 368.1810$. Found: 368.1817.

Other aroylthiolation products $\mathbf{4 b}, \mathbf{4 c}, \mathbf{4 e - i}$ and $\mathbf{4 k} \mathbf{- 4 q}$ were synthesized by similar procedures.

trans- $\boldsymbol{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{5}$ (trans-4b): yellow solid; 71.9-73.1 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.32-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.74(\mathrm{~m}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.58(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,21.5,22.6,29.3,29.8,31.6,34.2,115.2,128.0$, $129.0,129.7,129.8,130.2,135.6,137.0,142.6,166.9,187.1$; IR (KBr) 2944, 2916, 2855, 1646, $1604,1578,1468,1436,1352,1255,1230,1211,1180,1055,821,756,734,709,692 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $338\left(\mathrm{M}^{+}, 16\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{OS}: 338.1704$. Found: 338.1711.
 cis- $\boldsymbol{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{5}(\boldsymbol{c i s}-4 \mathrm{~b})$: yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.05-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.43(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.42$ $(\mathrm{m}, 3 \mathrm{H}), 7.57-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0$, $21.6,22.4,28.6,29.9,31.2,37.2,115.8,128.1,129.0,129.2,129.3,131.5,135.8,136.2,142.7$, $165.1,188.3$; $\mathrm{IR}(\mathrm{NaCl}) 2955,2927,2857,1634,1607,1569,1538,1475,1439,1236,1208$, $1181,1084,1018,863,806,788,752,704,693 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $338\left(\mathrm{M}^{+}, 17\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{OS}: 338.1704$. Found: 338.1700.

trans-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}$-F (trans- $\mathbf{4 c}$): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.30-1.34 (m, 4 H$), 1.42-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.73(\mathrm{~m}, 2 \mathrm{H}), 2.35$ $(\mathrm{s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 4 \mathrm{H})$, 7.52-7.58 (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,21.5,22.6,29.3,29.8,31.6,34.1$, $115.1,117.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 125.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right), 128.0,129.1,136.9,137.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=\right.$ $8.3 \mathrm{~Hz}), 142.8,163.7\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=250 \mathrm{~Hz}\right), 166.8,187.2$; IR (NaCl) 2956, 2928, 2856, 1652, 1607, $1590,1568,1558,1490,1466,1362,1233,1181,1156,1051,1015,835,817,731 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $356\left(\mathrm{M}^{+}, 8.1\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FOS}: 356.1610$. Found: 356.1606.

cis-p $-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}$-p-F \quad (cis-4c): yellow solid; mp $57-60{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.09-1.10 (m, 4 H$), 1.17-1.22(\mathrm{~m}, 2 \mathrm{H})$, $1.38-1.44(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 7.04$ (s, 1 H$), 7.07-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.58$ (m, 2 H), $7.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,21.6,22.4,28.6,29.8$, $31.3,37.1,115.9,116.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 126.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 128.1,129.2,136.0,137.7$
$\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=8.3 \mathrm{~Hz}\right), 142.8,163.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=249 \mathrm{~Hz}\right), 164.7,188.4$; IR (KBr) 2952, 2925, 2856, $1628,1606,1534,1484,1236,1224,1183,1082,842,808 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e 356 ($\mathrm{M}^{+}, 9.3$); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FOS}$: 356.1610. Found: 356.1617.

trans- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{5}$ (trans-4e): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$), $1.31-1.35(\mathrm{~m}, 4$ H), 1.41-1.47 (m, 2 H$), 1.69-1.77(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 3$ H), 7.56-7.59 (m, 2 H), 7.61-7.63 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.6,29.3$, $29.9,31.6,34.3,114.9,127.9,128.3,129.8,129.9,130.1,132.0,135.7,139.6,167.8,187.3$; IR (NaCl) 3060, 2955, 2927, 2856, 1651, 1597, 1557, 1466, 1440, 1362, 1229, 1179, 1047, 1024, $778,751,692,643 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $324\left(\mathrm{M}^{+}, 25\right)$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{OS}: \mathrm{C}$, 77.73; H, 7.46. Found: C, 77.59; H, 7.29.

cis $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{5}$ (cis-4e): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06-1.20(\mathrm{~m}$, $6 \mathrm{H}), 1.41-1.46(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H})$, 7.39-7.60 (m, 8 H), $7.99(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 13.9,22.3,28.6,29.9,31.2,37.3,115.7,128.0,128.5,129.0,129.3,131.3,132.0$, $135.7,138.7,165.9,188.6$; IR (NaCl) 3058, 2955, 2929, 2857, 1634, 1598, 1578, 1548, 1538, $1532,1476,1446,1440,1355,1303,1233,1178,1105,1070,1025,1001,859,828,774,752$, $704,676 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $324\left(\mathrm{M}^{+}, 17\right)$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{OS}$: 324.1548. Found. Found: 324.1540.

trans-p-FC $\mathbf{C}_{6} \mathrm{H}_{\mathbf{4}} \mathbf{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad($ trans $-4 \mathrm{f})$: yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.32-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.68-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.98-7.02(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,21.4,22.6,29.3,29.9,31.6,34.2,114.2,115.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}\right), 126.3$, $130.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9.2 \mathrm{~Hz}\right), 130.6,135.5,135.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 140.3,165.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=252 \mathrm{~Hz}\right)$, 168.7, 185.8; IR (NaCl): 2956, 2927, 2857, 1651, 1598, 1557, 1505, 1493, 1456, 1433, 1408, 1363, 1229, 1155, 1050, 1018, 829, $812 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $356\left(\mathrm{M}^{+}, 10\right)$; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{FOS}: \mathrm{C}, 74.12 ; \mathrm{H}, 7.07$. Found: C, 74.13; H, 7.12.

cis-p- $\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}$-p- $\mathrm{CH}_{3} \quad$ (cis-4f): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.05-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.38-1.46(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2$ H), $2.39(\mathrm{~s}, 3 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.99-8.03(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,21.3,22.4,28.6,30.0,31.2,37.2,115.0,115.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21.5\right.$
$\mathrm{Hz}), 127.6,129.8,130.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.7 \mathrm{~Hz}\right), 135.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}\right), 135.6,139.7,165.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=252 \mathrm{~Hz}), 167.2,187.0$; $\mathrm{IR}(\mathrm{NaCl}) 2956,2928,2858,1634,1600,1538,1532,1505,1494$, $1463,1230,1155,1084,1018,867,852,812,733 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $356\left(\mathrm{M}^{+}, 12\right)$; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25}$ FOS: C, 74.12; H, 7.07. Found: C, 74.02; H, 7.23.

trans-(3- $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{C}(\mathrm{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{\mathbf{3}} \quad$ (trans-4g): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.34-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.73(\mathrm{dt}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.0,21.4,22.6,29.3,29.9,31.5,34.6,113.2,123.4,125.9,129.8$, $130.7,135.4,135.5,140.6,149.1,152.2,171.2,185.1$; IR (NaCl$) 3033,2955,2927,2856$, $1651,1584,1556,1493,1456,1416,1366,1237,1106,1060,1040,1018,849,811,732,702$, $662 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $339\left(\mathrm{M}^{+}, 20\right)$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NOS}$: C, 74.29; H, 7.42; N, 4.13. Found: C, 74.07; H, 7.41; N, 4.16.

cis- $\left(\mathbf{3}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) \mathrm{C}(\mathrm{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{\mathbf{4}}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (cis-4g):

 yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.81(\mathrm{t}, J=8.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.05-1.21(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{dt}, 2 \mathrm{H}), 2.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39$ $(\mathrm{s}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.47(\mathrm{~m}, 3$ $\mathrm{H}), 8.28(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.18(\mathrm{~s}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,21.2,22.3,28.5,29.9,31.1,37.2,114.6,123.5,127.1$, $129.8,134.0,135.4,135.5,139.8,149.2,152.3,169.2,186.6$; IR (NaCl) 3020, 2955, 2927, $2857,1634,1585,1569,1530,1493,1456,1416,1249,1088,1019,862,812,756,704,666$, $620 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $339\left(\mathrm{M}^{+}, 20\right), 123$ (100); Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NOS}$: C, $74.29 ; \mathrm{H}, 7.42 ; \mathrm{N}, 4.13$. Found: C, 74.01; H, 7.14; N, 4.13.

trans- $\left(\mathbf{2}-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}\right) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (trans-4h): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $1.30-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.72(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3$ H), $2.93(\mathrm{t}, J=7.7,2 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 6.40-6.41(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J$ $=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.44(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.0,21.3,22.5,29.2,29.8,31.5,34.2,111.9,113.4,115.6,126.4,130.5,135.5,140.3,145.6$, 154.3, 169.0, 175.6; IR (NaCl) 2955, 2927, 2856, 1643, 1572, 1492, 1467, 1432, 1394, 1353, $1262,1165,1156,1088,1056,1017,913,884,811,756,732,694 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{e} 328\left(\mathrm{M}^{+}, 30\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 73.13 ; \mathrm{H}, 7.36$. Found: C, 72.89; H, 7.08.
 cis- $\left(\mathbf{2}-\mathrm{C}_{4} \mathrm{H}_{\mathbf{3}} \mathrm{O}\right) \mathrm{C}(\mathrm{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (cis-4h): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 1.06-1.08 (m, 4 H$), 1.15-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.43(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{t}$,
$J=7.8,2 H), 2.38(\mathrm{~s}, 3 \mathrm{H}), 6.52-6.56(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{~d}, J=$ 8.1 Hz, 2 H), 7.55-7.56 (m, 1 H); NOE experiment: Irradiation of the vinyl singlet at $\delta 6.92$ resulted in a 6.9% enhancement of the signal at $\delta 2.22 ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0$, $21.3,22.3,28.5,29.8,31.2,37.1,112.3,114.9,115.6,127.5,129.8,135.7,139.6,145.2,154.1$, 166.6, 177.3; IR (NaCl) 2955, 2928, 2858, 1633, 1574, 1538, 1493, 1470, 1258, 1157, 1101, $1010,884,813,756 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $328\left(\mathrm{M}^{+}, 29\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 73.13; H, 7.36. Found: C, 72.90; H, 6.97.

The structure of 4 i was tentatively assigned by ${ }^{1} \mathrm{H}$ NMR spectrum (vide infra). trans-p- $\mathrm{CH}_{3} \mathbf{C}_{6} \mathbf{H}_{4} \mathbf{C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathbf{C}_{6} \mathbf{H}_{\mathbf{1 3}}\right) \mathbf{S C H}_{2} \mathbf{C}_{6} \mathbf{H}_{5}$ (trans-4i): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.24$ ($\mathrm{s}, 1 \mathrm{H}$, vinyl proton).
cis-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathbf{C}(\mathbf{O}) \mathrm{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathbf{H}_{13}\right) \mathrm{SCH}_{2} \mathrm{C}_{6} \mathbf{H}_{5}$ (cis-4i): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.01 ($\mathrm{s}, 1 \mathrm{H}$, vinyl proton).

trans-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Cl}^{2}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OCH}_{3}$ (trans-4k): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.85-1.95$ ($\mathrm{m}, 4 \mathrm{H}$), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,27.1,32.3,33.0,44.8,55.4,114.9,115.3$, $120.3,128.0,129.0,136.9,137.2,142.7,161.0,166.9,187.1$; IR (NaCl) 2956, 2866, 2838, $1645,1606,1592,1574,1568,1557,1494,1462,1441,1360,1291,1250,1181,1050,1031$, $830,819,734 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $374\left(\mathrm{M}^{+}, 24\right)$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClO}_{2} \mathrm{~S}: \mathrm{C}$, 67.27; H, 6.18. Found: C, 67.08; H, 5.96.

cis-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Cl}^{2}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{OCH}_{3} \quad$ (cis-
4k): yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.58-1.61(\mathrm{~m}, 4 \mathrm{H})$, $2.27(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.6,27.0,31.7,36.2,44.4,55.4,114.7,115.7,121.9,128.1$, $129.2,136.1,137.2,142.8,160.7,165.1,188.2$; IR (NaCl) 3002, 2956, 2866, 1632, 1607, 1591, $1570,1538,1493,1461,1441,1288,1246,1208,1180,1174,1104,1074,1030,831,806,754$, $734 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $374\left(\mathrm{M}^{+}, 23\right)$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClO}_{2} \mathrm{~S}: \mathrm{C}, 67.27 ; \mathrm{H}$, 6.18. Found: C, 67.26; H, 6.06.

trans-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CN}^{2}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-$ p- OCH_{3} (trans-41): yellow solid; mp 87.4-88.6 ${ }^{\circ} \mathrm{C} ;{ }^{\mathrm{I}} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 2.08-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2$
H), $2.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.34(\mathrm{~s}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $16.8,21.5,25.5,32.7,55.4,115.5,115.7,119.5,119.7,128.0,129.1,136.6,137.1,143.0,161.2$, $164.8,187.1$; IR (KBr) $1646,1606,1590,1568,1495,1457,1434,1358,1300,1287,1249$, 1184, 1058, 1018, 835, 816, 797, 737, $705 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $351\left(\mathrm{M}^{+}, 29\right)$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 71.76 ; \mathrm{H}, 6.02 ; \mathrm{N}, 3.99$. Found: C, $71.72 ; \mathrm{H}, 6.09 ; \mathrm{N}, 4.00$.

trans-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-$ p- OC $\mathbf{H}_{\mathbf{3}}$ (trans-4m): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.07$ (dt, 2 H), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.94(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4,24.8,32.9,33.4,51.4,55.3$, $115.1,115.3,120.2,127.9,129.0,136.8,137.1,142.6,161.0,166.3,173.6,186.9$; IR (NaCl) $2950,1737,1646,1606,1592,1568,1494,1455,1437,1364,1291,1250,1181,1049,1030$, $831,819,733 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $384\left(\mathrm{M}^{+}, 17\right)$; Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}: \mathrm{C}$, 68.72; H, 6.29. Found: C, 68.68; H, 6.14.

cis-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OCH}_{3}$
(cis-4m): orange solid; mp $85.0-87.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.75(\mathrm{dt}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.92(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6,24.8,32.9,36.0$, $51.5,55.4,114.7,116.0,121.9,128.1,129.2,136.1,137.1,142.8,160.7,164.4,173.3,188.2$; IR (KBr) 1732, 1627, 1606, 1588, 1568, 1531, 1494, 1484, 1448, 1285, 1240, 1180, 1153, $1072,1017,845,834,809 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $384\left(\mathrm{M}^{+}, 21\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{~S}: 384.1395$. Found: 384.1393.

trans- $\boldsymbol{p}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\mathrm{CH}_{2}\left(\boldsymbol{c}-\mathrm{C}_{5} \mathrm{H}_{9}\right)\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OCH}_{3}$ (trans-4n): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29-1.34$ $(\mathrm{m}, 2 \mathrm{H}), 1.52-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.87(\mathrm{~m}$, $2 \mathrm{H}), 2.29-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.4,24.8,32.4,39.0,40.5,55.4,115.1,115.3,120.8,128.0,129.0,137.1,137.2$, $142.5,160.9,167.3,187.3$; IR (NaCl) 2951, 2866, 1647, 1606, 1592, 1560, 1493, 1462, 1440, $1407,1360,1290,1250,1210,1181,1104,1050,1032,830,819,733 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{e} 366\left(\mathrm{M}^{+}, 25\right)$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 75.37 ; \mathrm{H}, 7.15$. Found: C, 75.23; H, 7.28.

cis-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\mathrm{CH}_{2}\left(c-\mathrm{C}_{5} \mathrm{H}_{9}\right)\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{OCH}_{3} \quad$ (cis 4n): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97-1.03(\mathrm{~m}, 2 \mathrm{H})$, $1.43-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.93-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$, $7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6,24.8,32.2,39.6,42.9,55.3,114.5,115.9,122.3,128.1,129.1,136.4$, $137.2,142.6,160.5,165.3,188.2$; $\mathrm{IR}(\mathrm{NaCl}) 2951,2866,1632,1607,1592,1571,1537,1494$, $1462,1453,1441,1288,1246,1207,1180,1101,1082,1031,1018,862,830,809,799,788$, $755,734 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $366\left(\mathrm{M}^{+}, 23\right)$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}: 366.1654$. Found: 366.1658.

trans-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathbf{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{2} \mathbf{C H}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{SC}_{6} \mathbf{H}_{4}$-p- \mathbf{O} $\mathbf{C H}_{\mathbf{3}}$ (trans-4o): yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96$ $(\mathrm{d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.58-1.73(\mathrm{~m}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2$ H), $7.14(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,22.4,28.4,32.2,38.8,55.4,114.5,115.3$, $120.6,128.0$. 129.0, 137.1, 137.2, 142.5, 161.0, 168.4, 187.1; IR (NaCl) 3005, 2956, 2868, $1646,1607,1592,1560,1493,1464,1442,1366,1290,1250,1208,1181,1052,1031,1018$, $830,818,759,734 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $354\left(\mathrm{M}^{+}, 24\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}$: 354.1654. Found: 354.1651 .

cis-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{SC}_{6} \mathrm{H}_{4}$-p- OCH_{3} (cis-4o): yellow solid; mp 94.0-95.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.68(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.31-1.34(\mathrm{~m}, 3 \mathrm{H}), 2.25(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.02(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.6,22.1,27.8,35.2,39.3,55.4$, $114.5,115.3,122.1,128.1,129.1,136.3,137.3,142.6,160.6,166.8,188.3$; IR (KBr) 2957, $2868,1632,1606,1590,1570,1534,1492,1464,1442,1296,1239,1181,1171,1098,1086$, 1027, 1016, 867, 830, 799, $789 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e 354 ($\mathrm{M}^{+}, 26$); Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 74.54 ; \mathrm{H}, 7.39$. Found: C, 74.38; H, 7.19.

$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{OCH}_{3}(4 \mathrm{p}$, a mixture of stereoisomer): yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) cisisomer; $\delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.09-7.16 (m, 9 H), 7.25 ($\mathrm{s}, 1 \mathrm{H}$), 7.93 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$); trans isomer; $2.33(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}$), other peaks overlap with those of cis isomer; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ cis
isomer; $\delta 21.6,55.2,113.9,119.1,123.4,127.7,128.2,128.3,128.9,129.3,136.0,136.1,138.9$, 143.1, 159.5, 163.1, 188.3.; trans isomer; $\delta 21.5,55.4,115.4,117.4,121.1,128.1,128.4,128.5$, $128.8,129.0,135.9,137.1,137.2,142.9,161.0,161.1,188.4$; IR (KBr): 2929, 1626, 1605, $1591,1570,1560,1526,1492,1460,1443,1406,1333,1302,1291,1245,1174,1106,1030$, $1017,955,830,815,770,737,703,676 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $360\left(\mathrm{M}^{+}, 38\right)$; (EI) m/e $360\left(\mathrm{M}^{+}, 38\right)$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 76.64 ; \mathrm{H}, 5.59$. Found: C, 76.48; H, 5.48.

The structure of cis-4q was tentatively determined by ${ }^{1} \mathrm{H}$ NMR spectrum (vide infra). cis- $\mathbf{C}_{6} \mathbf{H}_{5} \mathbf{C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathbf{C}_{6} \mathbf{H}_{\mathbf{1 3}}\right) \mathbf{S e C}_{6} \mathbf{H}_{\mathbf{5}}(\boldsymbol{c i s}-\mathbf{4 q}):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.93(\mathrm{~s}, 1 \mathrm{H}$, vinyl proton).

Reaction of $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{OCH}_{3}$ (2a) with 1-Octyne (1a) in the Presence of $\mathbf{P t}\left(\mathrm{PPh}_{3}\right)_{4}$ (run 18 of Table 1): Into a two-necked 3 mL reaction glass were added $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$ $(62.5 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{2 a}(254 \mathrm{mg}, 0.983 \mathrm{mmol}), \mathbf{1 a}(135 \mathrm{mg}, 1.23 \mathrm{mmol})$ and toluene (0.5 mL) under a N_{2} atmosphere. After the solution was refluxed for 13 h , the resultant mixture was filtered through Celite, the solvent was evaporated, and the resultant crude product was dried in vacuo. cis-3a and trans-4a were obtained in 75% (255 mg) and $8 \%(30 \mathrm{mg})$ yield by preparative TLC using hexane and ethyl acetate (40/1) as an eluent.
 cis-p- $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{OCH}_{3} \quad$ (cis-3a): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.19-1.27 (m, 6 H), 1.49-1.53 (m, 2 H$), 2.16(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,21.2,22.5,28.5,28.8,31.6,37.6,55.3,114.4,124.2,128.6,129.1,129.2$, $134.1,134.2,136.6,136.9,159.2$; IR (NaCl) 2954, 2928, 2856, 1592, 1571, 1509, 1493, 1463, $1440,1286,1246,1180,1172,1034,827,806 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $340\left(\mathrm{M}^{+}, 100\right)$. HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{OS}: 340.1861$. Found: 340.1871.

Cis-to-trans Isomerization of cis-4a (Eq. S1): Into a two-necked reaction glass were added $\operatorname{Pd}(\mathrm{dba})_{2}(1.5 \mathrm{mg}, 0.0026 \mathrm{mmol})$, dppe ($1.2 \mathrm{mg}, 0.0030 \mathrm{mmol}$), cis $-4 \mathrm{a}(17 \mathrm{mg}, 0.044 \mathrm{mmol})$, 1a
$(8.9 \mathrm{mg}, 0.081 \mathrm{mmol})$ and benzene $(0.5 \mathrm{~mL})$ under a N_{2} atmosphere. After the solution was refluxed for 15 h , the reaction mixture was filtered through Celite, and the filtrate was evaporated and dried in vacuo. The products were analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
Cis-to-trans isomerization of cis-4a occurred in the presence of catalytic amount of $\operatorname{Pd}(\mathrm{dba})_{2}$ and dppe and 1.6 equiv amount of $\mathbf{1 a}$. These results indicated that $\mathbf{1 a}$ is the crucial factor for the generation of active dppe ligated Palladium (0) complex.

Treatment of 2a in the Presence of Pd/dppe (Eq. 1): Into a two-necked reaction glass were added $\mathrm{Pd}(\mathrm{dba})_{2}(28.3 \mathrm{mg}, 0.05 \mathrm{mmol})$, dppe ($24.5 \mathrm{mg}, 0.06 \mathrm{mmol}$), 2a ($262 \mathrm{mg}, 1.01 \mathrm{mmol}$) and toluene (0.5 mL) under a N_{2} atmosphere. After the solution was refluxed for 12 h , the reaction mixture was filtered through Celite, the solvent was evaporated and the resultant crude product was dried in vacuo. The products were analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OCH}_{3}$ (6a): $\mathrm{RN}: \mathbf{6 0 1 3 - 4 7 - 4 .}$

Decarbonylation of 2a using dppp and dppb ligands was similarly examined.

Reaction of $\mathrm{I}^{-} \mathrm{C}_{6} \mathrm{H}_{4}-\mathbf{p}-\mathrm{OCH}_{3}$ with $\mathrm{NaSC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OCH}_{3}$ in the Presence of Pd/dppe (Eq. 2): Into a two-necked reaction glass were added $\mathrm{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol})$, dppe $(12.0 \mathrm{mg}$, 0.030 mmol), $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{I}(109 \mathrm{mg}, 0.500 \mathrm{mmol}), \mathrm{NaSC}_{6} \mathrm{H}_{4} \mathrm{OMe}-p(82 \mathrm{mg}, 0.506 \mathrm{mmol})$ and toluene (0.5 mL) under a N_{2} atmosphere. After the solution was refluxed for 12 h , the reaction mixture was filtered through Celite, the solvent was evaporated and the resultant crude product was dried in vacuo. The products were analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Reaction of $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}$ (8a) with 1-Octyne (1a) in the Presence of $\mathbf{P t}\left(\mathrm{PPh}_{3}\right)_{4}$

 (run 3 of Table 3, run 1 of Table 4): General Procedure of Platinum-Catalyzed Trifluoroacetylthiolation of Alkynes Using Thioesters: Into a two-necked 3 mL reaction glass were added $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{4}(31.1 \mathrm{mg}, 0.025 \mathrm{mmol}), \mathbf{8 a}(108 \mathrm{mg}, 0.492 \mathrm{mmol}), 1 \mathbf{1 a}(82.0 \mathrm{mg}$, $0.74 \mathrm{mmol})$ and xylene (0.5 mL) under a N_{2} atmosphere. After the solution was refluxed for 10 h, the reaction mixture was filtered through Celite, the solvent was evaporated and the resultant crude product was dried in vacuo. cis-5a and trans-5a were obtained in $14 \%(23.2 \mathrm{mg})$ and $64 \%(106 \mathrm{mg})$ yields by preparative TLC using hexane as an eluent.
trans- $\mathbf{F}_{3} \mathrm{CC}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathbf{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (trans-5a): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.32-1.48 (m, 6 H), $1.66(\mathrm{tt}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2$ H), $5.74(\mathrm{~s}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$; N.O.E. experiment: Irradiation of the singlet of vinylic proton at $\delta 5.75$ resulted in 2.7% enhancement of the signal at $\delta 7.37$ (aryl doublet) and the triplet of allylic proton at $\delta 2.89$ resulted in 0.58% enhancement of the signal at $\delta 7.37$ (aryl doublet); ${ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 14.6,22.0,23.1,29.8,30.2,32.0,36.0,108.5,113.9\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291 \mathrm{~Hz}\right), 125.2,131.5$,
$135.6,141.8,176.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.5 \mathrm{~Hz}\right), 180.9$; $\operatorname{IR}(\mathrm{NaCl}) 2957,2929,2838,1700,1597,1560$, $1493,1458,1436,1291,1202,1143,1077,1018,842,811,725,686 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 330\left(\mathrm{M}^{+}, 42\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{OS} 330.1265$, found 330.1270; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{OS}: \mathrm{C}, 61.80 ; \mathrm{H}, 6.41$. Found: C, 62.09; H, 6.69.

cis- $\mathbf{F}_{3} \mathrm{CC}(\mathrm{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (cis-5a): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.12(\mathrm{~m}$, $6 \mathrm{H}), 1.35-1.40(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 6.51$ ($\mathrm{s}, 1 \mathrm{H}$), $7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$; N.O.E. experiment: Irradiation of the triplet of allylic proton at $\delta 2.25$ resulted in 3.8% enhancement of the signal at $\delta 7.41$ (aryl doublet) and 8.4% enhancement of the signal at $\delta 6.51$ (vinylic singlet); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,21.3,22.3,28.5,29.9,31.1,37.5,110.2,116.4$ (q, $\left.J_{\mathrm{C}-\mathrm{F}}=290 \mathrm{~Hz}\right), 125.7,130.2,135.4,140.6,177.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=34.4 \mathrm{~Hz}\right), 178.0 ;$ IR $(\mathrm{NaCl}) 2931$, $2860,2359,1681,1674,1598,1563,1548,1538,1532,1520,1506,1494,1463,1456,1362$, $1300,1199,1146,1105,1018,864,813,729,686 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 330\left(\mathrm{M}^{+}, 41\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{OS}: \mathrm{C}, 61.80 ; \mathrm{H}, 6.41$. Found: C, $62.02 ; \mathrm{H}, 6.66$.

Other trifluoroacetylthiolation products 5d-I were synthesized by similar procedures.

trans- $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OCH}_{3}$ (trans-5d): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.33-1.46(\mathrm{~m}, 6 \mathrm{H}), 1.64(\mathrm{tt}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1$ H), $7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,22.5,29.3,29.6,31.4,35.3,55.4,107.8,115.6,116.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291\right.$ Hz), 118.7, 136.7, 161.5, 175.4 (q, $J_{\mathrm{C}-\mathrm{F}}=33.5 \mathrm{~Hz}$), 180.9; IR (NaCl) 2958, 2930, 2858, 1697, $1593,1560,1553,1496,1465,1441,1292,1254,1202,1174,1143,1106,1077,1031,860$, $831,800,726,686 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $346\left(\mathrm{M}^{+}, 58\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}$: C, 58.94; H, 6.11. Found: C, 58.88; H, 6.09.

cis- $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OCH}_{3}(\boldsymbol{c i s}-5 \mathrm{~d})$: yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.19(\mathrm{~m}$, $6 \mathrm{H}), 1.39(\mathrm{~b}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.51(\mathrm{~s}, 1$ H), $6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=78.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.9,22.3,28.5,29.9,31.1,37.5,55.4,110.1,114.9,116.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=289\right.$ $\mathrm{Hz}), 119.8,137.0,161.2,177.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.9 \mathrm{~Hz}\right), 178.7$; $\mathrm{IR}(\mathrm{NaCl}) 2958,2931,2859,1682$, $1593,1572,1538,1495,1464,1442,1408,1364,1308,1291,1199,1174,1144,1105,1031$, $864,832,729 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $346\left(\mathrm{M}^{+}, 69\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}$, 58.94; H, 6.11. Found: C, 59.05; H, 6.02.
 trans- $\mathrm{F}_{3} \mathbf{C C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathbf{H}_{13}\right) \mathbf{S C}_{6} \mathbf{H}_{5}$ (trans-5e): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.49(\mathrm{~m}, 6 \mathrm{H})$, $1.66(\mathrm{tt}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~b}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.5,29.2,29.6,31.4,35.4,108.1,116.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291 \mathrm{~Hz}\right.$), $128.1,130.1,130,8,135.2,175.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.4 \mathrm{~Hz}\right), 179.7$; IR (NaCl$) 2958,2930,2859,1699$, $1560,1477,1442,1291,1203,1143,1077,1024,837,750,706,685 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 316\left(\mathrm{M}^{+}, 26\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 60.74 ; \mathrm{H}, 6.05$. Found: $\mathrm{C}, 60.53 ; \mathrm{H}, 6.05$.
 cis- $\mathbf{F}_{3} \mathbf{C C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathbf{C}_{6} \mathrm{H}_{13}\right) \mathbf{S C}_{6} \mathrm{H}_{5}$ (cis-5e): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.80(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.05-1.17(\mathrm{~m}, 6 \mathrm{H})$, $1.39(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.56(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,22.3,28.6,29.9,31.1$, $37.7,110.5,116.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=292 \mathrm{~Hz}\right), 129.3,129.5,130,2,135.6,177.2,177.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=34.4\right.$ $\mathrm{Hz}) ;$ IR (NaCl) 2958, 2931, 2860, 1682, 1537, 1477, 1468, 1441, 1364, 1300, 1261, 1200, 1145, 1106, 1024, 862, 818, 752, 730, 706, $692 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $316\left(\mathrm{M}^{+}, 30\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{OS}: 316.1109$. Found: 316.1112.

trans- $\mathbf{F}_{\mathbf{3}} \mathbf{C C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathbf{C}_{\mathbf{6}} \mathrm{H}_{\mathbf{1 3}}\right) \mathbf{S C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}$ - $\boldsymbol{p - C l}$ (trans-5f): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.48$ $(\mathrm{m}, 6 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.1,22.6,29.2,29.6,31.4,35.3,108.3,116.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291 \mathrm{~Hz}\right), 126.6,130.5,136.5$, $137.4,175.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.5 \mathrm{~Hz}\right), 178.8$; $\mathrm{IR}(\mathrm{NaCl}) 2958,2930,2859,1698,1682,1574,1568$, $1556,1477,1454,1436,1392,1292,1204,1146,1096,1076,1014,859,839,825,749,726$, $684 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $350\left(\mathrm{M}^{+}, 41\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{OS}: \mathrm{C}, 54.78 ; \mathrm{H}$, 5.17. Found: C, 54.68; H, 5.13.

cis- $\mathrm{F}_{3} \mathbf{C C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathbf{H}_{4}-\boldsymbol{p}-\mathrm{Cl}(\boldsymbol{c i s}-5 \mathrm{f})$: pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07-1.43$ $(\mathrm{m}, 8 \mathrm{H}), 2.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9$, $22.3,28.5,29.7,31.1,37.6,110.8,116.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=289 \mathrm{~Hz}\right), 127.7,129.7,136.8,136.8,176.1$, $177.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=34.4 \mathrm{~Hz}\right)$; $\mathrm{IR}(\mathrm{NaCl}) 2958,2931,2859,1682,1574,1538,1476,1389,1364$, $1296,1201,1176,1146,1107,1093,1014,865,824,748,728,684 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 350\left(\mathrm{M}^{+}, 39\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{OS}: 350.0719$. Found: 350.0714 .

trans- $\mathbf{F}_{3} \mathbf{C C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathbf{C}_{6} \mathbf{H}_{13}\right) \mathbf{S C H}_{\mathbf{2}} \mathbf{C}_{6} \mathbf{H}_{5}$ (trans-5g): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.41$ (m, 6 H), $1.57(\mathrm{tt}, 2 \mathrm{H}), 2.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 6.17(\mathrm{~s}$, $1 \mathrm{H}), 7.30-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,22.5$, $29.2,29.7,31.4,36.2,37.3,106.9,116.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=291 \mathrm{~Hz}\right), 128.1,128.9,129.0,133.6,174.9$
(q, $J_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}$), 178.1; $\mathrm{IR}(\mathrm{NaCl}) 2957,2930,2858,1698,1552,1496,1455,1435,1295$, 1203, 1142, 1079, 822, 711, $696 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $330\left(\mathrm{M}^{+}, 2.2\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{OS}: \mathrm{C}, 61.80 ; \mathrm{H}, 6.41$. Found: C, 61.67; H, 6.42.

trans $-\mathrm{F}_{3} \mathrm{CC}(\mathbf{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{S}-\boldsymbol{n}-\mathrm{C}_{\mathbf{1 0}} \mathrm{H}_{21} \quad$ (trans-
5h): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88$ (b, 6 H), 1.27-1.42 (m, 20 H), $1.57(\mathrm{tt}, 2 \mathrm{H}), 1.70(\mathrm{tt}, 2 \mathrm{H})$, 2.82-2.85 (m, 4 H$), 6.01(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.0,14.1,22.5,22.7,27.0$, $28.9,29.0,29.2,29.3,29.4,29.5,29.8,31.4,31.9,32.2,36.6,106.2,116.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=292 \mathrm{~Hz}\right)$, $174.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.0 \mathrm{~Hz}\right), 179.3 ; \mathrm{IR}(\mathrm{NaCl}) 2957,2927,2856,1698,1556,1467,1434,1293$, 1201, 1143, 1079, 860, 824, 724, $693 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $380\left(\mathrm{M}^{+}, 8.5\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{OS}$: C, 63.12; H, 9.27. Found: C, 63.18; H, 9.23.
trans- $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{4} \mathbf{C l}^{2} \mathbf{S C}_{6} \mathbf{H}_{5} \quad\right.$ (trans-5i): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.79-1.86(\mathrm{tt}, 2 \mathrm{H}), 1.90-1.97(\mathrm{tt}, 2 \mathrm{H}), 2.93(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 7.5-7.54(\mathrm{~m}, 5$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 26.9,32.1,34.4,44.4,108.5,116.1$ (q, $\left.J_{\mathrm{C}-\mathrm{F}}=291 \mathrm{~Hz}\right), 127.8,130.2,130.9,135.2,175.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.9 \mathrm{~Hz}\right), 178.5 ; \mathrm{IR}(\mathrm{NaCl}) 3063$, $2957,2868,1698,1556,1477,1442,1292,1203,1143,1077,1024,838,750,706,686, \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $322\left(\mathrm{M}^{+}, 45\right)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{OS}$: C, 52.10; H, 4.37. Found: C, 52.37; H, 4.41.
$\mathrm{F}_{3} \mathrm{Cl}$ cis- $\mathrm{F}_{3} \mathrm{CC}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{4} \mathbf{C l}^{2}\right) \mathbf{S C}_{6} \mathbf{H}_{5}$ (cis-5i): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.53-1.57(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.34(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.57(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.0,31.5,36.8,44.0,110.7,116.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=289 \mathrm{~Hz}\right), 129.0,129.6,130.4$, $135.5,175.8,177.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.8 \mathrm{~Hz}\right)$; IR (NaCl) $3025,2957,2869,1682,1577,1534,1493$, $1458,1446,1364,1302,1200,1146,1110,1092,1018,863,813,729,687,654 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $322\left(\mathrm{M}^{+}, 54\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{OS}$: 322.0406. Found: 322.0399.

trans- $\mathrm{F}_{3} \mathbf{C C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathbf{C N}\right) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{5}}$ (trans-5j): pale yellow solid; $\mathrm{mp} 64-66{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.05(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~b}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.0,25.2,34.0,109.3,116.1$ (q, $J_{\mathrm{C}-\mathrm{F}}=294$ Hz), 118.9, 127.5, 130.4, 131.2, 135.2, $176.0\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=34.4 \mathrm{~Hz}\right), 176.2$; IR (NaCl) 3064, 2954, $2244,1687,1548,1478,1453,1439,1294,1274,1188,1145,1078,1025,999,868,854,840$, $766,749,708,685,574,452 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $299\left(\mathrm{M}^{+}, 47\right)$; Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3}$ NOS: C, $56.18 ; \mathrm{H}, 4.04 ; \mathrm{N}, 4.68$. Found: C, $56.18 ; \mathrm{H}, 3.98 ; \mathrm{N}, 4.73$.

cis $-\mathrm{F}_{3} \mathbf{C C}(\mathbf{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathbf{C N}\right) \mathrm{SC}_{6} \mathbf{H}_{\mathbf{5}}$ (cis-5j): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.73(\mathrm{tt}, J=7.0,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2$ $\mathrm{H}), 2.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.57(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.7,25.5,36.4,111.7,116.5\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=289 \mathrm{~Hz}\right)$, $118.5,128.9,130.1,131.0,135.7,173.4,177.8\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=34.8 \mathrm{~Hz}\right) ; \mathrm{IR}(\mathrm{NaCl}) 3062,2947,2248$, $1602,1578,1478,1456,1442,1368,1304,1202,1143,1111,1024,1002,865,818,754,730$, $706,694 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 299\left(\mathrm{M}^{+}, 33\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3}$ NOS: 299.0592. Found: 299.0590.

trans- $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{SC}_{6} \mathrm{H}_{5}$ (trans-5k): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.01(\mathrm{tt}, 2 \mathrm{H}), 2.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.54(\mathrm{~b}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.6,33.3,34.2,51.7,108.7,116.1$ (q, $\left.J_{\mathrm{C}-\mathrm{F}}=291 \mathrm{~Hz}\right), 127.8,130.2,130.9,135.2,173.3,175.6\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.5\right.$ $\mathrm{Hz}), 178.0$; $\mathrm{IR}(\mathrm{NaCl}) 3063,2953,1738,1732,1698,1565,1556,1477,1441,1368,1293$, $1255,1204,1142,1076,1024,1000,838,752,706,689 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 332\left(\mathrm{M}^{+}\right.$, 13); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C}, 54.21 ; \mathrm{H}, 4.55$. Found: $\mathrm{C}, 54.21 ; \mathrm{H}, 4.49$.

cis- $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{SC}_{6} \mathrm{H}_{5}$ (cis-5k): yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{tt}, 2 \mathrm{H}), 2.11(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.56(\mathrm{~m}, 5$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.7,32.6,36.5,51.5,110.8$, $116.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=289 \mathrm{~Hz}\right), 128.9,129.5,130.3,135.4,172.7,175.3,177.3\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=34.4 \mathrm{~Hz}\right)$; IR (NaCl) 3062, 2953, 1738, 1682, 1538, 1478, 1440, 1366, 1300, 1254, 1201, 1146, 1111, 1091, $1024,1001,887,856,838,820,754,730,706,693 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $332\left(\mathrm{M}^{+}\right.$, 16); Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}$: C, $54.21 ; \mathrm{H}, 4.55$. Found: C, $54.01 ; \mathrm{H}, 4.55$.

trans- $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{C}(\mathbf{H})=\mathbf{C}\left(\mathrm{CH}_{2}\left(\boldsymbol{c}-\mathrm{C}_{5} \mathrm{H}_{9}\right)\right) \mathrm{SC}_{6} \mathrm{H}_{5}$ (trans-51): pale yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.31(\mathrm{~m} 2 \mathrm{H}), 1.55-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.87(\mathrm{~m}$, $2 \mathrm{H}), 2.21(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~b}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.8,32.5,40.5,40.5,108.5,116.3$ (q, $\left.J_{\mathrm{C}-\mathrm{F}}=294 \mathrm{~Hz}\right), 128.4,130.2,130.8,135.2,175.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.6 \mathrm{~Hz}\right), 179.2$; IR (NaCl$) 3063$, 2953, 2869, 1808, 1556, 1476, 1441, 1296, 1201, 1142, 1077, 1024, 846, 837, 749, 707, 690 cm^{-1}; mass spectrum (EI) m/z $314\left(\mathrm{M}^{+}, 22\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{OS}: \mathrm{C}, 61.13$; H, 5.45. Found: C, 60.94; H, 5.38.

cis- $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\mathrm{CH}_{2}\left(\mathbf{c}-\mathrm{C}_{5} \mathrm{H}_{9}\right)\right) \mathrm{SC}_{6} \mathrm{H}_{5}$ (cis-51): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H})$, $2.27(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.55(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 24.6,32.1,39.8,43.4,110.9,116.4\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=300 \mathrm{~Hz}\right)$, $129.4,130.1,135.2,135.6,176.2,177.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.9 \mathrm{~Hz}\right)$; $\mathrm{IR}(\mathrm{NaCl}) 3062,2953,2869,1682$,
$1538,1477,1441,1367,1345,1296,1200,1144,1110,1070,1024,1002,863,819,752,730$, $706,693 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $314\left(\mathrm{M}^{+}, 26\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{OS}: \mathrm{C}, 61.13 ; \mathrm{H}$, 5.45. Found: C, 61.28; H, 5.54.

Cis-to-trans Isomerization of 5a in Toluene- $\boldsymbol{d}_{\mathbf{8}}$ (Eq. S2): Into a dry Pyrex NMR tube were added 5a (cis:trans $=94: 6)(0.0506 \mathrm{mmol}), 1,4$-dioxane (0.0585 mmol as an internal standard) and 0.5 mL of toluene- d_{8} under N_{2} atmosphere. Then the sample was heated at $100^{\circ} \mathrm{C}$ for 7 h ; however, isomerization was hardly confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (cis:trans $=7: 93$). Additional heating after the addition of $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(0.006 \mathrm{mmol})$ resulted in the formation of trans-5a (cis:trans $=28: 72$).

1-7. References and Notes

(1) (a) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108. (b) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. Org. Lett. 2008, 10, 101.
(2) For related transition-metal-catalyzed CO-retentive additions, see: (a) Hua, R.; Takeda, H.; Onozawa, S.; Abe Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899. (b) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957.
(c) Kashiwabara, T.: Kataoka, K.; Hua, R.; Shimada, S.; Tanaka, M. Org. Lett. 2005, 7, 2241. (d) Hua, R.; Onozawa, S.; Tanaka, M. Chem. Eur. J. 2005, 11, 3621. (e) Kashiwabara, T.; Fuse, K.; Hua, R.; Tanaka, M. Org. Lett. 2008, 10, 5469. (f) Shirakawa, E.; Yamasaki, K.; Yoshida, H.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 2899.
(3) For a recent review, see: Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2005, 44, 214, and references therein.
(4) For a catalytic decarbonylation of thioesters, see: (a) Goto, T.; Onaka, M.; Mukaiyama, T. Chem. Lett. 1980, 709. (b) Osakada, K.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1987, 28, 6321. (c) Wenkert, E.; Chianelli, D. J. Chem. Soc. Chem. Commun. 1991, 627. (d) Kato, T.; Kuniyasu, H.; Kajiura, T.; Minami, Y.; Ohtaka, A.; Kinomoto, M.; Terao, J.; Kurosawa, H.; Kambe, N. Chem. Commun. 2006, 868.
(5) For Pd- and Pt-catalyzed hydrothiolations of alkynes, see: (a) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1992, 114, 5902. (b) Bäckvall, J.-E.; Ericcson, A. J. Org. Chem. 1994, 59, 5850. (c) Ogawa, A.; Ikeda, T.: Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108.
(6) The stereochemistry of trans-4a and cis-4a was determined by N.O.E. experiment between vinyl and allyl protons.
(7) The treatment of isolated cis-4a with 2a and a catalytic amount of $\operatorname{Pd}(\mathrm{dba})_{2}(5 \mathrm{~mol} \%)$, dppe ($6 \mathrm{~mol} \%$) and 1.6 equivalent of $\mathbf{1 a}$ led to cis-to-trans isomerization (cis:trans $=39: 61$), while no isomerization took place without 1a under otherwise identical conditions. This result suggests that alkyne-coodinated Pd -complex induce the cis-to-trans isomerization. See Eq. S1.
(8) Dekker, G. P. C. M.; Elsevier, C. J.; Vrieze, K.; Leeuwen, P. W. N. M. Organometallics 1992, 11, 1598.
(9) The stereochemistry of trans-5a and cis-5a was determined by N.O.E. experiment between vinyl and allyl protons, and the regiochemistry of trans-5a was determined by ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HMBC experiment.
(10) See Eq. S2.
(11) For the oxidative addition of thioesters to $\operatorname{Pt}(0)$ complex, see: Minami, Y.; Kato, T.; Kuniyasu, H.; Terao, J.; Kambe, N. Organometallics 2006, 25, 2949, and references therein.
(12) For stoichiometric insertions of alkynes into the S-M bond, see: (a) Sugoh, K.; Kuniyasu, H.; Kurosawa, H. Chem. Lett. 2002, 31, 106. (b) Kuniyasu, H.; Yamishita, F.; Terao, J.; Kambe, N. Angew. Chem. Int. Ed. 2007, 46, 5929. (c) Kuniyasu, H.; Takekawa, K.; Yamashita, F.; Miyafuji, K.; Asano, S.; Takai, Y.; Ohtaka, A.; Tanaka, A.; Sugoh, K.; Kurosawa, H.; Kambe, N. Organometallics 2008, 27, 4788.
(13) We have reported that an anion stabilizing group on β-carbon of C-S bond of vinylsulfide promotes the oxidative addition to $\mathrm{Pt}(0)$ complex. See: (a) Kuniyasu, H.; Ohtaka, A.; Nakazono, T.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2000, 122, 2375. (b) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504.
(14) For isomerizations of the alkenyl transition metal complexes, see: (a) Brady, K. A.; Nile, T. A.; J. Organomet. Chem. 1981, 206, 299. (b) Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. Organometallics 1990, 9, 3127. (c) Murakami, M.; Yoshida, T.; Kawanami, S.; Ito, Y. J. Am. Chem. Soc. 1995, 117, 6408.

Chapter 2

Pd-Catalyzed Regioselevtive Iminothiolation of Alkynes: Remarkable Effects of $\mathbf{C F}_{3}$ Group of Iminosulfides

2-1. Introduction

1 -Azadienes, α, β-unsaturated imines, have been employed as versatile synthetic intermediates, which act as electrophiles in a 1,2-addition and Michael-type 1,4-addition, nucleophiles by nitrogen atom, and heterodienes in cycloaddition reaction such as hetero-Diels-Alder reaction. ${ }^{1}$ The condensation of α, β-unsaturated ketones with primary amines is the most convenient method for the preparation of 1 -azadienes (Eq. 1). On the other hand, the transition-metal catalyzed iminocarbon-vinylcarbon bond formation reaction also can be a promising alternative. Although some catalytic reactions such as Pd-catalyzed cross-coupling of imidoyl chlorides with vinyl stannanes and Pd-catalyzed Mizoroki-Heck-type reaction of imidoyl iodides with alkenes were reported, ${ }^{2}$ to the best of my knowledge, catalytic introduction of imino groups by the addition reactions to alkynes is still unknown (Eq. 2). ${ }^{3}$

As a part of our studies of transition-metal catalyzed reactions of organosulfides with carbon-carbon unsaturated bonds, ${ }^{4}$ our group has already reported the decarbonylative carbothiolation of alkynes using thioesters to produce vinylsulfides. Moreover, the author discovered the CO-retained addition of thioesters to alkynes as noted previous chapter. This finding led me to develop a new synthetic method of β-sulfur functionalized 1 -azadienes by the intermolecular addition reaction of iminosulfides (1) to alkynes (2) under similar reaction conditions of acylthiolations of alkynes.

2-2. Pd-Catalyzed Iminothiolation of Various Alkynes Using Iminosulfides

First, prompted by the success of trifluoroacetylthiolation of alkynes by $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{SR}$ in chapter 1 , reactions using an iminosulfide [1a; $\mathrm{CF}_{3} \mathrm{C}(=\mathrm{NPh})$-S-p-tolyl] have been scrutinized

Table 1. Pd-Catalyzed Iminothiolation of Various Alkynes (2) Using 1a ${ }^{\text {a }}$

 1a		$\begin{aligned} & +\mathrm{R}^{1}= \\ & 2 \\ & \mathrm{R}^{1}=\mathrm{R}^{2} \end{aligned}$	cat. $\mathrm{Pd}(\mathrm{dba})_{2} / \mathrm{PPh}_{3}$ 1,2-dichloroethane			
run	2		temp (${ }^{\circ} \mathrm{C}$)	time (h)	3	(\%) (cis:trans) ${ }^{\text {b }}$
1	2 a	=	80	1	3a	89 (18:82)
2	2b	$\equiv \sim \sim_{c}$	80	1	3b	81 (13:87)
3	2 c	$\ldots \sim \mathrm{CO}_{2} \mathrm{Me}$	80	2	3 c	81 (14:86)
4	2 d		80	2	3d	87 (13:87)
5	2 e	$\equiv \square$	80	3	3 e	76 (14:86)
6	2 f	$\equiv 0$	80	1	3 f	89 (98:2)
7	2 g		80	1	3 g	95 (86:14)
8	2 h		80	1	3h	74 (98:2)
9	2 i	$\equiv \widehat{<}$	80	1	3 i	83 (>99:1)
$10^{\text {c }}$	2 j	\equiv	$160^{\text {d }}$	1	3j	14 (95:5)
11	2k	$\Delta \square \equiv \square$	$150{ }^{\text {d }}$	3	3k	n.d.
12	21	$\mathrm{EtOC}(0)=\square$	$100^{\text {d }}$	3	31	91 (>99:1)
13	2m	${ }^{-0}=$	$180^{\text {d }}$	3	3m	51 (33:67)

${ }^{\text {a }}$ Unless otherwise noted, $1 \mathbf{1 a}(0.5 \mathrm{mmol}), 2(0.6 \mathrm{mmol}$ for runs $1-5,3.0 \mathrm{mmol}$ for runs $6-8,1.5 \mathrm{mmol}$ for run 9, 1.0 mmol for runs $10-13$), $\mathrm{Pd}(\mathrm{dba})_{2}(0.025 \mathrm{mmol}), \mathrm{PPh}_{3}(0.05 \mathrm{mmol})$ and 1,2 -dichloroethane $(0.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for $1-3 \mathrm{~h} .{ }^{\mathrm{b}}$ isolated yield. ${ }^{\mathrm{C}} 1,2$-dichloroethane (0.25 mL). ${ }^{\mathrm{d}}$ microwave irradiation.

(Table 1). The reaction of $1 \mathrm{a}(0.5 \mathrm{mmol})$ with 1 -octyne ($\mathbf{2 a}, 0.6 \mathrm{mmol}$) in the presence of $\mathrm{Pd}(\mathrm{dba})_{2}(0.025 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.05 \mathrm{mmol})$ in 1,2-dichloroethane at $80^{\circ} \mathrm{C}$ for 1 h produced desired adduct $\mathrm{CF}_{3} \mathrm{C}(=\mathrm{NPh}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(n-\mathrm{C}_{6} \mathrm{H}_{13}\right)(\mathrm{S}-p$-tolyl) (3a) in 89% (cis:trans $=18: 82$) yield (run 1, Table 1). ${ }^{5}$ For the synthesis of 3a, the reaction of $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(n-\mathrm{C}_{6} \mathrm{H}_{13}\right)(\mathrm{S}-p$-tolyl) (4a) with aniline was conceivable. However, 3a was not formed; only ketimine derivative [5a, $\left.\mathrm{CF}_{3} \mathrm{C}(\mathrm{OH})=\mathrm{C}(\mathrm{H}) \mathrm{C}\left(n-\mathrm{C}_{6} \mathrm{H}_{13}\right)\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right)\right]$ was yielded (Eq. 3), demonstrating the utility of the present Pd -catalyzed iminothiolation of 2 by 1 . Then, the reactions using a variety of terminal alkynes ($\mathbf{2 b} \mathbf{b} \mathbf{i}$) were attempted. Functional groups such as chlorine (2b), methoxy carbonyl (2c), 2-tetrahydropyranyl (2d) and cyclohexyl (2e), were tolerant to provide the corresponding adducts $\mathbf{3 b} \mathbf{- e}$ in good yields (runs 2-5, Table 1). Although excess amounts of arylalkynes ($\mathbf{2 f - i} \mathbf{i}$,

3-6 equiv.) were needed, both electron-rich and electron-poor arylalkynes reacted with $\mathbf{1 a}$ to form cis-3 in high yields (runs 6-9, Table 1). ${ }^{5,6}$ Because addition to internal alkynes was inefficient under similar conditions, I. examined microwave irradiation (runs 10-13, Table 1). Addition to 4 -octyne ($\mathbf{2} \mathbf{j}$) gave the low yield of $\mathbf{3} \mathbf{j}$ even at high temperature (run 10, Table 1). No reaction took place when diphenylacetylene ($\mathbf{2 k}$) was employed (run 11, Table 1). On the other hand, the reaction using ethyl phenylpropiolate (21) and 3-methoxy-1-phenylpropyne ($\mathbf{2 m}$), which are active for Pt-catalyzed decarbonylative arylthiolation by thioesters, proceeded regioselectively to afford $\mathbf{3 1}$ and $\mathbf{3 m}$ in 91% (cis:trans $=>99: 1$) and 51% (cis:trans $=33: 67$) yields, respectively (runs 12 and 13, Table 1). ${ }^{7,8}$ The structure of cis- $\mathbf{3 1}$ was unambiguously determined by X-ray crystallography (Fig. 1). ${ }^{9}$

Figure 1. ORTEP Diagram of cis-31.

The results of the additions of various iminosulfides (1) to $\mathbf{2 l}$ were summarized in Table 2. Reaction of $\mathbf{1 b} \mathbf{- c}$ having electron-neutral and withdrawing substituent at the 4-position of S-aryl groups took place to give the corresponding adducts $\mathbf{3 n}$ and $\mathbf{3 0}$, but $\mathbf{3 o}$ was in a moderate yield (runs 1 and 2, Table 2). Introduction of both elecrto-donating and withdrawing groups into 4-position of N -aryl group decreased the reactivity; poor yields of $\mathbf{3 p}$ and $\mathbf{3 q}$ were formed (runs 4 and 6 , Table 2). To our delight, the yields of $\mathbf{3 0} \mathbf{- q}$ were improved when increaseing concentration even with shorter reaction time (runs 3,5 and 7, Table 2). The present reaction using $\mathbf{1 f}$ with benzyl group at R^{5} also produced 3 r in 91% yield (run 8, Table 2). Then, the addition of iminosulfides containing substituents at R^{3} were examined. In the case of $1 \mathbf{g}\left(\mathrm{R}^{3}\right.$ $=\mathrm{Ph}$), the desired adduct 3 s was obtained in 44% yield under $10 \mathrm{~mol} \%$ of $\mathrm{Pd} / 2 \mathrm{P}(p \text {-tolyl) })_{3}$ (run 9, Table 2). On the other hand, the reaction of phenethyl substituted iminosulfide ($\mathbf{1 h}, \mathrm{R}^{3}=$ $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$) with $\mathbf{2 l}$ gave no adduct $\mathbf{3 t}$ (run 10, Table 2).

Table 2. Pd-Catalyzed Iminothiolation of 2I Using Various Iminosulfides (1) ${ }^{\text {a }}$

1
21
3

run	1	R^{1}	R^{2}	Ar^{3}	time (h)	3	(\%) (cis:trans) ${ }^{\text {b }}$
1	1b	CF_{3}	Ph	Ph	3	3n	82 (>99:1)
2	1 c	CF_{3}	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	Ph	3	30	$50^{\text {c }}$ (>99:1)
3	1 c				1	30	71 (>99:1)
4	1d	CF_{3}	p-tolyl	$p-\mathrm{MeOC}_{6} \mathrm{H}$	3	3p	$35^{\text {c }}$ (>99:1)
5	1d				1	3p	88 (>99:1)
6	1 e	CF	p-tolyl	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	3	3q	$34^{\text {c }}$ (>99:1)
7	1 e				1	3 q	85 (79:21)
${ }_{9}^{8}$	1f	CF_{3}	$\mathrm{CH}_{2} \mathrm{Ph}$	Ph	2	3 r	91 (97:3)
$9^{\text {d }}{ }^{\text {d }}$	1 g	Ph	p-tolyl	Ph	3	3 s	44 (81:19)
$10^{\text {d }}$	1h	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$	p-tolyl	Ph	3	3 t	n.d.

${ }^{\text {a }}$ Unless otherwise noted, $1(0.5 \mathrm{mmol})$, $21(1.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(0.025 \mathrm{mmol}), \mathrm{PPh}_{3}$ (0.05 mmol) and 1,2-dichloroethane (0.5 mL for runs $1,2,4,6$ and $8,0.25 \mathrm{~mL}$ for runs 3 , $5,7,9$ and 10) at $100^{\circ} \mathrm{C}$ using microwave irradiation for $1-3 \mathrm{~h} .{ }^{\mathrm{b}}$ isolated yield. ${ }^{6}$ NMR yield. ${ }^{d} \mathrm{Pd}(\mathrm{dba})_{2}(0.05 \mathrm{~mol})$ and $P(p \text {-tolyl })_{3}(0.1 \mathrm{mmol})$.

2-3. Oxidative Addition of $\mathbf{R}^{\mathbf{3}} \mathrm{C}(=\mathrm{NPh}) \mathrm{S}-\mathrm{p}$-tolyl to $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{\mathbf{2}}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$

To get the imformaiton on the effect of CF_{3} group, the oxidative addition of 1 a to $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ under room temperature was monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy (Eq. 4). As a result, cis- $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left[\mathrm{C}\left(=\mathrm{NPh}^{2}\right) \mathrm{CF}_{3}\right](\mathrm{S}-p$-tolyl) (6a) was smoothly produced quantitatively for 1 h . On the other hand, the reaction using 1 g was very sluggish to afford only 2% yield of $\mathbf{6 b}$; even after 23 h , a mixture of $\mathbf{6 b}$ and $\mathbf{7 b}$ (dimer of $\mathbf{6 b}$) was formed in 32% total yield. These facts indicated that CF_{3} group accelerates the oxidative addiition.

2-4. A Proposed Reaction Mechanism

A plausible reaction mechanism of the present iminothiolation of alkynes ($\mathbf{2} ; \mathrm{R}^{1} \mathrm{C} \equiv \mathrm{CR}^{2}$) using iminosulfides $\left(\mathbf{1} ; \mathrm{R}^{3} \mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{SR}^{5}\right)$ was depicted in Scheme 3. The oxidative addition of $\mathbf{1}$ to $\operatorname{Pd}(0) \mathrm{L}_{\mathrm{n}}$ complex triggers the reaction to afford $\mathrm{PdL}_{\mathrm{n}}\left[\mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{R}^{3}\right]\left(\mathrm{SR}^{5}\right)(8) .{ }^{10}$ Subsequent
regio- and stereoselective insertion of alkyne 2 into the $\mathrm{S}-\mathrm{Pd}$ bond of 8 generates $\operatorname{PdL}_{n}\left[\mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{R}^{3}\right]\left[\right.$ cis- $\left.\mathrm{C}\left(\mathrm{R}^{1}\right)=\mathrm{C}\left(\mathrm{SR}^{5}\right)\left(\mathrm{R}^{2}\right)\right]$ (9). ${ }^{11}$ Finally, the $\mathrm{C}-\mathrm{C}$ bond-forming reductive elimination of cis-3 from 9 with regeneration of $\operatorname{Pd}(0) \mathrm{L}_{\mathrm{n}}$ completes the catalytic cycle. Cis-to-trans isomerisation of the adduct can be explained as follows: the oxidative addition of a vinyl-C-S bond of cis-3 to a $\operatorname{Pd}(0) \mathrm{L}_{\mathrm{n}}$ complex to produce $\mathrm{PdL}_{\mathrm{n}}\left[\right.$ cis $\left.-\mathrm{C}\left(\mathrm{R}^{2}\right)=\mathrm{C}\left(\mathrm{R}^{1}\right)\left\{\mathrm{C}\left(=\mathrm{NR}^{4}\right) \mathrm{R}^{3}\right\}\right]\left(\mathrm{SR}^{5}\right)\left(\right.$ cis-10), ${ }^{12}$ cis-to-trans isomerization of cis-10, ${ }^{13}$ and the reductive elimination of trans-3 from trans-10.

Scheme 3. A Plausible Mechanism for the Pd-Catalyzed Iminothiolation of Alkynes (2) Using Iminosulfides (1).

2-5. Synthesis of Furan Derivatives

Reagents and conditions: (a) 1 a (1.0 equiv.), $\mathbf{2 n}$ (1.2 equiv.), $\mathrm{Pd}(\mathrm{dba})_{2}$ (0.05 equiv.), PPh_{3} (0.1 equiv.), $\mathrm{DCE}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h}$; then, ACOH (5 equiv.), $\mathrm{DCE}, 60^{\circ} \mathrm{C}, 11 \mathrm{~h}$; (b) $1 \mathrm{i}(1.0$ equiv.), 2 n (1.2 equiv.), $\mathrm{Pd}(\mathrm{dba})_{2}\left(0.05\right.$ equiv.), $\mathrm{PPh}_{3}\left(0.1\right.$ equiv.), DCE, $80^{\circ} \mathrm{C}, 1 \mathrm{~h} . \mathrm{Ts}=p$-toluenesulfonyl.

The present iminothiolation could be applied to the synthesis of furan derivatives. Furan derivatives have attracted much attention due to pharmaceuticals and flavor and fragrance compounds. ${ }^{14}$ Substituted furan (11a) was successfully obtained from the reaction of 1a with 3-methyl-1-butyn-3-ol (2n) and the following treatment of crude adduct (3u) with AcOH (Eq. 5). The overall yield of $\mathbf{1 1 a}$ for the two-pot sequence was 82% yield. The reaction of $\mathbf{1 i}$ containing tosyl group at imine moiety with $\mathbf{2 n}$ afforded $\mathbf{1 1 b}$ in 89% yield in one-pot without addition of AcOH (Eq. 6).

2-6. Conclusions

The present study substantiated that the iminothiolation of alkynes with iminosulfides gave rise to the formation of 1-azadiene derivatives. The author found that introduction of CF_{3} group to the iminocarbon moiety is a key to achieve the reaction. Furthermore, the present synthesis of 1-azadienes was applicable to the formation of furan derivatives.

2-7. Experimental Section

General Comments: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in CDCl_{3}, benzene- d_{6} and toluene- d_{8} solution were recorded with JEOL JNM-Alice $400(400 \mathrm{MHz})$ spectrometer. The chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectra were recorded relative to $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard and $\mathrm{C}_{6} \mathrm{H}_{6}(\delta 7.15)$, and the chemical shifts in the ${ }^{13} \mathrm{C}$ NMR spectra were recorded relative to $\mathrm{CHCl}_{3}(\delta 77.0)$ and $\mathrm{C}_{6} \mathrm{H}_{6}(\delta 128.6)$. The IR spectra were measured by Perkin-Elmer Model 1600 spectrometer and JASCO FT/IR-4200. Mass spectra (EI), high-resolution mass spectra (HRMS) and elemental analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Melting points were measured by a MPA100 Optimelt Automated Melting Point System. Preparative TLC was carried out using Wakogel B-5F silica gel. The X-ray crystal data of cis-3l were collected using Rigaku RAXIS-RAPID Imaging Plate diffractometer. The ORTEP diagram was shown in 50% probability ellipsoid. All reactions were carried out under a N_{2} atmosphere. Unless otherwise noted, commercially available reagents were used without purification. All solvents were distilled before use. Iminosulfides 1 were prepared by the reactions of the corresponding imidoyl chloride with thiols in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ under benzene reflux. The platinum complex $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ was synthesized according to the literature (Inorg. Synth. 1978, 18, 120). Benzene- d_{6} and toluene- d_{8} were purified by distillation from sodium benzophenon ketyl before use.

Preparation of $\mathbf{F}_{\mathbf{3}} \mathbf{C C}\left(=\mathbf{N C}_{6} \mathbf{H}_{\mathbf{5}}\right) \mathbf{S C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}} \mathbf{(1 a)}$: Into a three-neaked 100 mL reaction glass equipped with reflux condenser were added p-tolylthiol ($6.23 \mathrm{~g}, 30.0 \mathrm{mmol}$), benzene (30 mL), $\mathrm{F}_{3} \mathrm{CC}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{Cl}(3.66 \mathrm{~g}, 29.9 \mathrm{mmol})^{15}$ and triethylamine $(8.0 \mathrm{~mL}, 58 \mathrm{mmol})$. After the solution was stirred under reflux for 3 h , the white precipitate was filtered and the filtrate was
evaporated and dried in vacuo. 1a were isolated in 90% ($7.94 \mathrm{~g}, 26.9 \mathrm{mmol}$) yields by recrystallization using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane.

$\mathbf{F}_{3} \mathbf{C C}\left(=\mathrm{NC}_{6} \mathbf{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{\mathbf{3}}$ (1a): pale yellow solid; $\mathrm{mp} 61{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.31(\mathrm{~s}, 3 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.33(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.2,118.5(\mathrm{c}, J=278 \mathrm{~Hz}), 119.1,122.7,125.5,128.9,129.8$, $135.6,140.3,146.9,153.1(\mathrm{c}, J=35 \mathrm{~Hz})$; $\mathrm{IR}(\mathrm{KBr}) 1627,1594,1485,1451,1280,1214$, $1186,1178,1160,1148,1120,1107,1074,1019,973,814,766,696,524,501,410 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $295\left(\mathrm{M}^{+}, 39\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NS}$: 295.0643. Found: 295.0640 .

Other iminosulfides ($\mathbf{1 b} \mathbf{b}$) were synthesized by similar procedures.

$\mathbf{F}_{3} \mathbf{C C}\left(=\mathrm{NC}_{6} \mathbf{H}_{5}\right) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{5}}$ (1b): pale yellow solid; $\mathrm{mp} 50^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 118.5(\mathrm{c}, J=279 \mathrm{~Hz})$, 119.1, 125.6, 126.6, 129.0, 129.1, 129.8, 135.5, 146.8, 152.4 (c, $J=35$ $\mathrm{Hz})$; $\operatorname{IR}(\mathrm{KBr}) 3063,1651,1621,1543,1594,1581,1485,1443,1289,1214,1183,1150$, $1072,1024,1004,982,824,770,754,728,706,695,526,475,418 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 281\left(\mathrm{M}^{+}, 32.8\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NS}: 281.0486$. Found: 281.0482.

$\mathbf{F}_{3} \mathbf{C C}\left(=\mathbf{N C}_{6} \mathbf{H}_{\mathbf{5}}\right) \mathbf{S C}_{6} \mathbf{H}_{4}$-p- $\mathbf{C l}$ (1c): yellow solid; mp $66{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 118.1(\mathrm{c}, J=279 \mathrm{~Hz}), 124.6,125.4,128.7,129.0,13.2,136.4$, 146.3, 151.3 (c, $J=35.4 \mathrm{~Hz}$); IR (KBr) 3034, 1630, 1594, 1572, 1477, 1450, 1392, 1280, $1215,1185,1148,1094,1026,1015,971,825,767,746,728,696,521,501,418,412 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $315\left(\mathrm{M}^{+}, 20.0\right)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{ClF}_{3} \mathrm{NS}$: 315.0096. Found: 315.0089.

$\mathbf{F}_{\mathbf{3}} \mathbf{C C}\left(=\mathrm{NC}_{6} \mathrm{H}_{4}-p-\mathrm{OCH}_{3}\right) \mathrm{SC}_{6} \mathrm{H}_{\mathbf{4}}$ - $\boldsymbol{p}-\mathrm{CH}_{\mathbf{3}} \mathbf{(1 d)}$: yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=9.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.2,55.4$, $114.1,118.7$ (c, $J=279 \mathrm{~Hz}$), 121.7, 123.3, 129.9, $135.4,139.6,140.2,151.1(\mathrm{c}, J=35 \mathrm{~Hz})$, 157.9; IR (NaCl) 2951, 2837, 1624, 1579, 1504, 1466, 1442, 1280, 1248, 1214, 1187, 1147, $1108,1034,1019,975,951,832,810,765,703 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 325\left(\mathrm{M}^{+}\right.$, 35.2); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3}$ NOS: 325.0748 . Found: 325.0746.

$\mathbf{F}_{\mathbf{3}} \mathbf{C C}\left(=\mathrm{NC}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{- p} \mathbf{- C l}\right) \mathbf{S C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{- p} \mathbf{-} \mathbf{C H}_{\mathbf{3}}(\mathbf{1} \mathbf{e})$: yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=8.3 \cdot \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25-7.29(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $21.1,118.4$ (c, $J=279 \mathrm{~Hz}$), 120.5, 122.3, 128.9, 129.9, 130.9, 135.5, $140.5,145.1,153.7$ (c, $J=34 \mathrm{~Hz}$); IR (NaCl) 3027, 2923, 1885, 1628, 1484, 1402, 1284, $1219,1189,1151,1097,1013,978,953,833,809,734,732,713,655 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 329\left(\mathrm{M}^{+}, 27.7\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{NS}: 329.0253$. Found: 329.0254.

$\mathbf{F}_{3} \mathbf{C C}\left(=\mathrm{NC}_{6} \mathbf{H}_{5}\right) \mathrm{SCH}_{2} \mathbf{C}_{6} \mathbf{H}_{5}(\mathbf{1 f})$: pale yellow solid; mp $71{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}$) major isomer $\delta 4.25(\mathrm{~s}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=6.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 4 \mathrm{H})$, 7.35-7.40 (m, 3 H): minor isomer $\delta 4.23(\mathrm{~s}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2$ H), Other peaks overlap with those of major isomer.; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3},-40^{\circ} \mathrm{C}\right) \delta$ $34.6,36.1$ (c, $J=3.3 \mathrm{~Hz}$), 118.2, 118.4, 118.5 (c, $J=278 \mathrm{~Hz}$), 124.1, 125.7, 127.7, 128.2, $128.6,128.8,129.1,129.4,133.6,135.3,146.7,147.9,153.6$ (c, $J=34 \mathrm{~Hz}$); IR (KBr) 3083, $3024,3006,2332,1962,1891,1816,1624,1593,1487,1454,1440,1292,1245,1215,1185$, $1161,1148,1126,1075,1026,1001,981,918,908,827,774,726,700,612,591,560 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z 295 ($\mathrm{M}^{+}, 39.1$); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NS}$: 295.0643. Found: 295.0645.

$\mathbf{P h C} \mathbf{C}=\mathbf{N P h}) \mathbf{S C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}^{\mathbf{- p}} \mathbf{- \mathbf { C H } _ { \mathbf { 3 } } \mathbf { (1 g })}$: yellow solid; $\mathrm{mp} 72{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.19(\mathrm{~s}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J=6.4,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.20-7.27$ (m, 3 H), 7.36 (dd, $J=6.3,6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.65 (d, $J=5.8 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.0,120.0,124.2,127.9,128.5$, $128.7,128.8,129.0,129.1,129.5,129.9,133.4,137.7,150.4$; IR (KBr) $3347,3077,3052$, $3030,2918,1955,1906,1797,1645,1574,1489,1445,1397,1351,1304,1240,1208,1182$, $1167,1105,1089,1075,1025,1015,998,933,921,899,847,832,809,766,690,665,644$, $629,609,594,555 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $303\left(\mathrm{M}^{+}, 0.2\right)$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NS}$: 303.1082. Found: 303.1090.

$\mathbf{P h C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C}(=\mathbf{N P h}) \mathrm{SC}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}$ - $\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}}$ (1h): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2$ H), 7.10-7.24 (m, 7 H), 7.34-7.38 (m, 3 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 21.3,33.4,39.5,119.7,124.1,126.0,126.9,128.3,128.5$, $129.0,130.1,135.8,139.8,140.9,150.3,166.8$; IR (NaCl) $3060,3027,2923,2861,1734$, $1625,1592,1486,1453,1416,1265,1220,1179,1060,1018,993,945,901,867,812,751$, $696 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $331\left(\mathrm{M}^{+}, 0.3\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NS}$: 331.1395.

$\mathbf{F}_{\mathbf{3}} \mathbf{C C}\left(=\mathrm{N}-\mathrm{SO}_{\mathbf{2}}-\mathrm{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}\right.$-p- $\left.\mathrm{CH}_{\mathbf{3}}\right) \mathrm{SC}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathrm{CH}_{\mathbf{3}}$ (1i): white solid; mp $143{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, $7.24(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=12$ $\mathrm{Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.5,21.7,117.7(\mathrm{c}, J=$ 283 Hz), 121.1, 126.2, 127.7, 129.7, 130.3, 136.1, 136.2, 142.2, 145.1, $167.0(\mathrm{c}, J=35 \mathrm{~Hz})$; IR (KBr) 3326, 3239, 3114, 1596, 1562, 1491, 1452, 1401, 1336, 1304, 1291, 1273, 1206, $1185,1151,1087,1040,1017,982,909,818,789,722,703,665,642,603,570 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $373\left(\mathrm{M}^{+}, 8.3\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}_{2}$: 373.0418. Found: 373.0420 .

Table S1. Optimization of the reaction conditions ${ }^{\text {a }}$

 1a		$\begin{gathered} +\overline{\overline{=}} n-\mathrm{C}_{6} \mathrm{H}_{13} \\ \mathbf{2 a} \end{gathered}$		cat. M (5 mol\%) ligand ($\mathrm{Y} \mathrm{mol} \%$) solvent (0.5 mL) $\mathrm{Ar}=p$-tolyl		 32	
run	M	ligand	Y	solvent	temp	time	3a (\%) (cis/trans) ${ }^{\text {b }}$
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$			toluene	$80^{\circ} \mathrm{C}$	25 h	$75^{\text {c }}$ (22:78)
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-		DME	$80^{\circ} \mathrm{C}$	25 h	$71^{\text {c }}$ (22:78)
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	-	1,4-dioxane	$80^{\circ} \mathrm{C}$	25 h	$56^{\text {c }}$ (24:76)
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	-	MeCN	$80^{\circ} \mathrm{C}$	25 h	$82^{\text {c }}$ (28:72)
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	-	DMF	$80^{\circ} \mathrm{C}$	25 h	69 (23:77)
6	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		-	DCE	$80^{\circ} \mathrm{C}$	25 h	86 (21:79)
7	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	-	DCE	$80^{\circ} \mathrm{C}$	1 h	71 (27:73)
8	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		-	DCE	$80^{\circ} \mathrm{C}$	5 h	83 (24:76)
9	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		-	DCE	$80^{\circ} \mathrm{C}$	10 h	74 (22:78)
10	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$		-	DCE	r.t.	25 h	25 (13:87)
11	-	-	-	DCE	$80^{\circ} \mathrm{C}$	25 h	n.d.
12	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\stackrel{-}{-}$	-	DCE	$80^{\circ} \mathrm{C}$	1 h	n.d.
1314	$\mathrm{Pd}(\mathrm{dba})_{2}$	PPh_{3}	20	DCE	$80^{\circ} \mathrm{C}$	1 h	84 (22:78)
	$\mathbf{P d}(\mathrm{dba})_{2}$	$\mathbf{P P h}_{3}$	10	DCE	$80^{\circ} \mathrm{C}$	1 h	$\begin{gathered} 93(20: 80) \\ (89(18: 82))^{d} \end{gathered}$
15	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\mathrm{P}\left(\mathrm{o}\right.$-toly1) ${ }_{3}$	20	DCE	$80^{\circ} \mathrm{C}$	1 h	9 (14:86)
16	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\mathrm{P}\left(\mathrm{o}-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}$	20	DCE	$8^{80}{ }^{\circ} \mathrm{C}$	1 h	12 (15:85)
17	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\mathrm{P}(\text { p-toly })_{3}$	20	DCE	$80^{\circ}{ }^{\circ} \mathrm{C}$	1 h	70 (22:78)
18	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\mathrm{P}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}$	20	DCE	$80^{\circ} \mathrm{C}$	1 h	65 (19:81)
19	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\mathrm{P}\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3}$	20	DCE	$8^{80}{ }^{\circ} \mathrm{C}$	1 h	77 (25:75)
20	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\mathrm{P}\left(p-\mathrm{CF}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}\right)_{3}$	20	DCE	$8^{80}{ }^{\circ} \mathrm{C}$	1 h	64 (20:80)
21	$\mathrm{Pd}(\mathrm{dba})_{2}$	TFP	20	DCE	$8^{80}{ }^{\circ} \mathrm{C}$	1 h	75 (29:71)
22	$\mathrm{Pd}(\mathrm{dba})_{2}$	PCy_{3}	20	DCE	$8^{80}{ }^{\circ} \mathrm{C}$	1 h	57 (25:75)
$\begin{array}{r} 23 \\ 24 \\ \hline \end{array}$	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\mathrm{P}(t-\mathrm{Bu})_{3}$	20	DCE	$80^{\circ} \mathrm{C}$	1 h	75 (20:80)
	$\mathrm{Pd}(\mathrm{dba})_{2}$	dppe	20	DCE	$80^{\circ} \mathrm{C}$	1 h	37 (19:81)

[^1]
Reaction of $\mathrm{F}_{3} \mathrm{CC}\left(\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}$ (1a) with 1-Octyne (2a) in the Presence of $\mathbf{P d}(\mathrm{dba})_{2} / 2 \mathrm{PPh}_{3}$ (run 1 of Table 1): General Procedure of Palladium-Catalyzed

 Iminothiolation of Alkynes Using Iminosulfides: Into a two-neaked 3 mL reaction glass were added $\mathrm{Pd}(\mathrm{dba})_{2}(14.4 \mathrm{mg}, 0.025 \mathrm{mmol}), \mathrm{PPh}_{3}(13.1 \mathrm{mg}, 0.05 \mathrm{mmol}), 1 \mathrm{a}(149.9 \mathrm{mg}, 0.507$ mmol), 2a ($67.2 \mathrm{mg}, 0.610 \mathrm{mmol}$) and 0.5 mL of 1,2-dichloroethane under N_{2} atmosphere. After the solution was stirred at $80^{\circ} \mathrm{C}$ for 1 h , the resultant mixture was filtered through Celite, and the filtrate was evaporated and dried in vacuo. 3a was isolated in $89 \%(183 \mathrm{mg}$, cis:trans $=$ 18:82) yields by preparative TLC using hexane and diethyl ether (10:1) as an eluent.
$\mathbf{C F}_{3} \mathbf{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (3a): The title compound was obtained as a mixture of inseparable stereoisomers (cis:trans $=18: 82$); yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) trans-isomer $\delta 0.81(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.85-0.89(\mathrm{~m}, 2 \mathrm{H})$, 0.94-1.03 (m, 2 H$), 1.68-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H})$, $6.71(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.93-6.96(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{dd}, J=7.3,7.8$ $\mathrm{Hz}, 2 \mathrm{H})$: cis-isomer $\delta 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.78$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.26(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, Other peaks overlap with those of trans-isomer.; N.O.E. experiment: Irradiation of the aryl doublet at $\delta 6.71$ resulted in a 1.7% enhancement of the signal at $\delta 5.79$ (vinyl singlet) and a 2.4% enhancement of the signal at $\delta 1.83$ (methylene triplet); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) trans-isomer $\delta 14.8,21.5,23.3,28.8,28.9,32.3,36.3$, $118.3,121.3$ (c, $J=268 \mathrm{~Hz}$), 121.6, 126.3, 129.1, 129.5, 130.6, 134.0, 139.0, 155.8 (c, $J=34$ Hz): cis-isomer $\delta 14.7,21.6,23.2,29.5,31.0,32.1,38.5,113.6,119.3,124.7,129.4,130.8$, $136.1,139.9$, Other peaks cannot be detected.; IR (NaCl) $3382,3024,2930,2854,1677,1600$, $1578,1534,1493,1449,1398,1382,1312,1282,1244,1226,1187,1141,1111,1063,1040$, $1018,989,912,891,877,812,761,735,694,583 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $405\left(\mathrm{M}^{+}, 23\right)$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NS}: 405.1738$. Found: 405.1733.

Other iminothiolation products ($\mathbf{3 b} \mathbf{b} \mathbf{i}$) using terminal alkynes ($\mathbf{2 b} \mathbf{b} \mathbf{i}$) were synthesized by similar procedures.

$\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{4} \mathbf{C l}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (3b): The title compound was obtained as a mixture of inseparable stereoisomers (cis:trans $=13: 87$); yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) trans -isomer $\delta 0.97-1.04(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.94(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{dd}, J=7.8$, $7.8 \mathrm{~Hz}, 2 \mathrm{H}$): cis-isomer $\delta 1.26(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.74-6.82(\mathrm{~m} 4 \mathrm{H}), 6.97-7.01$ $(\mathrm{m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, other peaks overlap with those of trans-isomer; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) trans-isomer $\delta 20.9,25.1,31.0,34.6,44.4,118.5,120.6$ (c, $J=278 \mathrm{~Hz}$), $120.9,125.8,129.0,130.1,133.4,138.5,147.9,148.4,155.1$ ($\mathrm{c}, J=35 \mathrm{~Hz}$): cis-isomer $\delta 21.0$, $27.5,31.8,36.9,44.2,118.7,135.4,148.7$, Other peaks cannot be detected.; IR $(\mathrm{NaCl}) 3393$,
$3023,2956,2869,1681,1638,1600,1556,1493,143,1398,1379,1282,1248,1226,1185$, $1134,1018,1000,907,811,749,729,695,655,569 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $411\left(\mathrm{M}^{+}\right.$, 19); HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{NS}$: 411.1035 . Found: 411.1021.

$\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}(\mathbf{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{CH}_{3}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3} \quad$ (3c): The title compound was obtained as a mixture of inseparable stereoisomers (cis:trans $=14: 86$); yellow oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}) trans-isomer $\delta 1.59(\mathrm{tt}, J=6.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{t}, J=7.8$
$\mathrm{Hz}, 2 \mathrm{H}), 2.00(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 6.02(\mathrm{~s}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}):$ cis-isomer $\delta 1.74(\mathrm{tt}, J=6.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{tt}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, other peaks overlap with those of trans-isomer; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) trans-isomer $\delta 21.1,23.0,32.2,34.5,51.5$, $118.1,120.5,122.5(\mathrm{c}, J=287 \mathrm{~Hz}), 125.7,127.5,128.8,129.9,133.1,138.5,147.6,155.1$ (c, J $=35 \mathrm{~Hz}$), 173.5: cis-isomer $\delta 21.3,24.9,32.9,36.6,51.6,118.3,128.5,135.2,139.5,148.0$, 173.3, Other peaks cannot be detected.; IR (NaCl) $3023,2952,2868,1737,1665,1596,1546$, $1493,1485,1449,1438,1399,1369,1317,1225,1188,1138,1109,1091,1018,910,812,759$, $729,694,580 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $421\left(\mathrm{M}^{+}, 1.7\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}$: 421.1323. Found: 421.1318.

$\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}(\mathbf{H})=\mathbf{C}\left(\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(2-\mathrm{C}_{5} \mathrm{H}_{9} \mathbf{O}\right)\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3} \quad$ (3d):

The title compound was obtained as a mixture of inseparable stereoisomers (cis:trans $=13: 87$); yellow oil; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$) trans-isomer $\delta 1.22-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.53(\mathrm{~m}, 2 \mathrm{H})$, $1.63-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.17-3.23$ $(\mathrm{m}, 1 \mathrm{H}), 3.30-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.69(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 6.66$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.05-7.13 (m, 2 H): cis-isomer $\delta 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.76(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H})$, $7.25(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, other peaks overlap with those of trans-isomer, ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\mathrm{C}_{6} \mathrm{D}_{6}$) trans-isomer $\delta 19.6,21.0,25.9,30.9,36.3,61.7,65.1,98.7,119.3,120.9(\mathrm{c}, J=277 \mathrm{~Hz})$, $121.5,126.0,128.5,129.0,130.2,133.5,138.5,145.6,148.3,154.9(\mathrm{c}, J=34 \mathrm{~Hz})$: cis-isomer δ $19.5,21.1,38.1,61.7,66.2,146.7,118.8,124.4,128.9,129.0,129.3,130.2,135.6,148.8$, Other peaks cannot be detected.; IR $(\mathrm{NaCl}) 3058,3022,2944,2871,2280,1734,1662,1595,1547$, $1492,1485,1452,1398,1385,1352,1322,1286,1225,1186,1136,1077,1033,998,968,906$, $871,812,777,759,728,692,631,583,557 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $449\left(\mathrm{M}^{+}, 0.5\right)$; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}: 449.1636$. Found: 449.1639.

trans- $\mathrm{CF}_{3} \mathbf{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\boldsymbol{c}-\mathrm{C}_{6} \mathrm{H}_{11}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3} \quad$ (trans-3e): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.69-0.91(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~d}$, $J=13 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~d}, J=13 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H})$, $1.78-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2$ H), $6.85(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.09(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.4,26.6,27.0,33.5,43.6,117.3,121.3(\mathrm{c}, J=277 \mathrm{~Hz})$, $122.0,126.4,129.3,129.7,130.6,133.4,138.6,148.8,153.7,156.4$ (c, $J=34 \mathrm{~Hz}) ;$ IR (NaCl) 3058, 3022, 2928, 2853, 1661, 1595, 1542, 1492, 1449, 1399, 1380, 1311, 1280, 1224, 1188, 1136, 1101, 1072, 1057, 1041, 1018, 986, 910, 879, 811, 761, 727, 694, 634, $587 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $403\left(\mathrm{M}^{+}, 13\right)$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NS}: \mathrm{C}, 68.46 ; \mathrm{H}, 6.00 ; \mathrm{N}, 3.47$. Found: C, 68.28; H, 5.88; N, 3.41.

cis- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (cis-3f): yellow solid; mp $114{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) main isomer $\delta 2.13$ ($\mathrm{s}, 3$ H), $6.26(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) main isomer $\delta 20.9,119.4,119.7$ (c, $J=277$ Hz), 120.7, 125.9, 128.1, 128.2, 128.8, 129.1, 129.3, 131.2, 133.7, 137.0, 137.2, 147.5, 147.6, 155.1 (c, $J=35 \mathrm{~Hz}$), 173.5; N.O.E. experiment: Irradiation of the vinyl singlet at $\delta 6.26$ resulted in a 7.0% enhancement of the signal at $\delta 6.54$ (aryl doublet); IR (KBr) 3080,3060 , $3023,3000,2945,2921,2868,1656,1585,1566,1484,1446,1401,1326,1284,1268,1227$, $1189,1169,1140,1092,1057,1018,1000,957,916,904,852,839,818,764,752,692,583$, $563,552 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $396\left(\mathrm{M}^{+}, 74\right)$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NS}: \mathrm{C}, 69.50 ; \mathrm{H}$, 4.56 ; N, 3.52. Found: C, 69.32; H, 4.48; N, 3.62.

cis- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3}$
yellow solid; mp $100{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) main isomer δ $2.15(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) main isomer $\delta 21.9,22.0,119.9,120.7(\mathrm{c}, J=277 \mathrm{~Hz}), 121.7,126.8,129.1,129.7$, $129.8,130.0,130.2,131.9,135.2,137.7,140.2,148.2,148.6,156.2$ (c, $J=34 \mathrm{~Hz}$); IR (KBr) $3023,2924,2324,1903,1658,1584,1505,1484,1448,1401,1380,1322,1308,1285,1264$, $1227,1188,1169,1141,1092,1059,1018,957,939,903,855,813,784,755,714,689,649$, $634,596,572 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $411\left(\mathrm{M}^{+}, 48.6\right)$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NS}: \mathrm{C}$, 70.05 ; H, 4.90; N, 3.40. Found: C, 69.83; H, 4.68; N, 3.47.

cis- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CF}_{3}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3} \quad$ (cis-3h): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) main isomer $\delta 2.15(\mathrm{~s}, 3 \mathrm{H})$, $6.30(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 7.05 ($\mathrm{d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-7.39$ ($\mathrm{m}, 5$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) main isomer $\delta 21.1,119.8$ (c, $J=$ $277 \mathrm{~Hz}), 120.9,121.3,123.8(\mathrm{c}, J=239 \mathrm{~Hz}), 125.3(\mathrm{c}, J=4.1 \mathrm{~Hz}), 126.3,128.1,128.7,129.1$, $129.7,130.0(\mathrm{~d}, J=32 \mathrm{~Hz}), 131.0,137.8,141.1,146.4,147.6,154.8(\mathrm{c}, J=35 \mathrm{~Hz}) ;$ IR (NaCl) $3059,302,2979,2925,2869,1901,1794,1660,1615,1593,1543,1493,1485,1450,1408$, $1325,1297,1268,1226,1169,1131,1090,1066,1017,961,908,843,809,771,757,741,693$, $638,609,584,555 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $465\left(\mathrm{M}^{+}, 31.6\right)$; Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{NS}$: C, 61.93; H, 3.68; N, 3.01. Found: C, 61.68; H, 3.56; N, 2.99.

cis- $\mathrm{CF}_{3} \mathbf{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathbf{C}(\mathbf{H})=\mathbf{C}\left(\mathbf{3}-\mathrm{C}_{4} \mathrm{H}_{3} \mathbf{S}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad$ (cis-3i): yellow solid; mp $78{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) main isomer $\delta 2.18$ ($\mathrm{s}, 3$ $\mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.97(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{dd}, J=2.9$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=7.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.30(\mathrm{dd}, J=7.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ main isomer $\delta 21.0,118.6,119.7$ (c, $J=277 \mathrm{~Hz}$), 121.0, 125.7, 125.8, 125.9, 126.8, 128.8, 129.3, 129.4, 130.5, 136.9, 138.8, $141.0,147.6,154.7$ (c, $J=35 \mathrm{~Hz}$); IR (KBr) 3110, 3060, 3023, 3006, 2921, 1661, 1587, 1493, $1483,1448,1410,1317,1273,1227,1191,1166,1138,1091,1079,1054,1017,994,909,888$, $870,833,816,778,768,746,726,688,649,573 \mathrm{~cm}^{-1}$; mass spectrum (CI) m/e $404\left(\mathrm{M}^{+}, 100\right)$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NS}_{2}: \mathrm{C}, 62.51 ; \mathrm{H}, 4.00 ; \mathrm{N}, 3.47$. Found: C, 62.22; H, 3.82; N, 3.50.

Reaction of $\mathrm{F}_{3} \mathrm{CC}\left(\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}$-p- CH_{3} (1a) with Ethyl Phenylpropiolate (21) in the Presence of $\mathbf{P d}(\mathrm{dba})_{2} / 2 \mathbf{P P h}_{3}$ under the Microwave Irradiation (run 12 of Table 1): General Procedure of Palladium-Catalyzed Iminothiolation of Alkynes Using Iminosulfides under the Microwave Irradiation: Into a 2 mL vial bottle were added $\operatorname{Pd}(\mathrm{dba})_{2}(15.0 \mathrm{mg}, 0.026 \mathrm{mmol}), \mathrm{PPh}_{3}(13.1,0.05 \mathrm{mmol}), 1 \mathrm{a}(154.4 \mathrm{mg}, 0.523 \mathrm{mmol}), 21(179$ $\mathrm{mg}, 1.0 \mathrm{mmol}$) and 0.5 mL of 1,2-dichloroethane in the dry box (Glove box). The vial bottle was taken outside the dry box. After the solution was stirred at $100^{\circ} \mathrm{C}$ for 3 h under microwave irradiation, the resultant mixture was filtered through Celite, and the filtrate was evaporated and dried in vacuo. Cis -31 was isolated in $91 \% ~(223 \mathrm{mg}, 0.476 \mathrm{mmol}$) yields by preparative TLC using hexane and diethyl ether (10:1) as an eluent.
 cis- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{\mathbf{3}}($ cis-31): pale yellow solid; mp $92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 3.98(\mathrm{c}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.28$
(m, 3 H), $7.40(\mathrm{dd}, J=7.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.1,20.5,60.8,118.8$, 119.1 (c, $J=278 \mathrm{~Hz}$), 119.8, 125.4, 125.8, 127.0, 128.0, 128.2, 128.3, 128.8, 133.4, 134.9, $138.2,146.8,154.5(\mathrm{c}, J=35 \mathrm{~Hz}), 159.7,163.0$; IR (KBr) $3375,3065,3031,3004,2980,2957$, 2937, 2924, 2898, 2870, 1696, 1656, 1591, 1578, 1555, 1486, 1473, 1446, 1389, 1363, 1318, $1274,1222,1186,1078,1020,984,937,915,874,839,812,798,761,744,717,696,681,641$, $625,599,556 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $469\left(\mathrm{M}^{+}, 5.4\right)$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}$, 66.51; H, 4.72; N, 2.98. Found: C, 66.23; H, 4.64; N, 3.03.

Other iminothiolation products ($\mathbf{3} \mathbf{j}, \mathbf{m}-\mathbf{s}$) using internal alkynes ($\mathbf{2} \mathbf{j}, \mathbf{l}, \mathbf{m}$) were synthesized by similar procedures.

$\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(n-\mathrm{C}_{3} \mathrm{H}_{7}\right)=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{3} \mathrm{H}_{7}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3} \quad(\mathbf{3 j}):$ The title compound was obtained as a mixture of inseparable stereoisomers (cis:trans $=95: 5$); pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) cis-isomer $\delta 0.76(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.27-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.23(\mathrm{~m}, 2$ H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 6.93(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (dd, $J=7.8,8.3 \mathrm{~Hz}, 2 \mathrm{H}$): trans-isomer $\delta 0.73(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.00-1.02(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 6.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}$, $J=7.8,8.3 \mathrm{~Hz}, 2 \mathrm{H}$), Other peaks overlap with those of cis-isomer.; ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) cis-isomer $\delta 13.4,14.0,21.1,21.2,21.2,32.1,33.9,119.4,122.2$ (c, $J=296 \mathrm{~Hz}$), 125.5 , 128.7, 129.3, 129.8, 131.7, 133.6, 137.7, 141.2, 147.6, 161.2 (c, $J=33 \mathrm{~Hz}$); IR (NaCl) 3060, 3022, 2962, 2932, 2873, 2372, 2323, 1644, 1597, 1492, 1465, 1400, 1380, 1312, 1281, 1248, $1222,1187,1142,1117,1091,1063,1017,962,914,809,782,760,731,693,648,589 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $405\left(\mathrm{M}^{+}, 10\right)$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{NS}: 405.1738$. Found: 405.1741.

trans- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)=\mathbf{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3}$ (trans3m): yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}$, $3 \mathrm{H}), 3.76$ (dd, $J=12.2,67.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 3 \mathrm{H}), 7.22-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.37$ (dd, $J=7.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}$); N.O.E. experiment: Irradiation of the signal at $\delta 3.83$ (methylene doublet) resulted in a 4.0% enhancement of the signal at δ 6.75 (aryl doublet); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.0,58,6,71.4,119.3$ (c, $J=218 \mathrm{~Hz}$), $120.5,125.9,127.6,127.8,128.3,128.5,128.6,129.0,129.2,133.0,135.6,137.7,143.8,147.5$, 157.4 (c, $J=35 \mathrm{~Hz}$); IR (NaCl) $3060,3022,2989,2925,2824,1651,1593,1490,1445,1370$, $1318,1285,1241,1223,1185,1142,1107,1017,989,909,809,770,749,714,696,640,579$ cm^{-1}; mass spectrum (EI) m/e $441\left(\mathrm{M}^{+}, 8.5\right)$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NOS}: \mathrm{C}, 68.01 ; \mathrm{H}, 5.02$; N, 3.17. Found: C, 67.72; H, 4.88; N, 3.21.

cis- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathbf{C}\left(\mathrm{CO}_{\mathbf{2}} \mathrm{C}_{\mathbf{2}} \mathrm{H}_{5}\right)=\mathbf{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{\mathbf{5}}$ (cis-3n): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.99(\mathrm{c}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dd}$, $J=7.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.41$ (dd, J $=4.4,7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,61.4,119.6$ (c, J $=278 \mathrm{~Hz}$), 119.8, 120.3, 126.3, 127.5, 128.4, 128.4, 128.6, 128.7, 128.8, 129.6, 133.9, 135.3, $147.3,154.9(\mathrm{c}, J=35 \mathrm{~Hz}), 159.5,163.4$; $\mathrm{IR}(\mathrm{NaCl}) 3060,3025,2984,2939,2904,1952,1880$, $1731,1698,1593,1579,1560,1486,1443,1391,1367,1320,1277,1247,1224,1187,1145$, 1074, 1023, 1001, $983,931,910,875,836,746,719,694,629,600,558 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $455\left(\mathrm{M}^{+}, 3.6\right)$; Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 65.92$; $\mathrm{H}, 4.43$; $\mathrm{N}, 3.08$. Found: C , 65.77; H, 4.21; N, 3.21.

cis- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathbf{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{Cl}$ (cis-3o): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $3.99(\mathrm{c}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.84-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-7.09(\mathrm{~m}, 3 \mathrm{H})$, 7.26-7.29 (m, 3 H), 7.38-7.42 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) These peaks were observed as two stereoisomer of $\mathrm{PhN}=\mathrm{C}\left(\mathrm{CF}_{3}\right) \mathrm{R} \quad(\mathrm{R}=$ $\left.\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{Cl}\right) . \delta 13.3,13.6,61.4,61.5,119.6(\mathrm{c}, J=278 \mathrm{~Hz}), 119.6(\mathrm{c}, J$ $=278 \mathrm{~Hz}), 119.9,120.3,120.4,120.7,126.3,126.4,127.5,127.6,127.8,128.3,128.4,128.4$, $128.6,128.6,128.6,128.6,128.7,128.8,128.8,129.2,129.6,133.9,134.7,134.8,135.2$, $135.3147 .2,147.3,154.6119 .6(\mathrm{c}, J=35 \mathrm{~Hz}), 158.1,159.5,163.5$; IR (NaCl) 3061,3025 , 2982, 2938, 2903, 2253, 1952, 1897, 1731, 1699, 1593, 1579, 1559, 1486, 1476, 1444, 1391, $1368,1320,1278,1247,1224,1187,1146,1093,1075,1023,984,910,875,822,746,695$, $648,630,600,559 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $489\left(\mathrm{M}^{+}, 4.9\right)$; HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ClF}_{3} \mathrm{NO}_{2} \mathrm{~S}: 489.0772$. Found: 489.0777.

cis- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OCH}_{3}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathbf{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{3}$ (cis-3p): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97$ (t, $J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{c}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.33$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2$ H), $6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.6,21.0,55.6,61.3,114.0$, 121.3 (c, $J=282 \mathrm{~Hz}$), 121.2, 123.9, 126.1, 127.5, 128.5, 128.7, 129.2, 134.0, 135.6, 138.6, $140.3,153.4(\mathrm{c}, J=35 \mathrm{~Hz}), 158.6,159.5,163.6$; $\mathrm{IR}(\mathrm{NaCl}) 3059,2982,2837,2254,1728$, $1698,1648,1600,1578,1561,1504,1493,1465,1444,1392,1367,1320,1292,1250,1226$, $1184,1166,1143,1075,1030,984,910,876,845,829,809,735,696,682,648 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $499\left(\mathrm{M}^{+}, 26.3\right)$; Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 64.92 ; \mathrm{H}, 4.84 ; \mathrm{N}, 2.80$. Found: C, 64.79; H, 4.63; N, 2.88.

$\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{4}-p-\mathrm{Cl}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3} \quad$ (3q): The title compound was obtained as a mixture of inseparable stereoisomers (cis:trans $=71: 29$); yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}) cis-isomer $\delta 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{c}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.78(\mathrm{~m}, 2 \mathrm{H})$, 6.85-6.90 (m, 3 H), $7.04-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}):$ trans-isomer $\delta 1.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{dc}, J=7.3,29 \mathrm{~Hz}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.00(\mathrm{~m}, 2 \mathrm{H})$, Other peaks overlap with those of cis-isomer.; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) cis-isomer $\delta 13.5,21.0,61.4,119.1,119.4$ (c, $J=278$ Hz), 121.7, 125.7, 127.6, 128.4, 128.6, 128.8, 129.3, 131.9, 133.6, 135.2, 138.7, 145.7, 155.5 (c, $J=35 \mathrm{~Hz}$), 160.0, 163.4: trans-isomer $\delta 14.0,21.0,61.6,115.6,119.0(\mathrm{c}, J=279 \mathrm{~Hz}$), $122.7,126.6,127.3,128.3,128.5,128.9,129.1,131.8,134.4,135.1,138.9,144.6,155.6$ (c, $J=$ $35 \mathrm{~Hz}), 163.8,165.5$; IR (NaCl) 3060, 3026, 2982, 2926, 2871, 1900, 1731, 1700, 1657, 1599, $1556,1484,1445,1401,1367,1318,1278,1245,1185,1169,1143,1095,1020,984,909,874$, $846,809,782,748,732,697 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $503\left(\mathrm{M}^{+}, 9.1\right)$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{ClF}_{3} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 61.96$; H, 4.20; N, 2.78. Found: C, $61.86 ; \mathrm{H}, 3.99 ; \mathrm{N}, 2.72$.

cis- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathbf{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \quad$ (cis-3r): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.19$ (dd, $J=13,77 \mathrm{~Hz}, 2 \mathrm{H}$), 3.96 (c, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $6.90(\mathrm{br}, 2 \mathrm{H}), 6.96(\mathrm{br}$, $2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.39(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 13.6,37.3,61.1,119.2,119.4$ (c, $J=278$ Hz), 119.7, 126.1, 127.5, 127.7, 128.4, 128.4, 128.5, 128.8, 129.2, 135.1, $135.7,147.4,155.4(\mathrm{c}, J=35 \mathrm{~Hz}), 162.8$; $\mathrm{IR}(\mathrm{NaCl}) 3656,3369,3065,3033,3006,2987,2939$, 2922, 2896, 2843, 2372, 2334, 1957, 1903, 1885, 1840, 1817, 1762, 1691, 1652, 1625, 1593, $1578,1566,1486,1466,1453,1388,1368,1324,1293,1280,1241,1219,1183,1137,1118$, $1094,1070,1017,976,932,919,908,871,849,833,815,758,750,720,698,681,630,600$, $560 \mathrm{~cm}^{-1}$; mass spectrum (CI) m/e $470\left(\mathrm{M}^{+}, 100\right)$; Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 66.51 ; \mathrm{H}$, 4.72; N, 2.98. Found: C, 66.40; H, 4.67; N, 3.00.

cis- $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{SC}_{6} \mathrm{H}_{4}-$ p- $\mathrm{CH}_{3} \quad$ (cis-3s): pale yellow solid; $\mathrm{mp} 122{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.77(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{c}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.05$ $(\mathrm{m}, 3 \mathrm{H}), 7.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.49(\mathrm{~m}, 3 \mathrm{H}), 8.04-8.06(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,21.7,61.4,120.9,124.9,126.4,127.4,128.1,128.7,128.9,129.1,129.3$, $129.4,129.7,131.5,134.5,137.0,138.8,151.7,156.3,164.4,165.3$; IR (KBr) 3359, 3080, 3057, 3021, 2980, 2923, 2903, 2871, 2323, 1966, 1906, 1689, 1614, 1592, 1576, 1553, 1489,
$1445,1393,1367,1315,1289,1262,1204,1182,1173,1107,1072,1027,1017,1000,967$, $931,906,832,810,768,751,741,696,671,591 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $477\left(\mathrm{M}^{+}, 6.3\right)$; Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 77.96 ; \mathrm{H}, 5.70 ; \mathrm{N}, 2.93$. Found: C, $77.67 ; \mathrm{H}, 5.82, \mathrm{~N} ; 2.88$.

Reaction of $\mathrm{F}_{3} \mathrm{CC}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right)(\mathrm{S}-p$-tolyl) (4a) with aniline (Eq. 3): Into a two-neaked 3 mL reaction glass were added $4 \mathbf{a}(82.0 \mathrm{mg}, 0.248 \mathrm{mmol})$ and aniline (22.5 mg , 0.242 mmol) under N_{2} atmosphere. After the solution was stirred at $60^{\circ} \mathrm{C}$ for 1 h , the resultant mixture was evaporated and dried in vacuo. 5a was isolated in 81% ($60.1 \mathrm{mg}, 20.1 \mathrm{mmol}$) yields by preparative TLC using hexane and diethyl ether (10:1) as an eluent.
 $\mathbf{C F}_{3} \mathbf{C}(\mathbf{O H})=\mathbf{C}(\mathbf{H}) \mathbf{C}\left(\boldsymbol{n}-\mathbf{C}_{6} \mathrm{H}_{13}\right)\left(=\mathrm{NC}_{6} \mathbf{H}_{5}\right)(5 \mathrm{a}):$ yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.83(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.16-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.51$ ($\mathrm{tt}, J=7.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 7.17$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=7.3,7.8$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 13.9,22.3,28.0,28.8,31.2,32.2,89.4,117.6$ (c, $J=$ 286 Hz), 125.7, 127.7, 129.5, 136.8, 172.8, 176.6 (c, $J=33 \mathrm{~Hz}$); IR (NaCl) 3038, 2958, 2931, $2860,1613,1595,1577,1523,1494,1454,1380,1303,1243,1189,1122,1076,1027,1004$, $872,784,753,730,696,664,581 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $299\left(\mathrm{M}^{+}, 23\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}: \mathrm{C}, 64.20 ; \mathrm{H}, 6.73 ; \mathrm{N}, 4.68$. Found: C, $64.40 ; \mathrm{H}, 6.66 ; \mathrm{N}, 4.73$.

The Preparation of cis- $\mathbf{P t}\left[\mathbf{P}\left(\mathrm{C}_{6} \mathbf{H}_{5}\right)_{3}\right]_{2}\left[\mathbf{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{CF}_{3}\right]\left(\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}\right)$ (cis-6a): Into a dry two-necked reaction vessel equipped with a stirring bar were added $\operatorname{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(371 \mathrm{mg}$, $0.496 \mathrm{mmol}), \mathbf{1 a}(154 \mathrm{mg}, 0.526 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{H}_{6}(12.5 \mathrm{~mL})$. After the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h , hexane (ca. 50 mL) was added into the mixture and the precipitate was collected by filtration. Then the solid was washed by hexane $(10 \mathrm{~mL} \times 3)$ and dried to give cis-6a ($413 \mathrm{mg}, 82 \%$).

cis-6a: white solid; mp $190{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 1.90(\mathrm{~s}, 3$
 $\mathrm{H}), 6.68(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.94(\mathrm{~m}, 20 \mathrm{H}), 7.23-7.36(\mathrm{~m}, 10 \mathrm{H})$, $7.51(\mathrm{br}, 5 \mathrm{H}), 7.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $18.0\left(\mathrm{c}, J_{\mathrm{P}-\mathrm{P}}=18 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=1807 \mathrm{~Hz}, J_{\mathrm{P}-\mathrm{F}}=24 \mathrm{~Hz}\right), 18.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=18\right.$ $\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3135 \mathrm{~Hz}$); IR (KBr) 3054, 2358, 2309, 1586, 1484, 1436, 1248, 1142, 1122, 1095, 927, 765, 743, $694 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{NP}_{2} \mathrm{PtS}: \mathrm{C}, 60.35 ; \mathrm{H}$, 4.17; N, 1.38. Found: C, $60.60 ; H, 4.18 ; ~ N, ~ 1.34$.

The Reaction of 1 with $\operatorname{Pt}\left(\mathrm{PPh}_{\mathbf{3}}\right)_{\mathbf{2}}\left(\mathbf{C}_{\mathbf{2}} \mathbf{H}_{4}\right)$ (Eq. 4): Into a dry Pyrex NMR tube were added $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)(0.020 \mathrm{mmol}), 1(0.022 \mathrm{mmol}), \mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}(0.01 \mathrm{mmol}$ as an internal standard) and benzene- $d_{6}(0.5 \mathrm{~mL})$ under N_{2} atmosphere. The reaction was monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectrum at $25^{\circ} \mathrm{C}$.
cis-6a: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 18.0\left(\mathrm{c}, J_{\mathrm{P}-\mathrm{P}}=18 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=1807 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{F}}=24 \mathrm{~Hz}\right), 18.1$ (d, $J_{\mathrm{P}-\mathrm{P}}=18 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3135 \mathrm{~Hz}$). trans-6a: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 13.2\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=2944\right.$ Hz).
cis-6b: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 18.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity), 20.1 ($\mathrm{d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}$, the value of $J_{\text {Pt-P }}$ was not able to read because of low intensity). trans-6b: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 14.6$ ($\mathrm{s}, J_{\mathrm{Pt-P}}=3133 \mathrm{~Hz}$). 7b (syn/anti mixture); ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 15.9$ (s , value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity.), 17.1 (s , value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity.).

Synthesis of Furan Derivatives (Eq. 5): Into a two-neaked 3 mL reaction glass were added $\operatorname{Pd}(\mathrm{dba})_{2}(0.025 \mathrm{mmol}), \mathrm{PPh}_{3}(0.05 \mathrm{mmol}), \mathbf{1 a}(0.5 \mathrm{mmol}), 3$-methyl-1-buthyne-3-ol ($\mathbf{2 n}$) (0.6 mmol) and 0.5 mL of 1,2-dichloroethane under N_{2} atmosphere. After the solution was stirred at $80^{\circ} \mathrm{C}$ for 1 h , the resultant mixture was filtered through Celite, and the filtrate was evaporated and dried in vacuo. The crude adduct ($\mathbf{3 u}$) was replaced into a two-neaked 3 mL reaction glass and a solution of $\mathrm{AcOH}(2.5 \mathrm{mmol})$ in 0.7 mL of 1,2-dichloroethane was added. After the solution was stirred at $60^{\circ} \mathrm{C}$ for 11 h , the resultant mixture was filtered through Celite, and the filtrate was evaporated and dried in vacuo. 11a were isolated in 82% yields by preparative TLC using hexane and diethyl ether (10/1) as an eluent.

cis- $\mathrm{CF}_{3} \mathrm{C}\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right) \mathrm{C}(\mathbf{H})=\mathbf{C}\left[\mathbf{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OH}\right] \mathrm{SC}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{CH}_{3} \quad(3 \mathrm{u}):$ pale yellow solid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.23(\mathrm{~s}, 6 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-7.01(\mathrm{~m}, 4$ H), $7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0,29.5,75.5,119.3(\mathrm{c}, J=278 \mathrm{~Hz}), 120.9,121.3$, 126.1, 128.6, 129.9, 130.3, 130.6, 137.6, 147.1, $153.2,154.9(\mathrm{c}, J=34.6 \mathrm{~Hz})$; mass spectrum (EI) m/e $379\left(\mathrm{M}^{+}, 0.7\right)$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NOS}$: 379.1218. Found: 379.1212.

11a: white solid; $\mathrm{mp} 94^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{~s}, 3$ H), $1.40(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.39(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.3,27.1,27.2$, 90.0, $99.1(\mathrm{c}, J=30.5 \mathrm{~Hz}), 111.7,123.0(\mathrm{c}, J=284 \mathrm{~Hz}), 123.7,124.7,126.4,128.3,130.5$, $134.8,139.9,141.8,155.1$; IR (KBr) 3347, 3094, 3064, 3036, 3023, 2988, 2975, 2929, 2899, $2866,1902,1697,1625,1595,1496,1462,1398,1385,1366,1321,1297,1279,1251,1238$, $1192,1160,1132,1093,1065,1022,1003,981,941,907,885,838,806,768,728,692,607$, $592 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $379\left(\mathrm{M}^{+}, 1.5\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NOS}: \mathrm{C}, 63.31$; H , 5.31 ; N, 3.69. Found: C, 63.19; H, 5.27; N, 3.68.

11b (Eq. 6): yellow solid; $\mathrm{mp} 110^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.08(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H})$, $7.22-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.3,21.5,26.4,27.7,92.1,94.8$ (c, $J=34 \mathrm{~Hz}$), 106.3, 121.8 (c, $J=285 \mathrm{~Hz}$), 125.5, 127.5, 129.4, $130.6,134.7,138.2,140.1,143.7,156.8$; IR (KBr) 3250, 3094, 3054, 3006, 2979, 2967, 2023, $2886,1613,1597,1494,1444,1364,1334,1289,1194,1157,1136,1104,1085,1028,1016$, $988,944,903,877,843,808,648,576,553 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/e $457\left(\mathrm{M}^{+}, 18.1\right)$; Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C, 55.13; H, 4.85; N, 3.06. Found: C, 55.19; H, 4.96; N, 3.10.

	additive $\quad F^{\prime}$	 cis:trans	(S1)
	$\begin{aligned} & \text { toluene- } d_{8}, \\ & 1 \mathrm{~h}, 80^{\circ} \mathrm{C} \end{aligned}$		
	additive		
	none	99:1	
	$\mathrm{PPh}_{3}(10 \mathrm{~mol} \%$)	99:1	
	$\mathrm{Pd}(\mathrm{dba})_{2}(5 \mathrm{~mol} \%)$ PPh_{3} (10 mol\%)	79:21	

Cis-to-trans Isomerization of $\mathbf{3 f}$ in Toluene- $\boldsymbol{d}_{\mathbf{8}}$ (Eq. S1) (Ref. 7): Into a dry Pyrex NMR tube were added 3f (cis:trans $=99: 1$) $(0.02 \mathrm{mmol})$, additive and 0.5 mL of toluene- d_{8} under N_{2} atmosphere. After the sample was heated at $100^{\circ} \mathrm{C}$ for 1 h , the cis to trans ratio was analyzed by 1 H NMR spectrum.

2-8. References and Notes

(1) For a recent review, see: Groenendaal, B.; Ruijter, E.; Orru, R. V. A.; Chem. Commun. 2008, 5474.
(2) (a) Kobayashi, T.; Sakakura, T.; Tanaka, M. Tetrahedron Lett. 1985, 26, 3463. (b) Kosugi, M.; Koshiba, M.; Atoh, A.; Sano, H.; Migita, T. Bull. Chem. Soc. Jpn. 1986, 59, 677. (c) Kosugi, M.; Ogata, T.; Tamura, H.; Sano, H.; Migita, T. Chem. Lett. 1986, 1197. (d) Uneyama, K.; Watanabe, H. Tetrahedron Lett. 1991, 32, 1459.
(3) The reaction of alkynes, nitriles with iodine by using a stoichiometric amount of zirconium complex to produde ((2)- β-iodoalkenyl)imines was reported; Coperet, C.; Sugihara, T.; Wu, G.; Shimoyama, T.; Negishi, E. J. Am. Chem. Soc. 1995, 117, 3422.
(4) For recent examples, see: (a) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. Org. Lett. 2008, 10, 101. (b) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504. (c) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, T.;

Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957. (d) Toyofuku, M.; Murase, E.; Nagai, H.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Eur. J. Org. Chem. 2009, 3141.
(5) The regio- and stereochemistry of $\mathbf{3 a}, \mathbf{3 f}$ and $\mathbf{3 m}$ was determined by N.O.E. experiment.
(6) Heating the solution of $\mathbf{3 f}$ (cis:trans $=99: 1$) with the catalytic amount of $\operatorname{Pd}(\mathrm{dba})_{2}$ and PPh_{3} at $80^{\circ} \mathrm{C}$ for 1 h resulted in the isomerization of $\mathbf{3 f}$ (cis:trans $=79: 21$), while no isomerization took place without $\operatorname{Pd}(\mathrm{dba})_{2}$ under otherwise identical conditions.
(7) When the reaction of $1 \mathbf{1 a}$ and 21 was performed at $100^{\circ} \mathrm{C}$ in a sealed vessel without a microwave, 31 was obtained in a cis to trans ratio of $93: 7$ with the same yield, indicating that following isomerization of the adducts was partly suppressed by the microwave irradiation.
(8) The high reactivity and regioselectivity may conceivably be attributed to oxygen atom at propargyl moiety in alkynes. See reference 4a.
(9) Crystal data for 31: Space group Pbca (\#61) with $a=15.2284(7) \AA, b=17.6487(8) \AA, c=$ $17.8733(9) \AA, \mathrm{b}=96.385(2)^{\circ}, Z=8, \rho=1.298 \mathrm{~g} / \mathrm{cm}^{3}, R=0.0661$, and $R w=0.189$.
(10) (a) Bowman, W. R.; Lyon, J. E.; Pritchard, G. J. Synlett 2008, 14, 2169. (b) Takeda, H.; Ishida, T.; Takemoto, Y. Chem. Lett. 2009, 772.
(11) For a stoichiometric insertion of alkynes into the S-M bond, see: (a) Sugoh, K.; Kuniyasu, H.; Kurosawa, H. Chem. Lett. 2002, 31, 106. (b) Kuniyasu, H.; Yamishita, F.; Terao, J.; Kambe, N. Angew. Chem. Int. Ed. 2007, 46, 5929. (c) Kuniyasu, H.; Takekawa, K.; Yamashita, F.; Miyafuji, K.; Asano, S.; Takai, Y.; Ohtaka, A.; Tanaka, A.; Sugoh, K.; Kurosawa, H.; Kambe, N. Organometallics 2008, 27, 4788.
(12) We have reported that an anion stabilizing group on β-carbon of C-S bond of vinylsulfide promotes the oxidative addition to $\operatorname{Pt}(0)$ complex. See: (a) Kuniyasu, H.; Ohtaka, A.; Nakazono, T.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2000, 122, 2375. (b) See reference 4 b .
(13) For an isomerization of vinylmetal complexes studies, see: (a) Brady, K. A.; Nile, T. A. J. Organomet. Chem. 1981, 206, 299. (b) Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. Organometallics 1990, 9, 3127. (c) Murakami, M.; Yoshida, T.; Kawanami, S.; Ito, Y. J. Am. Chem. Soc. 1995, 117, 6408.
(14) The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, (Eds.: T. Eicher, S. Hauptmann), Wiley-VCH, Weinheim, 2003; and references therein.
(15) Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.; Uneyama, K. J. Org. Chem. 1993, 58, 32

Chapter 3

One-Pot Syntheses of 2,3-Dihydrothiopyran-4-one Derivatives by

$\mathbf{P d} / \mathbf{C u}$-Catalyzed Reactions of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Thioesters with Propargyl Alcohols

3-1. Introduction

In the course of my study toward the transition-metal catalyzed reaction using thioesters, the author focused on α, β-unsaturated thioesters, which contains two reactive centers; $\mathrm{C}(\mathrm{O})$-S and ene moieties, as substrates and examined reactions with various alkynes under a range of catalytic conditions. As a result, the author discovered the $\mathrm{Pd} / \mathrm{Cu}$-catalyzed one-pot cyclization between α, β-unsaturated thioesters 1 and propargyl alcohols 2 in the presence of bases to furnish 2,3-Dihydrothiopyran-4-one Derivatives 3 (Eq. 1). These sulfur containing six-membered heterocyclic derivatives display a wide range of biological activities. ${ }^{1}$

3-2. The Pd/Cu-Catalyzed Reaction of α, β-Unsaturated Thioesters with Propargyl

Alcohols

The reaction of $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}(\mathbf{1 a}, 0.4 \mathrm{mmol})$ with 2-methyl-3-butyn-2-ol ($2 \mathrm{a}, 0.5 \mathrm{mmol}$) in the presence of $\mathrm{PdCl}_{2}(0.004 \mathrm{mmol}), \mathrm{CuI}(0.04 \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{mmol})$ in DMF (0.5 mL) at $80^{\circ} \mathrm{C}$ for 6 h resulted in the formation of 3a in 34% yield along with by-products, including (ArS$)_{2}$ (10%) (run 1, Table 1). The single X-ray crystallographic analysis of 3a confirmed the structure to be a 2,3-dihydrothiopyran-4-one derivative (Fig. 1). ${ }^{2}$ It should be noted that both C-S bonds of 1a, i.e., the $\mathrm{C}(\mathrm{O})-\mathrm{S}$ and $\mathrm{Ar}-\mathrm{S}$ bonds, were cleaved and the Ar group migrated from the sulfur of $\mathbf{1 a}$ to the oxygen of $\mathbf{2 a}$. Among the alkali salts examined (runs 2-5, Table 1), $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~mol} \%)$ resulted in the best yield (60% isolated yield) (run 3, Table 1). Alteration of the amounts of $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{~mol} \%)$ (run 6, Table 1), $\mathrm{CuI}(2 \mathrm{~mol} \%$, $100 \mathrm{~mol} \%$) (runs 7 and 8 , Table 1), or $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{~mol} \%$) (run 9, Table 1) decreased the yield of 3a. Other complexes such as $\mathrm{Pd}(\mathrm{OAc})_{2}$ (run 10, Table 1), $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ (run 11, Table 1), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (run 12, Table 1), PdCl_{2} (dppf) (run 13, Table 1) and PtCl_{2} (run 14, Table 1) showed inferior catalytic activity. Synthesis of 3a required both a Pd and Cu catalyst.

Table 1. Pd/Cu-Catalyzed Reaction of 1a with $\mathbf{2 a}{ }^{\text {a }}$

run	 12 M	$\frac{\mathbf{2 a}}{\mathrm{CuI}(\mathrm{X} \mathrm{~mol} \%)}$	$\xrightarrow[\substack{\text { DMF, } 80^{\circ} \mathrm{C} \\ 6 \mathrm{~h}}]{\substack{\text { cat. M, Cul } \\ \text { alkali salt } \\ \mathrm{Et}_{3} \mathrm{~N}}}$		
			$\mathrm{Et}_{3} \mathrm{~N}$ (Y equiv.)	alkali salt	Yield (\%) ${ }^{\text {b }}$
1	PdCl_{2}	10		none	34
2	PdCl_{2}	10	1	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	40
3	PdCl_{2}	10	1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	68 (60) ${ }^{\text {c }}$
4	PdCl_{2}	10	1	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	60
5	PdCl_{2}	10	1	KOAc ${ }^{\text {d }}$	23
6	PdCl_{2}	10	1	$\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{\text {e }}$	49
7	PdCl_{2}	20	1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	19
8	PdCl_{2}	100	1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	16
9	PdCl_{2}	10	0.2	$\mathrm{K}_{2} \mathrm{CO}_{3}$	28
10	$\mathrm{Pd}(\mathrm{OAc})_{2}$	10	,	$\mathrm{K}_{2} \mathrm{CO}_{3}$	45
11	$\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$	10	1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	61
12	$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$	10	1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	48
13	$\mathrm{PdCl}_{2}(\mathrm{dppf})$	10	1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	25
14	PtCl_{2}	10	1	$\mathrm{K}_{2} \mathrm{CO}_{3}$	14

[^2]

Figure 1. ORTEP Diagram of 3a.

The results of $\mathrm{Pd} / \mathrm{Cu}$-catalyzed reactions between various thioesters (1) and propargyl alcohols (2) under optimized conditions are summarized in Table 2. The treatment of $1 \mathbf{a}$ with tertiary propargyl alcohols $\left(\mathbf{2 b}, \mathrm{R}^{3}=\mathrm{R}^{4}=-\left(\mathrm{CH}_{2}\right)_{4}-; \mathbf{2 c}, \mathrm{R}^{3}=\mathrm{R}^{4}=-\left(\mathrm{CH}_{2}\right)_{5} ; \mathbf{2 d}, \mathrm{R}^{3}=\mathrm{Me}, \mathrm{R}^{4}=\right.$ Ph) provided the corresponding cyclization products $\mathbf{3 b - 3 d}$ in moderate yields (runs 2-4, Table 2). Cyclization with secondary propargyl alcohol ($2 \mathbf{e}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=n-\mathrm{C}_{5} \mathrm{H}_{11}$) also gave $\mathbf{3 e}$ in

Table 2. Pd/Cu-Catalyzed Syntheses of 2,3-Dihydrothiopyran-4-one Derivatives ${ }^{\text {a }}$

$1 \quad 2$
2 3

${ }^{a}$ Unless otherwise noted, $1(0.4 \mathrm{mmol}), 2(0.5 \mathrm{mmol}), \mathrm{PdCl}_{2}(0.004 \mathrm{mmol}), \mathrm{Cul}(0.04 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ (0.04 mmol), $\mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{mmol})$, and $\mathrm{DMF}(0.5 \mathrm{~mL})$ at $80^{\circ}{ }^{\circ}$..$^{\mathrm{b}}$ Isolated yield. ${ }^{\mathrm{C}} 60^{\circ} \mathrm{C} .{ }^{\mathrm{d}} 1.0 \mathrm{mmol}$.
35% yield (run 5, Table 2). However, propargyl alcohol (2f), propargyl amine (2g) and homo-propargyl alcohol ($\mathbf{2 h}$) gave a complicated mixture and $\mathbf{3}$ was not synthesized (runs $6-8$, Table 2). In the thioesters, replacement of the Me group at R^{2} with an $i-\mathrm{Pr}$ group did not interfere with cyclization (run 9, Table 2). $\mathbf{1 c}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}\right)$ was also converted into $\mathbf{3 j}$ in 55% yield (run 10 , Table 2). The thioester with an Me group at R^{1} and a second Me at $R^{2}(\mathbf{1 d})$ underwent a similar transformation as a result of reaction with either $\mathbf{2 a}$ or $\mathbf{2 c}$ (runs 11 and 12, Table 2). In marked contrast, the thioester with a p-tolyl group on the sulfur ($\mathbf{1 e}, \mathrm{X}=\mathrm{Me}$) gave a complicated mixture (run 13, Table 2). No reaction took place with substrate 1f, which had a $\mathrm{S}-n-\mathrm{C}_{10} \mathrm{H}_{21}$ group rather than $\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{X}$ (run 14, Table 2). These results demonstrate that the
$\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$ group of thioester $\mathbf{1}$ is required for the formation of 3 .

3-3. Reaction Mechanism

To elucidate the reaction pathway, the reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ in DMF- d_{7} at $80^{\circ} \mathrm{C}$ was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Fig. 2). The results suggest that both alkynyl ketone 4 a and vinyl sulfide 5a were converted into 3a. After 4 h , both $\mathbf{4 a}$ and $\mathbf{5 a}$ disappeared and $\mathbf{3 a}$ was the major product detected, in addition to unidentified by-products.

$$
1.2{ }^{2 \mathrm{a}} \mathrm{equiv.}
$$

Figure 2. Time Course of the $\mathrm{Pd} / \mathrm{Cu}$-Catalyzed Reaction of 1a with 2a.

Thus, authentic $\mathbf{4 a}$ and $5 \mathbf{a}^{3}$ were prepared and the reaction mechanism was examined. $\mathbf{4 a}$ (0.4 $\mathrm{mmol})$ reacted with $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SH}(6 \mathrm{a}, 0.4 \mathrm{mmol})$ to give 3a in the presence of $\mathrm{Et}_{3} \mathrm{~N}(0.4$ mmol) at $80^{\circ} \mathrm{C}$ even without $\mathrm{Pd} / \mathrm{Cu}$ catalysts, albeit in low yield (40\%) (Eq. 2). Addition of a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}(0.04 \mathrm{mmol})$ to the reaction mixture improved the yield of $\mathbf{3 a}(51 \%)$. However, the yields for both the catalyst-free and $\mathrm{K}_{2} \mathrm{CO}_{3}$-catalyzed reaction of 1a with 2a were

lower than that obtained by the $\mathrm{Pd} / \mathrm{Cu}$-catalyzed reaction due to formation of complicated byproducts (compare with run 1 of Table 2). Without $\mathrm{Et}_{3} \mathrm{~N}$, 3 a was not formed. Intramolecular cyclization of $5 \mathrm{a}(0.2 \mathrm{mmol})$ proceeded in the presence of $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ to afford $\mathbf{3 a}$ in 66% yield, while no reaction took place in the absence of $\mathrm{Et}_{3} \mathrm{~N}$ (Eq. 3). These results show that $\mathrm{Et}_{3} \mathrm{~N}$ is essential for the synthesis of 5 and 3 .
The reaction pathway proposed for the formation of $\mathbf{3}$ is shown in Scheme 1, with 1a and 2a as representative substrates. First, a $\mathrm{Pd} / \mathrm{Cu}$-catalyzed Sonogashira-type reaction between 1a and $\mathbf{2 a}$ gives $\mathbf{4 a}$ and 6a, and the subsequent trans-addition of $\mathbf{6 a}$ to the yne moiety of $\mathbf{4 a}$ affords

Scheme 1. A Proposed Reaction Pathway

5a. ${ }^{4,5}$ Intramolecular aromatic nucleophilic substitution by the oxygen anion induces migration of the $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ group from sulfur to oxygen. ${ }^{6}$ Finally, nucleophilic addition of the resultant sulfonium anion to the terminal ene moiety and the subsequent protonation yield 3a. ${ }^{7}$ Maintenance of low concentrations of $\mathbf{4 a}$ and $\mathbf{6 a}$ during the course of the reaction improve the yield of 3a relative to that obtained by the reaction of $\mathbf{4 a}$ with $\mathbf{6 a}$.

3-4. Reaction of Acid Chloride, Thiol and Propargyl Alcohol

Toward the easy-to-use approach for the preparation of $\mathbf{3}$, I found the preparation of $\mathbf{3}$ by the reaction of acid chloride, thiol and propargyl alcohol from the one-pot operation (Eq. 4). Cu -catalyzed cross-coupling of methacryloyl chloride (7a) with 2a in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and $\mathrm{Et}_{3} \mathrm{~N}$ produce $4 \mathbf{a}^{8}$ and following reaction with $\mathbf{6 a}$ occurred to afford $\mathbf{3 a}$ in $\mathbf{3 9 \%}$ yield. In this process, no Pd-catalyst was needed.

Reagents and conditions: $\mathbf{7 a}$ (1.0 equiv.), $\mathbf{2 a}$ (2.0 equiv.), Cul (0.1 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.1 equiv.), $\mathrm{Et}_{3} \mathrm{~N}$ (0.8 M), r.t., 3 h ; then, 6 a (1 equiv.), DMF, $80^{\circ} \mathrm{C}, 17 \mathrm{~h}$.

3-5. Conclusions

This study realized the synthesis of 2,3-dihydrothiopyran-4-one derivatives by $\mathrm{Pd} / \mathrm{Cu}$-catalyzed reactions between α, β-unsaturated thioesters and propargyl alcohols in the presence of bases. The reactions proceed through a one-pot sequence as follows: Sonogashira-type reaction; Michael-addition of thiol to yne-moiety; intramolecular aromatic nucleophilic substitution; and, cyclization.

3-6. Experimental Section

General Comments: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in CDCl_{3}, and DMF- d_{8} solution were recorded with JEOL JNM-Alice $400(400 \mathrm{MHz})$ spectrometers. The chemical shifts in the 1 H NMR
spectra were recorded relative to Me 4 Si as an internal standard and the chemical shifts in the ${ }^{13} \mathrm{C}$ NMR spectra were recorded relative to $\mathrm{CHCl}_{3}(\delta 77.0)$. The IR spectra were measured by a Perkin-Elmer Model 1600 spectrometer. Mass spectra (EI), high-resolution mass spectra (HRMS) and elemental analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Melting points were measured by a MPA100 Optimelt Automated Melting Point System. Preparative TLC was carried out using Wakogel B-5F silica gel. The X-ray crystal data of 3a were collected using Rigaku RAXIS-RAPID Imaging Plate diffractometer. The ORTEP diagram was shown in 50% probability ellipsoid. All reactions were carried out under N_{2} atmosphere. Unless otherwise noted, commercially available reagents were used without purification. All solvents were distilled before use. Thioesters 1a-d, $\mathbf{1 f}$ were prepared from the reactions of the corresponding acid chlorides with thiols in the presence of pyridine in THF solution. Thioester $\mathbf{1 e}$ was synthesized according to the literature (Tetrahedron Lett. 2001, 42, 1567.).

The Spectrum Datas of thioesters:

 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.03(\mathrm{~s}, 3 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 18.1, 123.5, 124.7, 134.9, 136.0, 142.8, 147.8, 188.7; mass spectrum (EI) m/z $223\left(\mathrm{M}^{+}, 1\right)$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}$ 223.0303, found 223.0308.

$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}(\boldsymbol{i}-\mathbf{P r}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{4}}$-p-NO $\left.\mathbf{2} \mathbf{(1 b}\right)$; yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.86$ (sept, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.75(\mathrm{~s}$, $1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7,30.2,121.4,123.7,135.0,136.5$, 147.9, 154.2, 189.6; mass spectrum (EI) m/z $251\left(\mathrm{M}^{+}, 0.2\right)$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$ 251.0616, found 251.0607.

(E) $\mathbf{- P h C (H)}=\mathbf{C H C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{4}$-p- $\mathbf{N O}_{\mathbf{2}}$ (1c); yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.44$ $(\mathrm{m}, 3 \mathrm{H}), 7.57-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 123.4,123.7,128.5,128.9,131.1,133.4,134.6,136.2,142.7,147.9,185.2 ;$ mass spectrum (CI) m/z $286\left([M-H]^{+}, 100\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}-\mathrm{H}) 286.0538$, found 286.0533.

(E) $-\mathrm{Me}(\mathbf{H}) \mathbf{C}=\mathbf{C}(\mathbf{M e}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{4}$-p- $\mathbf{N O}_{\mathbf{2}}$ (1d): an pale yellow solid; $\mathrm{mp} 77{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.91(\mathrm{~d}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$,
6.98-7.04 (m, 1 H), $7.61(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.24(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR(100 MHz , CDCl_{3}) $\delta 12.4,14.8,123.9,135.4,136.7,137.2,138.5,148.1,189.3$; IR (KBr) 3105,2925 , $2845,1673,1643,1598,1578,1518,1345,1220,1108,1031,981,854,742,682,662,643$ cm^{-1}; mass spectrum (EI) m/z $237\left(\mathrm{M}^{+}, 1.6\right)$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{OS} 237.2760$, found 237.0458.

$\mathbf{H}_{2} \mathbf{C}=\mathbf{C}\left(\mathbf{C}_{6} \mathbf{H}_{4} \mathbf{M e}-p\right) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{4}-p-\mathrm{Me}$ (1e): an pale yellow solid; mp $92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 5.83(\mathrm{~s}$, $1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$, 7.32-7.35 (m, 4 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,21.6,122.7$, $124.7,128.4,129.2,130.3,133.1,134.8,138.9,139.9,148.0,192.5$; IR (KBr) 3026, 2918, 1684, 1605, 1510, 1397, 1296, 1110, 963, 925, 824, 807, 750, 731, 554, $484 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 268\left(\mathrm{M}^{+}, 12\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{OS} 268.0922$, found 268.0924 .

(E) $\mathbf{- P h C (H)}=\mathbf{C H C}(\mathbf{O}) \mathbf{S}-\boldsymbol{n}-\mathbf{C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{2 1}}$ (1f): an pale yellow solid; mp $41{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88$ (t, $3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.26-1.40(\mathrm{~m}, 15 \mathrm{H}), 1.60-1.67(\mathrm{~m}, 2$ H), $3.01(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}), 7.38-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.54(\mathrm{~m}, 2 \mathrm{H})$, $7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,14.2,22.7,28.9,29.0,29.2,29.3$, $29.6,29.6,31.9,125.2,128.4,128.9,130.4,134.2,140.1,190.0$; IR (KBr) 2922, 2848, 1656, $1611,1468,1448,1332,1302,1035,1012,992,890,778,754,692,578,484,462 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $304\left(\mathrm{M}^{+}, 12\right)$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{OS} 304.1861$, found 304.1863.
$\mathrm{Pd} / \mathrm{Cu}$-Catalyzed Reaction of $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2} \quad$ (1a) with $\mathrm{HC} \equiv \mathrm{CC}(\mathrm{Me})_{2} \mathrm{OH}$ (2a) in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (run 3 of Table 1); General Procedure of Cyclization of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Thioesters with Propargyl Alcohols: Into a two-neaked 3 mL reaction glass were added $\mathrm{PdCl}_{2}(0.7 \mathrm{mg}, 0.004 \mathrm{mmol})$, $\mathrm{CuI}(7.5 \mathrm{mg}, 0.039$ mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(6.1 \mathrm{mg}, 0.044 \mathrm{mmol}$), $\mathbf{1 a}(89.5 \mathrm{mg}, 0.401 \mathrm{mmol}), \mathbf{2 a}(50 \mu \mathrm{~L}, 0.52 \mathrm{mmol})$, $\mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L}, 0.43 \mathrm{mmol})$ and 0.5 mL of DMF under N_{2} atmosphere. After the solution was stirred for 6 h at $80^{\circ} \mathrm{C}$, the reaction mixture was separated by preparative TLC using hexane and $\mathrm{Et}_{2} \mathrm{O}(10 / 7)$ as an eluent ($74.5 \mathrm{mg}, 60 \%$).

2,3-dihydro-3-methyl-6-(dimethyl-p-nitrophenoxy-methyl)-thiop yran-4-one (3a): an yellow solid; mp $111{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.25(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.72(\mathrm{~s}, 6 \mathrm{H}), 2.62-2.68(\mathrm{~m}, 1 \mathrm{H})$, $3.02(\mathrm{dd}, 1 \mathrm{H}, J=13,11 \mathrm{~Hz}), 3.19(\mathrm{dd}, 1 \mathrm{H}, J=13,3.9 \mathrm{~Hz}), 6.28(\mathrm{~s}$, $1 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 8.14(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR(100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 14.30,27.61,28.34,33.64,39.53,81.80,118.0,119.4,125,2$, $141.7,160.3,166.6,196.6$; IR (KBr) 2983, 2965, 2927, 1665, 1588, 1508, 1488, 1345, 1249,

1186, 1143, $949,924,867,852,752,672 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $307\left(\mathrm{M}^{+}, 21\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 58.61 ; \mathrm{H}, 5.57, \mathrm{~N}, 4.56, \mathrm{~S}, 10.43$. Found: C, $58.32 ; \mathrm{H}, 5.29, \mathrm{~N}$, 4.53, S, 10.44.

Other cyclic products $\mathbf{3 b} \mathbf{- 3 e}, \mathbf{3 i} \mathbf{- 3 1}$ were similarly synthesized. Samples of $\mathbf{3 d}, \mathbf{3 e}, \mathbf{3 j}$ and $\mathbf{3 k}$ obtained after preparative TLC were a mixture of threo and erythro.

2,3-dihydro-3-methyl-6-(1'-p-nitrophenoxy-cyclopentyl)-thiopyra n-4-one (3b): an yellow solid; mp $89{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{~d}, 3 \mathrm{H}, J=5.2 \mathrm{~Hz}), 1.83(\mathrm{~m}, 4 \mathrm{~h}), 2.17-2.25(\mathrm{~m}, 4 \mathrm{H})$, 2.61-2.63 (m, 1 H$), 2.98-3.18(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}), 8.13(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $14.1,24.2,24.3,33.6,38.59,39.56,91.76,117.2,119.0,125,3,141.4,160.2,164.9,196.6 ;$ IR (KBr) 3294, 2968, 2934, 2871, 1657, 1607, 1586, 1567, 1508, 1488, 1342, 1331, 1312, $1236,1196,1166,1112,982,850,838,752,694,655,631,586 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 333\left(\mathrm{M}^{+}, 12\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 61.24 ; \mathrm{H}, 5.74, \mathrm{~N}, 4.20$. Found: C, 61.32; H, 5.46, N, 4.09.

2,3-dihydro-3-methyl-6-(1'-p-nitrophenoxy-cyclohexyl)-thiopyra n-4-one (3c): an yellow solid; mp $105{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.24(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.56-1.79(\mathrm{~m}, 8 \mathrm{H}), 2.33(\mathrm{t}, 2 \mathrm{H}, J$ $=13 \mathrm{~Hz}), 2.61-2.67(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, 1 \mathrm{H}, J=13,11 \mathrm{~Hz}), 3.17(\mathrm{dd}$, $1 \mathrm{H}, J=13,3.9 \mathrm{~Hz}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 8.14(\mathrm{~d}$, $2 \mathrm{H}, J=9.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.36,21.29,25.10,33.60,34.36,35.32$, $39.63,82.73,117.7,119.2,125,2,141.5,159.9,167.0,196.5$; IR (KBr) 3116, 3076, 2936, $2851,1667,1605,1589,1509,1491,1451,1338,1239,1146,1110,954,850,751,660,496$ cm^{-1}; mass spectrum (EI) m/z 347 ($\mathrm{M}^{+}, 39$); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} 347.4297$, found 347.1201. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.23 ; \mathrm{H}, 6.09, \mathrm{~N}, 4.03$. Found: C, $61.95 ; \mathrm{H}, 5.91$, N, 4.01.

2,3-dihydro-3-methyl-6-(methyl-phenyl-p-nitrophenoxy-methyl)-thiopyran-4-one (3d): The title compound was obtained as a mixture of inseparable diastereomers (51:49); an yellow solid; mp $111{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.22(\mathrm{~d}, 1.5 \mathrm{H}, J=6.8 \mathrm{~Hz}$), $1.23(\mathrm{~d}, 1.5 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $2.02(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.65(\mathrm{~m}, 1 \mathrm{H})$, $2.91-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, 0.5 \mathrm{H}, J=13,4.2 \mathrm{~Hz}), 3.13(\mathrm{dd}, 0.5 \mathrm{H}, J=13,3.9 \mathrm{~Hz}),{ }^{*} 6.33(\mathrm{~s}$, $0.5 \mathrm{H}), 6.44(\mathrm{~s}, 0.5 \mathrm{H}), * 6.89(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 7.37-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}, J=7.6$ Hz), $8.06(8.07)(\mathrm{d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.21(14.25)$, $24.08(24.35), 33.92(33.94), 39.67(39.81), 85.04(85.14), 119.0(119.1), 120.3(120.5), 125,3$,
125.9(125.9), 128.7(128.8), 128.9, 141.2(141.5), 142.3, 160.1, 167.3(167.3), 197.2; IR (KBr) 2973, 2932, 1668, 1606, 1590, 1509, 1490, 1446, 1344, 1244, 1169, 1112, 1069, 1032, 989, $921,862,850,764,751,698,676,578,494 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $369\left(\mathrm{M}^{+}, 4.0\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 65.02 ; \mathrm{H}, 5.18, \mathrm{~N}, 3.79$. Found: C, 64.74; H, 5.04, N, 3.65. * Minor diastereomer

2,3-dihydro-3-methyl-6-(n-pentyl-p-nitrophenoxy-methyl)-thiopy ran-4-one (3e): The title compound was obtained as a mixture of inseparable diastereomers (51:49); an yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.88-0.92(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.55(\mathrm{~m}$, $6 \mathrm{H}), 1.90-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.97-3.07(\mathrm{~m}, 1 \mathrm{H})$, 3.12-3.22 (m, 1 H), 4.71-4.77 (m, 1 H$), 6.21(\mathrm{~s}, 0.5 \mathrm{H}),{ }^{*} 6.23(\mathrm{~s}, 0.5 \mathrm{H}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=9.3$ $\mathrm{Hz}),{ }^{*} 6.96(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 8.17(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}),{ }^{*} 8.18(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.1,14.4(14.4), 22.5,25.1(25.2), 31.4(31.4), 33.4(33.7)$, $36.0(36.1), \quad 39.8(40.2), \quad 80.3(80.6), \quad 115.2,119.9(119.9), 125,7(125.7), 141.8(141.8)$, 161.2(161.3), 162.1, 196.0(196.1); IR (NaCl) 2995, 2930, 2860, 1666, 1609, 1591, 1514, $1494,1456,1344,1252,1174,112,1011,846,752,689,658 \mathrm{~cm}^{-1}$; mass spectrum (EI) m / z $349\left(\mathrm{M}^{+}, 87\right)$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 61.87 ; \mathrm{H}, 6.63, \mathrm{~N}, 4.01$. Found: C, $61.60 ; \mathrm{H}$, 6.46, N, 3.75. * Minor diastereomer

2,3-dihydro-3-isopropyl-6-(dimethyl-p-nitrophenoxy-methyl)-t hiopyran-4-one (3i): an pale yellow solid; mp $127{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.97(\mathrm{~d}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 1.71(\mathrm{~s}, 6 \mathrm{H}), 2.22-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.43(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dd}$, $1 \mathrm{H}, J=8.8,3.4 \mathrm{~Hz}), 3.25(\mathrm{dd}, 1 \mathrm{H}, J=14,3.6 \mathrm{~Hz}), 6.24(\mathrm{~s}, 1 \mathrm{H})$, $6.93(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 8.13(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.4,20.3$, $25.2,27.7,28.0,28.9,50.4,81.8,118.1,119.9,125,3,141.9,160.6,166.3,196.1$; IR (KBr) 2957, 2360, 1660, 1586, 1507, 1489, 1340, 1247, 1139, 1110, 851, $752,670 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $335\left(\mathrm{M}^{+}, 25\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 60.87$; H, 6.31, N, 4.18. Found: C, 60.74; H, 6.12, N, 4.46.

2-phenyl-2,3-dihydro-6-(dimethyl-p-nitrophenoxy-methyl)-t hiopyran-4-one (3j): an yellow solid; mp $92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.72(\mathrm{~s}, 6 \mathrm{H}), 2.95(\mathrm{dd}, 1 \mathrm{H}, J=17,3.4 \mathrm{~Hz}$), $3.08(\mathrm{dd}, 1 \mathrm{H}, J=17,13 \mathrm{~Hz}), 4.62(\mathrm{dd}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.91$ (d, $2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 7.34-7.37(\mathrm{~m}, 5 \mathrm{H}), 8.00(\mathrm{~d}, 2 \mathrm{H}, J=9.3$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.4,28.2,43.6,46.3,81.8,118.3,120.0,125.3,127.4$, $128.6,128.9,137.3,141.9,160.4,167.3,194.7$; IR (KBr) 3066, 2990, 1659, 1606, 1590, $1565,1506,1489,1454,1384,1340,1296,1257,1137,1108,929,891,856,751,725,698$,
$670,495 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $369\left(\mathrm{M}^{+}, 21\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 65.02$; H, 5.18, N, 3.79. Found: C, 65.09; H, 5.34, N, 3.73.

2,3-dihydro-2,3-dimethyl-6-(dimethyl-p-nitrophenoxy-methyl)-thio pyran-4-one ($\mathbf{3 k}$): The title compound was obtained as a mixture of inseparable diastereomers (55:45); an yellow solid; mp $84{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.14(\mathrm{~d}, 1.4 \mathrm{H}, J=7.1 \mathrm{~Hz}), * 1.25(\mathrm{~d}, 1.6 \mathrm{H}$, $J=7.1 \mathrm{~Hz}), 1.32(\mathrm{~d}, 1.4 \mathrm{H}, J=7.1 \mathrm{~Hz}),{ }^{*} 1.42(\mathrm{~d}, 1.6 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $1.71(\mathrm{~s}, 6 \mathrm{H}), 2.40-2.46(\mathrm{~m}, 0.6 \mathrm{H}), 2.67-2.70(\mathrm{~m}, 0.4 \mathrm{H}),{ }^{*} 3.22-3.28(\mathrm{~m}, 0.6 \mathrm{H}), 3.58-3.61(\mathrm{~m}$, $0.4 \mathrm{H}),{ }^{*} 6.25(\mathrm{~s}, 0.4 \mathrm{H}),{ }^{*} 6.26(\mathrm{~s}, 0.6 \mathrm{H}), 6.94(\mathrm{~d}, 0.9 \mathrm{H}, J=9.3 \mathrm{~Hz}),{ }^{*} 6.94(\mathrm{~d}, 1.1 \mathrm{H}, J=9.3$ $\mathrm{Hz}), 8.13(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 9.89(15.2), 13.0(18.9), 27.6(27.9), $27.8(27.9), 41.5(44.8), 42.8(46.5), 81.7(81.7), 118.0(118.0), 118.6(118.8), 125.3,141.8,160.1$, 164.8(165.8), 197.2(198.1); IR (KBr) 3092, 2988, 2931, 1664, 1607, 1587, 1514, 1489, 1445, 1344, 1251, 1222, 1198, 1185, 1141, 1113, 947, 930, 869, 851, 752, 670, 612, 548, $495 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $321\left(\mathrm{M}^{+}, 14\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 59.79 ; \mathrm{H}, 5.96, \mathrm{~N}, 4.36$. Found: C, 59.51; H, 5.58, N, 4.21. * Minor diastereomer

2,3-dihydro-2,3-dimethyl-6-(1'-p-nitrophenoxy-cyclohexyl)-thiopyr an-4-one (31): The title compound was obtained as a mixture of inseparable diastereomers (72:28); an yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.14(\mathrm{~d}, 2.2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.24(\mathrm{~d}, 0.8 \mathrm{H}, J=7.1 \mathrm{~Hz}),{ }^{*} 1.32$ (d, $2.2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.42(\mathrm{~d}, 0.8 \mathrm{H}, J=7.1 \mathrm{~Hz}),{ }^{*} 1.56-1.80(\mathrm{~m}, 8 \mathrm{H})$, $2.32(\mathrm{~d}, 2 \mathrm{H}, J=14 \mathrm{~Hz}), 2.41-2.48(\mathrm{~m}, 0.3 \mathrm{H}), * 2.67-2.68(\mathrm{~m}, 0.7 \mathrm{H}),{ }^{*} 3.21-3.25(\mathrm{~m}, 0.3 \mathrm{H})$,* $3.56-3.58(\mathrm{~m}, 0.7 \mathrm{H}), 6.27(\mathrm{~s}, 0.7 \mathrm{H}), 6.28(\mathrm{~s}, 0.3 \mathrm{H}),{ }^{*} 6.96(\mathrm{~d}, 1.4 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.97(\mathrm{~d}, 0.6$ $\mathrm{H}, J=9.0 \mathrm{~Hz}),{ }^{*} 8.13(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}){ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.97(15.3), 13.1$ (19.0), $21.2,24.9,34.5,34,8,34.9,41.5(44.9), 42.8(46.6), 82.8(82.8), 118.0(117.9), 118.6(118.8)$, $125.4,141.8,160.3,165.4(166.5)$, $197.3(198.2)$; IR (NaCl) 2937, 2862, 1660, 1606, 1590, $1514,1492,1448,1341,1299,1262,1241,1147,1112,975,958,875,849,752,693,660 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $361\left(\mathrm{M}^{+}, 4.0\right)$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 63.13 ; \mathrm{H}, 6.41, \mathrm{~N}, 3.88$. Found: C, 62.98; H, 6.19, N, 4.15. ${ }^{*}$ Minor diastereomer

The Pd/Cu-catalyzed Reaction of 1a with 2a in DMF- \boldsymbol{d}_{7} (Figure 2): Into a dry Pyrex NMR tube were added $\mathrm{PdCl}_{2}(0.004 \mathrm{mmol}), \mathrm{CuI}(0.04 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.04 \mathrm{mmol})$, 1a $(0.4 \mathrm{mmol}), 2 \mathrm{a}(0.52 \mathrm{mmol}), \mathrm{NEt}_{3}(0.4 \mathrm{mmol}), 1,4$-dioxane $(0.063 \mathrm{mmol})$ as an internal standard and 0.5 mL of DMF- d_{7} under N_{2} atmosphere. The reaction at $80^{\circ} \mathrm{C}$ was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Synthesis of Authentic $\mathbf{C H}_{2}=\mathbf{C}(\mathbf{M e}) \mathbf{C}(\mathbf{O}) \mathbf{C} \equiv \mathbf{C C}(\mathbf{M e})_{\mathbf{2}}(\mathbf{O H})(4 a):{ }^{8}$ Into a two-necked reaction vessel were added $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}(0.6 \mathrm{~mL}, 5.3 \mathrm{mmol})(0.6 \mathrm{~mL}, 5.3 \mathrm{mmol}), 2 \mathbf{a}$
($0.4 \mathrm{~mL}, 4.1 \mathrm{mmol}$), $\mathrm{CuI}(0.02 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(13 \mathrm{~mL})$. After the solution was stirred for 44 h at $25^{\circ} \mathrm{C}$, the reaction mixture was filtrated through Celite and distilled. The compound $\mathbf{4 a}$ was purified by HPLC ($308 \mathrm{mg}, 49 \%$).

4a: colorless liquid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.55(\mathrm{~s}, 6 \mathrm{H}), 1.85(\mathrm{~s}, 3$ H), $2.91(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $15.9,30.6,65.0,78.9,96.6,131.3,144.6,180.1$; mass spectrum (EI) m / z $152\left(\mathrm{M}^{+}, 3.0\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ 152.0837, found 152.0829.

Reaction of 4 a with $\mathrm{HSC}_{\mathbf{6}} \mathrm{H}_{\mathbf{4}} \mathbf{- p - \mathbf { N O } _ { \mathbf { 2 } }}$ (6a) (Eq. 2): Into a two-neaked reaction vessel were added $\mathrm{K}_{2} \mathrm{CO}_{3}\left(4.4 \times 10^{-2} \mathrm{mmol}\right), 4 \mathbf{4}(0.4 \mathrm{mmol}), 6 \mathbf{a}(0.4 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L}, 0.43 \mathrm{mmol})$ and 0.5 mL of DMF under N_{2} atmosphere. After the solution was stirred for 6 h at $80^{\circ} \mathrm{C}$, the reaction mixture was filtrated through Celite and distilled under reduced pressure.

Synthesis of Authentic $\mathrm{CH}_{\mathbf{2}}=\mathbf{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathbf{C}\left(\mathbf{C}(\mathbf{M e})_{2}(\mathbf{O H})\right) \mathrm{SCC}_{6} \mathrm{H}_{\mathbf{4}}-p-\mathrm{NO}_{\mathbf{2}}$ (5a): Into a two-necked reaction vessel were added $\mathrm{PdCl}_{2}(4.5 \mathrm{mg}, 0.025 \mathrm{mmol}), \mathrm{Cul}(45 \mathrm{mg}, 0.24$ mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(38 \mathrm{mg}, 0.28 \mathrm{mmol})$, $\mathbf{1 a}(536 \mathrm{mg}, 2.40 \mathrm{mmol}), \mathbf{2 a}(300 \mu \mathrm{~L}, 3.1 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}$ ($340 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$), and 0.5 mL of DMF under N_{2} atmosphere. After the solution was stirred for 40 min at $80^{\circ} \mathrm{C}$, the resultant mixture was filtrated through Celite and distilled under reduced pressure. The compound $5 \mathrm{5a}$ was isolated by preparative TLC using hexane $/ \mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOH}(10 / 7 / 1)$ as an eluent ($291 \mathrm{mg}, 39 \%$).

5a: an yellow solid; mp $89{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.49(\mathrm{~s}, 6 \mathrm{H})$, $1.74(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 3 \mathrm{H})$, $8.06(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.8,29.2,31.0,75.2$, $123.9,127.6,127.9,132.9,144.9,145.6,145.7,148.2,193.8 ;$ N.O.E. experiment: Irradiation of the singlet of homoallylic proton at $\delta 1.49$ resulted in 6.4% enhancement of the signal at $\delta 7.39$ (internal vinyl singlet) and the singlet of terminal trans-vinyl proton at $\delta 5.90$ resulted in 2.9% enhancement of the signal at $\delta 7.39$ (internal vinyl singlet); IR (KBr) 3452, 3098, 2977, 1652, 1595, 1575, 1514, 1340, 1182, 1109, 1090, 977, 851, 744, 686, 534, $466 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 307\left(\mathrm{M}^{+}, 133\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 58.61$; $\mathrm{H}, 5.57, \mathrm{~N}, 4.56$. Found: C, 58.36; $\mathrm{H}, 5.32, \mathrm{~N}, 4.39$.

Intramolecular cyclization of 5a(Eq. 3): Into a two-neaked reaction vessel were added $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O})-\mathrm{CH}=\mathrm{C}\left(\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right) \mathrm{C}(\mathrm{Me})_{2}(\mathrm{OH})(5 \mathrm{a})(0.2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(30 \mu \mathrm{~L}, 0.21$ mmol) and 0.25 mL of DMF under N_{2} atmosphere. After the solution was stirred for 6 h at $80^{\circ} \mathrm{C}$, the reaction mixture was filtrated through Celite, and distilled under reduced pressure.

The Three-Component Reaction of $\mathrm{CH}_{2}=\mathbf{C}(\mathbf{M e}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}$ (7a), 2a and 6a (Eq. 4): Into a two-neaked 3 mL reaction glass were added $\mathrm{CuI}(7.5 \mathrm{mg}, 0.39 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(6.1 \mathrm{mg}, 0.044$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL}), \mathrm{H}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}(7 \mathrm{a})(0.4 \mathrm{mmol})$ and 2-Methyl-3-butyne-2-ol (2a)
(0.8 mmol) under N_{2} atmosphere. After the solution was stirred for 6 h at $80^{\circ} \mathrm{C}$, the reaction mixture was separated by preparative TLC using hexane and $\mathrm{Et}_{2} \mathrm{O}$ (10/7) as an eluent (74.5 mg , 60%). After the solution was stirred for 3 h at room temperature, into a reaction mixture were added 0.5 mL of DMF solution including $\mathrm{HSC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}(\mathbf{6 a})(0.4 \mathrm{mmol})$. After the solution was stirred for 17 h at $80^{\circ} \mathrm{C}$, the resultant mixture was filtrated through Celite, and evaporated under reduced pressure. 3a was isolated by preparative TLC using hexane and $\mathrm{Et}_{2} \mathrm{O}(10 / 7)$ as an eluent (39\%).

3-7. References and Notes

(1) (a) Ingall, A. H. In Comprehensive Heterocyclic Chemistry II; Boulton, A. S., McKkillop, A., Eds.; Pergamon Press: Oxford, 1996; Vol. 5, p 501. (b) Schneller, S. W. Adv. Heterocycl. Chem. 1975, 18, 59. (c) Katrizky, A. R.; Bonlton, A. J. Adv. Heterocycl. Chem. 1975, 18, 76. (d) Al-Nakib, T.; Bezjak, V.; Meegan, M.; Chandy, R. Eur. J. Med. Chem. 1990, 25, 455. (e) Al-Nakib, T.; Bezjak, V.; Rashid, S.; Fullam, B.; Meegan, M. Eur. J. Med. Chem. 1991, 26, 221. (f) van Vliet, L. A.; Rodenhuis, N.; Dijkstra, D.; Wikstrom, H.; Pugsley, T. A.; Serpa, K. A.; Meltzer, L. T.; Heffner, T. G.; Wise, L. D.; Lajiness, M. E.; Huff, R. M.; Svensson, K.; Sundell, S.; Lundmark, M. J. Med. Chem. 2000, 43, 2871.
(2) Crystal data of 3a: space group monoclinic, P21/a (\#14) with $a=11.1771(4) \AA, b=$ $14.9463(5) \AA, c=11.0961(6) \AA, \beta=1212.578(1)^{\circ}, Z=4, \rho=1.307 \mathrm{~g} / \mathrm{cm}^{3}, R=0.074$, and $R_{w}=0.184$.
(3) The N.O.E. experiment showed that cis-isomer was exclusively produced.
(4) For additions of thiol to eynone, see: (a) Perlmutter, P. In Conjugate Addition Reactions in Organic Synthesis; Baldwin, J. E., Magnus, P. D., Eds.; Pergamon Press: Oxford, UK, 1992; Vol. 9, pp 310-322. (b) Blanco, L.; Bloch, R.; Bugnet, E.; Deloisy, S. Tetrahedron Lett. 2000, 41, 7875. (c) Gardiner, J. M.; Giles, P. E.; Martin, M. L. M. Tetrahedron Lett. 2002, 43, 5415. (d) Maezaki, N.; Yagi, S.; Yoshigami, R.; Maeda, J.; Suzuki, T.; Ohsawa, S.; Tsukamoto, K.; Tanaka, T. J. Org. Chem. 2003, 68, 5550. (e) Hollowood, C. J.; Yamanoi, S.; Ley, S. V. Org. Biomol. Chem. 2003, 1, 1664. (f) Ding, F.; Jennings, M. P. Org. Lett. 2005, 7, 2321.
(5) For copper catalyzed acyl-selenation and -telluration of alkynes, see: (a) Zhao, C.-Q.; Huang, X.; Meng, J.-B. Tetrahedron Lett. 1998, 39, 1933. (b) Zhao, C.-Q.; Li, J.-L.; Meng, J.-B.; Wang, Y.-M. J. Org. Chem. 1998, 63, 4170.
(6) It has been reported that 2-arylthio-pyridine undergoes nucleophilic substitution by phenol. Inoue, S. Phosphorus Sulfur 1985, 22, 141.
(7) From 5a to 3a, β-attack of the lone pair of SAr to terminal ene moiety to afford sulfonium cation as a trigger step and following intramolecular aromatic nucleophilic substitution might be an alternative pathway (Eq. 5).

(8) Chowdhury, C.; Kundu, N. G. Tetrahedron 1999, 55, 7011.

Chapter 4

Reactions of α, β-Unsaturated Thioesters with $\operatorname{Pt}(\mathbf{0})$: Implication of Dual

Mechanism Leading to the Formation of Acyl Platinum

4-1. Introduction

It has been well-known that two distinct reaction patterns, 1,2-additon and Michael addition, exists under the reaction of enones with nucleophiles. When the reaction mechanism of oxidative addition of allylic halide derivatives to low-valent transition-metal complexes to generate π-allyl metals is considered, it has been well-established that there are two reaction routes, syn- and anti-oxidative addition. ${ }^{1}$ The reactions of α, β-unsaturated acid halides with low-valent transition-metal complexes to produce acyl metals are also familiar transformation. ${ }^{2}$ However, much attention to their reaction mechanism has not been attracted presumably due to the lack of a good reaction system to examine the details. In fact, the author attempted the reactions of $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}(\mathbf{1 a})$ or $(E)-(\mathrm{Ph})(\mathrm{H}) \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}(\mathbf{1 b})$ with $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (2) in toluene- d_{8} using a freeze-pump-thaw technique, but acyl platinums 3a or 3b were quantitatively produced even at $-50^{\circ} \mathrm{C}$ after 10 min in both cases (Eq. 1). ${ }^{3}$ Although the predominant formation of cis-isomer at the beginning of the reactions suggested its stereochemistry of oxidative addition, more information such as the effect of the introduction of a Ph group at β-carbon $\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$ was not clearly disclosed from these experimental data.

1
$R^{1}=H, R^{2}=H ; 1 a$
$-50^{\circ} \mathrm{C}, 10 \mathrm{~min}$
$10^{\circ} \mathrm{C}, 10 \mathrm{~min}$
$\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H} ; \mathbf{1 b} \quad-50^{\circ} \mathrm{C}, 10 \mathrm{~min} \quad 3 \mathrm{~b}>99.9 \%$ (cis:trans $=96: 4$)
$10^{\circ} \mathrm{C}, 10 \mathrm{~min} \quad>99.9 \%$ (cis:trans $=1:>99$)
3
3a $>99.9 \%$ (cis:trans $=57: 43$)
>99.9\% (cis:trans $=1:>99$)
zero-valent platinum complex 2, substantiating that there are two distinct reaction routes for the formation of acyl complexes.

4-2. Reactions of $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{O})$ SAr with a Platinum (0) Complex.

First, thioesters $\mathbf{4 a - d}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{X}, \mathrm{X}=\mathrm{Me}, \mathrm{H}, \mathrm{Cl}, \mathrm{NO}_{2}\right)$ were prepared and the reactions with 2 were monitored by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopies at $25{ }^{\circ} \mathrm{C}$ using $\mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{OMe}\right)_{3}$ as an internal standard (Eq. 2). ${ }^{6}$ The reaction of $\mathbf{4 a}(\mathrm{X}=\mathrm{Me})$ with 2 resulted in the quantitative formation of π-complex $\mathbf{5 a}$ was confirmed after 20 min both in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution. Although it was not clear when the systems reached the equilibrium states due to the low yields of acyl platinum 6a and $7 \mathbf{7 a}$ (dimeric form of $\mathbf{6 a}$), the formation after 3 h of 99.5% of 5 a and 0.5% of 7 a in $\mathrm{C}_{6} \mathrm{D}_{6}$. On the other hand, the reaction of trans $-3 \mathrm{a}(0.02 \mathrm{mmol})$ with $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SNa}(8,0.06 \mathrm{mmol})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ produced $5 \mathrm{a}(79 \%)$, trans- 6 a (0.6%) and $7 \mathrm{a}(13 \%$, syn:anti=77:23) after $17 \mathrm{~h}(\mathrm{Eq} .3)$. These results clearly showed that the equilibrium between $\mathbf{5 a}$ and $\mathbf{6 a}$ strongly leaned to the former side. The reaction employing 1b $(\mathrm{X}=\mathrm{H})$ gave the similar result of 5 and 7. The introduction of electro-withdrawing groups $(\mathrm{Cl}$, NO_{2}) into X position slightly increased the reactivity. In the case of $\mathbf{4 d}$, dimer complex $\mathbf{7 d}$ did not form. The fact indicates that introduction of electron withdrawing NO_{2} group lowered the basicity of lone pairs on sulfur resulting in the prevention of the formation of $7 .{ }^{7}$

4-3. Reactions of Thioesters Having a $\boldsymbol{p}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}$ Group with a Platinum (0) Complex.

Next, when $4 e\left(R^{1}=H, R^{2}=M e\right)$ was employed, the signal of starting 2 also completely disappeared and the formation of a mixture of the corresponding 5e, 6e and 7e were confirmed in $78 \%, 4.4 \%$ (cis:trans $=9: 91$) and 17% (syn:anti $=47: 53$) yields after 20 min in $\mathrm{C}_{6} \mathrm{D}_{6}$, and in $66 \%, 20 \%$ (cis:trans $=45: 55$) and 14% (syn:anti $=51: 49$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. Monitoring the reactions by ${ }^{31} \mathrm{P}$ NMR spectra suggested that $6 \mathbf{e}$ and 7 e were produced via 5 e and revealed that the equilibria among $5 \mathrm{e}, 6 \mathrm{e}$ and 7 e were attained in the periods of $3-4 \mathrm{~h}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ and $5-6 \mathrm{~h}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (runs 1 and 2, Table 1). ${ }^{8,9}$ The reactions using $4 \mathbf{f}\left(\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}\right)$ also showed the formation of $\mathbf{5 f}$, $\mathbf{6 f}$ and $\mathbf{7 f}$ after 20 min . It must be noted that the transformation from $\mathbf{5 f}$ into $\mathbf{6 f}$ and $7 \mathbf{f}$ was much faster than that from $5 \mathbf{e}$ into $6 \mathbf{e}$ and $7 \mathbf{e}$; the equilibria were attained within 40 \min (runs 3 and 4, Table 1). Foregoing facts demonstrate that the reaction systems of 4

Table 1. Reactions of 4 with $\mathbf{2}^{\text {a }}$
${ }^{\mathrm{a}} \mathbf{2}(0.020 \mathrm{mmol}), 4(0.022 \mathrm{mmol})$ and solvent (0.5 mL) under N_{2} atmosphere at $25^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ Required to
reach the equilibrium of 5:6. ${ }^{\mathrm{c}}$ Ratio at equilibrium. ${ }^{\mathrm{d}}$ Required to reach the equilibrium of 6:7. ${ }^{\mathrm{e}} 4.3$
equiv of $4 \mathrm{j} .{ }^{\dagger} 4.8$ equiv of $\mathbf{4 k}$.
possessing $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}$ with 2 are quite flexible and the position changes of equilibrium states caused by substituents and solvents are readily analyzable.
Furthermore, the comparison of the equilibria of $\mathbf{5 e}: \mathbf{6 e}=51: 49$ (run 1, Table 1) with $\mathbf{5 f}: \mathbf{6} \mathbf{f}=$ 57:43 (run 3, Table 1) in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathbf{5 e}: \mathbf{6 e}=22: 78$ (run 2, Table 1) with $\mathbf{5 f}: 6 \mathbf{f}=17: 83$ (run 4, Table 1) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ indicates that retarded conversion of $\mathbf{5 e}$ into $\mathbf{6 e}$ and $7 \mathbf{e}$ is not attributable to its thermodynamics. Moreover, it took $9-10 \mathrm{~h}$ and even $52-55 \mathrm{~h}$ to reach the equilibrium states between 5 and 6 when $4 g\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=n-\mathrm{C}_{6} \mathrm{H}_{13}\right)$ and $\mathbf{4 i}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=i\right.$-Pr $)$ were employed as starting substrates, respectively (runs 5 and 7 , Table 1). It is also a noteworthy fact that 6:7 were reached the equilibrium states faster than 5:6 in theses reaction systems ($3-6 \mathrm{~h}$ vs. $9-10 \mathrm{~h}$ in run 5 and $10-15 \mathrm{~h}$ vs. $52-55 \mathrm{~h}$ in run 7 , Table 1). Although a larger thermodynamic driving force toward the oxidative addition from 5 to 6 was supplied by placing Ph at R^{2} compared to Ph at R^{1} ($\mathbf{5 j} \mathbf{j} \mathbf{6 j}=71: 29$ of run 8 vs. $\mathbf{5 k}: \mathbf{6 k}=89: 11$ of run 11 in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathbf{5 j} \mathbf{j} \mathbf{6}=50: 50$ of run 10 vs. $\mathbf{5 k}: \mathbf{6 k}=70: 30$ of run 13 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, Table 1), a much more prolonged time was again required to reach the equilibria; only $<40 \mathrm{~min}$ were required for $\mathbf{5 k}: 6 \mathbf{k}$ both in $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (runs 11 and 13 , Table 1), while the systems of $\mathbf{5 j}: \mathbf{6 j}$ came to the equilibria during the term of $14-15 \mathrm{~h}$ and $16-17 \mathrm{~h}$, after the equilibria of $6 \mathbf{j}: 7 \mathrm{j}$ were achieved during the period of $9-10 \mathrm{~h}$ and $13-14 \mathrm{~h}$, respectively (runs 8 and 10 , Table 1). Although there are the plural equilibrium systems such as 6:7, cis-6:trans-6 and syn-7:anti-7, all the results above indicate that introducing a bulky substituent at R^{2} causes retardation of the process of conversion of 5 into 6. The reactions performed in the presence of excess amount of 4 toward 2 (runs 10 and 13, Table 1) in the cases of $\mathrm{R}^{2}=\mathrm{Ph}$ or $\mathrm{R}^{1}=\mathrm{Ph}$ showed no practical influence for both the reaction rates and the positions of equilibria, indicating that the generation of 6 from 5 is a unimolecular process.

$-70^{\circ} \mathrm{C}, 10 \mathrm{~min}$	$19 \%(63: 37)$	n.d.	n.d.
$-10^{\circ} \mathrm{C}, 10 \mathrm{~min}$	$92 \%(96: 4)$	5%	$3 \%(67: 33)$
$0^{\circ} \mathrm{C}, 10 \mathrm{~min}$	$74 \%(>99: 1)$	11%	$14 \%(79: 21)$
$25^{\circ} \mathrm{C}, 10 \mathrm{~min}$	$9 \%(>99: 1)$	4%	$87 \%(61: 39)$

The chart of the ${ }^{31} P$ NMR spectrum of the reaction of $4 f\left(R^{1}=M e, R^{2}=H\right)$ with 2 in toluene- d_{8} attempted at a low reaction temperature ($-70{ }^{\circ} \mathrm{C}$ after 10 min) suggested the
formation of two π-complexes at (a) $\delta 29.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=44 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4208 \mathrm{~Hz}\right)$ and $\delta 31.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}\right.$ $=44 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3373 \mathrm{~Hz}$), and (b) $\delta 29.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=41 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3280 \mathrm{~Hz}\right)$ and $\delta 30.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=\right.$ $41 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4212 \mathrm{~Hz}$) in a ratio of 63:37 in 19\% yields (Eq. 4), although the stereochemistry was not able to be determined from these spectral data. ${ }^{10}$ Then the ratio of the latter signal decreased at $-10^{\circ} \mathrm{C}(96: 4)$ and completely disappeared at $0^{\circ} \mathrm{C}$. Eventually, $7 \mathbf{f}$ was produced as a major product at $25^{\circ} \mathrm{C}$. Only trans isomer of $6 \mathbf{f}$ was detected during the course of this reaction.

On the other hand, the reaction utilizing $4 \mathbf{k}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}\right)$ produced only one π-complex in 22% yield at $-50^{\circ} \mathrm{C}$ (Eq. 5). In this case, however, cis-6k was also detected at $-30^{\circ} \mathrm{C}(5 \%$ with cis:trans $=60: 40$) and trans-6k (4%) was again finally produced, indicating cis-6k was generated as a kinetic product.
The foregoing data described in Table 1 also clearly showed the following.
(1) The position of equilibria of 5:6 and 6:7 both were slightly shifted toward 6 by changing the solvent from $\mathrm{C}_{6} \mathrm{D}_{6}$ to $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. (Compare 51:49 of run 3 with 22:78 of run 1 for 5e:6e and 13:87 of run 3 with 22:78 of run 2 for $6 \mathbf{e}: 7 \mathrm{e}$ for instance in Table 1.) That is, the conversion from 5 into 6 was thermodynamically facilitated in some degree by a polar solvent and 6 has a slightly larger dipole moment than 7.
(2) The formation of cis- 6 was confirmed when thioesters having the substituent at R^{2} were employed (runs 1, 2 and 10, Table 1) and the ratios of cis- 6 over trans- 6 was increased by changing the solvent from $\mathrm{C}_{6} \mathrm{D}_{6}$ to $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. (Compare 6:94 of run 3 with 13:87 of run 4 and 1:>99 of run 9 with 21:79 of run 11, Table 1.)
(3) The positions of equilibria between 6 and 7 were hardly influenced by the substituent at R^{1} or R^{2}. The ratios of 6:7 were all in the narrow range from 6:94 (run 7, Table 1) to 13:87 (run 1, Table 1) in $\mathrm{C}_{6} \mathrm{D}_{6}$ and from 15:85 (run 13, Table 1) to 22:78 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (run 2, Table 1). These
results also indicated that the basicity of the lone pair on sulfur, which can be mainly controlled by the substituent in Ar (vide infra), was the predominant factor to determine the position of equilibria between 6 and $7 .{ }^{7}$
(4) The fact that the formation of syn-7 over anti-7 was increased by changing the solvent from $\mathrm{C}_{6} \mathrm{D}_{6}$ to $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ agrees with the prediction that the dipole moment of syn-7 is slightly larger than that of anti-7.

4-4. Reactions of Thioesters Having $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}$ Group with $\operatorname{Pt}(0)$ Complex.

It was found that more clear kinetic data from 5 to 6 was acquired by using thioesters with $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}$ group; monitoring the reactions of $\mathbf{2}$ with $\mathbf{4}$ shown in Table 2 demonstrated that 6 was exclusively produced from 5 whose decay followed the first order kinetics. When $41\left(R^{1}=\right.$ $\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$) was employed, the half-life of $\mathbf{5 l}$ forming $\mathbf{6 l}$ was calculated to be 38 min in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 1, Table 2). As predicted from the results of Table 1, the introduction of Me at R^{1} kinetically facilitated the reaction $\left(t_{1 / 2}=2.1 \mathrm{~min}\right.$, run 6 , Table 2$)$. In stark contrast, the reaction of $\mathbf{4 p}$ having i - Pr group at R^{2}, which significantly retarded the reaction in the case of $\mathrm{ArS}=$ $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}$ (run 8, Table 1) took place just at a comparable reaction rate with that employing

Table 2. Half-Lives from 5 to $\mathbf{6}^{\text {a }}$

4l $\left(t_{1 / 2}=43 \mathrm{~min}\right.$, run 10 vs. $t_{1 / 2}=38 \mathrm{~min}$, run 1, Table 2$)$. Moreover, although retardation was also expected by introducing Ph at R^{2} (vide ante), the transformation of $\mathbf{5 q}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Ph}\right.$) to $\mathbf{6 q}$ was actually faster than that of $\mathbf{5 r}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}\right)$ to $\mathbf{6 r}(6.2 \mathrm{~min}$, run 13 vs .9 .1 min , run 15 , Table 2). The effect of solvent was also very intriguing. While the reaction rates were hardly influenced by the polarity of the solvent in the cases of substrates possessing a substituent at R^{1} [2.1 min in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 6, Table 2) vs. 3.3 min in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (run 7, Table 2) for $\mathbf{5 m}$ to $\mathbf{6 m}$ or 9.1 min in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 15, Table 2) vs. 7.8 min in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (run 17, Table 2) for $\mathbf{5 q}$ to 6q], significant acceleration was detected in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution with the thioesters having a substituent at R^{2}. The reactions took place 2.7 times faster for $\mathbf{5 1}\left(38 \mathrm{~min}\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}$, run 1 vs. 14 \min in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, run 3, Table 2), 6.3 times faster for $\mathbf{5 p}\left(43 \mathrm{~min}\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}$, run 10 vs .6 .8 min in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, run 12, Table 2) and 5.2 times faster for $\mathbf{5 q}\left(6.2 \mathrm{~min}\right.$ in $\mathrm{C}_{6} \mathrm{D}_{6}$, run 13 vs .1 .2 min in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, run 14 , Table 2). The reaction performed in acetone- d_{6} also proceeded faster than that in $\mathrm{C}_{6} \mathrm{D}_{6}$ (19 min , run 4 vs .38 min , run 1, Table 2), while no facilitation was observed in THF- d_{8} (36 min , run 5, Table 2). Similarly to the cases of reactions shown in Table 1 , the reaction rates were independent of the excess amount of 4 in the cases of thioesters with substituent at either R^{1} or R^{2} position [run 1 vs. run 2 (4.5 equiv of 41), run 8 vs. run 9 (5.0 equiv of $\mathbf{4 p}$) and run 13 vs. run 14 (4.7 equiv of $\mathbf{4 q}$), Table 2].

When the reaction of $\mathbf{4 q}$ with $\mathbf{2}$ was performed at low reaction temperature, selective formation of $5 \mathbf{q}$ was confirmed at $-50^{\circ} \mathrm{C}$ after 10 min in 70% yield (Eq. 6). Then cis- $6 \mathbf{q}$ was produced at $-40^{\circ} \mathrm{C}$ after 10 min in 3% yield and trans $-6 q$ was quantitatively provided at $25^{\circ} \mathrm{C}$.

4-5. Proposed Dual Reaction Routes

The experimental datas can be rationalized as follows (Scheme 1). In the case of thioesters posessing p-tolyl group on sulfur, after the formation of π-complex 5 , coordinated $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$ fragment would approach the C-S bond with the π-coordination partially retained. ${ }^{11}$ During the process, two $\mathrm{PPh}_{3} \mathrm{~S}$ on Pt would remain cis-coordinated, ${ }^{5}$ bulky substituents at R^{2} significantly retard the reaction owing to the steric hindrance, and the cleavage of C-S bond and the
formation of C-Pt and S-Pt bonds take place through a transition state such as 8 , which can possess the polarity comparable to 5 .
Unlike the cases of reactions of thioesters possessing a $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{~S}$ group with 2 , the results from the reaction of thioesters having $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ group on sulfur indicated that the $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$-fragment can also attack the β-carbon (path b, Scheme 1) as well as the direct C-S bond attack (path a). ${ }^{12}$ The β-attack would generate zwitterionic platinum complex 9 having anionic charge delocalized over α-carbon and carbonyl group. The formation of 9 can be facilitated to a great extent by a polar solvent and a substituent with α-anion stabilization ability such as a Ph group at $\mathrm{R}^{2} .^{13}$ The steric repulsion caused between a substituent at R^{2} and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$-fragment would rather facilitate the β-attack by pushing out the $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$-fragment toward a less hindered β-carbon in path b. Presumably due to the cancellation by the retardation of path a and facilitation of path b by replacing $M e$ with $i-\operatorname{Pr}$ at R^{2}, no remarkable difference emerged in the half-lives of 5 between the reactions using 41 and $\mathbf{4 p}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 1 vs. run 10 , Table 2). On the other hand, path b would predominate in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and the reaction utilizing $\mathbf{4 q}$ proceed faster than that utilizing $\mathbf{4 l}$ (run 3 vs. run 12 , Table 2). The reaction using thioester with $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}$ and Ph group at R^{2} would overwhelmingly occur via path b even in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution due to the α-anion stabilization ability of Ph as well as the steric repulsion between Ph and $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$-fragment. This is why the reaction of $\mathbf{4 q}$ took place faster than that of $\mathbf{4 r}$ even in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 13 vs. run 15 , Table 2). After the generation of 9 , the $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$-fragment would migrate from β-carbon to carbonyl carbon through an $\eta^{1}-\eta^{3}-\eta^{1}$ type isomerization mechanism. During the process, the two PPh_{3} on Pt also would retain cis configuration to give cis-6 as a kinetic product, which would isomerize into thermodynamically more stable trans-6.

Scheme 1. A Proposed Pathway from 5 to 6

4-6. Activation Parameters

To obtain more convincing information about the reaction mechanism, the activation parameters of the transformation of 6 from 5 were calculated by measuring the temperature dependence of reaction rates $\left(25^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}\right)$ and values of $\Delta G^{\ddagger}, \Delta H^{\ddagger}$ and ΔS^{\ddagger} were shown in Table 3. The following facts must be noted. First, the activation parameters of the formation of 61 from 51 in $\mathrm{C}_{6} \mathrm{D}_{6}$ significantly differed from those in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$. That is, while ΔH^{\ddagger} and ΔS^{\ddagger} in $\mathrm{C}_{6} \mathrm{D}_{6}$ were $95.3 \pm 0.4 \mathrm{kJmol}^{-1}$ and $7.5 \pm 1.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, those in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were $53.5 \pm 0.1 \mathrm{kJmol}^{-1}$ and $-124.4 \pm 0.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The large negative ΔS^{\ddagger} and relatively small positive ΔH^{\ddagger} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ did not contradict the assumption that this reaction generates zwitterionic platinum complex 9 , where the degree of freedom of the total reaction system was significantly diminished by a polar solvent and stiff Pt-C bond formation. On the contrary, the more positive ΔS^{\ddagger} and larger ΔH^{\ddagger} in $\mathrm{C}_{6} \mathrm{D}_{6}$ suggested the loss of bond energy and only weak bond generation at the transition state. Supposing that the π-coordination and C-S bond were weakened and emerging C-Pt and S-Pt bonds were both not strong, the transition state 8 would fulfill these criteria. Second, the negative value of $\Delta S^{\ddagger}\left(-49.2 \pm 0.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$ from $5 \mathbf{p}$ to $6 \mathbf{p}$ even in $\mathrm{C}_{6} \mathrm{D}_{6}$ also did not contradict the projection that this reaction can also proceed through path b even in $C_{6} \mathrm{D}_{6}$ solution. That is, due to the significant steric hindrance caused by i - Pr located at R^{2}, the route of path b competitively took place. The small positive ΔH^{\ddagger} and large minus ΔS^{\ddagger} in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ also accorded with the route of path b. Third, comparing the data of formation of $\mathbf{6 r}$ from $5 \mathbf{r}$ in

Table 3. Activation Parameters from 51 to 61 , from $5 p$ to $6 p$ and $5 r$ from $6 r$

from 5 I to $6 \mathrm{I}\left(\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}\right)$	
in $\mathrm{C}_{6} \mathrm{D}_{6}$	in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
$\Delta G^{\ddagger}=93.0 \pm 0.1 \mathrm{kJmol}^{-1}$	$\Delta G^{\ddagger}=90.5 \pm 0.1 \mathrm{kJmol}^{-1}$
$\Delta H^{\ddagger}=95.3 \pm 0.4 \mathrm{kJmol}^{-1}$	$\Delta H^{\ddagger}=53.5 \pm 0.1 \mathrm{kJmol}^{-1}$
$\Delta S^{\ddagger}=7.5 \pm 1.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$	$\Delta S^{\ddagger}=-124.4 \pm 0.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

from $5 p$ to $6 p\left(R^{1}=H, R^{2}=i-P r\right)$

in $\mathrm{C}_{6} \mathrm{D}_{6}$	in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
$\Delta G^{\ddagger}=93.4 \pm 0.1 \mathrm{kJmol}^{-1}$	$\Delta G^{\ddagger}=88.9 \pm 0.1 \mathrm{kJmol}^{-1}$
$\Delta H^{\ddagger}=78.7 \pm 0.1 \mathrm{kJmol}^{-1}$	$\Delta H^{\ddagger}=40.2 \pm 0.2 \mathrm{kJmol}^{-1}$
$\Delta S^{\ddagger}=-49.2 \pm 0.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$	$\Delta S^{\ddagger}=-163.5 \pm 0.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

from $5 \mathbf{r}$ to $6 \mathrm{r}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}\right)$

from $\mathbf{5 r}$ to $6 \mathbf{r}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}\right)$	
in $\mathrm{C}_{6} \mathrm{D}_{6}$	in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$
$\Delta G^{\ddagger}=89.8 \pm 0.1 \mathrm{kJmol}^{-1}$	$\Delta G^{\ddagger}=89.5 \pm 0.1 \mathrm{kJmol}^{-1}$
$\Delta H^{\ddagger}=68.2 \pm 0.7 \mathrm{kJol}^{-1}$	$\Delta H^{\ddagger}=81.9 \pm 1.9 \mathrm{kJol}^{-1}$
$\Delta S^{\ddagger}=-72.5 \pm 2.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$	$\Delta S^{\ddagger}=-25.5 \pm 6.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

$\mathrm{C}_{6} \mathrm{D}_{6}$ with those in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, differences in the values of ΔH^{\ddagger} and ΔS^{\ddagger} as well as half-lives were much smaller than other cases. This can be nicely rationalized by assuming that reactions in both $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ took place through a similar reaction route, namely, the direct $\mathrm{C}-\mathrm{S}$ bond attack of a $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}$-fragment (path a) from a π-complex.

4-7. Conclusions

This study suggested that even when the substrates are α, β-unsaturated acid halide derivatives, two distinct reaction routes can similarly exist. The generality of this dual mechanism is now under investigation.

4-8. Experimental Section

General Comments: ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a JEOL JMN Alice-400 spectrometer (160 MHz and 400 MHz , respectively) in $\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ or toluene- d_{8} solution. The chemical shifts of the ${ }^{31} \mathrm{P}$ NMR spectra were recorded relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (aq.) as an external standard and $\mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ was used as an internal standard to calculate the yields of products. The chemical shifts in the ${ }^{1} \mathrm{HNMR}$ spectra were recorded relative to $\mathrm{C}_{6} \mathrm{H}_{6}$ ($\delta 7.15$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\delta 5.32$) or toluene ($\delta 2.09$). IR spectra were recorded with a Perkin Elmer FT-IR (Model 1600) spectrometer. Elemental analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Acid chlorides 1a and 1b were commercially obtained. Thioester 4a-c was prepared from the dehydrochlorination of S-aryl-3-(chloro)propanethioate using triethylamine (J. Am. Chem. Soc. 1969, 91, 913.). Thioester $4 \mathbf{d}$ was obtained from the reaction of $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}$ with $\mathrm{NaSC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$. Thioesters (4g, 4i-j) were synthesized according to the literature (Tetrahedron Lett. 2001, 42, 1567). Other thioesters ($\mathbf{4 e - f}, \mathbf{4 h}, \mathbf{4 k} \mathbf{- r}, \mathrm{S}$-aryl-3-(chloro)propanethioate) were prepared from the reactions of the corresponding acid chlorides with thiols in the presence of pyridine. The platinum complex $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ (2) was synthesized according to the literature (Inorg. Synth. 1978, 18, 120.). $\mathrm{C}_{6} \mathrm{D}_{6}$, toluene- d_{8} and $\mathrm{C}_{6} \mathrm{H}_{6}$ were purified by distillation from sodium benzophenon ketyl before use. $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2}. The structures of 5, trans-6 and 7 were determined by comparing their ${ }^{31} \mathrm{P}$ NMR chemical shifts and coupling constants ($J_{\mathrm{P}-\mathrm{P}}$ and $J_{\mathrm{Pt}-\mathrm{P}}$) with those of the authentic samples 5 a , trans- $\mathbf{6 r}$ and $\mathbf{7 k}$.

Spectrum Data of 4.

$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}(\mathbf{H}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}} \mathbf{(4 a)}$: colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.36(\mathrm{~s}, 3 \mathrm{H}), 5.71(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{dd}, J=$ $1.6 \mathrm{~Hz}, 17.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{dd}, J=9.6 \mathrm{~Hz}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.4,123.4,126.9,129.8,134.1,134.2$, 139.4, 188.4; mass spectrum (EI) m/z $178\left(\mathrm{M}^{+}, 40\right)$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{OS}$ 178.0452, found 178.0444 .
$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}(\mathbf{H}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{5}}$ (4b): colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.76-5.79(\mathrm{~m}, 1 \mathrm{H}), 6.36-6.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 127.0,127.2,129.0,129.3,134.2$, 134.4, 188.1; mass spectrum (EI) m/z 164 ($\mathrm{M}^{+}, 92$); HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{OS}$ 164.0296, found 164.0300 .
$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}(\mathbf{H e}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p} \mathbf{- C l}$ (4c): white solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 5.79-5.81(\mathrm{~m}, 1 \mathrm{H}), 6.37-6.48(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 4 \mathrm{H})$, $7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 125.4,127.7$, 129.3, 134.0, 135.6, 135.7, 187.6; mass spectrum (EI) m/z $198\left(\mathrm{M}^{+}, 12\right)$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClOS}$ 197.9906, found 197.9903.
$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}(\mathbf{H}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{4}} \boldsymbol{p} \boldsymbol{p}-\mathrm{NO}_{\mathbf{2}} \mathbf{(4 d) : ~ c o l o r l e s s ~ s o l i d ; ~}{ }^{1} \mathrm{H}$ NMR (400

$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.86-5.90(\mathrm{~m}, 1 \mathrm{H}), 6.43-6.50(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, 2 \mathrm{H}$, $\left.J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right), 8.26\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $123.8,123.9,128.7,133.6,134.6,135.6,185.8$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 209\left(\mathrm{M}^{+}, 21\right)$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{3} \mathrm{~S}$ 209.0147, found 209.0133.
$\left.\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C (M e}\right) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{4}-\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}}$ (4e): yellow oil; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 5.67(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $18.4,21.5,123.5,123.9,129.8,134.7,139.4,143.3,191.6$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 192\left(\mathrm{M}^{+}, 16\right) ;$ HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{OS} 192.0609$, found 192.0611.
(E) $\mathbf{- M e}(\mathbf{H}) \mathbf{C}=\mathbf{C}(\mathbf{H}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{4}} \boldsymbol{p}-\mathbf{C H}_{\mathbf{3}}$ (4f): colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.88(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $6.19(\mathrm{dd}, J=1.6 \mathrm{~Hz}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dt}, J=7.2 \mathrm{~Hz}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.1$, $21.4,123.8,129.1,129.7,134.3,139.2,141.5,187.8$; mass spectrum (EI) m/z $192\left(\mathrm{M}^{+}, 10\right)$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{OS}$ 192.0609, found 192.0613.

$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}\left(\boldsymbol{n}-\mathbf{C}_{6} \mathbf{H}_{13}\right) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{4}} \boldsymbol{p}$ - $\mathbf{C H}_{\mathbf{3}}$ (4g): colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{br}, 6$ H), 1.44-1.49 (m, 2 H$), 2.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, $5.64(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,21.5,22.7,28.3,29.0,31.7,32.1,122.4,124.1,129.8,134.7,139.4$, 148.2, 191.9; mass spectrum (EI) m/z $262\left(\mathrm{M}^{+}, 14\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OS}$ 262.1391, found 262.1393.

$(\boldsymbol{E})-\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right)(\mathrm{H}) \mathrm{C}=\mathbf{C}(\mathrm{H}) \mathrm{C}(\mathbf{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{\mathbf{3}}$ (4h): yellow oil; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, 1.28-1.49 (m, 8 H$), 2.24(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 6.17$ (d, $J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dt}, J=7.2 \mathrm{~Hz}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 14.2,21.5,22.7,28.0,28.9,31.5,32.4,124.0,127.6$, 129.8, 134.3, 139.3, 146.6, 188.2.

$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}\left(\boldsymbol{i}-\mathbf{C}_{\mathbf{3}} \mathbf{H}_{7}\right) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}$ - $\boldsymbol{p}-\mathbf{C H}_{\mathbf{3}}$ (4i): colorless oil; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.85(\mathrm{sept}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.63$ (s, 1 H), $6.18(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.3,21.5,29.9,119.7,124.1,129.6,134.5$, 139.2, 154.3, 192.2; mass spectrum (EI) m/z $220\left(\mathrm{M}^{+}, 16\right)$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{OS}$ 220.0922, found 220.0923 .
$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}\left(\mathbf{C}_{6} \mathbf{H}_{5}\right) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}$-p- $\left.\mathbf{C H}_{\mathbf{3}} \mathbf{(4 j}\right)$: white solid; ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
 $\left.\mathrm{CDCl}_{3}\right) \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.45(\mathrm{~m}, 9 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.9,123.5,124.5,128.50,128.55,128.9$, 130.3, 134.8, 136.0, 139.9, 148.0, 192.2; mass spectrum (EI) m/z $254\left(\mathrm{M}^{+}\right.$, 13); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OS} 254.0765$, found 254.0771.

$(\boldsymbol{E})-\left(\mathbf{C}_{6} \mathbf{H}_{5}\right)(\mathbf{H}) \mathbf{C}=\mathbf{C}(\mathbf{H}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{4}-\boldsymbol{p}-\mathrm{CH}_{\mathbf{3}}$ (4k): white solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 6.78(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.55(\mathrm{~m}, 2 \mathrm{H})$, $7.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5$, $123.9,124.0,128.3,128.8,129.8,130.5,133.8,134.3,139.5,141.1,188.0$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 254\left(\mathrm{M}^{+}, 1\right)$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{OS} 254.0765$, found 254.0759.

$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}\left(\mathbf{C H}_{\mathbf{3}}\right) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \boldsymbol{- p}$ - $\mathrm{NO}_{\mathbf{2}}$ (41): yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.03(\mathrm{~s}, 3 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $18.1,123.5,124.7,134.9,136.0,142.8,147.8,188.7$; mass spectrum (EI) m/z $223\left(\mathrm{M}^{+}, 1\right)$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}$ 223.0303, found 223.0308 .
(E)-($\left.\mathrm{CH}_{3}\right)(\mathbf{H}) \mathbf{C}=\mathbf{C}(\mathbf{H}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{NO}_{2}(\mathbf{4 m})$: orange solid; ${ }^{1} \mathrm{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.23(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{dt}, J=6.8 \mathrm{~Hz}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2$ H), 8.25 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.4$, $123.7,128.8,134.6,136.2,143.6,147.8,185.1$; mass spectrum (EI) m/z $223\left(\mathrm{M}^{+}, 0.4\right)$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}$ 223.0303, found 223.0305.

$\mathbf{H}_{\mathbf{2}} \mathrm{C}=\mathbf{C}\left(\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{C}(\mathbf{O}) \mathrm{SC}_{6} \mathrm{H}_{\mathbf{4}}-\boldsymbol{p}-\mathrm{NO}_{\mathbf{2}}(\mathbf{4 n})$: colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.50$ $(\mathrm{m}, 8 \mathrm{H}), 2.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.2,22.7,28.2,28.9,31.7,32.0,123.7,123.8,135.0,136.4,147.9$, 189.1.
(E) $-\left(n-\mathrm{C}_{6} \mathrm{H}_{13}\right)(\mathrm{H}) \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$
(40):
 colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.52(\mathrm{~m}, 8 \mathrm{H}), 2.28(\mathrm{dt}, J=20.4 \mathrm{~Hz}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.19(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dt}, J=6.8$ $\mathrm{Hz}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.2,22.7,28.0,29.0,31.7,32.6,123.7,127.3,134.6,136.3,147.8,148.6,185.3$.

$\left.\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}(\boldsymbol{i}-\mathbf{P r}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{4}-\boldsymbol{p}-\mathrm{NO}_{\mathbf{2}} \mathbf{(4 p}\right)$: yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.86($ sept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~s}$, $1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.7,30.2,121.4,123.7,135.0,136.5$, $147.9,154.2,189.6$; mass spectrum (EI) m/z $251\left(\mathrm{M}^{+}, 0.2\right)$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$ 251.0616, found 251.0607.

$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}\left(\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{5}}\right) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}$ - $\boldsymbol{p}-\mathrm{NO}_{\mathbf{2}} \mathbf{(4 q)}$: yellow solid; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.95(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 5 \mathrm{H}), 7.65(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 123.8,124.4,128.2,128.3,128.9,134.8,135.0,136.4,147.3,148.0$, 189.0; mass spectrum (EI) m/z $285\left(\mathrm{M}^{+}, 9.4\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ 285.0460, found 285.0547.

(E)-PhC(H)=CHC(O)SC $\mathbf{C H}_{6}-\boldsymbol{p}-\mathrm{NO}_{2}$ (4r): yellow solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.44$ $(\mathrm{m}, 3 \mathrm{H}), 7.57-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J$ $\left.\mathrm{NO}_{2}=15.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 123.4,123.7,128.5,128.9,131.1,133.4,134.6,136.2,142.7,147.9,185.2$; mass spectrum (CI) m/z $286\left([\mathrm{M}-\mathrm{H}]^{+}, 100\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}_{3} \mathrm{~S}(\mathrm{M}-\mathrm{H}) 286.0538$, found 286.0533.

The Preparation of Authentic 5a. Into a dry two-necked reaction vessel equipped with a stirring bar were added $2(703.0 \mathrm{mg}, 0.94 \mathrm{mmol}), 4 \mathrm{a}(174.9 \mathrm{mg}, 0.98 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{H}_{6}(3 \mathrm{~mL})$. After the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min , hexane (ca. 50 mL) was added into
the mixture and the precipitate was collected by filtration. Then the solid was washed by hexane ($10 \mathrm{~mL} \times 3$) and dried to give $\mathbf{5 a}(672.0 \mathrm{mg}, 80 \%)$.
5a: mp $130^{\circ} \mathrm{C}$ (a white solid); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 2.01(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.60(\mathrm{~m}, 1 \mathrm{H})$, 3.00-3.07 (m, 1 H$), 3.90-4.06(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.97(\mathrm{~m}, 20 \mathrm{H}), 7.18-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.56(\mathrm{~m}$, $12 \mathrm{H}),{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 29.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4038 \mathrm{~Hz}\right), 31.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}\right.$, $J_{\mathrm{Pt}-\mathrm{P}}=3567 \mathrm{~Hz}$); IR (KBr) $3050,1652,1478,1433,1360,1155,1095,967,943,808,742,692$, $540,517,510 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{40} \mathrm{OP}_{2} \mathrm{PtS}: \mathrm{C}, 61.53 ; \mathrm{H}, 4.49$. Found: C, $61.48 ; \mathrm{H}$, 4.49 .

The Preparation of Authentic trans-6r. Into a dry two-necked reaction vessel equipped with a stirring bar were added $2(747.0 \mathrm{mg}, 1.0 \mathrm{mmol}), 4 \mathbf{r}(301.5 \mathrm{mg}, 1.1 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{H}_{6}(5 \mathrm{~mL})$. After the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 1.5 h , hexane (ca. 50 mL) was added into the mixture and the precipitate was collected by filtration. The resultant solid was washed by hexane $(10 \mathrm{~mL} \times 3)$ and methanol $(10 \mathrm{~mL} \times 3)$ and then dried to give trans- $6 \mathbf{r}(849.8 \mathrm{mg}$, 85%).
trans-6r: mp $142{ }^{\circ} \mathrm{C}$ (an orange solid); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.08(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1$ H), 6.82-7.15 (m, 27 H), $7.47(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80-7.83(\mathrm{~m}$, $10 \mathrm{H}) ;{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.0\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3228 \mathrm{~Hz}\right)$; IR (KBr) 3056, 1580, 1566, 1493, 1482, 1435, 1319, 1094, 742, 692, 523, $514 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{51} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{PtS}: \mathrm{C}, 60.95$; H, 4.11; N, 1.39. Found: C, 60.69; H, 4.03; N, 1.43.

The Preparation of Authentic 7k. Into a dry two-necked reaction vessel equipped with a stirring bar were added $2(897.0 \mathrm{mg}, 1.2 \mathrm{mmol}), 4 \mathbf{k}(321.2 \mathrm{mg}, 1.3 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{H}_{6}(5 \mathrm{~mL})$. After the reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 2 h , hexane (ca. 50 mL) was added into the mixture and the precipitate was collected by filtration. The resultant solid was washed by hexane $(10 \mathrm{~mL} \times 3)$ and methanol $(10 \mathrm{~mL} \times 3)$ and then dried to give $7 \mathbf{k}(394.9 \mathrm{mg}, 46 \%$, syn:anti = 61:39).
$7 \mathbf{k}$ (the following data were collected from a mixture of stereoisomers): mp $186^{\circ} \mathrm{C}$ (an yellow solid); ${ }^{1} \mathrm{H}$ NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) (syn isomer): $\delta 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 6.13$ (d, $J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$; (anti isomer): $\delta 1.88(\mathrm{~s}, 6 \mathrm{H}), 6.14(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$ (Other peaks overlapped in the region of δ 6.83-7.15 and $\delta 7.69-7.85$ was not able to be read distinctively.); ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{D}_{6}$) (syn isomer): $\delta 15.0\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4164 \mathrm{~Hz}\right.$); (anti isomer): $\delta 16.8$ (s, $\left.J_{\mathrm{Pt}-\mathrm{P}}=4028 \mathrm{~Hz}\right) ; \operatorname{IR}(\mathrm{KBr}) 3055,1626,1582,1486,1434,1096,758,693,535,511,498 \mathrm{~cm}^{-1}$; Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{58} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{Pt}_{2} \mathrm{~S}_{2}$: C, 57.38; H, 4.11. Found: C, 57.66; H, 4.03.

The Reaction of 1a with 2 (Eq. 1). Into a dry Pyrex NMR tube were added $2(15.5 \mathrm{mg}, 0.021$ $\mathrm{mmol})$, $1 \mathrm{a}(4.0 \mathrm{mg}, 0.044 \mathrm{mmol})$ and $\mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}(1.7 \mathrm{mg}, 0.0044 \mathrm{mmol})$. Then ca. 0.5 mL of toluene- d_{8} was transferred by the freeze-pump-thaw method. The ${ }^{31} \mathrm{P}$ NMR spectrum
taken after 10 min at $-50^{\circ} \mathrm{C}$ showed the quantitative formation of acylplatinum complex 3a (cis:trans $=57: 43$), which completely isomerized to trans isomer at $10^{\circ} \mathrm{C}$ after 10 min . No formation of π-complex $\operatorname{Pt}\left[(\mathrm{Cl}) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{CH}_{2}\right]\left(\mathrm{PPh}_{3}\right)_{2}$ was observed during course of the reaction.
cis-3a: ${ }^{31} \mathrm{P}$ NMR (160 MHz , toluene- $\left.d_{8}\right) \delta 15.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=17 \mathrm{~Hz}, J_{\mathrm{Pt-P}}=4662 \mathrm{~Hz}\right), 18.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}\right.$ $\left.=17 \mathrm{~Hz}, J_{\text {Pt-P }}=1378 \mathrm{~Hz}\right)$. trans-3a: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right) \delta 22.2\left(\mathrm{~s}, J_{\mathrm{Pt-P}}=3312\right.$ Hz).

The Reaction of $\mathbf{1 b}$ with 2 (Eq. 1). The reaction of $\mathbf{1 b}$ with 2 was carried out in a similar manner to the reaction of $\mathbf{1 b}$ with $\mathbf{2}$. The ${ }^{31} \mathrm{P}$ NMR spectrum taken after 10 min at $-50{ }^{\circ} \mathrm{C}$ showed the quantitative formation of $\mathbf{3 b}$ (cis:trans $=96: 4$), which completely isomerized to trans isomer at $10 \quad{ }^{\circ} \mathrm{C}$ after 10 min . No formation of π-complex $\mathrm{Pt}[(\mathrm{Cl}) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}(\mathrm{Ph})(\mathrm{H})-(E)]\left(\mathrm{PPh}_{3}\right)_{2}$ was observed during course of the reaction. cis-3b: ${ }^{31} \mathrm{P}$ NMR (160 MHz , toluene- $\left.d_{8}\right) \delta 15.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=16 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4715 \mathrm{~Hz}\right.$), $17.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}\right.$ $\left.=16 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=1349 \mathrm{~Hz}\right)$. trans-3b: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right) \delta 21.0\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3378\right.$ Hz).

The Reaction of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Thioester 4 with 2. General Procedure: Into a dry Pyrex NMR tube were added $2(0.020 \mathrm{mmol}), 4(0.022 \mathrm{mmol}), \mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}(0.01 \mathrm{mmol})$ and solvent (0.5 mL) under N_{2} atmosphere. The reaction was roughly monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectrum at $25^{\circ} \mathrm{C}$ to determine the time required for reaching the equilibrium state among 5, 6 and 7 . Then the reaction was again continuously monitored by using automatic measuring system until the equilibrium of the system was well-achieved.

The Reaction of $\mathrm{H}_{2} \mathrm{C}=\mathbf{C H C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{Me}-p$ (4a) with 2 in

 $\mathbf{C}_{6} \mathbf{D}_{6}$ (Eq. 2): The reaction was continuously monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectrum using automatic measurement program system. The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 5a and syn-7a. The reaction time, the yields of| Table S1 | | | |
| :---: | :---: | :---: | :---: |
| time | $\mathbf{5 a}(\%)$ | $\mathbf{6 a}(\%)$ | $\mathbf{7 a}(\%)$ |
| 20 min | >99 | n.d. | n.d. |
| 1 h | >99 | n.d. | n.d. |
| 3 h | 99.7 | n.d. | 0.3 |
| 6 h | 99.5 | n.d. | 0.5 | 5a and syn-7a at the time are shown in Table S1.

5a: ${ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 29.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4038 \mathrm{~Hz}\right), 31.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Pt}-\mathrm{P}}=3567 \mathrm{~Hz}\right) . \boldsymbol{s y n}-7 \mathrm{a}:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 15.0\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4171 \mathrm{~Hz}\right)$.

The Reaction of 4 a with 2 in $\mathrm{CD}_{2} \mathbf{C l}_{\mathbf{2}}$ (Eq. 2): Table $S 2$
Automatic NMR measurement program system has been used to continuously monitor the reaction. The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 5a, trans-6a and syn-7a. The reaction time, the yields of 5a, trans-6a and

time	5 a $(\%)$	trans-6a $(\%)$	syn-7a $(\%)$
20 min	99.7	0.3	n.d.
1 h	99.4	0.3	0.3
140 min	98.9	0.4	0.7
6 h	98.9	0.4	0.7

5a: ${ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 28.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4060 \mathrm{~Hz}\right), 30.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37\right.$ $\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3541 \mathrm{~Hz}$). trans-6a: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 17.6\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3272 \mathrm{~Hz}\right)$. syn-7a: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 15.0\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4110 \mathrm{~Hz}\right)$.

The Reaction of $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}(\mathrm{O}) \mathrm{SPh}(4 \mathrm{~b})$ with 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$
Table S3
(Eq. 2): The reaction was continuously monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectrum using automatic measurement program system. The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 b}$ and $s y n-7 b$. The reaction time, the yields of

time	$\mathbf{5 b}$ $(\%)$	$\mathbf{6 b}$ $(\%)$	syn-7b $(\%)$
$20 \min$	>99	n.d.	n.d.
1 h	99.1	n.d.	0.9
3 h	97.7	n.d.	2.3
5 h	97.6	n.d.	2.4

5b: ${ }^{31}$ P NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 29.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4049 \mathrm{~Hz}\right), 31.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Pt}-\mathrm{P}}=3557 \mathrm{~Hz}\right) . \boldsymbol{s y n}-7 \mathrm{~b}:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 15.1$ (s , the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity).

The Reaction of $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}(\mathbf{O}) \mathrm{SPh}(4 \mathrm{~b})$ with 2 in $\mathbf{C D}_{2} \mathbf{C l}_{2}$ (Eq. 2): The reaction was continuously monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectrum using automatic measurement program system. The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 b}, \mathbf{6 b}$ and $\mathbf{7 b}$. The reaction

Table S4

time	$\mathbf{5 b}(\%)$	$\mathbf{6 b}(\%)$	$\mathbf{7 b}(\%)$
10 min	>99	n.d.	n.d.
1 h	98.2	0.7	1.1
3 h	97.0	1.0	1.9
6 h	95.1	1.1	3.8
22 h	93.6	0.9	5.6

5b: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 29.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4076 \mathrm{~Hz}\right), 30.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37\right.$
$\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3540 \mathrm{~Hz}$). 6b: ${ }^{31} \mathrm{P} \operatorname{NMR}\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 17.0$ (s , the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). syn-7b: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 15.1$ (s, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). anti-7b: ${ }^{31} \mathrm{P}$ NMR (160 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 17.0$ (s, the value of $J_{\text {Pt-p }}$ was not able to read because of low intensity).

The Reaction of $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{Cl}(4 \mathrm{c})$ with 2 in
$\mathbf{C}_{6} \mathbf{D}_{6}$ (Eq. 2): The reaction was continuously monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectrum using automatic measurement program system. The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $5 \mathbf{c}, 6 \mathbf{c}$ and $7 \mathbf{c}$. The reaction time, the yields of

Table S5			
time	5c (\%)	6c (\%)	7c (\%)
20 min	>99	n.d.	n.d.
1 h	98.2	0.5	1.4
3 h	92.2	1.5	6.3
6 h	90.4	1.7	7.9

5c: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 29.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4072 \mathrm{~Hz}\right), 31.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Pt}-\mathrm{P}}=3558 \mathrm{~Hz}\right) .6 \mathrm{c}:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.3$ (s, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). syn-7c: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 14.8$ (s, the value of $J_{\mathrm{Pt} \text {-P }}$ was not able to read because of low intensity). anti-7c: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.5$ (s, the value of $J_{\mathrm{Pt} \text {-P }}$ was not able to read because of low intensity).

The Reaction of $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{Cl}(4 \mathrm{c})$
with 2 in $\mathbf{C D}_{2} \mathbf{C l}_{2}$ (Eq. 2): The reaction was continuously monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectrum using automatic measurement program system. The ${ }^{31} \mathrm{P}$ NMR spectrum showed the

Table S6				
time	5c (\%)	6c (\%)	7c (\%)	8c (\%)
20 min	99.5	0.5	n.d.	n.d.
1 h	98.1	1.6	0.3	n.d.
6 h	87.7	4.0	8.3	n.d.
19 h	86.3	5.4	8.3	1.5
22 h	84.1	5.3	9.4	1.1

5c: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 28.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4082 \mathrm{~Hz}\right), 30.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35\right.$ $\left.\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3530 \mathrm{~Hz}\right) .6 \mathrm{c}:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 17.0\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3260 \mathrm{~Hz}\right) . \boldsymbol{s y n} \boldsymbol{r}-7 \mathbf{c}:{ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 14.9$ (s , the value of $J_{\mathrm{Pt} \text {-P }}$ was not able to read because of low intensity). anti-7c: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 16.5$ (s , the value of $J_{\mathrm{Pt-P}}$ was not able to read because of low intensity). 10c: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 23.9\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3260 \mathrm{~Hz}\right)$.

The Reaction of $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$

 (4d) with 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (Eq. 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 d}, \mathbf{6 d}$ and 10d. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 r}, \mathbf{6 r}$ and 10 r at the time are shown in Table S 7 and the half-live was calculated to be 10.2 h .5d: ${ }^{31}$ P NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 29.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=\right.$ $\left.36 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4103 \mathrm{~Hz}\right), 31.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=36 \mathrm{~Hz}\right.$,

Table S7

time	5d (\%)	6d (\%)	7d (\%)	8d (\%)
3 min	>99	n.d.	n.d.	n.d.
4 min	99	1	n.d.	n.d.
20 min	97	3	n.d.	n.d.
40 min	95	5	n.d.	n.d.
1 h	93	7	n.d.	n.d.
2 h	87	13	n.d.	n.d.
3 h	81	18	n.d.	1
4 h	76	23	n.d.	1
5 h	71	28	n.d.	2
10 h	50	45	n.d.	5
19 h	35	56	n.d.	9

The Reaction of $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}$ (4d) with 2 in $\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}$ (Eq. 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 d}, \mathbf{6 d}$ and 10d. The reaction time (the average of acquisition time), and the yields of 5d, 6d and 10d at the time are shown in Figure S8 and the half-live was calculated to be 5.4 h .
5d: ${ }^{31}$ P NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 28.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}\right.$ $\left.=35 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4118 \mathrm{~Hz}\right), 30.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35 \mathrm{~Hz}\right.$,

Table S8				
time	5d $(\%)$	6d (\%) $($ cis:trans) $)$	7d (\%)	8d $(\%)$
20 min	91	$9(1:>99)$	n.d.	n.d.
40 min	86	$14(1:>99)$	n.d.	n.d.
1 h	82	$18(1:>99)$	n.d.	n.d.
2 h	73	$26(1:>99)$	n.d.	0.4
3 h	65	$34(1:>99)$	n.d.	1
4 h	57	$42(1:>99)$	n.d.	1
5 h	50	$48(1: 99)$	n.d.	2
6 h	42	$55(1: 99)$	n.d.	3
7.5 h	34	$61(1: 99)$	n.d.	3
9 h	31	$65(1: 99)$	n.d.	4
10 h	27	$68(1: 99)$	n.d.	5

The Reaction of Trans-3a with 8 (Eq. 3). Into a dry Pyrex NMR tube were added trans-3a
$(16.2 \mathrm{mg}, 0.020 \mathrm{mmol}), 8(8.8 \mathrm{mg}, 0.060 \mathrm{mmol}), \mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}(3.6 \mathrm{mg}, 0.0094 \mathrm{mmol})$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ under N_{2} atmosphere. Then the reaction was monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectrum at $25^{\circ} \mathrm{C}$. After 17 h , the ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 a}$ (79\%), trans-6a (0.6\%) and 7a (13\%, syn:anti $=77: 23$).
anti-7a: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 17.0\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4013 \mathrm{~Hz}\right)$.

The Reaction of	Table S9					
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{Me}$ (4e)	time	5 e (\%)	$\begin{gathered} \hline \mathbf{6 e}(\%) \\ \text { (cis:trans) } \end{gathered}$	$\begin{gathered} \hline 7 \mathrm{e}(\%) \\ \text { (syn:anti) } \\ \hline \end{gathered}$	5e:6e	6e:7e
with 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 1, Table 1):	20 min	78	4.4 (9:91)	17 (47:53)	95:5	21:79
Automatic NMR measurem	40 min	64	7.3 (4:96)	28 (68:32)	90:10	21:79
Automatic NMR measurem	1 h	48	10 (10:90)	42 (76:24)	83:17	19:81
program system has been used	2 h	24	12 (5:95)	64 (80:20)	67:33	15:85
program system has been used	3 h	16	12 (6:94)	70 (79:21)	58:42	16:84
continuously monitor the reaction	4 h	12	12 (6:94)	76 (80:20)	51:49	13:87
7 h . The ${ }^{31} \mathrm{P}$	5 h	12	12 (4:96)	76 (80:20)	51:49	13:87
P NMR spectr	6 h	11	12 (5:95)	77 (81:19)	49:51	13:87
showed the formation of $\mathbf{5 e}, \mathbf{6 e}$ and	7 h	12	12 (7:93)	76 (80:20)	50:50	13:87

7e. Selective information about the reaction time, the yields of $5 \mathbf{e}, 6 \mathrm{e}$ and 7 e , and the ratios of
$\mathbf{5 e}: 6 \mathrm{e}$ and $\mathbf{6 e}: 7 \mathrm{e}$ at the time are shown in Table S9. Although the ratio of 5e:6e after 3 h (58:42) was different from that after 4 h (51:49), those after 4 h and 7 h were virtually the same. This is why it was concluded that equilibrium between $5 \mathrm{e}: 6 \mathrm{e}$ was attained in a range of time of $3-4 \mathrm{~h}(51: 49)$. The changes of yields between $\mathbf{5 e}$ and $\mathbf{6 e}$ from the early stage of this reaction indicated 6 e was produced from 5 e . The equilibrium between $6 \mathrm{e}: 7 \mathrm{e}$ was also attained in a range of time of $3-4 \mathrm{~h}(13: 87)$.
5e: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 28.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=41 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3827 \mathrm{~Hz}\right), 31.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=41 \mathrm{~Hz}\right.$, $\left.J_{\text {Pt-P }}=3724 \mathrm{~Hz}\right) . c i s-6 \mathrm{e}:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}\right.$, the value of $J_{\text {Pt-P }}$ was not able to read because of low intensity), 18.4 (d, $J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}$, the value of $J_{\mathrm{Pt} \text {-P }}$ was not able to read because of low intensity). trans-6e: $\left.{ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{(160} \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.4\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=\right.$ 3291 Hz). syn-7e: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 14.6\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4188 \mathrm{~Hz}\right.$). anti-7e: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.2\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4124 \mathrm{~Hz}\right)$.

The Reaction of 4 e with 2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (run 2, Table 1): Automatic NMR measurement program system has been used to continuously monitor the reaction for 8 h . The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $5 \mathrm{e}, 6 \mathrm{e}$ and 7e. Selective information about the reaction time, the yields of $5 \mathrm{e}, 6 \mathrm{e}$

Table S10

time	$\mathbf{5 e}(\%)$	$\mathbf{6 e}(\%)$ (cis:trans)	$\mathbf{7 e}(\%)$ (syn:anti)	$\mathbf{5 e}: 6 \mathrm{e}$	$\mathbf{6 e : 7 e}$
20 min	66	$20(45: 55)$	$17(51: 49)$	$77: 23$	$59: 41$
40 min	45	$24(24: 76)$	$28(69: 31)$	$65: 35$	$44: 56$
1 h	33	$26(19: 81)$	$42(73: 27)$	$56: 44$	$39: 61$
2 h	15	$25(17: 83)$	$64(79: 21)$	$38: 62$	$30: 70$
3 h	10	$24(15: 85)$	$70(81: 19)$	$29: 71$	$27: 73$
4 h	9	$22(12: 88)$	$76(82: 18)$	$29: 71$	$24: 76$
5 h	7	$21(14: 86)$	$76(82: 18)$	$25: 75$	$23: 77$
6 h	6	$21(13: 87)$	$77(83: 17)$	$22: 78$	$22: 78$
7 h	6	$20(15: 85)$	$76(82: 18)$	$23: 77$	$22: 78$
8 h	6	$20(14: 86)$	$74(82: 18)$	$23: 77$	$21: 79$

were virtually the same. This is why it was concluded that equilibrium between 5e:6e was attained in a range of time of 5-6 $\mathrm{h}(22: 78)$. The changes of yields between $5 \mathbf{e}$ and $\mathbf{6 e}$ from the early stage of this reaction indicated $6 \mathbf{e}$ was produced from $5 \mathbf{e}$. The equilibrium between $\mathbf{6 e}: 7 \mathrm{e}$ was also attained in a range of time of 5-6 $\mathrm{h}(22: 78)$.
5e: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 27.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=40 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3836 \mathrm{~Hz}\right), 30.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=40\right.$ $\left.\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3705 \mathrm{~Hz}\right)$. cis-6e: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 15.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}\right.$, the value of $J_{\text {Pt-P }}$ was not able to read because of low intensity), 17.5 (d, $J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). trans-6e: ${ }^{31} \mathrm{P} \mathrm{NMR} \mathrm{(} 160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 17.1$ ($\mathrm{s}, J_{\mathrm{Pt}-\mathrm{P}}=3205 \mathrm{~Hz}$). syn-7e: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 14.5\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4138 \mathrm{~Hz}\right.$). anti-7e: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 16.1\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4019 \mathrm{~Hz}\right)$.

The Reaction of $(E)-\mathrm{MeC}(\mathrm{H})=\mathrm{CH}-$ $\mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p$-Me (4f) with 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 3, Table 1): The ${ }^{31}$ P NMR spectrum showed the formation of $\mathbf{5 f}$, trans-6f and

Table S11						
time	$\mathbf{5 f}(\%)$	trans-6f $(\%)$	$\mathbf{7 f}(\%)$ (syn:anti)	5f:6f	$\mathbf{6 f : 7 f}$	
20 min	11	7	$82(63: 37)$	$61: 39$	$8: 92$	
40 min	8	6	$86(64: 36)$	$57: 43$	$7: 93$	
1 h	8	6	$86(63: 37)$	$57: 43$	$7: 93$	

7f. The reaction time, the yields of $\mathbf{5 f}$, trans-6f and 7f, and the ratios of $\mathbf{5 f}$:trans-6f and trans-6f:7f at the time are shown in Table S11. Although the ratio of 5f:trans-6f after 20 min (61:39) was different from that after 40 min ($57: 43$), those after 40 min and 1 h were virtually the same. This is why it was concluded that equilibrium between $\mathbf{5 f}$:trans-6f was attained within 40 min (57:43). The equilibrium between trans-6f:7f was also attained within 40 min (7:93).
5f: ${ }^{31}$ P NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 29.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=44 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4210 \mathrm{~Hz}\right), 30.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=44 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Pt}-\mathrm{P}}=3376 \mathrm{~Hz}\right)$. trans-6f: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 17.1\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3310 \mathrm{~Hz}\right) . \boldsymbol{s y n} \boldsymbol{7} \mathbf{7 f}:{ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 15.3\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4208 \mathrm{~Hz}\right.$). anti-7f: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 17.1$ $\left(\mathrm{s}, J_{\mathrm{Pt}-\mathrm{P}}=4083 \mathrm{~Hz}\right)$.

The Reaction of $4 f$ with 2 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (run 4, Table 1): Automatic NMR measurement program system has been used to

Table S12 continuously monitor the reaction for 1 h . The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 f}$, trans-6f and 7f. The reaction time, the yields of $\mathbf{5 f}$, trans-6f and $\mathbf{7 f}$, and the ratios of 5f:trans-6f and trans-6f:7f at the time are shown in Table S12. Although the ratio of 5f:trans-6f after 20 min (21:79) was different from that after 40 min (17:83), those after 40 \min and 1 h were virtually the same. This is why it was concluded that equilibrium between 5f:trans-6f was attained within 40 min (17:83). The equilibrium between trans-6f:7f was also attained within $40 \mathrm{~min}(20: 80)$.
5f: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 29.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=43 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity), 30.1 (d, $J_{\text {P-P }}=43 \mathrm{~Hz}$, the value of $J_{\text {Pt-P }}$ was not able to read
because of low intensity). trans-6f: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 17.8\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3313 \mathrm{~Hz}\right)$. syn-7f: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 15.4\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4158 \mathrm{~Hz}\right)$. anti-7f: ${ }^{31} \mathrm{P}$ NMR $(160 \mathrm{MHz}$, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 17.4\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4027 \mathrm{~Hz}\right)$.

The Reaction of	Table S13					
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}\left(\underline{n}-\mathrm{C}_{6} \mathrm{H}_{13}\right) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{Me}$	time	$\begin{gathered} \hline \mathrm{gg} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { trans-6g } \\ (\%) \end{gathered}$	$\begin{gathered} \mathbf{7 g}(\%) \\ (\text { syn:anti) } \end{gathered}$	5g:6g	6g:7g
$(4 \mathrm{~g})$ with 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 5, Table	20 min	95	2	2 (>99:1)	98:2	50:50
uto	40 min	87	2	11 (66:34)	98:2	15:85
1). Automatic measurement	1 h	79	2	19 (65:35)	98:2	10:90
program system has been used to	3 h	53	4	43 (70:30)	93:7	9:91
continuously monitor the reaction	6 h	32	5	63 (74:26)	86:14	7:93
	8 h	24	5	71 (74:26)	85:15	7:93
	9 h	22	5	72 (75:25)	81:19	6:94
showed the formation of $\mathbf{5 g}$,	10 h	21	6	73 (76:24)	78:22	8:92
trans $\mathbf{6 g}$ and 7g. Selective	13 h	18	5	77 (73:27)	78:22	6:94

information about the reaction time, the yields of 5 g , trans $-\mathbf{6 g}$ and 7 g , and the ratios of 5 g :trans- $\mathbf{6 g}$ and trans- $6 \mathrm{~g}: 7 \mathrm{~g}$ at the time are shown in Table S 13 . Although the ratio of 5g:trans-6g after 9 h (81:19) was different from that after 10 h (78:22), those after 10 h and 13 h were virtually the same. This is why it was concluded that equilibrium between $\mathbf{5 g}$:trans-6g was attained in a range of time of $9-10 \mathrm{~h}$ (78:22). These data also demonstrated that $\mathbf{6 g}$ was produced from $\mathbf{5 g}$. On the other hand, equilibrium between trans $\mathbf{6 g}: 7 \mathrm{~g}$ was attained in a range of time of 3-6 h (7:93).
5g: ${ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 27.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=40 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3863 \mathrm{~Hz}\right), 30.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=40 \mathrm{~Hz}\right.$, $J_{\mathrm{Pt}-\mathrm{P}}=3669 \mathrm{~Hz}$). trans-6g: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.2\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3312 \mathrm{~Hz}\right) . \boldsymbol{s y n}-7 \mathbf{g}:{ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 14.6\left(\mathrm{~s}, J_{\mathrm{Pt-P}}=4177 \mathrm{~Hz}\right)$.anti-7g: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $16.3\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4124 \mathrm{~Hz}\right)$.

The Reaction	Table S14					
$(E)-n-\mathrm{HexC}(\mathrm{H})=\mathrm{CHC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}$	time	$\begin{gathered} \mathbf{5 h} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { trans-6h } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7 \mathrm{~h}(\%) \\ \text { (syn:anti) } \end{gathered}$	5h:6h	6h:7h
Me (4h) with 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 6,	20 min	9	9	82 (74:26)	52:48	10:90
Table 1): The ${ }^{31} \mathrm{p}$ NMR	40 min	7	9	84 (75:25)	46:54	9:91
Table 1): The ${ }^{\text {P }}$ NMR spectrum	1h	7	9	84 (74:26)	44:56	9:91

showed the formation of $\mathbf{5 h}$, trans- $\mathbf{6 h}$ and $\mathbf{7 h}$. The reaction time, the yields of $\mathbf{5 h}$, trans- $\mathbf{6 h}$ and $\mathbf{7 h}$, and the ratios of $\mathbf{5 h}$:trans- $\mathbf{6 h}$ and trans- $\mathbf{6 h}: 7 \mathrm{~h}$ at the time are shown in Table S14. Although the ratio of $\mathbf{5 h}:$ trans $-\mathbf{6 h}$ after $20 \mathrm{~min}(52: 48)$ was different from that after 40 min (46:54), those after 40 min and 1 h were virtually the same. This is why it was concluded that equilibrium between $\mathbf{5 h}$:trans- $\mathbf{6 h}$ was attained within 40 min ($46: 54$). The equilibrium between trans-6h:7h was also attained within 40 min (9:91).
5h: ${ }^{31}$ P NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 29.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=44 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3863 \mathrm{~Hz}\right.$), $30.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=44 \mathrm{~Hz}\right.$, $J_{\mathrm{Pt-P}}=3669 \mathrm{~Hz}$). trans-6h: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 17.1\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3318 \mathrm{~Hz}\right) . \boldsymbol{s y n}-7 \mathrm{~h}:{ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 15.2\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4212 \mathrm{~Hz}\right)$. anti-7h: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $17.3\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4105 \mathrm{~Hz}\right)$.

The Reaction of $\mathrm{H}_{2} \mathrm{C}=\mathbf{C}(\boldsymbol{i}-\mathrm{Pr}) \mathrm{C}(\mathrm{O})$ $\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{Me}$ (4i) with 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 7, Table 1): Automatic measurement program system has been used to continuously monitor the reaction for 71 h . The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 i}$, trans-6i and 7i. Selective information about the reaction time, the yields of $\mathbf{5 i}$, trans-6i and $\mathbf{7 i}$, and the ratios of 5i:trans-6i and trans-6i:7i at the time are shown in Table S15. Although the

time	$\mathbf{5 i}(\%)$	trans-6i (\%)	$\mathbf{7 i}(\%)$ (syn:ant) $)$	$\mathbf{5 i}: \mathbf{6 i}$	$\mathbf{6 i}: 7 \mathbf{i}$
20 min	99.5	0.5	n.d.	$99.5: 0.5$	$>99: 1$
40 min	98.3	0.7	$0.9((>99: 1)$	$99: 1$	$44: 56$
1 h	96.6	0.7	$2.7(82: 18)$	$99: 1$	$21: 79$
6 h	79	2	$19(80: 20)$	$98: 2$	$10: 90$
10 h	65	3	$32(81: 19)$	$96: 4$	$9: 91$
15 h	53	3	$44(81: 19)$	$95: 5$	$6: 94$
21 h	43	4	$53(80: 20)$	$91: 9$	$7: 93$
25 h	37	4	$59(81: 19)$	$90: 10$	$6: 94$
30 h	32	4	$64(82: 18)$	$89: 11$	$6: 94$
35 h	30	4	$66(81: 19)$	$88: 12$	$6: 94$
40 h	27	4	$69(80: 20)$	$87: 13$	$5: 95$
47 h	25	5	$70(82: 18)$	$83: 17$	$7: 93$
52 h	23	5	$72(81: 19)$	$82: 18$	$6: 94$
55 h	22	5	$73(81: 19)$	$81: 19$	$6: 94$
66 h	21	5	$74(80: 20)$	$81: 19$	$6: 94$
71 h	21	5	$74(81: 19)$	$81: 19$	$6: 94$

5i: ${ }^{31}$ P NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 26.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3867 \mathrm{~Hz}\right), 30.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}\right.$, $J_{\text {Pt-P }}=3732 \mathrm{~Hz}$). trans-6i: ${ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 15.8\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3299 \mathrm{~Hz}\right) . \boldsymbol{s y n}-7 \mathrm{i}:{ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 14.4\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4208 \mathrm{~Hz}\right.$). anti-7i: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.3$ ($\mathrm{s}, J_{\mathrm{Pt}-\mathrm{P}}=4114 \mathrm{~Hz}$).

The Reaction of $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Ph}) \mathrm{C}(\mathrm{O})$ -
$\mathrm{SC}_{6} \mathrm{H}_{4}$-p-Me (4j) with 2 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 8, Table 1): Automatic measurement program system has been used to continuously monitor the reaction for 20 h . The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 j}$, trans- $6 \mathbf{j}$ and $7 \mathbf{7}$. Selective information about the reaction time, the yields of $\mathbf{5 j}$, trans- $\mathbf{6 j}$ and $\mathbf{7 j}$, and the ratios of 5j:trans-6j and trans-6j:7j at the time are shown in Table S16. Although the

Table S16

time	$5 \mathbf{j}(\%)$	trans-6j $(\%)$	$\mathbf{7 j}(\%)$ (syn:anti)	$\mathbf{5 j : 6 j}$	$6 \mathbf{j}: 7 \mathbf{j}$
20 min	98	2	n.d. 40 min	91	4
$5(60: 40)$	$98: 2$	$>99: 1$			
1 h	86	5	$9(67: 33)$	$95: 5$	$44: 56$
3 h	69	6	$24(75: 25)$	$92: 8$	$20: 64$
6 h	50	8	$41(78: 22)$	$86: 14$	$16: 84$
7 h	32	8	$60(78: 22)$	$80: 20$	$12: 88$
8 h	29	8	$63(78: 22)$	$78: 22$	$11: 89$
9 h	27	8	$65(78: 22)$	$77: 23$	$11: 89$
10 h	26	7	$67(76: 24)$	$79: 21$	$9: 91$
11 h	24	7	$69(76: 24)$	$77: 23$	$9: 91$
12 h	21	7	$72(76: 24)$	$75: 25$	$9: 91$
13 h	20	7	$73(76: 24)$	$74: 26$	$9: 91$
14 h	18	7	$75(76: 24)$	$72: 28$	$9: 91$
15 h	17	7	$76(76: 24)$	$71: 29$	$8: 92$
20 h	14	6	$80(77: 23)$	$70: 30$	$7: 93$

5j: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 26.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=40 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4013 \mathrm{~Hz}\right), 30.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=40 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Pt}-\mathrm{P}}=3696 \mathrm{~Hz}\right)$. trans-6j: ${ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.1\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3259 \mathrm{~Hz}\right) . \boldsymbol{s y n}-7 \mathbf{j}:{ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 14.6\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4141 \mathrm{~Hz}\right.$) anti-7j: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.4$ ($\mathrm{s}, J_{\mathrm{Pt}-\mathrm{P}}=4081 \mathrm{~Hz}$).

The Reaction of 4 j with 2 Using 4.3

Equivalent of 4 j in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 9, Table 1): Automatic NMR measurement program system has been used to continuously monitor the reaction for 20 h . The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 5 j , trans- $\mathbf{6 j}$ and $7 \mathbf{j}$. Selective information about the reaction time, the yields of $5 \mathbf{j}$, trans- $6 \mathbf{j}$ and $7 \mathbf{j}$, and the ratios of $\mathbf{5 j}:$ trans-6j and trans-6j:7j at the time are shown in Table S17. The | 20 h | 15 | 7 | $78(76: 24)$ | $68: 32$ | $8: 92$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | equilibrium between $\mathbf{5 j}$ and trans- $\mathbf{6 j}$ was attained in a range of time of $14-15 \mathrm{~h}(68: 32)$. On the other hand, the equilibrium between trans- $6 \mathbf{j}$ and $7 \mathbf{j}$ was attained in a range of time of $7-8 \mathrm{~h}$ (10:90). When this result was compared with that of Table S17, it was obvious that the time required for reaching the equilibrium was not affected by the excess amount of $\mathbf{4 j}$.

The Reaction of 4 j with 2 in $\mathrm{CD}_{2} \mathbf{C l}_{\mathbf{2}}$

 (run 10, Table 1): Automatic measurement program system has been used to continuously monitor the reaction for 20 h . The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 j}$, $\mathbf{6 j}$ and $7 \mathbf{j}$. Selective information about the reaction time, the yields of $\mathbf{5 j} \mathbf{j} \mathbf{6 j}$ and $7 \mathbf{j}$, and the ratios of $\mathbf{5 j}: \mathbf{6 j}$ and $\mathbf{6 j}: 7 \mathbf{j}$ at the time are shown in Table S18. Although the ratio of $\mathbf{5 j} \mathbf{j} \mathbf{6 j}$ afterTable S18

time	$\mathbf{5 j}$ $(\%)$	$\mathbf{6 j}(\%)$ (cis:trans)	$\mathbf{7 j}(\%)$ (syn:anti)	$\mathbf{5 j : 6 j}$	$\mathbf{6 j : 7 j}$
20 min	92	$6(17: 83)$	$2(60: 40)$	$94: 6$	$80: 20$
40 min	88	$9(22: 78)$	$3(69: 31)$	$91: 9$	$76: 24$
1 h	85	$11(19: 81)$	$4(68: 32)$	$89: 11$	$71: 29$
3 h	55	$19(22: 78)$	$26(75: 25)$	$75: 25$	$42: 58$
6 h	33	$19(17: 83)$	$48(82: 18)$	$64: 36$	$28: 72$
10 h	24	$17(20: 80)$	$59(85: 15)$	$58: 42$	$22: 78$
11 h	22	$17(20: 80)$	$61(85: 15)$	$56: 44$	$21: 79$
12 h	20	$16(21: 79)$	$64(84: 14)$	$55: 45$	$20: 80$
13 h	19	$15(20: 80)$	$66(86: 14)$	$55: 45$	$19: 81$
14 h	18	$15(19: 81)$	$67(86: 14)$	$54: 46$	$18: 82$
15 h	17	$15(19: 81)$	$68(86: 14)$	$54: 46$	$18: 82$
16 h	16	$15(21: 79)$	$69(86: 14)$	$53: 47$	$18: 82$
17 h	15	$15(21: 79)$	$70(86: 14)$	$50: 50$	$18: 82$
20 h	14	$14(20: 80)$	$72(87: 13)$	$50: 50$	$17: 83$

5j: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 25.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4037 \mathrm{~Hz}\right), 29.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38\right.$
$\left.\mathrm{Hz}, J_{\mathrm{Pt} \mathrm{P}}=3516 \mathrm{~Hz}\right)$. cis-6j: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 15.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=20 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity), 17.2 ($\mathrm{d}, J_{\mathrm{P}-\mathrm{P}}=20 \mathrm{~Hz}$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). trans- $6 \mathbf{j}$: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 16.4$ (s, $J_{\mathrm{Pt}-\mathrm{P}}=3241 \mathrm{~Hz}$). syn-7j: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 14.3\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4079 \mathrm{~Hz}\right) . \boldsymbol{a n t i} \mathbf{- 7} \mathbf{j}:{ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 16.1\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3964 \mathrm{~Hz}\right)$.

The Reaction of $(E)-\mathrm{PhC}(\mathrm{H})=\mathrm{CH}-$ $\mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}$-p-Me (4k) with 2 in $\mathbf{C}_{6} \mathrm{D}_{6}$ (run 11, Table 1): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 k}$,

Table S19						
time	5k $(\%)$	trans-6k (\%)	7k (\%) (syn:anti)	5k:6k	6k:7k	
20 min	51	5	$44(59: 41)$	$91: 9$	$9: 91$	
40 min	42	5	$53(60: 40)$	$89: 11$	$8: 92$	
1 h	37	5	$58(64: 36)$	$88: 12$	$8: 92$	

5k: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 27.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4134 \mathrm{~Hz}\right), 27.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}\right.$, $J_{\mathrm{Pt}-\mathrm{P}}=3591 \mathrm{~Hz}$). trans-6k: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.8\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3281 \mathrm{~Hz}\right) . \boldsymbol{s y n} \boldsymbol{r}-7 \mathbf{k}:{ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 15.0\left(\mathrm{~s}, J_{\mathrm{Pt-P}}=4171 \mathrm{~Hz}\right)$ anti-7k: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta$ $16.8\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4022 \mathrm{~Hz}\right)$.

The Reaction of 4 k with 2 Using 4.8
 Equivalent of $4 k$ in $C_{6} D_{6}$ (run 12,

Table 1): Automatic NMR measurement program system has

Table S20						
time	$\mathbf{5 k}$ $(\%)$	trans-6k $(\%)$	7k (\%) (syn:anti)	$\mathbf{5 k}: 6 \mathbf{k}$	$\mathbf{6 k}: \mathbf{7 k}$	
20 min	46	5	$48(60: 40)$	$90: 10$	$9: 91$	
40 min	39	4	$56(63: 37)$	$91: 9$	$7: 93$	
$\mathbf{1 ~ h}$	36	4	$56(63: 37)$	$90: 10$	$7: 93$	

The Reaction of $4 \mathbf{k}$ with 2 in $\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ (run 13, Table 1): Automatic NMR measurement program system has been used to continuously monitor the reaction for 3 h . The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 k}$, trans- $\mathbf{6 k}$ and $\mathbf{7 k}$. Selective information about the reaction time, the yields of $\mathbf{5 k}$, trans- $\mathbf{6 k}$ and 7 k , and the ratios of $\mathbf{5 k}$:trans- 6 k and trans- $\mathbf{6 k}: \mathbf{7 k}$ at the time are shown in Table S21. The ratio of $\mathbf{5 k}$:trans- $\mathbf{6 k}$ after 40 min (70:30) and 3 h (69:31) were virtually the same. This is why it was concluded that equilibrium between $\mathbf{5 k}$
and trans-6k was attained within 40 $\min (70: 30)$. On the other hand, the equilibrium between trans-6k and $\mathbf{7 k}$ was attained in a range of time of $60-80 \mathrm{~min}$ (15:85).
5k: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $26.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4168\right.$

Table S21

time	$\mathbf{5 k}$ $(\%)$	trans-6k $(\%)$	$\mathbf{7 k}(\%)$ (syn:anti)	$\mathbf{5 k}: \mathbf{6 k}$	$\mathbf{6 k}: \mathbf{7 k}$
20 min	38	16	$45(71: 29)$	$70: 30$	$26: 74$
40 min	32	14	$53(72: 28)$	$70: 30$	$21: 79$
60 min	28	13	$59(71: 29)$	$68: 32$	$18: 82$
80 min	26	11	$63(70: 30)$	$70: 30$	$15: 85$
100 min	24	11	$65(71: 29)$	$69: 31$	$14: 86$
2 h	22	11	$67(70: 30)$	$67: 33$	$14: 86$
140 min	24	11	$65(72: 28)$	$69: 31$	$14: 86$
160 min	24	11	$65(72: 28)$	$69: 31$	$14: 86$
3 h	23	10	$67(69: 31)$	$69: 31$	$13: 87$

$\mathrm{Hz}), 27.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=\right.$
3572 Hz). trans-6k: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 17.6$ ($\mathrm{s}, J_{\mathrm{Pt}-\mathrm{P}}=3280 \mathrm{~Hz}$). syn-7k: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 15.3\left(\mathrm{~s}, J_{\mathrm{Pt-P}}=4133 \mathrm{~Hz}\right.$). anti-7k: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $17.4\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3977 \mathrm{~Hz}\right)$.

The Reaction of 4 f with 2 in toluene- $\boldsymbol{d}_{\mathbf{8}}$ at Low Temperature (Eq. 4): Into a dry Pyrex NMR tube were added $2(15.8 \mathrm{mg}, 0.021 \mathrm{mmol}), 4 \mathrm{f}(13.2 \mathrm{mg}, 0.069 \mathrm{mmol})$ and $\mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}(1.3 \mathrm{mg}, 0.0034 \mathrm{mmol})$. Then ca. 0.5 mL of toluene- d_{8} was transferred by the freeze-pump-thaw method. The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 f}$, trans- $\mathbf{6 f}$ and 7 c . These results clearly showed that $\mathbf{6 f}$ was formed from $\mathbf{5 f}$.
5f: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right) \delta 30.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=44 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4204 \mathrm{~Hz}\right), 31.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=\right.$ $44 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3377 \mathrm{~Hz}$). trans-6f: ${ }^{31} \mathrm{P}$ NMR (160 MHz , toluene- $\left.d_{8}\right) \delta 17.9\left(\mathrm{~s}, J_{\mathrm{Pt-P}}=3304 \mathrm{~Hz}\right)$. $\boldsymbol{s y n}-7 \mathbf{f}:{ }^{31} \mathrm{P}$ NMR (160 MHz , toluene- $\left.d_{8}\right) \delta 15.9\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4213 \mathrm{~Hz}\right)$. anti-7f: ${ }^{31} \mathrm{P}$ NMR (160 MHz , toluene- $\left.d_{8}\right) \delta 17.8\left(\mathrm{~s}, J_{\mathrm{Pt-P}}=4050 \mathrm{~Hz}\right)$.

The Reaction of $\mathbf{4 k}$ with 2 in toluene- $\boldsymbol{d}_{\mathbf{8}}$ at Low Temperature (Eq. 5). Into a dry Pyrex NMR tube were added $2(15.1 \mathrm{mg}, 0.020 \mathrm{mmol}), 4 \mathbf{k}(5.7 \mathrm{mg}, 0.022 \mathrm{mmol})$ and $\mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}(0.9 \mathrm{mg}, 0.0023 \mathrm{mmol})$. Then ca. 0.5 mL of toluene- d_{8} was transferred by the freeze-pump-thaw method. The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 k}, \mathbf{6 k}$ and $\mathbf{7 k}$. These results clearly showed that $\mathbf{5 k}$ was kinetic product, which isomerized to cis-6k then trans-6k and $7 \mathbf{k}$.
5k: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right) \delta 27.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4124 \mathrm{~Hz}\right), 28.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=\right.$ $\left.37 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3597 \mathrm{~Hz}\right)$. cis- $6 \mathbf{k}:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right) \delta 17.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=21 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity), $19.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=21 \mathrm{~Hz}\right.$, the value of $J_{\text {Pt-P }}$ was not able to read because of low intensity). trans- $6 \mathbf{k}:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, toluene- d_{8}) $\delta 17.6\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3277 \mathrm{~Hz}\right) . \boldsymbol{s y n}-7 \mathrm{k}:{ }^{31} \mathrm{P} \operatorname{NMR}\left(160 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right) \delta 15.8\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=4189\right.$ Hz). anti-7k: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right) \delta 17.5$ (s , the value of $J_{\mathrm{Pt-P}}$ was not able to read because of low intensity).

The Half-Live of the Reaction of $\mathrm{Pt}\left[\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right](\mathrm{PP}$ $\left.\mathrm{h}_{3}\right)_{2}(51)$ to trans $-\mathrm{Pt}\left[\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{Me})=\mathrm{CH}_{2}\right]-$ $\left(\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (61) in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 1, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 1}$ and $\mathbf{6 1}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 1}$ and $\mathbf{6 1}$ at the
 time were $20 \mathrm{~min}, 75 \%, 25 \%$ (cis:trans $=13: 87$); $30 \mathrm{~min}, 62 \%, 38 \%$ (cis:trans $=7: 93$); 40 $\min , 51 \%, 49 \%$ (cis:trans $=4: 96$); $50 \mathrm{~min}, 42 \%, 57 \%$ (cis:trans $=3: 97$); $60 \mathrm{~min}, 35 \%, 64 \%$ (cis:trans $=3: 97$); $70 \mathrm{~min}, 29 \%, 71 \%$ (cis:trans $=3: 97$); $80 \mathrm{~min}, 24 \%, 76 \%$ (cis:trans $=1 / 99$); $120 \mathrm{~min}, 11 \%, 89 \%$ (trans only); $180 \mathrm{~min}, 4 \%, 96 \%$ (trans only); $6 \mathrm{~h}, \mathrm{n} . \mathrm{d} .,>99 \%$ (trans only). The consumption rate of $\mathbf{5 l}$ obeyed the first-order kinetics (Figure S1) and the half-live was calculated to be 38 min .
51: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 27.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3863 \mathrm{~Hz}\right), 30.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=38 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Pt}-\mathrm{P}}=3683 \mathrm{~Hz}\right)$. cis-6l: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 14.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=18 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity), $17.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=18 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). trans-6I: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 15.1$ (s, $J_{\mathrm{Pt}-\mathrm{P}}=$ 3228 Hz).

The Half-Live of the Reaction of 51 to 61 Using 4.5 Equivalent of 41 in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 2, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 51 and 61 . The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were $12 \mathrm{~min}, 82 \%, 18 \%$ (cis:trans $=19: 81$); $20 \mathrm{~min}, 72 \%, 28 \%$
 (cis:trans $=9: 91$); $30 \mathrm{~min}, 60 \%, 40 \%$ (cis:trans $=5: 95$); $40 \mathrm{~min}, 50 \%, 50 \%$ (cis:trans $=2: 98$); $50 \mathrm{~min}, 41 \%, 59 \%$ (cis:trans $=4: 96$); $60 \mathrm{~min}, 33 \%, 67 \%$ (cis:trans $=3: 97$); $70 \mathrm{~min}, 27 \%$, 73% (trans only); $80 \mathrm{~min}, 22 \%, 78 \%$ (trans only); $120 \mathrm{~min}, 12 \%, 88 \%$ (trans only); 180 min , $3 \%, 97 \%$ (trans only); 9 h, n.d., $>99 \%$ (trans only). The consumption rate of 51 obeyed the first-order kinetics (Figure S2) and the half-live was calculated to be 36 min . The present result did not contradict the idea that the transformation from $\mathbf{5 1}$ to $\mathbf{6 1}$ was a unimolecular process.

The Half-Live of the Reaction of 51 to 61 in $\mathbf{C D}_{2} \mathbf{C l}_{2}$ (run 3, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 I}$ and $\mathbf{6 l}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 1}$ and $\mathbf{6 1}$ at the time were $10 \mathrm{~min}, 69 \%, 30 \%$ (cis:trans $=67: 33$); $20 \mathrm{~min}, 44 \%, 54 \%$ (cis:trans $=42: 58$); 30 $\mathrm{min}, 29 \%, 70 \%$ (cis:trans $=30: 70$); 40 min ,
 $17 \%, 81 \%$ (cis:trans $=20: 80$); $50 \mathrm{~min}, 12 \%, 87 \%$ (cis:trans $=12: 88$); $60 \mathrm{~min}, 7 \%, 92 \%$ (cis:trans $=9: 91$); $70 \mathrm{~min}, 4 \%, 94 \% ~(c i s: t r a n s=7: 93) ; 80 \mathrm{~min}, 2 \%, 96 \%($ cis:trans $=6: 94) ; 2$ h, n.d., 99% (cis:trans $=3: 97$). The consumption rate of $\mathbf{5 l}$ obeyed the first-order kinetics (Figure S3) and the half-live was calculated to be 14 min .
51: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 27.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=36 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4025 \mathrm{~Hz}\right), 30.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=36\right.$ $\left.\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3667 \mathrm{~Hz}\right)$. cis-61: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 14.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=18 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=1336\right.$ $\mathrm{Hz}), 17.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=18 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3765 \mathrm{~Hz}\right)$. trans-6l: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 15.1(\mathrm{~s}$, $\left.J_{\text {Pt-P }}=3225 \mathrm{~Hz}\right)$.

The Half-Live of the Reaction of 51 to 61 in acetone- d_{6} (run 4, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 l}$ and $\mathbf{6 l}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 1}$ and $\mathbf{6 1}$ at the time were $3.0 \mathrm{~min}, 92 \%, 8 \%$ (cis:trans $=88: 12$); $4.0 \mathrm{~min}, 89 \%, 11 \%$ (cis:trans $=68: 32$); 5.0 $\min , 85 \%, 15 \%$ (cis:trans $=60: 40$); 6.0 min ,
 $81 \%, 19 \%$ (cis:trans $=59: 41$); $8.0 \mathrm{~min}, 76 \%, 24 \%$ (cis:trans $=49: 51$); $18 \mathrm{~min}, 54 \%, 46 \%$ (cis:trans $=27: 63$); $20 \mathrm{~min}, 50 \%, 50 \%$ (cis:trans $=28: 72$); $30 \mathrm{~min}, 34 \%, 67 \%$ (cis:trans $=$ 16:84); $40 \mathrm{~min}, 25 \%, 75 \%$ (cis:trans $=11: 89$); $50 \mathrm{~min}, 17 \%, 83 \%$ (cis:trans $=7: 93$); 60 min , $9 \%, 91 \%$ (cis:trans $=4: 96$); $70 \mathrm{~min}, 6 \%, 94 \%$ (cis:trans $=4: 96$). The consumption rate of 51 obeyed the first-order kinetics (Figure S4) and the half-live was calculated to be 19 min . 51: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 27.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=36 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3882 \mathrm{~Hz}\right), 30.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=\right.$ $\left.36 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3672 \mathrm{~Hz}\right)$. cis- $61:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 15.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity), 19.3 (d, $J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}$, the value of $J_{\text {Pt-P }}$ was not able to read because of low intensity). trans-61: ${ }^{31} \mathrm{P}$ NMR (160 MHz , acetone- d_{6}) $\delta 15.8\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3243 \mathrm{~Hz}\right)$.

The Half-Live of the Reaction of 51 to 61 in THF- \boldsymbol{d}_{8} (run 5, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 51 and 61 . The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 4.0 min, 98%, 2\% (trans only); $5.0 \mathrm{~min}, 96 \%, 4 \%$ (trans only); $6.0 \mathrm{~min}, 95 \%$, 5\% (trans only); 8.0
 $\mathrm{min}, 90 \%, 10 \%$ (cis:trans $=31 / 69$); 9.0 min , $89 \%, 11 \%$ (cis:trans $=30: 70$); $20 \mathrm{~min}, 74 \%, 26 \%$ (cis:trans $=15: 85$); $30 \mathrm{~min}, 63 \%, 37 \%$ (cis:trans $=10: 90$); $40 \mathrm{~min}, 52 \%, 48 \%$ (cis:trans $=8: 92$); $50 \mathrm{~min}, 40 \%, 60 \%$ (cis:trans $=$ $5: 95$); $60 \mathrm{~min}, 34 \%, 66 \%$ (trans only); $70 \mathrm{~min}, 28 \%, 72 \%$ (trans only). The consumption rate of 51 obeyed the first-order kinetics (Figure S5) and the half-live was calculated to be 36 min . 51: ${ }^{31} \mathrm{P}$ NMR ($\left.160 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 29.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3983 \mathrm{~Hz}\right), 32.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37\right.$ $\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3678 \mathrm{~Hz}$) cis-61: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}\right.$, THF- $\left.d_{8}\right) \delta 16.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=18 \mathrm{~Hz}\right.$, the value of $J_{\text {Pt-P }}$ was not able to read because of low intensity), $19.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=18 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). trans-61: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 16.5$ (s, $J_{\mathrm{Pt}-\mathrm{P}}=3224 \mathrm{~Hz}$).

The Half-Live of the Reaction of $\operatorname{Pt}\left[(E)-\mathrm{MeC}(\mathrm{H})=\mathbf{C H C}(\mathbf{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{NO}_{2}\right]\left(\mathrm{PPh}_{3}\right)$ 2 (5m) to $\operatorname{Pt}[\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{CH}(\mathrm{Me})-(E)]-$ $\left(\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}(6 \mathrm{~m})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 6, Table 2): Into a dry Pyrex NMR tube were added 2 ($15.0 \mathrm{mg}, 0.020 \mathrm{mmol}$), $4 \mathrm{~m}(4.9 \mathrm{mg}$, $0.022 \mathrm{mmol}), \quad \mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}(1.0 \mathrm{mg}$, $0.0027 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$ under N_{2}
 atmosphere. Then the reaction was monitored by ${ }^{31} \mathrm{P}$ and ${ }^{1} \mathrm{H}$ NMR spectrum at $25{ }^{\circ} \mathrm{C}$. The reaction time (the average of acquisition time), and the yields of 5 m and trans -6 m at the time were $2.0 \mathrm{~min}, 8.3 \%, 85.7 \% ; 2.5 \mathrm{~min}, 8.2 \%, 90.0 \% ; 3.0 \mathrm{~min}, 7.8 \%, 92.2 \% ; 3.5 \mathrm{~min}, 7.2 \%$, $92.8 \% ; 4.0 \mathrm{~min}, 5.5 \%, 94.5 \% ; 4.5 \mathrm{~min}, 4.8 \%, 95.2 \% ; 5.0 \mathrm{~min}, 3.6 \%, 96.4 \% ; 5.5 \mathrm{~min}, 3.0 \%$, $93.2 \% ; 6.0 \mathrm{~min}, 2.7 \%, 96.8 \% ; 6.5 \mathrm{~min}, 2.2 \%, 90.5 \% ; 7.0 \mathrm{~min}$, n.d., $>99 \%$. The consumption rate of 5 m obeyed the first-order kinetics (Figure S6) and the half-live was calculated to be ca. 2.1 min . All reactions shown in Table 2 were carried out similarly.

5m: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 29.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=42 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity), 30.3 (d, $J_{\mathrm{P}-\mathrm{P}}=42 \mathrm{~Hz}$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). trans- 6 m : ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.3\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3268 \mathrm{~Hz}\right)$.

The Half-Live of the Reaction of 5 m to $\mathbf{6 m}$ in $\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}$ (run 7, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 5 m and trans $\mathbf{6 m}$. The reaction time (the average of acquisition time), and the yields of 5 m and trans $\mathbf{6 m}$ at the time were $2.0 \mathrm{~min}, 4.6 \%$, $95.4 \% ; 2.5 \mathrm{~min}, 3.6 \%, 96.4 \% ; 3.0 \mathrm{~min}, 3.3 \%$, $96.7 \% ; 3.5 \mathrm{~min}, 2.9 \%, 97.1 \% ; 4.0 \mathrm{~min}, 2.6 \%$,
 $97.4 \% ; 4.5 \mathrm{~min}, 2.5 \%, 97.5 \% ; 5.0 \mathrm{~min}, 2.3 \%, 97.7 \% ; 5.5 \mathrm{~min}, 2.2 \%, 97.8 \% ; 6.0 \mathrm{~min}, 1.8 \%$, $98.2 \% ; 6.5 \mathrm{~min}, 1.6 \%, 98.4 \% ; 7.0 \mathrm{~min}$, n.d., $>99 \%$. The consumption rate of 5 m obeyed the first-order kinetics (Figure S 7) and the half-live was calculated to be ca. 3.3 min .
5m: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 28.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=40 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity), 29.7 (d, $J_{\mathrm{P}-\mathrm{P}}=40 \mathrm{~Hz}$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). trans- $6 \mathrm{~m}:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 16.3$ ($\mathrm{s}, J_{\mathrm{Pt}-\mathrm{P}}=3258 \mathrm{~Hz}$).

The Half-Live of the Reaction of $\mathrm{Pt}\left[\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(n-\mathrm{Hex}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right](\mathrm{PP}$ $\left.\mathrm{h}_{3}\right)_{2}(5 n)$ to trans $-\mathrm{Pt}\left[\mathrm{C}(\mathrm{O}) \mathrm{C}(n-\mathrm{Hex})=\mathrm{CH}_{2}\right]-$ $\left(\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}(6 n)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 8, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 n}$ and trans- $\mathbf{6 n}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 n}$ and trans-6n at
 the time were $10 \mathrm{~min}, 89 \%, 11 \% ; 20 \mathrm{~min}, 74 \%, 24 \% ; 30 \mathrm{~min}, 62 \%, 36 \% ; 40 \mathrm{~min}, 52 \%, 47 \%$; $50 \mathrm{~min}, 442 \%, 54 \% ; 60 \mathrm{~min}, 38 \%, 60 \% ; 70 \mathrm{~min}, 31 \%, 67 \% ; 80 \mathrm{~min}, 28 \%, 72 \% ; 120 \mathrm{~min}$, $14 \%, 84 \% ; 180 \mathrm{~min}, 5 \%, 93 \%$. The consumption rate of 5 n obeyed the first-order kinetics (Figure S8) and the half-live was calculated to be 40 min .
5n: ${ }^{31}$ P NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 27.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3898 \mathrm{~Hz}\right), 30.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}\right.$, $J_{\mathrm{Pt}-\mathrm{P}}=3692 \mathrm{~Hz}$). trans-6n: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 14.9\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3235 \mathrm{~Hz}\right)$.

The Half-Live of the Reaction of $\operatorname{Pt}\left[(E)-(n-\mathrm{Hex}) \mathrm{C}(\mathrm{H})=\mathrm{CHC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right]$ $-\left(\mathrm{PPh}_{3}\right)_{2} \quad(50)$ to trans- $\mathrm{Pt}[\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{CH}-$ $(n-H e x)-(E)]\left(\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \quad$ (60) in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 9, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 0}$ and trans-60. The reaction time (the average of acquisition time), and the yields of 50 and
 trans- 60 at the time were $2 \mathrm{~min}, 29 \%, 71 \% ; 2.5 \mathrm{~min}, 24 \%, 77 \% ; 3 \mathrm{~min}, 21 \%, 79 \% ; 3.5 \mathrm{~min}$,
$20 \%, 80 \% ; 4 \mathrm{~min}, 18 \%, 82 \% ; 4.5 \mathrm{~min}, 14 \%, 86 \% ; 5 \mathrm{~min}, 13 \%, 87 \% ; 6 \mathrm{~min}, 10 \%, 90 \% ; 7 \mathrm{~min}$, $9 \%, 91 \% ; 8 \mathrm{~min}, 7 \%, 93 \% ; 20 \mathrm{~min}$, nd, $>99 \%$. The consumption rate of 50 obeyed the first-order kinetics (Figure S9) and the half-live was calculated to be 3.0 min .
50: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 29.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=40 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity), 30.3 (d, $J_{\mathrm{P}-\mathrm{P}}=40 \mathrm{~Hz}$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity). trans- $60:{ }^{31} \mathrm{P} \mathrm{NMR}\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.29\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3277 \mathrm{~Hz}\right)$.

The Half-Live of the Reaction of $\mathrm{Pt}\left[\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\boldsymbol{i}-\mathrm{Pr}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right]\left(\mathrm{PPh}_{3}\right)_{2}$ (5p) to $\mathrm{Pt}\left[\mathrm{C}(\mathrm{O}) \mathrm{C}(i-\mathrm{Pr})=\mathrm{CH}_{2}\right]\left(\mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right)-$ $\left(\mathbf{P P h}_{3}\right)_{2}(6 p)$ in $\mathbf{C}_{6} \mathbf{D}_{6}$ (run 10, Table 2): The ${ }^{31}$ P NMR spectrum showed the formation of $\mathbf{5 p}$ and trans-6p. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 p}$ and trans-6p at the time were $10 \mathrm{~min}, 90 \%, 10 \%$;
 $20 \mathrm{~min}, 78 \%, 21 \% ; 30 \mathrm{~min}, 66 \%, 32 \%$; $40 \mathrm{~min}, 57 \%, 42 \% ; 50 \mathrm{~min}, 48 \%, 49 \% ; 60 \mathrm{~min}, 42 \%$, $52 \% ; 70 \mathrm{~min}, 34 \%, 63 \% ; 80 \mathrm{~min}, 29 \%, 68 \% ; 24 \mathrm{~h}$, n.d., 98%. The consumption rate of $\mathbf{5 p}$ obeyed the first-order kinetics (Figure S10) and the half-live was calculated to be 43 min .
5p: ${ }^{31}$ P NMR ($\left.160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 26.5\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3909 \mathrm{~Hz}\right), 30.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{Pt}-\mathrm{P}}=3697 \mathrm{~Hz}\right)$. trans-6p: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 14.8\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3192 \mathrm{~Hz}\right)$.

The Half-Live of the Reaction of 5 p to $\mathbf{6 p}$ Using 5.0 Equivalent of $\mathbf{4 m}$ in $\mathrm{C}_{6} \mathrm{D}_{\mathbf{6}}$ (run 11, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 p}$ and trans- $\mathbf{6 p}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 p}$ and trans-6p at the time were $5 \mathrm{~min}, 93 \%, 7 \% ; 6 \mathrm{~min}, 92 \%, 8 \% ; 8 \mathrm{~min}$, $88 \%, 10 \%$; $10 \mathrm{~min}, 85 \%, 13 \% ; 20 \mathrm{~min}, 73 \%$,
 23%; $30 \mathrm{~min}, 62 \%, 34 \% ; 40 \mathrm{~min}, 54 \%, 42 \% ; 50 \mathrm{~min}, 45 \%, 50 \% ; 60 \mathrm{~min}, 38 \%, 57 \% ; 70 \mathrm{~min}$, $32 \%, 63 \% ; 80 \mathrm{~min}, 28 \%, 67 \%$. The consumption rate of $\mathbf{5 p}$ obeyed the first-order kinetics (Figure S11) and the half-live was calculated to be 43 min , showing that the transformation from $5 p$ to $6 p$ was a unimolecular process.

The Half-Live of the Reaction of $\mathbf{5 p}$ to $\mathbf{6 p}$ in $\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ (run 12, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 p}$ and $\mathbf{6 p}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 p}$ and $\mathbf{6 p}$ at the time were $4 \mathrm{~min}, 72 \%, 28 \%$ (cis:trans $=69: 31$); 5 $\mathrm{min}, 63 \%, 37 \%$ (cis:trans $=60: 40$); $6 \mathrm{~min}, 60 \%, 40 \%$ (cis:trans $=56: 44$); $7 \mathrm{~min}, 56 \%, 44 \%$ (cis:trans $=53: 47$); $8 \mathrm{~min}, 51 \%, 47 \%$ (cis:trans $=48: 52$); $10 \mathrm{~min}, 43 \%, 54 \%$ (cis:trans $=$

41:59); $20 \mathrm{~min}, 15 \%, 79 \%$ (cis:trans $=$ 18:82); $30 \mathrm{~min}, 5 \%, 92 \%$ (cis:trans $=$ 10:90); 40 min , n.d., 97% (cis:trans $=5: 95$). The consumption rate of $\mathbf{5 p}$ obeyed the first-order kinetics (Figure S12) and the half-live was calculated to be 6.8 min .
5p: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 26.0(\mathrm{~d}$,
 $\left.J_{\mathrm{P}-\mathrm{P}}=35 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3938 \mathrm{~Hz}\right), 29.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3684 \mathrm{~Hz}\right) . c i s-6 \mathrm{p}:{ }^{31} \mathrm{P}$ NMR (160 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 14.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=1311 \mathrm{~Hz}\right), 17.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3824 \mathrm{~Hz}\right)$. trans-6p: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 14.7\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3239 \mathrm{~Hz}\right)$.

The Half-Live of the Reaction of $\mathrm{Pt}\left[\mathrm{H}_{2} \mathrm{C}=\mathbf{C}(\mathbf{P h}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right]\left(\mathrm{PPh}_{3}\right)_{\mathbf{2}}$ (5q) to $\quad \operatorname{Pt}\left[\mathbf{C}(\mathbf{O}) \mathrm{C}(\mathbf{P h})=\mathbf{C H}_{2}\right]-$ $\left(\mathrm{SC}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{NO}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}(6 \mathrm{q})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 13, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 q}$ and trans-6q. The reaction time (the average of
 acquisition time) and the yields of $5 \mathbf{q}$ and trans- $6 \mathbf{q}$ at the time were $2 \mathrm{~min}, 25 \%, 75 \% ; 4 \mathrm{~min}$, $21 \%, 79 \% ; 6 \mathrm{~min}, 15 \%, 85 \% ; 8 \mathrm{~min}, 12 \%, 88 \% ; 10 \mathrm{~min}, 9 \%, 91 \% ; 12 \mathrm{~min}, 8 \%, 88 \% ; 14 \mathrm{~min}$, $7 \%, 88 \% ; 37 \mathrm{~min}$, n.d., $>99 \%$. The consumption rate of $\mathbf{5 q}$ obeyed the first-order kinetics (Figure S13) and the half-live was calculated to be 6.2 min .
5q: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 26.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity of the signal), $29.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=37 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity of the signal). trans-6q: ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 14.8$ (s, $J_{\text {Pt-P }}=3206 \mathrm{~Hz}$).

The Half-Live of the Reaction of 5 q to 6 q in

 $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (run 14, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 q}$ and $\mathbf{6 q}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 q}$ and $\mathbf{6 q}$ at the time were $2 \mathrm{~min}, 32 \%, 68 \%$ (cis:trans $=58: 42$); 4 $\mathrm{min}, 8 \%, 86 \%$ (cis:trans $=34: 66$); $5 \mathrm{~min}, 4 \%$, 90% (cis:trans $=24: 76$); $6 \mathrm{~min}, 3 \%, 91 \%$ (cis:trans $=20: 80$); $7 \mathrm{~min}, 2 \%, 92 \%$ (cis:trans $=15: 85$); 20 min, n.d., 97% (cis:trans $=2: 98$). The consumption rate of $\mathbf{5 q}$ obeyed the first-order kinetics (Figure S14) and the half-live was calculated to be 1.2 min .

5q: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 25.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35 \mathrm{~Hz}\right.$, the value of $J_{\mathrm{Pt}-\mathrm{P}}$ was not able to read because of low intensity of the signal), 29.2 ($\mathrm{d}, J_{\mathrm{P}-\mathrm{P}}=35 \mathrm{~Hz}$, the value of $J_{\mathrm{Pt-P}}$ was not able to read because of low intensity of the signal). cis- $6 \mathbf{q}:{ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ $13.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=1328 \mathrm{~Hz}\right), 17.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3720 \mathrm{~Hz}\right) . \boldsymbol{t r a n s}-6 \mathrm{q}:{ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 14.6\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3186 \mathrm{~Hz}\right)$.

The Half-Live of the Reaction of $\operatorname{Pt}\left[(E)-\mathrm{PhC}(\mathrm{H})=\mathrm{CHC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}\right](\mathrm{PP}$ $\left.\mathrm{h}_{3}\right)_{2}(5 \mathrm{r})$ to $\mathrm{Pt}[\mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{CH}(\mathrm{Ph})-(E)]-$ $\left(\mathrm{SC}_{6} \mathrm{H}_{4}-\mathrm{p}-\mathrm{NO}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{6 r})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 15,
Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $5 \mathbf{r}$ and trans-6r. The reaction time (the average of acquisition time), and
 the yields of $\mathbf{5 r}$ and trans-6r at the time were $10 \mathrm{~min}, 41 \%, 59 \% ; 20 \mathrm{~min}, 21 \%, 74 \% ; 30 \mathrm{~min}$, $11 \%, 86 \% ; 40 \mathrm{~min}, 4 \%, 92 \% ; 50 \mathrm{~min}, 2 \%, 95 \% ; 60 \mathrm{~min}, 1 \%, 95 \% ; 3 \mathrm{~h}, \mathrm{n} . \mathrm{d} ., 95 \%$. The consumption rate of $\mathbf{5 r}$ obeyed the first-order kinetics (Figure S15) and the half-live was calculated to be 9.1 min .
5r: ${ }^{31}$ P NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 26.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=36 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4178 \mathrm{~Hz}\right), 27.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=36 \mathrm{~Hz}\right.$, $J_{\mathrm{Pt}-\mathrm{P}}=3552 \mathrm{~Hz}$). trans-6r: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 16.0\left(\mathrm{~s}, J_{\mathrm{Pt}-\mathrm{P}}=3229 \mathrm{~Hz}\right)$.

The Half-Live of the Reaction of $5 \mathbf{r}$ to $\mathbf{6 r}$ Using

4.7 Equivalent of $4 \mathbf{r}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (run 16, Table 2):

 The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 5 r and trans-6r. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 r}$ and trans-6r at the time were $10 \mathrm{~min}, 40 \%, 58 \% ; 20 \mathrm{~min}, 23 \%$, $75 \% ; 30 \mathrm{~min}, 13 \%$, 83%; $40 \mathrm{~min}, 6 \%, 86 \% ; 50$ $\min , 2 \%, 90 \% ; 60 \mathrm{~min}, 1 \%, 94 \% ; 70 \mathrm{~min}$, n.d., 92%. The consumption rate of $\mathbf{5 r}$ obeyed the first-order kinetics (Figure S16) and the half-live was calculated to be 9.1 min . The present result did not contradict the idea that the transformation from $\mathbf{5 r}$ to $\mathbf{6 r}$ was a unimolecular process.

The Half-Live of the Reaction of 5 r to $\mathbf{6 r}$ in

 $\mathbf{C D}_{2} \mathbf{C l}_{2}$ (run 17, Table 2): The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 r}$ and $\mathbf{6 r}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 r}$ and $\mathbf{6 r}$ at the time were $10 \mathrm{~min}, 31 \%, 69 \%$ (cis:trans $=1: 99$); 20
$\min , 12 \%, 88 \%$ (cis:trans $=2: 98$); $30 \mathrm{~min}, 6 \%, 94 \%$ (cis:trans $=2: 98$); $40 \mathrm{~min}, 2 \%, 98 \%$ (trans only); 50 min , n.d., $>99 \%$ (trans only). The consumption rate of $\mathbf{5 r}$ obeyed the first-order kinetics (Figure S 17) and the half-live was calculated to be 7.8 min .
5r: ${ }^{31}$ P NMR ($\left.160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 26.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35 \mathrm{~Hz}, J_{\mathrm{Pt}-\mathrm{P}}=4208 \mathrm{~Hz}\right), 26.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=35\right.$ $\left.\mathrm{Hz}, J_{\mathrm{Pt}-\mathrm{P}}=3525 \mathrm{~Hz}\right)$. cis- $6 \mathrm{r}:{ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 14.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}\right.$, the value of $J_{\text {Pt-P }}$ was not able to read because of low intensity), $17.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=19 \mathrm{~Hz}\right.$, the value of $J_{\text {Pt-P }}$ was not able to read because of low intensity). trans-6r: ${ }^{31} \mathrm{P}$ NMR $\left(160 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 16.1$ ($\mathrm{s}, J_{\mathrm{Pt}-\mathrm{P}}=3217 \mathrm{~Hz}$).

The Reaction of $\mathbf{4 q}$ with 2 in $\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ at Low Temperature (Eq. 6): Into a dry Pyrex NMR tube were added $2(15.2 \mathrm{mg}, 0.020 \mathrm{mmol}), 4 \mathbf{q}(6.4 \mathrm{mg}, 0.022 \mathrm{mmol})$ and $\mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ $(1.1 \mathrm{mg}, 0.0028 \mathrm{mmol})$. Then ca. 0.5 mL of $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ was transferred by the freeze-pump-thaw method. The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 q}$ and $\mathbf{6 q}$. The reaction temperature and time (the average of acquisition time). These results clearly showed that $\mathbf{5 q}$ was kinetic product, which selectively isomerized to $c i s-6 \mathbf{q}$ then trans- $\mathbf{6 q}$.

The Half-Live of the Reaction of 51 to $\mathbf{6 1}$ in $\mathrm{C}_{6} \mathrm{D}_{\mathbf{6}}$ at $30{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were $5 \mathrm{~min}, 90 \%, 10 \%$ (trans only); 6 min, $88 \%, 12 \%$ (trans only); $8 \mathrm{~min}, 81 \%, 19 \%$ (cis:trans $=11: 89$); $10 \mathrm{~min}, 77 \%, 23 \%$ (cis:trans $=$

Figure S18
 9:91); $20 \mathrm{~min}, 55 \%, 45 \%$ (cis:trans $=4: 96$); 30 min , $39 \%, 61 \%$ (trans only); $40 \mathrm{~min}, 30 \%, 70 \%$ (trans only); $50 \mathrm{~min}, 21 \%, 79 \%$ (trans only). The consumption rate of $\mathbf{5 l}$ obeyed the first-order kinetics (Figure S18) and the half-live was calculated to be 21.5 min .

The Half-Live of the Reaction of 51 to 61 in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $35{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 I}$ and $\mathbf{6 1}$ at the time were $5 \mathrm{~min}, 85 \%, 15 \%$ (trans only); $6 \mathrm{~min}, 78 \%$, $22 \%($ cis:trans $=13: 87) ; 8 \mathrm{~min}, 70 \%, 30 \%$ (cis:trans $=$ 7:93); $10 \mathrm{~min}, 62 \%, 38 \%$ (cis:trans $=8: 92$); 20 min , $33 \%, 67 \%$ (trans only); $30 \mathrm{~min}, 16 \%, 84 \%$ (trans

Figure S19
 only); $40 \mathrm{~min}, 8 \%, 92 \%$ (trans only). The consumption rate of 51 obeyed the first-order kinetics (Figure S19) and the half-live was calculated to be 7.96 min .

The Half-Live of the Reaction of 51 to 61 in $C_{6} D_{6}$ at $40{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 I}$ and $\mathbf{6 l}$ at the time were 10 min , $45 \%, 55 \%$ (trans only); $20 \mathrm{~min}, 14 \%, 86 \%$ (trans only); $27 \mathrm{~min}, 4 \%, 96 \%$ (trans only); $30 \mathrm{~min}, 3 \%, 97 \%$ (trans only). The consumption rate of $\mathbf{5 l}$ obeyed the first-order

Figure S20
 kinetics (Figure S20) and the half-live was calculated to be 4.97 min .

The Half-Live of the Reaction of 51 to $\mathbf{6 l} \mathbf{~ i n ~} \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$ at $30{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 l}$ and $\mathbf{6 l}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 1}$ and $\mathbf{6 1}$ at the time were $5 \mathrm{~min}, 77 \%, 23 \%$ (cis:trans $=65: 35$); 6 $\mathrm{min}, 73 \%, 27 \%$ (cis:trans $=63: 37$); $8 \mathrm{~min}, 64 \%, 36 \%$ (cis:trans $=53: 47$); $10 \mathrm{~min}, 56 \%, 44 \%$ (cis:trans $=$ 45:55); $20 \mathrm{~min}, 25 \%, 75 \%$ (cis:trans $=23: 77$); 30 min , $11 \%, 89 \%$ (cis:trans $=13: 87$). The consumption rate of $\mathbf{5 1}$ obeyed the first-order kinetics (Figure S21) and the half-live was calculated to be 8.81 min .

The Half-Live of the Reaction of 51 to $\mathbf{6 l}$ in $\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}$ at $35{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 51 and 61 . The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were $5 \mathrm{~min}, 70 \%, 30 \%$ (cis:trans $=53: 47$); 6 min , $62 \%, 38 \%$ (cis:trans $=47: 53$); $8 \mathrm{~min}, 50 \%, 50 \%$ (cis:trans $=36: 64$); $10 \mathrm{~min}, 41 \%, 59 \%$ (cis:trans $=$ 27:73); $20 \mathrm{~min}, 8 \%, 92 \%$ (cis:trans $=8: 82$); 30 min , n.d., $>99 \%$ (cis:trans $=3: 97$). The consumption rate of $\mathbf{5 1}$ obeyed the first-order kinetics (Figure S22) and the half-live was calculated to be 6.57 min .

The Half-Live of the Reaction of 51 to 61 in $\mathbf{C D}_{2} \mathbf{C l}_{2}$ at $40{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 51 and $\mathbf{6 1}$. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 6 min , $64 \%, 36 \%$ (cis:trans $=42: 58$); $7 \mathrm{~min}, 53 \%, 47 \%$ (cis:trans $=32: 68$); $8 \mathrm{~min}, 43 \%$, 57% (cis:trans $=$ 27:73); $9 \mathrm{~min}, 38 \%$, 62% (cis:trans $=22: 78$); 10 min , $32 \%, 68 \%$ (cis:trans $=19: 81$); $11 \mathrm{~min}, 28 \%, 72 \%$ (cis:trans $=15: 85$); $12 \mathrm{~min}, 24 \%, 76 \%$
(cis:trans $=13: 87$); $13 \mathrm{~min}, 22 \%, 78 \%$ (cis:trans $=12: 88$); $15 \mathrm{~min}, 18 \%, 82 \%$ (cis:trans $=$ $10: 90$); $20 \mathrm{~min}, 12 \%, 88 \%$ (cis:trans $=7: 93$). The consumption rate of $\mathbf{5 l}$ obeyed the first-order kinetics (Figure S23) and the half-live was calculated to be 4.54 min .

The Half-Live of the Reaction of $5 p$ to $6 p$ in $C_{6} D_{6}$ at $30{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of 5p and trans-6p. The reaction time (the average of acquisition time), and the yields of 5p and trans-6p at the time were $4 \mathrm{~min}, 95 \%, 5 \% ; 5$ $\min , 93 \%, 7 \% ; 6 \mathrm{~min}, 91 \%, 9 \% ; 8 \mathrm{~min}, 89 \%, 11 \%$; $10 \mathrm{~min}, 84 \%, 16 \%$; $20 \mathrm{~min}, 66 \%, 34 \%$; $30 \mathrm{~min}, 51 \%$,

Figure S24
 49%; $40 \mathrm{~min}, 39 \%, 61 \% ; 50 \mathrm{~min}, 30 \%, 70 \% ; 60 \mathrm{~min}$, $23 \%, 77 \%$. The consumption rate of $\mathbf{5 p}$ obeyed the first-order kinetics (Figure S24) and the half-live was calculated to be 27.4 min .

The Half-Live of the Reaction of $5 p$ to $6 p$ in $C_{6} D_{6}$ at $35{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $5 \mathbf{p}$ and trans- $6 \mathbf{p}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 p}$ and trans- $\mathbf{6 p}$ at the time were $7 \mathrm{~min}, 88 \%, 12 \% ; 8 \mathrm{~min}, 85 \%, 15 \% ; 9$ $\min , 81 \%, 19 \% ; 10 \mathrm{~min}, 79 \%, 21 \% ; 20 \mathrm{~min}, 51 \%$, 49%; $30 \mathrm{~min}, 31 \%, 69 \% ; 40 \mathrm{~min}, 20 \%, 80 \%$; 50 min ,

Figure $\mathbf{S} 25$
 $12 \%, 88 \%$. The consumption rate of $\mathbf{5 p}$ obeyed the first-order kinetics (Figure S25) and the half-live was calculated to be 14.9 min .

The Half-Live of the Reaction of $5 p$ to $6 p$ in $C_{6} D_{6}$ at $40{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 p}$ and trans- $\mathbf{6 p}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 p}$ and trans- 6 p at the time were $3 \mathrm{~min}, 96 \%, 4 \% ; 4$ $\min , 88 \%, 12 \% ; 5 \mathrm{~min}, 83 \%, 17 \% ; 6 \mathrm{~min}, 77 \%$, 23%; $8 \mathrm{~min}, 68 \%, 32 \%$; $9 \mathrm{~min}, 64 \%, 36 \%$; 18 min ,

Figure S26
 $29 \%, 71 \% ; 20 \mathrm{~min}, 25 \%, 75 \% ; 30 \mathrm{~min}, 8 \%, 92 \% ; 40 \mathrm{~min}, 4 \%, 96 \%$. The consumption rate of $\mathbf{5 p}$ obeyed the first-order kinetics (Figure S26) and the half-live was calculated to be 8.96 min.

The Half-Live of the Reaction of $5 p$ to $6 p$ in $\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}$ at $30{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $\mathbf{5 p}$ and $\mathbf{6 p}$. The reaction time (the average of acquisition time), and the yields of $5 \mathbf{p}$ and $\mathbf{6 p}$ at the time were $2 \mathrm{~min}, 81 \%, 19 \%$ (cis:trans $=69: 31$); 3 min , $69 \%, 31 \%$ (cis:trans $=63: 37$); $4 \mathrm{~min}, 61 \%, 39 \%$ (cis:trans $=56: 44$); $5 \mathrm{~min}, 55 \%$, 45% (cis:trans $=$

Figure S27
 $47: 53$); $6 \mathrm{~min}, 49 \%, 51 \%$ (cis:trans $=42: 58$); $7 \mathrm{~min}, 44 \%, 56 \%$ (cis:trans $=37: 63$); 8 min , $39 \%, 61 \%$ (cis:trans $=33: 67$); $20 \mathrm{~min}, 6 \%, 94 \%$ (cis/trans $=9: 91$); 30 min , n.d., $>99 \%$ (cis:trans $=4: 96$). The consumption rate of $\mathbf{5 p}$ obeyed the first-order kinetics (Figure S27) and the half-live was calculated to be 5.94 min .

The Half-Live of the Reaction of $5 p$ to $6 p$ in $\mathbf{C D}_{2} \mathbf{C l}_{2}$ at $35{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $5 \mathbf{p}$ and $\mathbf{6 p}$. The reaction time (the average of acquisition time), and the yields of 5 p and $6 \mathbf{p}$ at the time were $3 \mathrm{~min}, 61 \%, 39 \%$ (cis:trans $=48: 52$); $4 \mathrm{~min}, 50 \%, 50 \%$ (cis:trans $=38: 62$); 5 $\min , 43 \%, 57 \%$ (cis:trans $=32: 68$); $6 \mathrm{~min}, 36 \%$,

Figure S28
 64\% (cis:trans $=26: 74$); $7 \mathrm{~min}, 31 \%, 69 \%$ (cis:trans $=22: 78$); $8 \mathrm{~min}, 27 \%, 73 \%$ (cis:trans $=19: 81$); 20 min , n.d., $>99 \%$ (cis:trans $=4: 96$). The consumption rate of $\mathbf{5 p}$ obeyed the first-order kinetics (Figure S28) and the half-live was calculated to be 4.33 min .

The Half-Live of the Reaction of $5 p$ to $6 p$ in $\mathbf{C D}_{2} \mathbf{C l}_{\mathbf{2}}$ at $40{ }^{\circ} \mathrm{C}$: The ${ }^{31} \mathrm{P}$ NMR spectrum showed the formation of $5 \mathbf{p}$ and $\mathbf{6 p}$. The reaction time (the average of acquisition time), and the yields of $\mathbf{5 p}$ and $6 \mathbf{p}$ at the time were $3 \mathrm{~min}, 49 \%, 51 \%$ (cis:trans $=34: 66) ; 3.5 \mathrm{~min}, 41 \%, 59 \%($ cis:trans $=29: 71) ; 4$ $\min , 36 \%, 64 \%$ (cis:trans $=24: 76$); $5 \mathrm{~min}, 28 \%$,

Figure S29
 72% (cis:trans $=18: 82$); $6 \mathrm{~min}, 21 \%, 79 \%$ (cis:trans $=14: 86$); $7 \mathrm{~min}, 17 \%, 83 \%$ (cis:trans $=$ $11: 89$); $8 \mathrm{~min}, 14 \%, 86 \%$ (cis:trans $=10: 90$); 20 min , n.d., $>99 \%$ (cis:trans $=3: 97$). The consumption rate of $\mathbf{5} \mathbf{p}$ obeyed the first-order kinetics (Figure S29) and the half-live was calculated to be 2.83 min .

Activation Parameters (Table 3). Activation parameters of the transformation of $\mathbf{5 l}$ to $\mathbf{6 l}, \mathbf{5 p}$ to $6 \mathbf{p}$, and $5 \mathbf{r}$ to $\mathbf{6 r}$ were calculated by measuring the temperature dependence of reaction rates
at the range from $25^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$ in both $\mathrm{C}_{6} \mathrm{D}_{6}$ and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ according to the equation: $k=$ $\left(k_{\mathrm{B}} \mathrm{T} / h\right)\left\{\exp \left[-\left(\Delta H^{\ddagger}-\mathrm{T} \Delta S^{\ddagger}\right) /(\mathrm{RT})\right]\right\}$.

Activation Parameters of the Transformation of 51 to $\mathbf{6 1}$ in $\mathbf{C}_{6} \mathrm{D}_{\mathbf{6}}$: Reaction temperature and reaction rates were as follows: $298 \mathrm{~K}, 0.000307 \mathrm{~s}^{-1} ; 303 \mathrm{~K}, 0.000538 \mathrm{~s}^{-1} ; 308 \mathrm{~K}, 0.00112 \mathrm{~s}^{-1}$; $313 \mathrm{~K}, 0.00233 \mathrm{~s}^{-1}$.
Activation Parameters of the Transformation of $\mathbf{5 1}$ to $\mathbf{6 l}$ in $\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$: Reaction temperature and reaction rates were as follows: $298 \mathrm{~K}, 0.000822 \mathrm{~s}^{-1} ; 303 \mathrm{~K}, 0.00131 \mathrm{~s}^{-1} ; 308 \mathrm{~K}, 0.00178$ $\mathrm{s}^{-1} ; 313 \mathrm{~K}, 0.00255 \mathrm{~s}^{-1}$.
Activation Parameters of the Transformation of $5 \mathbf{p}$ to $\mathbf{6 p}$ in $\mathbf{C}_{\mathbf{6}} \mathbf{D}_{\mathbf{6}}$: Reaction temperature and reaction rates were as follows: $298 \mathrm{~K}, 0.000270 \mathrm{~s}^{-1} ; 303 \mathrm{~K}, 0.000422 \mathrm{~s}^{-1} ; 308 \mathrm{~K}, 0.000773$ $\mathrm{s}^{-1} ; 313 \mathrm{~K}, 0.00133 \mathrm{~s}^{-1}$.
Activation Parameters of the Transformation of 5 p to $\mathbf{6 p}$ in $\mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$: Reaction temperature and reaction rates were as follows: $298 \mathrm{~K}, 0.00171 \mathrm{~s}^{-1} ; 303 \mathrm{~K}, 0.00194 \mathrm{~s}^{-1} ; 308 \mathrm{~K}, 0.00267 \mathrm{~s}^{-1}$; $313 \mathrm{~K}, 0.00408 \mathrm{~s}^{-1}$.
Activation Parameters of the Transformation of $5 \mathbf{r}$ to $\mathbf{6 r}$ in $\mathbf{C}_{6} \mathbf{D}_{\mathbf{6}}$: Reaction temperature and reaction rates were as follows: $293 \mathrm{~K}, 0.000633 \mathrm{~s}^{-1} ; 298 \mathrm{~K}, 0.00127 \mathrm{~s}^{-1} ; 303 \mathrm{~K}, 0.00171$ $\mathrm{s}^{-1} ; 308 \mathrm{~K}, 0.00267 \mathrm{~s}^{-1}$.
Activation Parameters of the Transformation of $\mathbf{5 r}$ to $\mathbf{6 r} \mathbf{~ i n ~} \mathbf{C D}_{\mathbf{2}} \mathbf{C l}_{\mathbf{2}}$: Reaction temperature and reaction rates were as follows: $293 \mathrm{~K}, 0.000750 \mathrm{~s}^{-1} ; 298 \mathrm{~K}, 0.00149 \mathrm{~s}^{-1} ; 303 \mathrm{~K}, 0.00169$ $\mathrm{s}^{-1} ; 308 \mathrm{~K}, 0.00471 \mathrm{~s}^{-1}$.

4-9. Reference and Note

(1) (a) Osakada, K.; Chiba, T.; Nakamura, Y.; Yamamoto, T.; Yamamoto, A. J. Chem. Soc., Chem. Commun. 1986, 1589. (b) Kurosawa, H.; Kajimaru, H.; Ogoshi, S.; Yoneda, H.; Miki, K.; Kasai, N.; Murai, S.; Ikeda, I. J. Am. Chem. Soc. 1992, 114, 8417, and references therein.
(2) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition-Metal Chemistry; University Science Books: Mill Valley, CA, 1987.
(b) Grabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; Wiley-Interscience: New York, 2003.
(3) (a) Dent, S. P.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1975, 97, 307. (b) Stille, J. K.; Lau, K. S. Y. Acc. Chem. Res. 1977, 10, 434. (c) Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 2501.
(4) (a) Kuniyasu, H.; Sugoh, K.; Moon, S.; Kurowasa, H. J. Am. Chem. Soc. 1997, 119, 4669.
(b) Miyauchi, Y.; Watanabe, S.; Kuniyasu, H.; Kurosawa, H. Organometallics 1995, 14, 5450.
(5) (a) Kuniyasu, H.; Ohtaka, A.; Nakazono, T.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2000, 122, 2375. (b) Kuniyasu, H.; Kato, T.; Inoue, M.; Kambe, N. J. Organomet.

Chem. 2006, 691, 1873.
(6) No interaction between $\mathrm{S}=\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}-p\right)_{3}$ and other reagents has been confirmed during the course of the present study.
(7) (a) Boschi, T.; Crociani, B.; Toniolo, L.; Belluco, U. Inorg. Chem. 1970, 9, 532. (b) Jones, W. D.; Reynolds, K. A.; Sperry, C. K.; Lachicotte, R. J.; Godleski, S. A.; Valente, R. R. Organometallics 2000, 19, 1661.
(8) The reactions were continuously monitored until the equilibria were fully-achieved.
(9) Zhang, X.; Yu, K.; Carpenter, G. B.; Sweigart, D. A.; Czech, P. T.; D'Acchioli, J. S. Organometallics 2000, 19, 1201.
(10) It has been already reported that the X-ray crystallographic structure of $\mathrm{Pt}\left[\left(\mathrm{PhH}_{2} \mathrm{CO}\right)(\mathrm{O}) \mathrm{C}(\mathrm{H}) \mathrm{C}=\mathrm{CH}_{2}\right]\left(\mathrm{PPh}_{3}\right)_{2}$ showed the s-cis configuration as to $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ moieties. Chaloner, P. A.; Davies, S. E.; Hitchcock, P. B. J. Organomet. Chem. 1997, 527, 145.
(11) (a) Yu, K.; Li, H.; Watson, E. J.; Virkaitis, K. L.; Carpenter, G. B.; Sweigart, D. A. Organometallics 2001, 20, 3550. (b) Strawser, D.; Karton, A.; Zenkina, O. V.; Iron, M. A.; Shimon, L. J. W.; Martin, J. M. L.; Boom, M. E. J. Am. Chem. Soc. 2005, 127, 9322.
(12) It has been reported that α, β-unsaturated thioesters were employed as an excellent acceptors of Michael additions. Mazery, R. D.; Pullez, M.; López, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 9966 and references therein.
(13) It has been known the substituent with α-anion stabilization effect at β-carbon facilitated the Michael addition of nucleophile to α, β-unsaturated compounds. (a) Stork, G.; Ganem, B J. Am. Chem. Soc. 1973, 95, 6152. (b) Gawley, R. E. Synthesis 1976, 777. (c) Holton, R. A.; Williams, A. D.; Kennedy, R. M. J. Org. Chem. 1986, 51, 5480. (d) Cooke, M. P., Jr. J. Org. Chem. 1987, 52, 5729.

Summary

In this study, the author succeeded in developing novel transition metal-catalyzed reaction of thioesters and iminosulfides with alkynes and discovering the mechanism under the reaction of α, β-unsaturated thioesters to platinum complexes. The results were summarized as follows.

In chapter 1, it was described that the intermolecular CO-retentive addition of thioesters to alkynes, which afford enone derivatives having sulfur functionality at β-position. The use of DPPE (1,2-bis-(diphenylphosphino)ethane) as a ligand is of critical importance to achieve Pd -catalyzed aroylthiolation. On the other hand, trifluoroacetylthiolation by $\mathrm{CF}_{3} \mathrm{C}(\mathrm{O}) \mathrm{SR}$ was successfully catalyzed by $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{4}$, the same catalyst employed for decarbonylative arylthiolation by $\mathrm{ArC}(\mathrm{O}) \mathrm{SR}$. The CF_{3} group is requisite for the transformation; the reactions using Me - and CCl_{3}-substituted thioesters hardly furnished the desired products.
In chapter 2, a new synthetic method of β-sulfur functionalized 1 -azadienes by the intermolecular addition reaction of iminosulfides to alkynes was successfully realized using $\mathrm{Pd}(\mathrm{dba})_{2} / \mathrm{PAr}_{3}$ as the catalytic system. The reaction was promoted by introducing CF_{3} group bound to the iminocarbon probably due to the acceleration of the oxidative addition of iminosulfides to Pd-catalyst. Furthermore, the present iminothiolation could be applied to the synthesis of furan derivatives.
In chapter 3, it was revealed that one-pot syntheses of 2,3-dihydrothiopyran-4-one derivatives by $\mathrm{Pd} / \mathrm{Cu}$-catalyzed reactions of α, β-unsaturated thioesters with propargyl alcohols. The transformation successively takes place in a flask by a single operation and consists of four consecutive reactions: the $\mathrm{Pd} / \mathrm{Cu}$-catalyzed Sonogashira-type cross-coupling reaction of thioester with propargyl alcohol; the trans-addition of in situ generated thiol to alkyne moiety; an intramolecular aromatic nucleophilic substitution; and a cyclization reaction.
Finally, it was suggested that there would be two reaction pathways of the oxidative addition of α, β-unsaturated thioesters to zero-valent platinum complexes. One is the direct approach of Pt -fragment coordinated on the carbon-carbon double bond toward the carbon-sulfur bond, and the other is the attack of Pt-fragment at the vinylic β-carbon and details were summarized in chapter 4.

These new aspects revealed through this study show a great benefit in transition metal-mediated various catalytic and stoichiometric transformation using organosulfur compounds in synthetic chemistry.

List of Publications

(1) Transition-Metal-Catalyzed Regioselective Aroyl- and Trifluoroacetylthiolation of Alkynes Using Thioesters
Yasunori Minami, Hitoshi Kuniyasu, Kiyoshi Miyafuji, Nobuaki Kambe Chem. Commun. 2009, 3080-3082.
(2) Pd-Catalyzed Regioselevtive Iminothiolation of Alkynes: Remarkable Effects of CF_{3} Group of Iminosulfides
Yasunori Minami, Hitoshi Kuniyasu, Nobuaki Kambe in preparation
(3) One-Pot Syntheses of 2,3-Dihydrothiopyran-4-one Derivatives by $\mathrm{Pd} / \mathrm{Cu}$-Catalyzed Reactions of α, β-Unsaturated Thioesters with Propargyl Alcohols Yasunori Minami, Hitoshi Kuniyasu, Nobuaki Kambe
Org. Lett. 2008, 10, 2469-2472.
(4) Reactions of α, β-Unsaturated Thioesters with $\operatorname{Pt}(0)$: Implication of Dual Mechanism Leading to the Formation of Acyl Platinum
Yasunori Minami, Tomohiro Kato, Hitoshi Kuniyasu, Jun Terao, Nobuaki Kambe Organometallics 2006, 25, 2949-2959.

Acknowledgement

The author would like to express his appreciation and gratitude to Professor Nobuaki Kambe at the Department of Applied Chemistry, Graduate School of Engineering, Osaka University for a number of suggestions, discussions and encouragement. The author would like to express his sincere thanks to Professor Naoto Chatani and Professor Masahiro Miura of Osaka University for kind discussions. The author would like to express his gratitude to Associate Professor Hitoshi Kuniyasu for his stimulating discussion. The author would like to acknowledge Assistant Professor Takanori Iwasaki, Professor Shin-ichi Fujiwara, Associate Professor Jun Terao (who was transferred at the Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University) and Professor John F. Hartwig of University of Illinois for his useful advice and hearty encouragement. The author would like to thank Dr. Nobuko Kanehisa for her helpful advice and assistance about X-ray crystallographic analysis.
The author is deeply grateful to Dr. Takayoshi Hirai, Dr. Tomohiro Kato, Dr. Fumikazu Yamashita, Dr. Hiroyasu Watabe, Dr. Yoshitaka Naito, Dr. Hirohisa Todo, Dr. Susumu Tsuda, Dr. Masashi Toyofuku and Dr. Yuki Fujii for their kindness and helpful discussion. The auther is indebted to Ms. Yuko Okumoto, Ms. Kana Kumamoto, Mr. Keisuke Tsurui, Mr. Masahiro Tomita, Mr. Hiroyuki Watanabe and other lab's partners as colleagues for the doctor's, master's and bachelor's courses. The author also thanks Mr. Shigehito Asano, Mr. Takamichi Kajiura, Mr. Yoshitaka Kunihiro, Mr. Kiyoshi Miyafuji, Mr. Takashi Tamaki, Mr. Takahiro Yoshizawa, Mr. Kazunobu Takekawa, Mr. Daisuke Nakane, Mr. Atsushi Sanagawa, Dr. Tokutaro Ogata, Ms. Noriko Fujimoto, Ms. Mikiko Tobisu, Ms. Yuko Fujiie, Ms. Nan Holda and all other members of the laboratory of Professor Kambe and Professor Hartwig for their helpful assistance and stimulating discussion. Thanks are due to the Instrumental Analysis Center, Faculty of Engineering, Osaka University for measurement of spectral and analytical data.
The author would like to express his special thanks for The Global COE (center of excellence) Program "Global Education and Research Center for Bio-Environmental Chemistry" of Osaka University and the JSAP Research Fellowship for Young Scientist for financial support for financial support during his PhD program.
Finally, the author wishes to thank to his family, as well as his wonderful friends for their encouragement, understanding and support.

[^0]: ${ }^{\text {a }} 1(1.2 \mathrm{mmol}), 2(1.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{dba})_{2}(0.05 \mathrm{~mol})$ and dppe (0.06 mol$)$ under benzene (0.5 mL) reflux for $20 \mathrm{~h} .{ }^{\text {b }}$ Isolated yield. ${ }^{\text {a }}$ NMR yield.

[^1]: a Unless otherwise noted, 1a (0.5 mmol), 2a (0.6 mmol), catalyst (0.025 mmol), ligand and solvent $(0.5 \mathrm{~mL}) .{ }^{\text {b }}$ NMR yield. ${ }^{c}$ Some byproducts were generated. ${ }^{d}$ isolated yield. DCE $=$ 1,2-dichloroethane. TFP = tri(2-furyl)phosphine.

[^2]: ${ }^{\text {a }}$ Unless otherwise noted, 1a (0.4 mmol), 2a (0.5 mmol), PdCl_{2} (0.004 mmol), Cul (0.04 $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(0.04 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.4 \mathrm{mmol})$, and $\mathrm{DMF}(0.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for $6 \mathrm{~h}{ }^{\mathrm{b}} \mathrm{NMR}$ yield. ${ }^{\text {c }}$ Isolated yield. ${ }^{\text {d }} 20 \mathrm{~mol} \%{ }^{e} 5 \mathrm{~mol} \%$. dppf $=1,1^{\prime}$-bis(diphenylphosphino)ferrocene

