

Title	Studies on the Palladium-and Platinum-Mediated Cleavage of Carbon-Sulfur Bond of Thioesters and Their Addition to Alkynes
Author(s)	Minami, Yasunori
Citation	大阪大学, 2010, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/2748
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

JA 14196

Studies on the Palladium- and Platinum-Mediated Cleavage of Carbon-Sulfur Bond of Thioesters and Their Addition to Alkynes

Yasunori Minami

Osaka University 2010

Studies on the Palladium- and Platinum-Mediated Cleavage of Carbon-Sulfur Bond of Thioesters and Their Addition to Alkynes

(パラジウム及び白金錯体によるチオエステル類の炭素-硫黄結合の切断及びアルキンへの付加反応に関する研究)

.

Yasunori Minami

Osaka University

2010

Preface

The studies described in this thesis has been carried out (2004-2010) under the supervision of Professor Nobuaki Kambe at the Department of Applied Chemistry, Graduate School of Engineering, Osaka University.

The objective of thesis is concerned with the studies on transformation of thioesters and iminosulfides with alkynes via cleavage of carbon-sulfur bond in the presence of transition-metal catalysts and the mechanistic insight into the reaction of thioesters with low-valent transition-metal complexes.

Department of Applied Chemistry

Graduate School of Engineering, Osaka University

Suita, Osaka, Japan

March, 2010

Njasunori Minami

Yasunori Minami

Contents

General Introduction1

Chapter 1 Transition-Metal Catalyzed Regioselective Acylthiolation of Alkynes Using Thioesters

1-1 Introduction ······7

1-2 Pd/dppe-Catalyzed Aroylthiolation of Alkynes Using Ar¹C(O)SAr²7

1-3 Pt-Catalyzed Trifluoroacetylthiolation of Alkynes Using CF₃C(O)SR 10

1-4 Reaction Mechanisms 11

1-5 Conclusions 12

1-6 Experimental Section 12

1-7 References and Notes 27

Chapter 2 Pd-Catalyzed Regioselevtive Iminothiolation of Alkynes: Remarkable Effects of CF₃ Group of Iminosulfides

2-1 Introduction 29

2-4 A Proposed Reaction Mechanism 32

2-6 Conclusions ······ 34

2-7 Experimental Section 34

2-8 References and Notes 47

Chapter 3 One-Pot Syntheses of 2,3-Dihydrothiopyran-4-one Derivatives by Pd/Cu-Catalyzed Reactions of α,β-Unsaturated Thioesters with Propargyl Alcohols

3-1 Introduction 49

3-2 The Pd/Cu-Catalyzed Reaction of α,β-Unsaturated Thioesters with Propargyl Alcohols

3-3 Reaction Mechanism 52

3-4 Reaction of Acid Chloride, Thiol and Propargyl Alcohol 54

3-5 Conclusions 54

3-6 Experimental Section 54

3-7 References and Notes 61

Chapter 4 Reactions of α,β-Unsaturated Thioesters with Pt(0): Implication of Dual Mechanism Leading to the Formation of Acyl Platinum

- 4-1 Introduction ······ 63

- 4-4 Reactions of Thioesters Having p-NO₂C₆H₄S Group with Pt(0) Complex68
- 4-5 Proposed Dual Reaction Routes 69
- 4-7 Conclusions 72
- 4-8 Experimental Section 72

Summary 100

List of Publications 101

Acknowledgement ······ 102

General Introduction

Homogeneous transition metal-catalyzed reaction is one of the most important subjects in synthetic chemistry for the facile and accurate construction of a wide range of organic frameworks. It is well-known that carbon-halogen bonds are readily cleaved by the transition metal complexes, which normally act as promoters for a range of synthetic transformations (Scheme 1).

Scheme 1. Oxidative Addition of Carbon-Halogen Bond to Transition-Metal Complex

Recently, catalytic reactions inspired by using other heteroatom functionalities in place of halogens are examined by many research groups (Scheme 2). On the basis of environmentally-

Scheme 2. Oxidative Addition of Carbon-Heteroatom Bond to Transition-Metal Complex

friendly molecular transformation, an important example would be the addition reactions of carbon-heteroatom bonds to carbon-carbon unsaturated bonds that proceeds through perfect atom-economical transformation in principle to form new carbon-carbon and carbon-heteroatom bonds in a single operation. A wide range of substrates such as carbon-sulfur,¹⁻² -nitrogen,³ -silicon,⁴ -tin⁵ and -boron⁶ bonds were employed for this purpose.

The author aimed at the development of new catalytic insertions of alkynes into carbon-sulfur bond employing thioesters ($R^1C(O)$ -S R^2). Thioesters are readily accessible molecules, stable under air and useful building blocks. In organometallic chemistry, the reactivity of thioesters toward transition metal complexes (oxidative addition of carbonyl-sulfur bonds of thioesters to transition metal complexes) lies in between esters⁷ and acid chlorides (Eq. 1).⁸ For an example,

$$R \xrightarrow{X} + M \xrightarrow{R} M^{X}$$
(1)
$$X = Cl > SR > OR$$

the oxidative addition of thioester to group 10 zero-valent metal complex takes place smoothly to afford acylmetal complex under room temperature. On the other hand, oxidative addition of esters hardly proceeds. Actually, thioesters have been extensively employed as substrates in transition-metal catalyzed reactions (Scheme 3); decarbonylation,⁹ reduction to aldehydes,¹⁰ cross-coupling¹¹ and addition to carbon-carbon unsaturated bonds.^{1b,2d} Our group also has developed a series of Pt catalyzed regio- and stereoselective decarbonylative addition of thioester ($R^1 = Ar$, hetAr, vinyl) to alkyne (Eq. 2).² Moreover, stoichiometric reactions of

thioesters with transition metal complexes were studied. Rh and Fe complexes arising from the oxidative addition of thioesters were reported by Shaver and Rauchfuss (Fig. 1).¹² In these cases, directing groups (nitrogen and phosphorus) promoted the oxidative additions to Rh and Fe complexes. Our group have also discovered that the decarbonylation from acylplatinum complexes was promoted by the coordination of a lone pair of heteroatom to platinum in the reaction of thioesters with zero-valent platinum complexes (Scheme 4).^{9d} This effect was also observed in the catalytic decarbonylation of thioesters. From these points of view, The author thought that thioesters may have the great potential as substrates for catalytic and stoichiometric reactions.

Figure 1.

Scheme 4. Transition-Metal Catalyzed Reaction Employing Thioester

Moreover, The author also focused on iminosulfides $(R^1C(NR^2)-SR^3)$ as analogues of thioesters. Iminosulfides are promising building blocks to introduce iminocarbon groups into other organic chemicals. However, in the field of transition-metal catalyzed reactions, the transformation using iminosulfides remains much less explored. To the best of my knowledge, only one reaction employing iminosulfides has been reported by Takemoto (Eq. 3).¹³ The

author expected that the catalytic reaction using iminosulfides should proceed taking into account the results from the study on the reaction using thioesters.

This thesis describes studies on the catalytic reaction of thioesters and iminosulfides with alkynes as well as those mechanistic aspects of the oxidative addition of thioesters to low-valent transition metal complexes.

In chapter 1, Pd and Pt catalyzed CO-retained addition of thioesters to alkynes was examined (Eq. 4).

$$R^{1} \xrightarrow{SR^{2}} + = R \xrightarrow{cat. Pd and Pt} R^{1} \xrightarrow{R^{2}} R \xrightarrow{(4)}$$

In chapter 2, Pd catalyzed addition of iminosulfides to alkynes was summarized (Eq. 5).

In chapter 3, one-pot cyclization of α , β -unsaturated thioesters with propargyl alcohols in the presence of Pd/Cu catalyst and bases was disclosed (Eq. 6).

Finally, the mechanism of oxidative addition of α , β -unsaturated thioesters to Pt(0) complexes is described in chapter 4 (Eq. 7).

References

- (1) (a) Choi, N.; Kabe, Y.; Ando, W. Tetrahedron Lett. 1991, 32, 4573. (b) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899. (c) Tanaka, M.; Hua, R. Pure Appl. Chem. 2002, 74, 181. (d) Nakamura, I.; Bajracharya, G. B.; Mizushima, Y.; Yamamoto, Y. Angew. Chem. Int. Ed. 2002, 41, 4328. (e) Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishi, K.; Mizushima, Y.; Dridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 15423. (f) Kamiya, I.; Kawakami, J.; Yano, S.; Nomoto, A.; Ogawa, A. Organometallics 2006, 25, 3562. (g) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2006, 45, 4473. (h) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. Org. Lett. 2007, 9, 263. (i) Nakamura, I.; Sato, T.; Terada, M.; Yamamoto, Y. Org. Lett. 2007, 9, 4081. (j) Ananikov, V. P.; Orlov, N. V.; Kabeshov, M. A.; Beletskaya, I. P.; Starikova, Z. A. Organometallics 2008, 27, 4056.
- (2) For reviews, see: (a) Kuniyasu, H.; Kurosawa, H. Chem. Eur. J. 2002, 8, 2660. (b) Kuniyasu, H.; Kambe, N. Chem. Lett. 2006, 35, 1320. (c) Kuniyasu, H.; Kambe, N. J. Synth. Org. Chem. Jpn. 2009, 67, 701. For recent examples, see: (d) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2005, 127, 9706. (e) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. Org. Lett. 2008, 10, 101. (f) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504. (g) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, N. Org. Lett. 2008, 10, 3957. (h) Toyofuku, M.; Murase, E.; Nagai, H.; Fujiwara, S.; Shin-ike, N.

T.; Kuniyasu, H.; Kambe, N. Eur. J. Org. Chem. 2009, 3141.

- (3) (a) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am. Chem. Soc. 2008, 130, 6058. (b) Yoshino,
 Y.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2009, 131, 7494, and references therein.
- (4) Suginome, M.; Ito, Y. Chem. Rev. 2000, 100, 3221, and references therein.
- (5) (a) Shirakawa, E.; Yoshida, H.; Kurahashi, T.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 1998, 120, 2975. (b) Shirakawa, E.; Yamasaki, K.; Yoshida, H.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 10221. (c) Hua, R.; Onozawa, S.; Tanaka, M. Organometallics 2000, 19, 3269. (d) Nakao, Y.; Satoh, J.; Shirakawa, E.; Hiyama, T. Angew. Chem. Int. Ed. 2006, 45, 2271. (e) Shi, Y.; Peterson, S. M.; Haberaecker III, W. W.; Blum, S. A. J. Am. Chem. Soc. 2008, 130, 2168, and references therein.
- (6) (a) Suginome, M.; Yamamoto, A.; Murakami, M. J. Am. Chem. Soc. 2003, 125, 6358. (b) Suginome, M.; Yamamoto, A.; Murakami, M. Angew. Chem. Int. Ed. 2005, 44, 2380. (c) Suginome, M.; Yamamoto, A.; Murakami, M. J. Organomet. Chem. 2005, 690, 5300. (d) Suginome, M.; Yamamoto, A.; Sasaki, T.; Murakami, M. Organometallics 2006, 25, 2911. (e) Suginome, M.; Shirakura, M.; Yamamoto, A. J. Am. Chem. Soc. 2006, 128, 14438. (f) Yamamoto, A.; Ikeda, Y.; Suginome, M. Tetrahedron Lett. 2009, 50, 3168.
- (7) (a) Nagayama, K.; Kawataka, F.; Sakamoto, M.; Shimizu, I.; Yamamoto, A. Chem. Lett. 1995, 367. (b) Nagayama, K.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1999, 72, 799. (c) Kakino, R.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2001, 74, 371. (d) Chatani, N.; Tatamidani, H.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 4849. (e) Kakino, R.; Narahashi, H.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2002, 75, 1333. (f) Gooβen, L. J.; Ghosh, K. Eur. J. Org. Chem. 2002, 3254. (g) Gooβen, L. J.; Paetzold, J. Angew. Chem. Int. Ed. 2002, 41, 1237. (h) Tatamidani, H.; Yokota, K.; Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615. (i) Tatamidani, H. Kakiuchi, F.; Chatani, N. J. Org. Chem. 2004, 69, 5615. (i) Tatamidani, H. Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597. (j) Murai, M.; Miki, K.; Ohe, K. Chem. Commun. 2009, 3466.
- (8) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition-Metal Chemistry; University Science Books: Mill Valley, CA, 1987. (b) Grabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; Wiley-Interscience: New York, 2003.
- (9) (a) Goto, T.; Onaka, M.; Mukaiyama, T. Chem. Lett. 1980, 709. (b) Osakada, K.; Yamamoto, T.; Yamamoto, A. Tetrahedron Lett. 1987, 28, 6321. (c) Wenkert, E.; Chianelli, D. J. Chem. Soc. Chem. Commun. 1991, 627. (d) Kato, T.; Kuniyasu, H.; Kajiura, T.; Minami, Y.; Ohtaka, A.; Kinomoto, M.; Terao, J.; Kurosawa, H.; Kambe, N. Chem. Commun. 2006, 868.
- (10) For a review, see: (a) Fukuyama, T.; Tokuyama, H. Aldrichimica Acta 2004, 37, 87. For selected examples, see: (b) Fukuyama, T.; Lin, S.-C.; Li, L. J. Am. Chem. Soc. 1990, 112, 7050. (c) Kuniyasu, H.; Ogawa, A.; Sonoda, N. Tetrahedron Lett. 1993, 34, 2491. (d) Kanda, Y.; Fukuyama, T. J. Am. Chem. Soc. 1993, 115, 8451. (e) Miyazaki, T.; Han-ya, Y.;

Tokuyama, H.; Fukuyama, T. Synlett **2004**, 477. (f) Kimura, M.; Seki, M. Tetrahedron Lett. **2004**, 45, 3219.

- (11) For reviews, see: (a) see reference 10a. (b) Dubbaka, S. R.; Vogel, P. Angew. Chem. Int. Ed. 2005, 44, 7674. (c) Seki, M. Synthesis 206, 18, 2975. (d) Prokopcová, H.; Kappe, C. O. Angew. Chem. Int. Ed. 2009, 48, 2276. For selected examples, see: (e) Tokuyama, H.; Yokoshima, S.; Yamashita, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 3189. (f) Zeysing, B.; Gosch, C.; Terfort, A. Org. Lett. 2000, 2, 1843. (g) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260. (h) Tokuyama, H.; Miyazaki, T.; Yokoshima, S.; Fukuyama, T. Synlett 2003, 1512. (i) Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Org. Lett. 2003, 5, 3033. (j) Yu, Y1.; Liebeskind, L. S. J. Org. Chem. 2004, 69, 3554. (k) Ikeda, Z, Hirayama, H.; Matsubara, S. Angew. Chem., Int. Ed. 2006, 45, 8200. (l) Yang, H.; Li, H.; Wittenberg, R.; Egi, M.; Huang, W.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 1132. (m) Mori, Y.; Seki, M. Adv. Synth. Catal. 2007, 349, 2027. (n) Yang, H.; Liebeskind, L. S. Org. Lett. 2007, 9, 2993. (o) Ooguri, A.; Ikeda, Z.; Matsubara, S. Chem. Commun. 2007, 4761. (p) Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 15734.
- (12) (a) Shaver, A.; Uhm, H. L.; Singleton, E.; Liles, D. C. *Inorg. Chem.* 1989, 28, 847. (b) Royer, A. M.; Rauchfuss, T. B.; Gray, D. L. *Organometallics* 2009, 28, 3618.
- (13) Takeda, H.; Ishida, T.; Takemoto, Y. Chem. Lett. 2009, 38, 772.

Chapter 1

Transition-Metal Catalyzed Regioselective Acylthiolation of Alkynes Using Thioesters

1-1. Introduction

Pt(PPh₃)₄-catalyzed intermolecular regio- and stereoselective decarbonylative arylthiolation of alkynes HC=CR (1) by R¹C(O)SR² (2, R¹ = Aryl) (Scheme 1, left)¹ to produce vinylsulfides (3) has already been reported by our group. However, straightforward intermolecular addition of C(O)-S bond of 2 to 1 producing enones has not yet been realized (Scheme 1, right).² The author expected that catalytic addition of C(O)-S bond to alkyne should proceed by the modulation of transition-metals, ligands and substituents in thioesters. Disclosed herein are the intermolecular regioselective aroylthiolation (R¹ = Aryl) and trifluoroacetylthiolation (R¹ = CF₃) of 1 to afford enone derivatives (4 and 5). The compounds containing polyfluorocarbon substituents have attracted much attention lately due to medical, material and agrichemical application.³

Scheme 1. Decarbonylative vs. CO-Retained Carbothiolation of Alkynes (1) Using Thioesters (2).

1-2. Pd/dppe-Catalyzed Aroylthiolation of Alkynes Using Ar¹C(O)SAr²

To test the idea, the attempted reaction of 1-octyne (1a; $R = n-C_6H_{13}$, 1.2 mmol) with $Ar^{1}C(O)SAr^{2}$ (2a; $Ar^{1} = p$ -tolyl, $Ar^{2} = p$ -MeOC₆H₄, 1.0 mmol) in the presence of Pd(PPh₃)₄ gave aroylthiolation product, (0.05)mmol) under toluene reflux an $(Ar^{1}C(O))(H)C=C(n-C_{6}H_{13})(SAr^{2})$ (4a) in 10% yield (*cis:trans* = 39:61) together with 50% of an $\operatorname{Ar}^{1}\operatorname{SAr}^{2}(\mathbf{6a})^{4}$ and 20% of a hydrothiolation product $\operatorname{H}_{2}\operatorname{C}=\operatorname{C}(n-\operatorname{C}_{6}\operatorname{H}_{13})(\operatorname{SAr}^{2})(\mathbf{7a})^{5}$ (run 1, Table 1). Next, the effects of various ligands were examined with Pd(dba)₂ as a palladium(0) source. No reaction occurred without an additional ligand (run 2, Table 1). The reactions using other monodentate ligands such as P(p-tolyl)₃, P(o-tolyl)₃, P(2-furyl)₃, PCy₃, P(n-Bu)₃ and PMe₂Ph also were not satisfactory: **6a** and **7a** were generated as major products (runs 3-8,

:	<u></u>						
R =	= <i>n</i> -C ₆ H ₁₃						
	1a	Pd(dba) ₂	R	<u>م_1</u>	0.4.2		R
	+ -	liyanu >		+ Ar	+ Ar ¹	$SAr^2 + =$	
Ar	SAr ²	solvent reflux	Ar ¹ SA 3a	Ar ²	0 R 4a 6	5a	SAr ² 7a
Ar' =	<i>p</i> -tolyl						
Ar ² =	p-MeOC ₆ H₄						
	2a						
run	ligand	solvent	time (h)	3a (%)	4a (%) (cis:trans)	6a (%)	7a (%)
1 `	PPh3 ^b	toluene	12	n.d.	10 (39:61)	50	20
2	none	toluene	12	n.d.	n.d.	n.d.	n.d.
3	$P(p-tolyl)_3$	toluene	12	n.d.	9 (35:65)	34	22
4	$P(o-tolyl)_3$	toluene	12	n.d.	n.d.	2	n.d.
5	$P(2-furyl)_3$	toluene	12	n.d.	n.d.	8	5
6	PCy ₃	toluene	12	n.d.	1 (1:>99)	22	38
7	$P(n-Bu)_3$	toluene	12	n.d.	6 (50:50)	30	22
8	PMe ₂ Ph	toluene	12	n.d.	8 (50:50)	16	16
9	dppm	toluene	12	n.d.	6 (67:33)	17	6
10	dppe	toluene	12	n.d.	53 (33:67)	12	14
11°	dppe	benzene	20	n.d.	78 ^d (39:61)	n.d.	16
12	dppe	benzene	1	n.d.	14 (>99:1)	n.d.	n.d.
13	dppp	toluene	12	n.d.	16(39:61)	30	25
14	dppb	toluene	12	n.d.	15 (39:61)	36	35
15°	Pt(PPh ₃) ₄	toluene	13	75 ^f	8 (>99:1)	n.d.	n.d.

Table 1. The Effects of Ligands under the Pd-Catalyzed Reaction of 1a with 2a^a

^a Unless otherwise noted, the solution of **1a** (1.0 mmol), **2a** (1.2 mmol), Pd(dba)₂ (0.05 mmol), and ligand (0.12 mmol for Entries 3-8, 0.06 mmol for Entries 9-16) was stirred under toluene (0.5 mL) reflux. Yields were determined by ¹H NMR spectroscopy. ^b Pd(PPh₃)₄ (0.05 mmol) as a catalyst. ^c The formation of Ar¹C(O)C≡CR was detected in 10% yield. ^d Isolated yield. ^e Pt(PPh₃)₄ (0.05 mmol) as a catalyst. dba = dibenzylideneacetone, tolyl = methylphenyl, Cy = cyclohexyl, dppm = 1,1-bis(diphenylphosphino)methane, dppe = 1,2-bis(diphenylphosphino)ethane, dppp = 1,3-bis-(diphenylphosphino)-propane, dppb = 1,4-bis(diphenylphosphino)butane.

Table 1). On the other hand, the reaction with dppe afforded **4a** in 53% (*cis:trans* = 33/67) yield with 12% of **6a** and 14% of **7a** (run 10, Table 1). Gratifyingly, when the reaction was carried out under benzene reflux, the formation of **6a** was suppressed and **4a** was obtained in 78% yield (*cis:trans* = 39:61) with 10% of $\operatorname{Ar}^{1}C(O)C\equiv CR$ after 20 h (run 11, Table 1). When conducted for a short period of time (1 h), the reaction selectively provided *cis*-**4a** (14%), which indicated that *cis*-addition kinetically took place (run 12, Table 1).^{6,7} The employment of other bidentate ligands such as dppm, dppp and dppb significantly decreased the yield of **4a** (runs 9,13,14, Table 1). It must be noted that **3a**, the product of Pt(PPh_3)_4-catalyzed decarbonylative arylthiolation (run 15, Table 1), was not detected under these Pd-catalyses (runs 1-14, Table 1). No formation of **4a** was confirmed with Pt[(CH₂=CHSiMe₂)₂O], Ni(cod)₂ (cod = cyclooctadiene) or RhCl(cod)₂ in the presence of dppe.

Prompted by these results, the effects of bidentate ligand on the decarbonylation of 2a were

Ar ² SAr ³	Pd(dba) ₂ (5 mol%) ligand (6 mol%)	· ² · · 3	(1)
B_{O}^{H} $Ar^{2} = p \text{-tolyl}$ $Ar^{3} = p \text{-MeOC}_{6}H_{4}$ 2a	toluene (0.5 mL) reflux, 12 h dpp dpp dpp	6a e 4% p 12% b 36%	
p-MeC ₆ H₄—I	Pd(dba) ₂ (5 mol%) dppe (6 mol%)	•	
+ Na—SC ₆ H ₄ -p-OMe	toluene (0.5 mL) reflux, 12 h	6a 83%	(2)

tested (Eq. 1). While **6a** was produced in 12% and 36% yield with dppp and dppb ligands, respectively, decarbonylation hardly took place with dppe as a ligand (4%). On the other hand, the reaction between *p*-MeC₆H₄I and NaSC₆H₄-*p*-OMe catalyzed by Pd(dba)₂ (5 mol%)/dppe (6 mol%) produced **6a** in 83% yield (Eq. 2). These facts indicated that dppe suppresses the decarbonylation from thiocarbonyl complex.⁸

The results of the Pd/dppe-catalyzed aroylthiolation of alkyne (1) by $Ar^{1}C(O)SAr^{2}$ (2) are summarized in Table 2. The reaction with **2a** ($Ar^{2} = p$ -MeOC₆H₄) afforded a better yield of desired **4** (78% of **4a**, run 1, Table 2) compared to the reactions with **2b** ($Ar^{2} = Ph$, 53% of **4b**, run 2, Table 2) and **2c** ($Ar^{2} = p$ -FC₆H₄, 46% of **4c**, run 3, Table 2). In sharp contrast to the

		Ar ¹ SA	۹r ²	cat. Pd(dba) ₂ /dppe Ar ¹	\checkmark	sAr ²
	K	. O	_	benzene, re	flux, 20 h	0 I	R
	1	2				4	
run	1	R	2	Ar ¹	Ar ²	4	(%) (cis:trans) ^b
1	1a	<i>n</i> -C ₆ H ₁₃	2a	<i>p</i> -tolyl	p-MeOC ₆ H ₄	4 a	78 (39:61)
2	1a		2b	<i>p</i> -tolyl	Ph	4b	53 (28:72)
3	1a		2c	<i>p</i> -tolyl	p-FC ₆ H ₄	4 c	46 (28:72)
4	1a		2d	<i>p</i> -tolyl	$p-NO_2C_6H_4$	4d	n.d.
5	1a		2e	Ph	Ph	4e	66 (26:74)
6	1a		2f	p-FC ₆ H ₄	<i>p</i> -tolyl	4f	57 (26:74)
7	1a		2g	3-pyridyl	<i>p</i> -tolyl	4g	74 (28:72)
8	1 a		2 h	2-furyl	<i>p</i> -tolyl	4h	55 (25:75)
9	1a		2i	<i>p</i> -tolyl	CH ₂ Ph	4 i	10 [°] (26:74)
10	1 a		2j	t-Bu	p-MeOC ₆ H ₄	4j	n.d.
11	1b	$(CH_2)_4Cl$	2a		-	4k	70 (33:67)
12	1c	(CH ₂) ₃ CN	2a			41	50 (28:72)
13	1d	(CH ₂) ₃ CO ₂ Me	2a			4m	80 (25:75)
14	1e	$\dot{C}H_2(c-C_5H_9)$	2a			4n	66 (27:73)
15	1 f	$(CH_2)_2CHMe_2$	2a			4 0	65 (47:53)
16	1g	Ph 2	2a			4p	40 (75:25)
17	1a		2k	PhC	C(O)SePh	4 q	3° (>99:1)

Table 2. Pd/dppe-Catalyzed Aroylthiolation of 1 Using 2^a

^a1 (1.2 mmol), **2** (1.0 mmol), Pd(dba)₂ (0.05 mol) and dppe (0.06 mol) under benzene (0.5 mL) reflux for 20 h. ^b Isolated yield. ^c NMR yield.

Pt-catalyzed decarbonylative arylthiolation, no reaction took place when a thioester with $Ar^2 = p-NO_2C_6H_4$ (2d) was employed (run 4, Table 2). Phenyl and $p-FC_6H_4$ groups at Ar^1 somewhat lowered the reactivity (runs 5 and 6, Table 2). Thioesters 2g ($Ar^1 = 3$ -pyridyl) and 2h ($Ar^1 = 2$ -furyl) reacted with 1a to furnish the corresponding adducts 4g and 4h in 74% and 55% yields, respectively (runs 7 and 8, Table 2). On the other hand, a thioester with a benzyl group on sulfur (2i) gave a low yield of 4i (10%, run 9, Table 2), and the reaction with *t*-BuC(O)SC₆H₄-*p*-OMe (2j) did not produce 4j (run 10, Table 2). Terminal alkynes having chlorine (1b), a cyano group (1c), a methoxy carbonyl group (1d), a cyclopentyl group (1e), (CH₂)₂CHMe₂ (1f) and a phenyl group (1g) all underwent an aroylthiolation by 2a to afford 4k-p in moderate to good yields (runs 11-16, Table 2). The reactions of 1a with a selenoester (2k; PhC(O)SePh) took place to provide aroylselenation product 4q, albeit in a very low yield (3%, run 17, Table 2).

1-3. Pt-Catalyzed Trifluoroacetylthiolation of Alkynes Using CF₃C(O)SR

Next, the reactions with CX₃-substituted thioesters (8; CX₃C(O)SR) were examined. The treatment of 1-octyne (1a, 0.75 mmol) with $CF_3C(O)SC_6H_4$ -*p*-Me (8a; X = F, 0.5 mmol) in the presence of Pd/dppe under benzene and xylene reflux both gave trifluoroacetylthiolation product 5a in low yields: (CH₃)(*p*-MeC₆H₄S)C=C(H)(*n*-C₅H₁₁) (10a) derived from 7a was

Table 3. Reaction of 1a with 8^a

X ₃ C O R	+		+ r	SAr
_		•		••

			5		9	10a	
run	8	Catalyst	Solvent	time (h)	5 (%) (<i>cis:trans</i>)	9 (%)	10a (%)
1	8a (X = F)	Pd(dba) ₂ /dppe ^b	benzene	20	8 (36:64)	n.d.	16
2	8a(X = F)	$Pd(dba)_2/dppe^b$	xylene	10	15 (25:75)	n.d.	31
3	8a (X = F)	Pt(PPh ₃) ₄	xylene	10	78° (18:82)	n.d.	n.d.
4	8a (X = F)	Pt(PPh ₃) ₄	benzene	10	8 (18:82)	n.d.	n.d.
5	8a (X = F)	Pt(PPh ₃) ₄	toluene	10	39 (21:79)	n.d.	n.d.
6	8a (X = F)	Pt(PPh ₃) ₄	xylene	0.5	15 (59:41)	n.d.	n.d.
7	8a (X = F)	$Pd(PPh_3)_4$	xylene	10	$7(28:72)^{h}$	n.d.	52
8	8a $(X = F)$	$Ni(cod)_2/PPh_3^d$	xylene	10	n.d.	n.d.	n.d.
9	$\mathbf{8b} (\mathbf{X} = \mathbf{H})$	Pt(PPh ₃) ₄	xylene	10	n.d.	n.d.	n.d. ^e
10	8c (X = Cl)	Pt(PPh ₃) ₄	xylene	10	n.d.	n.d.	n.d.

^a Unless otherwise noted, the solution of **1a** (0.75 mmol), **8** (0.5 mmol), catalyst (0.025 mol) and solvent (0.5 mL) was stirred under reflux for 10 h. Yields were determined by ¹H NMR spectroscopy. ^b Pd(dba)₂ (0.025 mmol) and dppe (0.03 mmol). ^c Isolated yield. ^d Ni(cod)₂ (0.025 mmol) and PPh₃ (0.1 mmol). ^e **7a** was obtained in 8% yield. cod = 1,5-cyclooctadiene.

generated as a major product (runs 1 and 2, Table 3). Intriguingly, the reaction using Pt(PPh₃)₄as a catalyst under xylene reflux conditions remarkably improved the yield of **5a** (78%, *cis:trans* = 18:82),^{9,10} compared to benzene or toluene reflux conditions (runs 3-5, Table 3). Intercepting the reaction at the early stage (*cis:trans* = 59:41 after 30 min) also indicates the involvement of *cis*-addition (run 6, Table 3). Inferior catalyses were shown by Pd(PPh₃)₄ (run 7, Table 3) and Ni(cod)₂/4PPh₃ (run 8, Table 3). On the other hand, the reaction employing CH₃C(O)SC₆H₄-*p*-Me (**8b**; X = H) and CCl₃C(O)SC₆H₄-*p*-Me (**8c**; X = Cl) in the presence of Pt(PPh₃)₄ hardly produced the corresponding **5b** and **5c** (runs 9 and 10, Table 3). Of noted, contrary to the case of Pt-catalyzed decarbonylative carbothiolation, the products **9** of decarbonylative trifluoromethylthiolation were not detected in all cases even with the same Pt(0) catalyst.

The results of Pt-catalyzed trifluoroacetylthiolation of alkyne (1) by CF₃C(O)SR' are shown in Table 4. Some substituents in aryl-S groups (8d; R' = p-MeOC₆H₄, 8e; R' = Ph, 8f; R' = p-ClC₆H₄) hardly interfered with the addition reactions (runs 2-4, Table 4). Unlike the case of the reaction with 2, thioesters possessing an sp³-carbon substituent such as benzyl (8g) and n-decyl groups (8h) on sulfur also reacted with 1a to produce 5g and 5h in 51% and 41% yields, respectively (runs 5 and 6, Table 4). Addition of 8e to alkynes 1b-1e proceeded to afford the product 5i-l in good yields (runs 7-10, Table 4).

— D	F ₃ C	SR'	cat. Pt(PPh ₃) ₄	F	F ₃ C SR'
—— R	Ŧ	0 0	xylene, reflux, 10 h	-	∥ ś O R
1		7			8
 run	1	8	R'	5	(%) (cis:trans) ^b
 1	1a	8 a	<i>p</i> -tolyl	5a	78 (18:82)
2	1a	8d	<i>p</i> -MeOC ₆ H ₄	5d	64 (11:89)
3	1a	8e	Ph	5e	82 (24:76)
4	1a	8 f	p-ClC ₆ H ₄	5f	69 (34:66)
5	1a	8g	CH ₂ Ph	5g	51 (30:70)
6	1a	8h	$n-C_{10}H_{21}$	5h	41 (18:82)
7^c	1b	8e		5 i	83 (29:71)
8 ^c	1c	8e		5j	79 (29:71)
9 ^c	1d	8e		5k	87 (26:74)
10	1e	8e		51	70 (36:64)

Table 4. Pt-Catalyzed Trifluoroacetylthiolation of 1 Using 8^a

^a Unless otherwise noted, **1** (0.75 mmol), **8** (0.5 mmol), $Pt(PPh_3)_4$ (0.025 mmol), and xylene (0.5 mL) under reflux for 10 h. ^b Isolated yield. ^c xylene (2.0 mL).

1-4. Reaction Mechanisms

A plausible reaction mechanism of the present regioselective CO-retained addition of thioesters (2, 8; $R^1C(O)SR^2$ (R^1 = Aryl or CF₃)) to alkynes (1; HC=CR) was depicted in

Scheme 2. The oxidative addition of **2** or **8** to $M(0)L_n (ML_n = Pd(dppe) \text{ or } Pt(PPh_3)_n)$ complex triggers the reaction to afford $ML_n[C(O)R^1](SR^2)$ (11).¹¹ Subsequent regio- and stereoselective insertion of alkyne **1** into the S-M bond of **11** generates $ML_n[C(O)R^1][(cis)-CH=C(SR^2)(R)]$ (12),¹² which can react with another **1** to produce **7** and $Ar^1C(O)C=CR$ as by-products. Finally, the C-C bond- forming reductive elimination of *cis*-4, **5** from **12** with regeneration of $M(0)L_n$ completes the catalytic cycle. *cis*-to-*trans* isomerisation of the product can be explained as follows: the oxidative addition of a vinyl-C-S bond of *cis*-isomer to a $M(0)L_n$ complex to produce $ML_n[(cis)-C(R)=C(H)\{C(O)R^1\}](SR^2)$ (*cis*-13),¹³ *cis*-to-*trans* isomerization of **13**,¹⁴ and the reductive elimination of *trans*-4, -5 from *trans*-13.

Scheme 2. A Plausible Mechanism for the Transition Metal-Catalyzed Acylthiolation of Alkynes (1) Using Thioesters (2 and 8).

1-5. Conclusions

The present study substantiated that the decarbonylative arylthiolation of alkynes by thioesters is converted into CO-retained, atom-economical, regioselective carbothiolation. The author found that two simple factors; changing the catalysts from $Pt(PPh_3)_4$ to $Pd(dba)_2/dppe$ or by employing $CF_3C(O)$ as a carbon functionality of thioesters even under $Pt(PPh_3)_4$ -catalyzed conditions, are keys to achieve the acylthiolation.

1-6. Experimental Section

General Comments: ¹H and ¹³C NMR spectra in CDCl₃ and toluene- d_8 solution were recorded with JEOL JNM-Alice 400 (400 MHz) spectrometer. The chemical shifts in the ¹H NMR spectra were recorded relative to Me₄Si as an internal standard, and the chemical shifts in the ¹³C NMR spectra were recorded relative to CHCl₃ (δ 77.0). The IR spectra were measured by a Perkin-Elmer Model 1600 spectrometer. Mass spectra (EI), high-resolution mass spectra (HRMS) and elemental analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Melting points were measured by a

MPA100 Optimelt Automated Melting Point System. Preparative TLC was carried out using Wakogel B-5F silica gel. All reactions were carried out under a N2 atmosphere. Unless otherwise noted, commercially available reagents were used without purification. All solvents were distilled before use. Thioesters 2a-j, 8b were prepared by the reactions of the corresponding acid chlorides with thiols in the presence of pyridine in THF solution, and selenoester 2k was prepared by the reaction of the benzovl chloride with PhSeMgBr in THF solution. Thioesters 8a, c-h were synthesized according to the literature (J. Am. Chem. Soc. 2000, 122, 11260.).

The Spectrum Data or Registry Number (RN) of Thio- and Selenoesters (2 and 8):

p-CH₃C₆H₄C(O)SC₆H₄O-p-CH₃ (2a): RN: 53271-44-6. p-CH₃C₆H₄C(O)SC₆H₅ (2b): RN: 21122-34-2. p-CH₃C₆H₄C(O)SC₆H₄-p-NO₂ (2d): RN: 77750-05-1. C₆H₅C(O)SC₆H₅ (2e): RN: 884-09-3. p-FC₆H₄C(O)SC₆H₄-p-CH₃ (2f): RN: 90172-74-0. 3-C₆H₄NC(O)-SC₆H₄-p-CH₃ (2g): RN: 52064-00-3. 2-C₅H₃OC(O)SC₆H₄-p-CH₃ (2h): RN: 17357-39-0. p-CH₃C₆H₄C(O)SCH₂C₆H₅ (2i): RN: 17577-21-8. t-C₄H₉C(O)SC₆H₄-p-OCH₃ (2j): RN: 132381-65-8. C₆H₅C(O)SeC₆H₅ (2k): RN: 38447-68-6. F₃CC(O)SC₆H₄-p-CH₃ (8a): RN: 75072-07-0. H₃CC(O)SC₆H₄-p-CH₃ (8b): RN: 10436-83-6. Cl₃CC(O)SC₆H₄-p-CH₃ (8c): RN: 56956-67-3. F₃CC(O)SC₆H₅ (8e): RN: 2378-04-3. F₃CC(O)SC₆H₄-p-Cl (8f): RN: 181820-16-6. F₃CC(O)SCH₂C₆H₅ (8g): RN: 714-05-6.

 $p-CH_3C_6H_4C(O)SC_6H_4-p-F$ (2c): white solid; mp 98-100 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3 H), 7.10 (dd, J = 8.6, 2.9 Hz, 2 H), 7.23 (d, J = 8.3 Hz, 2 H), 7.44 (dd, J = 8.6, 5.1 Hz, 2 H), 7.89 (d, J = 8.3 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 116.3 (d, J = 22

Hz), 122.7 (d, J = 3.7 Hz), 128.4 (d, J = 189 Hz), 133.7, 137.0 (d, J = 8.7 Hz), 144.6, 162.2, 164.7, 189.4; IR (NaCl) 3066, 3044, 2926, 1695, 1667, 1604, 1590, 1574, 1491, 1434, 1409, 1390, 1318, 1293, 1228, 1218, 1206, 1179, 1157, 1124, 1116, 1096, 1013, 903, 850, 826, 811, 789, 718, 646, 624, 544, 499, 497, 430 cm⁻¹; mass spectrum (EI) m/z 246 (M⁺, 1.1); HRMS calcd for C₁₄H₁₁FOS: 246.0515. Found: 246.0507.

F₃C

 $F_3CC(O)SC_6H_4$ -p-OCH₃ (8d): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 3.85 (s, 3 H), 7.00 (d, J = 6.8 Hz, 2 H), 7.36 (d, J = 6.8 Hz, 2 H): ¹³C NMR (100 MHz, CDCl₃) δ 55.4, 115.5, 115.9 (c, $J_{C-F} = 290$ Hz), 132.3, 136.1, 161.7, 184.2 (c, J_{C-F} = 39.4 Hz); IR (NaCl) 2945, 2842, 1890, 1794, 1716, 1594, 1575, 1496, 1464, 1442, 1296, 1277, 1257, 1206, 1163, 1031, 937, 828, 742, 604 cm⁻¹; mass

 \sim **F₃CC(O)S-***n***-C₁₀H₂₁ (8h): colorless oil; ¹H NMR (400 MHz,**

spectrum (EI) m/z 236 (M⁺, 59); HRMS calcd for C₉H₇F₃O₂S: 236.0119. Found: 236.0097.

CDCl₃) δ 0.88 (t, *J* = 6.1 Hz, 3 H), 1.26-1.39 (m, 14 H), 1.65 (tt, *J* = 7.6, 7.3 Hz, 2 H), 3.05 (t, *J* = 7.3 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 22.7, 28.6, 28.7, 29.0, 29.3, 29.4, 29.5, 31.9, 115.6 (c, *J*_{C-F} = 289 Hz), 184.5 (c, *J*_{C-F} = 39.4 Hz); IR (NaCl) 2927, 2856, 2362, 1709, 1468, 1283, 1205, 1165, 956, 744 cm⁻¹; mass spectrum (EI) m/z 270 (M⁺, 0.28); HRMS calcd for C₁₂H₂₁F₃OS: 270.1265. Found: 270.1258.

Reaction of p-CH₃C₆H₄C(O)SC₆H₄-p-OCH₃ (2a) with 1-Octyne (1a) in the Presence of Pd(dba)₂/dppe (run 11 of Table 1, run 1 of Table 2): General Procedure of Palladium-Catalyzed Aroylthiolation of Alkynes Using Thioesters: Into a two-necked 3 mL reaction glass were added Pd(dba)₂ (28.8 mg, 0.05 mmol), dppe (23.9 mg, 0.06 mmol), 1a (132 mg, 1.2 mmol), 2a (258 mg, 1.0 mmol) and benzene (0.5 mL) under a N₂ atmosphere. After the solution was refluxed for 20 h, the resultant mixture was filtered through Celite, the solvent was evaporated, and the resultant crude product was dried *in vacuo*. *cis*-4a and *trans*-4a were obtained in 30% (112 mg) and 48% (175 mg) yields by preparative TLC using hexane and ethyl acetate (40/1) as an eluent.

trans-p-CH₃C₆H₄C(O)C(H)=C(n-C₆H₁₃)SC₆H₄-p-OCH₃

(*trnas*-4a): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, J = 7.1 Hz, 3 H), 1.30-1.34 (m, 4 H), 1.40-1.46 (m, 2 H), 1.68-1.75 (m, 2 H), 2.34 (s, 3 H), 2.89 (t, J = 7.8 Hz, 2 H), 3.87 (s, 3 H), 6.25 (s, 1 H), 6.98 (d, J = 8.9 Hz, 2 H), 7.14 (d, J = 8.1

Hz, 2 H), 7.47 (d, J = 8.9 Hz, 2 H), 7.55 (d, J = 8.1 Hz, 2 H); N.O.E. experiment: Irradiation of the vinyl singlet at δ 6.25 resulted in a 17.0% enhancement of the signal at δ 7.55 (aryl doublet); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 21.4, 22.6, 29.3, 29.9, 31.6, 34.1, 55.4 114.5, 115.3, 120.6, 128.0, 129.0, 137.1, 137.2, 142.5, 160.9, 168.1, 187.1; IR (NaCl) 2955, 2927, 2856, 1645, 1606, 1592, 1568, 1556, 1493, 1462, 1440, 1361, 1290, 1250, 1210, 1181, 1051, 1032, 830, 818, 732 cm⁻¹; mass spectrum (EI) m/e 368 (M⁺, 15); Anal. Calcd for C₂₃H₂₈O₂S: C, 74.96; H, 7.66. Found: C, 74.74; H, 7.47.

cis-p-CH₃C₆H₄C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-OCH₃ (*cis*-4a): yellow solid; mp 42.0-44.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.82 (t, *J* = 7.1 Hz, 3 H), 1.08-1.10 (m, 4 H), 1.14-1.25 (m, 2 H), 1.38-1.44 (m, 2 H), 2.23 (t, *J* = 7.6 Hz, 2 H), 2.40 (s, 3 H), 3.83 (s, 3 H), 6.90 (d, *J* = 8.3 Hz, 2 H), 7.01 (s, 1 H), 7.25 (d,

J = 8.3 Hz, 2 H), 7.48 (d, J = 8.3 Hz, 2 H), 7.88 (d, J = 8.3 Hz, 2 H); N.O.E. experiment: Irradiation of the vinyl singlet at δ 7.01 resulted in a 8.9 % enhancement of the signal at δ 2.23 (allyl triplet) and 17.5 % enhancement of the signal at δ 7.88 (aryl doublet); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 21.5, 22.4, 28.6, 29.9, 31.3, 37.0, 55.3, 114.5, 115.3, 122.1, 128.1, 129.1, 136.3, 137.2, 142.6, 160.6, 166.4, 188.2; IR (KBr) 2928, 2857, 1632, 1607, 1592, 1570, 1534, 1493, 1463, 1298, 1246, 1180, 1096, 1084, 911, 863, 831, 806, 733 cm⁻¹; mass spectrum (EI) m/e 368 (M⁺, 25); HRMS calcd for C₂₃H₂₈O₂S: 368.1810. Found: 368.1817. Other aroylthiolation products 4b, 4c, 4e-i and 4k-4q were synthesized by similar procedures.

*trans-p-*CH₃C₆H₄C(O)C(H)=C(n-C₆H₁₃)SC₆H₅ (*trans-4b*): yellow solid; 71.9-73.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, J = 7.0 Hz, 3 H), 1.32-1.34 (m, 4 H), 1.40-1.46 (m, 2 H), 1.68-1.74 (m, 2 H), 2.34 (s, 3 H), 2.91 (t, J = 7.8 Hz, 2 H), 6.28 (s, 1 H), 7.13 (d, J = 8.4 Hz, 2 H), 7.45-7.47 (m, 3 H), 7.53 (d, J = 8.4 Hz, 2 H), 7.56-7.58 (m,

2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 21.5, 22.6, 29.3, 29.8, 31.6, 34.2, 115.2, 128.0, 129.0, 129.7, 129.8, 130.2, 135.6, 137.0, 142.6, 166.9, 187.1; IR (KBr) 2944, 2916, 2855, 1646, 1604, 1578, 1468, 1436, 1352, 1255, 1230, 1211, 1180, 1055, 821, 756, 734, 709, 692 cm⁻¹; mass spectrum (EI) m/e 338 (M⁺, 16); HRMS calcd for C₂₂H₂₆OS: 338.1704. Found: 338.1711.

cis-p-CH₃C₆H₄C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₅ (*cis*-4b): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (t, J = 7.2 Hz, 3 H), 1.05-1.20 (m, 6 H), 1.38-1.43 (m, 2 H), 2.25 (t, J = 7.8 Hz, 2 H), 2.41 (s, 3H), 7.03 (s, 1 H), 7.26 (d, J = 8.0 Hz, 2 H), 7.36-7.42

(m, 3 H), 7.57-7.59 (m, 2 H), 7.89 (d, J = 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 21.6, 22.4, 28.6, 29. 9, 31.2, 37.2, 115.8, 128.1, 129.0, 129.2, 129.3, 131.5, 135.8, 136.2, 142.7, 165.1, 188.3; IR (NaCl) 2955, 2927, 2857, 1634, 1607, 1569, 1538, 1475, 1439, 1236, 1208, 1181, 1084, 1018, 863, 806, 788, 752, 704, 693 cm⁻¹; mass spectrum (EI) m/e 338 (M⁺, 17); HRMS calcd for C₂₂H₂₆OS: 338.1704. Found: 338.1700.

*trans-p-*CH₃C₆H₄C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-F (*trans-*4c): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, *J* = 7.1 Hz, 3 H), 1.30-1.34 (m, 4 H), 1.42-1.45 (m, 2 H), 1.67-1.73 (m, 2 H), 2.35 (s, 3 H), 2.89 (t, *J* = 7.8 Hz, 2 H), 6.22 (s, 1 H), 7.15-7.20 (m, 4 H),

7.52-7.58 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 21.5, 22.6, 29.3, 29.8, 31.6, 34.1, 115.1, 117.1 (d, J_{C-F} = 22.0 Hz), 125.5 (d, J_{C-F} = 2.4 Hz), 128.0, 129.1, 136.9, 137.8 (d, J_{C-F} = 8.3 Hz), 142.8, 163.7 (d, J_{C-F} = 250 Hz), 166.8, 187.2; IR (NaCl) 2956, 2928, 2856, 1652, 1607, 1590, 1568, 1558, 1490, 1466, 1362, 1233, 1181, 1156, 1051, 1015, 835, 817, 731cm⁻¹; mass spectrum (EI) m/e 356 (M⁺, 8.1); HRMS calcd for C₂₂H₂₅FOS: 356.1610. Found: 356.1606.

cis-p-CH₃C₆H₄C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-F (*cis*-4c): yellow solid; mp 57-60 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.83 (t, *J* = 7.2 Hz, 3 H), 1.09-1.10 (m, 4 H), 1.17-1.22 (m, 2 H), 1.38-1.44 (m, 2 H), 2.22 (t, *J* = 7.8 Hz, 2 H), 2.42 (s, 3 H), 7.04 (s, 1 H), 7.07-7.11 (m, 2 H), 7.27 (d, *J* = 7.6 Hz, 2 H), 7.54-7.58

(m, 2 H), 7.89 (d, J = 7.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 21.6, 22.4, 28.6, 29.8, 31.3, 37.1, 115.9, 116.2 (d, $J_{C-F} = 22.0$ Hz), 126.9 (d, $J_{C-F} = 3.7$ Hz), 128.1, 129.2, 136.0, 137.7

(d, $J_{C-F} = 8.3$ Hz), 142.8, 163.5 (d, $J_{C-F} = 249$ Hz), 164.7, 188.4; IR (KBr) 2952, 2925, 2856, 1628, 1606, 1534, 1484, 1236, 1224, 1183, 1082, 842, 808 cm⁻¹; mass spectrum (EI) m/e 356 (M⁺, 9.3); HRMS calcd for C₂₂H₂₅FOS: 356.1610. Found: 356.1617.

trans-C₆H₅C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₅ (*trans*-4e): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (t, J = 7.0 Hz, 3 H), 1.31-1.35 (m, 4 H), 1.41-1.47 (m, 2 H), 1.69-1.77 (m, 2 H), 2.92 (t, J = 7.8 Hz, 2 H), 6.29 (s, 1 H), 7.31-7.35 (m, 2 H), 7.41-7.43 (m, 1 H), 7.45-7.49 (m, 3

H), 7.56-7.59 (m, 2 H), 7.61-7.63 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.6, 29.3, 29.9, 31.6, 34.3, 114.9, 127.9, 128.3, 129.8, 129.9, 130.1, 132.0, 135.7, 139.6, 167.8, 187.3; IR (NaCl) 3060, 2955, 2927, 2856, 1651, 1597, 1557, 1466, 1440, 1362, 1229, 1179, 1047, 1024, 778, 751, 692, 643 cm⁻¹; mass spectrum (EI) m/e 324 (M⁺, 25); Anal. Calcd for C₂₁H₂₄OS: C, 77.73; H, 7.46. Found: C, 77.59; H, 7.29.

cis-C₆H₅C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₅ (*cis*-4e): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (t, J = 7.2 Hz, 3 H), 1.06-1.20 (m, 6 H), 1.41-1.46 (m, 2 H), 2.26 (t, J = 7.8 Hz, 2 H), 7.05 (s, 1 H), 7.39-7.60 (m, 8 H), 7.99 (d, J = 8.1 Hz, 2 H); ¹³C NMR (100 MHz,

CDCl₃) δ 13.9, 22.3, 28.6, 29.9, 31.2, 37.3, 115.7, 128.0, 128.5, 129.0, 129.3, 131.3, 132.0, 135.7, 138.7, 165.9, 188.6; IR (NaCl) 3058, 2955, 2929, 2857, 1634, 1598, 1578, 1548, 1538, 1532, 1476, 1446, 1440, 1355, 1303, 1233, 1178, 1105, 1070, 1025, 1001, 859, 828, 774, 752, 704, 676 cm⁻¹; mass spectrum (EI) m/e 324 (M⁺, 17); HRMS calcd for C₂₁H₂₄OS: 324.1548. Found. Found: 324.1540.

trans-p-FC₆H₄C(O)C(H)=C(n-C₆H₁₃)SC₆H₄-p-CH₃ (*trans*-4f): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (t, J = 7.4 Hz, 3 H), 1.32-1.46 (m, 6 H), 1.68-1.75 (m, 2 H), 2.42 (s, 3 H), 2.89 (t, J = 7.8 Hz, 2 H), 6.23 (s, 1 H), 6.98-7.02 (m, 2 H), 7.28 (d, J = 7.8 Hz, 2 H), 7.44 (d, J = 7.8 Hz, 2 H), 7.63-7.66 (m, 2 H); ¹³C NMR (100

MHz, CDCl₃) δ 14.1, 21.4, 22.6, 29.3, 29.9, 31.6, 34.2, 114.2, 115.3 (d, $J_{C-F} = 21.5$ Hz), 126.3, 130.3 (d, $J_{C-F} = 9.2$ Hz), 130.6, 135.5, 135.9 (d, $J_{C-F} = 3.2$ Hz), 140.3, 165.0 (d, $J_{C-F} = 252$ Hz), 168.7, 185.8; IR (NaCl): 2956, 2927, 2857, 1651, 1598, 1557, 1505, 1493, 1456, 1433, 1408, 1363, 1229, 1155, 1050, 1018, 829, 812 cm⁻¹; mass spectrum (EI) m/e 356 (M⁺, 10); Anal. Calcd for C₂₂H₂₅FOS: C, 74.12; H, 7.07. Found: C, 74.13; H, 7.12.

cis-p-FC₆H₄C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-CH₃ (*cis*-4f): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (t, J = 7.2 Hz, 3 H), 1.05-1.21 (m, 6 H), 1.38-1.46 (m, 2 H), 2.25 (t, J = 7.8 Hz, 2 H), 2.39 (s, 3 H), 6.99 (s, 1 H), 7.11-7.16 (m, 2 H), 7.20 (d, J = 8.2 Hz, 2 H), 7.45 (d, J = 8.2 Hz, 2 H), 7.99-8.03 (m, 2 H); ¹³C

NMR (100 MHz, CDCl₃) δ 14.0, 21.3, 22.4, 28.6, 30.0, 31.2, 37.2, 115.0, 115.5 (d, J_{C-F} = 21.5

Hz), 127.6, 129.8, 130.4 (d, J_{C-F} = 8.7 Hz), 135.1 (d, J_{C-F} = 2.7 Hz), 135.6, 139.7, 165.1 (d, J_{C-F} = 252 Hz), 167.2, 187.0; IR (NaCl) 2956, 2928, 2858, 1634, 1600, 1538, 1532, 1505, 1494, 1463, 1230, 1155, 1084, 1018, 867, 852, 812, 733 cm⁻¹; mass spectrum (EI) m/e 356 (M⁺, 12); Anal. Calcd for C₂₂H₂₅FOS: C, 74.12; H, 7.07. Found: C, 74.02; H, 7.23.

trans-(3-C₅H₄N)C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-CH₃ (*trans*-4g): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (t, J = 6.6 Hz, 3 H), 1.34-1.47 (m, 6 H), 1.73 (dt, 2 H), 2.42 (s, 3 H), 2.94 (t, J = 7.8 Hz, 2 H), 6.23 (s, 1 H), 7.28-7.33 (m, 3 H), 7.44 (d, J = 7.8 Hz, 2 H), 8.01 (d, J = 7.8 Hz, 1 H), 8.64 (d, J = 3.9 Hz, 1 H), 8.74 (s, 1 H); ¹³C

NMR (100 MHz, CDCl₃) δ 14.0, 21.4, 22.6, 29.3, 29.9, 31.5, 34.6, 113.2, 123.4, 125.9, 129.8, 130.7, 135.4, 135.5, 140.6, 149.1, 152.2, 171.2, 185.1; IR (NaCl) 3033, 2955, 2927, 2856, 1651, 1584, 1556, 1493, 1456, 1416, 1366, 1237, 1106, 1060, 1040, 1018, 849, 811, 732, 702, 662 cm⁻¹; mass spectrum (EI) m/e 339 (M⁺, 20); Anal. Calcd for C₂₁H₂₅NOS: C, 74.29; H, 7.42; N, 4.13. Found: C, 74.07; H, 7.41; N, 4.16.

cis-(3-C₅H₄N)C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-CH₃ (*cis*-4g): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (t, J = 8.9 Hz, 3 H), 1.05-1.21 (m, 6 H), 1.43 (dt, 2 H), 2.26 (t, J = 7.8 Hz, 2 H), 2.39 (s, 3 H), 7.01 (s, 1 H), 7.21 (d, J = 7.8 Hz, 2 H), 7.40-7.47 (m, 3 H), 8.28 (d, J = 8.1 Hz, 1 H), 8.74 (d, J = 3.2 Hz, 1 H), 9.18 (s, 1

H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 21.2, 22.3, 28.5, 29.9, 31.1, 37.2, 114.6, 123.5, 127.1, 129.8, 134.0, 135.4, 135.5, 139.8, 149.2, 152.3, 169.2, 186.6; IR (NaCl) 3020, 2955, 2927, 2857, 1634, 1585, 1569, 1530, 1493, 1456, 1416, 1249, 1088, 1019, 862, 812, 756, 704, 666, 620 cm⁻¹; mass spectrum (EI) m/e 339 (M⁺, 20), 123 (100); Anal. Calcd for C₂₁H₂₅NOS: C, 74.29; H, 7.42; N, 4.13. Found: C, 74.01; H, 7.14; N, 4.13.

trans-(2-C₄H₃O)C(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-CH₃ (*trans*-4h): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.89 (t, J = 7.0 Hz, 2 H), 1.30-1.34 (m, 4 H), 1.42-1.46 (m, 2 H), 1.66-1.72 (m, 2 H), 2.43 (s, 3 H), 2.93 (t, J = 7.7, 2 H), 6.18 (s, 1 H), 6.40-6.41 (m, 1 H), 6.77 (d, J

= 3.7 Hz, 1 H), 7.28 (d, J = 7.7 Hz, 2 H), 7.42-7.44 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 21.3, 22.5, 29.2, 29.8, 31.5, 34.2, 111.9, 113.4, 115.6, 126.4, 130.5, 135.5, 140.3, 145.6, 154.3, 169.0, 175.6; IR (NaCl) 2955, 2927, 2856, 1643, 1572, 1492, 1467, 1432, 1394, 1353, 1262, 1165, 1156, 1088, 1056, 1017, 913, 884, 811, 756, 732, 694 cm⁻¹; mass spectrum (EI) m/e 328 (M⁺, 30); Anal. Calcd for C₂₀H₂₄O₂S: C, 73.13; H, 7.36. Found: C, 72.89; H, 7.08.

cis-(2-C₄H₃O)C(O)C(H)=C(n-C₆H₁₃)SC₆H₄-p-CH₃(cis-4h):yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (t, J = 7.2 Hz, 3 H),1.06-1.08 (m, 4 H), 1.15-1.19 (m, 2 H), 1.39-1.43 (m, 2 H), 2.22 (t,

J = 7.8, 2 H), 2.38 (s, 3 H), 6.52-6.56 (m, 1 H), 6.92 (s, 1 H), 7.18-7.20 (m, 3 H), 7.44 (d, J = 8.1 Hz, 2 H), 7.55-7.56 (m, 1 H); NOE experiment: Irradiation of the vinyl singlet at δ 6.92 resulted in a 6.9 % enhancement of the signal at δ 2.22; ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 21.3, 22.3, 28.5, 29.8, 31.2, 37.1, 112.3, 114.9, 115.6, 127.5, 129.8, 135.7, 139.6, 145.2, 154.1, 166.6, 177.3; IR (NaCl) 2955, 2928, 2858, 1633, 1574, 1538, 1493, 1470, 1258, 1157, 1101, 1010, 884, 813, 756 cm⁻¹; mass spectrum (EI) m/e 328 (M⁺, 29); Anal. Calcd for C₂₀H₂₄O₂S: C, 73.13; H, 7.36. Found: C, 72.90; H, 6.97.

The structure of 4i was tentatively assigned by ¹H NMR spectrum (vide infra).

trans-p-CH₃C₆H₄C(O)C(H)=C(*n*-C₆H₁₃)SCH₂C₆H₅ (*trans*-4i): ¹H NMR (400 MHz, CDCl₃) δ 6.24 (s, 1 H, vinyl proton).

cis-p-CH₃C₆H₄C(O)C(H)=C(n-C₆H₁₃)SCH₂C₆H₅ (*cis*-4i): ¹H NMR (400 MHz, CDCl₃) δ 7.01 (s, 1 H, vinyl proton).

trans-p-CH₃C₆H₄C(O)C(H)=C((CH₂)₄Cl)SC₆H₄-p-OCH₃

(*trans*-4k): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.85-1.95 (m, 4 H), 2.35 (s, 3 H), 2.92 (t, J = 7.3 Hz, 2 H), 3.59 (t, J = 6.5 Hz, 2 H), 3.85 (s, 3 H), 6.29 (s, 1 H), 6.99 (d, J = 8.6 Hz, 2 H), 7.15 (d, J = 8.2 Hz, 2 H), 7.48 (d, J = 8.6 Hz, 2 H), 7.54 (d, J = 8.2 Hz, 2 H), 7.48 (d, J = 8.6 Hz, 2 H), 7.54 (d,

8.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21. 5, 27.1, 32.3, 33.0, 44.8, 55.4, 114.9, 115.3, 120.3, 128.0, 129.0, 136.9, 137.2, 142.7, 161.0, 166.9, 187.1; IR (NaCl) 2956, 2866, 2838, 1645, 1606, 1592, 1574, 1568, 1557, 1494, 1462, 1441, 1360, 1291, 1250, 1181, 1050, 1031, 830, 819, 734 cm⁻¹; mass spectrum (EI) m/e 374 (M⁺, 24); Anal. Calcd for C₂₁H₂₃ClO₂S: C, 67.27; H, 6.18. Found: C, 67.08; H, 5.96.

cis-p-CH₃C₆H₄C(O)C(H)=C((CH₂)₄Cl)SC₆H₄-p-OCH₃ (cis4k): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.58-1.61 (m, 4 H),
2.27 (t, J = 6.8 Hz, 2 H), 2.41 (s, 3 H), 3.38 (t, J = 5.7 Hz, 2 H),
3.84 (s, 3 H), 6.92 (d, J = 8. 6 Hz, 2 H), 7.02 (s, 1 H), 7.26 (d, J =
8.1 Hz, 2 H), 7.49 (d, J = 8.6 Hz, 2 H), 7.89 (d, J = 8.1 Hz, 2 H);

¹³C NMR (100 MHz, CDCl₃) δ 21.6, 27.0, 31.7, 36.2, 44.4, 55.4, 114.7, 115.7, 121.9, 128.1, 129.2, 136.1, 137.2, 142.8, 160.7, 165.1, 188.2; IR (NaCl) 3002, 2956, 2866, 1632, 1607, 1591, 1570, 1538, 1493, 1461, 1441, 1288, 1246, 1208, 1180, 1174, 1104, 1074, 1030, 831, 806, 754, 734 cm⁻¹; mass spectrum (EI) m/e 374 (M⁺, 23); Anal. Calcd for $C_{21}H_{23}ClO_2S$: C, 67.27; H, 6.18. Found: C, 67.26; H, 6.06.

trans-p-CH₃C₆H₄C(O)C(H)=C((CH₂)₃CN)SC₆H₄-p-OCH₃

(*trans*-4I): yellow solid; mp 87.4-88.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.08-2.15 (m, 2 H), 2.35 (s, 3 H), 2.52 (t, *J* = 7.4 Hz, 2

H), 2.98 (t, J = 7.6 Hz, 2 H), 3.85 (s, 3 H), 6.34 (s), 7.01 (d, J = 8.8 Hz, 2 H), 7.16 (d, J = 8.0 Hz, 2 H), 7.48 (d, J = 8.8 Hz, 2 H), 7.53 (d, J = 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 16.8, 21.5, 25.5, 32.7, 55.4, 115.5, 115.7, 119.5, 119.7, 128.0, 129.1, 136.6, 137.1, 143.0, 161.2, 164.8, 187.1; IR (KBr) 1646, 1606, 1590, 1568, 1495, 1457, 1434, 1358, 1300, 1287, 1249, 1184, 1058, 1018, 835, 816, 797, 737, 705 cm⁻¹; mass spectrum (EI) m/e 351 (M⁺, 29); Anal. Calcd for C₂₁H₂₁NO₂S: C, 71.76; H, 6.02; N, 3.99. Found: C, 71.72; H, 6.09; N, 4.00.

trans-p-CH₃C₆H₄C(O)C(H)=C((CH₂)₃CO₂CH₃)SC₆H₄-*p*-OC H₃ (*trans*-4m): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 2.07 (dt, 2 H), 2.33 (s, 3 H), 2.48 (t, J = 7.7 Hz, 3 H), 2.94 (t, J = 7.7 Hz, 2 H), 3.67 (s, 3 H), 3.84 (s, 3 H), 6.29 (s, 1 H), 6.99 (d, J = 8.8 Hz, 2 H), 7.13 (d, J = 8.2 Hz, 2 H), 7.47 (d, J = 8.8 Hz, 2 H),

7.53 (d, J = 8.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 24.8, 32.9, 33.4, 51.4, 55.3, 115.1, 115.3, 120.2, 127.9, 129.0, 136.8, 137.1, 142.6, 161.0, 166.3, 173.6, 186.9; IR (NaCl) 2950, 1737, 1646, 1606, 1592, 1568, 1494, 1455, 1437, 1364, 1291, 1250, 1181, 1049, 1030, 831, 819, 733 cm⁻¹; mass spectrum (EI) m/e 384 (M⁺, 17); Anal. Calcd for C₂₂H₂₄O₄S: C, 68.72; H, 6.29. Found: C, 68.68; H, 6.14.

cis-p-CH₃C₆H₄C(O)C(H)=C((CH₂)₃CO₂CH₃)SC₆H₄-*p*-OCH₃ (*cis*-4m): orange solid; mp 85.0-87.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.75 (dt, 2 H), 2.16 (t, *J* = 7.3 Hz, 2 H), 2.30 (t, *J* = 7.3 Hz, 2 H), 2.41 (s, 3 H), 3.61 (s, 3 H), 3.84 (s, 3 H), 6.92 (d, *J* = 7.6 Hz, 2 H), 7.02 (s, 1 H), 7.26 (d, *J* = 8.2 Hz, 2 H), 7.48 (d, *J* =

7.6 Hz, 2 H), 7.89 (d, J = 8.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 24.8, 32.9, 36.0, 51.5, 55.4, 114.7, 116.0, 121.9, 128.1, 129.2, 136.1, 137.1, 142.8, 160.7, 164.4, 173.3, 188.2; IR (KBr) 1732, 1627, 1606, 1588, 1568, 1531, 1494, 1484, 1448, 1285, 1240, 1180, 1153, 1072, 1017, 845, 834, 809 cm⁻¹; mass spectrum (EI) m/e 384 (M⁺, 21); HRMS calcd for C₂₂H₂₄O₄S: 384.1395. Found: 384.1393.

trans-p-CH₃C₆H₄C(O)C(H)=C(CH₂(*c*-C₅H₉))SC₆H₄-*p*-OCH₃ (*trans*-4n): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.29-1.34 (m, 2 H), 1.52-1.56 (m, 2 H), 1.62-1.68 (m, 2 H), 1.83-1.87 (m, 2 H), 2.29-2.35 (m, 1 H), 2.33 (s, 3 H), 3.00 (d, *J* = 7.3 Hz, 2 H), 3.85 (s, 3 H), 6.24 (s, 1 H), 6.98 (d, *J* = 8.8 Hz, 2 H), 7.13 (d, *J*

= 8.1 Hz, 2 H), 7.47 (d, J = 8.8 Hz, 2 H), 7.53 (d, J = 8.1 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 24.8, 32.4, 39.0, 40.5, 55.4, 115.1, 115.3, 120.8, 128.0, 129.0, 137.1, 137.2, 142.5, 160.9, 167.3, 187.3; IR (NaCl) 2951, 2866, 1647, 1606, 1592, 1560, 1493, 1462, 1440, 1407, 1360, 1290, 1250, 1210, 1181, 1104, 1050, 1032, 830, 819, 733 cm⁻¹; mass spectrum (EI) m/e 366 (M⁺, 25); Anal. Calcd for C₂₃H₂₆O₂S: C, 75.37; H, 7.15. Found: C, 75.23; H, 7.28.

cis-p-CH₃C₆H₄C(O)C(H)=C(CH₂(*c*-C₅H₉))SC₆H₄-*p*-OCH₃ (*cis* 4n): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.97-1.03 (m, 2 H), 1.43-1.64 (m, 6 H), 1.93-1.97 (m, 1 H), 2.24 (d, *J* = 6.8 Hz, 2 H), 2.41 (s, 3 H), 3.84 (s, 3 H), 6.90 (d, *J* = 8.5 Hz, 2 H), 7.01 (s, 1 H),

7.26 (d, J = 8.1 Hz, 2 H), 7.47 (d, J = 8.5 Hz, 2 H), 7.88 (d, J = 8.1 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 24.8, 32.2, 39.6, 42.9, 55.3, 114.5, 115.9, 122.3, 128.1, 129.1, 136.4, 137.2, 142.6, 160.5, 165.3, 188.2; IR (NaCl) 2951, 2866, 1632, 1607, 1592, 1571, 1537, 1494, 1462, 1453, 1441, 1288, 1246, 1207, 1180, 1101, 1082, 1031, 1018, 862, 830, 809, 799, 788, 755, 734 cm⁻¹; mass spectrum (EI) m/e 366 (M⁺, 23); HRMS calcd for C₂₃H₂₆O₂S: 366.1654. Found: 366.1658.

trans-p-CH₃C₆H₄C(O)C(H)=C((CH₂)₂CH(CH₃)₂)SC₆H₄-*p*-O CH₃ (*trans*-40): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.96 (d, J = 6.3 Hz, 6 H), 1.58-1.73 (m, 3 H), 2.35 (s, 3 H), 2.90 (t, J= 6.8 Hz, 2 H), 3.86 (s, 3 H), 6.25 (s, 1 H), 6.99 (d, J = 8.8 Hz, 2 H), 7.14 (d, J = 7.9 Hz, 2 H), 7.48 (d, J = 8.8 Hz, 2 H), 7.55 (d, J

= 7.9 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 22.4, 28.4, 32.2, 38.8, 55.4, 114.5, 115.3, 120.6, 128.0. 129.0, 137.1, 137.2, 142.5, 161.0, 168.4, 187.1; IR (NaCl) 3005, 2956, 2868, 1646, 1607, 1592, 1560, 1493, 1464, 1442, 1366, 1290, 1250, 1208, 1181, 1052, 1031, 1018, 830, 818, 759, 734 cm⁻¹; mass spectrum (EI) m/e 354 (M⁺, 24); HRMS calcd for C₂₂H₂₆O₂S: 354.1654. Found: 354.1651.

cis-p-CH₃C₆H₄C(O)C(H)=C((CH₂)₂CH(CH₃)₂)SC₆H₄-*p*-OCH₃ (*cis*-40): yellow solid; mp 94.0-95.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.68 (d, J = 6.4 Hz, 6 H), 1.31-1.34 (m, 3 H), 2.25 (t, J = 7.7 Hz, 2 H), 2.41 (s, 3 H), 3.83 (s, 3 H), 6.91 (d, J = 8.8 Hz, 2 H), 7.02 (s, 1 H), 7.25 (d, J = 7.9 Hz, 2 H), 7.49 (d, J = 8.8 Hz, 2 H),

7.89 (d, J = 7.9 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 22.1, 27.8, 35.2, 39.3, 55.4, 114.5, 115.3, 122.1, 128.1, 129.1, 136.3, 137.3, 142.6, 160.6, 166.8, 188.3; IR (KBr) 2957, 2868, 1632, 1606, 1590, 1570, 1534, 1492, 1464, 1442, 1296, 1239, 1181, 1171, 1098, 1086, 1027, 1016, 867, 830, 799, 789 cm⁻¹; mass spectrum (EI) m/e 354 (M⁺, 26); Anal. Calcd for C₂₂H₂₆O₂S: C, 74.54; H, 7.39. Found: C, 74.38; H, 7.19.

p-CH₃C₆H₄C(O)C(H)=C(C₆H₅)SC₆H₄-*p*-OCH₃ (4p, a mixture of stereoisomer): yellow solid; ¹H NMR (400 MHz, CDCl₃) *cis*isomer; δ 2.41 (s, 3 H), 3.68 (s, 3 H), 6.57 (d, J = 8.8 Hz, 2 H), 7.09-7.16 (m, 9 H), 7.25 (s, 1 H), 7.93 (d, J = 8.0 Hz, 2 H); *trans* isomer; 2.33 (s, 3 H), 3.86 (s, 3 H), 6.28 (s, 1 H), 6.99 (d, J = 8.5

Hz, 2 H), other peaks overlap with those of cis isomer; ¹³C NMR (100 MHz, CDCl₃) cis

isomer; δ 21.6, 55.2, 113.9, 119.1, 123.4, 127.7, 128.2, 128.3, 128.9, 129.3, 136.0, 136.1, 138.9, 143.1, 159.5, 163.1, 188.3.; *trans* isomer; δ 21.5, 55.4, 115.4, 117.4, 121.1, 128.1, 128.4, 128.5, 128.8, 129.0, 135.9, 137.1, 137.2, 142.9, 161.0, 161.1, 188.4; IR (KBr): 2929, 1626, 1605, 1591, 1570, 1560, 1526, 1492, 1460, 1443, 1406, 1333, 1302, 1291, 1245, 1174, 1106, 1030, 1017, 955, 830, 815, 770, 737, 703, 676 cm⁻¹; mass spectrum (EI) m/e 360 (M⁺, 38); (EI) m/e 360 (M⁺, 38); Anal. Calcd for C₂₃H₂₀O₂S: C, 76.64; H, 5.59. Found: C, 76.48; H, 5.48.

The structure of *cis*-4q was tentatively determined by ¹H NMR spectrum (*vide infra*). *cis*-C₆H₅C(O)C(H)=C(n-C₆H₁₃)SeC₆H₅ (*cis*-4q): ¹H NMR (400 MHz, CDCl₃) δ 6.93 (s, 1 H, vinyl proton).

Reaction of p-CH₃C₆H₄C(O)SC₆H₄-p-OCH₃ (2a) with 1-Octyne (1a) in the Presence of Pt(PPh₃)₄ (run 18 of Table 1): Into a two-necked 3 mL reaction glass were added Pt(PPh₃)₄ (62.5 mg, 0.05 mmol), 2a (254 mg, 0.983 mmol), 1a (135 mg, 1.23 mmol) and toluene (0.5 mL) under a N₂ atmosphere. After the solution was refluxed for 13 h, the resultant mixture was filtered through Celite, the solvent was evaporated, and the resultant crude product was dried *in vacuo. cis*-3a and *trans*-4a were obtained in 75% (255 mg) and 8% (30 mg) yield by preparative TLC using hexane and ethyl acetate (40/1) as an eluent.

cis-p-CH₃C₆H₄C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-OCH₃ (*cis*-3a): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.85 (t, J = 7.0 Hz, 3 H), 1.19-1.27 (m, 6 H), 1.49-1.53 (m, 2 H), 2.16 (t, J = 7.4 Hz, 2 H), 2.34 (s, 3 H), 3.78 (s, 3 H), 6.61 (s, 1 H), 6.82 (d, J = 8.8 Hz, 2 H),

7.14 (d, J = 8.0 Hz, 2 H), 7.32 (d, J = 8.8 Hz, 2 H), 7.45 (d, J = 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 21.2, 22.5, 28.5, 28.8, 31.6, 37.6, 55.3, 114.4, 124.2, 128.6, 129.1, 129.2, 134.1, 134.2, 136.6, 136.9, 159.2; IR (NaCl) 2954, 2928, 2856, 1592, 1571, 1509, 1493, 1463, 1440, 1286, 1246, 1180, 1172, 1034, 827, 806 cm⁻¹; mass spectrum (EI) m/e 340 (M⁺, 100). HRMS calcd for C₂₂H₂₈OS: 340.1861. Found: 340.1871.

Cis-to-trans Isomerization of *cis-4a* (Eq. S1): Into a two-necked reaction glass were added Pd(dba)₂ (1.5 mg, 0.0026 mmol), dppe (1.2 mg, 0.0030 mmol), *cis-4a* (17 mg, 0.044 mmol), 1a

(8.9 mg, 0.081 mmol) and benzene (0.5 mL) under a N_2 atmosphere. After the solution was refluxed for 15 h, the reaction mixture was filtered through Celite, and the filtrate was evaporated and dried *in vacuo*. The products were analyzed by ¹H NMR spectroscopy.

Cis-to-*trans* isomerization of *cis*-4a occurred in the presence of catalytic amount of $Pd(dba)_2$ and dppe and 1.6 equiv amount of 1a. These results indicated that 1a is the crucial factor for the generation of active dppe ligated Palladium (0) complex.

Treatment of 2a in the Presence of Pd/dppe (Eq. 1): Into a two-necked reaction glass were added $Pd(dba)_2$ (28.3 mg, 0.05 mmol), dppe (24.5 mg, 0.06 mmol), **2a** (262 mg, 1.01 mmol) and toluene (0.5 mL) under a N₂ atmosphere. After the solution was refluxed for 12 h, the reaction mixture was filtered through Celite, the solvent was evaporated and the resultant crude product was dried *in vacuo*. The products were analyzed by ¹H NMR spectroscopy.

p-CH₃C₆H₄SC₆H₄-*p*-OCH₃ (6a): RN: 6013-47-4.

Decarbonylation of 2a using dppp and dppb ligands was similarly examined.

Reaction of I-C₆H₄-*p***-OCH₃ with NaSC₆H₄-***p***-OCH₃ in the Presence of Pd/dppe (Eq. 2): Into a two-necked reaction glass were added Pd(dba)₂ (14.4 mg, 0.025 mmol), dppe (12.0 mg, 0.030 mmol),** *p***-MeC₆H₄I (109 mg, 0.500 mmol), NaSC₆H₄OMe-***p* **(82 mg, 0.506 mmol) and toluene (0.5 mL) under a N₂ atmosphere. After the solution was refluxed for 12 h, the reaction mixture was filtered through Celite, the solvent was evaporated and the resultant crude product was dried** *in vacuo***. The products were analyzed by ¹H NMR spectroscopy.**

Reaction of $F_3CC(O)SC_6H_4$ -p-CH₃ (8a) with 1-Octyne (1a) in the Presence of Pt(PPh₃)₄ (run 3 of Table 3, run 1 of Table 4): General Procedure of Platinum-Catalyzed Trifluoroacetylthiolation of Alkynes Using Thioesters: Into a two-necked 3 mL reaction glass were added Pt(PPh₃)₄ (31.1 mg, 0.025 mmol), 8a (108 mg, 0.492 mmol), 1a (82.0 mg, 0.74 mmol) and xylene (0.5 mL) under a N₂ atmosphere. After the solution was refluxed for 10 h, the reaction mixture was filtered through Celite, the solvent was evaporated and the resultant crude product was dried *in vacuo*. *cis*-5a and *trans*-5a were obtained in 14% (23.2 mg) and 64% (106 mg) yields by preparative TLC using hexane as an eluent.

trans-F₃CC(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-CH₃ (*trans*-5a): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, J = 7.1 Hz, 3 H), 1.32-1.48 (m, 6 H), 1.66 (tt, 2 H), 2.42 (s, 3 H), 2.89 (t, J = 7.6 Hz, 2 H), 5.74 (s, 1 H), 7.29 (d, J = 8.1 Hz, 2 H), 7.37 (d, J = 8.1 Hz, 2 H);

N.O.E. experiment: Irradiation of the singlet of vinylic proton at δ 5.75 resulted in 2.7% enhancement of the signal at δ 7.37 (aryl doublet) and the triplet of allylic proton at δ 2.89 resulted in 0.58% enhancement of the signal at δ 7.37 (aryl doublet); ¹³C NMR (100 MHz, CDCl₃) δ 14.6, 22.0, 23.1, 29.8, 30.2, 32.0, 36.0, 108.5, 113.9 (q, *J*_{C-F} = 291 Hz), 125.2, 131.5,

135.6, 141.8, 176.2 (q, $J_{C-F} = 33.5$ Hz), 180.9; IR (NaCl) 2957, 2929, 2838, 1700, 1597, 1560, 1493, 1458, 1436, 1291, 1202, 1143, 1077, 1018, 842, 811, 725, 686 cm⁻¹; mass spectrum (EI) m/z 330 (M⁺, 42); HRMS calcd for C₁₇H₂₁F₃OS 330.1265, found 330.1270; Anal. Calcd for C₁₇H₂₁F₃OS: C, 61.80; H, 6.41. Found: C, 62.09; H, 6.69.

cis-**F**₃**CC(O)C(H)=C(***n***-C₆H₁₃)SC**₆H₄-*p*-**CH**₃ (*cis*-5a): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (t, J = 6.8 Hz, 3 H), 1.05-1.12 (m, 6 H), 1.35-1.40 (m, 2 H), 2.25 (t, J = 7.8 Hz, 2 H), 2.40 (s, 1 H), 6.51 (s, 1 H), 7.23 (d, J = 7.8 Hz, 2 H), 7.41 (d, J = 7.8 Hz, 2 H); N.O.E.

experiment: Irradiation of the triplet of allylic proton at δ 2.25 resulted in 3.8% enhancement of the signal at δ 7.41 (aryl doublet) and 8.4% enhancement of the signal at δ 6.51 (vinylic singlet); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 21.3, 22.3, 28.5, 29.9, 31.1, 37.5, 110.2, 116.4 (q, $J_{C-F} = 290$ Hz), 125.7, 130.2, 135.4, 140.6, 177.3 (q, $J_{C-F} = 34.4$ Hz), 178.0; IR (NaCl) 2931, 2860, 2359, 1681, 1674, 1598, 1563, 1548, 1538, 1532, 1520, 1506, 1494, 1463, 1456, 1362, 1300, 1199, 1146, 1105, 1018, 864, 813, 729, 686 cm⁻¹; mass spectrum (EI) m/z 330 (M⁺, 41); Anal. Calcd for C₁₇H₂₁F₃OS: C, 61.80; H, 6.41. Found: C, 62.02; H, 6.66.

Other trifluoroacetylthiolation products **5d-l** were synthesized by similar procedures.

trans-F₃CC(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-OCH₃ (*trans*-5d): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, J = 6.6 Hz, 3 H), 1.33-1.46 (m, 6 H), 1.64 (tt, 2 H), 2.88 (t, J = 7.6 Hz, 2 H), 5.73 (s, 1 H), 7.00 (d, J = 8.8 Hz, 2 H), 7.40 (d, J = 8.8 Hz, 2 H); ¹³C NMR

(100 MHz, CDCl₃) δ 14.1, 22.5, 29.3, 29.6, 31.4, 35.3, 55.4, 107.8, 115.6, 116.3 (q, $J_{C-F} = 291$ Hz), 118.7, 136.7, 161.5, 175.4 (q, $J_{C-F} = 33.5$ Hz), 180.9; IR (NaCl) 2958, 2930, 2858, 1697, 1593, 1560, 1553, 1496, 1465, 1441, 1292, 1254, 1202, 1174, 1143, 1106, 1077, 1031, 860, 831, 800, 726, 686 cm⁻¹; mass spectrum (EI) m/z 346 (M⁺, 58); Anal. Calcd for C₁₇H₂₁F₃O₂S: C, 58.94; H, 6.11. Found: C, 58.88; H, 6.09.

cis-F₃CC(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-OCH₃ (*cis*-5d): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.82 (t, *J* = 7.1 Hz, 3 H), 1.08-1.19 (m, 6 H), 1.39 (b, 2 H), 2.24 (t, *J* = 7.8 Hz, 2 H), 3.85 (s, 3 H), 6.51 (s, 1 H), 6.95 (d, *J* = 8.6 Hz, 2 H), 7.44 (d, *J* = 78.6 Hz, 2 H); ¹³C NMR

(100 MHz, CDCl₃) δ 13.9, 22.3, 28.5, 29.9, 31.1, 37.5, 55.4, 110.1, 114.9, 116.4 (q, $J_{C-F} = 289$ Hz), 119.8, 137.0, 161.2, 177.2 (q, $J_{C-F} = 33.9$ Hz), 178.7; IR (NaCl) 2958, 2931, 2859, 1682, 1593, 1572, 1538, 1495, 1464, 1442, 1408, 1364, 1308, 1291, 1199, 1174, 1144, 1105, 1031, 864, 832, 729 cm⁻¹; mass spectrum (EI) m/z 346 (M⁺, 69); Anal. Calcd for C₁₇H₂₁F₃O₂S: C, 58.94; H, 6.11. Found: C, 59.05; H, 6.02.

F₃C S trans-F₃CC(O)C(H)=C(*n*-C₆H₁₃)SC₆H₅ (trans-5e): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, *J* = 6.6 Hz, 3 H), 1.33-1.49 (m, 6 H), 1.66 (tt, 2 H), 2.90 (t, *J* = 7.8 Hz, 2 H), 5.72 (s, 1 H), 7.50 (b, 5 H); ¹³C

NMR (100 MHz, CDCl₃) δ 14.1, 22.5, 29.2, 29.6, 31.4, 35.4, 108.1, 116.2 (q, $J_{C-F} = 291$ Hz), 128.1, 130.1, 130,8, 135.2, 175.5 (q, $J_{C-F} = 33.4$ Hz), 179.7; IR (NaCl) 2958, 2930, 2859, 1699, 1560, 1477, 1442, 1291, 1203, 1143, 1077, 1024, 837, 750, 706, 685 cm⁻¹; mass spectrum (EI) m/z 316 (M⁺, 26); Anal. Calcd for C₁₆H₁₉F₃O₂S: C, 60.74; H, 6.05. Found: C, 60.53; H, 6.05.

cis-F₃CC(O)C(H)=C(*n*-C₆H₁₃)SC₆H₅ (*cis*-5e): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.80 (t, J = 6.7 Hz, 3 H), 1.05-1.17 (m, 6 H), 1.39 (m, 2 H), 2.25 (t, J = 7.6 Hz, 2 H), 6.53 (s, 1 H), 7.43-7.56 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 22.3, 28.6, 29.9, 31.1,

37.7, 110.5, 116.5 (q, $J_{C-F} = 292$ Hz), 129.3, 129.5, 130,2, 135.6, 177.2, 177.4 (q, $J_{C-F} = 34.4$ Hz); IR (NaCl) 2958, 2931, 2860, 1682, 1537, 1477, 1468, 1441, 1364, 1300, 1261, 1200, 1145, 1106, 1024, 862, 818, 752, 730, 706, 692 cm⁻¹; mass spectrum (EI) m/z 316 (M⁺, 30); HRMS calcd for C₁₆H₁₉F₃OS: 316.1109. Found: 316.1112.

trans-F₃CC(O)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-Cl (*trans*-5f): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, J = 6.6 Hz, 3 H), 1.31-1.48 (m, 6 H), 1.68 (m, 2 H), 2.88 (t, J = 7.8 Hz, 2 H), 5.73 (s, 1 H), 7.44 (d, J = 8.6 Hz, 2 H), 7.48 (d, J = 8.6 Hz, 2 H); ¹³C NMR (100 MHz,

CDCl₃) δ 14.1, 22.6, 29.2, 29.6, 31.4, 35.3, 108.3, 116.2 (q, $J_{C-F} = 291$ Hz), 126.6, 130.5, 136.5, 137.4, 175.6 (q, $J_{C-F} = 33.5$ Hz), 178.8; IR (NaCl) 2958, 2930, 2859, 1698, 1682, 1574, 1568, 1556, 1477, 1454, 1436, 1392, 1292, 1204, 1146, 1096, 1076, 1014, 859, 839, 825, 749, 726, 684 cm⁻¹; mass spectrum (EI) m/z 350 (M⁺, 41); Anal. Calcd for C₁₆H₁₈ClF₃OS: C, 54.78; H, 5.17. Found: C, 54.68; H, 5.13.

cis-**F**₃**CC(O)C(H)=C(***n*-**C**₆**H**₁₃**)**SC₆**H**₄-*p*-**Cl** (*cis*-5f): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.83 (t, *J* = 7.3 Hz, 3 H), 1.07-1.43 (m, 8 H), 2.24 (t, *J* = 7.6 Hz, 2 H), 6.54 (s, 1 H), 7.42 (d, *J* = 8.3 Hz, 2 H), 7.49 (d, *J* = 8.3 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9,

22.3, 28.5, 29.7, 31.1, 37.6, 110.8, 116.3 (q, $J_{C-F} = 289$ Hz), 127.7, 129.7, 136.8, 136.8, 176.1, 177.5 (q, $J_{C-F} = 34.4$ Hz); IR (NaCl) 2958, 2931, 2859, 1682, 1574, 1538, 1476, 1389, 1364, 1296, 1201, 1176, 1146, 1107, 1093, 1014, 865, 824, 748, 728, 684 cm⁻¹; mass spectrum (EI) m/z 350 (M⁺, 39); HRMS calcd for C₁₆H₁₈ClF₃OS: 350.0719. Found: 350.0714.

trans-F₃CC(O)C(H)=C(*n*-C₆H₁₃)SCH₂C₆H₅ (*trans*-5g): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.8 Hz, 3 H), 1.29-1.41 (m, 6 H), 1.57 (tt, 2 H), 2.83 (t, J = 7.8 Hz, 2 H), 4.09 (s, 2 H), 6.17 (s, 1 H), 7.30-7.37 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 22.5,

29.2, 29.7, 31.4, 36.2, 37.3, 106.9, 116.5 (q, J_{C-F} = 291 Hz), 128.1, 128.9, 129.0, 133.6, 174.9

(q, $J_{C-F} = 32.3$ Hz), 178.1; IR (NaCl) 2957, 2930, 2858, 1698, 1552, 1496, 1455, 1435, 1295, 1203, 1142, 1079, 822, 711, 696 cm⁻¹; mass spectrum (EI) m/z 330 (M⁺, 2.2); Anal. Calcd for $C_{17}H_{21}F_{3}OS$: C, 61.80; H, 6.41. Found: C, 61.67; H, 6.42.

trans-F₃CC(O)C(H)=C(n-C₆H₁₃)S-n-C₁₀H₂₁ (*trans*-5h): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (b, 6 H), 1.27-1.42 (m, 20 H), 1.57 (tt, 2 H), 1.70 (tt, 2 H),

2.82-2.85 (m, 4 H), 6.01 (s, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 14.1, 22.5, 22.7, 27.0, 28.9, 29.0, 29.2, 29.3, 29.4, 29.5, 29.8, 31.4, 31.9, 32.2, 36.6, 106.2, 116.6 (q, $J_{C-F} = 292$ Hz), 174.7 (q, $J_{C-F} = 33.0$ Hz), 179.3; IR (NaCl) 2957, 2927, 2856, 1698, 1556, 1467, 1434, 1293, 1201, 1143, 1079, 860, 824, 724, 693 cm⁻¹; mass spectrum (EI) m/z 380 (M⁺, 8.5); Anal. Calcd for C₂₀H₃₅F₃OS: C, 63.12; H, 9.27. Found: C, 63.18; H, 9.23.

trans-F₃CC(O)C(H)=C((CH₂)₄Cl)SC₆H₅ (*trans*-5i): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.79-1.86 (tt, 2 H), 1.90-1.97 (tt, 2 H), 2.93 (t, J = 7.8 Hz, 2 H), 3.59 (t, J = 6.4 Hz, 2 H), 5.76 (s, 1 H), 7.5-7.54 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 26.9, 32.1, 34.4, 44.4, 108.5, 116.1 (q,

 $J_{C-F} = 291$ Hz), 127.8, 130.2, 130.9, 135.2, 175.6 (q, $J_{C-F} = 33.9$ Hz), 178.5; IR (NaCl) 3063, 2957, 2868, 1698, 1556, 1477, 1442, 1292, 1203, 1143, 1077, 1024, 838, 750, 706, 686, cm⁻¹; mass spectrum (EI) m/z 322 (M⁺, 45); Anal. Calcd for C₁₄H₁₄ClF₃OS: C, 52.10; H, 4.37. Found: C, 52.37; H, 4.41.

cis-**F**₃**CC(O)C(H)=C((CH₂)₄Cl)SC₆H₅** (*cis*-5i): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.53-1.57 (m, 4 H), 2.29 (t, J = 7.2 Hz, 2 H), 3.34 (t, J = 6.0 Hz, 2 H), 6.54 (s, 1 H), 7.45-7.57 (m, 5 H); ¹³C NMR

(100 MHz, CDCl₃) δ 27.0, 31.5, 36.8, 44.0, 110.7, 116.3 (q, $J_{C-F} = 289$ Hz), 129.0, 129.6, 130.4, 135.5, 175.8, 177.4 (q, $J_{C-F} = 33.8$ Hz); IR (NaCl) 3025, 2957, 2869, 1682, 1577, 1534, 1493, 1458, 1446, 1364, 1302, 1200, 1146, 1110, 1092, 1018, 863, 813, 729, 687, 654 cm⁻¹; mass spectrum (EI) m/z 322 (M⁺, 54); HRMS calcd for C₁₇H₂₁F₃OS: 322.0406. Found: 322.0399.

trans-F₃CC(O)C(H)=C((CH₂)₃CN)SC₆H₅ (*trans*-5j): pale yellow solid; mp 64-66 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.05 (m, 2 H), 2.53 (t, J = 6.8 Hz, 2 H), 3.01 (t, J = 6.8 Hz, 2 H), 5.80 (s, 1 H), 7.53 (b, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 17.0, 25.2, 34.0, 109.3, 116.1 (q, J_{C-F} = 294

Hz), 118.9, 127.5, 130.4, 131.2, 135.2, 176.0 (q, $J_{C-F} = 34.4$ Hz), 176.2; IR (NaCl) 3064, 2954, 2244, 1687, 1548, 1478, 1453, 1439, 1294, 1274, 1188, 1145, 1078, 1025, 999, 868, 854, 840, 766, 749, 708, 685, 574, 452 cm⁻¹; mass spectrum (EI) m/z 299 (M⁺, 47); Anal. Calcd for C₁₄H₁₂F₃NOS: C, 56.18; H, 4.04; N, 4.68. Found: C, 56.18; H, 3.98; N, 4.73.

cis-F₃CC(O)C(H)=C((CH₂)₃CN)SC₆H₅ (*cis*-5j): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.73 (tt, J = 7.0, 7.8 Hz, 2 H), 2.16 (t, J = 7.0 Hz, 2 H), 2.45 (t, J = 7.8 Hz, 2 H), 6.56 (s, 1 H), 7.45-7.57 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 16.7, 25.5, 36.4, 111.7, 116.5 (q, J_{C-F} = 289 Hz),

118.5, 128.9, 130.1, 131.0, 135.7, 173.4, 177.8 (q, $J_{C-F} = 34.8$ Hz); IR (NaCl) 3062, 2947, 2248, 1602, 1578, 1478, 1456, 1442, 1368, 1304, 1202, 1143, 1111, 1024, 1002, 865, 818, 754, 730, 706, 694 cm⁻¹; mass spectrum (EI) m/z 299 (M⁺, 33); HRMS calcd for C₁₄H₁₂F₃NOS: 299.0592. Found: 299.0590.

trans-F₃CC(O)C(H)=C((CH₂)₃CO₂CH₃)SC₆H₅ (*trans*-5k): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 2.01 (tt, 2 H), 2.48 (t, J = 7.6 Hz, 2 H), 2.96 (t, J = 7.8 Hz, 2 H), 3.70 (s, 3 H), 5.75 (s, 1 H), 7.50-7.54 (b, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 24.6, 33.3, 34.2, 51.7, 108.7, 116.1 (q, J_{C-F} = 291 Hz), 127.8, 130.2, 130.9, 135.2, 173.3, 175.6 (q, J_{C-F} = 33.5

Hz), 178.0; IR (NaCl) 3063, 2953, 1738, 1732, 1698, 1565, 1556, 1477, 1441, 1368, 1293, 1255, 1204, 1142, 1076, 1024, 1000, 838, 752, 706, 689 cm⁻¹; mass spectrum (EI) m/z 332 (M⁺, 13); Anal. Calcd for $C_{15}H_{15}F_{3}O_{3}S$: C, 54.21; H, 4.55. Found: C, 54.21; H, 4.49.

cis-F₃CC(O)C(H)=C((CH₂)₃CO₂CH₃)SC₆H₅ (*cis*-5k): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.72 (tt, 2 H), 2.11 (t, *J* = 7.2 Hz, 2 H), 2.32 (t, *J* = 7.8 Hz, 2 H), 3.60 (s, 3 H), 6.55 (s, 1 H), 7.42-7.56 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 24.7, 32.6, 36.5, 51.5, 110.8,

116.3 (q, $J_{C-F} = 289$ Hz), 128.9, 129.5, 130.3, 135.4, 172.7, 175.3, 177.3 (q, $J_{C-F} = 34.4$ Hz); IR (NaCl) 3062, 2953, 1738, 1682, 1538, 1478, 1440, 1366, 1300, 1254, 1201, 1146, 1111, 1091, 1024, 1001, 887, 856, 838, 820, 754, 730, 706, 693 cm⁻¹; mass spectrum (EI) m/z 332 (M⁺, 16); Anal. Calcd for C₁₅H₁₅F₃O₃S: C, 54.21; H, 4.55. Found: C, 54.01; H, 4.55.

trans-F₃CC(O)C(H)=C(CH₂(*c*-C₅H₉))SC₆H₅ (*trans*-5l): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.31 (m 2 H), 1.55-1.69 (m, 4 H), 1.87 (m, 2 H), 2.21 (m, 1 H), 3.00 (d, *J* = 7.3 Hz, 2 H), 5.71 (s, 1 H), 7.51 (b, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 24.8, 32. 5, 40.5, 40.5, 108.5, 116.3 (q,

 $J_{C-F} = 294$ Hz), 128.4, 130.2, 130.8, 135.2, 175.7 (q, $J_{C-F} = 33.6$ Hz), 179.2; IR (NaCl) 3063, 2953, 2869, 1808, 1556, 1476, 1441, 1296, 1201, 1142, 1077, 1024, 846, 837, 749, 707, 690 cm⁻¹; mass spectrum (EI) m/z 314 (M⁺, 22); Anal. Calcd for C₁₆H₁₇F₃OS: C, 61.13; H, 5.45. Found: C, 60.94; H, 5.38.

cis-F₃CC(O)C(H)=C(CH₂(*c*-C₅H₉))SC₆H₅ (*cis*-5l): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.94 (m, 2 H), 1.47-1.57 (m, 6 H), 1.87 (m, 1 H), 2.27 (d, *J* = 7.1 Hz, 2 H), 6.54 (s, 1 H), 7.43-7.55 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 24.6, 32.1, 39.8, 43.4, 110.9, 116.4 (q, *J*_{C-F} = 300 Hz),

129.4, 130.1, 135.2, 135.6, 176.2, 177.2 (q, *J*_{C-F} = 33.9 Hz); IR (NaCl) 3062, 2953, 2869, 1682,

1538, 1477, 1441, 1367, 1345, 1296, 1200, 1144, 1110, 1070, 1024, 1002, 863, 819, 752, 730, 706, 693 cm⁻¹; mass spectrum (EI) m/z 314 (M⁺, 26); Anal. Calcd for C₁₆H₁₇F₃OS: C, 61.13; H, 5.45. Found: C, 61.28; H, 5.54.

Cis-to-trans Isomerization of 5a in Toluene- d_8 (Eq. S2): Into a dry Pyrex NMR tube were added 5a (*cis:trans* = 94:6) (0.0506 mmol), 1,4-dioxane (0.0585 mmol as an internal standard) and 0.5 mL of toluene- d_8 under N₂ atmosphere. Then the sample was heated at 100 °C for 7 h; however, isomerization was hardly confirmed by ¹H NMR spectroscopy (*cis:trans* = 7:93). Additional heating after the addition of Pt(PPh₃)₂(C₂H₄) (0.006 mmol) resulted in the formation of *trans*-5a (*cis:trans* = 28:72).

1-7. References and Notes

- (1) (a) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108. (b) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. Org. Lett. 2008, 10, 101.
- (2) For related transition-metal-catalyzed CO-retentive additions, see: (a) Hua, R.; Takeda, H.; Onozawa, S.; Abe Y.; Tanaka, M. J. Am. Chem. Soc. 2001, 123, 2899. (b) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957. (c) Kashiwabara, T.: Kataoka, K.; Hua, R.; Shimada, S.; Tanaka, M. Org. Lett. 2005, 7, 2241. (d) Hua, R.; Onozawa, S.; Tanaka, M. Chem. Eur. J. 2005, 11, 3621. (e) Kashiwabara, T.; Fuse, K.; Hua, R.; Tanaka, M. Org. Lett. 2008, 10, 5469. (f) Shirakawa, E.; Yamasaki, K.; Yoshida, H.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 2899.
- (3) For a recent review, see: Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2005, 44, 214, and references therein.
- (4) For a catalytic decarbonylation of thioesters, see: (a) Goto, T.; Onaka, M.; Mukaiyama, T. *Chem. Lett.* 1980, 709. (b) Osakada, K.; Yamamoto, T.; Yamamoto, A. *Tetrahedron Lett.* 1987, 28, 6321. (c) Wenkert, E.; Chianelli, D. J. Chem. Soc. Chem. Commun. 1991, 627. (d) Kato, T.; Kuniyasu, H.; Kajiura, T.; Minami, Y.; Ohtaka, A.; Kinomoto, M.; Terao, J.; Kurosawa, H.; Kambe, N. Chem. Commun. 2006, 868.
- (5) For Pd- and Pt-catalyzed hydrothiolations of alkynes, see: (a) Kuniyasu, H.; Ogawa, A.; Sato, K.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1992, 114, 5902. (b) Bäckvall, J.-E.; Ericcson, A. J. Org. Chem. 1994, 59, 5850. (c) Ogawa, A.; Ikeda, T.: Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108.

- (6) The stereochemistry of *trans*-4a and *cis*-4a was determined by N.O.E. experiment between vinyl and allyl protons.
- (7) The treatment of isolated *cis*-4a with 2a and a catalytic amount of Pd(dba)₂ (5 mol%), dppe (6 mol%) and 1.6 equivalent of 1a led to *cis*-to-*trans* isomerization (*cis*:*trans* = 39:61), while no isomerization took place without 1a under otherwise identical conditions. This result suggests that alkyne-coordinated Pd-complex induce the *cis*-to-*trans* isomerization. See Eq. S1.
- (8) Dekker, G. P. C. M.; Elsevier, C. J.; Vrieze, K.; Leeuwen, P. W. N. M. Organometallics 1992, 11, 1598.
- (9) The stereochemistry of *trans*-5a and *cis*-5a was determined by N.O.E. experiment between vinyl and allyl protons, and the regiochemistry of *trans*-5a was determined by ¹H-¹³C HMBC experiment.
- (10) See Eq. S2.
- (11) For the oxidative addition of thioesters to Pt(0) complex, see: Minami, Y.; Kato, T.; Kuniyasu, H.; Terao, J.; Kambe, N. Organometallics 2006, 25, 2949, and references therein.
- (12) For stoichiometric insertions of alkynes into the S-M bond, see: (a) Sugoh, K.; Kuniyasu, H.; Kurosawa, H. Chem. Lett. 2002, 31, 106. (b) Kuniyasu, H.; Yamishita, F.; Terao, J.; Kambe, N. Angew. Chem. Int. Ed. 2007, 46, 5929. (c) Kuniyasu, H.; Takekawa, K.; Yamashita, F.; Miyafuji, K.; Asano, S.; Takai, Y.; Ohtaka, A.; Tanaka, A.; Sugoh, K.; Kurosawa, H.; Kambe, N. Organometallics 2008, 27, 4788.
- (13) We have reported that an anion stabilizing group on β-carbon of C-S bond of vinylsulfide promotes the oxidative addition to Pt(0) complex. See: (a) Kuniyasu, H.; Ohtaka, A.; Nakazono, T.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2000, 122, 2375. (b) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504.
- (14) For isomerizations of the alkenyl transition metal complexes, see: (a) Brady, K. A.; Nile, T. A.; J. Organomet. Chem. 1981, 206, 299. (b) Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. Organometallics 1990, 9, 3127. (c) Murakami, M.; Yoshida, T.; Kawanami, S.; Ito, Y. J. Am. Chem. Soc. 1995, 117, 6408.

Chapter 2

Pd-Catalyzed Regioselevtive Iminothiolation of Alkynes: Remarkable Effects of CF₃ Group of Iminosulfides

2-1. Introduction

1-Azadienes, α , β -unsaturated imines, have been employed as versatile synthetic intermediates, which act as electrophiles in a 1,2-addition and Michael-type 1,4-addition, nucleophiles by nitrogen atom, and heterodienes in cycloaddition reaction such as hetero-Diels-Alder reaction.¹ The condensation of α,β -unsaturated ketones with primary amines is the most convenient method for the preparation of 1-azadienes (Eq. 1). On the other hand, the transition-metal catalyzed iminocarbon-vinylcarbon bond formation reaction also can be a promising alternative. Although some catalytic reactions such as Pd-catalyzed chlorides with vinyl stannanes and Pd-catalyzed imidoyl of cross-coupling Mizoroki-Heck-type reaction of imidoyl iodides with alkenes were reported,² to the best of my knowledge, catalytic introduction of imino groups by the addition reactions to alkynes is still unknown (Eq. 2).³

As a part of our studies of transition-metal catalyzed reactions of organosulfides with carbon-carbon unsaturated bonds,⁴ our group has already reported the decarbonylative carbothiolation of alkynes using thioesters to produce vinylsulfides. Moreover, the author discovered the CO-retained addition of thioesters to alkynes as noted previous chapter. This finding led me to develop a new synthetic method of β -sulfur functionalized 1-azadienes by the intermolecular addition reaction of iminosulfides (1) to alkynes (2) under similar reaction conditions of acylthiolations of alkynes.

2-2. Pd-Catalyzed Iminothiolation of Various Alkynes Using Iminosulfides

First, prompted by the success of trifluoroacetylthiolation of alkynes by $CF_3C(O)SR$ in chapter 1, reactions using an iminosulfide [1a; $CF_3C(=NPh)-S-p$ -tolyl] have been scrutinized

F_3C S(p-tolyl)			cat. Pd(d	cat. Pd(dba) ₂ /PPh ₃		R ⁴ ↓ .R ⁵
PhN		+ K K	1,2-dichle	1,2-dichloroethane		S(n-tolyl)
1	a	2				3
run	2	$R^1 \longrightarrow R^2$	temp (°C)	time (h)	3	(%) (cis:trans) ^b
1	2a	_	80	1	3 a	89 (18:82)
2	2b	CI	80	1	3b	81 (13:87)
3	2c		80	2	3c	81 (14:86)
4	2d	=	80	2	3d	87 (13:87)
5	2e	=-	80	3	3e	76 (14:86)
6	2f	=	80	1	3f	89 (98:2)
7	2g		80	1	3g	95 (86:14)
8	2h	=⟨	80	1	3h	74 (98:2)
9	2i	≡−∕⊂s	80	1	3i	83 (>99:1)
10°	2j	<u> </u>	1 60^d	1	3ј	14 (95:5)
11	2k	$\bigcirc -= - \bigcirc \bigcirc$	150 ^d	3	3k	n.d.
12	21	EtOC(0)	100 ^d	3	31	91 (>99:1)
13	2m		180 ^d	3	3m	51 (33:67)

Table 1. Pd-Catalyzed Iminothiolation of Various Alkynes (2) Using 1a^a

^a Unless otherwise noted, **1a** (0.5 mmol), **2** (0.6 mmol for runs 1-5, 3.0 mmol for runs 6-8, 1.5 mmol for run 9, 1.0 mmol for runs 10-13), $Pd(dba)_2$ (0.025 mmol), PPh_3 (0.05 mmol) and 1,2-dichloroethane (0.5 mL) at 80 °C for 1-3 h. ^b isolated yield. ^c 1,2-dichloroethane (0.25 mL). ^d microwave irradiation.

(Table 1). The reaction of **1a** (0.5 mmol) with 1-octyne (**2a**, 0.6 mmol) in the presence of Pd(dba)₂ (0.025 mmol) and PPh₃ (0.05 mmol) in 1,2-dichloroethane at 80 °C for 1 h produced desired adduct $CF_3C(=NPh)C(H)=C(n-C_6H_{13})(S-p-tolyl)$ (**3a**) in 89% (*cis:trans* = 18:82) yield (run 1, Table 1).⁵ For the synthesis of **3a**, the reaction of $F_3CC(O)C(H)=C(n-C_6H_{13})(S-p-tolyl)$ (**4a**) with aniline was conceivable. However, **3a** was not formed; only ketimine derivative [**5a**, $CF_3C(OH)=C(H)C(n-C_6H_{13})(=NC_6H_5)$] was yielded (Eq. 3), demonstrating the utility of the present Pd-catalyzed iminothiolation of **2** by **1**. Then, the reactions using a variety of terminal alkynes (**2b-i**) were attempted. Functional groups such as chlorine (**2b**), methoxy carbonyl (**2c**), 2-tetrahydropyranyl (**2d**) and cyclohexyl (**2e**), were tolerant to provide the corresponding adducts **3b-e** in good yields (runs 2-5, Table 1). Although excess amounts of arylalkynes (**2f-i**,
3-6 equiv.) were needed, both electron-rich and electron-poor arylalkynes reacted with **1a** to form *cis*-**3** in high yields (runs 6-9, Table 1).^{5,6} Because addition to internal alkynes was inefficient under similar conditions, I examined microwave irradiation (runs 10-13, Table 1). Addition to 4-octyne (**2j**) gave the low yield of **3j** even at high temperature (run 10, Table 1). No reaction took place when diphenylacetylene (**2k**) was employed (run 11, Table 1). On the other hand, the reaction using ethyl phenylpropiolate (**2l**) and 3-methoxy-1-phenylpropyne (**2m**), which are active for Pt-catalyzed decarbonylative arylthiolation by thioesters, proceeded regioselectively to afford **3l** and **3m** in 91% (*cis:trans* = >99:1) and 51% (*cis:trans* = 33:67) yields, respectively (runs 12 and 13, Table 1).^{7,8} The structure of *cis*-**3l** was unambiguously determined by X-ray crystallography (Fig. 1).⁹

Figure 1. ORTEP Diagram of cis-31.

The results of the additions of various iminosulfides (1) to 2l were summarized in Table 2. Reaction of 1b-c having electron-neutral and withdrawing substituent at the 4-position of S-aryl groups took place to give the corresponding adducts 3n and 3o, but 3o was in a moderate yield (runs 1 and 2, Table 2). Introduction of both electro-donating and withdrawing groups into 4-position of N-aryl group decreased the reactivity; poor yields of 3p and 3q were formed (runs 4 and 6, Table 2). To our delight, the yields of 3o-q were improved when increaseing concentration even with shorter reaction time (runs 3,5 and 7, Table 2). The present reaction using 1f with benzyl group at R⁵ also produced 3r in 91% yield (run 8, Table 2). Then, the addition of iminosulfides containing substituents at R³ were examined. In the case of 1g (R³ = Ph), the desired adduct 3s was obtained in 44% yield under 10 mol% of Pd/2P(*p*-tolyl)₃ (run 9, Table 2). On the other hand, the reaction of phenethyl substituted iminosulfide (1h, R³ = PhCH₂CH₂) with 2l gave no adduct 3t (run 10, Table 2).

R ³ Ar ⁴ l	SR ⁵ N 1	+ Et	OC(O)	Ph cat. Po 1,2-dic	d(dba) ₂ /PPh ₃ chloroethane	E R ³ A	$r^{4}N$ SR ⁵
run	1	R ¹	R ²	Ar ³	time (h)	3	(%) (cis:trans) ^b
1	1b	CF ₃	Ph	Ph	3	3n	82 (>99:1)
2	1c	CF ₃	$p-ClC_6H_4$	Ph	3	30	50° (>99:1)
3	1c				1	30	71 (>99:1)
4	1d	CF ₃	<i>p</i> -tolyl	<i>p</i> -MeOC ₆ H	3	3p	35° (>99:1)
5	1d			_	1	3p	88 (>99:1)
6	1e	CF	<i>p</i> -tolyl	$p-ClC_6H_4$	3	3q	34° (>99:1)
7	1e				1	3q	85 (79:21)
8	1f	CF_3	CH ₂ Ph	Ph	2	3r	91 (97:3)
9ª	1g	Ph	<i>p</i> -tolyl	Ph	3	3s	44 (81:19)
10 ^d	1h	Ph(CH ₂	p_2 p-tolyl	Ph	3	3t	n.d.

Table 2. Pd-Catalyzed Iminothiolation of 2I Using Various Iminosulfides (1)^a

^a Unless otherwise noted, **1** (0.5 mmol), **2I** (1.0 mmol), $Pd(dba)_2$ (0.025 mmol), PPh_3 (0.05 mmol) and 1,2-dichloroethane (0.5 mL for runs 1, 2, 4, 6 and 8, 0.25 mL for runs 3, 5, 7, 9 and 10) at 100 °C using microwave irradiation for 1-3 h. ^b isolated yield. ^c NMR yield. ^d $Pd(dba)_2$ (0.05 mol) and P(p-tolyl)₃ (0.1 mmol).

2-3. Oxidative Addition of R³C(=NPh)S-p-tolyl to Pt(PPh₃)₂(C₂H₄)

To get the imformation on the effect of CF_3 group, the oxidative addition of **1a** to $Pt(PPh_3)_2(C_2H_4)$ in C_6D_6 under room temperature was monitored by ³¹P NMR spectroscopy (Eq. 4). As a result, *cis*-Pt(PPh_3)_2[C(=NPh)CF_3](S-*p*-tolyl) (**6a**) was smoothly produced quantitatively for 1 h. On the other hand, the reaction using **1g** was very sluggish to afford only 2% yield of **6b**; even after 23 h, a mixture of **6b** and **7b** (dimer of **6b**) was formed in 32% total yield. These facts indicated that CF_3 group accelerates the oxidative addition.

2-4. A Proposed Reaction Mechanism

A plausible reaction mechanism of the present iminothiolation of alkynes (2; $R^1C \equiv CR^2$) using iminosulfides (1; $R^3C(=NR^4)SR^5$) was depicted in Scheme 3. The oxidative addition of 1 to Pd(0)L_n complex triggers the reaction to afford PdL_n[C(=NR^4)R^3](SR^5) (8).¹⁰ Subsequent

and stereoselective insertion of alkyne 2 into the S-Pd bond of 8 generates regio- $PdL_n[C(=NR^4)R^3][cis-C(R^1)=C(SR^5)(R^2)]$ (9).¹¹ Finally, the C-C bond-forming reductive elimination of cis-3 from 9 with regeneration of $Pd(0)L_n$ completes the catalytic cycle. Cis-to-trans isomerisation of the adduct can be explained as follows: the oxidative addition of produce complex to cis-3 а $Pd(0)L_n$ of to vinyl-C-S bond а $PdL_{n}[cis-C(R^{2})=C(R^{1})\{C(=NR^{4})R^{3}\}](SR^{5}) (cis-10),^{12} cis-to-trans isomerization of cis-10,^{13}$ and the reductive elimination of *trans*-3 from *trans*-10.

2-5. Synthesis of Furan Derivatives

Reagents and conditions: (a) **1a** (1.0 equiv.), **2n** (1.2 equiv.), $Pd(dba)_2$ (0.05 equiv.), PPh_3 (0.1 equiv.), DCE, 80 °C, 1 h; then, AcOH (5 equiv.), DCE, 60 °C, 11 h; (b) **1i** (1.0 equiv.), **2n** (1.2 equiv.), $Pd(dba)_2$ (0.05 equiv.), PPh_3 (0.1 equiv.), DCE, 80 °C, 1 h. Ts = *p*-toluenesulfonyl.

The present iminothiolation could be applied to the synthesis of furan derivatives. Furan derivatives have attracted much attention due to pharmaceuticals and flavor and fragrance compounds.¹⁴ Substituted furan (11a) was successfully obtained from the reaction of 1a with 3-methyl-1-butyn-3-ol (2n) and the following treatment of crude adduct (3u) with AcOH (Eq. 5). The overall yield of 11a for the two-pot sequence was 82% yield. The reaction of 1i containing tosyl group at imine moiety with 2n afforded 11b in 89% yield in one-pot without addition of AcOH (Eq. 6).

2-6. Conclusions

The present study substantiated that the iminothiolation of alkynes with iminosulfides gave rise to the formation of 1-azadiene derivatives. The author found that introduction of CF_3 group to the iminocarbon moiety is a key to achieve the reaction. Furthermore, the present synthesis of 1-azadienes was applicable to the formation of furan derivatives.

2-7. Experimental Section

General Comments: ¹H and ¹³C NMR spectra in CDCl₃, benzene- d_6 and toluene- d_8 solution were recorded with JEOL JNM-Alice 400 (400 MHz) spectrometer. The chemical shifts in the ¹H NMR spectra were recorded relative to Me₄Si as an internal standard and C₆H₆ (δ 7.15), and the chemical shifts in the 13 C NMR spectra were recorded relative to CHCl₃ (δ 77.0) and C_6H_6 (δ 128.6). The IR spectra were measured by Perkin-Elmer Model 1600 spectrometer and JASCO FT/IR-4200. Mass spectra (EI), high-resolution mass spectra (HRMS) and elemental analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Melting points were measured by a MPA100 Optimelt Automated Melting Point System. Preparative TLC was carried out using Wakogel B-5F silica gel. The X-ray crystal data of cis-31 were collected using Rigaku RAXIS-RAPID Imaging Plate diffractometer. The ORTEP diagram was shown in 50% probability ellipsoid. All reactions were carried out under a N2 atmosphere. Unless otherwise noted, commercially available reagents were used without purification. All solvents were distilled before use. Iminosulfides 1 were prepared by the reactions of the corresponding imidoyl chloride with thiols in the presence of Et₃N under benzene reflux. The platinum complex Pt(PPh₃)₂(C₂H₄) was synthesized according to the literature (Inorg. Synth. 1978, 18, 120). Benzene-d₆ and toluene- d_8 were purified by distillation from sodium benzophenon ketyl before use.

Preparation of F₃CC(=NC₆H₅)SC₆H₄-*p***-CH₃ (1a): Into a three-neaked 100 mL reaction glass equipped with reflux condenser were added** *p***-tolylthiol (6.23 g, 30.0 mmol), benzene (30 mL), F_3CC(=NC_6H_5)Cl (3.66 g, 29.9 mmol)¹⁵ and triethylamine (8.0 mL, 58 mmol). After the solution was stirred under reflux for 3 h, the white precipitate was filtered and the filtrate was**

evaporated and dried *in vacuo*. **1a** were isolated in 90% (7.94 g, 26.9 mmol) yields by recrystallization using CH_2Cl_2 and hexane.

F₃C S F₃CC(=NC₆H₅)SC₆H₄-*p*-CH₃ (1a): pale yellow solid; mp 61 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3 H), 6.89 (d, *J* = 7.8 Hz, 2 H), 7.06 (d, *J* = 7.8 Hz, 2 H), 7.13 (t, *J* = 7.3 Hz, 1 H), 7.30-7.33 (m, 4 H); ¹³C

NMR (100 MHz, CDCl₃) δ 21.2, 118.5 (c, J = 278 Hz), 119.1, 122.7, 125.5, 128.9, 129.8, 135.6, 140.3, 146.9, 153.1 (c, J = 35 Hz); IR (KBr) 1627, 1594, 1485, 1451, 1280, 1214, 1186, 1178, 1160, 1148, 1120, 1107, 1074, 1019, 973, 814, 766, 696, 524, 501, 410 cm⁻¹; mass spectrum (EI) m/z 295 (M⁺, 39); HRMS calcd for C₁₅H₁₂F₃NS: 295.0643. Found: 295.0640.

Other iminosulfides (1b-i) were synthesized by similar procedures.

F₃C S

F₃CC(=NC₆H₅)SC₆H₅ (1b): pale yellow solid; mp 50 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.88 (d, J = 7.8 Hz, 2 H), 7.12 (t, J = 7.3 Hz, 1 H), 7.40 (d, J = 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 118.5 (c, J = 279 Hz), 119.1, 125.6, 126.6, 129.0, 129.1, 129.8, 135.5, 146.8, 152.4 (c, J = 35

Hz); IR (KBr) 3063, 1651, 1621, 1543, 1594, 1581, 1485, 1443, 1289, 1214, 1183, 1150, 1072, 1024, 1004, 982, 824, 770, 754, 728, 706, 695, 526, 475, 418 cm⁻¹; mass spectrum (EI) m/z 281 (M⁺, 32.8); HRMS calcd for $C_{14}H_{10}F_3NS$: 281.0486. Found: 281.0482.

F₃CC(=NC₆H₅)SC₆H₄-*p***-Cl (1c): yellow solid; mp 66 °C; ¹H NMR (400 MHz, CDCl₃) δ 6.85 (d, J = 7.8 Hz, 2 H), 7.13 (t, J = 8.3 Hz, 1 H), 7.20 (d, J = 8.3 Hz, 2 H), 7.28-7.31 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 118.1 (c, J = 279 Hz), 124.6, 125.4, 128.7, 129.0, 13.2, 136.4,**

146.3, 151.3 (c, J = 35.4 Hz); IR (KBr) 3034, 1630, 1594, 1572, 1477, 1450, 1392, 1280, 1215, 1185, 1148, 1094, 1026, 1015, 971, 825, 767, 746, 728, 696, 521, 501, 418, 412 cm⁻¹; mass spectrum (EI) m/z 315 (M⁺, 20.0); HRMS calcd for C₁₄H₉ClF₃NS: 315.0096. Found: 315.0089.

F₃CC(=NC₆H₄-*p***-OCH₃)SC₆H₄-***p***-CH₃ (1d): yellow oil; ¹H NMR (400 MHz, CDCl₃) \delta 2.33 (s, 3 H), 3.81 (s, 3 H), 6.87 (d, J = 9.3 Hz, 2 H), 6.96 (d, J = 8.8 Hz, 2 H), 7.10 (d, J = 7.8 Hz, 2 H), 7.32 (d, J = 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) \delta 21.2, 55.4,**

114.1, 118.7 (c, J = 279 Hz), 121.7, 123.3, 129.9, 135.4, 139.6, 140.2, 151.1 (c, J = 35 Hz), 157.9; IR (NaCl) 2951, 2837, 1624, 1579, 1504, 1466, 1442, 1280, 1248, 1214, 1187, 1147, 1108, 1034, 1019, 975, 951, 832, 810, 765, 703 cm⁻¹; mass spectrum (EI) m/z 325 (M⁺, 35.2); HRMS calcd for C₁₆H₁₄F₃NOS: 325.0748. Found: 325.0746.

F₃CC(=NC₆H₄-*p***-Cl)SC₆H₄-***p***-CH₃ (1e): yellow oil; ¹H NMR (400 MHz, CDCl₃) \delta 2.34 (s, 3 H), 6.81 (d, J = 8.3 Hz, 2 H), 7.09 (d, J = 8.3 Hz, 2 H), 7.25-7.29 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) \delta 21.1, 118.4 (c, J = 279 Hz), 120.5, 122.3, 128.9, 129.9, 130.9, 135.5.**

140.5, 145.1, 153.7 (c, J = 34 Hz); IR (NaCl) 3027, 2923, 1885, 1628, 1484, 1402, 1284, 1219, 1189, 1151, 1097, 1013, 978, 953, 833, 809, 734, 732, 713, 655 cm⁻¹; mass spectrum (EI) m/z 329 (M⁺, 27.7); HRMS calcd for C₁₅H₁₁ClF₃NS: 329.0253. Found: 329.0254.

F₃CC(=NC₆H₅)SCH₂C₆H₅ (1f): pale yellow solid; mp 71 °C; ¹H NMR (400 MHz, CDCl₃, - 40 °C) major isomer δ 4.25 (s, 2 H), 6.90 (d, J = 7.8 Hz, 2 H), 7.16 (dd, J = 6.8, 8.3 Hz, 1 H), 7.22-7.33 (m, 4 H), 7.35-7.40 (m, 3 H): minor isomer δ 4.23 (s, 2 H), 6.76 (d, J = 7.8 Hz, 2

H), Other peaks overlap with those of major isomer.; ¹³C NMR (100 MHz, CDCl₃, - 40 °C) δ 34.6, 36.1 (c, J = 3.3 Hz), 118.2, 118.4, 118.5 (c, J = 278 Hz), 124.1, 125.7, 127.7, 128.2, 128.6, 128.8, 129.1, 129.4, 133.6, 135.3, 146.7, 147.9, 153.6 (c, J = 34 Hz); IR (KBr) 3083, 3024, 3006, 2332, 1962, 1891, 1816, 1624, 1593, 1487, 1454, 1440, 1292, 1245, 1215, 1185, 1161, 1148, 1126, 1075, 1026, 1001, 981, 918, 908, 827, 774, 726, 700, 612, 591, 560 cm⁻¹; mass spectrum (EI) m/z 295 (M⁺, 39.1); HRMS calcd for C₁₅H₁₂F₃NS: 295.0643. Found: 295.0645.

PhC(=NPh)SC₆H₄-*p***-CH₃ (1g):** yellow solid; mp 72 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.19 (s, 3 H), 6.87 (d, J = 6.8 Hz, 2 H), 6.99 (d, J = 7.3 Hz, 2 H), 7.03 (d, J = 7.3 Hz, 2 H), 7.13 (dd, J = 6.4, 6.8 Hz, 1 H), 7.20-7.27 (m, 3 H), 7.36 (dd, J = 6.3, 6.4 Hz, 2 H), 7.65 (d, J = 5.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 120.0, 124.2, 127.9, 128.5,

128.7, 128.8, 129.0, 129.1, 129.5, 129.9, 133.4, 137.7, 150.4; IR (KBr) 3347, 3077, 3052, 3030, 2918, 1955, 1906, 1797, 1645, 1574, 1489, 1445, 1397, 1351, 1304, 1240, 1208, 1182, 1167, 1105, 1089, 1075, 1025, 1015, 998, 933, 921, 899, 847, 832, 809, 766, 690, 665, 644, 629, 609, 594, 555 cm⁻¹; mass spectrum (EI) m/z 303 (M⁺, 0.2); HRMS calcd for $C_{20}H_{17}NS$: 303.1082. Found: 303.1090.

PhCH₂CH₂C(=NPh)SC₆H₄-*p***-CH₃ (1h): yellow oil; ¹H NMR (400 MHz, CDCl₃) \delta 2.36 (s, 3 H), 2.62 (t,** *J* **= 8.3 Hz, 2 H), 2.93 (t,** *J* **= 8.3 Hz, 2 H), 6.89 (d,** *J* **= 7.3 Hz, 2 H), 7.01 (d,** *J* **= 6.8 Hz, 2 H), 7.10-7.24 (m, 7 H), 7.34-7.38 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃) \delta 21.3, 33.4, 39.5, 119.7, 124.1, 126.0, 126.9, 128.3, 128.5,**

129.0, 130.1, 135.8, 139.8, 140.9, 150.3, 166.8; IR (NaCl) 3060, 3027, 2923, 2861, 1734, 1625, 1592, 1486, 1453, 1416, 1265, 1220, 1179, 1060, 1018, 993, 945, 901, 867, 812, 751, 696 cm⁻¹; mass spectrum (EI) m/z 331 (M⁺, 0.3); HRMS calcd for $C_{22}H_{21}NS$: 331.1395.

F₃CC(=N-SO₂-C₆H₄-*p***-CH₃)SC₆H₄-***p***-CH₃ (1i): white solid; mp 143 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3 H), 2.47 (s, 3 H), 7.24 (d, J = 12 Hz, 2 H), 7.37 (d, J = 12 Hz, 2 H), 7.50 (d, J = 12**

Hz, 2 H), 7.90 (d, J = 12 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 21.7, 117.7 (c, J = 283 Hz), 121.1, 126.2, 127.7, 129.7, 130.3, 136.1, 136.2, 142.2, 145.1, 167.0 (c, J = 35 Hz); IR (KBr) 3326, 3239, 3114, 1596, 1562, 1491, 1452, 1401, 1336, 1304, 1291, 1273, 1206, 1185, 1151, 1087, 1040, 1017, 982, 909, 818, 789, 722, 703, 665, 642, 603, 570 cm⁻¹; mass spectrum (EI) m/z 373 (M⁺, 8.3); HRMS calcd for C₁₆H₁₄F₃NO₂S₂: 373.0418. Found: 373.0420.

Table S1. Optimization of the reaction conditions^a

	F₃C _∕ SAr			cat. M (5 mol ligand (Y mol	%) %)	F ₃ C	<i>n</i> -C ₆ H ₁₃
	 NPh	+n-C ₆ H	13	solvent (0.5 mL)		II NPt	n SAr
	1a	2a		Ar = <i>p</i> -tolyl		3	a
run	М	ligand	Y	solvent	temp	time	3a (%) (cis/trans) ^b
1	Pd(PPh ₃) ₄		-	toluene	80 °C	25 h	75 [°] (22:78)
2	Pd(PPh ₃) ₄	-	-	DME	80 °C	25 h	71° (22:78)
3	$Pd(PPh_3)_4$	-	-	1,4-dioxane	80 °C	25 h	56° (24:76)
4	$Pd(PPh_3)_4$	-	-	MeCN	80 °C	25 h	82° (28:72)
5	$Pd(PPh_3)_4$	-	-	DMF	80 °C	25 h	69 (23:77)
6	Pd(PPh ₃) ₄	-	-	DCE	80 °C	25 h	86 (21:79)
7	$Pd(PPh_3)_4$	-	-	DCE	80 °C	1 h	71 (27:73)
8	Pd(PPh ₃) ₄	-	-	DCE	80 °C	5 h	83 (24:76)
9	$Pd(PPh_3)_4$	-	-	DCE	80 °C	10 h	74 (22:78)
10	$Pd(PPh_3)_4$	-	-	DCE	r.t.	25 h	25 (13:87)
11	-	-	-	DCE	80 °C	25 h	n.d.
12	$Pd(dba)_2$	-	-	DCE	80 °C	1 h	n.d.
13	$Pd(dba)_2$	PPh ₃	20	DCE	80 °C	1 h	84 (22:78)
14	Pd(dba) ₂	PPh ₃	10	DCE	80 °C	1 h	93 (20:80)
							$(89 (18:82))^{a}$
15	Pd(dba) ₂	$P(o-tolyl)_3$	20	DCE	80 °C	1 h	9 (14:86)
16	$Pd(dba)_2$	$P(o-MeOC_6H_4)_3$	20	DCE	80 °C	1 h	12 (15:85)
17	$Pd(dba)_2$	$P(p-tolyl)_3$	20	DCE	80 °C	1 h	70 (22:78)
18	$Pd(dba)_2$	$P(p-MeOC_6H_4)_3$	20	DCE	80 °C	1 h	65 (19:81)
19	$Pd(dba)_2$	$P(p-ClC_6H_4)_3$	20	DCE	80 °C	1 h	77 (25:75)
20	$Pd(dba)_2$	$P(p-CF_3OC_6H_4)_3$	20	DCE	80 °C	1 h	64 (20:80)
21	$Pd(dba)_2$	TFP	20	DCE	80 °C	1 h	75 (29:71)
22	$Pd(dba)_2$	PCy ₃	20	DCE	80 °C	1 h	57 (25:75)
23	Pd(dba) ₂	$P(t-Bu)_3$	20	DCE	80 °C	1 h	75 (20:80)
24	$Pd(dba)_2$	dppe	20	DCE	<u>80 °C</u>	<u>1 h</u>	37 (19:81)

^a Unless otherwise noted, **1a** (0.5 mmol), **2a** (0.6 mmol), catalyst (0.025 mmol), ligand and solvent (0.5 mL). ^b NMR yield. ^c Some byproducts were generated. ^d isolated yield. DCE = 1,2-dichloroethane. TFP = tri(2-furyl)phosphine.

Reaction of $F_3CC(NC_6H_5)SC_6H_4$ -*p*-CH₃ (1a) with 1-Octyne (2a) in the Presence of Pd(dba)₂/2PPh₃ (run 1 of Table 1): General Procedure of Palladium-Catalyzed Iminothiolation of Alkynes Using Iminosulfides: Into a two-neaked 3 mL reaction glass were added Pd(dba)₂ (14.4 mg, 0.025 mmol), PPh₃ (13.1 mg, 0.05 mmol), 1a (149.9 mg, 0.507 mmol), 2a (67.2 mg, 0.610 mmol) and 0.5 mL of 1,2-dichloroethane under N₂ atmosphere. After the solution was stirred at 80 °C for 1 h, the resultant mixture was filtered through Celite, and the filtrate was evaporated and dried *in vacuo*. 3a was isolated in 89% (183 mg, *cis:trans* = 18:82) yields by preparative TLC using hexane and diethyl ether (10:1) as an eluent.

CF₃C(=NC₆H₅)C(H)=C(*n*-C₆H₁₃)SC₆H₄-*p*-CH₃ (3a): The title compound was obtained as a mixture of inseparable stereoisomers (*cis:trans* = 18:82); yellow oil; ¹H NMR (400 MHz, C₆D₆) trans-isomer δ 0.81 (t, J = 7.1 Hz, 3 H), 0.85-0.89 (m, 2 H),

0.94-1.03 (m, 2 H), 1.68-1.75 (m, 2 H), 1.83 (t, J = 7.3 Hz, 2 H), 1.93 (s, 3 H), 5.79 (s, 1 H), 6.71 (d, J = 7.8 Hz, 2 H), 6.87 (d, J = 8.3 Hz, 2 H), 6.93-6.96 (m, 3 H), 7.09 (dd, J = 7.3, 7.8 Hz, 2 H): *cis*-isomer δ 1.30 (m, 2 H), 1.97 (s, 3 H), 2.13 (t, J = 7.3 Hz, 2 H), 6.54 (s, 1 H), 6.78 (d, J = 7.3 Hz, 2 H), 7.26 (d, J = 7.3 Hz, 2 H), Other peaks overlap with those of *trans*-isomer.; N.O.E. experiment: Irradiation of the aryl doublet at δ 6.71 resulted in a 1.7% enhancement of the signal at δ 5.79 (vinyl singlet) and a 2.4% enhancement of the signal at δ 1.83 (methylene triplet); ¹³C NMR (100 MHz, C₆D₆) *trans*-isomer δ 14.8, 21.5, 23.3, 28.8, 28.9, 32.3, 36.3, 118.3, 121.3 (c, J = 268 Hz), 121.6, 126.3, 129.1, 129.5, 130.6, 134.0, 139.0, 155.8 (c, J = 34Hz): *cis*-isomer δ 14.7, 21.6, 23.2, 29.5, 31.0, 32.1, 38.5, 113.6, 119.3, 124.7, 129.4, 130.8, 136.1, 139.9, Other peaks cannot be detected.; IR (NaCl) 3382, 3024, 2930, 2854, 1677, 1600, 1578, 1534, 1493, 1449, 1398, 1382, 1312, 1282, 1244, 1226, 1187, 1141, 1111, 1063, 1040, 1018, 989, 912, 891, 877, 812, 761, 735, 694, 583 cm⁻¹; mass spectrum (EI) m/e 405 (M⁺, 23); HRMS calcd for C₂₃H₂₆F₃NS: 405.1738. Found: 405.1733.

Other iminothiolation products (**3b-i**) using terminal alkynes (**2b-i**) were synthesized by similar procedures.

 $CF_3C(=NC_6H_5)C(H)=C((CH_2)_4Cl)SC_6H_4-p-CH_3$ (3b): The title compound was obtained as a mixture of inseparable stereoisomers (*cis:trans* = 13:87); yellow oil; ¹H NMR (400 MHz, C₆D₆) *trans*

-isomer δ 0.97-1.04 (m, 2 H), 1.09-1.17 (m, 2 H), 1.68 (t, J = 7.3 Hz, 2 H), 1.92 (s, 3 H), 2.88 (t, J = 6.4 Hz, 2 H), 5.67 (s, 1 H), 6.70 (d, J = 7.8 Hz, 2 H), 6.88-6.94 (m, 5 H), 7.07 (dd, J = 7.8, 7.8 Hz, 2 H): *cis*-isomer δ 1.26 (t, J = 6.8 Hz, 2 H), 6.45 (s, 1 H), 6.74-6.82 (m 4 H), 6.97-7.01 (m, 3 H), 7.23 (d, J = 7.3 Hz, 2 H), other peaks overlap with those of *trans*-isomer; ¹³C NMR (100 MHz, C₆D₆) *trans*-isomer δ 20.9, 25.1, 31.0, 34.6, 44.4, 118.5, 120.6 (c, J = 278 Hz), 120.9, 125.8, 129.0, 130.1, 133.4, 138.5, 147.9, 148.4, 155.1 (c, J = 35 Hz): *cis*-isomer δ 21.0, 27.5, 31.8, 36.9, 44.2, 118.7, 135.4, 148.7, Other peaks cannot be detected.; IR (NaCl) 3393,

3023, 2956, 2869, 1681, 1638, 1600, 1556, 1493, 143, 1398, 1379, 1282, 1248, 1226, 1185, 1134, 1018, 1000, 907, 811, 749, 729, 695, 655, 569 cm⁻¹; mass spectrum (EI) m/e 411 (M⁺, 19); HRMS calcd for $C_{21}H_{21}ClF_3NS$: 411.1035. Found: 411.1021.

CF₃C(=NC₆H₅)C(H)=C((CH₂)₃CO₂CH₃)SC₆H₄-*p*-CH₃ (3c): The title compound was obtained as a mixture of inseparable stereoisomers (*cis:trans* = 14:86); yellow oil; ¹H NMR (400 MHz, CDCl₃) *trans*-isomer δ 1.59 (tt, *J* = 6.8, 7.8 Hz, 2 H), 1.99 (t, *J* = 7.8

Hz, 2 H), 2.00 (t, J = 6.8 Hz, 2 H), 2.30 (s, 3 H), 2.89 (t, J = 7.8 Hz, 2 H), 3.61 (s, 3 H), 6.02 (s, 1 H), 6.87 (d, J = 7.8 Hz, 2 H), 6.98 (d, J = 7.8 Hz, 2 H), 7.02 (d, J = 7.8 Hz, 2 H), 7.19 (t, J = 7.3 Hz, 1 H), 7.34 (t, J = 7.8 Hz, 2 H): *cis*-isomer δ 1.74 (tt, J = 6.8, 7.3 Hz, 2 H), 2.14 (tt, J = 7.3 Hz, 2 H), 2.37 (s, 3 H), 6.43 (s, 1 H), 7.40 (d, J = 8.3 Hz, 2 H), other peaks overlap with those of *trans*-isomer; ¹³C NMR (100 MHz, CDCl₃) *trans*-isomer δ 21.1, 23.0, 32.2, 34.5, 51.5, 118.1, 120.5, 122.5 (c, J = 287 Hz), 125.7, 127.5, 128.8, 129.9, 133.1, 138.5, 147.6, 155.1 (c, J = 35 Hz), 173.5: *cis*-isomer δ 21.3, 24.9, 32.9, 36.6, 51.6, 118.3, 128.5, 135.2, 139.5, 148.0, 173.3, Other peaks cannot be detected.; IR (NaCl) 3023, 2952, 2868, 1737, 1665, 1596, 1546, 1493, 1485, 1449, 1438, 1399, 1369, 1317, 1225, 1188, 1138, 1109, 1091, 1018, 910, 812, 759, 729, 694, 580 cm⁻¹; mass spectrum (EI) m/e 421 (M⁺, 1.7); HRMS calcd for C₂₂H₂₂F₃NO₂S: 421.1323. Found: 421.1318.

 $CF_3C(=NC_6H_5)C(H)=C((CH_2)_2O(2-C_5H_9O))SC_6H_4-p-CH_3$ (3d): The title compound was obtained as a mixture of inseparable stereoisomers (*cis:trans* = 13:87); yellow oil; ¹H NMR (400 MHz, C_6D_6) *trans*-isomer δ 1.22-1.37 (m, 3 H), 1.46-1.53 (m, 2 H), 1.63-1.71 (m, 1 H), 1.90 (s, 3 H), 2.16 (t, J = 6.4 Hz, 2 H), 3.17-3.23

(m, 1 H), 3.30-3.35 (m, 1 H), 3.63-3.69 (m, 2 H), 4.40 (t, J = 3.4 Hz, 2 H), 6.02 (s, 1 H), 6.66 (d, J = 7.8 Hz, 2 H), 6.78 (d, J = 7.8 Hz, 2 H), 6.92-6.96 (m, 1 H), 6.99 (d, J = 7.3 Hz, 2 H), 7.05-7.13 (m, 2 H): *cis*-isomer δ 1.93 (s, 3 H), 2.49 (m, 2 H), 3.74-3.76 (m, 1 H), 6.71 (s, 1 H), 7.25 (d, J = 7.3 Hz, 2 H), other peaks overlap with those of *trans*-isomer; ¹³C NMR (100 MHz, C₆D₆) *trans*-isomer δ 19.6, 21.0, 25.9, 30.9, 36.3, 61.7, 65.1, 98.7, 119.3, 120.9 (c, J = 277 Hz), 121.5, 126.0, 128.5, 129.0, 130.2, 133.5, 138.5, 145.6, 148.3, 154.9 (c, J = 34 Hz): *cis*-isomer δ 19.5, 21.1, 38.1, 61.7, 66.2,146.7, 118.8, 124.4, 128.9, 129.0, 129.3, 130.2, 135.6, 148.8, Other peaks cannot be detected.; IR (NaCl) 3058, 3022, 2944, 2871, 2280, 1734, 1662, 1595, 1547, 1492, 1485, 1452, 1398, 1385, 1352, 1322, 1286, 1225, 1186, 1136, 1077, 1033, 998, 968, 906, 871, 812, 777, 759, 728, 692, 631, 583, 557 cm⁻¹; mass spectrum (EI) m/e 449 (M⁺, 0.5); HRMS calcd for C₂₄H₂₆F₃NO₂S: 449.1636. Found: 449.1639.

trans-CF₃C(=NC₆H₅)C(H)=C(c-C₆H₁₁)SC₆H₄-p-CH₃ (*trans*-3e): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.69-0.91 (m, 4 H), 1.31 (d, J = 13 Hz, 2 H), 1.42 (d, J = 13 Hz, 2 H), 1.66 (d, J = 12 Hz, 2 H), 1.78-1.85 (m, 1 H), 1.94 (s, 3 H), 5.88 (s, 1 H), 6.69 (d, J = 7.8 Hz, 2

H), 6.85 (d, J = 7.8 Hz, 2 H), 6.93 (t, J = 7.3 Hz, 1 H), 6.96 (d, J = 7.8 Hz, 2 H), 7.05-7.09 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 26.6, 27.0, 33.5, 43.6, 117.3, 121.3 (c, J = 277 Hz), 122.0, 126.4, 129.3, 129.7, 130.6, 133.4, 138.6, 148.8, 153.7, 156.4 (c, J = 34 Hz); IR (NaCl) 3058, 3022, 2928, 2853, 1661, 1595, 1542, 1492, 1449, 1399, 1380, 1311, 1280, 1224, 1188, 1136, 1101, 1072, 1057, 1041, 1018, 986, 910, 879, 811, 761, 727, 694, 634, 587 cm⁻¹; mass spectrum (EI) m/e 403 (M⁺, 13); Anal. Calcd for C₂₃H₂₄F₃NS: C, 68.46; H, 6.00; N, 3.47. Found: C, 68.28; H, 5.88; N, 3.41.

cis-CF₃C(=NC₆H₅)C(H)=C(C₆H₅)SC₆H₄-*p*-CH₃ (*cis*-3f): yellow solid; mp 114 °C; ¹H NMR (400 MHz, CDCl₃) main isomer δ 2.13 (s, 3 H), 6.26 (s, 1 H), 6.54 (d, *J* = 8.0 Hz, 2 H), 6.76 (d, *J* = 7.8 Hz, 2 H), 7.05 (d, *J* = 7.8 Hz, 2 H), 7.14-7.19 (m, 4 H), 7.27-7.34 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) main isomer δ 20.9, 119.4, 119.7 (c, *J* = 277

Hz), 120.7, 125.9, 128.1, 128.2, 128.8, 129.1, 129.3, 131.2, 133.7, 137.0, 137.2, 147.5, 147.6, 155.1 (c, J = 35 Hz), 173.5; N.O.E. experiment: Irradiation of the vinyl singlet at δ 6.26 resulted in a 7.0% enhancement of the signal at δ 6.54 (aryl doublet); IR (KBr) 3080, 3060, 3023, 3000, 2945, 2921, 2868, 1656, 1585, 1566, 1484, 1446, 1401, 1326, 1284, 1268, 1227, 1189, 1169, 1140, 1092, 1057, 1018, 1000, 957, 916, 904, 852, 839, 818, 764, 752, 692, 583, 563, 552 cm⁻¹; mass spectrum (EI) m/e 396 (M⁺, 74); Anal. Calcd for C₂₃H₁₈F₃NS: C, 69.50; H, 4.56; N, 3.52. Found: C, 69.32; H, 4.48; N, 3.62.

cis-CF₃C(=NC₆H₅)C(H)=C(C₆H₄-*p*-CH₃)SC₆H₄-*p*-CH₃ (*cis*-3g): yellow solid; mp 100 °C; ¹H NMR (400 MHz, CDCl₃) main isomer δ 2.15 (s, 3 H), 2.22 (s, 3 H), 6.24 (s, 1 H), 6.55 (d, *J* = 7.8 Hz, 2 H), 6.78 (d, *J* = 7.3 Hz, 2 H), 6.95 (d, *J* = 7.8 Hz, 2 H), 7.04 (d, *J* = 7.8 Hz, 2 H), 7.14-7.21 (m, 3 H), 7.31 (t, *J* = 7.3 Hz, 2 H); ¹³C NMR (100 MHz, 100 MHz,

CDCl₃) main isomer δ 21.9, 22.0, 119.9, 120.7 (c, J = 277 Hz), 121.7, 126.8, 129.1, 129.7, 129.8, 130.0, 130.2, 131.9, 135.2, 137.7, 140.2, 148.2, 148.6, 156.2 (c, J = 34 Hz); IR (KBr) 3023, 2924, 2324, 1903, 1658, 1584, 1505, 1484, 1448, 1401, 1380, 1322, 1308, 1285, 1264, 1227, 1188, 1169, 1141, 1092, 1059, 1018, 957, 939, 903, 855, 813, 784, 755, 714, 689, 649, 634, 596, 572 cm⁻¹; mass spectrum (EI) m/e 411 (M⁺, 48.6); Anal. Calcd for C₂₄H₂₀F₃NS: C, 70.05; H, 4.90; N, 3.40. Found: C, 69.83; H, 4.68; N, 3.47.

cis-CF₃C(=NC₆H₅)C(H)=C(C₆H₄-*p*-CF₃)SC₆H₄-*p*-CH₃ (*cis*-3h): yellow oil; ¹H NMR (400 MHz, CDCl₃) main isomer δ 2.15 (s, 3 H), 6.30 (s, 1 H), 6.53 (d, J = 7.8 Hz, 2 H), 6.78 (d, J = 7.8 Hz, 2 H), 7.05 (d, J = 7.3 Hz, 2 H), 7.20 (t, J = 7.3 Hz, 2 H), 7.35-7.39 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) main isomer δ 21.1, 119.8 (c, J =

277 Hz), 120.9, 121.3, 123.8 (c, J = 239 Hz), 125.3 (c, J = 4.1 Hz), 126.3, 128.1, 128.7, 129.1, 129.7, 130.0 (d, J = 32 Hz), 131.0, 137.8, 141.1, 146.4, 147.6, 154.8 (c, J = 35 Hz); IR (NaCl) 3059, 302, 2979, 2925, 2869, 1901, 1794, 1660, 1615, 1593, 1543, 1493, 1485, 1450, 1408, 1325, 1297, 1268, 1226, 1169, 1131, 1090, 1066, 1017, 961, 908, 843, 809, 771, 757, 741, 693, 638, 609, 584, 555 cm⁻¹; mass spectrum (EI) m/e 465 (M⁺, 31.6); Anal. Calcd for C₂₄H₁₇F₆NS: C, 61.93; H, 3.68; N, 3.01. Found: C, 61.68; H, 3.56; N, 2.99.

cis-CF₃C(=NC₆H₅)C(H)=C(3-C₄H₃S)SC₆H₄-*p*-CH₃ (*cis*-3i): yellow solid; mp 78 °C; ¹H NMR (400 MHz, CDCl₃) main isomer δ 2.18 (s, 3 H), 6.36 (s, 1 H), 6.61 (d, J = 8.3 Hz, 2 H), 6.83 (d, J = 8.3 Hz, 2 H), 6.97 (d, J = 5.4 Hz, 1 H), 7.01 (d, J = 8.3 Hz, 2 H), 7.06 (dd, J = 2.9, 4.9 Hz, 1 H), 7.15 (dd, J = 7.3, 7.8 Hz, 1 H), 7.21 (d, J = 2.9 Hz, 1 H),

7.30 (dd, J = 7.3, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) main isomer δ 21.0, 118.6, 119.7 (c, J = 277 Hz), 121.0, 125.7, 125.8, 125.9, 126.8, 128.8, 129.3, 129.4, 130.5, 136.9, 138.8, 141.0, 147.6, 154.7 (c, J = 35 Hz); IR (KBr) 3110, 3060, 3023, 3006, 2921, 1661, 1587, 1493, 1483, 1448, 1410, 1317, 1273, 1227, 1191, 1166, 1138, 1091, 1079, 1054, 1017, 994, 909, 888, 870, 833, 816, 778, 768, 746, 726, 688, 649, 573 cm⁻¹; mass spectrum (CI) m/e 404 (M⁺, 100); Anal. Calcd for C₂₁H₁₆F₃NS₂: C, 62.51; H, 4.00; N, 3.47. Found: C, 62.22; H, 3.82; N, 3.50.

Reaction of $F_3CC(NC_6H_5)SC_6H_4$ -p-CH₃ (1a) with Ethyl Phenylpropiolate (2l) in the Presence of Pd(dba)₂/2PPh₃ under the Microwave Irradiation (run 12 of Table 1): General Procedure of Palladium-Catalyzed Iminothiolation of Alkynes Using Iminosulfides under the Microwave Irradiation: Into a 2 mL vial bottle were added Pd(dba)₂ (15.0 mg, 0.026 mmol), PPh₃ (13.1, 0.05 mmol), 1a (154.4 mg, 0.523 mmol), 2l (179 mg, 1.0 mmol) and 0.5 mL of 1,2-dichloroethane in the dry box (Glove box). The vial bottle was taken outside the dry box. After the solution was stirred at 100 °C for 3 h under microwave irradiation, the resultant mixture was filtered through Celite, and the filtrate was evaporated and dried in vacuo. *Cis*-3l was isolated in 91% (223 mg, 0.476 mmol) yields by preparative TLC using hexane and diethyl ether (10:1) as an eluent.

cis-CF₃C(=NC₆H₅)C(CO₂C₂H₅)=C(C₆H₅)SC₆H₄-*p*-CH₃ (*cis*-3l): pale yellow solid; mp 92 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, *J* = 7.3 Hz, 3 H), 3.98 (c, *J* = 7.3 Hz, 2 H), 6.39 (d, *J* = 7.8 Hz, 2 H), 6.70 (d, *J* = 7.8 Hz, 2 H), 6.83 (d, *J* = 7.8 Hz, 2 H), 6.99-7.07 (m, 3 H), 7.26-7.28

(m, 3 H), 7.40 (dd, J = 7.3, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.1, 20.5, 60.8, 118.8, 119.1 (c, J = 278 Hz), 119.8, 125.4, 125.8, 127.0, 128.0, 128.2, 128.3, 128.8, 133.4, 134.9, 138.2, 146.8, 154.5 (c, J = 35 Hz), 159.7, 163.0; IR (KBr) 3375, 3065, 3031, 3004, 2980, 2957, 2937, 2924, 2898, 2870, 1696, 1656, 1591, 1578, 1555, 1486, 1473, 1446, 1389, 1363, 1318, 1274, 1222, 1186, 1078, 1020, 984, 937, 915, 874, 839, 812, 798, 761, 744, 717, 696, 681, 641, 625, 599, 556 cm⁻¹; mass spectrum (EI) m/e 469 (M⁺, 5.4); Anal. Calcd for C₂₆H₂₂F₃NO₂S: C, 66.51; H, 4.72; N, 2.98. Found: C, 66.23; H, 4.64; N, 3.03.

Other iminothiolation products (**3j**, **m**-**s**) using internal alkynes (**2j**, **l**, **m**) were synthesized by similar procedures.

 $CF_3C(=NC_6H_5)C(n-C_3H_7)=C(n-C_3H_7)SC_6H_4-p-CH_3$ (3j): The title compound was obtained as a mixture of inseparable stereoisomers (*cis:trans* = 95:5); pale yellow oil; ¹H NMR (400 MHz, CDCl₃) *cis*-isomer δ 0.76 (t, J = 7.3 Hz, 3 H), 0.86 (t, J = 7.3 Hz, 3 H), 1.27-1.46 (m, 4 H), 1.59 (m, 1 H), 1.96-1.99 (m, 1 H), 2.06-2.23 (m, 2)

H), 2.34 (s, 3 H), 6.93 (d, J = 7.8 Hz, 2 H), 7.11-7.17 (m, 3 H), 7.21 (d, J = 8.3 Hz, 2 H), 7.33 (dd, J = 7.8, 8.3 Hz, 2 H): trans-isomer δ 0.73 (t, J = 7.3 Hz, 3 H), 0.91 (t, J = 7.3 Hz, 3 H), 1.00-1.02 (m, 4 H), 2.30 (s, 3 H), 6.73 (d, J = 8.8 Hz, 2 H), 6.87 (d, J = 7.8 Hz, 2 H), 7.38 (dd, J = 7.8, 8.3 Hz, 2 H), Other peaks overlap with those of *cis*-isomer.; ¹³C NMR (100 MHz, CDCl₃) *cis*-isomer δ 13.4, 14.0, 21.1, 21.2, 21.2, 32.1, 33.9, 119.4, 122.2 (c, J = 296 Hz), 125.5, 128.7, 129.3, 129.8, 131.7, 133.6, 137.7, 141.2, 147.6, 161.2 (c, J = 33 Hz); IR (NaCl) 3060, 3022, 2962, 2932, 2873, 2372, 2323, 1644, 1597, 1492, 1465, 1400, 1380, 1312, 1281, 1248, 1222, 1187, 1142, 1117, 1091, 1063, 1017, 962, 914, 809, 782, 760, 731, 693, 648, 589 cm⁻¹; mass spectrum (EI) m/e 405 (M⁺, 10); HRMS calcd for C₂₃H₂₆F₃NS:405.1738. Found: 405.1741.

trans-CF₃C(=NC₆H₅)C(CH₂OCH₃)=C(C₆H₅)SC₆H₄-*p*-CH₃ (*trans*-3m): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 3 H), 3.22 (s, 3 H), 3.76 (dd, J = 12.2, 67.4 Hz, 2 H), 6.62 (d, J = 7.8 Hz, 2 H), 6.75 (d, J = 7.8 Hz, 2 H), 6.99-7.01 (m, 2 H), 7.09 (s, 3 H), 7.22-7.28 (m, 3 H), 7.37 (dd, J = 7.3, 7.8 Hz, 2 H); N.O.E. experiment: Irradiation

of the signal at δ 3.83 (methylene doublet) resulted in a 4.0% enhancement of the signal at δ 6.75 (aryl doublet); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 58,6, 71.4, 119.3 (c, *J* = 218 Hz), 120.5, 125.9, 127.6, 127.8, 128.3, 128.5, 128.6, 129.0, 129.2, 133.0, 135.6, 137.7, 143.8, 147.5, 157.4 (c, *J* = 35 Hz); IR (NaCl) 3060, 3022, 2989, 2925, 2824, 1651, 1593, 1490, 1445, 1370, 1318, 1285, 1241, 1223, 1185, 1142, 1107, 1017, 989, 909, 809, 770, 749, 714, 696, 640, 579 cm⁻¹; mass spectrum (EI) m/e 441 (M⁺, 8.5); Anal. Calcd for C₂₅H₂₂F₃NOS: C, 68.01; H, 5.02; N, 3.17. Found: C, 67.72; H, 4.88; N, 3.21.

cis-CF₃C(=NC₆H₅)C(CO₂C₂H₅)=C(C₆H₅)SC₆H₅ (*cis*-3n): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.98 (t, J = 6.8 Hz, 3 H), 3.99 (c, J = 6.8 Hz, 2 H), 6.50 (d, J = 7.3 Hz, 2 H), 6.84 (d, J = 7.8 Hz, 2 H), 6.90 (dd, J = 7.3, 7.8 Hz, 2 H), 6.98-7.05 (m, 4 H), 7.26-7.30 (m, 3 H), 7.41 (dd, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 Mz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 Mz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 Mz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 Mz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 2 H); ¹³C NMR (100 Mz, CDCl₃) δ 13.6, 61.4, 119.6 (c, J = 4.4, 7.8 Hz, 119.6

= 278 Hz), 119.8, 120.3, 126.3, 127.5, 128.4, 128.4, 128.6, 128.7, 128.8, 129.6, 133.9, 135.3, 147.3, 154.9 (c, J = 35 Hz), 159.5, 163.4; IR (NaCl) 3060, 3025, 2984, 2939, 2904, 1952, 1880, 1731, 1698, 1593, 1579, 1560, 1486, 1443, 1391, 1367, 1320, 1277, 1247, 1224, 1187, 1145, 1074, 1023, 1001, 983, 931, 910, 875, 836, 746, 719, 694, 629, 600, 558 cm⁻¹; mass spectrum (EI) m/e 455 (M⁺, 3.6); Anal. Calcd for C₂₅H₂₀F₃NO₂S: C, 65.92; H, 4.43; N, 3.08. Found: C, 65.77; H, 4.21; N, 3.21.

cis-CF₃C(=NC₆H₅)C(CO₂C₂H₅)=C(C₆H₅)SC₆H₄-*p*-Cl (*cis*-30): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, J = 6.8 Hz, 3 H), 3.99 (c, J = 6.8 Hz, 2 H), 6.34 (d, J = 8.3 Hz, 1 H), 6.50 (d, J = 7.8 Hz, 1 H), 6.84-6.86 (m, 2 H), 6.89 (d, J = 7.8 Hz, 2 H), 6.96-7.09 (m, 3 H), 7.26-7.29 (m, 3 H), 7.38-7.42 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃)

stereoisomer of $PhN=C(CF_3)R$ (R two observed as These peaks were $C(CO_2C_2H_5)=C(C_6H_5)SC_6H_4$ -*p*-Cl). δ 13.3, 13.6, 61.4, 61.5, 119.6 (c, J = 278 Hz), = 278 Hz), 119.9, 120.3, 120.4, 120.7, 126.3, 126.4, 127.5, 127.6, 127.8, 128.3, 128.4, 128.4, 128.6, 128.6, 128.6, 128.6, 128.7, 128.8, 128.8, 129.2, 129.6, 133.9, 134.7, 134.8, 135.2, 135.3147.2, 147.3, 154.6 119.6 (c, J = 35 Hz), 158.1, 159.5, 163.5; IR (NaCl) 3061, 3025, 2982, 2938, 2903, 2253, 1952, 1897, 1731, 1699, 1593, 1579, 1559, 1486, 1476, 1444, 1391, 1368, 1320, 1278, 1247, 1224, 1187, 1146, 1093, 1075, 1023, 984, 910, 875, 822, 746, 695, 648, 630, 600, 559 cm⁻¹; mass spectrum (EI) m/e 489 (M⁺, 4.9); HRMS calcd for C₂₅H₁₉ClF₃NO₂S: 489.0772. Found: 489.0777.

cis-CF₃C(=NC₆H₄-*p*-OCH₃)C(CO₂C₂H₅)=C(C₆H₅)SC₆H₄-*p*-CH₃ (*cis*-3*p*): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 6.8 Hz, 3 H), 2.12 (s, 3 H), 3.85 (s, 3 H), 3.89 (c, *J* = 6.8 Hz, 2 H), 6.33 (d, *J* = 7.8 Hz, 2 H), 6.72 (d, *J* = 7.8 Hz, 2 H), 6.91 (d, *J* = 5.8 Hz, 2 H), 6.95 (d, *J* = 8.8 Hz, 2 H), 7.05-7.07 (m, 3 H), 7.29 (d, *J* = 8.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 21.0, 55.6, 61.3, 114.0,

121.3 (c, J = 282 Hz), 121.2, 123.9, 126.1, 127.5, 128.5, 128.7, 129.2, 134.0, 135.6, 138.6, 140.3, 153.4 (c, J = 35 Hz), 158.6, 159.5, 163.6; IR (NaCl) 3059, 2982, 2837, 2254, 1728, 1698, 1648, 1600, 1578, 1561, 1504, 1493, 1465, 1444, 1392, 1367, 1320, 1292, 1250, 1226, 1184, 1166, 1143, 1075, 1030, 984, 910, 876, 845, 829, 809, 735, 696, 682, 648 cm⁻¹; mass spectrum (EI) m/e 499 (M⁺, 26.3); Anal. Calcd for C₂₇H₂₄F₃NO₃S: C, 64.92; H, 4.84; N, 2.80. Found: C, 64.79; H, 4.63; N, 2.88.

CF₃C(=NC₆H₄-*p***-Cl)C(CO₂C₂H₅)=C(C₆H₅)SC₆H₄-***p***-CH₃ (3q): The title compound was obtained as a mixture of inseparable stereoisomers (***cis:trans* **= 71:29); yellow oil; ¹H NMR (400 MHz, CDCl₃)** *cis***-isomer \delta 0.96 (t, J = 7.3 Hz, 3 H), 2.13 (s, 3 H), 3.98 (c, J = 7.3 Hz, 2 H), 6.40 (d, J = 7.8 Hz, 2 H), 6.75-6.78 (m, 2 H),**

6.85-6.90 (m, 3 H), 7.04-7.22 (m, 2 H), 7.24-7.26 (m, 2 H), 7.38 (d, J = 8.3 Hz, 2 H): trans-isomer δ 1.38 (t, J = 7.3 Hz, 3 H), 2.13 (s, 3 H), 3.98 (dc, J = 7.3, 29 Hz, 2 H), 6.33 (d, J = 7.3 Hz, 2 H), 6.47 (d, J = 8.3 Hz, 2 H), 6.98-7.00 (m, 2 H), Other peaks overlap with those of cis-isomer; ¹³C NMR (100 MHz, CDCl₃) cis-isomer δ 13.5, 21.0, 61.4, 119.1, 119.4 (c, J = 278 Hz), 121.7, 125.7, 127.6, 128.4, 128.6, 128.8, 129.3, 131.9, 133.6, 135.2, 138.7, 145.7, 155.5 (c, J = 35 Hz), 160.0, 163.4: trans-isomer δ 14.0, 21.0, 61.6, 115.6, 119.0 (c, J = 279 Hz), 122.7, 126.6, 127.3, 128.3, 128.5, 128.9, 129.1, 131.8, 134.4, 135.1, 138.9, 144.6, 155.6 (c, J = 35 Hz), 163.8, 165.5; IR (NaCl) 3060, 3026, 2982, 2926, 2871, 1900, 1731, 1700, 1657, 1599, 1556, 1484, 1445, 1401, 1367, 1318, 1278, 1245, 1185, 1169, 1143, 1095, 1020, 984, 909, 874, 846, 809, 782, 748, 732, 697 cm⁻¹; mass spectrum (EI) m/e 503 (M⁺, 9.1); Anal. Calcd for C₂₆H₂₁CIF₃NO₂S: C, 61.96; H, 4.20; N, 2.78. Found: C, 61.86; H, 3.99; N, 2.72.

cis-CF₃C(=NC₆H₅)C(CO₂C₂H₅)=C(C₆H₅)SCH₂C₆H₅ (*cis*-3r): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.99 (t, J = 6.8 Hz, 3 H), 3.19 (dd, J = 13, 77 Hz, 2 H), 3.96 (c, J = 6.8 Hz, 2 H), 6.90 (br, 2 H), 6.96 (br, 2 H), 7.12 (d, J = 8.3 Hz, 2 H), 7.20-7.25 (m, 4 H), 7.32-7.39 (m, 5 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 37.3, 61.1, 119.2, 119.4 (c, J = 278 Hz), 119.7, 126.1, 127.5, 127.7, 128.4, 128.4, 128.5, 128.8, 129.2, 135.1,

135.7, 147.4, 155.4 (c, J = 35 Hz), 162.8; IR (NaCl) 3656, 3369, 3065, 3033, 3006, 2987, 2939, 2922, 2896, 2843, 2372, 2334, 1957, 1903, 1885, 1840, 1817, 1762, 1691, 1652, 1625, 1593, 1578, 1566, 1486, 1466, 1453, 1388, 1368, 1324, 1293, 1280, 1241, 1219, 1183, 1137, 1118, 1094, 1070, 1017, 976, 932, 919, 908, 871, 849, 833, 815, 758, 750, 720, 698, 681, 630, 600, 560 cm⁻¹; mass spectrum (CI) m/e 470 (M⁺, 100); Anal. Calcd for C₂₆H₂₂F₃NO₂S: C, 66.51; H, 4.72; N, 2.98. Found: C, 66.40; H, 4.67; N, 3.00.

cis-C₆H₅C(=NC₆H₅)C(CO₂C₂H₅)=C(C₆H₅)SC₆H₄-*p*-CH₃ (*cis*-3s): pale yellow solid; mp 122 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.77 (t, J = 7.8 Hz, 3 H), 2.10 (s, 3 H), 3.81 (c, J = 7.8 Hz, 2 H), 6.48 (d, J = 7.8 Hz, 2 H), 6.70 (d, J = 7.8 Hz, 2 H), 6.89 (d, J = 7.2 Hz, 2 H), 7.03-7.05 (m, 3 H), 7.16 (t, J = 7.3 Hz, 1 H), 7.23 (d, J = 7.3 Hz, 2 H), 7.37 (t, J = 7.8 Hz, 2 H), 7.48-7.49 (m, 3 H), 8.04-8.06 (m, 2 H); ¹³C NMR (100

MHz, CDCl₃) δ 14.2, 21.7, 61.4, 120.9, 124.9, 126.4, 127.4, 128.1, 128.7, 128.9, 129.1, 129.3, 129.4, 129.7, 131.5, 134.5, 137.0, 138.8, 151.7, 156.3, 164.4, 165.3; IR (KBr) 3359, 3080, 3057, 3021, 2980, 2923, 2903, 2871, 2323, 1966, 1906, 1689, 1614, 1592, 1576, 1553, 1489,

1445, 1393, 1367, 1315, 1289, 1262, 1204, 1182, 1173, 1107, 1072, 1027, 1017, 1000, 967, 931, 906, 832, 810, 768, 751, 741, 696, 671, 591 cm⁻¹; mass spectrum (EI) m/e 477 (M^+ , 6.3); Anal. Calcd for C₃₁H₂₇NO₂S: C, 77.96; H, 5.70; N, 2.93. Found: C, 77.67; H, 5.82, N; 2.88.

Reaction of $F_3CC(O)C(H)=C(n-C_6H_{13})(S-p-tolyl)$ (4a) with aniline (Eq. 3): Into a two-neaked 3 mL reaction glass were added 4a (82.0 mg, 0.248 mmol) and aniline (22.5 mg, 0.242 mmol) under N₂ atmosphere. After the solution was stirred at 60 °C for 1 h, the resultant mixture was evaporated and dried *in vacuo*. 5a was isolated in 81% (60.1 mg, 20.1 mmol) yields by preparative TLC using hexane and diethyl ether (10:1) as an eluent.

CF₃C(OH)=C(H)C(*n***-C₆H₁₃)(=NC₆H₅) (5a):** yellow oil; ¹H NMR (400 MHz, C₆D₆) δ 0.83 (t, J = 6.8 Hz, 3 H), 1.16-1.25 (m, 6 H), 1.51 (tt, J = 7.3, 7.8 Hz, 2 H), 2.36 (t, J = 7.8 Hz, 2 H), 5.57 (s, 1 H), 7.17 (d, J = 7.8 Hz, 2 H), 7.34 (t, J = 7.3 Hz, 1 H), 7.43 (dd, J = 7.3, 7.8

Hz, 2 H); ¹³C NMR (100 MHz, C₆D₆) δ 13.9, 22.3, 28.0, 28.8, 31.2, 32.2, 89.4, 117.6 (c, J = 286 Hz), 125.7, 127.7, 129.5, 136.8, 172.8, 176.6 (c, J = 33 Hz); IR (NaCl) 3038, 2958, 2931, 2860, 1613, 1595, 1577, 1523, 1494, 1454, 1380, 1303, 1243, 1189, 1122, 1076, 1027, 1004, 872, 784, 753, 730, 696, 664, 581 cm⁻¹; mass spectrum (EI) m/e 299 (M⁺, 23); Anal. Calcd for C₁₆H₂₀F₃NO: C, 64.20; H, 6.73; N, 4.68. Found: C, 64.40; H, 6.66; N, 4.73.

The Preparation of *cis*-Pt[P(C₆H₅)₃]₂[C(=NC₆H₅)CF₃](SC₆H₄-*p*-CH₃) (*cis*-6a): Into a dry two-necked reaction vessel equipped with a stirring bar were added Pt(PPh₃)₂(C₂H₄) (371 mg, 0.496 mmol), 1a (154 mg, 0.526 mmol) and C₆H₆ (12.5 mL). After the reaction mixture was stirred at 25 °C for 1 h, hexane (ca. 50 mL) was added into the mixture and the precipitate was collected by filtration. Then the solid was washed by hexane (10 mL × 3) and dried to give *cis*-6a (413 mg, 82%).

cis-**6a**: white solid; mp 190 °C; ¹H NMR (400 MHz, C₆D₆) δ 1.90 (s, 3 H), 6.68 (d, J = 7.8 Hz, 2 H), 6.74-6.94 (m, 20 H), 7.23-7.36 (m, 10 H), 7.51 (br, 5 H), 7.64 (d, J = 7.8 Hz, 2 H); ³¹P NMR (160 Hz, C₆D₆) δ 18.0 (c, $J_{P-P} = 18$ Hz, $J_{Pt-P} = 1807$ Hz, $J_{P-F} = 24$ Hz), 18.1 (d, $J_{P-P} = 18$ Hz, $J_{Pt-P} = 3135$ Hz); IR (KBr) 3054, 2358, 2309, 1586, 1484, 1436,

1248, 1142, 1122, 1095, 927, 765, 743, 694 cm⁻¹; Anal. Calcd for C₅₁H₄₂F₃NP₂PtS: C, 60.35; H, 4.17; N, 1.38. Found: C, 60.60; H, 4.18; N, 1.34.

The Reaction of 1 with $Pt(PPh_3)_2(C_2H_4)$ (Eq. 4): Into a dry Pyrex NMR tube were added $Pt(PPh_3)_2(C_2H_4)$ (0.020 mmol), 1 (0.022 mmol), S=P(C_6H_4OMe-*p*)_3 (0.01 mmol as an internal standard) and benzene- d_6 (0.5 mL) under N₂ atmosphere. The reaction was monitored by ³¹P and ¹H NMR spectrum at 25 °C.

cis-6a: ³¹P NMR (160 MHz, C₆D₆) δ 18.0 (c, $J_{P-P} = 18$ Hz, $J_{Pt-P} = 1807$ Hz, $J_{Pt-F} = 24$ Hz), 18.1 (d, $J_{P-P} = 18$ Hz, $J_{Pt-P} = 3135$ Hz). *trans*-6a: ³¹P NMR (160 MHz, C₆D₆) δ 13.2 (s, $J_{Pt-P} = 2944$ Hz).

cis-6b: ³¹P NMR (160 MHz, C₆D₆) δ 18.0 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 20.1 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans*-6b: ³¹P NMR (160 MHz, C₆D₆) δ 14.6 (s, $J_{Pt-P} = 3133$ Hz). 7b (*syn/anti* mixture); ³¹P NMR (160 MHz, C₆D₆) δ 15.9 (s, value of J_{Pt-P} was not able to read because of low intensity.), 17.1 (s, value of J_{Pt-P} was not able to read because of low intensity.).

Synthesis of Furan Derivatives (Eq. 5): Into a two-neaked 3 mL reaction glass were added $Pd(dba)_2$ (0.025 mmol), PPh₃ (0.05 mmol), 1a (0.5 mmol), 3-methyl-1-buthyne-3-ol (2n) (0.6 mmol) and 0.5 mL of 1,2-dichloroethane under N₂ atmosphere. After the solution was stirred at 80 °C for 1 h, the resultant mixture was filtered through Celite, and the filtrate was evaporated and dried *in vacuo*. The crude adduct (3u) was replaced into a two-neaked 3 mL reaction glass and a solution of AcOH (2.5 mmol) in 0.7 mL of 1,2-dichloroethane was added. After the solution was stirred at 60 °C for 11 h, the resultant mixture was filtered through Celite, and the resultant method in vacuo. 11a were isolated in 82% yields by preparative TLC using hexane and diethyl ether (10/1) as an eluent.

cis-CF₃C(=NC₆H₅)C(H)=C[C(CH₃)₂OH]SC₆H₄-*p*-CH₃ (3u): pale yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 1.23 (s, 6 H), 2.01 (s, 1 H), 2.28 (s, 3 H), 6.73 (s, 1 H), 6.95 (d, *J* = 8.3 Hz, 2 H), 6.99-7.01 (m, 4 H), 7.19 (t, *J* = 7.3 Hz, 1 H), 7.33 (t, *J* = 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.0, 29.5, 75.5, 119.3 (c, *J* = 278 Hz), 120.9, 121.3,

126.1, 128.6, 129.9, 130.3, 130.6, 137.6, 147.1, 153.2, 154.9 (c, J = 34.6 Hz); mass spectrum (EI) m/e 379 (M⁺, 0.7); HRMS calcd for C₂₀H₂₀F₃NOS: 379.1218. Found: 379.1212.

11a: white solid; mp 94 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.87 (s, 3 H), 1.40 (s, 3 H), 2.40 (s, 3 H), 4.04 (s, 1 H), 4.80 (s, 1 H), 6.83 (d, J = 8.3 Hz, 2 H), 7.07 (t, J = 7.3 Hz, 1 H), 7.22-7.26 (m, 4 H), 7.39 (d, J = 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 27.1, 27.2,

90.0, 99.1 (c, J = 30.5 Hz), 111.7, 123.0 (c, J = 284 Hz), 123.7, 124.7, 126.4, 128.3, 130.5, 134.8, 139.9, 141.8, 155.1; IR (KBr) 3347, 3094, 3064, 3036, 3023, 2988, 2975, 2929, 2899, 2866, 1902, 1697, 1625, 1595, 1496, 1462, 1398, 1385, 1366, 1321, 1297, 1279, 1251, 1238, 1192, 1160, 1132, 1093, 1065, 1022, 1003, 981, 941, 907, 885, 838, 806, 768, 728, 692, 607, 592 cm⁻¹; mass spectrum (EI) m/e 379 (M⁺, 1.5); Anal. Calcd for C₂₀H₂₀F₃NOS: C, 63.31; H, 5.31; N, 3.69. Found: C, 63.19; H, 5.27; N, 3.68.

11b (Eq. 6): yellow solid; mp 110 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.08 (s, 3 H), 1.40 (s, 3 H), 2.42 (s, 6 H), 4.65 (s, 1 H), 5.57 (s, 1 H), 7.22-7.25 (m, 4 H), 7.43 (d, *J* = 7.8 Hz, 2 H), 7.60 (d, *J* = 7.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 21.5, 26.4, 27.7, 92.1, 94.8 (c, *J* = 34 Hz), 106.3, 121.8 (c, *J* = 285 Hz), 125.5, 127.5, 129.4,

130.6, 134.7, 138.2, 140.1, 143.7, 156.8; IR (KBr) 3250, 3094, 3054, 3006, 2979, 2967, 2023, 2886, 1613, 1597, 1494, 1444, 1364, 1334, 1289, 1194, 1157, 1136, 1104, 1085, 1028, 1016, 988, 944, 903, 877, 843, 808, 648, 576, 553 cm⁻¹; mass spectrum (EI) m/e 457 (M⁺, 18.1); Anal. Calcd for $C_{21}H_{22}F_3NO_3S_2$: C, 55.13; H, 4.85; N, 3.06. Found: C, 55.19; H, 4.96; N, 3.10.

Cis-to-trans Isomerization of 3f in Toluene- d_8 (Eq. S1) (Ref. 7): Into a dry Pyrex NMR tube were added 3f (*cis:trans* = 99:1) (0.02 mmol), additive and 0.5 mL of toluene- d_8 under N₂ atmosphere. After the sample was heated at 100 °C for 1 h, the *cis* to *trans* ratio was analyzed by 1H NMR spectrum.

2-8. References and Notes

- (1) For a recent review, see: Groenendaal, B.; Ruijter, E.; Orru, R. V. A.; Chem. Commun. 2008, 5474.
- (2) (a) Kobayashi, T.; Sakakura, T.; Tanaka, M. *Tetrahedron Lett.* 1985, 26, 3463. (b) Kosugi, M.; Koshiba, M.; Atoh, A.; Sano, H.; Migita, T. *Bull. Chem. Soc. Jpn.* 1986, 59, 677. (c) Kosugi, M.; Ogata, T.; Tamura, H.; Sano, H.; Migita, T. *Chem. Lett.* 1986, 1197. (d) Uneyama, K.; Watanabe, H. *Tetrahedron Lett.* 1991, 32, 1459.
- (3) The reaction of alkynes, nitriles with iodine by using a stoichiometric amount of zirconium complex to produde ((2)-β-iodoalkenyl)imines was reported; Coperet, C.; Sugihara, T.; Wu, G.; Shimoyama, T.; Negishi, E. J. Am. Chem. Soc. 1995, 117, 3422.
- (4) For recent examples, see: (a) Yamashita, F.; Kuniyasu, H.; Terao, J.; Kambe, N. Org. Lett.
 2008, 10, 101. (b) Toyofuku, M.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2008, 130, 10504. (c) Toyofuku, M.; Murase, E.; Fujiwara, S.; Shin-ike, T.;

Kuniyasu, H.; Kambe, N. Org. Lett. 2008, 10, 3957. (d) Toyofuku, M.; Murase, E.; Nagai, H.; Fujiwara, S.; Shin-ike, T.; Kuniyasu, H.; Kambe, N. Eur. J. Org. Chem. 2009, 3141.

- (5) The regio- and stereochemistry of 3a, 3f and 3m was determined by N.O.E. experiment.
- (6) Heating the solution of 3f(cis:trans = 99:1) with the catalytic amount of Pd(dba)₂ and PPh₃ at 80 °C for 1 h resulted in the isomerization of 3f(cis:trans = 79:21), while no isomerization took place without Pd(dba)₂ under otherwise identical conditions.
- (7) When the reaction of **1a** and **2l** was performed at 100 °C in a sealed vessel without a microwave, **3l** was obtained in a *cis* to *trans* ratio of 93:7 with the same yield, indicating that following isomerization of the adducts was partly suppressed by the microwave irradiation.
- (8) The high reactivity and regioselectivity may conceivably be attributed to oxygen atom at propargyl moiety in alkynes. See reference 4a.
- (9) Crystal data for **31**: Space group Pbca (#61) with a = 15.2284(7) Å, b = 17.6487(8) Å, c = 17.8733(9) Å, $b = 96.385(2)^{\circ}$, Z = 8, $\rho = 1.298$ g/cm³, R = 0.0661, and Rw = 0.189.
- (10) (a) Bowman, W. R.; Lyon, J. E.; Pritchard, G. J. Synlett 2008, 14, 2169. (b) Takeda, H.; Ishida, T.; Takemoto, Y. Chem. Lett. 2009, 772.
- (11) For a stoichiometric insertion of alkynes into the S-M bond, see: (a) Sugoh, K.; Kuniyasu, H.; Kurosawa, H. Chem. Lett. 2002, 31, 106. (b) Kuniyasu, H.; Yamishita, F.; Terao, J.; Kambe, N. Angew. Chem. Int. Ed. 2007, 46, 5929. (c) Kuniyasu, H.; Takekawa, K.; Yamashita, F.; Miyafuji, K.; Asano, S.; Takai, Y.; Ohtaka, A.; Tanaka, A.; Sugoh, K.; Kurosawa, H.; Kambe, N. Organometallics 2008, 27, 4788.
- (12) We have reported that an anion stabilizing group on β-carbon of C-S bond of vinylsulfide promotes the oxidative addition to Pt(0) complex. See: (a) Kuniyasu, H.; Ohtaka, A.; Nakazono, T.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2000, 122, 2375. (b) See reference 4b.
- (13) For an isomerization of vinylmetal complexes studies, see: (a) Brady, K. A.; Nile, T. A. J. Organomet. Chem. 1981, 206, 299. (b) Ojima, I.; Clos, N.; Donovan, R. J.; Ingallina, P. Organometallics 1990, 9, 3127. (c) Murakami, M.; Yoshida, T.; Kawanami, S.; Ito, Y. J. Am. Chem. Soc. 1995, 117, 6408.
- (14) The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, (Eds.: T. Eicher, S. Hauptmann), Wiley-VCH, Weinheim, 2003; and references therein.
- (15) Tamura, K.; Mizukami, H.; Maeda, K.; Watanabe, H.; Uneyama, K. J. Org. Chem. 1993, 58, 32

Chapter 3

One-Pot Syntheses of 2,3-Dihydrothiopyran-4-one Derivatives by Pd/Cu-Catalyzed Reactions of α,β-Unsaturated Thioesters with Propargyl Alcohols

3-1. Introduction

In the course of my study toward the transition-metal catalyzed reaction using thioesters, the author focused on α,β -unsaturated thioesters, which contains two reactive centers; C(O)-S and ene moieties, as substrates and examined reactions with various alkynes under a range of catalytic conditions. As a result, the author discovered the Pd/Cu-catalyzed one-pot cyclization between α,β -unsaturated thioesters 1 and propargyl alcohols 2 in the presence of bases to furnish 2,3-Dihydrothiopyran-4-one Derivatives 3 (Eq. 1). These sulfur containing six-membered heterocyclic derivatives display a wide range of biological activities.¹

3-2. The Pd/Cu-Catalyzed Reaction of a, \beta-Unsaturated Thioesters with Propargyl

Alcohols

The reaction of $CH_2=C(Me)C(O)SC_6H_4$ -*p*-NO₂ (**1a**, 0.4 mmol) with 2-methyl-3-butyn-2-ol (**2a**, 0.5 mmol) in the presence of PdCl₂ (0.004 mmol), CuI (0.04 mol) and Et₃N (0.4 mmol) in DMF (0.5 mL) at 80 °C for 6 h resulted in the formation of **3a** in 34% yield along with by-products, including (ArS)₂ (10%) (run 1, Table 1). The single X-ray crystallographic analysis of **3a** confirmed the structure to be a 2,3-dihydrothiopyran-4-one derivative (Fig. 1).² It should be noted that both C-S bonds of **1a**, i.e., the C(O)-S and Ar-S bonds, were cleaved and the Ar group migrated from the sulfur of **1a** to the oxygen of **2a**. Among the alkali salts examined (runs 2-5, Table 1), K₂CO₃ (10 mol %) resulted in the best yield (60% isolated yield) (run 3, Table 1). Alteration of the amounts of K₂CO₃ (5 mol %) (run 6, Table 1), CuI (2 mol %, 100 mol %) (runs 7 and 8, Table 1), or Et₃N (20 mol %) (run 9, Table 1) decreased the yield of **3a**. Other complexes such as Pd(OAc)₂ (run 10, Table 1), PdCl₂(PhCN)₂ (run 11, Table 1), PdCl₂(PPh₃)₂ (run 12, Table 1), PdCl₂(dppf) (run 13, Table 1) and PtCl₂ (run 14, Table 1) showed inferior catalytic activity. Synthesis of **3a** required both a Pd and Cu catalyst.

SC ₆ H ₄ -p-NO ₂		+OH	cat. M, Cul alkali salt Et ₃ N DMF, 80 °C 6 h		H ₄ -p-NO ₂
	1a	2a		3a	
run	Μ	CuI (X mol%)	Et ₃ N (Y equiv.)	alkali salt	Yield (%) ^b
1	PdCl ₂	10	1	none	34
2	PdCl ₂	10	1	Na ₂ CO ₃	40
3	PdCl ₂	10	1	K ₂ CO ₃	68 (60) [°]
4	PdCl ₂	10	1	Cs_2CO_3	60
5	PdCl ₂	10	1	KOAc ^d	23
6	PdCl ₂	10	1	$K_2CO_3^{e}$	49
7	PdCl ₂	20	1	K ₂ CO ₃	19
8	PdCl ₂	100	1	K ₂ CO ₃	16
9	PdCl ₂	10	0.2	K_2CO_3	28
10	$Pd(OAc)_2$	10	1	K_2CO_3	45
11	PdCl ₂ (PhCN) ₂	10	1	K ₂ CO ₃	61
12	$PdCl_2(PPh_3)_2$	10	1	K_2CO_3	48
13	PdCl ₂ (dppf)	10	1	K ₂ CO ₃	25
14	PtCl ₂	10	1	K ₂ CO ₃	14

Table 1. Pd/Cu-Catalyzed Reaction of 1a with 2a^a

^a Unless otherwise noted, **1a** (0.4 mmol), **2a** (0.5 mmol), PdCl₂ (0.004 mmol), Cul (0.04 mmol), K₂CO₃ (0.04 mmol), Et₃N (0.4 mmol), and DMF (0.5 mL) at 80 °C for 6 h.^b NMR yield. ^c Isolated yield. ^d 20 mol %. ^e 5 mol %. dppf = 1,1'-bis(diphenylphosphino)ferrocene

Figure 1. ORTEP Diagram of 3a.

The results of Pd/Cu-catalyzed reactions between various thioesters (1) and propargyl alcohols (2) under optimized conditions are summarized in Table 2. The treatment of 1a with tertiary propargyl alcohols (2b, $R^3 = R^4 = -(CH_2)_4$ -; 2c, $R^3 = R^4 = -(CH_2)_5$ -; 2d, $R^3 = Me$, $R^4 = Ph$) provided the corresponding cyclization products 3b-3d in moderate yields (runs 2-4, Table 2). Cyclization with secondary propargyl alcohol (2e, $R^3 = H$, $R^4 = n$ -C₅H₁₁) also gave 3e in

R ¹	SC ₆ ł	H ₄ -p-X + <u></u>	ОН ————————————————————————————————————	PdCl ₂ , Cul K ₂ CO ₃ , Et ₃ N DMF, 80 °C	R^1 S R^2 O	OC ₆ H R ⁴ R ³	₄- <i>p-</i> X
	1		2			3	
run		1		2	time (h)	3	(%) ^b
1	1a	SC ₆ H ₄ -p-NO ₂	2a	⊖H ←	6	3 a	60
2	1a		2b	= ∕oh	6	3b	48
3	1a		2c	=	16	3c	37
4	1a		2d	⊖H ⊖Ph	9	3d	37
5	1 a		2e	⊖H (<i>n</i> -C₅H ₁₁	6	3e	35
6	1 a		2f	Он	6	3f	n.d.
7	1 a		2g	HN	6	3g	n.d.
8	1 a		2h	Он	6	3h	n.d.
9	1b	<i>i</i> -Pr SC ₆ H ₄ - <i>p</i> -NO ₂	2a		6	3i	60
10	1c	PhSC ₆ H ₄ -p-NO	² 2a		19	3j	55
11	1d	SC ₆ H ₄ -p-NO ₂	2a		16	3k	64
12	1d	SC H a Ma	20	:	18	31	62
13	1e	SC ₆ H ₄ -p-Me	2a	L	6	3m	n.d.
14	1f	PhS- <i>n</i> -C ₁₀ H ₂₁	2a	l	6	3n	n.d.

Table 2. Pd/Cu-Catalyzed Syntheses of 2,3-Dihydrothiopyran-4-one Derivatives^a

^a Unless otherwise noted, **1** (0.4 mmol), **2** (0.5 mmol), $PdCl_2$ (0.004 mmol), Cul (0.04 mmol), K_2CO_3 (0.04 mmol), Et₃N (0.4 mmol), and DMF (0.5 mL) at 80 °C.^b Isolated yield. ^c 60 °C. ^d 1.0 mmol.

35% yield (run 5, Table 2). However, propargyl alcohol (**2f**), propargyl amine (**2g**) and homo-propargyl alcohol (**2h**) gave a complicated mixture and **3** was not synthesized (runs 6-8, Table 2). In the thioesters, replacement of the Me group at R^2 with an *i*-Pr group did not interfere with cyclization (run 9, Table 2). **1c** ($R^1 = Ph$, $R^2 = H$) was also converted into **3j** in 55% yield (run 10, Table 2). The thioester with an Me group at R^1 and a second Me at R^2 (**1d**) underwent a similar transformation as a result of reaction with either **2a** or **2c** (runs 11 and 12, Table 2). In marked contrast, the thioester with a *p*-tolyl group on the sulfur (**1e**, X = Me) gave a complicated mixture (run 13, Table 2). No reaction took place with substrate **1f**, which had a S-*n*-C₁₀H₂₁ group rather than SC₆H₄-*p*-X (run 14, Table 2). These results demonstrate that the SC_6H_4 -*p*-NO₂ group of thioester 1 is required for the formation of 3.

3-3. Reaction Mechanism

To elucidate the reaction pathway, the reaction of 1a with 2a in DMF- d_7 at 80 °C was monitored by ¹H NMR spectroscopy (Fig. 2). The results suggest that both alkynyl ketone 4a and vinyl sulfide 5a were converted into 3a. After 4 h, both 4a and 5a disappeared and 3a was the major product detected, in addition to unidentified by-products.

Figure 2. Time Course of the Pd/Cu-Catalyzed Reaction of 1a with 2a.

Thus, authentic **4a** and **5a**³ were prepared and the reaction mechanism was examined. **4a** (0.4 mmol) reacted with *p*-NO₂C₆H₄SH (**6a**, 0.4 mmol) to give **3a** in the presence of Et₃N (0.4 mmol) at 80 °C even without Pd/Cu catalysts, albeit in low yield (40%) (Eq. 2). Addition of a catalytic amount of K₂CO₃ (0.04 mmol) to the reaction mixture improved the yield of **3a** (51%). However, the yields for both the catalyst-free and K₂CO₃-catalyzed reaction of **1a** with **2a** were

lower than that obtained by the Pd/Cu-catalyzed reaction due to formation of complicated byproducts (compare with run 1 of Table 2). Without Et_3N , **3a** was not formed. Intramolecular cyclization of **5a** (0.2 mmol) proceeded in the presence of Et_3N (0.2 mmol) at 80 °C to afford **3a** in 66% yield, while no reaction took place in the absence of Et_3N (Eq. 3). These results show that Et_3N is essential for the synthesis of **5** and **3**.

The reaction pathway proposed for the formation of **3** is shown in Scheme 1, with **1a** and **2a** as representative substrates. First, a Pd/Cu-catalyzed Sonogashira-type reaction between **1a** and **2a** gives **4a** and **6a**, and the subsequent *trans*-addition of **6a** to the yne moiety of **4a** affords

Scheme 1. A Proposed Reaction Pathway

5a.^{4,5} Intramolecular aromatic nucleophilic substitution by the oxygen anion induces migration of the p-NO₂C₆H₄ group from sulfur to oxygen.⁶ Finally, nucleophilic addition of the resultant sulfonium anion to the terminal ene moiety and the subsequent protonation yield **3a**.⁷ Maintenance of low concentrations of **4a** and **6a** during the course of the reaction improve the yield of **3a** relative to that obtained by the reaction of **4a** with **6a**.

3-4. Reaction of Acid Chloride, Thiol and Propargyl Alcohol

Toward the easy-to-use approach for the preparation of **3**, I found the preparation of **3** by the reaction of acid chloride, thiol and propargyl alcohol from the one-pot operation (Eq. 4). Cu-catalyzed cross-coupling of methacryloyl chloride (7a) with 2a in the presence of K_2CO_3 and Et₃N produce $4a^8$ and following reaction with 6a occurred to afford 3a in 39% yield. In this process, no Pd-catalyst was needed.

Reagents and conditions: **7a** (1.0 equiv.), **2a** (2.0 equiv.), Cul (0.1 equiv.), K₂CO₃ (0.1 equiv.), Et₃N (0.8 M), r.t., 3 h; then, **6a** (1 equiv.), DMF, 80 °C, 17 h.

3-5. Conclusions

This study realized the synthesis of 2,3-dihydrothiopyran-4-one derivatives by Pd/Cu-catalyzed reactions between α,β -unsaturated thioesters and propargyl alcohols in the presence of bases. The reactions proceed through a one-pot sequence as follows: Sonogashira-type reaction; Michael-addition of thiol to yne-moiety; intramolecular aromatic nucleophilic substitution; and, cyclization.

3-6. Experimental Section

General Comments: ¹H and ¹³C NMR spectra in CDCl₃, and DMF- d_8 solution were recorded with JEOL JNM-Alice 400 (400 MHz) spectrometers. The chemical shifts in the 1H NMR

spectra were recorded relative to Me4Si as an internal standard and the chemical shifts in the ¹³C NMR spectra were recorded relative to CHCl₃ (δ 77.0). The IR spectra were measured by a Perkin-Elmer Model 1600 spectrometer. Mass spectra (EI), high-resolution mass spectra (HRMS) and elemental analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Melting points were measured by a MPA100 Optimelt Automated Melting Point System. Preparative TLC was carried out using Wakogel B-5F silica gel. The X-ray crystal data of **3a** were collected using Rigaku RAXIS-RAPID Imaging Plate diffractometer. The ORTEP diagram was shown in 50% probability ellipsoid. All reactions were used without purification. All solvents were distilled before use. Thioesters **1a-d**, **1f** were prepared from the reactions of the corresponding acid chlorides with thiols in the presence of pyridine in THF solution. Thioester **1e** was synthesized according to the literature (*Tetrahedron Lett.* **2001**, *42*, 1567.).

The Spectrum Datas of thioesters:

H₂C=C(Me)C(O)SC₆H₄-*p*-NO₂ (1a); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 2.03 (s, 3 H), 5.80 (s, 1 H), 6.25 (s, 1 H), 7.64 (d, J= 8.7 Hz, 2 H), 8.27 (d, J= 8.7 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ

18.1, 123.5, 124.7, 134.9, 136.0, 142.8, 147.8, 188.7; mass spectrum (EI) m/z 223 (M^+ , 1); HRMS calcd for C₁₀H₉NO₃S 223.0303, found 223.0308.

H₂**C=C**(*i*-**Pr**)**C**(**O**)**SC**₆**H**₄-*p*-**NO**₂ (**1b**); yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (d, J= 6.8 Hz, 6 H), 2.86 (sept, J = 6.8 Hz, 1 H), 5.75 (s, 1 H), 6.23 (s, 1 H), 7.63 (d, J= 8.8 Hz, 2 H), 8.26 (d, J = 8.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 30.2, 121.4, 123.7, 135.0, 136.5,

147.9, 154.2, 189.6; mass spectrum (EI) m/z 251 (M^+ , 0.2); HRMS calcd for C₁₂H₁₃NO₃S 251.0616, found 251.0607.

(*E*)-PhC(H)=CHC(O)SC₆H₄-*p*-NO₂ (1c); yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 6.78 (d, *J* = 15.8 Hz, 1 H), 7.42-7.44 (m, 3 H), 7.57-7.59 (m, 2 H), 7.68 (d, *J* = 8.6 Hz, 2 H), 7.72 (d, *J* = 15.8 Hz, 1 H), 8.27 (d, *J* = 8.6 Hz, 2 H); ¹³C NMR (100

MHz, CDCl₃) δ 123.4, 123.7, 128.5, 128.9, 131.1, 133.4, 134.6, 136.2, 142.7, 147.9, 185.2; mass spectrum (CI) m/z 286 ([M-H]⁺, 100); HRMS calcd for C₁₅H₁₂NO₃S (M-H) 286.0538, found 286.0533.

(*E*)-Me(H)C=C(Me)C(O)SC₆H₄-*p*-NO₂ (1d): an pale yellow solid; mp 77 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.91 (d, 3 H), 1.92 (s, 3 H), 6.98-7.04 (m, 1 H), 7.61 (d, 2 H, J= 8.8 Hz), 8.24 (d, 2 H, J= 8.8 Hz); ¹³C NMR(100 MHz, CDCl₃) δ 12.4, 14.8, 123.9, 135.4, 136.7, 137.2, 138.5, 148.1, 189.3; IR (KBr) 3105, 2925, 2845, 1673, 1643, 1598, 1578, 1518, 1345, 1220, 1108, 1031, 981, 854, 742, 682, 662, 643 cm⁻¹; mass spectrum (EI) m/z 237 (M⁺, 1.6); HRMS calcd for C₁₁H₁₁OS 237.2760, found 237.0458.

H₂C=C(C₆H₄Me-*p***)C(O)SC₆H₄-***p***-Me (1e): an pale yellow solid; mp 92 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.37 (s, 3 H), 2.38 (s, 3 H), 5.83 (s, 1 H), 6.24 (s, 1 H), 7.17 (d, 2 H, J= 8.1 Hz), 7.23 (d, 2 H, J= 8.3 Hz), 7.32-7.35 (m, 4 H); ¹³C NMR(100 MHz, CDCl₃) δ 21.5, 21.6, 122.7, 124.7, 128.4, 129.2, 130.3, 133.1, 134.8, 138.9, 139.9, 148.0, 192.5; IR**

(KBr) 3026, 2918, 1684, 1605, 1510, 1397, 1296, 1110, 963, 925, 824, 807, 750, 731, 554, 484 cm⁻¹; mass spectrum (EI) m/z 268 (M⁺, 12); HRMS calcd for $C_{17}H_{16}OS$ 268.0922, found 268.0924.

(*E*)-PhC(H)=CHC(O)S-*n*-C₁₀H₂₁ (1f): an pale yellow solid; mp 41 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, 3 H, *J*= 6.4 Hz), 1.26-1.40 (m, 15 H), 1.60-1.67 (m, 2

H), 3.01 (t, 2 H, J= 7.3 Hz), 6.71 (d, 1 H, J= 15.9 Hz), 7.38-7.39 (m, 3 H), 7.53-7.54 (m, 2 H), 7.60 (d, 2 H, J= 8.1 Hz); ¹³C NMR(100 MHz, CDCl₃) δ 14.1, 14.2, 22.7, 28.9, 29.0, 29.2, 29.3, 29.6, 29.6, 31.9, 125.2, 128.4, 128.9, 130.4, 134.2, 140.1, 190.0; IR (KBr) 2922, 2848, 1656, 1611, 1468, 1448, 1332, 1302, 1035, 1012, 992, 890, 778, 754, 692, 578, 484, 462 cm⁻¹; mass spectrum (EI) m/z 304 (M⁺, 12); HRMS calcd for C₁₉H₂₈OS 304.1861, found 304.1863.

Pd/Cu-Catalyzed Reaction of $CH_2=C(Me)C(O)SC_6H_4$ -p-NO₂ (1a) with $HC=CC(Me)_2OH$ (2a) in the presence of Et₃N and K₂CO₃ (run 3 of Table 1); General Procedure of Cyclization of α , β -Unsaturated Thioesters with Propargyl Alcohols: Into a two-neaked 3 mL reaction glass were added PdCl₂ (0.7 mg, 0.004 mmol), CuI (7.5 mg, 0.039 mmol), K₂CO₃ (6.1 mg, 0.044 mmol), 1a (89.5 mg, 0.401 mmol), 2a (50 µL, 0.52 mmol), Et₃N (60 µL, 0.43 mmol) and 0.5 mL of DMF under N₂ atmosphere. After the solution was stirred for 6 h at 80 °C, the reaction mixture was separated by preparative TLC using hexane and Et₂O (10/7) as an eluent (74.5 mg, 60%).

NO₂

2,3-dihydro-3-methyl-6-(dimethyl-*p***-nitrophenoxy-methyl)-thiop yran-4-one (3a)**: an yellow solid; mp 111 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.25 (d, 3 H, *J* = 6.8 Hz), 1.72 (s, 6 H), 2.62-2.68 (m, 1 H), 3.02 (dd, 1 H, *J* = 13, 11 Hz), 3.19 (dd, 1 H, *J* = 13, 3.9 Hz), 6.28 (s, 1 H), 6.94 (d, 2 H, *J* = 9.3 Hz), 8.14 (d, 2 H, *J* = 9.3 Hz); ¹³C

NMR(100 MHz, CDCl₃) δ 14.30, 27.61, 28.34, 33.64, 39.53, 81.80, 118.0, 119.4, 125,2, 141.7, 160.3, 166.6, 196.6; IR (KBr) 2983, 2965, 2927, 1665, 1588, 1508, 1488, 1345, 1249,

1186, 1143, 949, 924, 867, 852, 752, 672 cm⁻¹; mass spectrum (EI) m/z 307 (M⁺, 21); Anal. Calcd for $C_{15}H_{17}NO_4S$: C, 58.61; H, 5.57, N, 4.56, S, 10.43. Found: C, 58.32; H, 5.29, N, 4.53, S, 10.44.

Other cyclic products **3b-3e**, **3i-3l** were similarly synthesized. Samples of **3d**, **3e**, **3j** and **3k** obtained after preparative TLC were a mixture of *threo* and *erythro*.

2,3-dihydro-3-methyl-6-(1'-*p***-nitrophenoxy-cyclopentyl)-thiopyra n-4-one (3b):** an yellow solid; mp 89 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.22 (d, 3 H, J= 5.2 Hz), 1.83 (m, 4 h), 2.17-2.25 (m, 4 H), 2.61-2.63 (m, 1 H), 2.98-3.18 (m, 2 H), 6.28 (s, 1 H), 6.88 (d, 2 H, J= 7.1 Hz), 8.13 (d, 2 H, J= 7.1 Hz); ¹³C NMR(100 MHz, CDCl₃) δ

14.1, 24.2, 24.3, 33.6, 38.59, 39.56, 91.76, 117.2, 119.0, 125,3, 141.4, 160.2, 164.9, 196.6; IR (KBr) 3294, 2968, 2934, 2871, 1657, 1607, 1586, 1567, 1508, 1488, 1342, 1331, 1312, 1236, 1196, 1166, 1112, 982, 850, 838, 752, 694, 655, 631, 586 cm⁻¹; mass spectrum (EI) m/z 333 (M⁺, 12); Anal. Calcd for $C_{17}H_{19}NO_4S$: C, 61.24; H, 5.74, N, 4.20. Found: C, 61.32; H, 5.46, N, 4.09.

2,3-dihydro-3-methyl-6-(1'-*p***-nitrophenoxy-cyclohexyl)-thiopyra n-4-one (3c)**: an yellow solid; mp 105 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.24 (d, 3 H, *J* = 6.8 Hz), 1.56-1.79 (m, 8 H), 2.33 (t, 2 H, *J* = 13 Hz), 2.61-2.67 (m, 1 H), 3.01 (dd, 1 H, *J* = 13, 11 Hz), 3.17 (dd, 1 H, *J* = 13, 3.9 Hz), 6.30 (s, 1 H), 6.97 (d, 2 H, *J* = 9.0 Hz), 8.14 (d,

2 H, J= 9.0 Hz); ¹³C NMR(100 MHz, CDCl₃) δ 14.36, 21.29, 25.10, 33.60, 34.36, 35.32, 39.63, 82.73, 117.7, 119.2, 125,2, 141.5, 159.9, 167.0, 196.5; IR (KBr) 3116, 3076, 2936, 2851, 1667, 1605, 1589, 1509, 1491, 1451, 1338, 1239, 1146, 1110, 954, 850, 751, 660, 496 cm⁻¹; mass spectrum (EI) m/z 347 (M⁺, 39); HRMS calcd for C₁₈H₂₁NO₄S 347.4297, found 347.1201. Anal. Calcd for C₁₈H₂₁NO₄S: C, 62.23; H, 6.09, N, 4.03. Found: C, 61.95; H, 5.91, N, 4.01.

2,3-dihydro-3-methyl-6-(methyl-phenyl-p-nitrophenoxy-methyl)thiopyran-4-one (3d): The title compound was obtained as a mixture of inseparable diastereomers (51:49); an yellow solid; mp 111 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.22 (d, 1.5 H, J= 6.8 Hz), 1.23 (d, 1.5 H, J = 6.8 Hz),* 2.02 (s, 3 H), 2.59-2.65 (m, 1 H),

2.91-3.00 (m, 1 H), 3.02 (dd, 0.5 H, J= 13, 4.2 Hz), 3.13 (dd, 0.5 H, J= 13, 3.9 Hz),* 6.33 (s, 0.5 H), 6.44 (s, 0.5 H),* 6.89 (d, 2 H, J= 9.3 Hz), 7.37-7.43 (m, 3 H), 7.51 (d, 2 H, J= 7.6 Hz), 8.06(8.07) (d, 2 H, J= 9.3 Hz); ¹³C NMR(100 MHz, CDCl₃) δ 14.21(14.25), 24.08(24.35), 33.92(33.94), 39.67(39.81), 85.04(85.14), 119.0(119.1), 120.3(120.5), 125,3,

125.9(125.9), 128.7(128.8), 128.9, 141.2(141.5), 142.3, 160.1, 167.3(167.3), 197.2; IR (KBr) 2973, 2932, 1668, 1606, 1590, 1509, 1490, 1446, 1344, 1244, 1169, 1112, 1069, 1032, 989, 921, 862, 850, 764, 751, 698, 676, 578, 494 cm⁻¹; mass spectrum (EI) m/z 369 (M⁺, 4.0); Anal. Calcd for $C_{20}H_{19}NO_4S$: C, 65.02; H, 5.18, N, 3.79. Found: C, 64.74; H, 5.04, N, 3.65. * Minor diastereomer

2,3-dihydro-3-methyl-6-(*n*-pentyl-*p*-nitrophenoxy-methyl)-thiopy ran-4-one (3e): The title compound was obtained as a mixture of inseparable diastereomers (51:49); an yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.88-0.92 (m, 3 H), 1.19-1.22 (m, 3 H), 1.32-1.55 (m, 6 H), 1.90-2.02 (m, 2 H), 2.59-2.63 (m, 1 H), 2.97-3.07 (m, 1 H),

3.12-3.22 (m, 1 H), 4.71-4.77 (m, 1 H), 6.21 (s, 0.5 H), * 6.23 (s, 0.5 H), 6.94 (d, 1 H, J= 9.3 Hz), * 6.96 (d, 1 H, J= 9.3 Hz), 8.17 (d, 1 H, J= 9.3 Hz), * 8.18 (d, 1 H, J= 9.3 Hz); ¹³C NMR(100 MHz, CDCl₃) δ 14.1, 14.4(14.4), 22.5, 25.1(25.2), 31.4(31.4), 33.4(33.7), 36.0(36.1), 39.8(40.2), 80.3(80.6), 115.2, 119.9(119.9), 125,7(125.7), 141.8(141.8), 161.2(161.3), 162.1, 196.0(196.1); IR (NaCl) 2995, 2930, 2860, 1666, 1609, 1591, 1514, 1494, 1456, 1344, 1252, 1174, 112, 1011, 846, 752, 689, 658 cm⁻¹; mass spectrum (EI) m/z 349 (M⁺, 87); Anal. Calcd for C₁₈H₂₃NO₄S: C, 61.87; H, 6.63, N, 4.01. Found: C, 61.60; H, 6.46, N, 3.75. * Minor diastereomer

2,3-dihydro-3-isopropyl-6-(dimethyl-*p***-nitrophenoxy-methyl)-t hiopyran-4-one (3i):** an pale yellow solid; mp 127 °C; ¹H NMR (400 MHz, CDCl₃) δ 0.97 (d, 3 H, *J* = 6.8 Hz), 0.97 (d, 2 H, *J* = 6.8 Hz), 1.71 (s, 6 H), 2.22-2.26 (m, 1 H), 2.35-2.43 (m, 1 H), 3.13 (dd, 1 H, *J* = 8.8, 3.4 Hz), 3.25 (dd, 1 H, *J* = 14, 3.6 Hz), 6.24 (s, 1 H),

6.93 (d, 2 H, J= 9.3 Hz), 8.13 (d, 2 H, J= 9.3 Hz); ¹³C NMR(100 MHz, CDCl₃) δ 19.4, 20.3, 25.2, 27.7, 28.0, 28.9, 50.4, 81.8, 118.1, 119.9, 125,3, 141.9, 160.6, 166.3, 196.1; IR (KBr) 2957, 2360, 1660, 1586, 1507, 1489, 1340, 1247, 1139, 1110, 851, 752, 670 cm⁻¹; mass spectrum (EI) m/z 335 (M⁺, 25); Anal. Calcd for C₁₇H₂₁NO₄S: C, 60.87; H, 6.31, N, 4.18. Found: C, 60.74; H, 6.12, N, 4.46.

2-phenyl-2,3-dihydro-6-(dimethyl-*p***-nitrophenoxy-methyl)-t hiopyran-4-one (3j):** an yellow solid; mp 92 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.72 (s, 6 H), 2.95 (dd, 1 H, *J* = 17, 3.4 Hz), 3.08 (dd, 1 H, *J* = 17, 13 Hz), 4.62 (dd, 1 H), 6.40 (s, 1 H), 6.91 (d, 2 H, *J* = 9.3 Hz), 7.34-7.37 (m, 5 H), 8.00 (d, 2 H, *J* = 9.3

Hz); ¹³C NMR(100 MHz, CDCl₃) δ 27.4, 28.2, 43.6, 46.3, 81.8, 118.3, 120.0, 125.3, 127.4, 128.6, 128.9, 137.3, 141.9, 160.4, 167.3, 194.7; IR (KBr) 3066, 2990, 1659, 1606, 1590, 1565, 1506, 1489, 1454, 1384, 1340, 1296, 1257, 1137, 1108, 929, 891, 856, 751, 725, 698,

670, 495 cm⁻¹; mass spectrum (EI) m/z 369 (M⁺, 21); Anal. Calcd for C₂₀H₁₉NO₄S: C, 65.02; H, 5.18, N, 3.79. Found: C, 65.09; H, 5.34, N, 3.73.

2,3-dihydro-2,3-dimethyl-6-(dimethyl-*p*-nitrophenoxy-methyl)-thio pyran-4-one (3k): The title compound was obtained as a mixture of inseparable diastereomers (55:45); an yellow solid; mp 84 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.14 (d, 1.4 H, J= 7.1 Hz),* 1.25 (d, 1.6 H, J= 7.1 Hz), 1.32 (d, 1.4 H, J= 7.1 Hz),* 1.42 (d, 1.6 H, J= 7.1 Hz),

1.71 (s, 6 H), 2.40-2.46 (m, 0.6 H), 2.67-2.70 (m, 0.4 H),* 3.22-3.28 (m, 0.6 H), 3.58-3.61 (m, 0.4 H),* 6.25 (s, 0.4 H),* 6.26 (s, 0.6 H), 6.94 (d, 0.9 H, J= 9.3 Hz),* 6.94 (d, 1.1 H, J= 9.3 Hz), 8.13 (d, 2 H, J= 9.3 Hz); ¹³C NMR(100 MHz, CDCl₃) δ 9.89(15.2), 13.0(18.9), 27.6(27.9), 27.8(27.9), 41.5(44.8), 42.8(46.5), 81.7(81.7), 118.0(118.0), 118.6(118.8), 125.3, 141.8, 160.1, 164.8(165.8), 197.2(198.1); IR (KBr) 3092, 2988, 2931, 1664, 1607, 1587, 1514, 1489, 1445, 1344, 1251, 1222, 1198, 1185, 1141, 1113, 947, 930, 869, 851, 752, 670, 612, 548, 495 cm⁻¹; mass spectrum (EI) m/z 321 (M⁺, 14); Anal. Calcd for C₁₆H₁₉NO₄S: C, 59.79; H, 5.96, N, 4.36. Found: C, 59.51; H, 5.58, N, 4.21. * Minor diastereomer

2,3-dihydro-2,3-dimethyl-6-(1'-*p*-nitrophenoxy-cyclohexyl)-thiopyr an-4-one (3l): The title compound was obtained as a mixture of inseparable diastereomers (72:28); an yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.14 (d, 2.2 H, J= 7.1 Hz), 1.24 (d, 0.8 H, J= 7.1 Hz),* 1.32 (d, 2.2 H, J= 7.1 Hz), 1.42 (d, 0.8 H, J= 7.1 Hz),* 1.56-1.80 (m, 8 H),

2.32 (d, 2 H, J = 14 Hz), 2.41-2.48 (m, 0.3 H),* 2.67-2.68 (m, 0.7 H),* 3.21-3.25 (m, 0.3 H),* 3.56-3.58 (m, 0.7 H), 6.27 (s, 0.7 H), 6.28 (s, 0.3 H),* 6.96 (d, 1.4 H, J = 9.0 Hz), 6.97 (d, 0.6 H, J = 9.0 Hz),* 8.13 (d, 2 H, J = 9.3 Hz); ¹³C NMR(100 MHz, CDCl₃) δ 9.97(15.3), 13.1(19.0), 21.2, 24.9, 34.5, 34,8, 34.9, 41.5(44.9), 42.8(46.6), 82.8(82.8), 118.0(117.9), 118.6(118.8), 125.4, 141.8, 160.3, 165.4(166.5), 197.3(198.2); IR (NaCl) 2937, 2862, 1660, 1606, 1590, 1514, 1492, 1448, 1341, 1299, 1262, 1241, 1147, 1112, 975, 958, 875, 849, 752, 693, 660 cm⁻¹; mass spectrum (EI) m/z 361 (M⁺, 4.0); Anal. Calcd for C₁₉H₂₃NO₄S: C, 63.13; H, 6.41, N, 3.88. Found: C, 62.98; H, 6.19, N, 4.15. * Minor diastereomer

The Pd/Cu-catalyzed Reaction of 1a with 2a in DMF- d_7 (Figure 2): Into a dry Pyrex NMR tube were added PdCl₂ (0.004 mmol), CuI (0.04 mmol) and K₂CO₃ (0.04mmol), 1a (0.4 mmol), 2a (0.52 mmol), NEt₃ (0.4 mmol), 1,4-dioxane (0.063 mmol) as an internal standard and 0.5 mL of DMF- d_7 under N₂ atmosphere. The reaction at 80 °C was monitored by ¹H NMR spectroscopy.

Synthesis of Authentic $CH_2=C(Me)C(O)C=CC(Me)_2(OH)$ (4a):⁸ Into a two-necked reaction vessel were added $CH_2=C(Me)C(O)Cl$ (0.6 mL, 5.3 mmol) (0.6 mL, 5.3 mmol), 2a

(0.4 mL, 4.1 mmol), CuI (0.02 mmol), Et₃N (13 mL). After the solution was stirred for 44 h at 25 °C, the reaction mixture was filtrated through Celite and distilled. The compound 4a was purified by HPLC (308 mg, 49%).

4a: colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 1.55 (s, 6 H), 1.85 (s, 3 H), 2.91 (s, 1 H), 6.00 (s, 1 H), 6.38 (s, 1 H); ¹³C NMR(100 MHz, CDCl₃) δ 15.9, 30.6, 65.0, 78.9, 96.6, 131.3, 144.6, 180.1; mass spectrum (EI) m/z 152 (M⁺, 3.0); HRMS calcd for C₁₅H₁₇NO₄S 152.0837, found 152.0829.

Reaction of 4a with HSC_6H_4-*p***-NO₂ (6a) (Eq. 2): Into a two-neaked reaction vessel were added K₂CO₃ (4.4 x 10⁻² mmol), 4a** (0.4 mmol), **6a** (0.4 mmol), Et₃N (60 µL, 0.43 mmol) and 0.5 mL of DMF under N₂ atmosphere. After the solution was stirred for 6 h at 80 °C, the reaction mixture was filtrated through Celite and distilled under reduced pressure.

Synthesis of Authentic $CH_2=C(Me)C(O)C(H)=C(C(Me)_2(OH))SCC_6H_4$ -p-NO₂ (5a): Into a two-necked reaction vessel were added PdCl₂ (4.5 mg, 0.025 mmol), CuI (45 mg, 0.24 mmol), K₂CO₃ (38 mg, 0.28 mmol), **1a** (536 mg, 2.40 mmol), **2a** (300 µL, 3.1 mmol), Et₃N (340 µL, 2.4 mmol), and 0.5 mL of DMF under N₂ atmosphere. After the solution was stirred for 40 min at 80 °C, the resultant mixture was filtrated through Celite and distilled under reduced pressure. The compound **5a** was isolated by preparative TLC using hexane/Et₂O/EtOH (10/7/1) as an eluent (291 mg, 39%).

5a: an yellow solid; mp 89 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.49 (s, 6 H), 1.74 (s, 3 H), 2.13 (s, 1 H), 5.86 (s, 1 H), 5.90 (s, 1 H), 7.36-7.39 (m, 3 H), 8.06 (d, 2 H, J = 8.8 Hz); ¹³C NMR(100 MHz, CDCl₃) δ 16.8, 29.2, 31.0, 75.2, 123.9, 127.6, 127.9, 132.9, 144.9, 145.6, 145.7, 148.2, 193.8; N.O.E. experiment: Irradiation of the singlet of homoallylic proton at δ 1.49 resulted

Intramolecular cyclization of 5a (Eq. 3): Into a two-neaked reaction vessel were added $CH_2=C(Me)C(O)-CH=C(SC_6H_4-p-NO_2)C(Me)_2(OH)$ (5a) (0.2 mmol), Et_3N (30 µL, 0.21 mmol) and 0.25 mL of DMF under N₂ atmosphere. After the solution was stirred for 6 h at 80 °C, the reaction mixture was filtrated through Celite, and distilled under reduced pressure.

The Three-Component Reaction of $CH_2=C(Me)C(O)Cl$ (7a), 2a and 6a (Eq. 4): Into a two-neaked 3 mL reaction glass were added Cul (7.5 mg, 0.39 mmol), K_2CO_3 (6.1 mg, 0.044 mmol), Et₃N (0.5 mL), $H_2=C(Me)C(O)Cl$ (7a) (0.4 mmol) and 2-Methyl-3-butyne-2-ol (2a)

(0.8 mmol) under N₂ atmosphere. After the solution was stirred for 6 h at 80 °C, the reaction mixture was separated by preparative TLC using hexane and Et₂O (10/7) as an eluent (74.5 mg, 60%). After the solution was stirred for 3 h at room temperature, into a reaction mixture were added 0.5 mL of DMF solution including HSC₆H₄-*p*-NO₂ (**6a**) (0.4 mmol). After the solution was stirred for 17 h at 80 °C, the resultant mixture was filtrated through Celite, and evaporated under reduced pressure. **3a** was isolated by preparative TLC using hexane and Et₂O (10/7) as an eluent (39%).

3-7. References and Notes

- (1) (a) Ingall, A. H. In Comprehensive Heterocyclic Chemistry II; Boulton, A. S., McKkillop, A., Eds.; Pergamon Press: Oxford, 1996; Vol. 5, p 501. (b) Schneller, S. W. Adv. Heterocycl. Chem. 1975, 18, 59. (c) Katrizky, A. R.; Bonlton, A. J. Adv. Heterocycl. Chem. 1975, 18, 76. (d) Al-Nakib, T.; Bezjak, V.; Meegan, M.; Chandy, R. Eur. J. Med. Chem. 1990, 25, 455. (e) Al-Nakib, T.; Bezjak, V.; Rashid, S.; Fullam, B.; Meegan, M. Eur. J. Med. Chem. 1991, 26, 221. (f) van Vliet, L. A.; Rodenhuis, N.; Dijkstra, D.; Wikstrom, H.; Pugsley, T. A.; Serpa, K. A.; Meltzer, L. T.; Heffner, T. G.; Wise, L. D.; Lajiness, M. E.; Huff, R. M.; Svensson, K.; Sundell, S.; Lundmark, M. J. Med. Chem. 2000, 43, 2871.
- (2) Crystal data of **3a**: space group monoclinic, P21/a (#14) with a = 11.1771(4) Å, b = 14.9463(5) Å, c = 11.0961(6) Å, $\beta = 1212.578(1)^{\circ}$, Z = 4, $\rho = 1.307$ g/cm³, R = 0.074, and $R_w = 0.184$.
- (3) The N.O.E. experiment showed that cis-isomer was exclusively produced.
- (4) For additions of thiol to eynone, see: (a) Perlmutter, P. In Conjugate Addition Reactions in Organic Synthesis; Baldwin, J. E., Magnus, P. D., Eds.; Pergamon Press: Oxford, UK, 1992; Vol. 9, pp 310-322. (b) Blanco, L.; Bloch, R.; Bugnet, E.; Deloisy, S. Tetrahedron Lett. 2000, 41, 7875. (c) Gardiner, J. M.; Giles, P. E.; Martin, M. L. M. Tetrahedron Lett. 2002, 43, 5415. (d) Maezaki, N.; Yagi, S.; Yoshigami, R.; Maeda, J.; Suzuki, T.; Ohsawa, S.; Tsukamoto, K.; Tanaka, T. J. Org. Chem. 2003, 68, 5550. (e) Hollowood, C. J.; Yamanoi, S.; Ley, S. V. Org. Biomol. Chem. 2003, 1, 1664. (f) Ding, F.; Jennings, M. P. Org. Lett. 2005, 7, 2321.
- (5) For copper catalyzed acyl-selenation and -telluration of alkynes, see: (a) Zhao, C.-Q.; Huang, X.; Meng, J.-B. *Tetrahedron Lett.* 1998, *39*, 1933. (b) Zhao, C.-Q.; Li, J.-L.; Meng, J.-B.; Wang, Y.-M. J. Org. Chem. 1998, *63*, 4170.
- (6) It has been reported that 2-arylthio-pyridine undergoes nucleophilic substitution by phenol. Inoue, S. *Phosphorus Sulfur* **1985**, *22*, 141.
- (7) From **5a** to **3a**, β -attack of the lone pair of SAr to terminal ene moiety to afford sulfonium cation as a trigger step and following intramolecular aromatic nucleophilic substitution might be an alternative pathway (Eq. 5).

(8) Chowdhury, C.; Kundu, N. G. Tetrahedron 1999, 55, 7011.

.

Chapter 4

Reactions of α,β-Unsaturated Thioesters with Pt(0): Implication of Dual Mechanism Leading to the Formation of Acyl Platinum

4-1. Introduction

It has been well-known that two distinct reaction patterns, 1,2-additon and Michael addition, exists under the reaction of enones with nucleophiles. When the reaction mechanism of oxidative addition of allylic halide derivatives to low-valent transition-metal complexes to generate π -allyl metals is considered, it has been well-established that there are two reaction routes, *syn*- and *anti*-oxidative addition.¹ The reactions of α , β -unsaturated acid halides with low-valent transition-metal complexes to produce acyl metals are also familiar transformation.² However, much attention to their reaction mechanism has not been attracted presumably due to the lack of a good reaction system to examine the details. In fact, the author attempted the reactions of H₂C=C(H)C(O)Cl (**1a**) or (*E*)-(Ph)(H)C=C(H)C(O)Cl (**1b**) with Pt(PPh₃)₂(C₂H₄) (**2**) in toluene-*d*₈ using a freeze-pump-thaw technique, but acyl platinums **3a** or **3b** were quantitatively produced even at -50 °C after 10 min in both cases (Eq. 1).³ Although the predominant formation of *cis*-isomer at the beginning of the reactions suggested its stereochemistry of oxidative addition, more information such as the effect of the introduction of a Ph group at β -carbon (R¹ = Ph) was not clearly disclosed from these experimental data.

The author expected that the mechanistic information might be disclosed, applying the controllable reactivity of α,β -unsaturated thioesters. Actually, the cleavage and formation of C-S bonds by transition-metal complexes were flexible⁴ and our group have already reported that such characteristics could be utilized for elucidating the mechanism of cleavage of the vinyl-X bonds by low-valent transition-metals.⁵ Herein the author wish to report on the effects of substituents on the reactions of α,β -unsaturated thiesters (**4**; (R¹)(H)C=C(R²)C(O)SAr) with

zero-valent platinum complex **2**, substantiating that there are two distinct reaction routes for the formation of acyl complexes.

4-2. Reactions of H₂C=C(H)C(O)SAr with a Platinum (0) Complex.

First, thioesters **4a-d** (H₂C=C(H)C(O)SC₆H₄-*p*-X, X = Me, H, Cl, NO₂) were prepared and the reactions with **2** were monitored by ¹H and ³¹P NMR spectroscopies at 25 °C using S=P(C₆H₄-*p*-OMe)₃ as an internal standard (Eq. 2).⁶ The reaction of **4a** (X = Me) with **2** resulted in the quantitative formation of π -complex **5a** was confirmed after 20 min both in C₆D₆ solution. Although it was not clear when the systems reached the equilibrium states due to the low yields of acyl platinum **6a** and **7a** (dimeric form of **6a**), the formation after 3 h of 99.5% of **5a** and 0.5% of **7a** in C₆D₆. On the other hand, the reaction of *trans*-**3a** (0.02 mmol) with *p*-MeC₆H₄SNa (**8**, 0.06 mmol) in CD₂Cl₂ (0.5 mL) at 25 °C produced **5a** (79%), *trans*-**6a** (0.6%) and **7a** (13%, *syn:anti* = 77:23) after 17 h (Eq. 3). These results clearly showed that the equilibrium between **5a** and **6a** strongly leaned to the former side. The reaction employing **1b** (X = H) gave the similar result of **5** and **7**. The introduction of electro-withdrawing groups (Cl, NO₂) into X position slightly increased the reactivity. In the case of **4d**, dimer complex **7d** did not form. The fact indicates that introduction of electron withdrawing NO₂ group lowered the basicity of lone pairs on sulfur resulting in the prevention of the formation of **7**.⁷

4-3. Reactions of Thioesters Having a p-MeC₆H₄S Group with a Platinum (0) Complex.

Next, when 4e ($\mathbb{R}^1 = H$, $\mathbb{R}^2 = Me$) was employed, the signal of starting 2 also completely disappeared and the formation of a mixture of the corresponding 5e, 6e and 7e were confirmed in 78%, 4.4% (*cis:trans* = 9:91) and 17% (*syn:anti* = 47:53) yields after 20 min in C₆D₆, and in 66%, 20% (*cis:trans* = 45:55) and 14% (*syn:anti* = 51:49) in CD₂Cl₂. Monitoring the reactions by ³¹P NMR spectra suggested that 6e and 7e were produced *via* 5e and revealed that the equilibria among 5e, 6e and 7e were attained in the periods of 3-4 h in C₆D₆ and 5-6 h in CD₂Cl₂ (runs 1 and 2, Table 1).^{8,9} The reactions using 4f ($\mathbb{R}^1 = Me$, $\mathbb{R}^2 = H$) also showed the formation of 5f, 6f and 7f after 20 min. It must be noted that the transformation from 5f into 6f and 7f was much faster than that from 5e into 6e and 7e; the equilibria were attained within 40 min (runs 3 and 4, Table 1). Foregoing facts demonstrate that the reaction systems of 4

Table 1. Reactions of 4 with 2ª

^a **2** (0.020 mmol), **4** (0.022 mmol) and solvent (0.5 mL) under N₂ atmosphere at 25 °C. ^b Required to reach the equilibrium of **5:6**. ^c Ratio at equilibrium. ^d Required to reach the equilibrium of **6:7**. ^e **4.3** equiv of **4j**. [†] **4.8** equiv of **4k**.

possessing p-MeC₆H₄S with 2 are quite flexible and the position changes of equilibrium states caused by substituents and solvents are readily analyzable.

Furthermore, the comparison of the equilibria of 5e:6e = 51:49 (run 1, Table 1) with 5f:6f =57:43 (run 3, Table 1) in C₆D₆ or **5e:6e** = 22:78 (run 2, Table 1) with **5f:6f** = 17:83 (run 4, Table 1) in CD₂Cl₂ indicates that retarded conversion of 5e into 6e and 7e is not attributable to its thermodynamics. Moreover, it took 9-10 h and even 52-55 h to reach the equilibrium states between 5 and 6 when 4g ($R^1 = H$, $R^2 = n-C_6H_{13}$) and 4i ($R^1 = H$, $R^2 = i-Pr$) were employed as starting substrates, respectively (runs 5 and 7, Table 1). It is also a noteworthy fact that 6:7 were reached the equilibrium states faster than 5:6 in theses reaction systems (3-6 h vs. 9-10 h in run 5 and 10-15 h vs. 52-55 h in run 7, Table 1). Although a larger thermodynamic driving force toward the oxidative addition from 5 to 6 was supplied by placing Ph at R^2 compared to Ph at R^1 (**5j**:**6j** = 71:29 of run 8 vs. **5k**:**6k** = 89:11 of run 11 in C₆D₆ or **5j**:**6j** = 50:50 of run 10 vs. 5k:6k = 70:30 of run 13 in CD₂Cl₂, Table 1), a much more prolonged time was again required to reach the equilibria; only < 40 min were required for 5k:6k both in C₆D₆ and CD₂Cl₂ (runs 11 and 13, Table 1), while the systems of **5j**:**6j** came to the equilibria during the term of 14-15 h and 16-17 h, after the equilibria of 6j:7j were achieved during the period of 9-10 h and 13-14 h, respectively (runs 8 and 10, Table 1). Although there are the plural equilibrium systems such as 6:7, cis-6:trans-6 and syn-7:anti-7, all the results above indicate that introducing a bulky substituent at R^2 causes retardation of the process of conversion of 5 into 6. The reactions performed in the presence of excess amount of 4 toward 2 (runs 10 and 13, Table 1) in the cases of $R^2 = Ph$ or $R^1 = Ph$ showed no practical influence for both the reaction rates and the positions of equilibria, indicating that the generation of 6 from 5 is a unimolecular process.

The chart of the ³¹P NMR spectrum of the reaction of **4f** ($R^1 = Me$, $R^2 = H$) with **2** in toluene- d_8 attempted at a low reaction temperature (-70 °C after 10 min) suggested the
formation of two π -complexes at (a) δ 29.9 (d, $J_{P-P} = 44$ Hz, $J_{Pt-P} = 4208$ Hz) and δ 31.2 (d, $J_{P-P} = 44$ Hz, $J_{Pt-P} = 3373$ Hz), and (b) δ 29.4 (d, $J_{P-P} = 41$ Hz, $J_{Pt-P} = 3280$ Hz) and δ 30.1 (d, $J_{P-P} = 41$ Hz, $J_{Pt-P} = 4212$ Hz) in a ratio of 63:37 in 19% yields (Eq. 4), although the stereochemistry was not able to be determined from these spectral data.¹⁰ Then the ratio of the latter signal decreased at -10 °C (96:4) and completely disappeared at 0 °C. Eventually, **7f** was produced as a major product at 25 °C. Only *trans* isomer of **6f** was detected during the course of this reaction.

On the other hand, the reaction utilizing 4k ($R^1 = Ph$, $R^2 = H$) produced only one π -complex in 22% yield at -50 °C (Eq. 5). In this case, however, *cis*-**6**k was also detected at -30 °C (5% with *cis:trans* = 60:40) and *trans*-**6**k (4%) was again finally produced, indicating *cis*-**6**k was generated as a kinetic product.

The foregoing data described in Table 1 also clearly showed the following.

(1) The position of equilibria of 5:6 and 6:7 both were slightly shifted toward 6 by changing the solvent from C_6D_6 to CD_2Cl_2 . (Compare 51:49 of run 3 with 22:78 of run 1 for 5e:6e and 13:87 of run 3 with 22:78 of run 2 for 6e:7e for instance in Table 1.) That is, the conversion from 5 into 6 was thermodynamically facilitated in some degree by a polar solvent and 6 has a slightly larger dipole moment than 7.

(2) The formation of *cis*-**6** was confirmed when thioesters having the substituent at \mathbb{R}^2 were employed (runs 1, 2 and 10, Table 1) and the ratios of *cis*-**6** over *trans*-**6** was increased by changing the solvent from C₆D₆ to CD₂Cl₂. (Compare 6:94 of run 3 with 13:87 of run 4 and 1:>99 of run 9 with 21:79 of run 11, Table 1.)

(3) The positions of equilibria between 6 and 7 were hardly influenced by the substituent at R^1 or R^2 . The ratios of 6:7 were all in the narrow range from 6:94 (run 7, Table 1) to 13:87 (run 1, Table 1) in C₆D₆ and from 15:85 (run 13, Table 1) to 22:78 in CD₂Cl₂ (run 2, Table 1). These

results also indicated that the basicity of the lone pair on sulfur, which can be mainly controlled by the substituent in Ar (*vide infra*), was the predominant factor to determine the position of equilibria between 6 and 7.⁷

(4) The fact that the formation of *syn*-7 over *anti*-7 was increased by changing the solvent from C_6D_6 to CD_2Cl_2 agrees with the prediction that the dipole moment of *syn*-7 is slightly larger than that of *anti*-7.

4-4. Reactions of Thioesters Having p-NO₂C₆H₄S Group with Pt(0) Complex.

It was found that more clear kinetic data from 5 to 6 was acquired by using thioesters with p-NO₂C₆H₄S group; monitoring the reactions of 2 with 4 shown in Table 2 demonstrated that 6 was exclusively produced from 5 whose decay followed the first order kinetics. When 4I (R¹ = H, R² = Me) was employed, the half-life of 5I forming 6I was calculated to be 38 min in C₆D₆ (run 1, Table 2). As predicted from the results of Table 1, the introduction of Me at R¹ kinetically facilitated the reaction ($t_{1/2} = 2.1$ min, run 6, Table 2). In stark contrast, the reaction of 4p having *i*-Pr group at R², which significantly retarded the reaction in the case of ArS = p-MeC₆H₄S (run 8, Table 1) took place just at a comparable reaction rate with that employing

Table 2. Half-Lives from 5 to 6ª

^a **2** (0.020 mmol), **4** (0.022 mmol) under N₂ atmosphere at 25 °C. Trans-**6** was finally predominantly produced. ^b 4.5 equiv of **4**I. ^c 5.0 equiv of **4p**. ^d 4.7 equiv of **4r**.

41 ($t_{1/2}$ = 43 min, run 10 vs. $t_{1/2}$ = 38 min, run 1, Table 2). Moreover, although retardation was also expected by introducing Ph at R^2 (vide ante), the transformation of 5q ($R^1 = H, R^2 = Ph$) to **6q** was actually faster than that of **5r** ($R^1 = Ph$, $R^2 = H$) to **6r** (6.2 min, run 13 vs. 9.1 min, run 15, Table 2). The effect of solvent was also very intriguing. While the reaction rates were hardly influenced by the polarity of the solvent in the cases of substrates possessing a substituent at R¹ [2.1 min in C₆D₆ (run 6, Table 2) vs. 3.3 min in CD₂Cl₂ (run 7, Table 2) for 5m to 6m or 9.1 min in C₆D₆ (run 15, Table 2) vs. 7.8 min in CD₂Cl₂ (run 17, Table 2) for 5q to 6g], significant acceleration was detected in CD₂Cl₂ solution with the thioesters having a substituent at R². The reactions took place 2.7 times faster for 51 (38 min in C₆D₆, run 1 vs. 14 min in CD₂Cl₂, run 3, Table 2), 6.3 times faster for **5p** (43 min in C₆D₆, run 10 vs. 6.8 min in CD₂Cl₂, run 12, Table 2) and 5.2 times faster for 5q (6.2 min in C₆D₆, run 13 vs. 1.2 min in CD_2Cl_2 , run 14, Table 2). The reaction performed in acetone- d_6 also proceeded faster than that in C₆D₆ (19 min, run 4 vs. 38 min, run 1, Table 2), while no facilitation was observed in THF-d₈ (36 min, run 5, Table 2). Similarly to the cases of reactions shown in Table 1, the reaction rates were independent of the excess amount of 4 in the cases of thioesters with substituent at either R¹ or R² position [run 1 vs. run 2 (4.5 equiv of 41), run 8 vs. run 9 (5.0 equiv of 4p) and run 13 vs. run 14 (4.7 equiv of 4q), Table 2].

When the reaction of 4q with 2 was performed at low reaction temperature, selective formation of 5q was confirmed at -50 °C after 10 min in 70% yield (Eq. 6). Then *cis*-6q was produced at -40 °C after 10 min in 3% yield and *trans*-6q was quantitatively provided at 25 °C.

4-5. Proposed Dual Reaction Routes

The experimental datas can be rationalized as follows (Scheme 1). In the case of thioesters posessing *p*-tolyl group on sulfur, after the formation of π -complex 5, coordinated Pt(PPh₃)₂ fragment would approach the C-S bond with the π -coordination partially retained.¹¹ During the process, two PPh₃s on Pt would remain *cis*-coordinated,⁵ bulky substituents at R² significantly retard the reaction owing to the steric hindrance, and the cleavage of C-S bond and the

formation of C-Pt and S-Pt bonds take place through a transition state such as **8**, which can possess the polarity comparable to **5**.

Unlike the cases of reactions of thioesters possessing a p-MeC₆H₄S group with 2, the results from the reaction of thioesters having p-NO₂C₆H₄ group on sulfur indicated that the Pt(PPh₃)₂-fragment can also attack the β-carbon (path b, Scheme 1) as well as the direct C-S bond attack (path a).¹² The β -attack would generate zwitterionic platinum complex 9 having anionic charge delocalized over α -carbon and carbonyl group. The formation of 9 can be facilitated to a great extent by a polar solvent and a substituent with a-anion stabilization ability such as a Ph group at $R^{2,13}$ The steric repulsion caused between a substituent at R^{2} and Pt(PPh₃)₂-fragment would rather facilitate the β-attack by pushing out the Pt(PPh₃)₂-fragment toward a less hindered β -carbon in path b. Presumably due to the cancellation by the retardation of path a and facilitation of path b by replacing Me with *i*-Pr at R², no remarkable difference emerged in the half-lives of 5 between the reactions using 4l and 4p in C_6D_6 (run 1 vs. run 10, Table 2). On the other hand, path b would predominate in CD₂Cl₂ and the reaction utilizing 4q proceed faster than that utilizing 4l (run 3 vs. run 12, Table 2). The reaction using thioester with p-NO₂C₆H₄S and Ph group at R² would overwhelmingly occur via path b even in C₆D₆ solution due to the a-anion stabilization ability of Ph as well as the steric repulsion between Ph and Pt(PPh₃)₂-fragment. This is why the reaction of 4q took place faster than that of 4r even in C₆D₆ (run 13 vs. run 15, Table 2). After the generation of 9, the Pt(PPh₃)₂-fragment would migrate from β -carbon to carbonyl carbon through an n¹-n³-n¹ type isomerization mechanism. During the process, the two PPh₃ on Pt also would retain cis configuration to give cis-6 as a kinetic product, which would isomerize into thermodynamically more stable trans-6.

Scheme 1. A Proposed Pathway from 5 to 6

4-6. Activation Parameters

To obtain more convincing information about the reaction mechanism, the activation parameters of the transformation of 6 from 5 were calculated by measuring the temperature dependence of reaction rates (25 °C - 40 °C) and values of ΔG^{\ddagger} , ΔH^{\ddagger} and ΔS^{\ddagger} were shown in Table 3. The following facts must be noted. First, the activation parameters of the formation of **61** from **51** in C₆D₆ significantly differed from those in CD₂Cl₂. That is, while ΔH^{\dagger} and ΔS^{\dagger} in C_6D_6 were 95.3±0.4 kJmol⁻¹ and 7.5±1.4 JK⁻¹mol⁻¹, those in CD_2Cl_2 were 53.5±0.1 kJmol⁻¹ and -124.4±0.2 JK⁻¹mol⁻¹. The large negative ΔS^{\dagger} and relatively small positive ΔH^{\dagger} in CD₂Cl₂ did not contradict the assumption that this reaction generates zwitterionic platinum complex 9, where the degree of freedom of the total reaction system was significantly diminished by a polar solvent and stiff Pt-C bond formation. On the contrary, the more positive ΔS^{\dagger} and larger ΔH^{\dagger} in C₆D₆ suggested the loss of bond energy and only weak bond generation at the transition state. Supposing that the π -coordination and C-S bond were weakened and emerging C-Pt and S-Pt bonds were both not strong, the transition state 8 would fulfill these criteria. Second, the negative value of ΔS^{\ddagger} (-49.2±0.3 JK⁻¹mol⁻¹) from **5p** to **6p** even in C₆D₆ also did not contradict the projection that this reaction can also proceed through path b even in C₆D₆ solution. That is, due to the significant steric hindrance caused by *i*-Pr located at R^2 , the route of path b competitively took place. The small positive ΔH^{\ddagger} and large minus ΔS^{\ddagger} in CD₂Cl₂ also accorded with the route of path b. Third, comparing the data of formation of 6r from 5r in

Table 3. Activation Parameters from 51 to 61, from 5p to 6p and 5r from 6r

	from 5I to 6I ($R^1 = H, R^2 = Me$)	
in C ₆ D ₆	in	CD ₂ Cl ₂

	$\Delta G^{\ddagger} = 93.0 \pm 0.1 \text{ kJmol}^{-1}$	$\Delta G^{\ddagger} = 90.5 \pm 0.1 \text{ kJmol}^{-1}$
	∆H [‡] = 95.3±0.4 kJmol ⁻¹	$\Delta H^{\ddagger} = 53.5 \pm 0.1 \text{ kJmol}^{-1}$
) ₂	$\Delta S^{\ddagger} = 7.5 \pm 1.4 \text{ JK}^{-1} \text{mol}^{-1}$	$\Delta S^{\ddagger} = -124.4 \pm 0.2 \text{ JK}^{-1} \text{mol}^{-1}$

from 5p to 6p ($\mathbf{R}^{*} = \mathbf{H}, \mathbf{R}^{*} = \mathbf{H}$)					
in C ₆ D ₆	in CD ₂ Cl ₂				
$\Delta G^{\ddagger} = 93.4 \pm 0.1 \text{ kJmol}^{-1}$	$\Delta G^{\ddagger} = 88.9 \pm 0.1 \text{ kJmol}^{-1}$				
$\Delta H^{\ddagger} = 78.7 \pm 0.1 \text{ kJmol}^{-1}$	$\Delta H^{\ddagger} = 40.2 \pm 0.2 \text{ kJmol}^{-1}$				
$\Delta S^{\ddagger} = -49.2 \pm 0.3 \text{ JK}^{-1} \text{mol}^{-1}$	ΔS^{\ddagger} = -163.5±0.5 JK ⁻¹ mol ⁻¹				

-2

	from 5r to 6r (R ¹ = Ph, R ² = H)			
	in C ₆ D ₆	in CD ₂ Cl ₂		
	$\Delta G^{\ddagger} = 89.8 \pm 0.1 \text{ kJmol}^{-1}$	$\Delta G^{\ddagger} = 89.5 \pm 0.1 \text{ kJmol}^{-1}$		
	$\Delta H^{\ddagger} = 68.2 \pm 0.7 \text{ kJmol}^{-1}$	$\Delta H^{\ddagger} = 81.9 \pm 1.9 \text{ kJmol}^{-1}$		
'NO ₂	$\Delta S^{\ddagger} = -72.5 \pm 2.4 \text{ JK}^{-1} \text{mol}^{-1}$	$\Delta S^{\ddagger} = -25.5 \pm 6.4 \text{ JK}^{-1} \text{mol}^{-1}$		

 C_6D_6 with those in CD_2Cl_2 , differences in the values of ΔH^{\ddagger} and ΔS^{\ddagger} as well as half-lives were much smaller than other cases. This can be nicely rationalized by assuming that reactions in both C_6D_6 and CD_2Cl_2 took place through a similar reaction route, namely, the direct C-S bond attack of a Pt(PPh_3)_2-fragment (path a) from a π -complex.

4-7. Conclusions

This study suggested that even when the substrates are α,β -unsaturated acid halide derivatives, two distinct reaction routes can similarly exist. The generality of this dual mechanism is now under investigation.

4-8. Experimental Section

General Comments: ³¹P and ¹H NMR spectra were recorded with a JEOL JMN Alice-400 spectrometer (160 MHz and 400 MHz, respectively) in C_6D_6 , CD_2Cl_2 or toluene- d_8 solution. The chemical shifts of the ³¹P NMR spectra were recorded relative to 85% H₃PO₄ (aq.) as an external standard and $S=P(C_6H_4OMe_p)_3$ was used as an internal standard to calculate the yields of products. The chemical shifts in the ¹HNMR spectra were recorded relative to C_6H_6 (δ 7.15), CH₂Cl₂ (δ 5.32) or toluene (δ 2.09). IR spectra were recorded with a Perkin Elmer FT-IR (Model 1600) spectrometer. Elemental analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Acid chlorides 1a and 1b were commercially obtained. Thioester 4a-c was prepared from the dehydrochlorination of S-aryl-3-(chloro)propanethioate using triethylamine (J. Am. Chem. Soc. 1969, 91, 913.). Thioester 4d was obtained from the reaction of $CH_2=C(H)C(O)Cl$ with $NaSC_6H_4$ -p-NO₂. Thioesters (4g, 4i-j) were synthesized according to the literature (*Tetrahedron Lett.* 2001, 42, 1567). Other thioesters (4e-f, 4h, 4k-r, S-aryl-3-(chloro)propanethioate) were prepared from the reactions of the corresponding acid chlorides with thiols in the presence of pyridine. The platinum complex $Pt(PPh_3)_2(C_2H_4)$ (2) was synthesized according to the literature (Inorg. Synth. 1978, 18, 120.). C₆D₆, toluene-d₈ and C₆H₆ were purified by distillation from sodium benzophenon ketyl before use. CD₂Cl₂ was distilled from CaH₂. The structures of 5, trans-6 and 7 were determined by comparing their ³¹P NMR chemical shifts and coupling constants $(J_{P-P} \text{ and } J_{P+P})$ with those of the authentic samples 5a, *trans*-6r and 7k.

Spectrum Data of 4.

H₂C=C(H)C(O)SC₆H₄-*p*-CH₃ (4a): colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 2.36 (s, 3 H), 5.71 (dd, *J* = 1.6 Hz, *J* = 9.6 Hz, 1 H), 6.35 (dd, *J* = 1.6 Hz, 17.2 Hz, 1 H), 6.42 (dd, *J* = 9.6 Hz, *J* = 17.2 Hz, 1 H), 7.21 (d, *J* = 8.2 Hz, 2 H), 7.31 (d, *J* = 8.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 123.4, 126.9, 129.8, 134.1, 134.2, 139.4, 188.4; mass spectrum (EI) m/z 178 (M⁺, 40); HRMS calcd for C₁₀H₁₀OS 178.0452, found 178.0444.

 $H_2C=C(H)C(O)SC_6H_5$ (4b): colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.76-5.79 (m, 1 H), 6.36-6.49 (m, 2 H), 7.41-7.47 (m, 5 H), 7.31 (d, J= 8.0 Hz, 2 H); ¹³C NMR(100 MHz, CDCl₃) δ 127.0, 127.2, 129.0, 129.3, 134.2,

134.4, 188.1; mass spectrum (EI) m/z 164 (M⁺, 92); HRMS calcd for C₉H₈OS 164.0296, found 164.0300.

 $H_2C=C(He)C(O)SC_6H_4-p-Cl$ (4c): white solid; ¹H NMR (400 MHz, CDCl₃) & 5.79-5.81 (m, 1 H), 6.37-6.48 (m, 2 H), 7.36-7.41 (m, 4 H), 7.31 (d, J = 8.0 Hz, 2 H); ¹³C NMR(100 MHz, CDCl₃) δ 125.4, 127.7, 129.3, 134.0, 135.6, 135.7, 187.6; mass spectrum (EI) m/z 198 (M⁺, 12); HRMS calcd for C₉H₇ClOS 197.9906, found 197.9903.

 $H_2C=C(H)C(O)SC_6H_4-p-NO_2$ (4d): colorless solid; ¹H NMR (400 MHz, CDCl₃) & 5.86-5.90 (m, 1 H), 6.43-6.50 (m, 2 H), 7.65 (d, 2 H, NO₂ $J_{H-H} = 8$ Hz), 8.26 (d, 2 H, $J_{H-H} = 8$ Hz); ¹³C NMR(100 MHz, CDCl₃) δ 123.8, 123.9, 128.7, 133.6, 134.6, 135.6, 185.8; mass spectrum (EI) m/z 209 (M⁺, 21); HRMS

calcd for C₉H₇NO₃S 209.0147, found 209.0133.

0

 $H_2C=C(Me)C(O)SC_6H_4-p-CH_3$ (4e): yellow oil; ¹H NMR (400 MHz, CDCl₃) § 2.00 (s, 3 H), 2.37 (s, 3 H), 5.67 (s, 1 H), 6.19 (s, 1 H), 7.22 (d, J = 8.0 Hz, 2 H), 7.31 (d, J= 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 18.4, 21.5, 123.5, 123.9, 129.8, 134.7, 139.4, 143.3, 191.6; mass spectrum

(EI) m/z 192 (M⁺, 16); HRMS calcd for C₁₁H₁₂OS 192.0609, found 192.0611.

(E)-Me(H)C=C(H)C(O)SC₆H₄-p-CH₃ (4f): colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.88 (dd, J= 1.6 Hz, J= 7.0 Hz, 3 H), 2.36 (s, 3 H), 6.19 (dd, J = 1.6 Hz, J = 15.2 Hz, 1 H), 6.97 (dt, J = 7.2 Hz, J = 14.7 Hz,

1 H), 7.20 (d, J= 8.0 Hz, 2 H), 7.31 (d, J= 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 18.1, 21.4, 123.8, 129.1, 129.7, 134.3, 139.2, 141.5, 187.8; mass spectrum (EI) m/z 192 (M⁺, 10); HRMS calcd for C₁₁H₁₂OS 192.0609, found 192.0613.

 $H_2C=C(n-C_6H_{13})C(O)SC_6H_4-p-CH_3$ (4g): colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 0.88 (t, J = 6.6 Hz, 3 H), 1.29 (br, 6 H), 1.44-1.49 (m, 2 H), 2.34 (t, J = 7.6 Hz, 2 H), 2.38 (s, 3 H),

5.64 (s, 1 H), 6.20 (s, 1 H), 7.22 (d, J= 8.0 Hz, 2 H), 7.31 (d, J= 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) & 14.2, 21.5, 22.7, 28.3, 29.0, 31.7, 32.1, 122.4, 124.1, 129.8, 134.7, 139.4, 148.2, 191.9; mass spectrum (EI) m/z 262 (M⁺, 14); HRMS calcd for C₁₆H₂₂OS 262.1391, found 262.1393.

(E)-(n-C₆H₁₃)(H)C=C(H)C(O)SC₆H₄-p-CH₃ (4h): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 0.91 (t, J = 6.4 Hz, 3 H),
 1.28-1.49 (m, 8 H), 2.24 (m, 2 H), 2.37 (s, 3 H), 6.17 (d, J=

15.6 Hz, 1 H), 6.97 (dt, J= 7.2 Hz, J= 15.6 Hz, 1 H), 7.22 (d, J= 8.0 Hz, 2 H), 7.31 (d, J= 8.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 21.5, 22.7, 28.0, 28.9, 31.5, 32.4, 124.0, 127.6, 129.8, 134.3, 139.3, 146.6, 188.2.

H₂C=C(*i*-C₃H₇)C(O)SC₆H₄-*p*-CH₃ (4*i*): colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.11 (d, J = 6.8 Hz, 6 H), 2.85 (sept, J = 6.8 Hz, 1 H), 5.63 (s, 1 H), 6.18 (s, 1 H), 7.23 (d, J = 8.2 Hz, 2 H), 7.32 (d, J = 8.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.3, 21.5, 29.9, 119.7, 124.1, 129.6, 134.5,

139.2, 154.3, 192.2; mass spectrum (EI) m/z 220 (M⁺, 16); HRMS calcd for $C_{13}H_{16}OS$ 220.0922, found 220.0923.

H₂**C=C(C**₆**H**₅)**C(O)SC**₆**H**₄-*p*-**CH**₃ (4j): white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3 H), 5.87 (s, 1 H), 6.29 (s, 1 H), 7.22-7.45 (m, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.9, 123.5, 124.5, 128.50, 128.55, 128.9, 130.3, 134.8, 136.0, 139.9, 148.0, 192.2; mass spectrum (EI) m/z 254 (M⁺, 13); HRMS calcd for C₁₆H₁₄OS 254.0765, found 254.0771.

(*E*)-(C₆H₅)(H)C=C(H)C(O)SC₆H₄-*p*-CH₃ (4k): white solid; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3 H), 6.78 (d, *J* = 16.0 Hz, 1 H), 7.24 (d, *J* = 7.6 Hz, 2 H), 7.36-7.40 (m, 5 H), 7.53-7.55 (m, 2 H), 7.66 (d, *J* = 16.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5,

123.9, 124.0, 128.3, 128.8, 129.8, 130.5, 133.8, 134.3, 139.5, 141.1, 188.0; mass spectrum (EI) m/z 254 (M^+ , 1); HRMS calcd for C₁₆H₁₄OS 254.0765, found 254.0759.

H₂**C=C(CH₃)C(O)SC₆H₄-***p***-NO₂ (41): yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 2.03 (s, 3 H), 5.80 (s, 1 H), 6.25 (s, 1 H), 7.64 (d, J= 8.7 Hz, 2 H), 8.27 (d, J= 8.7 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 18.1, 123.5, 124.7, 134.9, 136.0, 142.8, 147.8, 188.7; mass spectrum**

(EI) m/z 223 (M^+ , 1); HRMS calcd for C₁₀H₉NO₃S 223.0303, found 223.0308.

(*E*)-(CH₃)(H)C=C(H)C(O)SC₆H₄-*p*-NO₂ (4m): orange solid; ¹H NMR (400 MHz, CDCl₃) δ 1.97 (d, *J* = 6.8 Hz, 3 H), 6.23 (d, *J* = 15.2 Hz, 1 H), 7.06 (dt, *J* = 6.8 Hz, *J* = 14.8 Hz, 1 H), 7.63 (d, *J* = 8.2 Hz, 2 H), 8.25 (d, *J* = 8.2 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 18.4,

123.7, 128.8, 134.6, 136.2, 143.6, 147.8, 185.1; mass spectrum (EI) m/z 223 (M^+ , 0.4); HRMS calcd for C₁₀H₉NO₃S 223.0303, found 223.0305.

 $\begin{aligned} \mathbf{H_2C=C(n-C_6H_{13})C(0)SC_6H_4-p-NO_2} \quad & (4n): \text{ colorless oil; }^{1}H} \\ \text{NMR} \quad & (400 \text{ MHz, CDCl}_3) \ \delta \ 0.89 \ (t, J=7.2\text{Hz}, 3 \text{ H}), \ 1.30\text{-}1.50} \\ & (m, 8 \text{ H}), \ 2.36 \ (t, J=7.6 \text{ Hz}, 2 \text{ H}), \ 5.76 \ (s, 1 \text{ H}), \ 6.25 \ (s, 1 \text{ H}), \\ \text{NO}_2 \quad & 7.63 \ (d, J=8.8 \text{ Hz}, 2 \text{ H}), \ 8.26 \ (d, J=8.0 \text{ Hz}, 2 \text{ H}); \ ^{13}\text{C} \text{ NMR} \end{aligned}$

(100 MHz, CDCl₃) δ 14.2, 22.7, 28.2, 28.9, 31.7, 32.0, 123.7, 123.8, 135.0, 136.4, 147.9, 189.1.

(*E*)-(*n*-C₆H₁₃)(H)C=C(H)C(O)SC₆H₄-*p*-NO₂ (40): colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 0.90 (t, *J* = 0.4 Hz, 3 H), 1.31-1.52 (m, 8 H), 2.28 (dt, *J*= 20.4 Hz, J = 7.2 Hz, 2 H), 6.19 (d, *J*= 15.6 Hz, 1 H), 7.05 (dt, *J*= 6.8

Hz, J = 15.6 Hz, 1 H), 7.63 (d, J = 8.8 Hz, 2 H), 8.25 (d, J = 8.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 22.7, 28.0, 29.0, 31.7, 32.6, 123.7, 127.3, 134.6, 136.3, 147.8, 148.6, 185.3.

H₂**C=C**(*i*-**Pr**)**C**(**O**)**SC**₆**H**₄-*p*-**NO**₂ (**4p**): yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.13 (d, J= 6.8 Hz, 6 H), 2.86 (sept, J = 6.8 Hz, 1 H), 5.75 (s, 1 H), 6.23 (s, 1 H), 7.63 (d, J= 8.8 Hz, 2 H), 8.26 (d, J = 8.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 30.2, 121.4, 123.7, 135.0, 136.5,

147.9, 154.2, 189.6; mass spectrum (EI) m/z 251 (M^+ , 0.2); HRMS calcd for $C_{12}H_{13}NO_3S$ 251.0616, found 251.0607.

H₂C=C(C₆H₅)C(O)SC₆H₄-*p***-NO₂ (4q): yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 5.95 (s, 1 H), 6.35 (s, 1 H), 7.39-7.45 (m, 5 H), 7.65 (d, J= 9.0 Hz, 2 H), 8.26 (d, J= 9.0 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 123.8, 124.4, 128.2, 128.3, 128.9, 134.8, 135.0, 136.4, 147.3, 148.0, 189.0; mass spectrum (EI) m/z 285 (M⁺, 9.4); HRMS calcd for**

C₁₅H₁₁NO₃S 285.0460, found 285.0547.

 $(E)-PhC(H)=CHC(O)SC_{6}H_{4}-p-NO_{2} \quad (4r): \text{ yellow solid; }^{1}H$ NMR (400 MHz, CDCl₃) δ 6.78 (d, J=15.8 Hz, 1 H), 7.42-7.44 (m, 3 H), 7.57-7.59 (m, 2 H), 7.68 (d, J=8.6 Hz, 2 H), 7.72 (d, JNO₂ = 15.8 Hz, 1 H), 8.27 (d, J=8.6 Hz, 2 H); ^{13}C NMR (100 MHz,

CDCl₃) δ 123.4, 123.7, 128.5, 128.9, 131.1, 133.4, 134.6, 136.2, 142.7, 147.9, 185.2; mass spectrum (CI) m/z 286 ([M-H]⁺, 100); HRMS calcd for C₁₅H₁₂NO₃S (M-H) 286.0538, found 286.0533.

The Preparation of Authentic 5a. Into a dry two-necked reaction vessel equipped with a stirring bar were added 2 (703.0 mg, 0.94 mmol), 4a (174.9 mg, 0.98 mmol) and C₆H₆ (3 mL). After the reaction mixture was stirred at 25 °C for 30 min, hexane (ca. 50 mL) was added into

the mixture and the precipitate was collected by filtration. Then the solid was washed by hexane $(10 \text{ mL} \times 3)$ and dried to give 5a (672.0 mg, 80%).

5a: mp 130 °C (a white solid); ¹H NMR (400 MHz, C₆D₆) δ 2.01 (s, 3 H), 2.53-2.60 (m, 1 H), 3.00-3.07 (m, 1 H), 3.90-4.06 (m, 1 H), 6.84-6.97 (m, 20 H), 7.18-7.20 (m, 2 H), 7.43-7.56 (m, 12 H); ³¹P NMR (160 Hz, C₆D₆) δ 29.5 (d, *J*_{P-P} = 38 Hz, *J*_{Pt-P} = 4038 Hz), 31.4 (d, *J*_{P-P} = 38 Hz, *J*_{Pt-P} = 3567 Hz); IR (KBr) 3050, 1652, 1478, 1433, 1360, 1155, 1095, 967, 943, 808, 742, 692, 540, 517, 510 cm⁻¹; Anal. Calcd for C₄₆H₄₀OP₂PtS: C, 61.53; H, 4.49. Found: C, 61.48; H, 4.49.

The Preparation of Authentic *trans*-6r. Into a dry two-necked reaction vessel equipped with a stirring bar were added 2 (747.0 mg, 1.0 mmol), 4r (301.5 mg, 1.1 mmol) and C_6H_6 (5 mL). After the reaction mixture was stirred at 25 °C for 1.5 h, hexane (ca. 50 mL) was added into the mixture and the precipitate was collected by filtration. The resultant solid was washed by hexane (10 mL × 3) and methanol (10mL × 3) and then dried to give *trans*-6r (849.8 mg, 85%).

*trans-6*r: mp 142 °C (an orange solid); ¹H NMR (400 MHz, C₆D₆) δ 6.08 (d, J = 16.0 Hz, 1 H), 6.82-7.15 (m, 27 H), 7.47 (d, J = 16.0 Hz, 1 H), 7.57 (d, J = 9.2 Hz, 2 H), 7.80-7.83 (m, 10 H); ³¹P NMR (160 Hz, C₆D₆) δ 16.0 (s, $J_{Pt-P} = 3228$ Hz); IR (KBr) 3056, 1580, 1566, 1493, 1482, 1435, 1319, 1094, 742, 692, 523, 514 cm⁻¹; Anal. Calcd for C₅₁H₄₁NO₃P₂PtS: C, 60.95; H, 4.11; N, 1.39. Found: C, 60.69; H, 4.03; N, 1.43.

The Preparation of Authentic 7k. Into a dry two-necked reaction vessel equipped with a stirring bar were added **2** (897.0 mg, 1.2 mmol), **4k** (321.2 mg, 1.3 mmol) and C₆H₆ (5 mL). After the reaction mixture was stirred at 25 °C for 2 h, hexane (ca. 50 mL) was added into the mixture and the precipitate was collected by filtration. The resultant solid was washed by hexane (10 mL \times 3) and methanol (10 mL \times 3) and then dried to give **7k** (394.9 mg, 46%, *syn:anti* = 61:39).

7k (the following data were collected from a mixture of stereoisomers): mp 186 °C (an yellow solid); ¹H NMR (160 MHz, C₆D₆) (*syn* isomer): δ 1.65 (s, 3 H), 2.11 (s, 3 H), 6.13 (d, *J* = 16.0 Hz, 1 H), 6.50 (d, *J* = 7.6 Hz, 2 H), 6.58 (d, *J* = 8.0 Hz, 2 H), 7.51 (d, *J* = 8.0 Hz, 2 H), 7.58 (d, *J* = 7.6 Hz, 2 H); (*anti* isomer): δ 1.88 (s, 6 H), 6.14 (d, *J* = 16.0 Hz, 1 H) (Other peaks overlapped in the region of δ 6.83-7.15 and δ 7.69-7.85 was not able to be read distinctively.); ³¹P NMR (160 Hz, C₆D₆) (*syn* isomer): δ 15.0 (s, *J*_{Pt-P} = 4164 Hz); (*anti* isomer): δ 16.8 (s, *J*_{Pt-P} = 4028 Hz); IR (KBr) 3055, 1626, 1582, 1486, 1434, 1096, 758, 693, 535, 511, 498 cm⁻¹; Anal. Calcd for C₆₈H₅₈O₂P₂Pt₂S₂: C, 57.38; H, 4.11. Found: C, 57.66; H, 4.03.

The Reaction of 1a with 2 (Eq. 1). Into a dry Pyrex NMR tube were added 2 (15.5 mg, 0.021 mmol), 1a (4.0 mg, 0.044 mmol) and $S=P(C_6H_4OMe_p)_3$ (1.7 mg, 0.0044 mmol). Then ca. 0.5 mL of toluene- d_8 was transferred by the freeze-pump-thaw method. The ³¹P NMR spectrum

taken after 10 min at -50 °C showed the quantitative formation of acylplatinum complex **3a** (*cis:trans* = 57:43), which completely isomerized to *trans* isomer at 10 °C after 10 min. No formation of π -complex Pt[(Cl)C(O)C(H)=CH₂](PPh₃)₂ was observed during course of the reaction.

cis-3a: ³¹P NMR (160 MHz, toluene- d_8) δ 15.9 (d, $J_{P-P} = 17$ Hz, $J_{Pt-P} = 4662$ Hz), 18.2 (d, $J_{P-P} = 17$ Hz, $J_{Pt-P} = 1378$ Hz). *trans*-3a: ³¹P NMR (160 MHz, toluene- d_8) δ 22.2 (s, $J_{Pt-P} = 3312$ Hz).

The Reaction of 1b with 2 (Eq. 1). The reaction of 1b with 2 was carried out in a similar manner to the reaction of 1b with 2. The ³¹P NMR spectrum taken after 10 min at -50 °C showed the quantitative formation of 3b (cis:trans = 96:4), which completely isomerized to 10 °C after 10 min. No formation of π -complex trans isomer at $Pt[(C1)C(O)C(H)=C(Ph)(H)-(E)](PPh_3)_2$ was observed during course of the reaction.

cis-3b: ³¹P NMR (160 MHz, toluene- d_{δ}) δ 15.4 (d, $J_{P-P} = 16$ Hz, $J_{Pt-P} = 4715$ Hz), 17.4 (d, $J_{P-P} = 16$ Hz, $J_{Pt-P} = 1349$ Hz). *trans*-3b: ³¹P NMR (160 MHz, toluene- d_{δ}) δ 21.0 (s, $J_{Pt-P} = 3378$ Hz).

The Reaction of α,β -Unsaturated Thioester 4 with 2. General Procedure: Into a dry Pyrex NMR tube were added 2 (0.020 mmol), 4 (0.022 mmol), S=P(C₆H₄OMe-*p*)₃ (0.01 mmol) and solvent (0.5 mL) under N₂ atmosphere. The reaction was roughly monitored by ³¹P and ¹H NMR spectrum at 25 °C to determine the time required for reaching the equilibrium state among 5, 6 and 7. Then the reaction was again continuously monitored by using automatic measuring system until the equilibrium of the system was well-achieved.

The Reaction of H₂C=CHC(O)SC₆H₄Me-p (4a) with 2 in

 C_6D_6 (Eq. 2): The reaction was continuously monitored by ³¹P and ¹H NMR spectrum using automatic measurement program system. The ³¹P NMR spectrum showed the formation of 5a and *syn*-7a. The reaction time, the yields of 5a and *syn*-7a at the time are shown in Table S1.

5a: ³¹ P NMR (160 MHz, C ₆ D ₆) δ 29.5 (d, $J_{P-P} = 38$ Hz, $J_{Pt-P} = 4038$ Hz), 31.4 (d, $J_{P-P} = 38$ Hz
$J_{\text{Pt-P}} = 3567 \text{ Hz}$). syn-7a: ³¹ P NMR (160 MHz, C ₆ D ₆) δ 15.0 (s, $J_{\text{Pt-P}} = 4171 \text{ Hz}$).

The Reaction of 4a with 2 in CD_2Cl_2 (Eq. 2): Automatic NMR measurement program system has been used to continuously monitor the reaction. The ³¹P NMR spectrum showed the formation of 5a, *trans*-6a and *syn*-7a. The reaction time, the yields of 5a, *trans*-6a and *syn*-7a, and at the time are shown in Table S2.

Table S2			
time	5a (%)	<i>trans-6a (%)</i>	syn -7a (%)
20min	99.7	0.3	n.d.
1 h	99.4	0.3	0.3
140 min	98.9	0.4	0.7
6 h	98.9	0.4	0.7

time	5a (%)	6a (%)	7a (%)
20min	>99	n.d.	n.d.
1 h	>99	n.d.	n.d.
3 h	99.7	n.d.	0.3
6 h	99.5	n.d.	0.5

Table S1

5a: ³¹P NMR (160 MHz, CD₂Cl₂) δ 28.9 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 4060$ Hz), 30.7 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 3541$ Hz). *trans-6a:* ³¹P NMR (160 MHz, CD₂Cl₂) δ 17.6 (s, $J_{Pt-P} = 3272$ Hz). *syn-7a:* ³¹P NMR (160 MHz, CD₂Cl₂) δ 15.0 (s, $J_{Pt-P} = 4110$ Hz).

The Reaction of H₂C=CHC(O)SPh (4b) with 2 in C₆D₆ Table S3

(Eq. 2): The reaction was continuously monitored by ${}^{31}P$				
and ¹ H NMR spectrum using automatic measurement -				
program system. The ³¹ P NMR spectrum showed the				
formation of 5b and <i>syn</i> - 7b . The reaction time, the yields of				
5b and <i>syn</i> -7b at the time are shown in Table S3.				

time 5b 6b syn-7b (%) (%) (%) n.d. 20min >99 n.d. 1 h 99.1 0.9 n.d. Зh 97.7 2.3 n.d. 5 h 97.6 n.d. 2.4

5b: ³¹P NMR (160 MHz, C₆D₆) δ 29.5 (d, $J_{P-P} = 38$ Hz, $J_{Pt-P} = 4049$ Hz), 31.3 (d, $J_{P-P} = 38$ Hz, $J_{Pt-P} = 3557$ Hz). *syn-7b:* ³¹P NMR (160 MHz, C₆D₆) δ 15.1 (s, the value of J_{Pt-P} was not able to read because of low intensity).

The Reaction of H₂C=CHC(O)SPh (4b) with 2 in Table S4

 CD_2Cl_2 (Eq. 2): The reaction was continuously _ monitored by ³¹P and ¹H NMR spectrum using automatic measurement program system. The ³¹P NMR spectrum showed the formation of 5b, 6b and 7b. The reaction _

14010 01			
time	5b (%)	6b (%)	7b (%)
10 min	>99	n.d.	n.d.
1 h	98.2	0.7	1.1
3 h	97.0	1.0	1.9
6 h	95.1	1.1	3.8
22 h	93.6	0.9	5.6

time, the yields of **5b**, **6b** and **7b** at the time are shown in Table S4.

5b: ³¹P NMR (160 MHz, CD₂Cl₂) δ 29.0 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 4076$ Hz), 30.7 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 3540$ Hz). **6b:** ³¹P NMR (160 MHz, CD₂Cl₂) δ 17.0 (s, the value of J_{Pt-P} was not able to read because of low intensity). *syn-7b:* ³¹P NMR (160 MHz, CD₂Cl₂) δ 15.1 (s, the value of J_{Pt-P} was not able to read because of low intensity). *anti-7b:* ³¹P NMR (160 MHz, CD₂Cl₂) δ 17.0 (s, the value of J_{Pt-P} was not able to read because of low intensity).

The Reaction of H₂C=CHC(O)SC₆H₄-p-Cl (4c) with 2 in Table

 C_6D_6 (Eq. 2): The reaction was continuously monitored by ^{31}P and ^{1}H NMR spectrum using automatic measurement program system. The ^{31}P NMR spectrum showed the formation of 5c, 6c and 7c. The reaction time, the yields of 5c, 6c and 7c at the time are shown in Table S5.

Table Sc)		
time	5c (%)	6c (%)	7c (%)
20 min	>99	n.d.	n.d.
1 h	98.2	0.5	1.4
3 h	92.2	1.5	6.3
6 h	90.4	1.7	7.9

5c: ³¹P NMR (160 MHz, C₆D₆) δ 29.3 (d, $J_{P-P} = 38$ Hz, $J_{Pt-P} = 4072$ Hz), 31.2 (d, $J_{P-P} = 38$ Hz, $J_{Pt-P} = 3558$ Hz). **6c:** ³¹P NMR (160 MHz, C₆D₆) δ 16.3 (s, the value of J_{Pt-P} was not able to read because of low intensity). *syn-7c:* ³¹P NMR (160 MHz, C₆D₆) δ 14.8 (s, the value of J_{Pt-P} was not able to read because of low intensity). *anti-7c:* ³¹P NMR (160 MHz, C₆D₆) δ 16.5 (s, the value of J_{Pt-P} was not able to read because of low intensity).

The Reaction of $H_2C=CHC(O)SC_6H_4-p-Cl$ (4c)

with 2 in CD₂Cl₂ (Eq. 2): The reaction was continuously monitored by ³¹P and ¹H NMR spectrum using automatic measurement program system. The ³¹P NMR spectrum showed the

Table St				
time	5c (%)	6c (%)	7c (%)	8c (%)
20 min	99.5	0.5	n.d.	n.d.
1 h	98.1	1.6	0.3	n.d.
6 h	87.7	4.0	8.3	n.d.
19 h	86.3	5.4	8.3	1.5
22 h	84.1	5.3	9.4	1.1

formation of 5c, 6c, 7c, and 8c. The reaction time, the yields of 5c, 6c, 7c, and 8c at the time are shown in Table S6.

5c: ³¹P NMR (160 MHz, CD₂Cl₂) δ 28.8 (d, J_{P-P} = 35 Hz, J_{Pt-P} = 4082 Hz), 30.6 (d, J_{P-P} = 35 Hz, $J_{Pt-P} = 3530$ Hz). 6c: ³¹P NMR (160 MHz, CD₂Cl₂) δ 17.0 (s, $J_{Pt-P} = 3260$ Hz). syn-7c: ³¹P NMR (160 MHz, CD₂Cl₂) δ 14.9 (s, the value of J_{Pt-P} was not able to read because of low intensity). anti-7c: ³¹P NMR (160 MHz, CD₂Cl₂) δ 16.5 (s, the value of J_{Pt-P} was not able to read because of low intensity). **10c**: ³¹P NMR (160 MHz, CD_2Cl_2) δ 23.9 (s, J_{Pt-P} = 3260 Hz).

time

3 min

4 min

20 min

40 min

1 h 2 h

3 h

4 h

5 h

10 h

5d (%)

>99

99

97

95

93

87

81

76

71

50

35

6d (%)

n.d.

1

3

5

7

13

18

23

28

45

56

7d (%)

n.d.

8d (%) n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

1

1

2

5

9

The Reaction of H₂C=CHC(O)SC₆H₄-p-NO₂ Table S7

(4d) with 2 in C_6D_6 (Eq. 2): The ³¹P NMR spectrum showed the formation of 5d, 6d and 10d. The reaction time (the average of acquisition time), and the yields of 5r, 6r and 10r at the time are shown in Table S7 and the half-live was calculated to be 10.2 h.

5d: ³¹P NMR (160 MHz, C_6D_6) δ 29.1 (d, $J_{P-P} =$

36 Hz, $J_{Pt-P} = 4103$ Hz), 31.0 (d, $J_{P-P} = 36$ Hz, _____ 19 h $J_{\text{Pt-P}} = 3542 \text{ Hz}$). 6d: ³¹P NMR (160 MHz, C₆D₆) δ 16.0 (s, $J_{\text{Pt-P}} = 3236 \text{ Hz}$). 10d: ³¹P NMR $(160 \text{ MHz}, C_6 D_6) \delta 23.7 \text{ (s, } J_{\text{Pt-P}} = 2990 \text{ Hz}).$

The	Reaction	of	H ₂ C=CHC(Ο)SC6H4-1	$-NO_2$	Tab
-----	----------	----	-----------------------	---	----------	---------	-----

(4d) with 2 in CD_2Cl_2 (Eq. 2): The ³¹ P NMR									
spectrum showed the formation of 5d, 6d and									
10d. The reaction time (the average of									
acquisition time), and the yields of 5d, 6d and									
10d at the time are shown in Figure S8 and the									
half-live was calculated to be 5.4 h.									
5d: ³¹ P NMR (160 MHz, CD ₂ Cl ₂) δ 28.6 (d, <i>J</i> _{P-P}									

The Reaction of H ₂ C=CHC(O)SC ₆ H ₄ -p-NO ₂	Table S8				
(4d) with 2 in CD_2Cl_2 (Eq. 2): The ³¹ P NMR	time	5d (%)	6d (%) (cis:trans)	7d (%)	8d (%)
spectrum showed the formation of 5d, 6d and	20 min	91 86	9 (1:>99) 14 (1:>99)	n.d.	n.d.
10d. The reaction time (the average of	1 h	82	18 (1:>99)	n.d.	n.d.
acquisition time), and the yields of 5d, 6d and	2 h 3 h	73 65	26 (1:>99) 34 (1:>99)	n.d. n.d.	0.4 1
10d at the time are shown in Figure S8 and the	4 h	57	42 (1:>99)	n.d.	1
half-live was calculated to be 5.4 h.	5 h 6 h	50 42	48 (1:99) 55 (1:99)	n.a. n.d.	2 3
5d: ³¹ P NMR (160 MHz, CD ₂ Cl ₂) δ 28.6 (d, J _{P-P}	7.5 h	34	61 (1:99)	n.d.	3
$= 35 \text{ Hz}$, $J_{\text{PLP}} = 4118 \text{ Hz}$), $30.3 \text{ (d. } J_{\text{PLP}} = 35 \text{ Hz}$,	9 n 10 h	27	68 (1:99) 68 (1:99)	n.d.	5

 $J_{\text{Pt-P}} = 3513 \text{ Hz}$). 6d: ³¹P NMR (160 MHz, CD₂Cl₂) δ 15.9 (s, $J_{\text{Pt-P}} = 3225 \text{ Hz}$). 10d: ³¹P NMR (160 MHz, CD_2Cl_2) δ 23.5 (s, J_{Pt-P} = 3024 Hz).

The Reaction of Trans-3a with 8 (Eq. 3). Into a dry Pyrex NMR tube were added trans-3a

(16.2 mg, 0.020 mmol), 8 (8.8 mg, 0.060 mmol), S=P(C₆H₄OMe-p)₃ (3.6 mg, 0.0094 mmol) and CD₂Cl₂ (0.5 mL) under N₂ atmosphere. Then the reaction was monitored by ³¹P and ¹H NMR spectrum at 25 °C. After 17 h, the ³¹P NMR spectrum showed the formation of **5a** (79%), *trans*-**6a** (0.6%) and **7a** (13%, *syn:anti* = 77:23).

anti-7a: ³¹P NMR (160 MHz, CD₂Cl₂) δ 17.0 (s, $J_{Pt-P} = 4013$ Hz).

The Reaction	of Table S	9					
H ₂ C=C(Me)C(O)SC ₆ H ₄ - <i>p</i> -Me (4e) time	5e (%)	6e (%) (cis:trans)	7e (%) (syn:anti)	5e:6e	6e:7e	-
with 2 in C_6D_6 (run 1, Table	1): 20 min	78	4.4 (9:91)	17 (47:53)	95:5	21:79	
	40 min	64	7.3 (4:96)	28 (68:32)	90:10	21:79	
Automatic NMR measurem	ent 1h	48	10 (10:90)	42 (76:24)	83:17	19:81	
program system has been used	to 2h	24	12 (5:95)	64 (80:20)	67:33	15:85	
program system has been used	3h	16	12 (6:94)	70 (79:21)	58:42	16:84	
continuously monitor the react	ion 4h	12	12 (6:94)	76 (80:20)	51:49	13:87	
	5 h	12	12 (4:96)	76 (80:20)	51:49	13:87	
for 7 h. The P NMR spectr	um 6h	11	12 (5:95)	77 (81:19)	49:51	13:87	
showed the formation of 5e. 6e	and <u>7h</u>	12	12 (7:93)	76 (80:20)	50:50	13:87	

7e. Selective information about the reaction time, the yields of 5e, 6e and 7e, and the ratios of 5e:6e and 6e:7e at the time are shown in Table S9. Although the ratio of 5e:6e after 3 h (58:42) was different from that after 4 h (51:49), those after 4 h and 7 h were virtually the same. This is why it was concluded that equilibrium between 5e:6e was attained in a range of time of 3-4 h (51:49). The changes of yields between 5e and 6e from the early stage of this reaction indicated 6e was produced from 5e. The equilibrium between 6e:7e was also attained in a range of time of 3-4 h (13:87).

5e: ³¹P NMR (160 MHz, C₆D₆) δ 28.0 (d, $J_{P-P} = 41$ Hz, $J_{Pt-P} = 3827$ Hz), 31.0 (d, $J_{P-P} = 41$ Hz, $J_{Pt-P} = 3724$ Hz). *cis-6e:* ³¹P NMR (160 MHz, C₆D₆) δ 16.7 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 18.4 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans-6e:* ³¹P NMR (160 MHz, C₆D₆) δ 16.4 (s, $J_{Pt-P} = 3291$ Hz). *syn-7e:* ³¹P NMR (160 MHz, C₆D₆) δ 14.6 (s, $J_{Pt-P} = 4188$ Hz). *anti-7e:* ³¹P NMR (160 MHz, C₆D₆) δ 16.2 (s, $J_{Pt-P} = 4124$ Hz).

The Reaction of 4e with 2 in CD_2Cl_2 (run 2, Table 1): Automatic NMR measurement program system has been used to continuously monitor the reaction for 8 h. The ³¹P NMR spectrum showed the formation of 5e, 6e and 7e. Selective information about the reaction time, the yields of 5e, 6e

Table S10

time	5e (%)	6e (%) (cis:trans)	7e (%) (syn:anti)	5e:6e	6e:7e
20 min	66	20 (45:55)	17 (51:49)	77:23	59:41
40 min	45	24 (24:76)	28 (69:31)	65:35	44:56
1 h	33	26 (19:81)	42 (73:27)	56:44	39:61
2 h	15	25 (17:83)	64 (79:21)	38:62	30:70
3 h	10	24 (15:85)	70 (81:19)	29:71	27:73
4 h	9	22 (12:88)	76 (82:18)	29:71	24:76
5 h	7	21 (14:86)	76 (82:18)	25:75	23:77
6 h	6	21 (13:87)	77 (83:17)	22:78	22:78
7 h	6	20 (15:85)	76 (82:18)	23:77	22:78
<u>8 h</u>	6	20 (14:86)	74 (82:18)	23:77	21:79

and 7e, and the ratios of 5e:6e and 6e:7e at the time are shown in Table S10. Although the ratio of 5e:6e after 5 h (25:75) was different from that after 6 h (22:78), those after 6 h and 8 h

were virtually the same. This is why it was concluded that equilibrium between **5e:6e** was attained in a range of time of 5-6 h (22:78). The changes of yields between **5e** and **6e** from the early stage of this reaction indicated **6e** was produced from **5e**. The equilibrium between **6e:7e** was also attained in a range of time of 5-6 h (22:78).

5e: ³¹P NMR (160 MHz, CD₂Cl₂) δ 27.5 (d, $J_{P-P} = 40$ Hz, $J_{Pt-P} = 3836$ Hz), 30.5 (d, $J_{P-P} = 40$ Hz, $J_{Pt-P} = 3705$ Hz). *cis*-6e: ³¹P NMR (160 MHz, CD₂Cl₂) δ 15.7 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 17.5 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans*-6e: ³¹P NMR (160 MHz, CD₂Cl₂) δ 17.1 (s, $J_{Pt-P} = 3205$ Hz). *syn*-7e: ³¹P NMR (160 MHz, CD₂Cl₂) δ 14.5 (s, $J_{Pt-P} = 4138$ Hz). *anti*-7e: ³¹P NMR (160 MHz, CD₂Cl₂) δ 16.1 (s, $J_{Pt-P} = 4019$ Hz).

Table S1	11					
time	5f (%)	trans-6f (%)	7f (%) (syn:anti)	5f:6f	6f:7f	
20 min	11	7	82 (63:37)	61:39	8:92	
40 min	8	6	86 (64:36)	57:43	7:93	
<u>1 h</u>	8	6	86 (63:37)	57:43	7:93	-
	Table S1 time 20 min 40 min 1 h	Table S11 time 5f (%) 20 min 11 40 min 8 1 h 8	Table S11 time 5f (%) trans-6f (%) 20 min 11 7 40 min 8 6 1 h 8 6	Table S11 time 5f (%) trans-6f (%) 7f (%) 20 min 11 7 82 (63:37) 40 min 8 6 86 (64:36) 1 h 8 6 86 (63:37)	Table S11 time 5f (%) trans-6f (%) 7f (%) 5f:6f (%) 20 min 11 7 82 (63:37) 61:39 40 min 8 6 86 (64:36) 57:43 1 h 8 6 86 (63:37) 57:43	Table S11 time 5f (%) trans-6f (%) 7f (%) 5f:6f 6f:7f 20 min 11 7 82 (63:37) 61:39 8:92 40 min 8 6 86 (64:36) 57:43 7:93 1 h 8 6 86 (63:37) 57:43 7:93

7f. The reaction time, the yields of 5f, *trans*-6f and 7f, and the ratios of 5f:*trans*-6f and *trans*-6f:7f at the time are shown in Table S11. Although the ratio of 5f:*trans*-6f after 20 min (61:39) was different from that after 40 min (57:43), those after 40 min and 1 h were virtually the same. This is why it was concluded that equilibrium between 5f:*trans*-6f was attained within 40 min (57:43). The equilibrium between *trans*-6f:7f was also attained within 40 min (7:93).

5f: ³¹P NMR (160 MHz, C₆D₆) δ 29.6 (d, $J_{P-P} = 44$ Hz, $J_{Pt-P} = 4210$ Hz), 30.7 (d, $J_{P-P} = 44$ Hz, $J_{Pt-P} = 3376$ Hz). *trans*-6f: ³¹P NMR (160 MHz, C₆D₆) δ 17.1 (s, $J_{Pt-P} = 3310$ Hz). *syn*-7f: ³¹P NMR (160 MHz, C₆D₆) δ 15.3 (s, $J_{Pt-P} = 4208$ Hz). *anti*-7f: ³¹P NMR (160 MHz, C₆D₆) δ 17.1 (s, $J_{Pt-P} = 4083$ Hz).

The Reaction of 4f with 2 in	Table S1	2				
CD ₂ Cl ₂ (run 4, Table 1):	time	5f (%)	<i>trans-</i> 6f (%)	7f (%) (syn:anti)	5f:6f	6f:7f
Automatic NMR measurement	20 min	6	22	72 (75:25)	21:79	23:77
	40 min	4	19	77 (74:26)	17:83	20:80
program system has been used to	1 h	4	18	78 (74:26)	18:82	19:81

continuously monitor the reaction for 1 h. The ³¹P NMR spectrum showed the formation of **5f**, *trans*-**6f** and **7f**. The reaction time, the yields of **5f**, *trans*-**6f** and **7f**, and the ratios of **5f**:*trans*-**6f** and *trans*-**6f**:**7f** at the time are shown in Table S12. Although the ratio of **5f**:*trans*-**6f** after 20 min (21:79) was different from that after 40 min (17:83), those after 40 min and 1 h were virtually the same. This is why it was concluded that equilibrium between **5f**:*trans*-**6f** was attained within 40 min (17:83). The equilibrium between *trans*-**6f**:**7f** was also attained within 40 min (20:80).

5f: ³¹P NMR (160 MHz, CD₂Cl₂) δ 29.0 (d, $J_{P-P} = 43$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 30.1 (d, $J_{P-P} = 43$ Hz, the value of J_{Pt-P} was not able to read

because of low intensity). *trans*-6f: ³¹P NMR (160 MHz, CD₂Cl₂) δ 17.8 (s, J_{Pt-P} = 3313 Hz). *syn*-7f: ³¹P NMR (160 MHz, CD₂Cl₂) δ 15.4 (s, J_{Pt-P} = 4158 Hz). *anti*-7f: ³¹P NMR (160 MHz, CD₂Cl₂) δ 17.4 (s, J_{Pt-P} = 4027 Hz).

The	Reaction	of	Table S13					
$H_2C=C(n-1)$	C ₆ H ₁₃)C(O)SC	₆ H ₄ - <i>p</i> -Me	time	5g (%)	trans-6g (%)	7g (%) (syn:anti)	5g:6g	6g:7g
(4g) with 2	2 in C ₆ D ₆ (run	15, Table	20 min	95	2	2 (>99:1)	98:2	50:50
1) • Δ11	tomatic me	asurement	40 min	87	2	11 (66:34)	98:2	15:85
1 <i>j</i> • Au		asurement	1 h	79	2	19 (65:35)	98:2	10:90
program sy	ystem has been	n used to	3 h	53	4	43 (70:30)	93:7	9:91
	, 1 •, .1	, •	6 h	32	5	63 (74:26)	86:14	7:93
continuous	ly monitor the	e reaction	7 h	28	5	67 (74:26)	85:15	7:93
for 13 h	The ³¹ P NMR	spectrum	8 h	24	5	71 (74:26)	83:17	7:93
101 15 11.		spectrum	9 h	22	5	72 (75:25)	81:19	6:94
showed t	he formation	of 5g ,	10 h	21	6	73 (76:24)	78:22	8:92
4	1 7	Q . 1	13 h	18	5	77 (73:27)	78:22	6:94
trans- 6g	and /g.	Selective						

information about the reaction time, the yields of 5g, *trans*-6g and 7g, and the ratios of 5g:*trans*-6g and *trans*-6g:7g at the time are shown in Table S13. Although the ratio of 5g:*trans*-6g after 9 h (81:19) was different from that after 10 h (78:22), those after 10 h and 13 h were virtually the same. This is why it was concluded that equilibrium between 5g:*trans*-6g was attained in a range of time of 9-10 h (78:22). These data also demonstrated that 6g was produced from 5g. On the other hand, equilibrium between *trans*-6g:7g was attained in a range of time of 3-6 h (7:93).

5g: ³¹P NMR (160 MHz, C₆D₆) δ 27.5 (d, $J_{P-P} = 40$ Hz, $J_{Pt-P} = 3863$ Hz), 30.5 (d, $J_{P-P} = 40$ Hz, $J_{Pt-P} = 3669$ Hz). *trans-6g:* ³¹P NMR (160 MHz, C₆D₆) δ 16.2 (s, $J_{Pt-P} = 3312$ Hz). *syn-7g:* ³¹P NMR (160 MHz, C₆D₆) δ 14.6 (s, $J_{Pt-P} = 4177$ Hz). *anti-7g:* ³¹P NMR (160 MHz, C₆D₆) δ 16.3 (s, $J_{Pt-P} = 4124$ Hz).

The 3	Reaction of	Table S1	4					
(<i>E</i>)- <i>n</i> -HexC(H)=CHC(O)SC ₆ H ₄ - <i>p</i> -	time	5h (%)	<i>trans-</i> 6h (%)	7h (%) (syn:anti)	5h:6h	6h:7h	
Me (4h) with	2 in C ₆ D ₆ (run 6,	20 min	9	9	82 (74:26)	52:48	10:90	
		40 min	7	9	84 (75:25)	46:54	9:91	
Table 1): The	³¹ P NMR spectrum	1 h	7	9	84 (74:26)	44:56	9:91	

showed the formation of **5h**, *trans*-**6h** and **7h**. The reaction time, the yields of **5h**, *trans*-**6h** and **7h**, and the ratios of **5h**:*trans*-**6h** and *trans*-**6h**:**7h** at the time are shown in Table S14. Although the ratio of **5h**:*trans*-**6h** after 20 min (52:48) was different from that after 40 min (46:54), those after 40 min and 1 h were virtually the same. This is why it was concluded that equilibrium between **5h**:*trans*-**6h** was attained within 40 min (46:54). The equilibrium between *trans*-**6h**:**7h** was also attained within 40 min (9:91).

5h: ³¹P NMR (160 MHz, C₆D₆) δ 29.8 (d, $J_{P-P} = 44$ Hz, $J_{Pt-P} = 3863$ Hz), 30.7 (d, $J_{P-P} = 44$ Hz, $J_{Pt-P} = 3669$ Hz). *trans-6h:* ³¹P NMR (160 MHz, C₆D₆) δ 17.1 (s, $J_{Pt-P} = 3318$ Hz). *syn-7h:* ³¹P NMR (160 MHz, C₆D₆) δ 15.2 (s, $J_{Pt-P} = 4212$ Hz). *anti-7h:* ³¹P NMR (160 MHz, C₆D₆) δ 17.3 (s, $J_{Pt-P} = 4105$ Hz).

The Reaction of H ₂ C=C(<i>i</i> -Pr)C(O)-								
SC6H4-µ	-Me	(4i) v	vith	2 in	C_6D_6			
(run '	7, T	able	1):	Auto	omatic			
measure	ment	progr	am	systen	n has			
been use	ed to c	ontinu	ously	monit	tor the			
reaction	for	71 h.	The	³¹ P	NMR			
spectrun	n shov	ved the	e forr	nation	of 5i ,			
trans-6i	and 7	i. Sele	ctive	inform	nation			
about th	e reac	tion ti	me, t	he yie	lds of			
5i, tran	s -6i ar	nd 7i,	and 1	the rat	ios of			
5i:trans-	-6i and	l <i>trans</i>	-6i:7	i at the	e time			
are show	vn in ⁻	Fable S	S15. /	Althou	gh the			

Table S1	5				
time	5i (%)	<i>trans-</i> 6i (%)	7i (%) (syn:anti)	5i:6i	6i:7i
20 min	99.5	0.5	n.d.	99.5:0.5	>99:1
40 min	98.3	0.7	0.9 (>99:1)	99:1	44:56
1 h	96.6	0.7	2.7 (82:18)	99:1	21:79
6 h	79	2	19 (80:20)	98:2	10:90
10 h	65	3	32 (81:19)	96:4	9:91
15 h	53	3	44 (81:19)	95:5	6:94
21 h	43	4	53 (80:20)	91:9	7:93
25 h	37	4	59 (81:19)	90:10	6:94
30 h	32	4	64 (82:18)	89:11	6:94
35 h	30	4	66 (81:19)	88:12	6:94
40 h	27	4	69 (80:20)	87:13	5:95
47 h	25	5	70 (82:18)	83:17	7:93
52 h	23	5	72 (81:19)	82:18	6:94
.55 h	22	5	73 (81:19)	81:19	6:94
66 h	21	5	74 (80:20)	81:19	6:94
71 h	21	5	74 (81:19)	81:19	6:94

ratio of 5i:*trans*-6i after 52 h (82:18) was different from that after 55 h (81:19), those after 55 h and 71 h were virtually the same. This is why it was concluded that equilibrium between 5i:*trans*-6i was attained in a range of time of 52-55 h (81:19). These data also demonstrated that 6i was produced from 3i. On the other hand, the equilibrium between *trans*-4i:5i was attained in a range of time of 10-15 h (6:94).

5i: ³¹P NMR (160 MHz, C₆D₆) δ 26.8 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 3867$ Hz), 30.2 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 3732$ Hz). *trans-6i:* ³¹P NMR (160 MHz, C₆D₆) δ 15.8 (s, $J_{Pt-P} = 3299$ Hz). *syn-7i:* ³¹P NMR (160 MHz, C₆D₆) δ 14.4 (s, $J_{Pt-P} = 4208$ Hz). *anti-7i:* ³¹P NMR (160 MHz, C₆D₆) δ 16.3 (s, $J_{Pt-P} = 4114$ Hz).

The Reaction of $H_2C=C(Ph)C(O)$ - SC_6H_4 -p-Me (4j) with 2 in C_6D_6 Table 1): Automatic (run 8, measurement program system has been used to continuously monitor the reaction for 20 h. The ³¹P NMR spectrum showed the formation of 5j, trans-6j and 7j. Selective information about the reaction time, the yields of 5j, trans-6j and 7j, and the ratios of 5j:trans-6j and trans-6j:7j at the time are shown in Table S16. Although the

Table S16

time	5j (%)	trans -6j (%)	7j (%) (syn:anti)	5j:6j	6j:7j
20 min	98	2	n.d.	98:2	>99:1
40 min	91	4	5 (60:40)	96:4	44:56
1 h	86	5	9 (67:33)	95:5	36:64
3 h	69	6	24 (75:25)	92:8	20:80
6 h	50	8	41 (78:22)	86:14	16:84
7 h	32	8	60 (78:22)	80:20	12:88
8 h	29	8	63 (78:22)	78:22	11:89
9 h	27	8	65 (78:22)	77:23	11:89
10 h	26	7	67 (76:24)	79:21	9:91
11 h	24	7	69 (76:24)	77:23	9:91
12 h	21	7	72 (76:24)	75:25	9:91
13 h	20	7	73 (76:24)	74:26	9:91
14 h	18	7	75 (76:24)	72:28	9:91
15 h	17	7	76 (76:24)	71:29	8:92
20 h	14	6	80 (77:23)	70:30	7:93

ratio of **5**j:*trans*-**6**j after 14 h (72:28) was different from that after 15 h (71:29), those after 15 h and 20 h were virtually the same. This is why it was concluded that equilibrium between **5**j:*trans*-**6**j was attained in a range of time of 14-15h (71:29). The changes of yields between **5**j and **6**j from the early stage of this reaction indicated **6**j was produced from **5**j. On the other hand, the equilibrium between *trans*-**6**j:**7**j was attained in a range of time of 9-10 h (9:91).

5j: ³¹P NMR (160 MHz, C₆D₆) δ 26.6 (d, $J_{P-P} = 40$ Hz, $J_{Pt-P} = 4013$ Hz), 30.1 (d, $J_{P-P} = 40$ Hz, $J_{Pt-P} = 3696$ Hz). *trans-6j:* ³¹P NMR (160 MHz, C₆D₆) δ 16.1 (s, $J_{Pt-P} = 3259$ Hz). *syn-7j:* ³¹P NMR (160 MHz, C₆D₆) δ 14.6 (s, $J_{Pt-P} = 4141$ Hz). *anti-7j:* ³¹P NMR (160 MHz, C₆D₆) δ 16.4 (s, $J_{Pt-P} = 4081$ Hz).

The Reaction of 4j with 2 Using 4.3

Table S17

Equivalent of 4j in C_6D_6 (run 9, Table 1): Automatic NMR – measurement program system has been used to continuously monitor the reaction for 20 h. The ³¹P NMR spectrum showed the formation of 5j, *trans*-6j and 7j. Selective information about the reaction time, the yields of 5j, *trans*-6j and 7j, and the ratios of 5j:*trans*-6j and *trans*-6j:7j at the time are shown in Table S17. The –

time	5j (%)	trans-6j	7j (%)	5j:6j	6j:7j	
		(%)	(syn:anti)			
20 min	98	2	n.d.	98:2	>99:1	
40 min	89	4	7 (73:27)	96:4	36:64	
1 h	82	6	12 (71:29)	93:7	33:67	
3 h	57	8	35 (77:23)	88:12	19:81	
6 h	35	8	56 (77:23)	81:19	13:87	
7 h	32	8	59 (78:22)	80:20	12:88	
8 h	28	7	65 (74:26)	80:20	10:90	
9 h	25	8	67 (77:23)	76:24	11:89	
10 h	23	8	69 (76:24)	74:26	10:90	
11 h	21	8	71 (77:23)	72:28	10:90	
12 h	21	7	72 (76:24)	75:25	9:91	
13 h	19	8	73 (78:22)	70:30	10:90	
14 h	18	8	74 (76:24)	69:31	10:90	
15 h	17	8	75 (78:22)	68:32	10:90	
20 h	15	7	78 (76:24)	68:32	8:92	

equilibrium between **5j** and *trans*-**6j** was attained in a range of time of 14-15 h (68:32). On the other hand, the equilibrium between *trans*-**6j** and **7j** was attained in a range of time of 7-8 h (10:90). When this result was compared with that of Table S17, it was obvious that the time required for reaching the equilibrium was not affected by the excess amount of **4j**.

The Reaction of 4j with 2 in CD₂Cl₂ Table S18

(run 10, Table 1): Automatic measurement program system has – been used to continuously monitor the reaction for 20 h. The ³¹P NMR spectrum showed the formation of 5j, 6j and 7j. Selective information about the reaction time, the yields of 5j, 6j and 7j, and the ratios of 5j:6j and 6j:7j at the time are shown in Table S18. Although the ratio of 5j:6j after

iable 31	0					
time 5j (%)		6j (%) (cis:trans)	7j (%) (syn:anti)	5j:6j	6j:7j	
20 min	92	6 (17:83)	2 (60:40)	94:6	80:20	
40 min	88	9 (22:78)	3 (69:31)	91:9	76:24	
1 h	85	11 (19:81)	4 (68:32)	89:11	71:29	
3 h	55	19 (22:78)	26 (75:25)	75:25	42:58	
6 h	33	19 (17:83)	48 (82:18)	64:36	28:72	
10 h	24	17 (20:80)	59 (85:15)	58:42	22:78	
11 h	22	17 (20:80)	61 (85:15)	56:44	21:79	
12 h	20	16 (21:79)	64 (84:14)	55:45	20:80	
13 h	19	15 (20:80)	66 (86:14)	55:45	19:81	
14 h	18	15 (19:81)	67 (86:14)	54:46	18:82	
15 h	17	15 (19:81)	68 (86:14)	54:46	18:82	
16 h	16	15 (21:79)	69 (86:14)	53:47	18:82	
17 h	15	15 (21:79)	70 (86:14)	50:50	18:82	
20 h	14	14 (20:80)	72 (87:13)	50:50	17:83	

16 h (53:47) was different from that after 17 h (50:50), those after 17 h and 20 h were virtually the same. This is why it was concluded that equilibrium between 5j:6j was attained in a range of time of 16-17 h (50:50). The changes of yields between 5j and 6j from the early stage of this reaction indicated 6j was produced from 5j. On the other hand, the equilibrium between 5j:6j was attained in a range of time of 13-14 h (18:82).

5j: ³¹P NMR (160 MHz, CD₂Cl₂) δ 25.9 (d, J_{P-P} = 38 Hz, J_{Pt-P} = 4037 Hz), 29.5 (d, J_{P-P} = 38

Hz, $J_{Pt-P} = 3516$ Hz). *cis*-6j: ³¹P NMR (160 MHz, CD₂Cl₂) δ 15.2 (d, $J_{P-P} = 20$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 17.2 (d, $J_{P-P} = 20$ Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans*-6j: ³¹P NMR (160 MHz, CD₂Cl₂) δ 16.4 (s, $J_{Pt-P} = 3241$ Hz). *syn*-7j: ³¹P NMR (160 MHz, CD₂Cl₂) δ 14.3 (s, $J_{Pt-P} = 4079$ Hz). *anti*-7j: ³¹P NMR (160 MHz, CD₂Cl₂) δ 16.1 (s, $J_{Pt-P} = 3964$ Hz).

The Reaction of (E)-PhC(H)=CH-	Tab
$C(O)SC_6H_4$ -p-Me (4k) with 2 in	tim
C₆D₆ (run 11, Table 1): The ³¹ P NMR	20
spectrum showed the formation of 5k,	40

Table S1	9				
time	5k (%)	trans-6k (%)	7k (%) (syn:anti)	5k:6k	6k:7k
20 min	51	5	44 (59:41)	91:9	9:91
40 min	42	5	53 (60:40)	89:11	8:92
1 h	37	5	58 (64:36)	88:12	8:92

trans-6k and 7k. Selective information about the reaction time, the yields of 5k, *trans*-6k and 7k, and the ratios of 5k:*trans*-6k and *trans*-6k:7k at the time are shown in Table S19. Although the ratio of 5k:*trans*-6k after 20 min (91:9) was different from that after 40 min (89:11), those after 40 min and 1 h were virtually the same. This is why it was concluded that equilibrium between 5k:*trans*-6k was attained within 40 min (89:11). The equilibrium between *trans*-6k:7k was also attained within 40 min (8:92).

5k: ³¹P NMR (160 MHz, C₆D₆) δ 27.1 (d, $J_{P-P} = 38$ Hz, $J_{Pt-P} = 4134$ Hz), 27.8 (d, $J_{P-P} = 38$ Hz, $J_{Pt-P} = 3591$ Hz). *trans-*6k: ³¹P NMR (160 MHz, C₆D₆) δ 16.8 (s, $J_{Pt-P} = 3281$ Hz). *syn-*7k: ³¹P NMR (160 MHz, C₆D₆) δ 15.0 (s, $J_{Pt-P} = 4171$ Hz). *anti-*7k: ³¹P NMR (160 MHz, C₆D₆) δ 16.8 (s, $J_{Pt-P} = 4022$ Hz).

The Reaction of 4k with 2 Using 4.8	Table S2	0					
Equivalent of 4k in C ₆ D ₆ (run 12,	time	5k (%)	trans- 6k (%)	7k (%) (syn:anti)	5k:6k	6k:7k	
Table 1). Automatic NMR	20 min	46	5	48 (60:40)	90:10	9:91	
Table 1): Mutomatic Munic	40 min	39	4	56 (63:37)	91:9	7:93	
measurement program system has	1 h	36	4	56 (63:37)	90:10	7:93	

been used to continuously monitor the reaction for 1 h. The ³¹P NMR spectrum showed the formation of **5k**, *trans*-**6k** and **7k**. Selective information about the reaction time, the yields of **5k**, *trans*-**6k** and **7k**, and the ratios of **5k**:*trans*-**6k** and *trans*-**6k**:**7k** at the time are shown in Table S20. The equilibria between **5k** and *trans*-**6k**, and *trans*-**6k** and **7k** were attained within 40 min (91:9 and 7:93). When this result was compared with that of Table S20, it was obvious that the time required for reaching the equilibrium was not affected by the excess amount of **4k**.

The Reaction of 4k with 2 in CD₂Cl₂ (run 13, Table 1): Automatic NMR measurement program system has been used to continuously monitor the reaction for 3 h. The ³¹P NMR spectrum showed the formation of 5k, *trans*-6k and 7k. Selective information about the reaction time, the yields of 5k, *trans*-6k and 7k, and the ratios of 5k:*trans*-6k and *trans*-6k:7k at the time are shown in Table S21. The ratio of 5k:*trans*-6k after 40 min (70:30) and 3 h (69:31) were virtually the same. This is why it was concluded that equilibrium between 5k

and trans-6k was attained within 40
min (70:30). On the other hand, the
equilibrium between <i>trans</i> -6k and 7k
was attained in a range of time of
60-80 min (15:85).

5k: 31 P NMR (160 MHz, CD₂Cl₂) δ

26.6 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 4168$

Table S21 time 5k trans-6k 7k (%) 5k:6k 6k:7k (%) (%) (syn:anti) 38 20 min 16 45 (71:29) 70:30 26:74 40 min 32 14 53 (72:28) 70:30 21:79 60 min 28 13 59 (71:29) 68:32 18:82 80 min 26 11 63 (70:30) 70:30 15:85 100 min 24 11 65 (71:29) 69:31 14:86 2 h 22 11 67 (70:30) 67:33 14:86 140 min 24 11 65 (72:28) 14:86 69:31 160 min 24 14:86 11 65 (72:28) 69:31 3 h 23 10 67 (69:31) 69:31 13:87 Hz), 27.1 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 1$

3572 Hz). trans-6k: ³¹P NMR (160 MHz, CD_2Cl_2) δ 17.6 (s, $J_{Pt-P} = 3280$ Hz). syn-7k: ³¹P NMR (160 MHz, CD₂Cl₂) δ 15.3 (s, J_{Pt-P} = 4133 Hz). *anti*-7k: ³¹P NMR (160 MHz, CD₂Cl₂) δ 17.4 (s, $J_{Pt-P} = 3977$ Hz).

The Reaction of 4f with 2 in toluene-d₈ at Low Temperature (Eq. 4): Into a dry Pyrex NMR tube were added 2 (15.8 mg, 0.021 mmol), 4f (13.2 mg, 0.069 mmol) and $S=P(C_6H_4OMe-p)_3$ (1.3 mg, 0.0034 mmol). Then ca. 0.5 mL of toluene-d₈ was transferred by the freeze-pump-thaw method. The ³¹P NMR spectrum showed the formation of **5f**, *trans*-**6f** and 7c. These results clearly showed that 6f was formed from 5f.

5f: ³¹P NMR (160 MHz, toluene- d_8) δ 30.2 (d, $J_{P-P} = 44$ Hz, $J_{Pt-P} = 4204$ Hz), 31.5 (d, $J_{P-P} = 4204$ Hz), 31.5 (d, J_{P-P} = 4204 Hz), 31. 44 Hz, $J_{Pt-P} = 3377$ Hz). *trans-6f:* ³¹P NMR (160 MHz, toluene-*d*₈) δ 17.9 (s, $J_{Pt-P} = 3304$ Hz). syn-7f: ³¹P NMR (160 MHz, toluene- d_8) δ 15.9 (s, J_{PLP} = 4213 Hz). anti-7f: ³¹P NMR (160 MHz, toluene- d_8) δ 17.8 (s, $J_{\text{Pt-P}} = 4050$ Hz).

The Reaction of 4k with 2 in toluene- d_8 at Low Temperature (Eq. 5). Into a dry Pyrex NMR tube were added 2 (15.1 mg, 0.020 mmol), 4k (5.7 mg, 0.022 mmol) and $S=P(C_6H_4OMe-p)_3$ (0.9 mg, 0.0023 mmol). Then ca. 0.5 mL of toluene-d₈ was transferred by the freeze-pump-thaw method. The ³¹P NMR spectrum showed the formation of 5k, 6k and 7k. These results clearly showed that 5k was kinetic product, which isomerized to cis-6k then trans-6k and 7k.

5k: ³¹P NMR (160 MHz, toluene- d_8) δ 27.2 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 4124$ Hz), 28.1 (d, $J_{P-P} = 4124$ Hz), 28.1 (d, J_{P-P} = 4124 Hz), 28.1 (37 Hz, $J_{Pt-P} = 3597$ Hz). *cis-6k*: ³¹P NMR (160 MHz, toluene-*d*₈) δ 17.1 (d, $J_{P-P} = 21$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 19.1 (d, $J_{P-P} = 21$ Hz, the value of $J_{\text{Pt-P}}$ was not able to read because of low intensity). *trans*-6k: ³¹P NMR (160 MHz, toluene- d_8) δ 17.6 (s, J_{Pt-P} = 3277 Hz). syn-7k: ³¹P NMR (160 MHz, toluene-d₈) δ 15.8 (s, J_{Pt-P} = 4189 Hz). anti-7k: ³¹P NMR (160 MHz, toluene- d_8) δ 17.5 (s, the value of J_{Pt-P} was not able to read because of low intensity).

The Half-Live of the Reaction of $Pt[H_2C=C(Me)C(O)SC_6H_4-p-NO_2](PP h_3)_2$ (51) to *trans*-Pt[C(O)C(Me)=CH_2]-(SC_6H_4-p-NO_2)(PPh_3)_2 (61) in C₆D₆ (run 1, Table 2): The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the

time were 20 min, 75%, 25% (*cis:trans* = 13:87); 30 min, 62%, 38% (*cis:trans* = 7:93); 40 min, 51%, 49% (*cis:trans* = 4:96); 50 min, 42%, 57% (*cis:trans* = 3:97); 60 min, 35%, 64% (*cis:trans* = 3:97); 70 min, 29%, 71% (*cis:trans* = 3:97); 80 min, 24%, 76% (*cis:trans* = 1/99); 120 min, 11%, 89% (*trans* only); 180 min, 4%, 96% (*trans* only); 6 h, n.d., >99% (*trans* only). The consumption rate of **51** obeyed the first-order kinetics (Figure S1) and the half-live was calculated to be 38 min.

51: ³¹P NMR (160 MHz, C₆D₆) δ 27.6 (d, $J_{P-P} = 38$ Hz, $J_{Pt-P} = 3863$ Hz), 30.6 (d, $J_{P-P} = 38$ Hz, $J_{Pt-P} = 3683$ Hz). *cis*-61: ³¹P NMR (160 MHz, C₆D₆) δ 14.5 (d, $J_{P-P} = 18$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 17.9 (d, $J_{P-P} = 18$ Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans*-61: ³¹P NMR (160 MHz, C₆D₆) δ 15.1 (s, $J_{Pt-P} = 3228$ Hz).

The Half-Live of the Reaction of 51 to 61 Using 4.5 Equivalent of 41 in C_6D_6 (run 2, Table 2): The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 12 min, 82%, 18% (*cis:trans* = 19:81); 20 min, 72%, 28%

(*cis:trans* = 9:91); 30 min, 60%, 40% (*cis:trans* = 5:95); 40 min, 50%, 50% (*cis:trans* = 2:98); 50 min, 41%, 59% (*cis:trans* = 4:96); 60 min, 33%, 67% (*cis:trans* = 3:97); 70 min, 27%, 73% (*trans* only); 80 min, 22%, 78% (*trans* only); 120 min, 12%, 88% (*trans* only); 180 min, 3%, 97% (*trans* only); 9 h, n.d., >99% (*trans* only). The consumption rate of **51** obeyed the first-order kinetics (Figure S2) and the half-live was calculated to be 36 min. The present result did not contradict the idea that the transformation from **51** to **61** was a unimolecular process.

The Half-Live of the Reaction of 51 to 61 in CD_2Cl_2 (run 3, Table 2): The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 10 min, 69%, 30% (*cis:trans* = 67:33); 20 min, 44%, 54% (*cis:trans* = 42:58); 30 min, 29%, 70% (*cis:trans* = 30:70); 40 min,

17%, 81% (*cis:trans* = 20:80); 50 min, 12%, 87% (*cis:trans* = 12:88); 60 min, 7%, 92% (*cis:trans* = 9:91); 70 min, 4%, 94% (*cis:trans* = 7:93); 80 min, 2%, 96% (*cis:trans* = 6:94); 2 h, n.d., 99% (*cis:trans* = 3:97). The consumption rate of **51** obeyed the first-order kinetics (Figure S3) and the half-live was calculated to be 14 min.

51: ³¹P NMR (160 MHz, CD₂Cl₂) δ 27.2 (d, $J_{P-P} = 36$ Hz, $J_{Pt-P} = 4025$ Hz), 30.0 (d, $J_{P-P} = 36$ Hz, $J_{Pt-P} = 3667$ Hz). *cis-61:* ³¹P NMR (160 MHz, CD₂Cl₂) δ 14.1 (d, $J_{P-P} = 18$ Hz, $J_{Pt-P} = 1336$ Hz), 17.0 (d, $J_{P-P} = 18$ Hz, $J_{Pt-P} = 3765$ Hz). *trans-61:* ³¹P NMR (160 MHz, CD₂Cl₂) δ 15.1 (s, $J_{Pt-P} = 3225$ Hz).

The Half-Live of the Reaction of 51 to 61 in acetone- d_6 (run 4, Table 2): The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 3.0 min, 92%, 8% (*cis:trans* = 88:12); 4.0 min, 89%, 11% (*cis:trans* = 68:32); 5.0 min, 85%, 15% (*cis:trans* = 60:40); 6.0 min,

81%, 19% (*cis:trans* = 59:41); 8.0 min, 76%, 24% (*cis:trans* = 49:51); 18 min, 54%, 46% (*cis:trans* = 27:63); 20 min, 50%, 50% (*cis:trans* = 28:72); 30 min, 34%, 67% (*cis:trans* = 16:84); 40 min, 25%, 75% (*cis:trans* = 11:89); 50 min, 17%, 83% (*cis:trans* = 7:93); 60 min, 9%, 91% (*cis:trans* = 4:96); 70 min, 6%, 94% (*cis:trans* = 4:96). The consumption rate of **51** obeyed the first-order kinetics (Figure S4) and the half-live was calculated to be 19 min.

51: ³¹P NMR (160 MHz, acetone- d_6) δ 27.8 (d, $J_{P-P} = 36$ Hz, $J_{Pt-P} = 3882$ Hz), 30.8 (d, $J_{P-P} = 36$ Hz, $J_{Pt-P} = 3672$ Hz). *cis-61:* ³¹P NMR (160 MHz, acetone- d_6) δ 15.7 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 19.3 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans-61:* ³¹P NMR (160 MHz, acetone- d_6) δ 15.8 (s, $J_{Pt-P} = 3243$ Hz).

The Half-Live of the Reaction of 51 to 61 in THF- d_8 (run 5, Table 2): The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 4.0 min, 98%, 2% (*trans* only); 5.0 min, 96%, 4% (*trans* only); 6.0 min, 95%, 5% (*trans* only); 8.0 min, 90%, 10% (*cis:trans* = 31/69); 9.0 min,

89%, 11% (*cis:trans* = 30:70); 20 min, 74%, 26% (*cis:trans* = 15:85); 30 min, 63%, 37% (*cis:trans* = 10:90); 40 min, 52%, 48% (*cis:trans* = 8:92); 50 min, 40%, 60% (*cis:trans* = 5:95); 60 min, 34%, 66% (*trans* only); 70 min, 28%, 72% (*trans* only). The consumption rate of **5**I obeyed the first-order kinetics (Figure S5) and the half-live was calculated to be 36 min. **5**I: ³¹P NMR (160 MHz, THF-*d*₈) δ 29.0 (d, J_{P-P} = 37 Hz, J_{P+P} = 3983 Hz), 32.0 (d, J_{P-P} = 37 Hz, J_{P+P} = 3678 Hz). *cis*-**6**I: ³¹P NMR (160 MHz, THF-*d*₈) δ 16.0 (d, J_{P-P} = 18 Hz, the value of J_{P+P} was not able to read because of low intensity), 19.2 (d, J_{P-P} = 18 Hz, the value of J_{P+P} was not able to read because of low intensity). *trans*-**6**I: ³¹P NMR (160 MHz, THF-*d*₈) δ 16.5 (s, J_{P+P} = 3224 Hz).

The Half-Live of the Reaction of $Pt[(E)-MeC(H)=CHC(O)SC_6H_4-p-NO_2](PPh_3)$ Pt[C(O)C(H)=CH(Me)-(E)]-(5m) to 2 $(SC_6H_4-p-NO_2)(PPh_3)_2$ (6m) in C_6D_6 (run 6, Table 2): Into a dry Pyrex NMR tube were added 2 (15.0 mg, 0.020 mmol), 4m (4.9 mg, 0.022 mmol), $S=P(C_6H_4OMe-p)_3$ (1.0 mg, 0.0027 mmol) and C_6D_6 (0.5 mL) under N_2

atmosphere. Then the reaction was monitored by ³¹P and ¹H NMR spectrum at 25 °C. The reaction time (the average of acquisition time), and the yields of **5m** and *trans*-**6m** at the time were 2.0 min, 8.3%, 85.7%; 2.5 min, 8.2%, 90.0%; 3.0 min, 7.8%, 92.2%; 3.5 min, 7.2%, 92.8%; 4.0 min, 5.5%, 94.5%; 4.5 min, 4.8%, 95.2%; 5.0 min, 3.6%, 96.4%; 5.5 min, 3.0%, 93.2%; 6.0 min, 2.7%, 96.8%; 6.5 min, 2.2%, 90.5%; 7.0 min, n.d., >99%. The consumption rate of **5m** obeyed the first-order kinetics (Figure S6) and the half-live was calculated to be ca. 2.1 min. All reactions shown in Table 2 were carried out similarly.

5m: ³¹P NMR (160 MHz, C₆D₆) δ 29.1 (d, $J_{P-P} = 42$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 30.3 (d, $J_{P-P} = 42$ Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans*-6m: ³¹P NMR (160 MHz, C₆D₆) δ 16.3 (s, $J_{Pt-P} = 3268$ Hz).

The Half-Live of the Reaction of 5m to 6m in CD_2Cl_2 (run 7, Table 2): The ³¹P NMR spectrum showed the formation of 5m and *trans*-6m. The reaction time (the average of acquisition time), and the yields of 5m and *trans*-6m at the time were 2.0 min , 4.6%, 95.4%; 2.5 min, 3.6%, 96.4%; 3.0 min, 3.3%, 96.7%; 3.5 min, 2.9%, 97.1%; 4.0 min, 2.6%,

97.4%; 4.5 min, 2.5%, 97.5%; 5.0 min, 2.3%, 97.7%; 5.5 min, 2.2%, 97.8%; 6.0 min, 1.8%, 98.2%; 6.5 min, 1.6%, 98.4%; 7.0 min, n.d., >99%. The consumption rate of **5m** obeyed the first-order kinetics (Figure S7) and the half-live was calculated to be ca. 3.3 min.

5m: ³¹P NMR (160 MHz, CD₂Cl₂) δ 28.7 (d, J_{P-P} = 40 Hz, the value of J_{Pt-P} was not able to read because of low intensity), 29.7 (d, J_{P-P} = 40 Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans*-6m: ³¹P NMR (160 MHz, CD₂Cl₂) δ 16.3 (s, J_{Pt-P} = 3258 Hz).

The Half-Live of the Reaction of $Pt[H_2C=C(n-Hex)C(O)SC_6H_4-p-NO_2](PP h_3)_2$ (5n) to trans-Pt[C(O)C(n-Hex)=CH_2]-(SC_6H_4-p-NO_2)(PPh_3)_2 (6n) in C₆D₆ (run 8, Table 2): The ³¹P NMR spectrum showed the formation of 5n and trans-6n. The reaction time (the average of acquisition time), and the yields of 5n and trans-6n at

the time were 10 min, 89%, 11%; 20 min, 74%, 24%; 30 min, 62%, 36%; 40 min, 52%, 47%; 50 min, 442%, 54%; 60 min, 38%, 60%; 70 min, 31%, 67%; 80 min, 28%, 72%; 120 min, 14%, 84%; 180 min, 5%, 93%. The consumption rate of **5n** obeyed the first-order kinetics (Figure S8) and the half-live was calculated to be 40 min.

5n: ³¹P NMR (160 MHz, C₆D₆) δ 27.2 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 3898$ Hz), 30.3 (d, $J_{P-P} = 37$ Hz, $J_{Pt-P} = 3692$ Hz). *trans-6n:* ³¹P NMR (160 MHz, C₆D₆) δ 14.9 (s, $J_{Pt-P} = 3235$ Hz).

The Half-Live of the Reaction of Pt[(E)-(n-Hex)C(H)=CHC(O)SC₆H₄-p-NO₂] -(PPh₃)₂ (50) to trans-Pt[C(O)C(H)=CH-(n-Hex)-(E)](SC₆H₄-p-NO₂)(PPh₃)₂ (60) in C₆D₆ (run 9, Table 2): The ³¹P NMR spectrum showed the formation of 50 and trans-60. The reaction time (the average of acquisition time), and the yields of 50 and

trans-60 at the time were 2 min, 29%, 71%; 2.5 min, 24%, 77%; 3 min, 21%, 79%; 3.5 min,

20%, 80%; 4 min, 18%, 82%; 4.5 min, 14%, 86%; 5 min, 13%, 87%; 6 min, 10%, 90%; 7 min, 9%, 91%; 8 min, 7%, 93%; 20 min, nd, > 99%. The consumption rate of **50** obeyed the first-order kinetics (Figure S9) and the half-live was calculated to be 3.0 min.

50: ³¹P NMR (160 MHz, C₆D₆) δ 29.3 (d, $J_{P-P} = 40$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 30.3 (d, $J_{P-P} = 40$ Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans*-60: ³¹P NMR (160 MHz, C₆D₆) δ 16.29 (s, $J_{Pt-P} = 3277$ Hz).

The Half-Live of the Reaction of $Pt[H_2C=C(i-Pr)C(O)SC_6H_4-p-NO_2](PPh_3)_2$ (5p) to $Pt[C(O)C(i-Pr)=CH_2](SC_6H_4-p-NO_2)-(PPh_3)_2$ (6p) in C_6D_6 (run 10, Table 2): The ³¹P NMR spectrum showed the formation of 5p and *trans*-6p. The reaction time (the average of acquisition time), and the yields of 5p and *trans*-6p at the time were 10 min, 90%, 10%;

20 min, 78%, 21%; 30 min, 66%, 32%; 40 min, 57%, 42%; 50 min, 48%, 49%; 60 min, 42%, 52%; 70 min, 34%, 63%; 80 min, 29%, 68%; 24 h, n.d., 98%. The consumption rate of **5p** obeyed the first-order kinetics (Figure S10) and the half-live was calculated to be 43 min. **5p**: ³¹P NMR (160 MHz, C₆D₆) δ 26.5 (d, *J*_{P-P} = 35 Hz, *J*_{Pt-P} = 3909 Hz), 30.1 (d, *J*_{P-P} = 35 Hz, *J*_{Pt-P} = 3697 Hz). *trans*-6p: ³¹P NMR (160 MHz, C₆D₆) δ 14.8 (s, *J*_{Pt-P} = 3192 Hz).

The Half-Live of the Reaction of 5p to 6p Using 5.0 Equivalent of 4m in C_6D_6 (run 11, Table 2): The ³¹P NMR spectrum showed the formation of 5p and *trans*-6p. The reaction time (the average of acquisition time), and the yields of 5p and *trans*-6p at the time were 5 min, 93%, 7%; 6 min, 92%, 8%; 8 min, 88%, 10%; 10 min, 85%, 13%; 20 min, 73%,

23%; 30 min, 62%, 34%; 40 min, 54%, 42%; 50 min, 45%, 50%; 60 min, 38%, 57%; 70 min, 32%, 63%; 80 min, 28%, 67%. The consumption rate of **5p** obeyed the first-order kinetics (Figure S11) and the half-live was calculated to be 43 min, showing that the transformation from **5p** to **6p** was a unimolecular process.

The Half-Live of the Reaction of 5p to 6p in CD_2Cl_2 (run 12, Table 2): The ³¹P NMR spectrum showed the formation of 5p and 6p. The reaction time (the average of acquisition time), and the yields of 5p and 6p at the time were 4 min, 72%, 28% (*cis:trans* = 69:31); 5 min, 63%, 37% (*cis:trans* = 60:40); 6 min, 60%, 40% (*cis:trans* = 56:44); 7 min, 56%, 44% (*cis:trans* = 53:47); 8 min, 51%, 47% (*cis:trans* = 48:52); 10 min, 43%, 54% (*cis:trans* =

41:59); 20 min, 15%, 79% (*cis:trans* = 18:82); 30 min, 5%, 92% (*cis:trans* = 10:90); 40 min, n.d., 97% (*cis:trans* = 5:95). The consumption rate of 5p obeyed the first-order kinetics (Figure S12) and the half-live was calculated to be 6.8 min.

5p: ³¹P NMR (160 MHz, CD₂Cl₂) δ 26.0 (d,

 $J_{P-P} = 35 \text{ Hz}, J_{Pt-P} = 3938 \text{ Hz}), 29.8 \text{ (d, } J_{P-P} = 35 \text{ Hz}, J_{Pt-P} = 3684 \text{ Hz}).$ *cis-6p:* ³¹P NMR (160 MHz, CD₂Cl₂) δ 14.2 (d, $J_{P-P} = 19 \text{ Hz}, J_{Pt-P} = 1311 \text{ Hz}), 17.3 \text{ (d, } J_{P-P} = 19 \text{ Hz}, J_{Pt-P} = 3824 \text{ Hz}).$ *trans-6p:* ³¹P NMR (160 MHz, CD₂Cl₂) δ 14.7 (s, $J_{Pt-P} = 3239 \text{ Hz}).$

Half-Live of the Reaction The of $Pt[H_2C=C(Ph)C(O)SC_6H_4-p-NO_2](PPh_3)_2$ (5q)to $Pt[C(O)C(Ph)=CH_2]$ -(SC₆H₄-*p*-NO₂)(PPh₃)₂ (6q) in C₆D₆ (run 13, Table 2): The ³¹P NMR spectrum showed the formation of 5q and trans-6q. The reaction time (the average of

acquisition time) and the yields of 5q and *trans*-6q at the time were 2 min, 25%, 75%; 4 min, 21%, 79%; 6 min, 15%, 85%; 8 min, 12%, 88%; 10 min, 9%, 91%; 12 min, 8%, 88%; 14 min, 7%, 88%; 37 min, n.d., >99%. The consumption rate of 5q obeyed the first-order kinetics (Figure S13) and the half-live was calculated to be 6.2 min.

5q: ³¹P NMR (160 MHz, C₆D₆) δ 26.2 (d, $J_{P-P} = 37$ Hz, the value of J_{Pt-P} was not able to read because of low intensity of the signal), 29.9 (d, $J_{P-P} = 37$ Hz, the value of J_{Pt-P} was not able to read because of low intensity of the signal). *trans*-6q: ³¹P NMR (160 MHz, C₆D₆) δ 14.8 (s, $J_{Pt-P} = 3206$ Hz).

The Half-Live of the Reaction of 5q to 6q in CD_2Cl_2 (run 14, Table 2): The ³¹P NMR spectrum showed the formation of 5q and 6q. The reaction time (the average of acquisition time), and the yields of 5q and 6q at the time were 2 min, 32%, 68% (*cis:trans* = 58:42); 4 min, 8%, 86% (*cis:trans* = 34:66); 5 min, 4%, 90% (*cis:trans* = 24:76); 6 min, 3%, 91%

(*cis:trans* = 20:80); 7 min, 2%, 92% (*cis:trans* = 15:85); 20 min, n.d., 97% (*cis:trans* = 2:98). The consumption rate of **5q** obeyed the first-order kinetics (Figure S14) and the half-live was calculated to be 1.2 min.

5q: ³¹P NMR (160 MHz, CD₂Cl₂) δ 25.7 (d, $J_{P-P} = 35$ Hz, the value of J_{Pt-P} was not able to read because of low intensity of the signal), 29.2 (d, $J_{P-P} = 35$ Hz, the value of J_{Pt-P} was not able to read because of low intensity of the signal). *cis*-6q: ³¹P NMR (160 MHz, CD₂Cl₂) δ 13.9 (d, $J_{P-P} = 19$ Hz, $J_{Pt-P} = 1328$ Hz), 17.1 (d, $J_{P-P} = 19$ Hz, $J_{Pt-P} = 3720$ Hz). *trans*-6q: ³¹P NMR (160 MHz, CD₂Cl₂) δ 14.6 (s, $J_{Pt-P} = 3186$ Hz).

The Half-Live of the Reaction of Pt[(E)-PhC(H)=CHC(O)SC₆H₄-p-NO₂](PP h₃)₂ (5r) to Pt[C(O)C(H)=CH(Ph)-(E)]-(SC₆H₄-p-NO₂)(PPh₃)₂ (6r) in C₆D₆ (run 15, Table 2): The ³¹P NMR spectrum showed the formation of 5r and *trans*-6r. The reaction time (the average of acquisition time), and

the yields of 5r and *trans*-6r at the time were 10 min, 41%, 59%; 20 min, 21%, 74%; 30 min, 11%, 86%; 40 min, 4%, 92%; 50 min, 2%, 95%; 60 min, 1%, 95%; 3 h, n.d., 95%. The consumption rate of 5r obeyed the first-order kinetics (Figure S15) and the half-live was calculated to be 9.1 min.

5r: ³¹P NMR (160 MHz, C₆D₆) δ 26.7 (d, $J_{P-P} = 36$ Hz, $J_{Pt-P} = 4178$ Hz), 27.4 (d, $J_{P-P} = 36$ Hz, $J_{Pt-P} = 3552$ Hz). *trans-6r:* ³¹P NMR (160 MHz, C₆D₆) δ 16.0 (s, $J_{Pt-P} = 3229$ Hz).

The Half-Live of the Reaction of 5r to 6r Using 4.7 Equivalent of 4r in C₆D₆ (run 16, Table 2): The ³¹P NMR spectrum showed the formation of 5r and *trans*-6r. The reaction time (the average of acquisition time), and the yields of 5r and *trans*-6r at the time were 10 min, 40%, 58%; 20 min, 23%, 75%; 30 min, 13%, 83%; 40 min, 6%, 86%; 50 min, 2%, 90%; 60 min, 1%, 94%; 70 min, n.d.,

92%. The consumption rate of 5r obeyed the first-order kinetics (Figure S16) and the half-live was calculated to be 9.1 min. The present result did not contradict the idea that the transformation from 5r to 6r was a unimolecular process.

The Half-Live of the Reaction of 5r to 6r in CD_2Cl_2 (run 17, Table 2): The ³¹P NMR spectrum showed the formation of 5r and 6r. The reaction time (the average of acquisition time), and the yields of 5r and 6r at the time were 10 min, 31%, 69% (*cis:trans* = 1:99); 20

min, 12%, 88% (cis:trans = 2:98); 30 min, 6%, 94% (cis:trans = 2:98); 40 min, 2%, 98% (trans only); 50 min, n.d., >99% (trans only). The consumption rate of 5r obeyed the first-order kinetics (Figure S17) and the half-live was calculated to be 7.8 min.

5r: ³¹P NMR (160 MHz, CD₂Cl₂) δ 26.3 (d, J_{P-P} = 35 Hz, J_{Pt-P} = 4208 Hz), 26.7 (d, J_{P-P} = 35 Hz, $J_{Pt-P} = 3525$ Hz). *cis-6r*: ³¹P NMR (160 MHz, CD₂Cl₂) δ 14.1 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity), 17.8 (d, $J_{P-P} = 19$ Hz, the value of J_{Pt-P} was not able to read because of low intensity). *trans*-6r: ³¹P NMR (160 MHz, CD₂Cl₂) δ 16.1 $(s, J_{Pt-P} = 3217 \text{ Hz}).$

The Reaction of 4q with 2 in CD₂Cl₂ at Low Temperature (Eq. 6): Into a dry Pyrex NMR tube were added 2 (15.2 mg, 0.020 mmol), 4g (6.4 mg, 0.022 mmol) and $S=P(C_6H_4OMe-p)_3$ (1.1 mg, 0.0028 mmol). Then ca. 0.5 mL of CD₂Cl₂ was transferred by the freeze-pump-thaw method. The ³¹P NMR spectrum showed the formation of **5q** and **6q**. The reaction temperature and time (the average of acquisition time). These results clearly showed that 5q was kinetic product, which selectively isomerized to *cis*-6q then *trans*-6q.

The Half-Live of the Reaction of 51 to 61 in C₆D₆

at 30 °C: The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 5 min, 90%, 10% (*trans* only); 6 min, 88%, 12% (trans only); 8 min, 81%, 19% (cis:trans = 11:89); 10 min, 77%, 23% (cis:trans = 9:91); 20 min, 55%, 45% (cis:trans = 4:96); 30 min,

39%, 61% (trans only); 40 min, 30%, 70% (trans only); 50 min, 21%, 79% (trans only). The consumption rate of 51 obeyed the first-order kinetics (Figure S18) and the half-live was calculated to be 21.5 min.

The Half-Live of the Reaction of 51 to 61 in C₆D₆ at

35 °C: The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 5 min, 85%, 15% (trans only); 6 min, 78%, 22% (cis:trans = 13:87); 8 min, 70%, 30% (cis:trans = 7:93); 10 min, 62%, 38% (cis:trans = 8:92); 20 min, 33%, 67% (trans only); 30 min, 16%, 84% (trans

only); 40 min, 8%, 92% (trans only). The consumption rate of 51 obeyed the first-order kinetics (Figure S19) and the half-live was calculated to be 7.96 min.

94

The Half-Live of the Reaction of 5l to 6l in C_6D_6 at 40 °C: The ³¹P NMR spectrum showed the formation of 5l and 6l. The reaction time (the average of acquisition time), and the yields of 5l and 6l at the time were 10 min, 45%, 55% (*trans* only); 20 min, 14%, 86% (*trans* only); 27 min, 4%, 96% (*trans* only); 30 min, 3%, 97% (*trans* only). The consumption rate of 5l obeyed the first-order

kinetics (Figure S20) and the half-live was calculated to be 4.97 min.

The Half-Live of the Reaction of 51 to 61 in CD₂Cl₂

at 30 °C: The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 5 min, 77%, 23% (*cis:trans* = 65:35); 6 min, 73%, 27% (*cis:trans* = 63:37); 8 min, 64%, 36% (*cis:trans* = 53:47); 10 min, 56%, 44% (*cis:trans* = 45:55); 20 min, 25%, 75% (*cis:trans* = 23:77); 30 min,

11%, 89% (*cis:trans* = 13:87). The consumption rate of **5**l obeyed the first-order kinetics (Figure S21) and the half-live was calculated to be 8.81 min.

The Half-Live of the Reaction of 5l to 6l in CD₂Cl₂

at 35 °C: The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 5 min, 70%, 30% (*cis:trans* = 53:47); 6 min, 62%, 38% (*cis:trans* = 47:53); 8 min, 50%, 50% (*cis:trans* = 36:64); 10 min, 41%, 59% (*cis:trans* = 27:73); 20 min, 8%, 92% (*cis:trans* = 8:82); 30 min,

n.d., >99% (*cis:trans* = 3:97). The consumption rate of **51** obeyed the first-order kinetics (Figure S22) and the half-live was calculated to be 6.57 min.

The Half-Live of the Reaction of 5l to 6l in CD₂Cl₂ at

40 °C: The ³¹P NMR spectrum showed the formation of 51 and 61. The reaction time (the average of acquisition time), and the yields of 51 and 61 at the time were 6 min, 64%, 36% (*cis:trans* = 42:58); 7 min, 53%, 47% (*cis:trans* = 32:68); 8 min, 43%, 57% (*cis:trans* = 27:73); 9 min, 38%, 62% (*cis:trans* = 22:78); 10 min,

32%, 68% (cis:trans = 19:81); 11 min, 28%, 72% (cis:trans = 15:85); 12 min, 24%, 76%

(*cis:trans* = 13:87); 13 min, 22%, 78% (*cis:trans* = 12:88); 15 min, 18%, 82% (*cis:trans* = 10:90); 20 min, 12%, 88% (*cis:trans* = 7:93). The consumption rate of **51** obeyed the first-order kinetics (Figure S23) and the half-live was calculated to be 4.54 min.

The Half-Live of the Reaction of 5p to 6p in C₆D₆

at 30 °C: The ³¹P NMR spectrum showed the formation of **5p** and *trans*-**6p**. The reaction time (the average of acquisition time), and the yields of **5p** and *trans*-**6p** at the time were 4 min, 95%, 5%; 5 min, 93%, 7%; 6 min, 91%, 9%; 8 min, 89%, 11%; 10 min, 84%, 16%; 20 min, 66%, 34%; 30 min, 51%, 49%; 40 min, 39%, 61%; 50 min, 30%, 70%; 60 min,

Figure S25

0.0464x - 0.0157

 $R^2 = 0.9993$

30

time (min)

2,5

2

0.5

-0.5

23%, 77%. The consumption rate of **5p** obeyed the first-order kinetics (Figure S24) and the half-live was calculated to be 27.4 min.

The Half-Live of the Reaction of 5p to 6p in C₆D₆ at

35 °C: The ³¹P NMR spectrum showed the formation of **5p** and *trans*-**6p**. The reaction time (the average of acquisition time), and the yields of **5p** and *trans*-**6p** at the time were 7 min, 88%, 12%; 8 min, 85%, 15%; 9 min, 81%, 19%; 10 min, 79%, 21%; 20 min, 51%, 49%; 30 min, 31%, 69%; 40 min, 20%, 80%; 50 min,

12%, 88%. The consumption rate of **5p** obeyed the first-order kinetics (Figure S25) and the half-live was calculated to be 14.9 min.

The Half-Live of the Reaction of 5p to 6p in C₆D₆

at 40 °C: The ³¹P NMR spectrum showed the formation of **5p** and *trans*-**6p**. The reaction time (the average of acquisition time), and the yields of **5p** and *trans*-**6p** at the time were 3 min, 96%, 4%; 4 min, 88%, 12%; 5 min, 83%, 17%; 6 min, 77%, 23%; 8 min, 68%, 32%; 9 min, 64%, 36%; 18 min,

29%, 71%; 20 min, 25%, 75%; 30 min, 8%, 92%; 40 min, 4%, 96%. The consumption rate of **5p** obeyed the first-order kinetics (Figure S26) and the half-live was calculated to be 8.96 min.

The Half-Live of the Reaction of 5p to 6p in CD_2Cl_2 at 30 °C: The ³¹P NMR spectrum showed the formation of 5p and 6p. The reaction time (the average of acquisition time), and the yields of 5p and 6p at the time were 2 min, 81%, 19% (*cis:trans* = 69:31); 3 min, 69%, 31% (*cis:trans* = 63:37); 4 min, 61%, 39% (*cis:trans* = 56:44); 5 min, 55%, 45% (*cis:trans* =

Figure S27 $\begin{array}{c}
0.8 \\
0.7 \\
0.6 \\
0.5 \\
0.4 \\
0.2 \\
0.1 \\
0 \\
0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
turne (min) \\
\end{array}$

47:53); 6 min, 49%, 51% (*cis:trans* = 42:58); 7 min, 44%, 56% (*cis:trans* = 37:63); 8 min, 39%, 61% (*cis:trans* = 33:67); 20 min, 6%, 94% (*cis/trans* = 9:91); 30 min, n.d., >99% (*cis:trans* = 4:96). The consumption rate of **5p** obeyed the first-order kinetics (Figure S27) and the half-live was calculated to be 5.94 min.

The Half-Live of the Reaction of 5p to 6p in CD_2Cl_2 at 35 °C: The ³¹P NMR spectrum showed the formation of 5p and 6p. The reaction time (the average of acquisition time), and the yields of 5p and 6p at the time were 3 min, 61%, 39% (*cis:trans* = 48:52); 4 min, 50%, 50% (*cis:trans* = 38:62); 5 min, 43%, 57% (*cis:trans* = 32:68); 6 min, 36%, 64% (*cis:trans* = 26:74); 7 min, 31%, 69% (*cis:trans*

= 22:78); 8 min, 27%, 73% (*cis:trans* = 19:81); 20 min, n.d., >99% (*cis:trans* = 4:96). The consumption rate of **5p** obeyed the first-order kinetics (Figure S28) and the half-live was calculated to be 4.33 min.

The Half-Live of the Reaction of 5p to 6p in CD_2Cl_2 at 40 °C: The ³¹P NMR spectrum showed the formation of 5p and 6p. The reaction time (the average of acquisition time), and the yields of 5p and 6p at the time were 3 min, 49%, 51% (*cis:trans* = 34:66); 3.5 min, 41%, 59% (*cis:trans* = 29:71); 4 min, 36%, 64% (*cis:trans* = 24:76); 5 min, 28%,

72% (*cis:trans* = 18:82); 6 min, 21%, 79% (*cis:trans* = 14:86); 7 min, 17%, 83% (*cis:trans* = 11:89); 8 min, 14%, 86% (*cis:trans* = 10:90); 20 min, n.d., >99% (*cis:trans* = 3:97). The consumption rate of **5p** obeyed the first-order kinetics (Figure S29) and the half-live was calculated to be 2.83 min.

Activation Parameters (Table 3). Activation parameters of the transformation of 51 to 61, 5p to 6p, and 5r to 6r were calculated by measuring the temperature dependence of reaction rates

at the range from 25 °C - 40 °C in both C₆D₆ and CD₂Cl₂ according to the equation: $k = (k_{\rm B}T/h) \{ \exp[-(\Delta H^{\ddagger}-T\Delta S^{\ddagger})/(RT)] \}.$

Activation Parameters of the Transformation of 5l to 6l in C₆D₆: Reaction temperature and reaction rates were as follows: 298 K, 0.000307 s⁻¹; 303 K, 0.000538 s⁻¹; 308 K, 0.00112 s⁻¹; 313 K, 0.00233 s⁻¹.

Activation Parameters of the Transformation of 5l to 6l in CD_2Cl_2 : Reaction temperature and reaction rates were as follows: 298 K, 0.000822 s⁻¹; 303 K, 0.00131 s⁻¹; 308 K, 0.00178 s⁻¹; 313 K, 0.00255 s⁻¹.

Activation Parameters of the Transformation of 5p to 6p in C_6D_6 : Reaction temperature and reaction rates were as follows: 298 K, 0.000270 s⁻¹; 303 K, 0.000422 s⁻¹; 308 K, 0.000773 s⁻¹; 313 K, 0.00133 s⁻¹.

Activation Parameters of the Transformation of 5p to 6p in CD₂Cl₂: Reaction temperature and reaction rates were as follows: 298 K, 0.00171 s⁻¹; 303 K, 0.00194 s⁻¹; 308 K, 0.00267 s⁻¹; 313 K, 0.00408 s⁻¹.

Activation Parameters of the Transformation of 5r to 6r in C_6D_6 : Reaction temperature and reaction rates were as follows: 293 K, 0.000633 s⁻¹; 298 K, 0.00127 s⁻¹; 303 K, 0.00171 s⁻¹; 308 K, 0.00267 s⁻¹.

Activation Parameters of the Transformation of 5r to 6r in CD₂Cl₂: Reaction temperature and reaction rates were as follows: 293 K, 0.000750 s⁻¹; 298 K, 0.00149 s⁻¹; 303 K, 0.00169 s⁻¹; 308 K, 0.00471 s⁻¹.

4-9. Reference and Note

- (1) (a) Osakada, K.; Chiba, T.; Nakamura, Y.; Yamamoto, T.; Yamamoto, A. J. Chem. Soc., Chem. Commun. 1986, 1589. (b) Kurosawa, H.; Kajimaru, H.; Ogoshi, S.; Yoneda, H.; Miki, K.; Kasai, N.; Murai, S.; Ikeda, I. J. Am. Chem. Soc. 1992, 114, 8417, and references therein.
- (2) (a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition-Metal Chemistry; University Science Books: Mill Valley, CA, 1987.
 (b) Grabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th ed.; Wiley-Interscience: New York, 2003.
- (3) (a) Dent, S. P.; Eaborn, C.; Pidcock, A. J. Organomet. Chem. 1975, 97, 307. (b) Stille, J. K.; Lau, K. S. Y. Acc. Chem. Res. 1977, 10, 434. (c) Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 2501.
- (4) (a) Kuniyasu, H.; Sugoh, K.; Moon, S.; Kurowasa, H. J. Am. Chem. Soc. 1997, 119, 4669.
 (b) Miyauchi, Y.; Watanabe, S.; Kuniyasu, H.; Kurosawa, H. Organometallics 1995, 14, 5450.
- (5) (a) Kuniyasu, H.; Ohtaka, A.; Nakazono, T.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2000, 122, 2375. (b) Kuniyasu, H.; Kato, T.; Inoue, M.; Kambe, N. J. Organomet.

Chem. 2006, 691, 1873.

- (6) No interaction between $S=P(C_6H_4OMe-p)_3$ and other reagents has been confirmed during the course of the present study.
- (7) (a) Boschi, T.; Crociani, B.; Toniolo, L.; Belluco, U. *Inorg. Chem.* 1970, 9, 532. (b) Jones, W. D.; Reynolds, K. A.; Sperry, C. K.; Lachicotte, R. J.; Godleski, S. A.; Valente, R. R. *Organometallics* 2000, 19, 1661.
- (8) The reactions were continuously monitored until the equilibria were fully-achieved.
- (9) Zhang, X.; Yu, K.; Carpenter, G. B.; Sweigart, D. A.; Czech, P. T.; D'Acchioli, J. S. Organometallics 2000, 19, 1201.
- (10) It has been already reported that the X-ray crystallographic structure of Pt[(PhH₂CO)(O)C(H)C=CH₂](PPh₃)₂ showed the s-*cis* configuration as to C=O and C=C moieties. Chaloner, P. A.; Davies, S. E.; Hitchcock, P. B. J. Organomet. Chem. 1997, 527, 145.
- (11) (a) Yu, K.; Li, H.; Watson, E. J.; Virkaitis, K. L.; Carpenter, G. B.; Sweigart, D. A. Organometallics 2001, 20, 3550. (b) Strawser, D.; Karton, A.; Zenkina, O. V.; Iron, M. A.; Shimon, L. J. W.; Martin, J. M. L.; Boom, M. E. J. Am. Chem. Soc. 2005, 127, 9322.
- (12) It has been reported that α,β-unsaturated thioesters were employed as an excellent acceptors of Michael additions. Mazery, R. D.; Pullez, M.; López, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 9966 and references therein.
- (13) It has been known the substituent with α-anion stabilization effect at β-carbon facilitated the Michael addition of nucleophile to α,β-unsaturated compounds. (a) Stork, G.; Ganem, B. J. Am. Chem. Soc. 1973, 95, 6152. (b) Gawley, R. E. Synthesis 1976, 777. (c) Holton, R. A.; Williams, A. D.; Kennedy, R. M. J. Org. Chem. 1986, 51, 5480. (d) Cooke, M. P., Jr. J. Org. Chem. 1987, 52, 5729.

Summary

In this study, the author succeeded in developing novel transition metal-catalyzed reaction of thioesters and iminosulfides with alkynes and discovering the mechanism under the reaction of α , β -unsaturated thioesters to platinum complexes. The results were summarized as follows.

In chapter 1, it was described that the intermolecular CO-retentive addition of thioesters to alkynes, which afford enone derivatives having sulfur functionality at β -position. The use of DPPE (1,2-bis-(diphenylphosphino)ethane) as a ligand is of critical importance to achieve Pd-catalyzed aroylthiolation. On the other hand, trifluoroacetylthiolation by CF₃C(O)SR was successfully catalyzed by Pt(PPh₃)₄, the same catalyst employed for decarbonylative arylthiolation by ArC(O)SR. The CF₃ group is requisite for the transformation; the reactions using Me- and CCl₃-substituted thioesters hardly furnished the desired products.

In chapter 2, a new synthetic method of β -sulfur functionalized 1-azadienes by the intermolecular addition reaction of iminosulfides to alkynes was successfully realized using Pd(dba)₂/PAr₃ as the catalytic system. The reaction was promoted by introducing CF₃ group bound to the iminocarbon probably due to the acceleration of the oxidative addition of iminosulfides to Pd-catalyst. Furthermore, the present iminothiolation could be applied to the synthesis of furan derivatives.

In chapter 3, it was revealed that one-pot syntheses of 2,3-dihydrothiopyran-4-one derivatives by Pd/Cu-catalyzed reactions of α , β -unsaturated thioesters with propargyl alcohols. The transformation successively takes place in a flask by a single operation and consists of four consecutive reactions: the Pd/Cu-catalyzed Sonogashira-type cross-coupling reaction of thioester with propargyl alcohol; the *trans*-addition of *in situ* generated thiol to alkyne moiety; an intramolecular aromatic nucleophilic substitution; and a cyclization reaction.

Finally, it was suggested that there would be two reaction pathways of the oxidative addition of α , β -unsaturated thioesters to zero-valent platinum complexes. One is the direct approach of Pt-fragment coordinated on the carbon-carbon double bond toward the carbon-sulfur bond, and the other is the attack of Pt-fragment at the vinylic β -carbon and details were summarized in chapter 4.

These new aspects revealed through this study show a great benefit in transition metal-mediated various catalytic and stoichiometric transformation using organosulfur compounds in synthetic chemistry.

List of Publications

- Transition-Metal-Catalyzed Regioselective Aroyl- and Trifluoroacetylthiolation of Alkynes Using Thioesters Yasunori Minami, Hitoshi Kuniyasu, Kiyoshi Miyafuji, Nobuaki Kambe *Chem. Commun.* 2009, 3080-3082.
- (2) Pd-Catalyzed Regioselevtive Iminothiolation of Alkynes: Remarkable Effects of CF₃ Group of Iminosulfides Yasunori Minami, Hitoshi Kuniyasu, Nobuaki Kambe in preparation.
- (3) One-Pot Syntheses of 2,3-Dihydrothiopyran-4-one Derivatives by Pd/Cu-Catalyzed Reactions of α,β-Unsaturated Thioesters with Propargyl Alcohols Yasunori Minami, Hitoshi Kuniyasu, Nobuaki Kambe
 Org. Lett. 2008, 10, 2469-2472.
- (4) Reactions of α,β-Unsaturated Thioesters with Pt(0): Implication of Dual Mechanism Leading to the Formation of Acyl Platinum Yasunori Minami, Tomohiro Kato, Hitoshi Kuniyasu, Jun Terao, Nobuaki Kambe Organometallics 2006, 25, 2949-2959.

Acknowledgement

The author would like to express his appreciation and gratitude to Professor Nobuaki Kambe at the Department of Applied Chemistry, Graduate School of Engineering, Osaka University for a number of suggestions, discussions and encouragement. The author would like to express his sincere thanks to Professor Naoto Chatani and Professor Masahiro Miura of Osaka University for kind discussions. The author would like to express his gratitude to Associate Professor Hitoshi Kuniyasu for his stimulating discussion. The author would like to acknowledge Assistant Professor Takanori Iwasaki, Professor Shin-ichi Fujiwara, Associate Professor Jun Terao (who was transferred at the Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University) and Professor John F. Hartwig of University of Illinois for his useful advice and hearty encouragement. The author would like to thank Dr. Nobuko Kanehisa for her helpful advice and assistance about X-ray crystallographic analysis.

The author is deeply grateful to Dr. Takayoshi Hirai, Dr. Tomohiro Kato, Dr. Fumikazu Yamashita, Dr. Hiroyasu Watabe, Dr. Yoshitaka Naito, Dr. Hirohisa Todo, Dr. Susumu Tsuda, Dr. Masashi Toyofuku and Dr. Yuki Fujii for their kindness and helpful discussion. The auther is indebted to Ms. Yuko Okumoto, Ms. Kana Kumamoto, Mr. Keisuke Tsurui, Mr. Masahiro Tomita, Mr. Hiroyuki Watanabe and other lab's partners as colleagues for the doctor's, master's and bachelor's courses. The author also thanks Mr. Shigehito Asano, Mr. Takamichi Kajiura, Mr. Yoshitaka Kunihiro, Mr. Kiyoshi Miyafuji, Mr. Takashi Tamaki, Mr. Takahiro Yoshizawa, Mr. Kazunobu Takekawa, Mr. Daisuke Nakane, Mr. Atsushi Sanagawa, Dr. Tokutaro Ogata, Ms. Noriko Fujimoto, Ms. Mikiko Tobisu, Ms. Yuko Fujiie, Ms. Nan Holda and all other members of the laboratory of Professor Kambe and Professor Hartwig for their helpful assistance and stimulating discussion. Thanks are due to the Instrumental Analysis Center, Faculty of Engineering, Osaka University for measurement of spectral and analytical data.

The author would like to express his special thanks for The Global COE (center of excellence) Program "Global Education and Research Center for Bio-Environmental Chemistry" of Osaka University and the JSAP Research Fellowship for Young Scientist for financial support for financial support during his PhD program.

Finally, the author wishes to thank to his family, as well as his wonderful friends for their encouragement, understanding and support.

March, 2010

Yasunori Minami
