

Title	フォトニックDNAプロセッサの実装手法に関する研究
Author(s)	西村,隆宏
Citation	大阪大学, 2013, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/27480
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

竹都男 16057

フォトニック DNA プロセッサの 実装手法に関する研究

2013年1月

フォトニック DNA プロセッサの 実装手法に関する研究

提出先 大阪大学大学院情報科学研究科提出年月 2013年1月

西村 隆宏

発表論文リスト

原著論文

- T. Nishimura, Y. Ogura, and J. Tanida, "Optofluidic DNA computation based on optically manipulated microdroplets," Microfluidics and Nanofluidics 13, 1–7 (2012).
- [2] T. Nishimura, Y. Ogura, and J. Tanida, "Reusable molecular sensor based on photonic activation control of DNA probes," Biomedical Optics Express 3, 920–926 (2012).
- [3] T. Nishimura, Y. Ogura, and J. Tanida, "Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold," Applied Physics Letters 101, 233703 (2012).
- [4] T. Nishimura, Y. Ogura, and J. Tanida, "A nanoscale set-reset flip-flop in fluorescence resonance energy transfer-based circuits," Applied Physics Express 6, 015201 (2013).

国際会議

- [1] T. Nishimura, Y. Ogura, H. Yamamoto, K. Yamamda, and J. Tanida, "DNA logic circuit using fluorescence resonance energy transfer for signal cascade," 18th International Conference on DNA Computing and Molecular programmig, 61 (2012) [ポス ター発表, 査読有り].
- [2] T. Nishimura, Y. Ogura, H. Yamamoto, K. Yamamda, and J. Tanida, "A photonic DNA processor: concept and implementation," SPIE NanoScience and Engineering, Proc. SPIE 8102, 810207 (2011) [招待講演].
- [3] T. Nishimura, Y. Ogura, H. Yamamoto, K. Yamamda, and J. Tanida, "Prototype demonstration of a photonic DNA processor: a photonically-controlled DNA nanomachine of sensing, computing, and actuating," The 8th Annual Conference on Foundations of Nanoscience, 181–182 (2011) [口頭発表, 査読有り].
- [4] T. Nishimura, Y. Ogura, and J. Tanida, "Operation of DNA logic gates by optical

manipulation of DNA microdroplets,"The 7th International conference on Optics-Photonics Design and Fabrication, 19S2-04 (2010) [口頭発表, 査読有り].

[5] T. Nishimura, Y. Ogura, and J. Tanida, "Enhancing the performance of photonic DNA nanomachines for implementing photonic nanoscale automaton," SPIE NanoScience and Engineering, Proc. SPIE 7402, 740203 (2009) [招待講演].

国内発表

- 西村隆宏,小倉裕介,山田憲嗣,山本裕紹,谷田純, "DNA scaffold logic: logic operation on molecular inputs using FRET cascades,"第 50 回日本生物物理学会年会, 1I1534 (2012).
- [2] 西村隆宏,小倉裕介,山田憲嗣,山本裕紹,谷田純,"蛍光共鳴エネルギー移動を利用した分子入力・光出力論理回路の実装,"第59回応用物理学関係連合講演会,16p-B10-1
 (2012) [口頭発表].
- [3] 西村隆宏,小倉裕介,山田憲嗣,山本裕紹,谷田純,"Bio-molecular sensing by use of DNA that can be activated and reset via photonic signals,"第49回日本生物物理学会 年会, 3J1346 (2011). [口頭発表,ポスター発表(採択率10%)]
- [4] 西村隆宏, 小倉裕介, 山田憲嗣, 山本裕紹, 谷田純, "蛍光共鳴エネルギー移動を利用したスキャフォールド DNA 論理演算,"日本光学年次学術講演会 Optics & Photonics Japan 2011, 29pF11 (2011). [口頭発表]
- [5] 西村隆宏, 小倉裕介, 山田憲嗣, 山本裕紹, 谷田純, "フォトニック DNA プロセッサプ ロトタイプの開発," 第 58 回応用物理学関係連合講演会, 27p-BJ-2 (2011). [口頭発表]
- [6] 西村隆宏, 小倉裕介, 山田憲嗣, 山本裕紹, 谷田純, "分子センサ機能を有する光制御型
 DNA ナノマシン,"日本光学年次学術講演会 Optics & Photonics Japan 2010, 10aC1
 (2010). [口頭発表]
- [7] 西村隆宏, 小倉裕介, 山田憲嗣, 山本裕紹, 谷田純, "Photoregulating activation of functionality in molecular recognition of DNA," 第 48 回日本生物物理学会年会, 2P345 (2010). [ポスター発表]
- [8] 西村隆宏, 小倉裕介, 谷田純, "微小液滴の光操作に基づく局所的 DNA 論理演算," 第 57回応用物理学関係連合講演会, 11a-D-1 (2010). [口頭発表]
- [9] 西村隆宏,小倉裕介,谷田純,"光学的手法に基づく DNA の位置・局所反応の並列制 御,"第70回応用物理学会学術講演会講演,17a-K-9 (2009). [ロ頭発表]

ii

[10] 西村隆宏, 小倉裕介, 山田憲嗣, 山本裕紹, 谷田純, "光信号による自己完結型 DNA ナ ノマシンの状態遷移制御," 日本光学年次学術講演会 Optics & Photonics Japan 2008, 242-243 (2008). [口頭発表]

その他

- Y. Ogura, Y. Kazayama, T. Nishimura, and J. Tanida, "Large-area manipulation of microdroplets by holographic optical tweezers based on a hybrid diffractive system," Applied Optics 50, H36-H41(2011).
- Y. Ogura, T. Nishimura, and J. Tanida, "Spatially parallel control of DNA reactions in optically manipulated micro-droplets," Journal of Nanophotonics 5, 05107 (2011).
 [Selected for Virtual Journal of Biological Physics Research, Vol. 21, Issue 10.]
- [3] Y. Ogura, T. Nishimura, and J. Tanida, "Self-contained photonically-controlled DNA tweezers," Applied Physics Express 2, 025004 (2009).
- [4] Yusuke Ogura, Takahiro Nishimura, Hiroto Sakai, and Jun Tanida, "Photonic DNA computing: concept and implementation methods," iConcept Press, In Zhongming Zhao, editor, Sequence and Genome Analysis: Methods and Applications, Chapter 7 (2011).
- [5] Y. Kazayama, T. Nishimura, Y. Ogura, and J. Tanida, "Optical manipulation of microdroplets by use of a spatial light modulator and a static computer generated hologram," Proc. of Information Photonics, HMDA-19-1-6 (2011) [口頭発表, 査読有 り].
- [6] Y. Ogura, Y. Kazayama, T. Nishimura, and J. Tanida, "Evaluation of holographic optical tweezers based on a hybrid diffractive system for manipulating microdroplets," Proc. in Digital Holography and Three-Dimensional Imaging (2011) [口頭発表, 査読 有り].
- [7] Y. Ogura, T. Nishimura, and J. Tanida, "Nanoscale logic operation in optically manipulated micro-droplets," SPIE NanoScience and Engineering, Proc. SPIE 7764, 77640H (2010) [招待講演].
- [8] Y. Ogura, T. Nishimura, Y. Horiguchi, and J. Tanida, "Concept and primal Implementation of photonic nanoscale automaton," Proc. of International Topical Meeting on Information Photonics, 32–33 (2008) [口頭発表, 査読有り].

- [9] Y. Ogura, T. Nishimura, and J. Tanida, "State-transition of DNA nanomachines based on photonic Control," SPIE NanoScience and Engineering, Proc. SPIE **7039**, 70390K (2008) [招待講演].
- [10] 小倉裕介, 西村隆宏, 山田憲嗣, 山本裕紹, 谷田純, "光と DNA の協調によるナノ情報 処理," 日本光学年次学術講演会 Optics & Photonics Japan 2011, 29aBS3 (2011). [口 頭発表]

目 次

緒論		1
第1章	フォトニック DNA 情報技術	5
1.1	緒言	5
1.2	DNA を用いたナノ情報技術	6
	1.2.1 DNA の特性	6
	1.2.2 センシング	7
	1.2.3 情報処理	7
	1.2.4 アクチュエータ	7
1.3	フォトニック DNA 情報技術	8
	1.3.1 光技術の適用効果	8
	1.3.2 ナノスケールの光学現象	8
	1.3.3 フォトニック DNA コンピューティング	10
	1.3.4 フォトニック DNA プロセッサ	11
1.4	本研究における研究項目...............................	12
笛ヶ音	フェレーックDNAプロレッチプロレクノプの中壮	1 5
₩4早	ノオトニック DINA ノロセッリノロトライノの実装 体⇒	15
2.1		15
2.2	光駆動型 DNA ビンセット	15
	2.2.1 DNA ピンセット	15
	2.2.2 アゾベンゼンを利用した光駆動制御	16
	2.2.3 動作確認実験	17
2.3	分子センサ機能の光制御	18
	2.3.1 分子センサ機能の光制御	18
	2.3.2 動作確認実験	21
2.4	プロトタイプの動作スキーム	26

	2.4.1 動作スキーム	26
	2.4.2 動作確認実験	27
2.5	結言	30
第3章	DNA 足場論理	31
3.1	緒言	31
3.2	DNA 足場論理の構成	32
	3.2.1 FRET に基づく信号処理	32
	3.2.2 蛍光分子の配置制御	33
	3.2.3 AND, OR, NOT 演算の実装	33
3.3	実証実験	35
	3.3.1 コネクティング DNA とディスコネクティング DNA の動作確認	35
	3.3.2 AND 演算	38
	3.3.3 OR 演算	39
	3.3.4 NOT 演算	40
	3.3.5 FRET 接続の拡張	40
3.4	特性評価	44
	3.4.1 反応モデル	44
	3.4.2 モデルパラメータ	46
	3.4.3 シミュレーション結果	46
	3.4.4 実験結果	49
3.5	結言	51
第4章	FRET 回路におけるメモリ機能	53
4.1	緒言	53
4.2	FRET の光制御に基づくフリップフロップ回路	53
	4.2.1 蛍光特性の光制御	53
	4.2.2 FRET 回路におけるフリップフロップ	54
4.3	原理確認実験	55
	4.3.1 実験原理	55
	4.3.2 実験結果	55
4.4	結言	61

第5章	フォトニック DNA プロセッサ実装に向けた DNA 足場論理の拡張手法	63
5.1	緒言	63
5.2	DNA 足場論理における演算拡張性	64
5.3	DNA 足場論理に基づくシステムにおけるメモリ機能	65
5.4	フォトニック DNA プロセッサのパッケージ化	66
5.5	結言	67
総括		69
謝辞	謝辞	
参考文禧	参考文献	

緒論

コンピュータは、高度なデータ処理を可能にするだけでなく、さまざまな電子機器に組 み込まれ、インテリジェントな機能制御を可能にしている。コンピュータの本質は、多様 な事象から得られる信号であっても、デジタル情報として符号化されれば、同様の手続き に基づいて処理できる点にあると考えられる。この特徴がコンピュータの応用範囲の拡大 につながっている。

生命現象においても、信号を取得して機能を選択し実行する仕組みが存在し、その過程 を情報処理とみなすことができる。その仕組みは、重要な解析対象であるとともに、工学 的な応用においても興味深い対象とされている。計測・観察技術の向上により、分子レベ ルで生体システムの機能を解明する試みが進んでいるが、生体システムは生体分子が複雑 に相互作用してさまざまな機能を発現しているため未解明な部分も多い。また、生体分子 から人工的にシステムを構築し、それを検証することにより生体システムの解明につなげ る合成生物学などの分野が注目されており、生体分子環境を効率よく制御する技術が求め らている。これらの課題に対して、情報技術を適用することは有効と考えられる。電子コ ンピュータが様々な分野で技術革新を可能にしてきたように、分子情報の効率的な取り扱 いを実現する技術は、ナノサイエンス、ナノテクノロジー、医療、創薬など幅広い分野で の貢献が期待できる¹⁾.

ナノスケール領域に情報技術を導入するためには、ナノスケール領域のその場で分子情報を取得、処理、制御することが求められる。そのためには、ナノスケールで実装され、 生体分子環境で動作し、分子情報を扱うことができる情報システムが必要となる。しか し、既存の電子工学に基づく電子コンピュータのスケールダウンでは、このような情報シ ステムの実現は困難である。分子の特性やナノスケール領域での現象を積極的に利用す る、ボトムアップ的なアプローチが重要と考えられる。

DNA は高密度な情報記憶媒体であり²⁾,生命現象は DNA に符号化された情報を再生 し,発展させる過程と捉えられる。1994 年に,Adleman は DNA を利用した人工的なプ ロセスに基づく情報処理をデモンストレーションした³⁾.分子反応により実現される大規

模な並列演算への可能性と DNA の安定性,多様性,相補性,自律反応性から,DNA コ ンピューティングに関する研究が盛んになった⁴⁾. その後,生体親和性と微小なサイズを 生かして,DNA フラグメントや RNA を入力とする論理回路⁵⁾や,分子状態により状態遷 移するオートマトン^{6),7)}が示されている.これらの成果は,DNA の情報処理能力の高さ を示している.また,DNA の他の生体分子と配列特異的に結合する性質は,相互作用す ることや生体環境との親和性が高いことも有効な特徴である.これまでに,DNA を利用 したナノデバイスが数多く提案されており⁸⁾,こうした DNA ナノ技術は,ナノ情報シス テムの構築に,有効な手法を与えると考えられる.

一方,光は,生体への侵襲性が小さいことから,生体分子環境へのアクセスに有効な媒体である.また,光と物質の多様な相互作用を利用すれば,外部から非接触に生体分子環境へ働きかけることが可能である.さらに,利用可能な属性が多いことから,柔軟な分子情報の取り扱いが期待される.これらの特徴は,外部環境とナノ情報システム間の情報通信やエネルギー伝送のキャリアとして有用である⁹⁾.

本論文は、光技術とDNAナノ技術を利用したナノプロセッサ—フォトニックDNAプ ロセッサ—¹⁰⁾の実装手法に関する研究成果をまとめたものである。DNAを利用すること により、ナノスケール領域で生体分子に関する情報を取り扱うことが可能となる。また、 光と物質との相互作用の利用により、非侵襲かつ遠隔的に外界とナノプロセッサの情報通 信が可能となる。光技術とDNAナノ技術を融合し、センサ、演算、アクチュエータ機能 を備えたナノスケールの情報システムの開発を行う。

第1章では、フォトニック DNA プロセッサの概念とその実装のための要素技術を提示 する.ナノスケールのシステムを構成する上で、DNA の分子認識能と自律的反応は有用 である.それらの特徴を利用した、センシング、情報処理、アクチュエータの基本原理と 研究開発の現状を示す.また、光技術の利用により期待できる効果と、本研究で利用する 光-DNA 関連技術を説明する.その上で、フォトニック DNA プロセッサの概要を示し、 本研究の研究項目を述べる.

第2章では、フォトニック DNA プロセッサの実装法について検討する.フォトニック DNA プロセッサの実装には、センシング、演算、出力の一連の動作をナノスケールで実 現することが求められる.実現のための要素技術として、分子センサ機能の光制御手法¹¹⁾ と DNA 構造変化を利用した状態遷移表現¹²⁾について検討する.その上で、光信号のタイ ミングに従って、DNA フラグメントを検知し、特定のフラグメントの有無を判断し、そ の結果を蛍光信号として出力するナノマシンを提案する¹³⁾.実証実験から、フォトニック

 $\mathbf{2}$

DNA プロセッサの基本動作が、光と DNA を利用して実装できることを示す.

第3章では、演算機能の拡張手法として、蛍光共鳴エネルギー移動 (Fluroescence Resonance Energy Transfer, FRET) による信号処理を導入した DNA 論理回路の構成手法を検討する¹⁴⁾. DNA 足場論理と呼ぶ、論理演算の実装手法を提案する. NOT, AND, OR 演算を含む論理回路の動作確認実験について説明する. また、演算性能評価のために反応 モデルを検討し、数値シミュレーション結果と実験による測定結果を示し、DNA 足場論 理の特性を明らかにする.

第4章では、DNA 足場論理においてメモリ機能を実現するために、FRET 回路に組み 込み可能なセット/リセットフリップフロップを提案する¹⁵⁾. 蛍光分子の光制御による FRET の変調を利用し、状態に応じて FRET のオン/オフを切り替えるフリップフロッ プの動作原理とその実験結果を示す. 繰り返し遷移や状態保持を示し、遷移速度を評価 する.

第5章では,DNA 足場論理によるフォトニック DNA プロセッサ実装における,現状 での課題を示し,今後の展望を示す.

最後に、本研究で得られた成果を総括し、今後の課題についてまとめる.

第1章

フォトニック DNA 情報技術

1.1 緒言

生体分子が関わる生命現象を支えるシステムは重要な解析対象であると同時に,その メカニズムは工学応用的見地からも興味深い.生体分子環境を扱う上で,ナノスケール領 域へ適用可能な情報技術は重要な役割を果たすと考えられる.光は,生体への侵襲性が小 さく,生体分子環境の操作に有効な媒体である.また,光と物質の多様な相互作用を利用 することで,外部から非接触に生体分子環境へ働きかけることが可能である.しかし,伝 搬光を用いる場合には回折現象により操作スケールが制限されるため,生体分子スケール の制御は容易ではない.一方,DNA はワトソン・クリックの相補性に基づく分子認識と 自律反応性から,ナノスケールの事象の取り扱いや構造体作製において,優れた材料とな る.また,DNA は他の生体分子との相互作用や生体と親和性が高いことから,細胞内の 現象の解明や分子機能発現制御など幅広い応用が期待できる.

本章では、光とDNAの特性を有効に利用して実現をめざすフォトニックDNA プロセッ サ¹⁰⁾の概要を示す。1.2節では、DNAの特性とその性質を利用して実現されるDNAナノ 情報技術を説明する。DNAの物理化学的な性質を利用することで、センシング、情報処 理、アクチュエーションが、ナノサイズで実装できることを示す。1.3節では、DNAナノ 情報技術に対して、フォトニクス導入による効果をまとめる。また、本研究で使用する 光-DNA 関連技術を説明する。その上で、本研究で実装をめざすフォトニックDNA プロ セッサの概念を示す。1.4節では、本研究の研究項目について述べる。

図 1.1 DNA の構造. (A) Watoson-Crick の相補性. (B) 二本鎖 DNA の模式図.

1.2 DNAを用いたナノ情報技術

1.2.1 DNA の特性

DNA は、生物の遺伝情報の記憶媒体として、生体分子システムで重要な役割を担って いる²⁾. 4種類の塩基、アデニン (A)、グアニン (G)、シトシン (C)、チミン (T) の配列 を利用して、遺伝情報が保存されている. これらは、Watson-Clickの相補性に基づいて、 図 1.1(A) に示すように、A は T、G は C と特異的に水素結合する. 相補的な配列をもつ 一本鎖 DNA 同士は、選択的に結合して、図 1.1(B) に示すように、二重螺旋構造を形成す る. 通常、この二本鎖 DNA は、螺旋 1 周期あたり 10.5 塩基対 (bp) であり、3.4 nm に相 当する¹⁶⁾. また、二本鎖 DNA の直径は 2.0 nm である¹⁶⁾.

熱力学的な考察により、塩基配列から DNA 反応、構造形成を精度よく予測・設計で きる. nearest-neighbor モデルによって、DNA 鎖がある二次構造を形成するときの熱力 学的パラメータ (ΔH , ΔS , ΔG) が予測できる^{17),18}. DNA はもっとも安定な構造を形成 する. すなわち、最小の自由エネルギー ΔG_{min} を求めることにより、与えられた配列の 構造予測を行える. ウェブ上では二次構造予測、配列設計ソフトウェアとして mfold¹⁹, NUPACK²⁰)等が公開されている.

DNA 合成技術の向上に伴い,他の機能性分子を修飾して新しい機能を DNA へ付加することが可能となっている。例えば、光異性化分子を DNA へ挿入すれば、光照射により

DNA の結合が制御できる²¹⁾⁻²³⁾. DNA 構造の光制御^{12),24)}, 光駆動分子モーター²⁵⁾, 転写 制御による分子発現制御²⁶⁾へ応用されている.また,ナノ粒子等を修飾した DNA と DNA のナノ構造作成技術²⁷⁾⁻³⁴⁾を利用して,分子スケールでの物質の位置制御が実証されてい る^{35),36)}.ナノスケールでの物質の位置制御を利用すると,吸収,偏光などの光学特性が 調整できる^{37),38)}.

1.2.2 センシング

ー本鎖 DNA の配列選択的な結合は,生体分子や小分子検出のプローブとして広く利用 されている.DNA だけでなく,RNA 検出にも適用され,細胞内の空間分布の観察などへ 応用されている³⁹⁾.また,タンパク質と特異的に結合するアプタマー配列を利用すれば, DNA プローブはタンパク質検出に使用できる⁴⁰⁾.DNA チップのように,基板表面上へ 多数種類の DNA プローブを固定すれば,効率的に対象の配列特定や発現状態の診断がで きる¹⁶⁾.また,検体と DNA の結合により誘起される構造変化を,光学特性の変化に置き 換え,蛍光シグナルで取り出す分子ビーコンが提案されている⁴⁰⁾.

1.2.3 情報処理

塩基配列の設計により DNA 反応をデザインすれば、その反応を利用して数学的な処 理が実行できる⁸⁾. DNA 反応の大規模な並列性に着目し、有向ハミルトン経路問題³⁾や3 SAT 問題⁴¹⁾などの NP 完全問題に対して、時間的に効率のよいアルゴリズムが提案され ている. これらは、DNA の情報処理能力が優れていることを示している. また、DNA の 微小なサイズと生体との親和性を生かし、生体分子の信号を処理するナノスケール情報デ バイスが提案されている. 酵素反応や配列交換反応を利用して DNA 反応系を設計するこ とにより、分子の状態に応じて状態遷移するオートマトンや⁶⁾、入力分子情報の論理判定 を行う DNA 論理回路が提案されている⁵⁾.

1.2.4 アクチュエータ

DNA 濃度変化に伴う平衡移動を利用して結合反応を制御することにより,DNA 構造 を制御できる⁴²⁾.これを駆動力として,様々な分子モーターが提案されている⁴³⁾.また, 足場となる DNA 上を移動する DNA ウォーカーや⁴⁴⁾,ウォーカーの二次元構造上での移 動経路の切替が示されている⁴⁵⁾.DNA 構造を分子機能と関連させることにより,分子環 境へのアクションが可能となる.例えば,プロモータ領域の一本鎖・二本鎖状態の制御に 基づく転写制御が提案されている⁴⁶⁾.これを利用することにより、タンパク質の発現が制 御でき、生体分子環境へのアクションが可能になる.

1.3 フォトニック DNA 情報技術

1.3.1 光技術の適用効果

光を利用する分子デバイスは多く提案されている⁴⁷⁾.光は,分子デバイスの駆動エネ ルギーとして有用である。例えば,光誘起反応によりナノデバイスを駆動できる¹²⁾.こ れは溶液環境を変化させることなく非接触に実行できることから,分子デバイスの応用範 囲の拡大につながる。また,光学デバイスの利用により,光照射強度は簡便かつ高速に変 調できる。レーザーの利用により,時空間的に限定された微小な領域での駆動制御が可能 である。これらの特徴は,外部環境からの分子デバイス制御における,光の情報・エネル ギー伝送キャリアとしての有用性を示している。他にも,光照射により誘起される分子や ナノ構造の応答を利用すれば,ナノシステムの状態を読み取るためのキャリアとしても利 用できる。

1.3.2 ナノスケールの光学現象

光学システムのスケールや分解能は回折現象により制限される⁴⁸⁾.しかし,光とナノ 物質との相互作用を利用することにより,その制限を克服できる.分子やナノ粒子が光を 吸収して生じる現象は,ナノスケールの光ーアクション変換デバイスと捉えられる.例 えば,熱変換によりナノスケール領域での熱源として機能が得られ,蛍光や電子への変換 により,ある種の信号変換が達成される.他にも,光照射により誘起される分子構造変化 などは,ナノスケールのモーターとして機能すると捉えることができる.また,ナノ物 質の構造や蛍光分子の配置をナノメートル精度で制御することにより,ナノスケールの 光学現象や光学特性をコントロールできる.これまでに,DNAを利用した,吸光³⁸⁾,蛍 光⁵¹⁾,偏光に対する応答変化³⁷⁾などの制御が報告されている.以下では,本論文で使用 する光-DNA技術として,光異性化反応を利用したDNAの結合制御法と,蛍光共鳴エネ ルギー移動(FRET)の関連技術について述べる.

図 1.2 DNA へ挿入されたアゾベンゼンの光異性化.

光異性化反応を利用した DNA 反応制御

アゾベンゼンの光異性化反応⁴⁹⁾を利用した,DNAの一本鎖/二本鎖状態の光制御手法 が提案されている²¹⁾.アゾベンゼンは紫外光(波長 350 nm 付近)を吸収してシス体に遷 移し,可視光(波長 450 nm 付近)を吸収してトランス体に遷移する²²⁾.図 1.2 に示すよう に,シス体とトランス体ではアゾベンゼンの構造が異なる⁴⁹⁾.一本鎖 DNA を構成するヌ クレオチドの間にアゾベンゼンを挿入すると,その立体構造の違いにより相補鎖ヌクレオ チドとの結合における融解温度(Tm 値)に差が生じる⁵⁰⁾.アゾベンゼンがシス体の場合, 二本鎖 DNA の結合は不安定になり Tm 値が低下する.一方,アゾベンゼンがトランス体 の場合の相補鎖との結合は,アゾベンゼンが挿入されていない DNA の場合と同じ程度の 安定性を持っており,Tm 値はアゾベンゼン未挿入時と同等以上となる.この Tm 値の差 を利用すれば,紫外光と可視光を用いた光信号により,温度一定の条件下での DNA の結 合と解離の制御が可能となる.

DNA の自己組織化を利用した FRET デバイス

蛍光共鳴エネルギー移動 (FRET) とは、ある蛍光分子から近接する他分子に励起エネ ルギーが移動する現象である⁵¹⁾⁻⁵⁶⁾.エネルギー移動速度定数 $k^{A \to B}$ は、

$$k^{A \to B} = \frac{9000 \cdot c^4 ln 10}{128\pi^5 N_A \tau_a} \cdot \frac{\phi_a \kappa^2}{R^6} \int f_a(\nu) \epsilon_b(\nu) \frac{d\nu}{\nu^4} \tag{1.1}$$

で表される⁵⁷⁾. ここで, N_A はアボガドロ数, τ_a はドナーの蛍光寿命, ϕ_a はドナーの蛍光 量子収率, κ は配向因子, $f_a(\nu)$ は蛍光スペクトル, $\epsilon_b(\nu)$ は吸光スペクトル, R はドナー とアクセプタ間の距離, ν は周波数を示す. $k^{A\to B}$ が 0.5 になるときの R は Förester 半径 と呼ばれ,

$$R_0 = 0.218 [\kappa^2 \phi_a n^{-4} \int f_a(\lambda) \epsilon_b(\lambda) \lambda^4 \ d\lambda]^{1/6}$$
(1.2)

と表せる⁵⁷⁾.式 (1.1) から, 蛍光分子の種類とそれらの相対的な位置関係により, FRET 伝達が制御できることが分かる.一般的に *R*₀ は, 5-10nm である⁵¹⁾.

DNA の自己組織化は,FRET 制御のための蛍光分子の配置に有用である.これまでに, 複数の蛍光分子を DNA の自律反応を利用して整列させ,その蛍光分子間で生じる FRET を利用したナノワイヤが提案されている⁵⁴⁾⁻⁵⁷⁾.また,DNA 反応を利用した蛍光分子の結 合/解離のスイッチに基づく,FRET 経路の設定⁵⁸⁾や FRET の動的なオン/オフ制御⁵⁹⁾ が提案されている.

1.3.3 フォトニック DNA コンピューティング

これまでの DNA 情報技術は,自律反応を効果的に用いて,分子反応系内で全ての演算 や動作が実現されている。しかし、すべての演算や動作を分子反応系に組み込む必要があ るため,処理内容が高度化するにつれて分子反応系の複雑化は避けられない.また,分子 拡散を利用し、確率的に進行する分子反応を、時間・空間的に制御することは困難である。 これを解決する手法として、外部環境と分子系とのインターフェースとして光を利用し、 光と DNA を協調的に利用することによって分子レベルでの情報処理を実現するフォト ニック DNA コンピューティングが提案されている^{10),60)}. フォトニック DNA コンピュー ティングでは、あらかじめ動作をプログラムした DNA 群をナノ領域で機能するエージェ ントとして利用し、これらを外部からの光入力に従って駆動することによって分子情報処 理を実現する。ナノ領域においては DNA の分子認識や自律反応を効果的に利用して分子 情報の処理や制御を行ない、それを外部環境から空間的かつ時間的に制御された光入力を 行なって駆動することにより、フレキシブルな情報処理システムが実現できると考えられ る.フォトニクスと DNA 技術の融合により、DNA エージェントの局所・並列駆動が期 待できるだけでなく,ナノスケール領域での情報処理能力や物質の操作性の向上が期待で きる。これまでに、汎用的な外部制御処理をナノスケールの分子群に対して実行すること をめざした.光入力型 DNA オートマトンが提案されている⁶¹⁾。 内部状態を DNA 構造⁶²⁾ や塩基配列⁶³⁾に割り当てる手法が提案されており,光信号を用いた任意の制御プログラム が構成できる.既存の DNA 情報技術と組み合わせることで,外部制御機構を付加した多 様な処理系の構築が可能となる

図 1.3 フォトニック DNA プロセッサの概念.

1.3.4 フォトニック DNA プロセッサ

フォトニック DNA プロセッサは,外界からの光信号に従って遠隔的に制御され,ナノ 領域において分子・環境情報をセンサにより取得し,プログラムされた演算処理を行い, アクチュエータを介してナノ領域の分子・環境状態の改変や外部環境に対するアクション を行う¹³⁾.フォトニック DNA プロセッサの概念を図 1.3 に示す. 生体分子データを処理 する情報的なプロセシングだけでなく,実在する生体分子を扱う物理的なプロセシングも 同時に行うことが特徴である.

一本鎖 DNA は,配列特異的に DNA, RNA,タンパク質等の生体分子と結合すること が知られており、生体分子プローブとして広く利用されている。特定の配列をもつ一本鎖 DNA は、その配列に対応する分子を認識して自律的に結合し、より安定な構造を形成す る⁴⁰⁾.その結合により生じる DNA 構造変化などを利用することにより、センサ機能が得 られる。しかし、自律的な結合だけで実現されるセンサ機能では、時空間的なセンシン グや、繰り返し利用が困難である。光を媒体として外部から意図的に、信号やセンシング に必要なエネルギーを伝送することにより、これらの課題は解決できる。

DNA 計算の分野では,DNA の相補性を基にして巧みに反応設計することによって,分 子を入力とする論理ゲートや,論理ゲートを多段階にカスケード接続した論理回路が提 案・実証されている⁸⁾.DNA 論理回路を利用すれば分子レベルでの情報処理,決定が可 能となる.光信号処理を導入すれば,演算に必要となる反応が簡略化され,演算時間の短 縮が期待できる.さらに,遠隔地点からの光信号を処理内容のプログラムに利用すること が可能となれば,時空間的に変化する生体分子環境の状態に応じて処理内容を書き換える など,適応性の高い制御の実現が期待できる.

アクチュエータ機能により、生体分子環境に対するアクションが可能である。例えば、 DNA 構造を制御し、タンパク質発現を制御する手法などが開発されている⁴⁶⁾. また、DNA 構造を利用して蛍光分子やナノ粒子の配置を操作することにより、ナノ光学現象が制御で きる. これにより、ナノ世界で得られた情報を光信号として外界へ出力することができ る. その結果、DNA 構造や DNA を利用して他の機能性分子・粒子の位置を制御するこ とによって、様々なナノアクチュエータが実現可能である. その際、光は駆動エネルギー や制御信号として利用できる.

1.4 本研究における研究項目

本研究では、光の情報・エネルギー伝達におけるキャリアとしての能力の高さと DNA のナノ材料としての優れた特性に着目した、フォトニック DNA プロセッサの実装法を検 討する. 具体的な研究項目は以下のとおりである.

1. フォトニック DNA プロセッサのプロトタイプの実装 (第2章)

フォトニック DNA プロセッサは,外界からの光信号に従って,分子信号を取得し,処 理し,光信号として出力する.センシング機能の制御,DNA 構造の光制御を利用した光 制御型センサを検証する.光制御を有効に示すために,一体化した構成によりすべての機 能を実現する方式が理想と考えられる.そこで,DNA 構造を利用した状態遷移表現に着 目し,プロトタイプを検討する.

2. DNA 足場論理 (第3章)

DNA 論理回路へ光信号処理の導入を検討する. 足場となる DNA(足場 DNA)上に蛍光 分子を配置し,蛍光共鳴エネルギー移動を利用した信号処理による論理回路を検討する. この手法を DNA 足場論理と呼ぶ. 論理演算に必要な信号処理を一つの DNA 構造体で実 行する.入力分子の情報を蛍光分子の位置情報へ変換するための反応を検討する.NOT, AND, OR 演算を含む回路の実装法を提案し,任意の論理演算の実装可能性を示す.ま た,演算反応課程の並列性に着目したモデルを検討し,DNA 足場論理の特性を明らかに する.

3. FRET 回路におけるメモリ機能の実装(第4章)

DNA 足場論理に基づく情報システムにおいてメモリ機能を実現するために,FRET 回路に組み込み可能なフリップフロップを検討する.セット/リセットフリップフロップは、メモリ機能を実現する上で重要な回路である。蛍光特性の光制御を利用して,FRET 回路中において機能する,セット/リセットフリップフロップを検討する.内部状態と光信号の入力に応じた状態遷移動作を確認する.

4. フォトニック DNA プロセッサ実装に向けた DNA 足場論理の拡張手法 (第5章)

フォトニック DNA プロセッサの実装に向け, DNA 足場論理の拡張手法について検討 する. DNA 足場論理では, 任意の論理演算が実行可能であることを示す. その上で, 回 路拡張における課題点について言及し, その解決手法を示す. また, 第3章で提案する セット/リセットフリップフロップを DNA 足場論理へ応用し, フォトニック DNA プロ セッサにおけるメモリ機能の実装手法を提案する. 最後に, 生体に応用する際に重要とな るフォトニック DNA プロセッサのパッケージ化について検討する.

.

第2章

フォトニック DNA プロセッサプロトタイプの実装

2.1 緒言

フォトニックDNA プロセッサは、センサ、演算、アクチュエータ機能を備えるナノマ シンである¹³⁾.ナノスケール領域で物理現象や物質に関する情報を扱う際には、いかに して情報を取得し、どのような現象を利用して情報の表現・処理を実装するかが重要と なる.本章は、DNA の自律反応と光照射により誘起される DNA 構造変化を利用するこ とにより、光信号に従って、分子情報を取得し、そのデータを処理し、結果を出力するナ ノマシンを提案する.フォトニックDNA プロセッサに求められる一連の動作を実装する このナノマシンをプロトタイプと位置づける.これにより、フォトニックDNA プロセッ サに求められる基本機能が、光とDNA を利用して実装可能であることを示す.分子信号 を入力とすることを想定し、DNA の分子認識能を利用してセンサ機能を実現し、その情 報を取得する.DNA 構造の変化を利用して状態遷移を表現し、情報処理を実装する.出 力は、DNA 構造の変化を利用して状態遷移を表現し、情報処理を実装する.出 力は、DNA 構造の変化を利用した状態遷移を実現する為に、光駆動型DNA ナノマシ ンとその動作確認実験について述べる.2.3 節では、分子情報取得のためのセンサ機能の 光制御について述べる.2.4 節では、2.2、2.3 節で示した要素技術を利用して、プロトタ イプを実装し、外界からの制御可能なナノプロセッサの基本動作を示す.

2.2 光駆動型 DNA ピンセット

2.2.1 DNA ピンセット

DNA ピンセットは、フューエル DNA と呼ばれる一本鎖 DNA の投入に対応して、DNA で構成されたピンセット状の構造を変化させる DNA ナノマシンである⁶⁴⁾. DNA ピンセッ トの動作概要を図 2.1 に示す. DNA ピンセットは 3 種類の DNA ストランド A, B, C が

図 2.1 DNA ピンセットの動作概要.

互いに結合することにより構成される.フューエル DNA であるストランド Fや下を加え ることにより,Open 構造と Closed 構造を遷移する.Open 構造 (図 2.1 左) に F が加えら れると,B,Cの一本鎖部分と F が結合し,Closed 構造 (図 2.1 右) へ変化する.下は B, Cと比較して,F との相補配列部分が長い.このため,FはABC 複合体よりも下と結合 する方がエネルギー的な安定度が高い.Closed 状態で下を加えるとブランチマイグレー ションが起こり,Fは B,Cの一本鎖部分から解離しながら下と二本鎖 DNA を形成する. この結果,DNA ピンセットは Open 状態に戻る.フューエル DNA 投入により引き起こ される結合反応を駆動力とし、リバーシブルな構造制御が可能である.ただし、1 サイク ルの駆動を行うとFと下からなる二本鎖 DNA が廃棄物として生成される.Open 構造と Closed 構造へ状態を割当ることにより,DNA 分子入力に応じて状態遷移する状態機械と みなすことができる.

2.2.2 アゾベンゼンを利用した光駆動制御

DNA ピンセットを光駆動させるためには、光により DNA の結合/解離を制御することが求められる。DNA の結合/解離の光制御として、光を熱エネルギーに変換する手法^{60),65)}やアゾベンゼンの光異性化反応を利用した手法^{21),22)}が示されている。本研究では入手や調製の容易性から、アゾベンゼン挿入 DNA による DNA 反応制御手法を利用する。本研究で提案する DNA ピンセットの光駆動の概要を図 2.2 に示す¹²⁾.ストランド A, B,

図 2.2 光駆動型 DNA ピンセットの動作概要.

C, Hから構成され, アゾベンゼンを挿入したHとCの結合/解離を制御することにより Open/Closed構造間の変化を光により制御する. DNA の逐次的な投入による DNA ピ ンセットの駆動制御では, 1サイクルごとに二本鎖 DNA が廃棄物として生成されていた が,提案するスキームでは生成されない. Open構造と Closed 構造へそれぞれ状態を符号 化することにより,光入力に応じて状態遷移する状態機械とみなすことができる.

DNA ピンセットの光駆動制御は報告例があるが²⁴⁾,これは一本鎖 DNA と DNA ピン セット構造体の分子が完全に結合・解離することにより光駆動を実現している.本スキー ムは,図 2.2 に示すように,分離した DNA は分子間の反応ではなく,構造体の一部として 結合している DNA の反応により構造が変化する.この特徴により,分子間の結合・解離 反応を利用した手法と比較して,動作効率が高く安定したナノマシン駆動が期待される.

2.2.3 動作確認実験

はじめに, ピンセット構造の光駆動確認実験を行った. ピンセット構造の開閉状態を判 別するため, Aの両端に蛍光分子 (FAM) と消光分子 (BHQ-1) を修飾し, FRET による蛍 光強度変化を測定した. FAM と BHQ-1 は FRET ペア分子であり, 両者の距離に従って FRET が生じる. Open 構造と Closed 構造では蛍光・消光分子間の距離が変化し, FRET 効率, すなわち観測される蛍光強度に違いが現れる.まず,チューブ内の溶液中にストラ ンドA, B, C, Hを混合し, DNA ピンセットの構造を作製した.配列と各修飾位置は図 2.3 に示す通りである.各DNA ストランド合成,蛍光修飾,アゾベンゼン挿入は DNA 合成会 社に依頼した.光照射と蛍光測定には,温度制御機能付き蛍光分光光度計 (JASCO, FP-6200)を利用した.サンプルは 60 ℃に保ち,紫外光照射波長は 340nm(バンド幅: 20nm),

- A 5'-TGCCTTGTAAGAGCGACCATCAACCTGGAATGCTTCGGAT-3'
- B 5'-GGTCGCTCTTACAAGGCACTGGTAACAATCACGGTCTATGCG-3'
- C 5'-GGAGTCCTACTGTCTGAACTAACGATCCGAAGCATTCCAGGT-3'
- H 5'-CGCATAGACCGTGATTGTTACCAGxCGxTTxAGxTTxCAxGAxCAGxTAGxGAxCTxCCTGCTACGA-3'

図 2.3 光駆動型 DNA ピンセットの配列と修飾位置.X はアゾベンゼン挿入位置を示す.

可視光 (440nm, バンド幅: 20nm) に設定した。各光照射時間は1分とした。各光照射後に, 496nm(バンド幅: 5nm) で励起して, 蛍光スペクトルを取得した。

図 2.4(A) に、初期状態、紫外光照射後、可視光照射後の蛍光スペクトルを示す.初期状態ではアゾベンゼンがシス体を形成するため、初期状態は Closed 構造となる.そこへ紫外光を照射すると蛍光強度が上昇した.これは、ピンセット構造が Open 構造に変化したことを表す.その後、可視光照射後には蛍光強度がほぼ初期値まで低下、すなわち初期状態の Closed 構造に戻ったことが確認できる.繰り返し遷移制御を行った際の、FAM の蛍光強度のピークをプロットした結果を図 2.4(B) に示す.遷移効率 *E* を次式で定義する.

$$E = \frac{F_{UV} - F_{Initial}}{F_{ABC} - F_{Initial}},$$
(2.1)

 F_{UV} , $F_{Initial}$, F_{ABC} は,紫外光照射後,初期状態,ABCのみの場合における蛍光強度である。繰り返し操作中のOpen構造への遷移効率は、25~28%の間でほぼ一定であった。 光 DNA ピンセットの安定した繰り返し動作は、ピンセット構造により状態遷移表現する際に、重要な性質である。

2.3 分子センサ機能の光制御

2.3.1 分子センサ機能の光制御

特定の配列をもつ一本鎖 DNA は、その配列に対応する分子を認識して結合する.その 結合により生じる DNA 構造変化などを検出して分子センサ機能が得られる.つまり、分 子センサ機能の起動と停止のスイッチは、一本鎖 DNA と対象分子の結合と解離を制御す れば実現できる.そのためには、一本鎖 DNA の分子認識に必要な配列部位の露出(起動) と相補配列による被覆(停止)を制御すればよい.センシング機能のオン/オフは DNA プ ローブの露出/被覆を制御し行う.センシング機能は、分子間の結合を利用している.こ の結合を制御すれば、機能のオン/オフを切り替えられる.図 2.5 に示すように、プロー

図 2.4 DNA ピンセットの動作確認実験. (A) 各状態における蛍光強度. (B) 繰り返し操作結果.

図 2.5 センシング機能のオン/オフ制御.

ブDNAが一本鎖状態,すなわち露出した状態であれば,対象分子と結合できる.この状態はセンシング機能のオン状態とみなせる.一方,予めプローブDNAを相補鎖配列により覆われた状態であれば,対象分子との結合を抑制できる.この状態はオフ状態とみなせる.

単一の DNA のみの簡潔な構成で対象分子との結合と解離の光制御を可能にする,繰り 返し利用可能な分子認識能の光制御手法を提案する.その概要を図 2.6(A) に示す.DNA ヘアピン構造の開状態と閉状態を光制御することにより,分子認識能の起動と停止を光信 号に応じてスイッチする.光異性化分子であるアゾベンゼンを導入した DNA の結合・解 離反応を用いてヘアピン構造の光制御を実現する.紫外光を照射するとヘアピン構造が開 裂して分子認識部位が露出し,対象分子と結合する.そこへ可視光を照射すると,ヘアピ ン DNA の自己結合力が増加し,元のヘアピン構造にリセットされる.この過程で対象分 子は,ヘアピン DNA から解離する.外部からの光照射により誘起される構造変化を利用 することにより,対象分子との結合/解離が制御できる.これにより,センシングのタイ ミングを光照射により決定でき,センシング後は対象分子を放出できる.

さらに, Dual beacon⁴⁰の動作原理を応用することで,光制御可能な分子センサが実現 できる.その概要を図 2.6(B) に示す.二種類の光制御型プローブを用意して,FRET ペ アのドナー分子とアクセプタ分子により,それぞれのプローブを修飾する.起動状態にお いて対象分子が存在すると,プローブが対象分子と結合してFRET ペア分子が近接する. ドナー分子を励起すると,FRET により,アクセプタ分子から蛍光信号が出力される. ヘ アピン構造が閉状態へ戻り,停止状態に切り替わる際に,対象分子が放出される.外部か

らの制御入力を持たない分子反応機構では,自律的な反応の進行に対して外部から意図的 な操作を行わない限り,センシングの実行時刻の制御や繰り返し利用はできず,分子環境 の時系列データの取得は困難である。光信号による制御を導入する本手法では,時間制御 とリセットが簡易に実現できるため,分子環境の時間変化観測に適用できる。

2.3.2 動作確認実験

設計手法の動作を確認するため, DNA 分子による実験を行った. デバイス本体として アゾベンゼンを11カ所に挿入した43塩基のヘアピンDNA(ストランドH)を,対象分子 として13塩基のDNA フラグメント(ストランドA)を用いた.動作確認には,蛍光共鳴 エネルギー移動(FRET)による蛍光強度変化を利用した.ストランドHの5'末端に蛍光 分子(FAM)を修飾し,ストランドAの3'末端に消光分子(BHQ1)を修飾した.分子認 識してストランドHとAが結合すると,FAMとBHQ1が近接し,蛍光強度が低下する. 使用した配列,修飾を図 2.7に示す.

まず,ストランドHを含む溶液を,温度制御装置を利用して95℃から4℃まで2時間 かけて徐冷し,ヘアピン構造を作製した.その後,ストランドAを加えて(各成分の最終 濃度:1µM),蛍光分光光度計(JASCO,FP-6200)を使用して,光照射と蛍光強度を測定し た.光照射と温度制御のスケージュールを図 2.8 に示す.まず,溶液を37℃の一定温度に 保ち10分インキュベートした(Initial).次に,溶液を80℃に上昇させて紫外光(340nm, バンド幅 20nm)を1分間照射し37℃へ急冷した(On).その後,可視光(440nm,バンド 幅 20nm)を1分間照射した(Off).このときの結果を図 2.9(A)に示す.紫外光照射後に 蛍光強度が低下し,可視光照射後にはほぼ Initial の値まで回復していることから,光照射 によるストランドHとAの結合・解離制御を確認できる.この結果は,DNAを利用した 分子認識能の光制御が可能であることを示している.

図 2.9(B) に,光照射した場合と,温度制御のみで光照射しない場合の各状態の FRET 効率を示す.FRET 効率は次式で定義した.

$$R = 1 - \frac{F}{F_{Initial}},\tag{2.2}$$

F, F_{initial}は、各状態と初期状態のFAMの蛍光強度ピーク値を示す. Rが上昇すると、対象分子を認識し、ストランドHとAが結合ていることを意味する. 温度制御のみの場合では、FRET 効率がほぼ0 であることから、光照射がない場合、センサ機能は停止状態を維持することが分かる. また、図 2.9(C)に、対象分子が存在する場合 (sample #1)、対

図 2.6 光制御型分子センサの動作概要. (A) ヘアピン構造を利用した分子認識能の光制御. (B) 光制御型 DNA センサ.

H: 5' -**FAM**-ATCTGAACTAACGCTxTTxAAxGATCTCTxCTxTAxAAxGCxGTxTAxGTxTCA- 3' A: 5' -CGTTAGTTCAGAT-**BHQ1**- 3'

図 2.7 使用した配列, 蛍光修飾位置.

図 2.8 温度制御と光照射タイミング.

象分子が存在しない場合 (sample #2) の FRET 効率を示す.対象分子が存在する場合は, FRET 効率は,紫外光照射後に上昇し,可視光照射後にはほぼ0まで低下した.一方,対 象分子が存在しない場合,各光照射後においても,FRET 効率はほぼ0で一定であった. これは,紫外光照射によりセンサ機能が起動されて対象分子を検出し,可視光照射後に停 止状態となって対象分子を放出し,元の状態へ戻っていることを示している.

続いて、光制御型分子センサの動作確認と性能評価を行った。使用した配列と修飾位置 を図 2.10 に示す。FRET ペアとして、FAM と TAMRA を使用した。各状態での蛍光ス ペクトルを図 2.11 に示す。ドナー分子である FAM の蛍光強度が低下し、アクセプタであ る TAMRA の蛍光強度が上昇した。これは、二個のプローブが対象分子と結合し、FRET が生じたことを表している。一方、可視光照射後は、蛍光スペクトルがほぼ初期値へ回復 した。これは、対象分子と解離し、初期状態へ回復したことを意味する。

図 2.12(A)は、対象分子濃度と起動時の FRET 効率の関係を示す.FRET 効率が、対象分子濃度の増加に伴い、上昇した.FRET 効率の濃度依存性を利用することにより、対象分子濃度の測定への応用が可能である.また、図 2.12(B)は、起動とリセットを繰り返した際の、各状態での FRET 効率を示している.起動時には、ほぼ同じ値に達している.また、リセット後にはほぼ初期値まで回復した.センサ機能の性能を一定に保ち、繰り返し使用できることが分かる.図 2.13は、繰り返し制御中に、対象濃度を増加(A)、あるいは、減少させた場合(B)の蛍光信号変化を示す.濃度の増加は対象分子を投入して行い、0.1 µM から 0.3µM へ変更した.FRET 効率は、対象濃度の増加前後で、0.07 から 0.14 へ変化した.一方、濃度の減少は、対象分子の相補配列を投入して実装した.相補配列が対象分子とすべて結合したと仮定すると、一本鎖状態にある対象分子濃度は、0.4 µM から

 $\mathbf{23}$

図 2.9 光制御型 DNA プローブの動作確認実験結果. (A) 各状態の蛍光スペクトル. (B) 光照射がある場合, ない場合の各状態の FRET 効率. (C) 対象分子が存在する場合 (sample #1) としない場合 (sample #2) の各状態における FRET 効率.

S1: 5' FAM-ATCTGAACTAACGCTxTTxAAxGATCTCTxCTxTAxAAxGCxGTxTAxGTxTCA 3'
S2: 5' CACxGTxACxATxGCTxTTxAAxGATCTCTxCTxTAxAAxGCATGTACGTGCTA-TAMRA 3'
T: 5' CGTTAGTTCAGATATCATAGCACGTACATG 3'
CT: 5' CATGTACGTGCTATGATATCTGAACTAACG 3'

図 2.10 使用した配列, 蛍光修飾位置.

図 2.11 光制御型 DNA センサの動作確認実験結果. (A) 各状態の蛍光スペクトル. (B) 光照射がある場合 とない場合の各状態の FRET 効率.エラーバーは試行数 3 回の標準偏差を表す.

図 2.12 光制御型 DNA センサの特性評価結果. (A) 濃度と FRET 効率. (B) 繰り返し操作時の FRET 効率.

0.2μM に変化したことになる.対象濃度の減少前後で,FRET 効率は 0.17 から 0.12 へ変 化した.各状態での FRET 効率は,図 2.12(A)の結果から求められる対象分子の濃度と一 致している.この結果は,光制御型分子センサが,対象分子濃度の時間変化のモニタリン グへ応用できることを示唆している.

2.4 プロトタイプの動作スキーム

2.4.1 動作スキーム

2.2 節で示したピンセット構造を利用した状態表現と、2.3 節で提案した分子認識能の 光制御手法を利用し、フォトニック DNA プロセッサのプロトタイプを提案する. プロト タイプの構成を図 2.14 に示す. ピンセット構造をベースとし、両端にアゾベンゼンを修 飾したヘアピン構造を配置する. 光信号に従ったヘアピン構造の変化により、センサ機能 の起動/停止を制御できる. 紫外光を照射するとヘアピン構造が開状態へと遷移し、対象 分子との結合が可能となる. この状態をナノマシンの起動状態とする. 演算機能は、ピン セット構造変化を利用した状態遷移により実装する. 活動時に対象分子が存在すれば、ナ ノマシンと対象分子が結合してピンセット構造が Open 状態から Closed 状態へ変化する. 対象分子が存在しない場合、ピンセット構造は Open 状態を維持する. ピンセット構造の 状態が対象分子の情報を表す. ピンセット構造に蛍光共鳴エネルギー移動(FRET)系を

図 2.13 対象分子濃度 (A) 増加時と (B) 減少時の FRET 効率.

導入し,状態変化に伴って蛍光強度が変化するように設定することで,対象分子情報を蛍 光信号として出力するアクチュエータ機能を付加した.この結果,対象分子を検知し光信 号として取り出すことが可能となる.一方,可視光を照射すると,ヘアピン構造は閉状態 になり,ナノマシンは停止状態となる.このとき,結合力の差から対象分子はピンセット 構造から解離し,元の状態,Open状態ヘリセットされる.このプロトタイプナノマシン は光信号に応じて,対象分子を認識し,対象分子の有無を判断して,対象分子の情報を外 部環境へ出力することが可能である.

2.4.2 動作確認実験

フォトニック DNA プロセッサのプロトタイプの動作確認のため、分子実験を行った. 使用した配列を図 2.15 に示す.まず、ストランド A、B、C、H を混合して作製した.対 象分子濃度が 1 μ M (sample #2A) と 0 μ M (sample #2B) のサンプルをそれぞれ用意 して各状態における FRET 効率を比較した.ただし、紫外光照射時の温度は、ピンセッ ト構造を維持できる 60 ℃とした.

測定した FRET 効率を図 2.14(A) に示す. sample #2A では,紫外光照射後に FRET 効率が上昇し,可視光照射後にはほぼ Initial 状態の値 0 まで低下している.一方, sample #2B では,各状態において,FRET 効率は変化せず,ほぼ 0 で一定であった.このこと から,光信号に従って分子情報を取得し,その結果に従って構造を変化させ出力する一連

図 2.14 プロトタイプの動作概要.

- A Alexa488-ACAGTTTGTCCTGGGCATCAGCTGCCGTGCTTTGCG-Alexa555
- B GCCCAGGACAAACTGTCTACTACCTCACxCTxAGxCTCTTCTGCxTAxGGxTGxAGxGTxAG
- C GTxATxGGxTTxCGxTTxAGTCTTCTCxTAxACxGAACCATACAACCGCAAAGCACGGCAGC
- T TGAGGTAGTAGGTTGTATGGTT

図 2.15 使用した配列, 蛍光修飾位置.

の動作が確認できた. また,図 2.14(A)から,性能が変化することなく,プロトタイプナ ノマシンが繰り返し制御可能であることが確認できる.

DNA のピンセット構造を利用して対象分子の有無を認識できることは示された.ただ し、ピンセット構造の二状態を使用して一種類の分子を対象とする本プロトタイプの構成 では、演算の拡張は困難である.また、センサ・演算・アクチュエータの一連の機能が、 DNA 反応に基づくため、対象分子が変更になるとその都度、すべての塩基配列の再設計が 求められる.高度な情報処理をフォトニック DNA プロセッサにより実装するためには、 演算機能に拡張性があり、各機能のモジュール化が可能な実装手法が好ましい.

図 2.16 プロトタイプの動作確認実験結果. (A) 各状態の FRET 効率. (B) 繰り返し動作確認.

2.5 結言

フォトニック DNA プロセッサは,分子系外部からの光信号を介して時空間的かつ遠隔 から分子情報の解析や制御を可能にするナノマシンである.本章では,フォトニック DNA プロセッサのプロトタイプの実装について述べた.実験結果から,同プロトタイプが光信 号に従って,対象分子情報の取得・処理・制御を,分子間の相互作用を利用して実装可能 であることを確認した.

第3章

DNA 足場論理

3.1 緒言

DNA 論理ゲートは、分子サイズの構成で論理演算を可能にすることから、ナノ情報シス テムにおいて重要な役割を果たすと考えられる。DNA 反応を有効に利用することにより、 これまでに多くの DNA 論理ゲートの構成手法が提案されている⁶⁶⁾⁻⁷²⁾. さらには、分子 シグナルを入出力とする論理ゲートを接続することにより、DNA 論理回路が構築可能で ある^{5),73)-75)}. 大規模な演算回路が実装できるか^{55),75)}、演算に長い反応時間や多量の DNA を必要とする、空間的な制御が困難であるなどの問題がある。この要因の一つとして、演 算に分子シグナルの拡散に基づいた連鎖的な反応が必要な点が挙げられる。一方、生体分 子システムでは、足場タンパク質により、複雑な制御や早い応答が実現されている⁷⁶⁾. こ れは、シグナル伝達に必要な分子を足場タンパク質上へ局所的に収集して、効率的にシグ ナル伝達することで達成される⁷⁷⁾.

本章では、足場タンパク質による局所的なシグナリングを参考にした、新しい DNA 論 理回路の構成手法—DNA 足場論理—を提案する.足場となる DNA(足場 DNA)上に、分 子入力に応じてシグナル経路を構成し、伝達結果により出力を得る.足場 DNA 上のシグ ナル伝達には、FRET を利用する.演算のための分子反応は、入力の分子信号に従って、 足場 DNA 上へ蛍光分子を配置する過程でのみ必要となる.論理演算に必要な信号処理は FRET により実装するため、連鎖的な分子反応が必要なくなる.このため、演算に必要な 反応時間の短縮や少量 DNA での演算実行が期待できる.3.2節では、蛍光分子配置を利 用した入力分子のコード化手法と、その反応系を示す.また、NOT、AND、OR 演算の 実装法につい説明する.3.3節では、実証実験において、提案手法の実証実験と回路の拡 張性を示す.3.4節では、反応モデルを検討し、実験との比較・検証により、DNA 足場論 理の特性を明らかにする.

図 3.1 蛍光分子の位置制御による FRET シグナル制御.

3.2 DNA足場論理の構成

3.2.1 FRET に基づく信号処理

FRET は、ある蛍光分子から近接する他分子に励起エネルギーが移動する現象である. 従来の DNA 論理回路に利用される連鎖的な分子反応とは異なり、FRET は一つの DNA 構造内で高速なシグナル伝達を可能にする.エネルギー移動効率は蛍光分子の種類と位 置関係に依存するため、これらを選択・制御することにより FRET 伝達が制御できる. 図 3.1 に示すように、入力に応じて足場 DNA 上の蛍光分子を配置/除去することにより、 FRET によるシグナル伝達のオン/オフをスイッチする.FRET 可能な距離に FRET ペ アの蛍光分子が足場 DNA 上へ配置されている場合、FRET が生じてシグナル伝達がオン 状態となる.一方、足場 DNA 上から除去された状態では、FRET が生じないため、シグ ナルは伝達されない.

入力信号は,分子入力を想定しているので,入力分子に応じて足場 DNA 上への蛍光分子の配置を制御する必要がある.入力信号に基づいて足場 DNA 上へ FRET 経路を構築 し,FRET に基づく信号処理により演算結果を得る.その概要を図 3.2 に示す.励起蛍光 分子を励起したとき,出力蛍光分子が FRET を介して励起されるか否かにより,出力の 1/0を表現する.入力信号が条件を満たす場合,FRET 回路が完全に構成され,出力蛍 光分子が励起され蛍光信号が出力される.この状態を出力1とする.与えられた論理条 件を満たさない場合は,FRET 経路が完全に構成されず,出力蛍光分子が励起されない. この状態を出力0とする.足場 DNA 上での局所的な FRET 現象により,論理演算に必要 な信号処理が実行できる.

図 3.2 DNA scaffold logic の概要.

3.2.2 蛍光分子の配置制御

足場 DNA への蛍光分子の配置は、コネクティング DNA(図 3.3(A))とディスコネク ティング DNA(図 3.3(B))を使用して制御する.コネクティング DNA とディスコネク ティング DNAには、蛍光分子が修飾されており、認識領域とアドレス領域により構成さ れる.認識領域は入力分子を認識し、アドレス領域は足場 DNA 上に用意したサイトへの 結合を指定する.コネクティング DNA は、入力分子が存在しない場合、閉じたへアピン 構造を形成する.この状態では、アドレス領域が覆われた状態になるため、コネクティン グ DNA は足場 DNA から解離した状態を維持する.そのため、蛍光分子は足場 DNA に 配置されない.入力分子が存在する場合、コネクティング DNA(図 3.3(A))は入力分子 と結合し、ヘアピン構造が開いた状態となる.この状態では、アドレス領域が一本鎖状態 となるため、足場 DNA と結合する.その結果、足場 DNA へ蛍光分子が指定された site へ配置される.ディスコネクティング DNA(図 3.3(B))は、入力分子が存在しない場合、 足場 DNA 内の指定されたサイトへ結合する.入力分子が存在する場合では、認識領域と 結合して直線的な構造を形成することにより、足場 DNA から解離する.これらの構成に より、入力分子の有無に応じて、蛍光分子の配置/除去状態を制御できる.

3.2.3 AND, OR, NOT 演算の実装

コネクティング DNA やディスコネクティング DNA の構成により,入力の分子種,配 置する蛍光分子,足場 DNA 上の配置サイトを予め指定することができる.これらの組み 合わせにより,入力分子に対する,足場 DNA 上でのシグナル伝達経路を自由に設定でき

図 3.3 各機能分子の動作スキーム. (A) コネクティング DNA, (B) ディスコネクティング DNA の動作 スキーム. RR: 認識領域, AR: アドレス領域.

図 3.4 FRET シグナリングによる演算実装方法. (A) AND 演算, (B) OR 演算.

る.FRETペア分子を隣り合うサイトに配置することは,FRET 伝達経路を直列に接続 することに対応し,AND 演算が実装できる.(図 3.4(A))一方,異なる分子種で表され た複数の入力に対して,同種類の蛍光分子を同サイトに配置することは,FRET 伝達経路 を並列に接続することに対応する.これにより,OR 演算が実装できる (図 3.4(B)).ま た,ディスコネクティング DNA による入力とシグナル伝達の関係を利用すると NOT 演 算が実装できる (図 3.3(B)).乗法標準形で表された任意の論理式が実装可能であること から,原理的には任意の論理演算が実行できる.

3.3 実証実験

3.3.1 コネクティング DNA とディスコネクティング DNA の動作確認

DNA 足場論理の原理を検証するため、まず、コネクティング DNA とディスコネクティ ング DNA の動作原理の確認を行った.入力分子として 15 塩基の一本鎖 DNA(ストラン ド I1),足場 DNA として 13 塩基の一本鎖 DNA(ストランド Sq)を調製した.コネクティ ング DNA(ストランド C1) とディスコネクティング DNA(ストランド D1)には蛍光分子、 FAM,足場 DNA(ストランド Sq)には消光分子,BHQ1を修飾し、足場 DNA に蛍光分子 が結合すると蛍光強度が低下するように設定した.使用した配列と蛍光修飾を図 3.5 に示 す.蛍光分光光度計(JASCO, FP-6200)を使用し、入力に対する蛍光ピーク強度の時間

Sq: 5' CTTCGGCAGAGCG-BHQ1 3'

- S1: 5' CATCGGGTGAGCGCTTCGGCAGAGCG 3'
- S2: 5' GCAACTATGAGCGCATCGGGTGAGCGCTTCGGCAGAGCG 3'

C1: 5' FAM-CGCTCTGCCGAAGGCAGAGCGCCACTTACAA 3'

C2: 5' Alexa546-CGCTCACCCGATGGGTGAGCGCTCAAGGATT 3'

C3: 5' Alexa546-CGCTCACCCGATGGGTGAGCGAGGTAGTTGT 3'

C4: 5' Alexa594-CGCTCATAGTTGCTATGAGCGAGGTAGTTGT 3'

D1: 5' FAM-CGCTCTACCACTTACAAAGCCGAAG 3'

- 11: 5' TTGTAAGTGGCGCTC 3'
- 12: 5' AATCCTTGAGCGCTC 3'
- 13: 5' ACAACTACCTCGCTC 3'

図 3.5 使用した DNA 配列と蛍光修飾位置.

変化を測定した.入力分子濃度が4 μ Mの場合を入力1,0 μ Mの場合を出力0とし,他 分子の最終濃度は1 μ Mとした.

図 3.6(A) にコネクティング DNA に対する結果を示す. はじめ,ストランド C1 のみを 含むサンプルを含む溶液を用意した. そこへ,ストランド Sq を混合した. 混合後の蛍光 強度は混合前とほぼ同レベルであった. これは,ストランド C1 が閉状態にあり,ストラ ンド Sq と結合していないことを示している. さらに,ストランド I1 を加えると,蛍光強 度が低下した. これは, C1 が Sq へ結合していることを表している. 以上の結果は,入力 1 の場合に,コネクティング DNA と足場 DNA が結合して,蛍光分子が足場に配置され たことを示している.

図 3.6(B) にディスコネクティング DNA に対する結果を示す. はじめ,ストランド D1 のみを含むサンプルを含む溶液を用意した.そこへ,ストランド Sq を混合すると,蛍光 強度は低下した.これは,ストランド D1 がストランド Sq へ結合したことを表している. さらに,ストランド I1 を加えると,蛍光強度がほぼ初期値まで回復した.これは,ディ スコネクティング DNA と入力分子が結合することにより,蛍光分子が足場 DNA から除 去されたことを示している.以上の結果から,コネクティング DNA とディスコネクティ ング DNA により,蛍光分子の足場 DNA への配置が制御できることが実証された.

図 3.6 各機能分子の動作確認実験. (A) コネクティング DNA, (B) ディスコネクティング DNA.

図 3.7 I1 ∧ I2の演算反応.

3.3.2 AND 演算

AND 演算を確認するため、二種類の一本鎖 DNA、ストランド I1、I2 を入力分子とし て、 $I1 \land I2$ を実行した.反応スキームを図 3.7に示す.FRET ペアとして、FAM と Alexa 546を使用した.ストランド C1 は、ストランド I1 を検知し、FAM をサイト 1 へ配置する. ストランド C2 は、ストランド I2 を認識し、Alexa 546 をサイト 2 へ配置する.(1,1)入 力の際に、FAM と Alexa 546 が DNA scaffold に結合する.このときの FAM と Alexa 546 の修飾位置間は 13 bp あり、その距離は 4.6nm と求まる.FAM と Alexa 546 の Förstor 半径は 6.4nm であるため、FRET が生じる十分に近い距離にある.このとき、FAM から FRET により励起エネルギーが移動し、Alexa 546 が励起される.この状態は出力 1 とな る.他の場合は、FAM と Alexa 546 の少なくとも一方は足場 DNA に結合していない状態 となり、FRET は生じず、Alexa 546 は励起されない.この状態は出力 0 となる.

各入力後の蛍光スペクトルを図 3.8(A) に示す.(1, 1)の場合のみに,FAMの蛍光強度 が低下し,Alexa546の蛍光強度が上昇した.(1, 0)の場合に,FAMの蛍光強度が低下した 理由は DNA 塩基の消光作用が考えられる.出力を,出力分子の蛍光ピーク波長での入力 前後での強度変化 (ΔF) として評価した.その結果を図 3.8(B) に示す.(1, 1)の場合に, 著しく上昇していることがわかる.負の値になっている理由として,入力によるサンプル 体積の増加による濃度低下が考えられる.この結果は,異なる入力分子に対して,FRET ペアの蛍光分子を隣り合うサイトに配置することにより,適切に AND 演算が実行できる

図 3.8 (A) 各入力に置ける蛍光スペクトル. (B) I1 ∧ I2 の ΔF.

ことを示している.

3.3.3 OR 演算

OR 演算の確認として,三種類のストランド I1, I2, I3 を入力として, $I1 \wedge (I2 \vee I3)$ を 実行した.反応スキームを図 3.9(A) に示す. $I1 \wedge I2$ において用いた反応系に対して,ス トランド I3 を認識して Alexa 546 をサイト 2 へ配置するストランド C3 を加えた.ストラ ンド I2 または I3 が存在すると, Alexa 546 がサイト 2 へ配置された状態になる.これに より, $I2 \ge I3$ の OR 演算が実行できる.(1, 1, 0), (1, 0, 1), (1, 1, 1) 入力の際に, FAM と Alexa 546 が足場 DNA に結合する.この場合のみ, FAM から FRET により励起エネ

ルギーが移動し, Alexa 546 が励起される.この状態を出力1とする.他の場合は, FAM と Alexa 546 の両方が足場 DNA に結合していないことから, FRET は生じず, Alexa 546 は励起されない.この状態を出力0とする.

各入力に対する蛍光強度を図 3.9(B) に示す. (1, 1, 0), (1, 0, 1), (1, 1, 1)の場合に著 しく蛍光強度が上昇していることが分かる. 一方, 他の場合は, ほぼ0であることから, *I*1 ∧ (*I*2 ∨ *I*3)が正確に行われていることが分かる.

3.3.4 NOT 演算

NOT 演算は、ディスコネクティング DNA を使用することにより実装できる。 $\neg I1 \land I2$ の系を図 3.10(A) に示す。 $I1 \land I2$ において用いた反応系のストランド C1をストランド D1 へ変更する。ストランド D1 は、ストランド I1 を認識すると FAM をサイト 1 から解離さ せる。これにより、NOT 演算が実行できる。この場合、(0, 1) の場合において、FRET に より、蛍光強度が上昇する。各入力に対する蛍光強度を図 3.10(B) に示す。(0, 1) の場合 に著しく蛍光強度が上昇していることが分かる。一方、他の場合は、ほぼ 0 である。ディ スコネクティング DNA の使用により、NOT 演算を含む論理演算を正確に実行できるこ とが示された。

3.3.5 FRET 接続の拡張

FRET 接続が拡張できることを確認するため、多段階の FRET を利用し、 $I1 \land I2 \land I3$ を実装した. 演算反応系を図 3.11(A) に示す. 蛍光分子は、FAM、Alexa 546、Alexa 594 を使用した. $I1 \land I2$ において用いた反応系に対して、ストランド S1 から 3 つのサイトを 持つストランド S2 へ変更した. また、ストランド I1 を認識すると Alexa 594 をサイト 3 へ配置するストランド C4 を導入した. 図 3.11(B) に示すように、(1, 1, 1) 入力の場合に 出力強度が上昇していることが分かる. 多段階の FRET を利用することにより、回路の 拡張が可能であることが示された. (0, 1, 1)、(1, 0, 1) の場合に、出力強度が若干上昇し ている原因として、Alexa 546 が励起されること、FAM と Alexa 594 間の FRET が考え られる. 蛍光分子の構成や、励起波長の設定により、改善できる.

• FAM (initiating molecule) • • C: Alexa 546 (reporting molecule)

(B)

図 3.9 I1 ^ (I2 V I3) の (A) 演算反応と (B) 出力信号.

図 3.10 ¬I1 ∧ I2 の (A) 演算反応と (B) 出力信号.

(B)

図 3.11 I1 ∧ I2 ∧ I3 の (A) 演算反応と (B) 出力信号.

3.4 特性評価

3.4.1 反応モデル

DNA 足場論理では、処理に必要なコンポーネントを足場 DNA 上に集めて、処理を実行する.分子で表された入力信号を蛍光分子の配置情報へ変換する際に、DNA 反応が必要となる.一方,信号処理を実装する FRET はピコ秒オーダーの現象⁷⁸⁾であり、DNA 反応と比較して極めて高速である.従って、演算時間は、入力分子-蛍光分子配置の変換反応過程に律速であると考えられる.

DNA 足場論理では、図 3.12 に示すように、各サイトに並列かつ独立に反応が進行す ると考えられる. $[S_0]$ を足場 DNA の初期濃度、 $[S_{all}]$ を足場 DNA のすべてのサイトに結 合した濃度とする. また、足場 DNA のサイト数を n とする. ここでは、コネクティング DNA による符号化について検討する. 出力蛍光は $[S_{all}]$,励起光強度、FRET 効率に依存 する. ストランド I_i を認識し、サイト s_j への蛍光分子の結合を指定するコネクティング DNA を $C_{i,j}$ と表す. コネクティング DNA の反応は、図 3.13 に示すように、入力分子と 結合、足場 DNA との結合の二段階と考えられる.

$$C_{i,j} + I_i \rightharpoonup C_{i,j} \cdot I_i \tag{3.1}$$

$$C_{i,j} \cdot I_i + s_j \rightleftharpoons C_{i,j} \cdot I_i \cdot s_j \tag{3.2}$$

ここで, · は結合を表す. それぞれの反応速度方程式は, 反応速度定数 k₁, k₂, k₋₂ を利 用して,

$$\frac{d}{dt}[C_{i,j} \cdot I_i] = k_1[C_{i,j}][I_i]$$
(3.3)

$$\frac{d}{dt}[C_{i,j} \cdot I_i \cdot s_j] = k_2[C_{i,j} \cdot I_i][s_j] - k_{-2}[C_{i,j} \cdot I_i \cdot s_j]$$
(3.4)

と書ける. サイト s_i に蛍光分子が結合している確率を P_i とすると,

$$P_j = \frac{[C_{i,j} \cdot I_i \cdot s_j]}{[S_0]} \tag{3.5}$$

図 3.12 DNA 足場論理の反応モデル.

図 3.13 コネクティング DNA の反応過程.

と表せる. ここで, 各サイトごとは並列かつ独立に反応するという仮定のもとでは,

$$[S_{all}] = [S_0] \cdot P_1 \cdot P_2 \cdot \dots \cdot P_n \tag{3.6}$$

と表せる。[Sall]の場合に蛍光出力分子から蛍光が出力される。

 S_{all} , つまり出力応答が入力濃度, 足場 DNA 濃度に依存する. 平衡状態を考えると, 式 (3.3), (3.4) の左辺は0となり, $[I_i]_{t=0}$, $[s_j]_{t=0}$ を入力分子の初期濃度, サイトiの初期濃度とすると,

$$[I_i]_{t=0} = [C_{i,j} \cdot I_i] + [C_{i,j} \cdot I_i \cdot s_j]$$
(3.7)

$$[S_0] = [s_j]_{t=0} = [s_j] + [C_{i,j} \cdot I_i \cdot s_j]$$
(3.8)

となることから、平衡時の $[C_{i,j} \cdot I_i \cdot s_j]_{eq}$ は

$$[I_i \cdot C_{i,j} \cdot s_j]_{eq} = \frac{[I_i]_{t=0} + [s_j]_{t=0} + \alpha - \sqrt{([I_i]_{t=0} + [s_j]_{t=0} + \alpha)^2 - 4[I_i]_{t=0}[s_j]_{t=0}}}{2}$$
(3.9)

と求まる. ここで、 $\alpha = k_{-2}/k_2$ としている. 従って、 P_j は、初期濃度 $[I_i]_{t=0}$ 、 $[s_j]_{t=0}$ により調整できることが分かる. S_{all} は P_j に基づく関数であることから、入力濃度、足場 DNA 濃度の調整により、出力応答が制御できることが分かる.

3.4.2 モデルパラメータ

 k_1, k_2, k_{-2} を実験により測定した.使用した反応系を図 3.14 に示す. k_1 は、蛍光分子 (FAM)を修飾したストランド I1 と逆末端に消光分子 (BHQ-1)を修飾したストランド C1q を混合し、蛍光強度の時間変化を測定した. k_2, k_{-2} は、あらかじめストランド C1 と I1を 結合させた状態のサンプルに、ストランド S_q を加え、蛍光強度を測定した.最終濃度はす べて、 0.1μ M とした.それぞれの結果を図 3.15 に示す.最小自乗法に基づいて、式 (3.3) または式 (3.4) とフィッティングし、算出した. $k_1 = 3.4 \times 10^6 \text{ M}^{-1}s^{-1}, k_2 = 7.2 \times 10^4 \text{ M}^{-1}s^{-1}, k_{-2} = 4.8 \times 10^{-4} s^{-1}$ と求まった.数値シミュレーションでは、これらの反応速 度定数は、入力、コネクティング DNA、サイトの種類に関わらず、同一の値であると仮 定した.

3.4.3 シミュレーション結果

図 3.16(A) に各最終濃度 0.2 μ M における,各サイト数での [S_{all}] 時間変化の計算結果を 示す.接続数が増加すると,[S_{all}] 濃度は低下する.0をt = 0における濃度,1を平衡状 態にある濃度として規格化した結果を図 3.16(B) に示す.この規格化した蛍光強度を出力 値とした. $t_{0.5}$ は出力値が 0.5 となる時間を示す.接続数と $t_{0.5}$ の関係を図 3.16(C) に示 す.分子シグナルによる信号伝送で実装された DNA 論理回路では,ゲートの接続段数と 演算時間がほぼ線形である結果が示されている^{75),79}.DNA 足場論理では,演算に必要な DNA 反応は入力情報の符号化過程であり,この過程は足場 DNA の各サイトに対して並 列的に進行する.この結果,図 3.16(C) が示すように,演算に必要なサイト数の増加に伴 い演算時間の増加が抑えられると考えられる.

図 3.14 k₁, k₂, k₋₂ 測定の反応系.

図 3.15 速度定数導出のための蛍光測定結果. (A) 図 3.14(A) と (B) 図 3.14(A) の蛍光強度の時間変化.

図 3.16 演算反応時間に関するシミュレーション結果. (A)[*S*_{all}]の時間変化と (B) 出力の時間変化. (C) 演算に必要なサイト数 *N* と *t*_{0.5}.

図 3.17 出力応答のシミュレーション結果. (A)[Sall] または (B) 出力と入力濃度の関係.

 $I_1 \wedge I_2$ を実行する際の、 $[S_0]$ 、 $[S_{all}]$ と入力濃度の関係の計算結果を図 3.17(A) に示す. 入力濃度に依存し、出力が最大となる足場の濃度条件が異なる.また、出力最大値で規 格化した結果を図 3.17(B) に示す.それぞれの出力が最大となる $[S_0]$ は、入力濃度が 0.5、 1、2 μ M の場合に、0.56、1.06、2.1 μ M となった. $[S_0]$ によって、出力応答のピークが調 整できることが示された.

3.4.4 実験結果

サイト数 N = 1, 2, 3 における, 蛍光出力変化を図 3.18(A) に示す. N = 1 は, 足場 DNA としてストランド Sq を使用して測定した. N = 2, 3 は, $I1 \land I2 \land (I1, I2) = (1, 1)$, $I1 \land I2 \land I3 \land (I1, I2, I3) = (1, 1, 1)$ に対応する分子を入力した際の, 出力蛍光分子の蛍 光強度ピークを抽出してプロットした. 0を投入前の出力蛍光分子の蛍光強度, 1を最大 蛍光強度として規格化した. $t_{0.5}$ の測定値を図 3.18(B) に示す. Nの増加に従い, $t_{0.5}$ の

図 3.18 演算反応時間に関する分子実験結果. (A) 接続数 N と出力時間変化の関係. (B) 接続数 N と t_{0.5} の関係.

図 3.19 [S₀]の調整による出力応答の制御.

増加が抑えられている。実験においても、接続数の増加に伴い、演算時間の増加が抑えられることが確認できた。

足場濃度と出力の関係を図 3.19 に示す. 図 3.17 の結果と同様に,出力信号が最大とな る条件が移動していた. 図中の曲線は,各濃度に対する数値シミュレーション結果を利用 している. 精度よく一致していることから,実験においても,足場濃度の調整のみの簡単 な操作により,応答出力が調整できることが示された.

3.5 結言

FRET を利用した信号処理に基づく分子論理回路構成手法として,足場 DNA 論理を提案した.DNA の自己組織化を利用して,入力分子情報を蛍光分子の位置情報へ変換し, FRET による信号処理に従って出力を得る.実験により,ブール代数完全系である,AND, OR, NOT 演算を含む回路の動作を確認した.また,多段階の FRET を利用することに より,回路の拡張可能性を示唆する結果を得た.DNA 足場論理では,演算に多段階の連 鎖的な DNA 反応は必要ない.これは,これまでの DNA 計算には無い特徴である.実験 において,接続数増加に対して,演算反応時間が押さえられることを確認し,本手法の有 効性を示した.今後,FRET 回路を構成する蛍光分子や,各配列の最適化により,回路の 拡張や演算に必要な反応の高速化や高効率化が期待される.

第4章

FRET 回路におけるメモリ機能

4.1 緒言

順序回路は,内部状態と入力信号の組み合わせにより出力が決定される回路であり,複 雑な情報処理を可能にする.順序回路を実装するためには,内部状態を保持するメモリ機 能が必要となる.フリップフロップは,1ビットの情報を保持可能な回路であり,順序回 路の基本要素である.本章では,DNA足場論理に基づく順序回路を実現するために検討 した,FRET 経路中で機能するセット/リセットフリップフロップについて述べる.4.2 節では,光活性制御可能な蛍光分子を利用した,フリップフロップの実装方法を提案す る.蛍光分子の蛍光/退色状態により内部状態を表現し,光信号に従った蛍光特性の変化 により状態遷移を実現し,内部状態に従ってFRETによるシグナル伝送のオン/オフを 切り替える.4.3節では,動作確認のために行った実験について説明する.繰り返し遷移 や状態保持機能を実証する.また,遷移速度の評価結果を示す.

4.2 FRET の光制御に基づくフリップフロップ回路

4.2.1 蛍光特性の光制御

式(1.1)より,FRETのエネルギー移動効率は、ドナー分子の蛍光スペクトルとアクセ プタ分子の吸収スペクトルの重なり状態に依存する.光制御タンパク質や光制御蛍光分子 は光照射により誘起される分子構造の変化や官能基との結合により,吸収スペクトルが変 化する分子である⁸⁰⁾.これらを利用すれば,光信号に従ったFRETによるシグナル伝送 のオン/オフの切替えが可能となる⁸¹⁾.

本研究では、シアニン系の蛍光分子を利用した光制御を使用する。シアニン系の蛍光分子は、光制御蛍光分子の一種であり、蛍光/退色状態を光制御できることが報告されている⁸⁰⁾. そのメカニズムは、図 4.1 に示すように、シアニン色素のチオールの結合と解離が

 $\mathbf{53}$

図 4.1 Cy5の光スイッチング反応メカニズム.

光化学反応により誘起されることに基づく⁸⁰⁾.また,シアニン系分子の近傍に他の蛍光分子(アクティベータ)が存在すると,その励起によりシアニン系分子とチオールの解離が 制御できる^{82),83)}.これは,近傍に配置する蛍光分子の選択により,制御光の波長を設定 できることを意味する.特別に蛍光分子や蛍光タンパクを合成することなく,配置する蛍 光分子の選択のみで,多様な波長を使用した蛍光特性の光制御が可能になる.

4.2.2 FRET 回路におけるフリップフロップ

セット/リセットフリップフロップの真理値表を図 4.2 に示す. Q_c , Q_n は現状態, 遷移後の状態を表す. X は don't care を表す. (S, R) = (1, 0)の場合, Q_c の状態によらず, $Q_n = 1$ となる. (S, R) = (0, 1)の場合, Q_c の状態によらず, $Q_n = 0$ となる. (S, R) = (0, 0)の場合, Q_c の状態によらず, $Q_n = 0$ となる. (S, R) = (0, 0)の場合, $Q_c = Q_n$, つまり, 現状態を維持する. (S, R) = (1, 1)の場合は don't care となる.

図 4.3(A) に、提案するセット/リセットフリップフロップの構成を示す.ドナー、ア クセプタ、アクティベータの3種類の機能を割り当てた蛍光分子を利用する.これらを DNA 反応を利用して配置する.ドナーからアクセプタへ FRET が生じる状態をQ = 1、 生じない状態をQ = 0で表現する.図 4.3(B) に示すように、Q = 0、Q = 1の二状態間 をセット信号、リセット信号、現状態の組み合わせに応じて状態遷移する.アクセプタと してシアニン系分子を使用し、その近傍にアクティベータを配置する.アクセプタを強く 励起すると、一時的に蛍光退色状態となる.この状態で、ドナーを励起してもアクセプタ への FRET は生じない.一方、アクティベータを励起すると、アクセプタは蛍光可能状 態へ回復する.この状態では、ドナーからの FRET が可能であり、アクセプタが励起さ れる.

アクティベータの励起光をセット信号,アクセプタの励起光をリセット信号とすれば,

 $\mathbf{54}$

S	R	Q_{c}	Qn
0	0	0	0
0	0	1	1
1	0	0	1
1	0	1	1
0	1	0	0
0	1	1	0
1	1	0	Х
1	1	1	X

図 4.2 セット/リセットフリップフロップの真理値表.

セット/リセットフリップフロップが実装できる. (S, R) = (1, 0)の場合, アクセプタ が励起されるため,現状態によらず,Q = 1となる. (S, R) = (0, 1)の場合,アクセプ タは不活性状態になるため,励起することができず,現状態によらず,Q = 0となる. (S, R) = (0, 0)の場合,つまり光照射されない条件では,状態が維持される.

4.3 原理確認実験

4.3.1 実験原理

原理実証のために、実際にフリップフロップを構築し、その動作確認実験を行った.ド ナーに Cy3、アクセプタに Cy5、アクティベータに Alexa 405を用いた.図 4.4 に使用し た DNA 配列を示す.ストランド F1 には Cy3 と Cy5 が、F2 には Alexa 405 が修飾されて いる.DNA のサイズから Cy3、Cy5 の修飾位置の間隔は 3.4 nm、Cy5 と Alexa 405 は 2 nm と求まる.セット信号として 405 nm、リセット信号として 658 nm、読み出し光として 532 nm の光を照射した. 蛍光スペクトルは、ファイバ分光光度計 (Glacier X、B&W Tek Inc.) により計測した.サンプルは、ストランド F1 と F2 が、30 μL のバッファー中に、1 μM と 6.7 μM となるように調整した.バッファーは、10 mM Tris-HCl、10 mM NaCl、脱酸素 反応系を含む⁸³⁾. 脱酸素反応系は、10% (w/v) glucose、1% (v/v) β-mercaptoethylamine、 50 μ g/mL glucose oxidase、10 μ g/mL catalase から構成されている⁸³⁾.実験開始時にリ セット信号を照射し、初期状態を Q = 0 に設定した.

4.3.2 実験結果

図 4.5(A) に初期状態 (Q = 0),および,(S, R) = (1,0)を入力した後のスペクトルを示 す.入力後,Cy3の蛍光強度が減少し,Cy5の蛍光強度は上昇した.これは,FRET が

図 4.3 提案するセット/リセットフリップフロップの (A) 動作スキームと (B) 状態遷移図.

図 4.4 使用した配列と蛍光修飾.

図 4.5 初期状態とセット信号 [(S, R) = (1,0)] 入力後の蛍光スペクトル. (A) セット/リセットフリップフロップと (B) アクティベータなしで構成した場合.

オン状態になっていることを示しており, *Q* = 1 へ遷移したことを意味する. アクティ ベータの働きを確認するため,ストランド F2 と同じ配列だが Alexa 405 未修飾のストラ ンドを用意して,フリップフロップを構成した. このときの蛍光スペクトル測定結果を 図 4.5(B) に示す. セット信号入力後,初期状態から変化がみられなかった. これらの結 果から, Alexa 405 の励起により Cy5 が蛍光状態に回復し,状態遷移が実現されているこ とが分かる.

図 4.6 に, (S, R) = (1, 0), (S, R) = (0, 1) を順に入力した後の FRET 効率の変化を示 す. FRET 効率 *E* は次式で定義した.

図 4.6 FRET 効率の時間変化. 青は (1,0) 信号,赤は (0,1) 信号のタイミングを示す.

$$E = \frac{F - F_0}{F_i - F_0},\tag{4.1}$$

ここで, *F*, *F*₀, *F*_iは, それぞれ, その時間,初期状態,退色前の Cy5 の蛍光強度ピーク の測定値である.初期状態は *Q* = 0 に設定されており,FRET 効率はほぼ 0 に保たれる. (*S*, *R*) = (1,0)入力後に上昇し, (*S*, *R*) = (0,1)入力後には初期状態と同じ程度に低下し た.また,照射していない場合,すなわち (*S*, *R*) = (0,0)の場合には状態が維持された. 以上の結果から,図 4.3(B)に示した動作が適切に実行されたことが分かる.光制御可能 なシアニン系分子とアクティベータの組合せは複数報告されており⁸²⁾,今後,それらを利 用した拡張が期待できる.図 4.7 には,(*S*, *R*) = (1,0) と (*S*, *R*) = (0,1)を繰り返し入力 したときの結果を示す.入力信号に応じて,繰り返し状態遷移が実行できることが示され た.FRET 効率が操作回数の増加につれて減衰しているのは,Cy5の永続的な蛍光退色が 理由に挙げられる.

状態遷移の速度は、Cy5 とチオールイオンの結合(消光)/解離(蛍光)スイッチの光 反応速度に依存する⁸⁰⁾.そこで、状態遷移の速度の評価のために、光信号の強度とスイッ チ速度を測定した.Q=0 ヘセット信号を照射し蛍光強度を測定すると、Cy5の蛍光状態 が回復するため、Cy5 の蛍光強度が上昇する.この過程の速度定数を k_s 、平衡状態のチ オールイオン結合して消光状態にある Cy5 の濃度を $[Cy5]_{eq}$ で表すと、蛍光状態の Cy5 濃 度 [Cy5] は、

図 4.7 繰り返し操作した際の FRET 効率.s はセット信号照射後,r はリセット信号照射後の状態を表す.

$$[Cy5] = [Cy5]_{eq}(1 - e^{-k_s t})$$
(4.2)

と表せる.また、Q=1 状態ヘリセット信号を照射すると Cy5 が退色するため、Cy5 の蛍 光強度が低下する.退色の反応過程は、チオールイオンと Cy5 が反応中間体を形成する 過程と光誘起による反応過程が生じる.smechanism.そこで、この過程の速度定数を k_r とすると、蛍光状態の Cy5 の濃度 [Cy5] は、蛍光状態の Cy5 の初期濃度 [Cy5]₀ を用いて、

$$[Cy5] = [Cy5]_0 e^{-k_r t} ag{4.3}$$

と表せる.

実験において,照射光強度を変更し,セット信号照射,リセット信号照射時の Cy5の 蛍光強度を測定した.Cy5の蛍光強度と濃度は線形の関係にあると仮定し,測定した蛍光 強度の時間変化を式 (4.2),(4.3)を用いてフィッティングし,各照射強度における速度定 数 k_s , k_r を求めた.その結果を図 4.8に示す.両者とも照射強度に対して線形であり,照 射強度の向上により状態遷移の高速化が実現できることを意味する. k_r と k_s の差は,以 下のように考えられる.結合反応においては,今回は考慮していないが,光化学反応の 前にチオールイオンと Cy5 が反応中間体を形成する過程が必要である.その反応過程の ため, k_r は k_s と比較して小さい値となったと考えられる.

図 4.8 状態遷移のスイッチング速度. (A) Q=0から Q=1, (B) Q=1から Q=0への遷移.

4.4 結言

FRET 回路におけるセット/リセット フリップフロップの実装方法を提案した.実験に より、入力信号と現状態に応じた FRET の変調を確認し、提案するフリップフロップの 動作を実証した.FRET 回路におけるフリップフロップは、光信号に従った状態遷移が繰 り返し可能であり、ナノ光回路で機能する書き換え可能なメモリとして捉えられる.この フリップフロップを利用することにより、内部状態に基づく演算や光信号を介した外部か らの制御が可能となり、複雑な処理が分子レベルにおいて実現できる.

.
第5章

フォトニックDNA プロセッサ実装に向けたDNA 足場論理 の拡張手法

5.1 緒言

DNA 反応に基づく分子情報処理では,DNA 構造やシグナル DNA 濃度を用いて情報を 表現し,分子間の相互作用により処理を実行している.DNA を利用した情報表現に基づ くフォトニック DNA プロセッサの実装手法では,センサ・演算・アクチュエータの一連 の動作を分子反応で実装することになる.このアプローチでは,入力や演算内容に応じ て,その度にシステム全体の反応を設計しなければならない.第2章で示したプロトタイ プも,情報処理は DNA 構造を利用して実装しており,入力や処理内容により DNA 反応 を設計する必要がある.

しかしながら、センサ、アクチュエータ機能は物理空間の分子環境を扱うため、分子と のインタラクションが必要不可欠であるが、演算機能は情報を扱うため、必ずしも分子間 相互作用により実現する必要はない.第3章で提案した DNA 足場論理では、入力情報を 蛍光分子の配置情報へ変換するセンシングの過程と FRET による信号処理の演算過程に 切り分けられる.このことを考慮して DNA 足場論理に基づいてフォトニック DNA プロ セッサの実装を検討すると、センサ・演算・アクチュエータ機能をつなぐ箇所を適切に設 計できれば、各機能をモジュール化できる.モジュール化によってシステム設計の指針を 与えることは、拡張性を持つ分子情報システムを構築する上で重要である.DNA 足場論 理を中心にシステム構成を検討すると、センサと演算間は DNA 反応による蛍光分子の制 御、演算は励起エネルギー移動、演算とアクチュエータ間は励起エネルギーを利用した化 学反応の誘起による実装という、フレームワークを与えることができる.また、演算機能 を FRET により実装することは、情報システムの高速化、局所化、制御性の向上だけで なく、外部からの光照射による駆動・制御を可能にすることも重要な特徴である.

本章では、DNA 足場論理に基づくフォトニック DNA プロセッサ実装に向け、演算性

能について検討し、今後の展望を述べる。5.2節では、演算性能の評価として、任意の論 理演算を DNA 足場論理で実装できることを示し、論理回路の拡張においての障害とその 解決手法を検討する。5.3節では、DNA 足場論理に対して、第4章で提案したセット/リ セットフリップフロップを利用したメモリ機能の実装方法を提案する。5.4節では、フォ トニック DNA プロセッサを生体に応用する際に重要となるパッケージ化について述べる。

5.2 DNA 足場論理における演算拡張性

DNA 足場論理では、OR 演算は DNA 反応による同種の蛍光分子を同サイトへの配置, AND 演算は FRET による接続を利用して実装されている.これは、各サイトにおいて論 理和をとり、その結果の論理積を実行することにより、出力が得られるとみなせる.すな わち、乗法標準形、

$$(a_1 \lor b_1 \lor \dots) \land (a_2 \lor b_2 \lor \dots) \land \dots \land (a_n \lor b_n \lor \dots),$$

$$(5.1)$$

で表された論理式の解を出力していると考えられる。すべての論理式は乗法標準形に変換 できることから、DNA 足場論理の演算スキームは、任意の論理演算が実装できる。

以下では、DNA 足場論理回路を拡張する際の課題を示し、解決手法を検討する。

OR 演算の処理可能な入力数は、何種類の入力を認識し同じサイトへ結合させられるか により制限される. DNA 足場論理では、コネクティング DNA とディスコネクティング DNA を使用して、入力分子を蛍光分子の配置情報へ変換する. コネクティング DNA は、 入力分子との結合によるヘアピン構造の変化により、サイトへの結合が制御されている. このときのヘアピン構造を使用した配列交換では一部の配列は入力分子により定まるた め、結合させるサイトの配列の一部も入力分子により決定されてしまう. これは、異なる 入力分子に対して同じサイトへ結合させるには、一部の共通配列が必要となることを意味 する. 以上が、現反応スキームでの OR 演算実装における制約であり、サイトへ使用でき る配列が制限されるため、OR 演算の入力可能な数が制限される. 今後、共通配列領域を 削減するための反応設計や、入力分子とサイトの配列に相関がなくなるような変換反応の 構築が必要となる.

AND 演算は,FRET 接続可能な段数により,制限される.多段階のエネルギー移動と しては4段階のFRET 接続が実証されており⁵⁷⁾,現状での限界は5つの和項のAND 演算 ということになる.FRET の接続数を制限する要因には,FRET では長波長側ヘシフト して励起エネルギーが減少することが挙げられる.制限を克服する手法として,同種の蛍

図 5.1 足場 DNA の多次元化のイメージ.

光分子間のエネルギー移動を応用したエネルギー伝達経路の長距離化手法の利用が考えられる⁵⁶⁾. 同種の蛍光分子間のエネルギー移動では,励起エネルギーの低下は起こらない. 他には,FRET 回路中での励起エネルギーの回復機構の実現が期待される.

回路規模を拡張する手法として,他にも,足場 DNA の多次元化が考えられる. DNA 足場論理は,現状では,一次元的な構造の利用に留まっている. 接続数が限られている状況でも,図 5.1 が示すように,二次元構造や三次元構造を利用して FRET 回路を多次元へ拡張することにより演算規模の拡大が期待できる. その場合,二次元構造,三次元構造を足場 DNA として使用した際に有効な演算モデル,反応スキームが求められる.

5.3 DNA 足場論理に基づくシステムにおけるメモリ機能

生体内でみられる分子現象は時間的に制御されている. それらを対象とするフォトニック DNA プロセッサも時間的に制御できなければならない. これまでに, DNA 反応系を デザインして, DNA 分子濃度が周期的に変化する発振回路が提案されている. しかし, 反応系が複雑であるなど, 生体分子環境への適用には大きな課題がある.

DNA 足場論理は FRET による信号処理で実装されるため、第4章で提案したフリップ フロップを組み込むことにより、メモリ機能を実装できる. 図 4.5 の結果から、Q=0か らQ=1へ切り替える際には、アクティベータがシアニン分子の近傍になければならない ことがわかる. この特性を利用すると、入力分子に応じて両分子間の距離を制御すること により、アクティベータ励起光の照射タイミングで、シアニン分子へ入力分子情報を書き 込み、保持することができる. 例えば、図 5.2 に示すように、入力分子 a が存在する場合 にアクティベータとシアニン分子間が近づくように設定し、そこへアクティベータ励起光 を照射するとシアニン分子の状態が変化する. シアニン分子の状態により、アクティベー

図 5.2 メモリ機能の実装手法の一例.

タ励起光を照射した際の入力分子 a の情報が保存できる. このシアニン分子を FRET の ドナー分子として利用し, アクセプタ分子を入力分子 b により制御すると, 保持された情 報と現在の入力との演算を実行することができる. 光照射のタイミングにより情報の書き 込み・消去ができ, 簡潔な構成により, メモリ機能が実装できる.

5.4 フォトニック DNA プロセッサのパッケージ化

生体環境へ応用する際に、フォトニック DNA プロセッサを構成する DNA 分子群を、 対象が存在する場所へ効率的に輸送する必要がある. これまでに、液滴を光トラップ技術 により光操作し、DNA 分子の輸送やエマルションの融合による局所空間での反応誘起が 実証されている⁸⁴⁾. さらには、液滴内での DNA 反応操作技術に基づく DNA コンピュー ティング技術として、オプトフルイディック DNA コンピューティングを提案している⁸⁵⁾. µm オーダーの局所領域で、DNA 演算処理が実行できる. 現在では、リポソームを使用 した手法が提案されている⁸⁶⁾. リポソームは生体との親和性が高く、生体を対象にする応 用において有用な手法といえる. エマルションやリポソームへ処理に必要な DNA 分子群 をパッケージ化して光操作することにより、図 5.3 に示すように、フレキシブルにかつ効 率的に所望の場所への適用が可能となる.

5.5. 結言

図 5.3 フォトニック DNA プロセッサのパッケージ化と光操作による適用イメージ.

5.5 結言

本章では、DNA 足場論理に基づくフォトニック DNA プロセッサ実装に向け、演算性 能の向上に対する課題と解決手法を提案した。DNA 足場論理では、乗法標準形の演算を 実行していると捉えられることを述べ、原理的には任意の論理演算が実装できることを示 した。AND, OR 演算の拡張における制限を指摘し、それを克服するための今後の展望を 示した.また、DNA 足場論理におけるメモリ機能の実装方法を示した。生体分子環境へ の適用の際には、エマルションやリポソーム等によりパッケージ化し、それらを光操作す ることが有効であることを述べた。

総括

本論文では、フォトニック DNA プロセッサの実装手法に関する研究成果をまとめた. 基本原理として、DNA の分子認識に基づく自律的な反応と光照射により誘起される光学 現象を利用した、センサ、演算、アクチュエータ機能を有するプロトタイプを構築した. また、演算機能の高機能化をめざし、論理回路とメモリ機能の実装手法を検討した.以 下、本研究において得られた成果を総括する.

第1章では、フォトニック DNA 情報技術について述べた。DNA の分子認識と自律反応は、分子センサとしてだけでなく、プログラムされた DNA 反応系による演算、DNA 構造変化を利用したアクチュエータとして利用できることを述べた。また、DNA 反応のみによる実装における課題点について言及し、その対策として光誘起現象の利用が有効であることを述べた。光技術と DNA ナノ技術の両者の特性を効果的に利用した、フォトニック DNA プロセッサについて概念と特徴を示した。これらの方針に基づき、本研究の研究項目を示した。

第2章では、フォトニック DNA プロセッサのプロトタイプの実装を検討した. センサ 機能の光制御を可能にするために、光誘起されるアゾベンゼン挿入 DNA の構造変化を利 用した、分子センシング機能の光制御法を提案した. また、DNA 構造を利用した状態遷 移による情報処理を実現するために、ピンセット状の DNA 構造を制御可能な DNA マシ ンを提案した. 光制御可能な分子センサにより取得した対象分子情報を、DNA 構造を利 用して処理し、その構造に依存して蛍光信号を出力するフォトニック DNA プロセッサの プロトタイプを示した. センサ、処理、出力というフォトニック DNA プロセッサに必要 な基本機能が、光と DNA を利用して一体型の構成により実装できることを示した.

第3章では、演算機能の高機能化のために、局所的な光信号伝送による論理回路の実装 法を検討した。入力分子に従って蛍光分子を配置し、FRET による信号処理により演算 結果を得る DNA 足場論理を提案した。入力分子を蛍光分子の位置情報に符号化する反応 系を提案し、その動作を確認した。また、FRET による信号処理を利用して AND、OR、 NOT 演算を含む論理回路を実装できることを示した。また、多段階の FRET により演算

回路が拡張できることを示した。

第4章では、メモリ機能を実現するために、FRET 回路に組み込み可能なセット/リ セットフリップフロップを検討した。蛍光特性の光制御を利用し、FRET を光制御するこ とにより、セット/リセットフリップフロップの実装を行った。繰り返しの状態遷移や、 状態保持を確認した。この成果は、FRET 回路を利用した、分子環境情報の記憶や外部環 境からの処理内容の書き換えなどにつながり、分子情報の複雑な処理回路の実現が期待さ れる。

第5章では,DNA 足場論理に基づくフォトニック DNA プロセッサの実現に向けて,演 算性能と拡張手法について考察した.原理的に任意の論理演算が実行可能であることを示 し,回路拡張における問題点とその解決手法を示した.また,フリップフロップを応用し た,メモリ機能の実装法を検討した.DNA 足場論理がフォトニック DNA プロセッサの 実装において有効な手法であることを示した.

本研究成果を発展させる上での今後の研究課題を以下に挙げる.

提案したプロトタイプは、分子情報を光信号に従って取得し、蛍光信号として出力できることから、生体分子計測に有用であると考えられる。実応用に向けて、二本鎖 DNAの結合/解離状態を光制御効率の向上や必要となる溶液条件の緩和を実現する必要がある。

DNA 足場論理による大規模な論理回路を構成するためには、コネクティングDNA、ディ スコネクティングDNA、足場 DNA の塩基配列、使用する蛍光分子の最適化が必要とな る. これまでに実証されている大規模な DNA 論理回路は、要素反応の詳細な解析と試行 錯誤的な実験結果に基づく配列設計により、可能となっている⁷⁵⁾. これらの手法を参考に し、要素反応の解析、各反応制御のパラメータ設定手法、塩基配列の設計手法の確立が求 められる.

FRET 回路中でのセット/リセットフリップフロップでは、異なる蛍光分子ペアを利用 した動作実証,その集積化による複雑な処理回路の実現が期待される.また,DNA 足場論 理へのメモリ機能の付与や,光信号による演算処理プログラム手法の検討が必要となる.

本研究では、フォトニック DNA プロセッサのプロトタイプや、分子レベルにおける情報処理の根幹となりうる論理回路やメモリ機能の実装手法を示した. DNA 構造変化の光誘起を利用して、センサ・演算・アクチュエータのフォトニック DNA プロセッサに求められる一連の動作を制御できる. また、励起エネルギー移動を利用してフォトニック DNA プロセッサを実装することは、演算機能の高機能化や各機能のモジュール化につながる.

本研究の成果は、フォトニックDNA プロセッサをナノテクノロジー・バイオテクノロジー へと展開するための基盤技術となると考えられる。

謝辞

本研究は、大阪大学大学院情報科学研究科情報数理学専攻において、本学大学院情報科学研究科谷田 純教授の御指導のもとに行ったものである。研究を遂行するにあたり、 細部にわたり終止懇切丁寧な御指導、御助言を賜りました、谷田 純教授に御礼を申し上 げると共に深く感謝致します。

本学大学院情報科学研究科森田 浩教授,藤崎 泰正教授には,本論文作成にあたり貴重 な御教示を頂きました。ここに深く感謝致します。

本研究を遂行する際に,終始懇切丁寧なる御指導と御助言を頂きました小倉 裕介准教 授に心から御礼を申し上げると共に深く感謝致します.

本学大学院医学系研究科の山田 憲嗣特任教授には,研究を遂行するにあたり,親身な御助言を頂きました.深く御礼申し上げます.

徳島大学の山本 裕紹講師には、本研究を遂行するにあたり、親身な御助言を頂きました。深く御礼申し上げます。

研究各所において適切で効果的な御指導,御助言を頂きました静岡大学の香川 景一郎 准教授に心より感謝致します.

研究を進めるにあたって,有益なご助言,ご示唆を頂きました,堀崎 遼一助教に深く 感謝致します.

また,本研究を行なうにあたり,有益な議論を交わした酒井寛人博士に心から感謝致し ます.

研究,日常生活において何かとお世話になりました谷田研究室のみなさまに深く感謝致 します.

参考文献

- [1] J. H.Reif, "Scaling up DNA computation," Science, **332**, 737-738 (2011).
- [2] 監訳:中村桂子, 松原謙一, "Essential 細胞生物学 原書第3版", (南江堂, 2011).
- [3] L. M. Adleman, "Molecular Computation of Solutions to Combinatorial Problems," Science, 266, 1021-1024 (1994).
- [4] 萩谷昌己, 横森 貴, "DNA コンピュータ", (培風館, 2001).
- [5] G. Seeling, D. Soloveichik, D. Y. Zhang, E. Winfree, "Enzyme-Free Nucleic Acid Logic Circuits," Science, 314, 1585-1588 (2006).
- [6] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh and E. Shapiro, "Programmable and autonomous computing machine made of biomolecules," Nature, 414, 430-434 (2001).
- [7] Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro, "DNA molecule provides a computing machine with both data and fuel," PNAS, 100, No. 5, 2191-2196 (2003).
- [8] 萩谷昌己, 横森 貴 編, 小宮 健, 瀧ノ上正浩, 田中文昭, 浜田省吾, 村田 智 共 著, "DNA ナノエンジニアリング", (近代科学社, 2011).
- [9] V. Balzani, A. Credi and M. Venturiv, 監訳, 岩村秀, 翻訳, 廣瀬千秋, "分子デバイス および分子マシン ~ナノワールドへの誘い~," 株式会社エヌ・ティー・エス (2006).
- [10] Y. Ogura, T. Nishimura, H. Sakai, and J. Tanida, "Photonic DNA Computing: Concept and Implementation Methods," In Zhongming Zhao, editor, Sequence and Genome Analysis: Methods and Applications, Chapter 7, iConcept Press (2011).
- [11] T. Nishimura, Y. Ogura, and J. Tanida, "Reusable molecular sensor based on photonic activation control of DNA probes," Biomedical Optics Express 3, 920–926 (2012).
- [12] Y. Ogura, T. Nishimura, and J. Tanida, "Self-Contained Photonically-Controlled DNA Tweezers," Applied Physics Express 2, 025004 (2009).

- [13] T. Nishimura, Y. Ogura, H. Yamamoto, K. Yamamda, and J. Tanida, "A photonic DNA processor: concept and implementation," SPIE NanoScience and Engineering, Proc. SPIE 8102, 810207 (2011).
- [14] T. Nishimura, Y. Ogura, and J. Tanida, "Fluorescence resonance energy transferbased molecular logic circuit using a DNA scaffold," Applied Physics Letters 101, 233703 (2012).
- [15] T. Nishimura, Y. Ogura, and J. Tanida, "A Nano-Scale Set-Reset Flip-Flop in Fluorescence Resonance Energy Transfer-based circuits," Applied Physics Express 6, 015201 (2013).
- [16] 野島 博, "ゲノム工学の基礎", (東京化学同人, 2002).
- [17] J. SantaLucia, "A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics," Proc. Natl. Acad. Sci. USA, 95, 1460–1465 (1998).
- [18] N. Sugimoto, S. Nakano, M. Yoneyama, and K. Honda, "Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes," Nucleic Acids Research, 24, 4501–4505 (1996).
- [19] M. Zuker, "Mfold web server for nucleic acid folding and hybridization prediction," Nucleic Acids Research, 31, 3406–3415 (2003).
- [20] J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks, and N. A. Pierce, "NUPACK: Analysis and design of nucleic acid systems," J. Comput. Chem., 32, 170–173 (2011).
- [21] H, Asanuma, X. Liang, H. Nishioka, D. Matsunaga, M. Liu, and M. Komiyama, "Synthesis of azobenzene-tethered DNA for reversible photo-regulation of DNA functions: hybridization and transcription" Nat. Protocols 2, 203–212 (2007).
- [22] H. Asanuma, T. Ito, and M. Komiyama, "Photo-responsive oligonucleotides carrying azobenzene in the side-chains," Tetrahedron Letters, Vol. 39, No. 49, pp. 9015-9018 (1998).
- [23] S. Ogasawara and M. Maeda, "Straightforward and reversible photoregulation of hybridization by using a photochromic nucleoside" Angew. Chem. Int. Ed. 47, 8839– 8842 (2008).
- [24] X. Liang, H. Nishioka, N. Takenaka, and H. Asanuma, "A DNA Nanomachine Pow-

ered by Light Irradiation," ChemBioChem, 9, 702-705 (2008).

- [25] H. Kang, H. Liu, J. A. Phillips, Z. Cao, Y. Kim, Y. Chen, Z. Yang, J. Li, and W. Tan, "Single-DNA molecule nanomotor regulated by photons" Nano Lett. 9 2690–2696 (2009).
- [26] M. Liu, H. Asanuma, and M. Komiyama, "Azobenzene-Tethered T7 Promoter for Efficient Photoregulation of Transcription," J. Am. Chem. Scc., 128, 1009–1015 (2006).
- [27] N. C. Seeman, "Nucleic Acid Junctions and Lattices," J. Theor. Biol., 99, 237-247 (1982).
- [28] J. Chen, and N. C. Seeman, "Synthesis from DNA of a molecule with the connectivity of a cube," Nature, 350, 631-633 (1991).
- [29] E. Winfree, T. J. Fu, L. A. Wenzler, and N. C. Seeman, "Design and self-assembly of two-dimensional DNA cystals," Nature, **394**, 539-544 (1998).
- [30] Y. He, Y. Chen, H. Liu, A. E. Ribble, and C. Mao, "Self-assembly of hexagonal DNA two-dimensional (2D) array," J. Am. Chem. Soc., 127, 12202-12203 (2005).
- [31] P. W. K. Rothemund, "Folding DNA tocreate nanoscale shapes and patterns," Nature, 440, 297-302 (2006).
- [32] E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M. Goals, B. Sander, H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbaacher, K. V. Gothelf, and J. Kjems, "Self-assembly of a nanoscale DNA box with a conrrollable lid," Nature, 459, 73-77 (2009).
- [33] S. M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf, and W. M. Shin, "Selfassembly of DNA into nanoscale three-dimensional shapes," Nature, 459, 414-418 (2009).
- [34] F. A. Aldaye, A. L. Palmer, and H. F. Sleiman, "Assembling Materials with DNA as the Guide," Science, **321** 1794-1799 (2008).
- [35] B. Ding, Z. Deng, H. Yan, S. Cabrini, R. N. Zuckermann, and J. Bokor, "Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami," J. Am. Chem. Scc., 132, 3248–3249 (2010).
- [36] N. C. Seeman, "Nanomaterials Based on DNA," Annual Review of Biochemistry, 79, 65–87 (2010).
- [37] A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E. Roller, A. Hogele, F. C. Sim-

mel, A. O. Govorov, and T. Liedl, "DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response," Nature, **483**, 311–314 (2012).

- [38] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science, 277, 1078–1081 (1997).
- [39] D. P. Bratu, B. J. Cha, M. M. Mhlanga, F. R. Kramer, and S. Tyagi, "Visualizing the distribution and transport of mRNAs in living cells," Proc. Natl. Acad. Sci. 100, 13308–13313 (2003).
- [40] K. Wang, Z. Tang, C. J. Yang, Y. Kim, X. Fang, W. Li, Y. Wu, C. D. Medley, Z. Cao, J. Li, P. Colon, H. Lin, and W. Tan, "Molecular engineering of DNA: molecular beacons," Angew. Chem. Int. Ed. 48, 856–870 (2009).
- [41] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, L. Adleman "Solution of a 20-Variable 3-SAT Problem on a DNA Computer," Science, 296, 1249–1261 (2002).
- [42] D. Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree, "Engineering entropydriven reactions and networks catalyzed by DNA," Science, **318**, 1121-1125 (2007).
- [43] B. Yurke, and A. P. Mills Jr., "Using DNA to power nanostructure," Genetic Programming and Evolvable Machines, 4, 111-122 (2003).
- [44] J. S. Shim, and N. C.Seeman, "A Synthetic DNA Walker for Molecular Transport,"
 J. Am. Chem. Soc., 126, 10834-10835 (2004).
- [45] S. F. J. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka, H. Sugiyama, and A. J. Turberfield, "A DNA-based molecular motor that can navigate a network of tracks," Nature Nanotechnology, 7, 169–173 (2012).
- [46] W. U. Dittmer and F. C. Simmel, "A Synthetic DNA Walker for Molecular Transport," Transcriptional Control of DNA-based Nanomachines, Nano Letters, 4, 689– 691 (2004).
- [47] W. U. Dittmer and F. C. Simmel, "A Synthetic DNA Walker for Molecular Transport," Transcriptional Control of DNA-based Nanomachines, Nano Letters, 4, 689– 691 (2004).
- [48] J. W. Goodman, "Introduction to Fourier Optics," 2nd ed. (McGraw-Hill, 1996).
- [49] Christopher J. Barrett, Jun-ichi Mamiya, Kevin G. Yagerc and Tomiki Ikeda, "Photo-

mechanical effects in azobenzene-containing soft materials," Soft Matter, Vol. 3, pp. 1249-1261 (2007).

- [50] H. Asanuma, T. Ito T. Yoshida, X. Liang, and M. Komiyama, "Photo-regulation of the formation and dissociation of DNA-duplex by using the cis-trans isomerization of azobenzene" Angew. Chem. Int. Ed. 38, 2393–2395 (1999).
- [51] R. Roy, S. Hohng, and T. Ha, "A practical guide to single-molecule FRET," Nat. Method 5, 507–516 (2008).
- [52] S. Weiss, "Fluorescence Spectroscopy of Single Biomolecules," Science 283, 1676– 1683 (1999).
- [53] K. E. Sapsford, L. Berti, and I. L. Medintz, "Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor Acceptor Combinations," Angew. Chem. Int. Ed., 45 (2006) 4562.
- [54] S. Vyawahare, S. Eyal, K. D. Mathews, and S. R. Quake, "Nanometer-scale Fluorescence Resonance Optical Waveguides," Nano Lett. 4, 1035–1039 (2004).
- [55] H. M. Watrob, C.-P. Pan, and M. D. Barkley, "Two-Step FRET as a Structural Tool," J. Am. Chem. Soc. 125, 7336–7343 (2003).
- [56] J. K. Hannestad, P. Sandin, and B. Albinsson, "Self-Assembled DNA Photonic Wire for Long-Range Energy Transfer," J. Am. Chem. Soc. 130, 15889–15895 (2008).
- [57] K. Boeneman, D. E. Prasuhn, J. B. Blanco-Canosa, P. E. Dawson, J. S. Melinger, M. Ancona, M. H. Stewart, K. Susumu, A. Huston, and I. L. Medintz, "Self-Assembled Quantum Dot-Sensitized Multivalent DNA Photonic Wires," J. Am. Chem. Soc. 132, 18177–18190 (2010).
- [58] I. H. Stein, C. Steinhauer, and P. Tinnefeld, "Single-Molecule Four-Color FRET Visualizes Energy-Transfer Paths on DNA Origami," J. Am. Chem. Soc. 133, 4193– 4195 (2011).
- [59] E. Graugnard, D. L. Kellis, H. Bui, S. Barnes, W. Kuang, J. Lee, W. L. Hughes, W. B. Knowlton, and B. Yurke, "DNA-Controlled Excitonic Switches," Nano Lett. 12, 2117–2122 (2012).
- [60] Y. Ogura, T. Beppu, F. Sumiyama, and Jun Tanida, "Toward photonic DNA computing: developing optical techniques for parallel manipulation of DNA," Proc. SPIE, Vol.5897, pp.34-43 (2005).

- [61] H. Sakai, Y. Ogura, and J. Tanida, "Implementation of a Nanoscale Automaton Using DNA Conformation Controlled by Optical Signals," Japanese Journal of Applied Physics, vol. 48, 09LA01 (2009).
- [62] H. Sakai, Y. Ogura, and J. Tanida, "Reversible Regulation of Position of DNA Inside a Nano-Structure via Photonic Signaling to Implement State-Transitions," Int. Journal of Unconventional Computing vol. 7, 39-52 (2011).
- [63] H. Sakai, Y. Ogura, and J. Tanida, "A Photonic Nanoscale Automaton Based on Photo-/Heat-Regulated DNA Strand Displacement Reactions," Int. Journal of Unconventional Computing (in preparation)
- [64] B. Yurke, A. J. Turberfield, "A DNA-fuelled molecular machine made of DNA," Nature 406, 605-608 (2000).
- [65] L. Poon, W. Zandberg, D. Hsiao, Z. Erno, D. Sen, B. D. Gates, and N. R. Branda, "Photothermal release of single-stranded DNA from the surface of gold nanoparticles through controlled denaturating and Au–S bond breaking," ACS Nano 4, 6395–6403 (2010).
- [66] A. Saghatelian, N. H. Völcker, K. M. Guckian, V. S.-Y. Lin, and M. R. Ghadiri, "DNA-Based Photonic Logic Gates: AND, NAND, and INHIBIT," J. Am. Chem. Soc. 125, 346–347 (2003).
- [67] D. Miyoshi, M. Inoue, and N. Sugimoto, "DNA Logic Gates Based on Structural Polymorphism of Telomere DNA Molecules Responding to Chemical Input Signals," Angew. Chem. Int. Ed. 45, 7716–7719 (2006).
- [68] A. Okamoto, K. Tanaka, and I. Saito, "DNA Logic Gates," J. Am. Chem. Soc. 126, 9458–9463 (2004)
- [69] M. N. Stojanovic, T. E. Mitchell, and D. Stefanovic, "Deoxyribozyme-based logic gates," J. Am. Chem. Soc. 124, 3555–3561 (2002).
- [70] W. Yoshida and Y. Yokobayashi, Chem. Commun., "Photonic boolean logic gates based on DNA aptamers," 195–197 (2007).
- [71] J. Macdonald, Y. Li, M. Sutovic, H. Lederman, K. Pendri, W. Lu, B. L. Andrews,
 D. Stefanovic, and M. N. Stojanovic, "Medium Scale Integration of Molecular Logic
 Gates in an Automaton," Nano Lett. 6, 2598–2603 (2006).
- [72] B. Shlyahovsky, Y. Li, O. Lioubashevski, J. Elbaz, and I. Willner, "Logic Gates and

Antisense DNA Devices Operating on a Translator Nucleic Acid Scaffold," ACS Nano 3, 1831–1843 (2009).

- [73] J. Elbaz, O. Lioubashevski, F. Wang, F. Remacle, R. D. Levine, and I. Willner, "DNA computing circuits using libraries of DNAzyme subunits," Nat. Nanotech. 5, 417–422 (2010)
- [74] B. M. Frezza, S. L. Cockroft, and M. R. Ghadiri, "Modular Multi-Level Circuits from Immobilized DNA-Based Logic Gates," J. Am. Chem. Soc. 129, 14875–14879 (2007)
- [75] L. Qian and E. Winfree, "Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades," Science 332, 1196–1201 (2011).
- [76] M. C. Good, J. G. Zalatan, and W. A. Lim, "Scaffold Proteins: Hubs for Controlling the Flow of Cellular Information," Science 332 680–686 (2011).
- [77] A. S. Shaw and E. L. Filbert, "Scaffold proteins and immune-cell signalling," Nature reviews. Immunology 9 47–56 (2009).
- [78] Q.-H. Xu, S. Wang, D. Korystov, A. Mikhailovsky, G. C. Bazan, D. Moses, and A. J. Heeger, "The fluorescence resonance energy transfer (FRET) gate: A time-resolved study," Proc. Natl. Acad. Sci. 102, 530–535 (2005)
- [79] G. Seeling and D. Soloveichik, "Signaling Propagation and Propagation Delays in Molecular Circuits," Preliminary Proceedings of 15th International Meeting on DNA computing and Molecular Programing, 40–49 (2009).
- [80] G. T. Dempsey, M. Bates, W. E. Kowtoniuk, D. R. Liu, R. Y. Tsien, and X. Zhuang, "Photoswitching mechanism of cyanine dyes," J. Am. Chem. Soc., 131 18192 (2009).
- [81] S. Uphoff, S. J. Holden, L. L. Reste, J. Periz, S. van de Linde, M. Heilemann, and A. N. Kapanidis, "Monitoring multiple distances within a single molecule using switchable FRET," Nat. Methods 7, 831 (2010).
- [82] M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, "Multicolor super- resolution imaging with photo-switchable fluorescent probes," Science, 317, 1749 (2007).
- [83] M. Bates, T. R. Blosser, and X. Zhuang, "Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes," Phys. Rev. Lett., 94, 108101 (2005).
- [84] Y. Ogura, T. Nishimura, and J. Tanida, "Spatially parallel control of DNA reactions in optically manipulated micro-droplets," Journal of Nanophotonics 5, 05107 (2011).

- [85] T. Nishimura, Y. Ogura, and J. Tanida, "Optofluidic DNA computation based on optically manipulated microdroplets," Microfluidics and Nanofluidics 13, 1–7 (2012).
- [86] 風山 祐輝, 小倉 裕介, 谷田 純, "蛍光カラー符号化に基づく液体マイクロリアクターの 識別法," 日本光学会年次学術講演会 Optics & Photonics Japan 2012, 24pD1 (2012).

