
Title
Design and Optimization of Protocols for
Distributed Data Processing Services on Overlay
and Mobile Networks

Author(s) Sakai, Yuki

Citation 大阪大学, 2013, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/27481

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ゲる ソ /6。 7,

Design and Optimization of Protocols for

Distributed Data Processing Services on Overlay

and tMobile Networks

January 2013

ヽ
「
引
コ
リ

Yuki SAKAI

Design and Optimization of Protocols for

Distributed Data Processing Services on Overlay

and Mobile Networks

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2013

Yuki SAKAI

List of Major Publications

Journal Papers

Yuki Sakai, Akihito Hiromori, Hirozumi Yamaguchi and Teruo H!
gashino, "Design and Development of Service Execution Platform
for Overlay Networks", IPSJ Journal, Vol.53, No.11, pp26l2 2623,

November 2012 (in Japanese).

Yuki Sakai, Akira Uchiyama, Hirozumi Yamaguchi and Teruo Hi-
gashino: "Self-Estimation of Neighborhood Distribution for Mobile

Wireless Nodes" , IPSJ Journal, Vol.54, No.2, April 2013.

Conference Papers

1. Yuki Sakai, Akihito Hiromori, Hirozumi Yamaguchi, Khaled El-Fakih
and Teruo Higashino : "An Integrated Tool for Development of Over-

lay Services" , Proceed'ings of the 2nd Internationo,l Conference on Sim-

ulat'ion Tools and Techn'iques (SIMUTools' 09), Article No.61, Roma,

Italy, March 2009.

2. Yuki Sakai, Akihito Hiromori, Hirozumi Yamaguchi and Teruo Hi-
gashino: "A Study on Designing Overlay for Ubiquitous Services",

Proceed'ings of the Sth Internat'ional Conference on Mob'ile Computing

and Ubi.qui.tous Networlci,ng (ICMU 2010), Seattle, USA, April 2010.

2.

Abstract

The popularity of well-provisioned sensors have enhanced to research and

develop the systems for new kinds of services called ubiquitous services to

make our life safe, secure) and comfortable by collecting, aggregating and

processing sensing data distributed to urban areas. F\rrthermore, recent

innovation of wireless communication technology has brought us possibilities

to deploy infrastructure-less wireless applications. The spread of modern

mobile sensing devices such as smartphones and on-board units for vehicles,

and the adrance of the technology should accelerate to innovate a lot of

situation-aware services. When we develop such systems that provide these

services, the following issue might stand in our way) how to collect and

process a flood of context data from mobile sensors. Since the amount

of sensing data is quite enormous, data processing should be executed on

multiple servers and devices collaboratively to reduce their workloads of

servers and devices. On the other hand, sensing data need to be collected

essentially since sensors are geographically distributed to the urban areas

over the wireless sensor networks. However, due to constraints from the

network bandwidth or computational power limitation, workloads of the

network should be reduced as much as possible. To provide services cost-

efficiently, we must overcome this issue comprehensively.

Considering the above issue, this thesis studies the following fwo study

topics: (1) a service design technique reducing both of the network and

server loads on an overlay network which is composed of repositories storing

the sensing data and servers to process their data, and (2) a pure-serverless

service protocol which can be executed on a mobile ad-hoc network, and

therefore in which there is no workload of servers essentially.

As the first topic of this thesis, we propose a method that derives an

optimal service execution on overlay networks, satisfying constraints from

networks and servers. For example, we consider a traffic forecasting service

usinq movie data from fixed cameras on the streets in urban areas and GPS

data from vehicles there. In this service, we assume that the movie data

and the GPS data should be stored at a local server in each location. The

service analyzes data to measure the trip time of vehicles and estimates their

trajectories, and finally obtains the amount of traffic in the entire area. This

service transfers data among servers and processes data alternately. Gener-

ally, we need to address the following two challenges to design the service.

To avoid the bottlenecks of processing time, we should design the service

considering capabilities of servers, network capacity and the amount of data

to transfer. However, it is hard for service designers to obtain the optimal
design that reduces workloads of networks and servers. (ii) Additionally,

servers and network loads may change over time according to their utiliza-

tion. However, maintaining the reasonable performance according to the

dynamic changes of traffic volume and system loads is not an easy task.

To tackle the challenge (i), we propose a method to derive execution se-

quences of a given application-level service that is executed by cooperative

servers on overlay networks. We assume that a given service is composed of
service components which indicate service processing units. We also assume

that the service is modeled as a coloured Petri net [1] which can be described

as the combination of sequential tasks, parallel tasks, branch operations and

synchronization operations. It can derive an optimal allocation of compo-

nents to achieve minimum response time avoiding overloading network and

servers.

As for the challenge (ii), we design and develop a service execution plat-

form for supporting the development of overlay services. Using the platform,

services can be installed and executed automatically on real networks when

the service descriptions and network information are given.

We have conducted experiments on Planetlab to validate our method.

As an application example, we have developed three applications using the

proposed platform: a video transcoding service, a traffic forecasting and a
probe-vehicle data analysis. The experimental results have shown that the
proposed method could derive efficient execution sequences and they could

achieve higher throughput than the other methods. Finally, we confirm that
we can easily conduct experiments on real network by the proposed platform

and we can instantly monitor the loads of the network and servers.

In the second study, we focus on collaborative tasks processing in modern

networks with many small, mobile clients. This approach aims at reducing

workloads of a network by avoiding transferring data to servers. As an

example of a service in this situation, we investigate an estimation protocol

to obtain the distribution of mobile nodes in their surroundings.

Ad-hoc wireless communication is a cost-efficient way of data fusion and

diffusion among local agents. In particular, if pedestrians can estimate and

obtain the information on their surroundings in real-time through ad-hoc

communication, many services and applications can be provisioned with-
out infrastructures. For example, it would be more beneficial to a human

navigation system for emergency evacuation and to stranded commuters in
disasters if information on the distribution of people in their surroundings

is available. Some Iiterature have proposed methods for people density es-

timation in urban areas. For example, in Ref. l2], Bluetooth scan is used

for estimating the number of nearby nodes. Ref. 13] has investigated peo-

ple density estimation using locations of mobile phones obtained via base

stations for large scale urban monitoring. However, real-time estimation of

mobile node distribution bv collaboration throueh ad-hoc networks is still
challenging.

We propose a method for mobile wireless nodes, which are pedestrians,

to estimate the distribution of mobile nodes in their surroundings. In the

proposed method, each node is assumed to know its location rcughly (i.e.

within some error range) and to maintain a density map covering its sur-

roundings. This map is updated when a node receives a density map from
a neighboring node. Each node also updates its density map in a timely

fashion by estimating the change of node distribution over time due to node

mobility. The goal of our study is to propose an autonomous protocol to
let mobile nodes have accurate node distribution with reasonable amount of

wireless ad-hoc communication traffic.

The simulation experiments have been conducted and the similarity be-

tween the real and estimated distributions has been measured. The results in
three different scenarios have shown that the proposed method could attain

average localization errors less than 10m.

In this thesis, we propose two protocols for distributed data processing

services to reduce workloads of a network and devices as much as possi-

ble. As the first protocol, we propose a method that derives an optimal

service execution on overlay networks, satisfying constraints from networks

and servers. In the second protocol, we focus on collaborative tasks process-

ing in modern ad-hoc networks with many small, mobile clients.

Contents

Introduction

Related Work
2.7 Service Models and Service Designing Frameworks

2.2 Data Aggregation Techniques for Mobile Wireless Nodes

3.6.2 Bottlenecksof aService 43

3.7 Conclusion 44

4 Design and Development of Service Execution Platform for
Overlay Networks 45
4.1 Introduction. 45

4.2 Service Execution Platform 45

4.2.1 Distributed Service Generator and Resource Optimizer 46

10

1,6

.16
1a. Lt

20
20

2l
25

27

27

28

31

32

34

35

38

4T

A Method Deriving Optimal Service Execution on Overlay
Networks
3.1 Introduction.
3.2 Definition of Services and an Example of Description
3.3 Coloured Petri Net
3.4 An Overlay Network
3.5 Service Execution on an Overlay Network and Optimization

Algorithm
3.5.1 Deriving Distributed Version of Service

3.5.2 Place Allocation to Overlay Nodes

3.5.3 An Example of a Service Execution based on a Dis-

tributed Execution Sequence

3.5.4 Problem Definition
3.5.5 A Linear Programming Problem for Service Optimiza-

tion Problem
3.6 Experiments .

3.6.1 Throughput of a Service

4.2.2 ServiceExecuter 46

4.2.3 Overlay Node Control and Network Management . 50

4.3 Conclusion 51

5 A Collaborative Estimation Protocol of Distribution for Mo-
bile Wireless Nodes 52

5.1 Introduction. 52

5.2 Self-Estimation of Neighborhood Distribution 53

5.2.1 Overview53
5.2.2 Algorithm54
5.2.3 Getting Node Distribution from a Density Map . 58

5.2.4 Reduction of Communication Overhead 60

5.3 Experimental Results 60

5.3.1 Settings 60

5.3.2 Results 62

5.3.3 Reduction in Communication Overhead 67

5.4 Discussion

5.5 Conclusion

Conclusion

67

68

70

List of Figures

3.1 Service Example (transportation analysis services).

3.2 Transportation Analysis Services of Fig.3.lFormally Written

in Coloured Petri Net.

3.3 An Example of Coloured Petri Net. .

3.4 Network Architecture.

3.5 Child Tracking Service written in a Coloured Petri Net.

3.6 Distributed Child Tracking Service of Fig. 3.lunder Place

Location of Table 3.1. 30

3.7 Example of a transition execution. 33

3.8 Floating Car Data Analysis Services. 39

3.9 Frequency Distribution of Throughput. . 42

3.10 The Number of Waitins Tokens at 74 and T6 . . 43

21

３

　

５

　

″
‘

　

９

２

２

２

２

4.I Overview of Service Executer.

4.2 Web-based User Interface.

4.3 System Controller.

4.4 Overlav Link Control.

5.1 An Example of a Density Map

5.2 Update by Estimation F\rnction

5.3 Diffuse Estimation Function

5.4 Limited Diffuse Estimation Function

5.5 Estimation of Node Distribution from a Densitv Map .

5.6 Simulation Maps

5.7 Time vs. Estimated Number of Nodes in a Density Map

47

48

49

51

53

55

55
(n
tJl

59

61

62

5.8 Real Node Distribution and Estimated Node Distribution of

Node p (at 450sec.) 64

5.9 Time vs. Average Positioning Errors in Estimated Distribu-

tion of Node p 66

List of Tables

3.1 Example of Place Location Table for Child Tracking Service. 28

3.2 Experimental Settings. 38

3.3 Throughput of Services Derived by the Proposed Method. 4I

4.1 System Controller's Commands for Overlay Nodes. 50

5.1 Simulation Settings 62

5.2 Average Number of Nodes in an Estimated Density Map . 63

5.3 Average Kendall's r 63

5.4 Avg. Positioning Errors in Estimated Node Distribution of

Node p 65

5.5 Comparison of Average Bandwidth per Node 67

Chapter 1

Introduction

The popularity of well-provisioned sensors have enhanced to research and

develop the systems for new kinds of services called ubiquitous services to

make our life safe, secure, and comfortable by collecting, aggregating and

processing sensing data distributed to urban areas. Furthermore, recent in-

novation of wireless communication technology has brought us possibilities

to deploy infrastructure-less wireless applications. The spread of modern

mobile sensing devices such as smartphones and on-board units for vehi-

cles, and the advance of the technology should accelerate to innovate a lot

of situation-aware services. When we develop such systems that provide

these services, the following issue might stand in our way, how to collect

and process a flood of context data from mobile sensors. Since the amount

of sensing data is quite enormous, data processing should be executed on

multiple servers and devices collaboratively to reduce their workloads. On

the other hand, sensing data need to be collected essentially siuce sensors

are geographically distributed to the urban areas over the wireless sensor

networks. However, due to constraints from the network bandwidth or com-

putational power limitation, workloads of the network should be reduced as

much as possible. To provide services cost-efficiently, we must overcome this

issue comprehensively.

Considering the above issue, this thesis studies the following two study

topics: (1) a service design technique reducing both of the network and

server loads on an overlay network which is composed of repositories storing

the sensing data and servers to process these data, and (2) a pure-serverless

10

service protocol which can be executed on a mobile ad-hoc network, and

therefore in which there is no workload of servers essentially.

As the first topic of this thesis, we propose a method that derives an

optimal service execution on overlay networks, satisfying constraints from

networks and servers. For example, we consider a traffic forecasting service

using movie data from fixed cameras on the streets in urban areas and GPS

data from vehicles there. In this service, we assume that the movie data

and the GPS data should be stored at a local server in each location. The

service analyzes data to measure the trip time of vehicles and estimates their

trajectories, and finally obtains the amount of traffic in the entire area. This

service transfers data among servers and processes data alternately. Gener-

ally, we need to address the following two challenges to design the service.

(i) To avoid the bottlenecks of processing time, we should design the service

considering capabilities of servers, network capacity and the amount of data

to transfer. However, it is hard for service designers to obtain the optimal

design that reduces workloads of networks and servers. (ii) Additionally,

servers and network loads may change over time according to their utiliza-

tion. However, maintaining the reasonable performance according to the

dynamic changes of traffic volume and system loads is not an easy task.

To tackle the challenge (i), we propose a method to derive execution se-

quences of a given application-level service that is executed by cooperative

servers on overlay networks detailed in Chapter 3. We assume that a given

service is composed of service components which indicate service processing

units. This method can determine an optimal protocol that each service

component should be executed. We also assume that the service is mod-

eled as a coloured Petri net [1] which can be described as the combination

of sequential tasks, parallel tasks, branch operations and synchronization

operations. In particular) we use CPN Tools [] for writing services in a
centralized and network-independent way. Then, our method analyzes a

given service description and automatically derives a distributed version of

the service taking into consideration the targeted overlay network specifica-

tion. It can derive an optimal allocation of components to achieve minimum

response time avoiding overloading network and servers.

As for the challenge (ii), we design and develop a service execution plat-

form for supporting the development of overlay services detailed in Chapter

4. Using the platform, services can be installed and executed automatically

on real networks when the service descriptions and network information are

given. The platform can also measure network loads and CPU loads contin-

uously, and can adaptively determine new allocation optimizing the system

load in the environment. On the platform, the distributed version of the

service is interpreted and the overlay nodes are asked to execute the service

as specified in this description. During that time, the utilization of overlay

links and occupation of processors is monitored so that related information

can be provided to the developers. In particular, the proposed platform

is equipped with the resource optimizer, which determines the best way to

execute the service in the targeting overlay network to maximize the perfor-

mance of the service. As a result, service designers can easily manage the

service execution.

Using the proposed platform, we have conducted experiments on Planet-

Lab to validate our method. As an application example, we have developed

three applications using the proposed platform: a video transcoding service,

a traffrc forecasting and a probe-vehicle data analysis. The experimental re-

sults have shown that the proposed method could derive efficient execution

sequences which could achieve higher throughput than the other sequences.

Finally, we confirm that we can easily conduct experiments on real network

by the proposed platform and we can instantly monitor the loads of the

network and servers.

Several frameworks and related toolsets have been proposed and de-

veloped for similar or different objectives. For designing service overlay,

Refs. [5, 6, 7] have dealt with service design methodologies, and Refs.

f8, 9, 10, n, 12] have developed some support tools for development of over-

lay networks. Compared with these methodologies or tools, our contribution

is summarized as follows. First, we provide a toolset with several unique fea-

tures in supporting high level design of service overlay. Using the algorithm

presented in Ref.[13], the tool can automatically derive a distributed service

description from a given centralized service description written in high-level

12

Petri nets. Also the tool has the resource optimizer that allows to optimize

the performance of the service. By these features, developers can design the

optimized services using powerful GUI from CPN Tools, without knowing

the overlay network specifi,cation. Second, the tool has several functions for

program deployment, debug and performance monitoring. Finally, using a

realistic example service, we have conducted experiments in real distributed

environment to demonstrate the advantages of our tool. A more detailed

discussion on the advantages of our integrated environment along with some

related methodologies will be given in Section 2.1.

In the second study, we focus on collaborative tasks processing in modern

networks with many small, mobile clients. This approach aims at reducing

workloads of a network by avoiding transferring data to servers. As an ex-

ample of a service in this situation, we investigate an estimation protocol

to obtain the distribution of mobile nodes in their surroundings. In Intel-

ligent Transportation Systems (ITS), many research efforts have been con-

ducted for situation awareness of pedestrians and vehicles based on DSRC

for collision avoidance. For example, OKI has developed a DSRC attach-

ment for mobile phones for pedestrian safetyfl4] by broadcasting positions

of pedestrians obtained by GPS. People centric sensing[15] is also an emerg-

ing technology using sensing information such as traffic information from

smartphones for urban sensing.

These studies indicate that ad-hoc wireless communication is a cost-

effi.cient way of data fusion and diffusion among local agents. In particular,

if pedestrians can estimate and obtain the information on their surroundings

in real-time through ad-hoc communication, many services and applications

can be provisioned without infrastructures. For example, it would be more

beneficial to a human navigation system for emergency evacuation and to

stranded commuters in disasters if information on the distribution of people

in their surroundings is available. Some literature have proposed methods

for people density estimation in urban areas. For example, in Ref. l2l,

Bluetooth scan is used for estimating the number of nearby nodes. Ref. [3]

has investigated people density estimation using locations of mobile phones

obtained via base stations for large scale urban monitoring. In spite of these

Ｑ
０

researches) real-time estimation of mobile node distribution by collaboration

through ad-hoc networks is still challenging. To aggregate the information

on their surroundings to servers may be cost-effi.cient way to provide density

estimation. However, this way can cause a scalability concern and cannot

provide the estimation in provisional situation such as festivals, disasters

and so on.

In Chapter 5, we propose a method for mobile wireless nodes, which are

pedestrians, to estimate the distribution of mobile nodes in their surround-

ings. In the proposed method, each node is assumed to know its location

roughly (i.e. within some error range) and to maintain a density map cov-

ering its surroundings. This map is updated when a node receives a density

map from a neighboring node. Each node also updates its density map in a

timely fashion by estimating the change of node distribution over time due

to node mobility. The goal of our study is to propose an autonomous pro-

tocol to let mobile nodes have accurate node distribution with reasonable

amount of wireless ad-hoc communication traffic.

For estimating the node distribution, a mobile node may independently

maintain and share positions of each node. However, the amount of data

exchanged among mobile nodes may be large since a large number of nodes

are expected in urban areas. To keep the size of the data constant, we

use a density map where we divide a target region into square cells and the

expected number of nodes (i.e. density) in each cell is maintained. Nodes can

estimate the current distribution of nodes from their own density maps by

finding cells with a high density in a greedy fashion. To build a density map,

with a certain interr,al, each node broadcasts its own density map where its

u,rea of presence (the area in which a true location is included) is merged.

On receiving a density map from neighboring nodes, the node updates such

a part of its own density map by the received density information which

seems to be fresher.

We note that there is a clear trade-off between the freshness of density

information and the required amount of wireless capacity to exchange den-

sity information. To pursue this trade-off, we have two key ideas. First,

we provide an est'imation funct'ion that estimates the future density map

14

based on its time-varying characteristics. As a simple example, if we know

the maximum speed V^o, of mobile nodes, an estimation function that es-

timates the density map after Al time can be designed in such a way that

each density in the current map is spread over V*or. At region. Another

function can be designed in such a way that the density is spread only to

the directions toward which other nodes exist. This is based on the property

that pedestrians walk on roads. Second, we design an adaptive protocol that

controls the transmission intervals of messages depending on the density of

surroundings, in order to avoid similar density maps to be emitted to the

wireless channel.

The simulation experiments have been conducted and the similarity be-

tween the real and estimated distributions has been measured. The results in

three different scenarios have shown that the proposed method could attain

average localization errors less than 10m.

The rest of this thesis is organized as follows. The next chapter reviews

the related work. Chapter 3 details our method deriving optimal service

execution on overlay networks. Chapter 4 describes a design of the service

execution platform for overlay networks. Chapter 5 details estimation proto-

col of distribution for mobile wireless nodes. Finally, Chapter 6 summarizes

this thesis.

15

Chapter 2

Related Work

2.L Service Models and Service Designing Frame-
works

As service models to describe collaboration with components, a execution

path 15] which simply describes sequence tasks and a directed acyclic graph(DAG)

16, 7] are proposed. Compared with a execution path and the directed aryclic

graph, a coloured Petri net can treat more realistic services. A coloured

Petri net can describe more complicate controls such as Ioop operations and

branch operations, or more specifically, it can describe synchronization op-

erations such as references of databases and change processing tasks of the

service ciepending on requests.

Design techniques for distributed systems supported by computers are

proposed in Ref.[8, 9, 10, 11, 12,16,17]. iOverlay[8] provides a distributed

platform on an overlay network which can develop and evaluate overlay ser-

vices. This platform introduces a message communication framework among

servers to support service design. Arigatoni[9] provides a distributed service

design framework which discover resources enough to execute services au-

tomatically. Ref.l10, 11] focus on reducing designing cost for development

of distributed services. MACEDON [12] provides both of simulator and

a testbed such as Planetlab so that MACEDON can support to analyze

and evaluate distributed services on a P2P network. Ref. [18] proposes a

programing language extended Guarded Horn Clauses for a distributed en-

vironment on an overlay network. On the other hand, evaluation methods

16

for service performance on an overlay network using a network simulator

are proposed. For example, OverSim [19] is proposed as a network simu-

lator specialized in an overlay network. Platforms supporting design and

development of a service by network simulations 120, 2Il are also proposed.

Specifically, a platform proposed in Ref.l20] can develop not only traditional

APl-level services but also high-level services such as behavior level services.

In cloud computing, rnany resource optimization methods on cloud net-

works 122, 23, 24,251 are proposed. In cloud computing for mobile wireless

network, Ref.[26] is presented a middleware of mobile cloud services for An-

droid devices. The high-level architecture and functional requirements for

a mobile sensing service are presented in Ref.[27]. Marinelli [28] proposes a

platform which supports cloud computing on Android devices. Ref. [29] pre-

dicts the future environmentin2022 such as device capabilities and networks

and proposes mOlouds architecture which supports mobile cloud computing.

Sonora [30] focuses on fault tolerance and presents a platform supporting

dynamic adaptation and failure recovery.

Compared with the above methodologies, in our work, we deal with

services that are decoupled from overlay network specifications. A service

can be written in a centralized way, using a known Petri net model, and

developers can start building the design without being aware of overlay net-

work architecture. The distributed version of the given service description

is automatically derived to alleviate developers' load in writing distributed

programs directly. Also, the resource optimizer allows optimizing the perfor-

mance of the service using some given objective functions. Several objective

functions are provided for the convenience of deployment of programs with

better performance. A toolset that integrates my work with existing meth-

ods and tools is provided.

2.2 Data Aggregation Techniques for Mobile Wire-
less Nodes

In Vehicular Ad-hoc NETworks (VANETs), there have been various ap-

proaches to aggregate and disseminate several types of contexts like road

surface condition, temperature, traffic jam information [31, 32, 33, 34]. Sim-

″
‘

ilar approaches have been considered in Wireless Sensor Networks (WSNs)

[35, 36, 37, 38] . Some of them consider reducing the amount of data based

on its similarity (i.e. elimination of data redundancy) and others consider

in-network computing of given queries.

Our proposed method falls into these categories in the sense that it is

aimed at aggregating (sensed) data with less amount of traffic. However,

the proposed method is designed for mobile nodes to self-estimate their

neighborhood distribution. Therefore, the data is time-varying in the scale

of minutes while VANETs and WSNs target aggregation of data such as

load surface condition and wide-area traffic condition information which are

relatively stable in long-term. Hence, we have to consider the trade-off

between timeliness of data of mobile nodes' Iocations and traffic overhead.

We note that object detection and tracking in WSNs have to deal with real-

time motion of objects (thus the data must be time-varying in very short

term). However, these applications are not aimed at aggregating data but

detecting objects.

As we stated in the introduction, each node has estimation functions to

estimate the dynamic change of node distribution, and exchanges the esti-

mated result with others to help increase the accuracy of density maps. Also

depending on the neighborhood density, each node controls the transmission

interval. Based on these two ideas, we have designed a protocol that deals

with a unique problem, that is, self-estimation of mobile node distribution.

In this sense, our approarh is original.

Our goal relates to localization algorithms 139, 40, 41, 42], which aim

to estimate positions of nodes. However, the goal of localization algorithms

is to estimate each node's position by i,tself and does not much care about

positions of other nodes. Also their main concern is accuracy, while our

challenge is to design a protocol that pursues the trade-off between the

accuracy and traffic.

There are several methods for estimating density of people in urban

areas[43, 44, 45]. Mobile space statistics [45] presented by NTT DOCOMO

tracks populations of each area by counting mobile phone users observed at

each base station. However, this approach aims at large-scale statistics such

18

as the population in a city, which is different from our target. Ref. [43]

proposes a method to reconstruct people flow from existing person-trip sur-

vey data. Ref. I] proposes a method for density estimation using coarse

location information obtained from mobile phone call data. To the best of

our knowledge, there is no research to provide real-time estimation of node

density in urban areas using cooperation among mobile users. A straight-

forward approach is to upload position data obtained by GPS from all the

nodes by using 3G networks. However, the 3G network traffic is overloaded

in such an approach particularly in urban areas where a large number of

people exist. In contrast, we use ad hoc communication between mobile

nodes to share density information while avoiding 3G network overloading.

19

Chapter 3

A Method Derivitrg Optimal
Service Execution on
Overlay Networks

3.1 Introduction

In this chapter, we propose a method to derive execution sequences of a given

application-level service that is executed by cooperative servers on overlay

networks. The proposed method assumes that a service consists of service

components, and it can derive optimal allocation of components that does

not overload network links and servers. Using the platform, services can be

installed and executed easily on real networks. We have conducted experi-

ments on Planetlab to validate our method. The experimental results have

shown that the proposed method could derive efficient execution sequences

and they could achieve higher throughput than the other sequences.

The rest of this chapter is organized as follows. Section 3.2 presents

definition and description of a service, and Section 3.4 presents definition of

an overlay network. Section 3.5 describes service execution on an overlay

network and optimization algorithm. Section 4.2 shows the design and im-

plementation of the proposed platform and Section 3.6 shows experimental

results. Finally, this chapter is concluded in Section 3.7.

20

address. reouest

location info, reouest

ourrcnt movie of
a site in CiW A" = "curcnt movio of

a site in Ci″ B'1

Figure 3.1: Service Example (transportation analysis services).

3.2 Definition of Services and an Example of De-
scription

In this chapter, we assume that the service is a transaction composed of

data processing units called service components which have sensing data as

inputs and it can be described as the combination of sequence tasks, paral-

lel tasks, branch operations and synchronization operations among service

components.

Fig.3.1 is an example of a service. This example is a flowchart-like de-

scription of a traffi.c analysis service using movie data from fixed cameras at

the streets in two cities: City A and City B. Given a request which have a

target address as one of the arguments, the service provides trrafrc forecasts

around the address in one hour and 24 hours by the following process. At

first, the component [a] in Fig.3.1 searches the database(called a repository

Ebl

kind of.equcst is this?
Obtsin ourcnt movic fron

Camera Movic Repository in City A
Obtain cunont movio from

Camera Movie Repository in City B

location info location infocurrent mOvie ="tafrc

Camera Movie
Repository in City A

current movre

ies in City A location i

Obtain movies from Camera
Movie Repository in City B

Obtain movies fi'om Camera
Movie Repository in City A

traffic an hour later

Forecast traffic 24 hours laterForecast ?affic an hour later

21

hereafter) which manages the locations of cameras for the information of

cameras around the target address. Next, using the searching result, com-

ponent [e] and componentl/] search repositories for movie data which store

the camera movies in the City A and City B respectively. Then, analyz-

ing movie data, component [g] and component [h] forecast the traffic at the

address in one hour and in 24 hours respectively. Finally, this service send

back the forecasting results to the user of the request. Additionally, the

component [i] can let the service perform different processes from the traffic

forecasting depending on a request. If an user want to know the current

traffic of his target address, component fc] and component [d] search the

repositories, return a current movie to him. Component [c] will be executed

when the target address is in City A. Component [d] wiil be executed when

it is in City B as well.

In our method, we assume that a request in this service arises transac-

tion processing mentioned above and the service need to respond to the flood

tide of requests from many users simultaneously. We define that the service

is actually described as a coloured Petri net like Fig.3.2. The coloured Petri

nets are composed of transitions which represent processing data, places

which represent buffers or storages of data and coloured tokens which rep-

resent data. A transition needs sufficient coloured tokens at input places to

execute the transition. On the execution, the coloured tokens at each input

place and new coloured tokens are generated at each output place. A tran-

sition can have a conditional expression depending on the value of coloured

tokens to control the execution.

Coloured Petri nets is described in 3.3 in details. For more detail, please

refer Ref. [1].

In this chapter, we assume that requests of a service are represented by

coloured tokens, service components ([o] thru [i] in Fig.3.1) are represented

by transitions(?l thru ?9 in Fig.3.2), and memory areas of data used by

transitions are represented by places(P1 thru Pl1). For example, as to tran-

sition ?1 (component [o.]), place Pl is an input place and place P2 is an out-

put place. A coloured token described as (" squareatStationA","traf ficforecast")
is given as a request. On executing ?1, this token is deleted. Next, repos-

22

P1: service input

<"squaro at Statoh A", "traffic fcecast")

Y
(address, request)

(retrieve("c", address), request)

T1 : seruice input

<locationjnfo, r6quest><location_info, requ est>

P3

<locatjon-info. retrieve("a", locationjnfo))

T9: obtain curent
camera moVie

movie from
repository B

(ocatim-info, retrieve("b", locatiqjnfo))

ぐocattcln」 nfo〉 ぐoca10n nfo〉

T3:lobtain movies frcm T4: obtain movies from
repository A repository B

(retrieve("a", locationjnfo)) | (ocationjnfo, rotrieve(,.b", location_info))術tOnnfOretη

も:̈ゎ壁5mnb
やocaJon」 nfOi moMes、 a〉 くmoYleS― a〉 くmovles♪ > ぐ。caroninf。 .movlettb〉

T5: forecast traffic r r- r r T6: forecast traffic
an hour later 24 hours later

Pl 1: service output

Figure 3.2: Transportation Analysis Services of Fig.3.1 Formally Written in
Coloured Petri Net.

itory "C" (place PI2) is searched for the location information of cameras

around the target address based on a label (retrieue(" c" ,address),request)

23

,
analvze24(movies-a.movies-b))

Pr0
()V

<location-info2, traff c24>

T7: obtain traffic forecast

ぐocatcln」 nfol,tra“ cl trattc24〉

put on output edge (71,P2) called an arc. Then, a new coloured token

including the searching result is generated on place P2. Place Pl, place

Pl2, place P13 and place P14 represent location info repository "C") cam-

era movie repository "A" and camera movie repository "B" respectively

and the tokens of these repositories indicate data of the repositories. For

instance, data of repository "C" is described as coloured token (C) held by

plane PI2. Place P2 holds searching results of location information, place

P5 and place P8 hold searching results of camera movies, and place P9 and

place P10 hold results of traffic forecasting. Place P3 and place P4 repre-

sent buffers to wait for searching process of the camera movies. The results

of a series of this transaction processing are held by place P11.

If a movement of data through the execution of components connected

in order of a sequence is regarded as a data flow, a transition which hold

multiple input places like transition 75 and transition T6 indicates a syn-

chronization of a data flow since the transition is executable only when all of

the input places of the transition hold a coloed token. If a transition which

hold multiple output places like transition 72, the execution of the transi-

tion indicates sta,rt of parallel processing as well. A place holding multiple

output transitions indicates a branch and which transition to be executed

can be controlled depending on the value of coloured tokerrs. For example,

the conditional expression of transition 72 become true and transition ?2

can be executed when place P2 holds a coloured token which value of the

field requesf is a string of "traffic forecast". On the other hand, transition

?8 is executable when request is "current movie" and the target address is

in City A, and transition 79 is executablewhen request is "current movie"

and the target address is in City B.

In this chapter, in terms of structured constraints of the service model,

we assume that a reference of a repository is only described as a self-loop

which connects the transition representing the reference process and the

place representing the repository mutually. A self-loop is defined that the

input place and the output place of a transition is the same. For instance,

transition T7 have a self-loop with place P12 (repository "C") to refers the

repository. On execution of transition ?1, coloured token (C) is given as

24

♀

firing of f . (b) After firing of t.

Figure 3.3: An Example of Coloured Petri Net.

an input of the transition. After the execution, the process of the reference

to repository "C" is finished when coloured token (C) is returned to the

place. It is also assumed that no service includes a directed cycle except

a self-loop to describe a repository due to the optimization algorithm men-

tioned in Section 3.5. Additionally, we assume that every service includes

plare pin to put requests from service users initially and place porl to put

results of requests. In Fig.3.2, place Pl corresponds to place pin, place P7l
corresponds to place pour respectively.

3.3 Coloured Petri Net

In this chapter, we deal with services written as coloured Petri nets. Coloured

Petri nets are extended Petri nets where tokens have values and the firability
of transitions may depend on those values. I note that Coloured Petri Net

(CPN) 11] is a known high-level Petri net that falls into this category. These

models have enough modeling power) analytical power and tool support

(such as CPN Tools []) to specify, verify and analyze large and practical

software systems [46], communication protocols 147, 48], control svstems and

so on [1, 49].

In Petri nets, a place (denoted as a circle) and a transition (denoted as

a rectangle) may represent data (or system state) and a task, respectively.

が

ヽ（毀

メ
¨

に
０

０
Ｚ

A place and a transition may be connected by a directed edge called an arc

(denoted by an arrow). Tokens (denoted as black dots) in places represent

the current state of the system, and execution ("firing" in the Petri net

terminology) of a transition may consume/produce tokens from/to the places

connected to the transition.

Formally, in coloured Petri nets, each incoming arc to transition I from

place p has a label (called an arc label) of the form of k1Xft2X2... where k1

is a positive integer, X; is a n-tuple of variables like (r1, n2, ...nn) and n is an

arbitrary non-negative integer assigned to place p. Place p rnay have tokens,

each of which is a n-tuple of values C; : (c1.c2....c,1 . A set of tokens which

can be assigned to the label of an incoming arc to transition f is called

an assignable set of the arc. Moreover, a transition t may be associated

with a logical formula of variables from the labels of incoming arcs of f,

called a cond'ition Conditions are depicted inside transitions rectangles. A

transition t may frre i,ff there exists an assignable set in each input place of

I and the assignment of values to variables by the assignable set satisfies the

condition of f. Also, each outgoing arc from transition f to a place p' has

a label of the form of kiYftiY2... where k' \s a positive integer and Y; is a

n/-tuple of values, variables on the incoming a,rc labels of f or functions over

the variables. Therefore, if I fires, the values of the labels on the outgoing

arcs from f are determined by the assigned input tokens according to the

output arc labels. New sets of tokens are generated and put into the output

places of f.

In Fig. 3.3(a), the incoming arc to f from pr, (pr,t), has the label 2(r,g)

where r and y are variables. This means that two tokens each consisting of

a pair of lalues are necessary in place py for the firing of transition f . Here,

since the following assignable sets 2("a","c") in pt ("a" and "c" are strings

here), ("a") and ("c") inp2 and two tokens without values inp3 satisfy the

condition of t, (r - z AA : u), t can fire using these sets. Note that tokens

without values are represented as black dots in the following figures. After

the firing off, new tokens are generated to the output places pa arld pb using

those token values. The marking after the firing of I is shown in Fig. 3.3(b).

Note that "@" is a concatenation function of two strinss. Thus a tuple of

26

Fisure 3.4: Network Architecture.

strings "aa", "c" and ttat' is generated topa. The arc label t'1", which means

the delivery of one token without values, is omitted in the following figures.

3.4 An Overlay Network

'We assume that a network is a logical overlay network where each server

can cornmunicate with any other server over the unicast link. This network

is composed of two kinds of servers: servers which can store sensing data

and servers which can execute service components. The processing power is

different with respect to each server and the bandwidth of data transferring

is also different with respect to each link.

The network is modeled as a directed complete graph G defined as G:
(l/, r) such that N is a server set and .L is a link set defined as L : l/ x l/.

3.5 Service Execution on an Overlav Network and
Optimization Algorithm

Generally, in a service to collect and process sensing data stored at dis-

tributed places on an overlay network, a server to store the sensing data

may be different from a server to process it. If it is actually different, data

transferring between these servers is needed. For example, when transition

73 in Fig.3.2 is allocated in server i and output place P5 of transition ?3 is

allocated in server j, movie data which is a result of transition ?3 is trans-

ferred on the overlay link from server i to server .i. If the link bandwidth

27

1t service input
service output
children info repository
index search result
location info repository A
repository search result

Table 3.1: Example of Place Location Table for Child Tracking Service.

between server i and server j is insufficient, that may lead that the data

transferring becomes a bottleneck of the process. If transition ?3 is allo-

cated in server j as well as place P5, the data transferring between transition

73 and any other places except place P5 may be needed and become a new

bottleneck though there is no data transferring from transition ?3 to place

P5. In terms of not only a link bandwidth but also the processing power

of each server, we need to consider this bottleneck problem as well. We as-

sume that the processing time of each transition is different since each server

has a different processing power respectively. Under this assumption, the

performance of server z itself may be insufficient and become a bottleneck

depending on an allocation.

As mentioned above, it is desirable that the allocation of places and

transitions to servers should be determined by considering this problem to

process requests of a service totally fast. In this chapter, we call the allo-

cation of places and transitions of a service description to servers as a dis-

tributed execution sequence. Our method aims at obtaining the distributed

execution sequence to maximize the number of processed requests per unit

of time (called as throughput of the service hereafter).

3.5.L Deriving Distributed Version of Service

In this section, we briefly introduce the method proposed in 113] to derive a

distributed version of a given service. The platform presented in this thesis

is based on this method. We briefly explain the algorithm for deriving

28

Pll seⅣice input

凸耐aOCtOnhstげ >

P5: children info repository

T4: obtain current child

Figure 3.5: Child Tracking Service written in a Coloured Petri Net.

a distributed version of a given service. The algorithm takes as inputs a

colored Petri net description of a service and an allocation table of places

into overlay nodes (called place locat'ion table), and outputs a distributed

version of the service, which is a set of coloured Petri nets that contain

communicating behavior between the nodes. Each obtained coloured Petri

net corresponds to the behavior description of an overlay node.

We assume that two places with a common rlralllre
((Xa.;i' (X is used

in the derivation algorithm and is o ory [t3]) in the coloured Petri nets

of two different nodes where i and j represent the end points (send and

receive buffers) of a reliable communication channel from node i to node

j. If a token is put on place "Xu.ij" at node i, the token is eventually

removed and put onto the same place "Xu.ij" at node j. These places are

called commun'icat'ion places, and are like "fusion places" in coloured Petri

nets[l]. Note that u means that these communication places are used with

<retrieve(child infq b)>

T2: obtain child trajectory

P7: camera movie repository

P4 : service output

29

Node l(Pl′ P4)

Pl:service input

Node 2(P2′ P5)

> T3read

hiatory">

<repo,id,a>

T2.commit

<child_name, request

requesl==
"current location"

T2

request.child_data>

Tl.commit

_data),request>

2
くchild_!nfo′ request>

T4β 41
くchi d_info,「 equest

request==
'action history・

ch‖ d info

==・ nu‖・

P4 : seruice output

Node 3(P6′ P3)

<repo,id>

T2.read T4.read

<repo,id.a>

T434

Node 4 (P7)

P7: video
repository I
(for mobile)
<D> <D>

T3.o34

く0

くb>

<id,v,b>

T4.commit くb> くadd(id v b)> T3.commit

T5start

< nuil>
T4.start

<o

T4.commit
<r€trieve{id,b)>

T5com m■
Tzi

T4β 41

<id, transcode()>

P3

<id,v>

T3start

<ld,v>

Figure 3.6: Distributed Child

Location of Table 3.1.

Tracking Service of Fig.

30

T2o23

T3“ l T3∝ 4

3. 1 under Place

respect to the execution of transition T, of the service. In the following

fi.gures, communication places are represented as dotted circles with their

names inside. Also, in a distributed version of a given service, we introduce

a reserved symbol denoted by /, used in tokens for notification purpose only.

We show an another example of a service description in Fig.3.5. This

service presents a tracking service for children and their parents. Fig. 3.6

shows a distributed version of the service of Fig. 3.5 on four overlay nodes

based on the place location table in Table 3. 1. The reader may refer to

[50] for a complete description of the algorithm. Here, we provide a simple

example that demonstrates how nodes can collaborate for providing a given

service in a distributed environment and how such cooperative behavior

is described using coloured Petri nets with communication places. In the

algorithm, one of the overlay nodes that has input places of a transition

is selected as the node that starts the execution of that transition (such a

node is called the primary node of the transition). In Fig. 3.6, node 1 is

selected as the primary node of 71 since it has place P1. Whenever the

input place P1 of ?1 receives a token (a request with keywords), node 1

instantaneously sends this token to node 2 which has place P5 through the

communication place "T1.e12" (it is worth noting that both nodes 1 and

2 include the communication place "?1.o12"). Afterwards, at node 2, the

retrieval from video index P5 is done and the result retrieue(keys,i,nder) is

generated as a token into place P2 at node 2. This simulates the behavior

of 77. Place P2 represents a choice of 72, T4 or ?5 based on the token

value of variable 're'qx)" in P2, and this lalue has been determined as the

result of the previous computation retri,eue(keys,inder). The reader may

verify that the coloured Petri nets of Fig. 3.6 simulatef realize the service of

Fig. 3.2.

3.5.2 Place Allocation to Overlay Nodes

One of the important features of our methodology is to decouple service

descriptions from overlay network specifications. Accordingly, developers

are allowed to write services without being aware of the actual locations of

data. That is, they can refer to and update tokens in any place from any

31

transition in writing services. To accomplish this, the method given in [13]

provides a way for distributing the given service into overlay nodes knowing

an allocation of the places to the overlay nodes. However, it is clear that the

performance of a service is affected by this allocation of places. For example,

allocating a frequently-accessed database into an overlay node with limited

computation power usually leads to a performance bottleneck. Accordingly,

in [13], before distributing a given service into overlay nodes, an optimal

allocation of places into the overlay nodes is determined using a given op-

timization model. The model takes into account the computation power of

the overlay nodes, the network capability, and the execution orderings of

subtasks in given services and simulation experiments were conducted to

see the effectiveness of the optimization. The reader may refer to [13] for a

detailed description of the optimization model.

The platform presented in this thesis implements this optimization model.

In addition, optimization is done using collected information about the per-

formance of the overlay nodes and the network. This helps in optimizing

the performance of a distributed service as will be demonstrated in Section

3.6.

3.5.3 An Example of a Service Execution based on a Dis-
tributed Execution Sequence

A distributed execution sequence is a map to a set of severs N denoted as

alc : PUT -+ N where P is a set of places and T is a set of transitions. We

assume that a set of input places of transition t is denoted as of and a set of

output places is fo. We also assume that a set of input transitions of place

p is denoted as ep and a set of output transitions is denoted as po as well.

A service execution based on a distributed execution seouence is described

below in details.

An execution of transition I is conducted by the following three steps.

(I) In each input place p" € of of transition f, colored tokens in the place

pr are transferred from server alc(p") to server arc(t). These transfers

can be conducted separately.

32

tr?
doto Eansler
on link (2,3)

doto trunsler

server 3

no ddto trdnstel

lrom seruet (3, 2),

server 2 seruer 3

Figure 3.7: Example of a transition execution.

(II) Server alc(f) executes transition I immediately after all coloured tokens

have been transferred to server erc(t).

(III) As to each output place po € fr of transition f, coloured tokens to

be generated in place py ate transferred from server alc(t) to server

alc(p). These transfers can be conducted separately as well as Step

(r) .

If requests arrive at the service continuously, each step of Step(I) thru Step

(III) in the transition f mentioned above can be processed like pipeline pro-

cessing. Among Step (I) thru Step (III), the step for which it takes most

delay to process one request becomes the bottleneck of the execution of tran-

sition f and the number of requests processed per unit of time in transition

t is determined by the bottleneck. Given this factor, we assume that the

throughput of transition t (called fh(t)) is denoted as the minimum value of

the number of requests processed per unit of time among Step (I) thru Step

(III) of transition f.

For example, Fig.3.7 shows an example of a distributed execution of tran-

server 1 server 2 server 2

dotd trdnsler
on tink (2, ?)

33

sition t. In Fig.3.7, place p1 is allocated to serverl, place p2, place p3, and

place p4 are allocated to server2, and place p5 and transition f are allocated

to server3. On the execution of transition f , in the Step (I), the following two

data transfers should be conducted (labeled Substep (a) and (b)). At first,

in the Substep (a), a coloured token in place p1 is transferred from serverl to

server3. Next, in the Substep (b), coloured tokens in place p2 and placep3

are transferred from server2 to server3. After all coloured tokens have been

transferred to server3, in the Step (II), transition f is executed on server3,

and coloured tokens of place p4 and place p5 are generated (labeled Substep

(c)). Finally, in the Step (III), labeled Substep (d), the coloured token of

place p4 is transferred from server3 to server2. However, the coloured token

of place p5 is transferred between servers since transition f and place p5 are

allocated to the same server3.

The throughput of transition t in Fig.3.7 is the minimum value of the

number of requests processed per unit of time among Substep (a) thru Sub-

step (d) of the transition. 'We assume that the throughput of the entire

service (called th(S)) is defined as the sum of the throughput of all input

transitions in place pou1. Tl;re goal of our optimization algorithm is to max-

imize the th(S).

3.5.4 Problem Definition

In this section, we define the optimization problem to maximize a through-

put of a service.

The throughput of Step(I) and Step (III) mentioned in the previous sec-

tion is limited depending on a link bandwidth between servers and amount

of data transferring between the servers. To represent the limitation, we

assume that maximal throughptt TH*"n(u,u,i, j) is given, and this value

depends on the link bandwidth from server i to server j (i,j e .n/) and

amount of data through arc (u, u) (u,u € P U T) where N is a set of servers,

P is a set of places and T is a set of transitions. On the other hand, the

throughput of Step(II) is limited depending on a processing power of a server

and calculation amount of a component. To represent the limitation, we

also assume that maximal throughput TH"r""(t,i) is given depending on

34

the processing power of server i and calculation amount of transition t.

Additionally, if multiple transitions refer the same repository(place), each

throughput of transitions referring the repository is limited depending on

the processing power of the server where the repository is allocated. To

represent the limitation, we assume that maximal throughptt THa6Q,i) of

repository r (r € P) is given depending on the processing power of server

i. It seems unreasonable that the server where a repository is allocated is

different from the server where the transition to refer the repository is allo-

cated, since all data of the repository need to be transferred between servers.

Hence, in this optimization problem, we assume that each transition to re-

fer a repository should be allocated to the server where the repository is

allocated. Essentially, this maximal throughput is changeable depending on

allocations, for example, in the case when multiple transitions are allocate

to the same server.

In our proposed method, we reduce this problem to a linear programming

problem. In the linear programming problem, given service description ,5

written by a coloured Petri net, network graph G where G : (N, tr) and

the following sets of maximal throughput: TH"r""(t,i) (Vt € T,Vi € l/),
TH*,n(u,u,i, j) (Vu,u € PUT,Yi, j e l/) and TH66(r,i) (Vr € P,V? € l/),
we introduce Boolean variable alc(u,i) which is 1 if c' is allocated to i and

0 if o is not allocated to represent a distributed execution sequence alc :

PUT -+ l/. Furthermore, for all arcs (u,u) e (P x 7) U (T x P) and all

links (2, j) € L, we also introduce Boolean variable msg(u,u,i, j) which is 1

if a is allocated to i and o is allocated to i. and 0 if not allocated.

3.5.5 A Linear Programming Problem for Service Optimiza-
tion Problem

[Objective F\rnction]

The goal of this problem is to maximize throughput ih(S) of a service.

The throughput th(^9) of a service means the number of coloured tokens per

unit of time which is put to output place porl of the service. The objective

35

Function is defined as the followins formula.

marth(S): t th(t)
teop".ut

(3.1)

[Constraints for throughput]
The throughput th(t) of each transition t € T needs to satisfy the fol-

lowing formula.

th(t) < mi.n(X uY u Z) (3.2)

Let min(A) be a function to obtain the minimal element from a set A. X,
Y and Z is denoted as the following.

X {TH*"s(p,t,i, j) | msg(p,t,i., j) :1 A p € ot A (i.,j) € ,} (3.3)

Y : {TH",""(t,i)lalc(t,i):tA?€,4/} (3.4)

Z : {TH^"n(t,p,i,, j) lmsg(t,p,i, j): I Ap € t o 4(2, j) € t} (3.5)

(3.3)-(3.5) mean constraints for maximal throughput in Step(I), Step(II)

and Step(III) respectively. (3.2) describes th(t) is denoted as the minimal

throughput of Step (I) thru Step (III). Since the objective function aims at

maximizing the value of the throughput th(S), (3.2)-(3.5) can be reduced

to the following linear equations:

th(t) - T H",""(t,i) - C . (I - alc(t,r)) < 0

where Yt eT,Vz e N and

(3.6)

th(t) -TH,n"s(p,t,i, j) -C.(l-msg(p,t,i, j)) <0 (3.7)

th(t) -TH*"s(t,p,i, j) - C .Q - msg(t,p,i, j)) < 0 (3.8)

where Vt € T,Yp e P,V(i,, j) € L. It is assumed that C is a constant where

it is much greater t}i^anTH*"n(p,t,i,j) and TH*"s(t,p,i, j). Consequently,

these constraints is true if alc(t,i,) or msg(u,a,i, j) equals 0. (3.6) corre-

sponds to (3.4) and (3.7) and (3.8) correspond to (3.3) and (3.5) respectively.

(3.6) represents that th(t) - THemc(t,r) < 0 is true only if transition f is

allocated to server i. (3.7) and (3.8) represent the same as well as (3.6).

On the other hand, focusing on places, input and output of coloured

tokens to a place can be regarded as a data flow. Hence, the following

formula where Yp e P \ {pm,pout is defined.

DtoAl- t th(t')>o (3.9)

te.p {€pc

[Constraints for transitions referring to repositories]

Let ,R be a set of places denoted as repositories where R c P and Iet

T'(r) be a set of transitions referring to repository r where r e R. Since

these transitions should be allocated to the same server as mentioned in

Section 3.5.4, the following constraint where Yr € R,Vi € l/,Yt eTt(r) carr

be described.

alc(t,i)-alc(r,r):0 (3.10)

Furthermore, as to the throughput of transitions to refer repositories, the

following constraint where Vr € R,Vz € ,A/ can be described.

t th(t) -THa6(r,i,) -c.(r- atc(r,r)) < 0 (3.11)
t€Tt(r)

We assume that C is constant where it is much greater thanTHa6(r,i) as

well as (3.6).

[Constraints for communications between servers]

A constraint for msg(u, u,i, j) is defined as the following formula where

Y(u,u) € (P x T) u (T x P),(i, j) € L

msg(u, u, i., i) : alc(u, i) . alc(u, j) (3.r2)

(3.12) means that msg(u,a,i., j) equals 1 only if z is allocated to i and o

is alocated to j. (3.I2) can be reduced to the following linear inequalities

where Y(u,u) € (P x f) U Q x P),V(2, j) e L since variable alc(u,i) and

variable alc(u,i,) are Boolean variables.

alc(u,i) - msg(u,u,i, j)) 0

alc(u, j) - msg(u,u,i, j)) 0

alc(u,i.)-talc(u, j) -msg(u,u,i, j) 1I

(3.13)

(3.14)

(3.15)

37

Transportation analysis

Planetlab
full-meshed

30

300

60 (for traffi.c forecasting)
120 (for movie searching in 78)
120 (for movie searching in ?9)

Table 3.2: Experimental Settings.

Parameters

network
overlay

f of servers

f of requests

Floating car data analysis

1000BASE Ethernet
full-meshed

r
t,

815

500 (for traffi.c estimation)
300 (for OD time estimation)

15 (for traffic forecasting)

[Constraints for allocations]

The following formula where Vu e P € ? should be described since every

place and transition is certainly allocated to a server.

T alc(u,i) : 1 (3.16)
i€N

As mentioned above, the optimization problem of a service is reduced to a

linear programming problem(ILP). We can obtain an optimal distributed ex-

ecution sequence by solving the problem. Though an integer linear program-

ming problem belongs to a NP-hard problem, we expect that this problem

can be solve in realistic time since it is assumed that a service is composed

of few dozens of places and transitions. F\rrthermore, it is comparatively

easy to obtain a quasi-optimum solution because many heuristic algorithms

to solve are proposed. Hence, it seems that our method can apply practical

services.

3.6 Experiments

In this section, for two kinds of services: transportation analysis services

in Fig.3.2 and floating car data analysis services in Fig.3.8, we conduct

evaluation of the distributed execution sequence derived by the proposed

method and improvement on performance of the service using the proposed

platform.

38

Pl: service input

<"s crossroad in ftont of sta A", "traffc cs!")

\-/
<addre6s, r.quasD

Y,
| | T1: service input

,,"r** t-l*"""r**u

<locrton info rcquesD <locaton-into, re@esO

<locrtron info req!est)
T2: obtain floating car
data fiom repository A

T4: obtain floating car
data from repository B

<locstd into rckieve("b

Tl 4: obtain traffic forecast

<locsUon info estimatc-tratric(car,dstd>

P16: sedice output

Figure 3.8: Floating Car Data Analysis Services.

The floating car data analysis services in Fig.3.8 provides traffic informa-

tion such as traffic estimation at a crossroad, estimating origin-destination

travel time and traffic forecasting for car navigation systems by analyzing

floating car data. Each vehicle in west side and east side of Umeda in Osaka

sends floating car data to repository A and repository B respectively. In this

service) we assume that the average of the number of vehicle in these areas

<le!$on,into>
rddevc("a" tocarion into)> I

39

is about 7,500, 570 of vehicles are floating cars and 67% of vehicles equip

sets of a car navigation system.

Table 3.2 shows experimental settings. In this experiment, we use a

network testbed Planetlab [51] which is composed of worldwide servers on

the Internet for the transportation analysis services in Fig.3.2. We build a

full-mesh overlay network over TCP composed of 30 servers on Planetlab

which belong to different domains each other. On the other hand, we use

1000BASE Ethernet for the floating car data analysis services in 3.8. We

build a full-mesh overlay network composed of 5 servers which belong to the

same domain. However, pseudo-packet delay generator should work at each

node to represent a network with high latency.

Moreover, data repositories (Ex. place P13 and place P14 in Fig.3.2)

are allocated to fixed servers since these places depend geographically. we

execute the two kinds of services based on not only a distributed execu-

tion sequence derived by the proposed method but also random distributed

execution sequences for comparison. On deriving a distributed execution

sequence by the proposed method, we measure CPU power of each server

and available bandwidth of each link between servers using the function of

the proposed platform. Based on these values, we give the max throughput

that is a input of the proposed algorithm.

To evaluate the performance of a distributed execution sequence designed

by the proposed method, we compare it exhaustively with distributed execu-

tion sequences generated at random as many as possible. In this experiment,

we generate 100 distributed execution sequences at random in Fig.3.2 and

Fig.3.8 respectively. 300 requests at each distributed execution sequence in

Fig.3.2 are generated. These requests are composed of 60 requests for traffic

forecasting, 120 requests for movie searching in transition ?8 and 120 re-

quests for movie searching in transition ?9. On the contrary, 815 requests

at each distributed execution sequence in Fig.3.8 are generated. These re-

quests are composed of 500 requests for traffic estimation at a crossroad,

300 requests for estimating origin-destination travel time and 15 requests

for traffic forecasting. We input these requests in the random order. Un-

der these settings, we measure throughput of the service at each distributed

40

Table 3.3: Throughput of Services Derived by the Proposed Method.

Services Throughput

Ttansportation analysis services

Floating car data analysis services
II4
308

execution sequence.

3.6.1 Throughput of a Service

Table 3.3 shows the throughput of each service derived by the proposed

method and Fig.3.9 shows a frequency distribution table of the average num-

ber of requests completed to process per 100 seconds defined as throughput

of the service for random distributed execution sequences. In this table,

the x-axis represents the throughput and the y-axis represents the num-

ber of distributed execution sequences whose throughput is (r - 10,r] . As

to the transportation analysis services, the maximal throughput is 116.2

and the minimal throughput is 23.6 in (a) of Fig.3.9. This represents that

the throughput changes quite much depending on distributed execution se-

quences. On the other hand, the throughput of the distributed execution

sequence designed by the proposed method is 114. This throughput is the

3rd highest of the throughput of random distributed execution sequences.

Correspondingly, in the floating car data analysis services, the maximal

throughput is 292 and the minimal throughput is 21.0 in (b) of Fig.3.9.

The throughput of the distributed execution sequence designed by the pro-

posed method is 308. This throughput is the highest of the throughput

of random distributed execution sequences. We observe that the proposed

method can derive distributed execution sequences which have high perfor-

mance. As reasons why the distributed execution sequence by the proposed

method does not perform the best in the transportation analysis services,

we guess that the distributed execution sequence is not optimal any more on

execution since server and network utilization are always changing on the

Planetlab, and we also guess that the network model may be insufficient

to describe real networks since a portion of links in a real network can be

41

３。

２５

２。

１５

・０

５

０

い
０
０
〓
０
コ
す
０
０

Ｃ
〇
一“
ヨ
０
０
Ｘ
Ｏ

■
０
〕
コ
０

』̈
一
∽
一■

い
ｏ

■

５

０

５

０

５

０

５

０

０
０
０
〓
０
ヨ
す
０
∽
“
０
一一
ヨ
０
０
Ｘ
Ｏ

「
０
“
ョ
一

』̈
“
∽
０̈

」０
・
ｔ

0 10 20 30 40 50 60 70 80 90 100 110 120

Throughput

(a)nanspOttation Analysis Ser宙 ces.

0 25 50 75 100 125 150 175 200 225 250 275 300

Throughput

(b)Floating Car Data Analysis S∝ 宙c∝ .

Figllre 3.)nequency Distribution of Throughput.

42

０

　

　

　

　

　

　

　

　

　

　

　

０

０

∽
ＣＯ
メ
０
一　
“
Ｃ
一一
一”
〓
　
」
ｏ　
轟

Figure 3.1-0: The Number of Waiting Tokens at T4 and T6

conflicted although a network is modeled as a full-mesh overlay network in

the proposed method.

When we optimize services, workloads of the network and servers during

the entire processing period of the services should be considered. Therefore,

load statistics during the period should be given to the proposed method as

network information. The proposed method intends to optimize one service

but services can balance each other on a network when each service keeps

its performance not to exceed constraints of workloads. Additionally, if a

network provides functions of load balancing, the proposed method can use

these functions as a constraint. If every service uses our platform proposed

in Chapter 4, our platform can measure the performance of all services.

Therefore, our platform can be used as a framework which provides the

functions of load balancing, giving constraints for max throughputs of servers

and a network.

3.6.2 Bottlenecks of a Service

Next, we show an example of a process to discover a bottleneck of a service

which causes determines We focus on the number of waiting tokens at tran-

sitions since waiting tokens may occur at bottlenecks. Fig. 3.10 shows the

number of waiting tokens at transition ?1 and transition T2 in a distributed

execution sequence. We can observe that servers where the transitions are

allocated are overloaded since waiting tokens occur at both of the transi-

43

tions. When new tokens don't go into to the transitions, the transition

where the decreased number of tokens is higher than another transition per-

forms better. Hence, the bottleneck is not at transition T4but transition 76

because the decreased number of tokens in transition ?4 is higher than tran-

sition ?6. It may be possible to improve on the throughput of the service if
?6 is reallocated to more appropriate server. As mentioned above, we can

discover bottlenecks easily using the monitoring function of the proposed

platform.

3.7 Conclusion

In this chapter, we have proposed a method to derive execution sequences of

a given application-level service that is executed by cooperative servers on

overlay networks. The proposed method assumes that a service consists of

service components, and it can derive optimal allocation of components that

does not overload network links and servers. Using the platform mentioned

in Chapter 4, services can be installed and executed easily on real nehrrorks.

The platform can measure network loads and CPU loads continuously, and

can adaptively determine new allocation optimizing the system load in the

environment. We have conducted experiments on Planetlab to validate

our method. We have confirmed that the proposed method could derive

efficient execution sequences and they could achieve higher throughput than

the other sequences.

44

Chapter 4

Design and Development of
Service Execution Platform
for Overlay Networks

4.L Introduction

In this chapter, we design and develop a service execution platform for sup-

porting the development of overlay services. Using the platform, services

can be installed and executed easily on real networks. Given network in-

formation, this platform can build overlay network automatically. Then,

the platform deploy the distributed services which is derived by the design

method to servers by SSH. On executing the derived service, this platform

can monitor nehvork loads and CPU loads continuously in order to confirm

the performance of the service by a service designer.

4.2 Service Execution Platform

Our platform mainly consists of the following functional components; (i)

di,stri,buted seru'ice generator that derives distributed versions of services,

(i1) resource opt'im'izer that is the part of the distributed service generator

and suggests the "optimal" allocation of places for better performance of the

services, (1ii) seruice erecuter that interprets distributed service descriptions

written in coloured Petri nets and executes the services on overlay nodes,

and (iv) resource rnon'itor that monitors overlay nodes and link status.

45

4.2.I Distributed Service Generator and Resource Optimizer

The distributed service generator takes as an input a service written using

CPN Tools, coded according to CPN Tools XML format, and a description

file of the given service parsed using our dedicated/special XML parser de-

signed for this purpose. Moreover, the generator also takes inputs regarding

the overlay network such as the number of overlay nodes and the nodes

identifi.ers, IP addresses and ports.

The service description and the overlay service information are given

to the resource optimizer which generates, from the give information, an

allocation of places, represented as a place location table, that optimizes the

performance of the service. Optimizing the performance is done using the

integer linear programing (ILP) model given [13]. We use CPLEX to solve

the optimization problem and obtain a place location table that achieves

the best performance in terms of the considered objective functions. Based

on the derived place location table, the corresponding distributed service

description is then derived by the distributed service generator. However,

due to network uncertainty, the optimized place allocation does not always

provide a good performance, To obtain better performance, we provide

more information about the overlay networks' status, such as the overlay

link status (delay and bandwidth) and the overlay node status (CPU load)

which are usually difficult to predict in advance. Thus, we may need to run

again the optimization problem and evaluate, by monitoring the execution

of the service, the obtained results using the real network . We show how

our platform achieves this goal in Section 3.6.

4.2.2 Service Executer

The architecture of the serive executer function is shown in Fig. 4.1. This

function is realized by the cooperation of service access point module, a con-

troller, and a set of overlay nodes. The controller consists of an interpreter

of the distributed services, written using CPN tools format, and a system

controller that handles the exchange of data among the overlay nodes and

the execution of subtasks according to the commands provided by the in-

terpreter. The service access point provides users with Web interfaces for

46

Figure 4.1: Overview of Service Executer.

accessing services and also has a system interface module that allows the

exchange of input/output data between users and services.

The system interface receives requests from users through the Web-based

user interface in Fig.4.2. Then, it requests the CPN interpreter to put a

corresponding token into the service. This request is passed through the

system controller. The system interface also requests the controller to put

corresponding data onto the overlay nodes. After executing the service, the

system interface receives the output of the service and replies back to the

system user. The output is provided to the user as a URL.

T}ae sgstem controller is designed as shown in Fig. 4.3. The controller

manages the execution of at the overlay nodes by receiving commands from

the CPN interpreter. When the system starts, it initializes the CPN inter-

preter and registers the distributed service at the interpreter. Also it sends

the (compiled) subtask program codes of the service to the overlay nodes

that execute these subtasks. The interpreter also sends to every overlay

47

Ore' , ':l i i ' m rtr g'
- .r dfr7*.ddnd,1r..n' Orp

Automated Vidco Decoration
and Transcoding Seruice

/\rfitr

tul

(a) Before execution

OE' -, 凛●,そ

Automatcd Vidco Dccoration
and Transcoding Scruice

r-Pa*fitfl
ithrtTrllrr Fi;lf7F.

t7 m' *ch cFi'^rcE Ed { b-d

E7 m kr6ed.hin

@

´

露

(b) On execution

OB'- - i ;.. m lrefl
-: 6ktr/b4.rd{nrdF<p.-- Os' 4.

Automated Ⅵd● o Decoration
and Transcoding Service

結果

出力情薇

(c) After execution

Figure 4.2: Web-based User Interface.

node an initialization shell script that makes the node ready to execute the

service by establishing overlay links with other nodes. Managing connec-

tions between the system controller and the overlay nodes is done by the

Node Mai,nta'iner. Moreover, the association of overlay nodes of a coloured

Petri net service with the actual overlay nodes is done by a Node Mapper.

Every connection is established using the Sectrre SHell (SSH) program and

the inter-process communication port of the system controller is redirected

to the standard I/O of the SSH program.

Message Processor is a message handler that communicates the control

messages between the system controller and the overlay nodes. FinaIIy, the

Data Synchron'izer collects the log files recorded at every overlay node using

the SCP or the RSYNC programs.

The system controller has an Euent Mon'itor that intermediates the CPN

interpreter and the overlay nodes. When the CPN interpreter finds an exe-

cutable transition, the transition is fi.red and the programs that correspond

to its subtasks are executed at the corresponding overlay nodes. Here, we

note that in our model the firing of transitions is not instantaneous since the

subtasks associated with transitions (represented as labels of output arcs)

may require some execution time. For example, in Fig. 3.6, T2.commi,t of.

node 3 has a funct\on "transcode(retri,eae(i,d,a))" on its output arc. The

function represents a subtask to downsize the video retrieved from repository

48

Node
Maintainer

Message
Processor

Node Mapper Event Monitor

Figure 4.3: System Controller.

A and this subtask may take considerable execution time for transcoding.

Similarly, the transmission of large data between overlay nodes (represented

as communication places) may require a transmission delay. The event mon-

itor observes the execution of the programs and the transmissions of data,

and upon completion, the monitor notifi.es to the CPN interpreter. The

CPN interpreter, after the firing of transitions, delays the generation of

tokens to the output places and also delays moving tokens between commu-

nication places of different nodes until receiving the notifications from the

event monitor. We note that we have developed a dedicated/special CPN

interpreter although there are several simulators that can deal with high

level Petri nets. This is done to take care of aspects discussed above. In

our case, the CPN interpreter needs to interact with the system controller,

which controls overall execution of services on overlay nodes, and also needs

to deal with multiple Petri nets representing the behavior of overlay nodes.

49

Table 4.1: System Controller's Commands for Overlay Nodes.

command receiver node

connec[
to node
wait for and accepts a con-
nection request frorn node
disconnect the connection
with node
suspend execution
resume execution
send /ile to node

exectLe yrog
execute clock sync. mod-
ule to synchronize the
nodes' clocks with each
other

it from service

4.2.3 Overlay Node Control and Network Management

The overlay nodes execute the programs, which correspond to the subtasks

of services including those for exchanging data between nodes, according to

the commands given by system controller. These commands are listed in

Table 4.1.

We note that since we allow parallelism in the behavior of an overlay

node, while transmitting data from an overlay node, another transmission

request with the same destination node may occur. we may delay the latter

request till the completion of the current transmission. However, in this

case, the response time of the latter request may be long, especially when

dealing with large-size files such as video files.

To overcome this problem, we have implemented a multiplexer that al-

lows the sharing of an overlay link among multiple transmissions of data

with designated occupancy ratios. Here, the occupancy ratio of one trans-

mission is set as the ratio of the transmission's throughput to the overlay

link throughput. To realize parallel transmission of data, the system seg-

ments the data into fixed size pieces. Fig. 4.4 shows an example where three

data transmissions are transferred. in Darallel. from node A to node B with

accept node

disconnect
nod,e

suspend
resume
transmit /ile
node
execlte prog
sync

50

TxOueue comml

Txeueue comm2

TxQueue comm3

RxQueue comml

RxQuouo 。。mm2

RxQueue comm3

Overlay Node A
Occupancy RaUo

comm1,comm2, comm3

= 0,25, 0,25, 0,5

comm3 commi comm3 comm2
t-t r- r- t-il

Overlay Node B

Figure 4.4: Overlay Link Control.

occuparrcy ratios 0.25, 0.25 and 0.5, respectively.

4.3 Conclusion

In this chapter, we have designed and developed a service execution plat-

form. Using the platform, services can be installed and executed easily on

real networks. The platform ca,n measure network loads and CPU loads

continuously, and can adaptively determine new allocation optimizing the

system load in the environment.

κ
υ

Chapter 5

A Collaborative Estimation
Protocol of Distribution for
Mobile Wireless Nodes

5.1 Introduction

In this chapter, we propose a method for mobile wireless nodes, which are

pedestrians, to estimate the distribution of mobile nodes in their surround-

ings. In the proposed method, each node is assumed to know its location

roughly (ri.e. within some error range) and to maintain a density map cov-

ering its surroundings. This map is updated when a node receives a density

map from a neighboring node. Each node also updates its density map in a
timely fashion by estimating the change of node distribution over time due

to node mobility.

The rest of this chapter is organized as follows. Section 5.2 presents an

algorithm for self-estimation of neighborhood distribution. Section 5.3 de-

scribes experimental results for evaluation of the proposed algorithm. Sec-

tion 5.4 shows the discussion about the proposed algorithm Finally, this

chapter is concluded in Section 5.5.

52

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

(b) A density map

Figure 5.1: An Example of a Density Map

(a) Positions of nodes

5.2 Self-Estimation of Neighborhood Distribution
5.2.1 Overview

We assume that each node i is equipped with a wireless device and knows

its (rough) location through GPS or other technologies. We also assume

that the region is divided into square cells with s(m) edge. Based on this

cell representation of the geography, node i maintains a density rnap Di,

which represents the node density (i.e. the expected node numbers) in

its surroundings. Concretely, D.; has Xt x V elements and each element

d,,o(7 1r 1 Xi.,I1A <Y) represents the node density in the cell (r,3r).

We define the size Xi,Y6 and the location of the density map as node depen-

dent values since each node may require its local view of the density map

depending on applications. An example of a density map is shown in Fig.

5.1. We assume each node knows the maximum speed V^o, of all the nodes

to estimate the change of the node density in each cell by predicting move-

ment of nodes. This is because the maximum speed may be estimated easier

than the average speed, which largely depends on the time, the locations,

the density and geometrical attributes such as the path's width.

Each node z executes the following procedures every t seconds.

1. Node i updates its density map D.i by using a given estimation function

"f. We assume a typical moving pattern in the target environment is

53

modeled into the estimation function. According to this model, /(D1)
diffuses the density values in each cell toward its surrounding cells

that are supposed to be reachable within a message exchange interval

denoted by t. This represents the estimated movement of other nodes.

We note that in f (Dt),if dr,a is less than a certain threshold denoted

by TH6 a,fter updating, dr,o is set to zero. For TH4,we set the value

which is too small or too old as the density information and which is

therefore not useful any longer.

2. Node z adds its presence information to D6. To do this, firstly, node

i obtains its area of presence (denoted by &) from the GPS or other

measurement devices where /il is the area which includes node i's true

position. We represent Ra as a set of cells as follows;

Ri : {(rn, un), (ri2, an),. ", (rn, ym)}

where n is the number of cells included in the area of presence. Thus

the density r,alue in each cell of Ri is |fn. Secondly, this value is

added to the density value of each cell in the density map D1. This

procedure is executed only when the elapsed time since node i records

rR; becomes longer than a certain Af; seconds. For Af;, we set the

expected time for the density l/n added to each cell to be less than

a certain threshold (denoted by e) due to the estimation function.

Hence, Al; should be set according to the estimation function.

3. Node i sends D.; to its neighbors.

4. Node i updates D.; when i receives Di from neighboring node j.

We explain the details of these procedures in the following section.

5.2.2 Algorithm

Estimation F\rnction

Density maps are updated by the estimation function /, which is given

beforehand. Typical movement patterns in the target region and/or the

target nodes are modeled in the estimation function. Here, we describe (i)

54

1.0 1.0

1.0 1.0

(a) Before updating

0.18 018

018 0.54 054 018

018 0.54 054 018

018 018

(b)After l iteration

(Diffusc;o卜 0.9)

(c)After l iteration

(Limited diffuse;oc_0.9)

Figure 5.2: Update by Estimation Fbnction

for(step=o; stepく f■ oortt*Vmax/s,; step++,t
D'_i=D_i;
foreach (d_(x,y) in D_i){
d'_(x,y)=0.2*d_(x,y)*alpha;
d'_(x-1,y)=d_(x-1,y)+0.2*d_(x,y)*alPha;
d'_(x,y-1)=d_(x,y-1)+0.2*d_(x,y)*alpha;
d'_(x+1,y)=d_(x+1,y)+0.2*d_(x,y)*alPha;
d'_(x,y+1)=d_(x,y+1)+0.2*d_(x,y)*alPha;

}

D_i=D'_i;

}

Figure 5.3: Diffuse Estimation Function

the diffuse estimation function, (ii) the limited diffuse estimation function,

and (iii) the hybrid estimation function as examples of typical movement

patterns and their estimation functions.

Diffuse Estimation Function. When the maximum speed of nodes is

the only known fact, there is a possibility that each node moves toward any

directions in the region. Thus, the diffuse estimation function divides density

values in each cell to its neighboring cells which have a shared edge with the

cell. A weight o(0 < a < 1) is considered when a density value is divided

so that aging of information can be regarded. Because the edge size of a

cell is s(m) and updates are repeated every f seconds, the diffuse estimation

function iterates this procedure [t*V*o"lt) times. Fig. 5.2(b) and Fig. 5.3

show an example of the update by the diffuse estimation function and its

03 03

06 06

06 06

03 03

55

pseudGcode, respectively.

In this function, At; is determined based on ,k which satisfies the follow-

ing condition:

2た2+2た +1
<ε (5.1)

Here, k is the number of iterations by the diffuse estimation function. The

left part in the above condition approximately denotes a density value in

one cell after ,k steps, starting from a single cell of which a density value is

1. The denominator is the number of cells and the numerator means the

freshness of the latest recorded area of presence. Each iteration is executed

once in s/V^o, seconds. Therefore,

△ち=論 (5勾

Limited Diffuse Estimation F\rnction. There are actually movable ar-

eas and unmovable areas if pedestrians walk on roads. Here, we consider

an estimation function which distributes density values in each cell to only

movable areas in its neighboring cells. We do not assume any maps but

exploit a density map to estimate molable areas in this function.

Fig. 5.2(c) and Fig. 5.4 show an example of an update by this limited

diffuse estimation function and its pseudo-code, respectively. In this func-

tion, for each direction (i.e. up, bottom, left and right), we calculate the

average density of cells to which the distance from the diffused cell d",, is

less than m cells. Then, if the result is more that T H*ou., dr,a is divided by

the number of directions which satisfy the condition and diffused to them.

In the same way as the diffuse estimation function, o is regarded for aging.

This procedure is iterated lt x V,no"ls) times.

In the case of the limited diffuse estimation function, the number of

cells which satisfy the condition varies every time it updates a density map.

Thus, it is complicated to derive At; precisely. For this reason, we use the

same rule with the diffuse estimation function to determine A/;.

Hybrid Estimation F\rnction. Because a density map is propagated

among nodes hop by hop, the freshness of information in farther areas is

lower. This means that it is sometimes hard to estimate movable areas in

α
た

56

for(step=0; step<fl-oor(tr.Vmax/s) ; step++)t
D'-i=D-i;
foreach(d_(x,y) in D_i){

expand-num=1;
sum=0;
for(5=1; j<=rn; j++) su6+=d-(x+j,y)
avg=sum/m; right=f alse ;
j.f (avg >= Tg-move){
right=true ; expand_num++;

sum=0;
for(3=1; j<=m; j++) suxo+=d-(x-j,y)
avg=sun/n; Ieft=f alse ;

if(avg >= TH-urove){
left=true ; expand-num++;

sum=O;

for(i=1; j<=n; j++) sum+=d-(x,y+j)
avg=sun/m; down=f alse ;

if(avg >= Tg-nove){
down=true; expand-num++;

)
sum=O;

for(j=li j<=n; j++) sun+=d-(x,y-j)
avg=surn/m; up=false;
if(avg >= TH-nove){

up=true; expand_num++;

if (r.ight) d'- (x+1 , y) =d- (x+1 , y) +1/expand-nun*d- (x, y) *alpha;
if (left) d' - (x-1,y)=d-(x-1,y)+1/expand-num*d-(x,y) *alpha;
if (down) d' - (x,y+1)=d-(x,y+1)+1/expand-nunxd-(x,y) *alpha;
if (up) d'-(x,y-1)=d- (x,y-1)+1/expand-nun*d-(x,y) *alpha;
d'- (x, y) =1/expand-num*d- (x, y) *alpha;

l.-., ..u_L-u _L,

Figure 5.4: Limited Diffuse Estimation Function

farther regions based on the limited diffuse estimation function as we de-

scribed before. Hence, we combine both the diffuse estimation function and

the limited diffuse estimation function and propose the hybrid estimation

function. In the hybrid estimation function, for the cells in the proximity of

the current position, the limited diffuse estimation function is used and the

diffuse estimation function is applied to distant areas.

ウ
‘

民
υ

We define the areas around the current position as the cells included

in Rl, and use the limited diffuse estimation function for cells included in

.Rz and the diffuse estimation function for other cells. Atl is determined

according to the same manner as the diffuse estimation function for the

simplicity.

Recording Area of Presence

Each element dtr,o after recording node i's area of presence is calculated as

defined below.

(5.0

where n denotes the number of elements in r?2. In this formula, the larger

the size of -R;, the smaller the value added to each cell in R; becomes.

Merging Density Maps

When a node i receives a density map Di from another node j, node i merges

D.i with D7. Because each density map does not include any information

which indicates the freshness of the density information in each cell, we

regard ahigher density as more fresh (i.e. newer) information. This policy

is based on the observation that the density in each cell is diffused as time

passes and hence a higher density is likely to be a fresher information. In

merging of density maps, for each cell (r, g), the value dtr.u after the merging

is computed as below.

d',, a
: max{di,r, drr,u} (5.4)

5.2.3 Getting Node Distribution from a Density Map

The node distribution is obtained from a density map D by finding cells

with the highest density in a greedy fashion. The algorithm is described

below in details.

1. Find a cell c : (n", y") with the highest density dr.,a.. If the densities

of all cells are zero, terminate the distribution estimation.

仇=枕「与鷺載j耽

58

Node position

0.13 0.15 0.11

0.12 0。3 0。 1

0.14 0.15 0.04

(a) Density map (b) After estimation

Figure 5.5: Estimation of Node Distribution from a Density Map

Set an estimated position of a node to a point in c and initialize a set

C of cells to c.

If do",a") 1.0, subtract 1.0 from d*",0" and return to the first step.

Repeat adding neighboring cells of all cells \nC to C until Duec dr",a" 2
1.0. Here, a neighboring cell of a cell c is a cell that shares any bor-

der or corner of c. If the algorithm cannot find any neighboring cells,

terminate the distribution estimation.

5. Subtract 1.0 from C. For this purpose, we sort cells in C into descend-

ingorder c(1),c(2),...,c(n) interms of the density. For c(L),c(2),...,c(m-
L),c(m),c(m-ll),. . . ,c(n), sot dr"(r),y.(r1,. . . ,dr"1^_\$c(m_r) to 0 where

D|-'dr"(n),o.(n) < 1.0 and ![, dr"1r1,o.1n1 > 1.0. Then, subtract

1.0 - DP11 dr.(n),r"(n) from dr.,-,,e"1-1 , &rrd go to the first step.

Intuitively, the algorithm sorts densities in descending order, and iter-

ates the estimation of node positions from the cell with the highest den-

sity. At that time, we have to subtract l-.0 in total from the density map

since a density of 1.0 corresponds to the presence of one node. Figure 5.5

shows an example of this algorithm. In Fig. 5.5(a), the highest density

is 0.3 in the center cell, which is less than 1.0. Therefore, the densities

2.

3.

4.

59

of the neighboring cells and the center cell are sorted in descending order

{0.3,0.15,0.15,0.14,0.13,0.12,0.11,0.1,0.04}. Then, all values larger than

0.11 are set to 0 since (0.3+0.15+0.15+ 0.14+0.13+0.12) : 0.99 and

(0.3+0.15 +0.15 + 0. 14+ 0.13+ 0.12+ 0.11) : 1.1. Finally, 1 - 0.99 : 0.01 is

subtracted from 0.11, and a node position is estimated by choosing a point

in the center cell as shown in Fig. 5.5(b).

5.2.4 Reduction of Communication Overhead

Each node i sends its density map D6 every f seconds. The data size of Di

is inversely proportional to the size s2 of a cell and proportional to the size

of the target region. We introduce a technique which adjusts the view of a

density map sent to neighbors, depending on the number of neighbors, in

order to pursue the trade-off between the communication overhead and the

accuracy.

We denote a sub-density map of D.i as D; hereafter. Ideally, it is better

to send a density rrrap D; every f seconds in order to propagate the density

information to distant areas for a higher accuracy. However, if the density

around a node is high, it seems enough to send density maps from a few

nodes in the surroundings because the information in distant a,reas is likely

to be very similar among those density maps.

Based on this idea, our technique uses a sub-density -ap D; of which the

size is fixed and smaller than the density map. Every f seconds, each node

f selects either its density map Di or its sub-density map D; to broadcast.

The density map is selected with the probability of IlNa where l/, is the

number of i's neighbor nodes. In addition, node i broadcasts D; only if it
has not sent Di in the last ? seconds in order to guarantee that a density

map is sent in a certain period of time.

5.3 Experimental Results

5.3.1 Settings

We have evaluated the performance of the proposed method using a net-

work simulator MobiREALfs2l. For simulation, we have used two maps of

60

y[m]

xlml
(a) Manhattan

xlml
(b) free-space

Figure 5.6: Simulation Maps

which the sizes a,re 100rn x 100rn. Manhattan in Fig. 5.6(a) which has 4

intersections and roads of 10m width, arrd free-space in Fig. 5.6(b). In the

Manhattan map, nodes can only exist on roads, and in every map nodes

were deployed uniformly before simulations. Nodes move along a road with

a constant velocity which is randomly chosen from [0.1, 1.0](m/s). Each

node changes its direction to the opposite if it encounters a border, and

randomiy chooses one of the three directions except the backward direction

if it enters an intersection. In the free-space map, the random waypoint mo-

bility model[s3] with pause time 0 and the moving speed range of [0.1, 1.0]

(m/s) was used. 200 nodes moved according to the above mobility models

in each scenario. The length s of grid cells was set to 2m. We used the radio

range of 10m and the network bandwidth of lMbps. We have assumed the

location information rQ is obtained by GPS and given as a square region

of size 49rn x 49m of. which the center is the real node position. The sim-

ulation settings are summarized in Table 5.1. We have empirically decided

threshold values shown in Table 1.

Through the analysis of simulation results, we confirmed that the accu-

racy of the estimated node distribution is very similar among the nodes of

different initial locations and moving speeds. Therefore, in the following re-

sults, we focus on the density map of a particular node (this node is denoted

as p hereafter) if no explicit explanation is given. We have measured the

61

Table 5.1: Silnulation Set

Parameters free-
space

estimation function f difuse

threshold THa
node/cell

density threshold e for location regis-
tration interval (node/cell)

sub-density map Tx i
ity map Tx interval

100

0
100 200 300 400

Time (sec)

Figure 5.7: Time vs. Estimated Number of Nodes in a Density Map

positioning error to assess our method since it is quite intuitive and under-

standable not only for applications but also for people. By measuring the

positioning error, we can compare our approach with the case where GPS

positions of all the nodes are collected.

5.3.2 Results

Accuracy of a Number of Nodes

Fig. 5.7 shows the estimated number of nodes in the two maps, along the

progress of the simulation time. Table 5.2 also shows the average number

of nodes in each case. We can see that these averaged values are very close

to the original values. In all the cases, large errors between the estimated

0.002

500

０

　

０

　

０

０

　

０

　

０

４

　

３

　

２

ｏ
０
０
０
Ｚ
」０
」０
０
Ｅ
３
Ｚ

600500

(rn:10)

62

Table 5.2:A N ber of Nodes i Estimated Density Map

Kendall'e

Granularity
lx1 2x2 5x5 10× 10

Manhattan (61s-600s) 0680 0.718 0.735 0.761

free-spare (61s-600s) 0.588 0.621 0.662 0.696

and real node densities were measured before 30sec. because it is the initial
phase of the simulation where each node had started to collect information

about the others and the density maps covering whole areas had not been

constructed yet. Therefore, we focus on the state after 30sec., where the

estimated number of nodes was stable with small errors from the real densitv.

Similarity of the Estimated Distribution

To see the similarity between the estimated density distribution and the

real density distribution, we used Kendall's r[54]. Here, we introduce the

concept of granularifg to compare the two distributions. The granularity is

represented by g x g, which means that g x g cells are considered as one larger

cell in computing the Kendall's r. We have changed this granularity from

1x1 to 10x10. The results are shown in Table 5.3. The average Kendall's r
is increasing as the granularity becomes larger in most cases. This is natural

because the values of density are often expanded to wider regions (i..e. the

outside) by the diffuse estimation function.

Fig. 5.8(a) and Fig. 5.8(b) show the estimated node distribution of a

node p at time 450sec. and its corresponding real node distribution in the

case of the Manhattan map. By comparing the real node distribution with

the estimated one, we can see some errors in each node position. However,

we can also observe that the estimated node distribution has dense and

sparse areas quite similar to the real ones. Lines of nodes imply the roads

Tabl A5.3

VE ulnDer O1 lN ot■ es ln a11

Estimated # of nodes
Manhattan (21s-600s) 199。 788

free-space (2ls-600s) 202.720

63

0 X(m) 100

(a)Estimated(Manhattan)

X(m) 100

y(m)

100

ズm)

100

0
●●

 t

● ・0

.t
°
′

●
・

.:多。.J:1ぶ ::ユ
ニ
lt

)
。

●

0

●
・

 ・

11
03 ●

3

。.. 8'1:。 .81_。
tt° ..

:。 :St.

０
　
　
　
　
●

●
。

．
　
●

,
● ●

◆ .●

(b)Red(Mallhattan)

Figure 5.8: Real Node Distribution alnd Estimated Node Distribution of

Node p(at 450scc.)

1 :
: . : .'.'. ; ! .i 3:*..'.:.i.al.'.!.'

:JI)..",111,1ば

..

・
・ :.

● ◆

● 0.●・ 8L。
■ 1(

● ●● ‐

●● ● ●

●● ●●

64

Table 5.4: Avg. Positioning Errors in Estimated Node Distribution of Node
p

Manhattan free-space

w/o reduction 10.03 6.50

w/ reduction 10.89 7.39

in the real world and this indicates the estimated node distribution well

captures the real node distribution.

To evaluate the accuracy of the estimated node distribution, we focus

on positioning errors between the estimated positions and the real posi-

tions. Positioning errors can be defined as distances between nodes in the

estimated node distribution and its corresponding nodes in the real node dis-

tribution. Note that we never know the node identification in the estimated

distribution. Therefore, for each estimated position, the nearest node in the

real distribution is regarded as the corresponding node, and the distance

between the estimated position and the real position of the corresponding

node is used for calculating positioning errors. Here, each node in the real

distribution is selected as a corresponding node of an estimated position

only once so as to evaluate positioning errors properly.

Fig. 5.9(a) and Fig. 5.9(b) show averages of positioning errors (denoted

as a solid line) in each simulation map. The averages of positioning errors

in the both maps fluctuate due to the mobility. When the node p is in the

proximity of the intersections or the center of the map, averages of position-

ing errors will be smaller because the node p can receive fresher information

from different directions in such areas efficiently, and the accuracy of the

density map of node p can be improved. Table 5.4 shows the average of

positioning errors throughout the whole simulation. We can see that the

average positioning error in the Manhattan map is about 10m and that in

the free-space map is less than 10m approximately. These results mean that

the proposed method can correctly estimate the node distribution in terms

of the street level considering the road width of 10m and the road segment

length of 40m in the Manhattan map. From the above results and obser-

vations of the average positioning error as a quantitative criterion) we can

confirm the effectiveness of the proposed method.

65

-w/o
reduction

"""w1reduction

・目6

遇4

ど2

め 0

々 100 200 300 400 500
Tinlo(sec)

(a)free_space

0 100 200 300 400 500
Tillrle(seC)

(b)Manhattan

Figure 5.9: Time vs. Average Positioning Errors in Estimated Distribution
of Node p

２０

１６

‐２

８

４

０

官
じ
８
■
面

¨
編
口
ｏ
〓
∽
ｏ
飩
め
鼻
ヽ

-
'syls reduction

.-.... wlreduction

66

Table 5.5 Com A Balldwidth Node.b: じOmparlson ol AVerage banclw

Manhattan free-space

w/o reduction (kbps) 40 40

w/ reduction (kbps) 16. 16 20

5.3.3 Reduction in Communication Overhead

In our technique, the target region is divided into cells. The number of

cells is 2500 in the default simulation setting, and we assume that each

cell requires 4 bytes. Then, the data size of a density map is 10 Kbytes.

Each node sends its density map periodically and hence the communication

overhead may be large. To reduce this communication overhead, we use a

sub-density map as we mentioned in Sec. 5.2.4.

In order to see the effect of this scheme, we evaluated the amount of

traffic. The result is shown in Table 5.5. We could confirm that our scheme

could reduce approximately 50%-75% of the original traffic.

From the results shown in Fig. 5.9(a) and Fig. 5.9(b), we can see

the average of positioning errors increases as time elapses in most cases with

message reduction (denoted as dotted line), compared with the cases without

message reduction. The second row of Table 5.4 also shows the averages of

positioning errors with message reduction are 109% and ll4Ta as much as

those without message reduction in the Manhattan map and in the free-space

map respectively. Obviously, there is a trade-off between the communication

overhead and the accuracy of an estimated node distribution. Therefore, it is
important to determine the parameters on the communication appropriately.

5.4 Discussion

The proposed method uses a cell matrix to represent a density map. The cell

matrix facilitates the computation like merging and the mobility estimation,

while the data size may be large, depending on both the region and cell sizes.

In WSNs, there is a method to build a contour map of the data sensed by

wireless sensor nodes [35, 55] . Some other possibilities use some encoding

technique to compress the map. We are trying to clarify their advantages and

disadvantages in terms of the trade-off between the computation overhead

67

and the data size.

We also discuss another important issue on the position information. In

the proposed method, each node may provide its position information with

some error range. This has the following two advantages, (i) robustness to

position errors caused by the GPS or other measurements such as position

estimation methods like Sextant[56] and UPL[41] due to their likelihood

estimation in range-free localization, and (ii) privacy protection in which

intentionally randomized positions obscure the true position.

The maximum speed V^o, affects the estimation accuracy. If we use over-

estimated maximum speeds, the accuracy degrades because the estimated

density spreads faster than the real speeds. In this sense, the maximum

speed used in the simulation is overestimated since we have used 1.0m/s as

the maximum speed although the real speeds uniformly distributed within

[0.t, t.O] (m/s). Nevertheless, our approach has achieved a reasonable per-

formance.

5.5 Conclusion

In this chapter, we have proposed a method for pedestrians to self-estimate

the node distribution in their proximity in real-time using ad-hoc wireless

communications among these nodes. We have conducted simulation experi-

ments to see the accuracy and the communication overhead of the proposed

method. Through quantitative evaluation by measuring positioning errors)

we have confirmed the average position error is less than 10m, which is com-

parable with GPS errors. This result indicates our method estimates the

node distribution accurately.

One of our potential application domain is personal navigation. In huge

shopping centers and fireworks festivals (in the case of Japan) in which many

people get around, observing their locations through their mobile terminals

will be helpful not only for commercial use but also for safe navigation

toward exits.

Assuming these potential application examples, we are planning to con-

duct simulations in more realistic environments, to determine appropriate

parameter settings and to validate the usefulness of the method. Further-

68

more, the autonomy of the protocol is our important goal where protocol

parameters like message transmission intervals can be autonomously con-

verged into appropriate values in each cell depending on its neighborhood

densities for zero-confieuration.

69

Chapter 6

Conclusion

In this thesis, the following two research topics have been studied: (1) a

service design technique which can reduce both of the network and server

loads on an overlay network which is composed of repositories storing the

sensig data and servers to process it, and (2) a pure-serverless service pro-

tocol which can be executed on a mobile ad-hoc network, and therefore in

which there is no workload of servers essentially.

As the first topic of this thesis, we have proposed a method to derive

execution sequences of a given application-level service that is executed by

cooperative servers on overlay networks in Chapter 3. We also have designed

and developed a service execution platform. The proposed method assumes

that a service consists of service components, and it can derive optimal al-

location of components that does not overload network links and servers.

Using the platform, services can be installed and executed easily on real

networks. The platform car] measure network loads and CPU loads contin-

uously, and can adaptively determine new allocation optimizing the system

load in the environment. We have conducted experiments on Planetlab to

validate our method. We have confirmed that the proposed method could

derive efficient execution sequences and they could achieve higher through-

put than the other sequences.

As the second topic of this thesis, we have proposed a method for pedes-

trians to self-estimate the node distribution in their proximity in real-time

using ad-hoc wireless communications among these nodes in Chapter 5. We

have conducted simulation experiments to see the accuracv and the commu-

70

nication overhead of the proposed method. Through quantitative evaluation

by measuring positioning errors, we have confirmed the average position er-

ror is less than 10m, which is comparable with GPS errors. This result

indicates our method estimates the node distribution accurately.

One of our potential application domain is personal navigation. In huge

shopping centers and fireworks festivals (in the case of Japan) in which many

people get around, observing their locations through their mobile terminals

will be helpful not only for commercial use but also for safe navigation

toward exits.

Assuming these potential application examples, we are planning to con-

duct simulations in more realistic environments, to determine appropriate

parameter settings and to validate the usefulness of the method. Further-

more, the autonomy of the protocol is our important goal where protocol

parameters like message transmission intervals can be autonomously con-

verged into appropriate values in each cell depending on its neighborhood

densities for zero-configuration.

As future work, we leave secure methods to avoid sending raw sensing

data to remote devices or servers since sensing data is a kind of personal

information. It is desired that data aggregation among neighbor devices

should be considered to ensure security, satisfying constraints for workloads

of network and servers.

ウ
ｒ

Acknowledgement

First of all, I would like to gratefully acknowledge enthusiastic supervision of

Professor Teruo Higashino during this research. I also would like to express

my deepest appreciation for his great support and generous encouragement

in my student life.

I am very grateful to Professor Hirotaka Nakano, Professor Koso Mu-

rakami and Professor Masayuki Murata of Osaka University for their in-

valuable comments and helpful suggestions concerning this thesis.

I would like to express my heartfelt gratitude to Associate Professor Hi-

rozumi Yamaguchi for inestimable advices and innumerably valuable com-

ments.

My enormous thankfulness goes to Assistant Professor Akihito Hiromori

and Assistant Professor Akira Uchiyama whose comments and advices are

invaluable for my study.

Assistant Professor Takaaki Umedu's technical supports and precious

advices for experiments are gratefully acknowledged.

Finally, let me thank to everyone of Higashino Laboratory for their feed-

back, encouragement and support for my research.

72

Bibliography

f1] K. Jensen. Coloured Petri, Nets. Bas'ic Concepts, Analysi.s Methods and

Practical Use Volume 1: Basic Concepts. Monographs in Theoretical

Computer Science. An EATCS Series. Springer-Verlag, 1997.

[2] Jens Wepper and Paul Lukowicz. Collaborative crowd density estima-

tion with mobile phones. In Proc. of Internati,onal Worleshop on Sens'ing

Applicati.ons on Mob'ile Phones (PhoneSense), 201I.

[3] T. Horanont and R. Shibasaki. An implementation of mobile sensing for

large-scale urban monitoring. In Proc. of the Internationo,l Workshop

on Urban, Commun'ity, and Soc'ial Applicati,ons of Networked Sens'ing

Systems (UrbanS ense). 2008.

[4] A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S.

Stissing, M. Westergaard, S. Christensen, and K. Jensen. CPN Tools

for editing, simulating, and analyzing coloured Petri nets. In Proc. of

2lth Int. Conf. on Appli,cati,on and Theory of Petri, Nets,2003.

[5] D. Xu and K. Nahrstedt. Finding service paths in an overlay media

service proxy network. In Proc. of Int. Conf. on Multi,media Computing

and Networking 2002 (M MCN2002), 2002.

16] M.Wang, B. Li, and Z. Li. sFlow: Towards resource-efficient and agile

service federation in service overlay networks. In Proc. of 2lth Int.

Conf. on Di,stri,buted Computzng Systems (ICDCS2004, 2004.

[7] X. Gu, K. Nahrstedt, and B. Yu. Spidernet: An integrated peer-to-peer

service composition framework. In Proc. of IEEE Int. Sgmposium on

Hi,gh- P erformance D'istri,buted Computing (H P D C- 1 3), 2004.

73

国

団

Baochun Li, Jiang Guo, and Mea Wang. iOverlay: A lightweight mid-

dleware infrastructure for overlay application implementations. In Pro-

ceed'ings of the Fifth ACM/IFIP/USENIX Internat'ional Mi,ddleware

Conference (Mi.ddleware 2001), also Lecture Notes 'in Cornputer Sci-

ence, pp. 135-154, 2004.

Didier Benza, Michel Cosnard, Luigi Liquori, and Marc Vesin. Ariga-

toni: A simple programmable overlay network. In JVA '06: Proceed'ings

of the IEEE John V'incent Atanasoff 2006 Internat'ional Symposi,um on

Modern Comput'ing, pp. 82-91. IEEE Computer Society,2006.

Boon T. Loo, Tyson Condie, Joseph M. Hellerstein, Petros Maniatis,

Timothy Roscoe, and Ion Stoica. Implementing declarative overlays.

SIGOPS Oper. Syst. Reu., Yol. 39, No. 5, pp. 75-90, December 2005.

Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi. Overlay

weaver: An overlay construction toolkit. Cornputer Cornmunications,

Vol. 31, No. 2, pp.402 412, February 2008.

Adolfo Rodriguez, Charles Killian, Sooraj Bhat, Dejan Kostic, and

Amin Vahdat. MACEDON: Methodology for automatically creat-

ing, evaluating, and designing overlay networks. In Proceedings of the

USENIX/ACM Sympos'ium on Networked Systems Design and Imple-

mentat'ion (N S D 12 004), pp. 267 -280, 2004.

H. Yamaguchi, K. El-Fakih, A. Hiromori, and T. Higashino. A formal

approach to design optimized multimedia service overlay. In Proc. of

15th ACM Int. Worlcshop on Network and Operat'ing Systems Support

for Di.7i.tal Audi.o and Vi.deo (NOSSDAV 2005), pp. 57-62,2005.

OKI. Oki press release. http: / /w,rw . oki . conlen /press/2009/01/

z08113e.html.

Andrew T. Campbell, Shane B. Eisenman, Nicholas D. Lane, Emiliano

Mihtzzo, Ronald A. Peterson, Hong Lu, Xiao Zheng, Mirco Musolesi,

Krist6f Fodor, and Gahng-Seop Ahn. The rise of people-centric sensing.

IEEE Internet Comput'ing, Vol. 12, No. 4, pp. 72 21, 2008.

[lq

μ刻

Ｑ
υ

「 到

[1司

74

″
ｒ

μ司

pq

pl]

[16] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Leboisky.

Seti@home-massively distributed computing for seti. Computing i,n Sci-

ence 8 Eng'ineering, Vol. 3, No. 1, pp. 78-83, 2001.

Stefan M. Larson, Christopher D. Snow, Michael R. Shirts, and Vijay S.

Pande. Folding@home and genome@home: Using distributed comput-

ing to tackle previously intractable problems in computational biology.

C omputat'ional G enom'ics, 2002.

Kenji Saito and Kendai Miyazawa. Rapid p2p overlay network pro'

gramming on a distributed reduction machine. In Proceedr,ngs of the 6th

IEEE Conference on Consumer Commun'ications and Networking Con-

ference, CCNC'O9, pp. 1262-7266, Piscataway, NJ, USA, 2009. IEEE

Press.

119] I. Baumgart, B. Heep, and S. Krause. Oversim: A scalable and flex-

ible overlay framework for simulation and real network applications.

In Peer-to-Peer Computi.ng, 2009. PzP '09. IEEE Ni,nth Internat'ional

Conference on, pp.87 -88, sept. 2009.

Jordi Pujol-Ahull6, Pedro Garcia-L6pez, Marc Sir,nchez-Artigas, and

Marcel Arrufat-Arias. An extensible simulation tool for overlay net-

works and services. In Proceed'ings of the 2009 ACM sgrnposium on

Applied Comput'ing, SAC '09, pp. 2072-2076, New York, NY, USA,

2009. ACM.

Ludger Bischofs and Wilhelm Hasselbring. Analyzing and implementing

peer-to-peer systems with the peerse experiment environment. Parallel,

D'istributed, and N etw ork- B as ed Proces s'ing, Euromicro C onf erence on,

Vol. 0, pp. 311-315, 2009.

[22] Mansoor Alicherry and T.V. Lakshman. Network awa.re resource alloca-

tion in distributed clouds. In Proceed'ings of the 31st IEEE Internut'ional

Conference on Computer Commun'ications, pp. 53-58. IEEE Computer

Society, 2012.

75

p司 Hendrik Moens, Jeroen Famaey, Steven Latre, Bart Dhoedt, and

Filip De Turck. Design and evaluation of a hierarchical application

placement algorithm in la,rge scale clouds. In Proceedi,ngs of IFIP/IEEE
Internat'ional Sympo si,um on Integrated N etwork M anag ement (I M), pp.

737 I44.IEEE Computer Society, 2011.

Xiaoqiao Meng, Vasileios Pappas, and Li Z},ang. Improving the scala-

bility of data center networks with traffic-aware virtual machine place-

ment. In Proceed,'ings of the 29th conference on Informat'ion communi-

cat'ions (INFOCOM), pp. 1154-1162. fuCM,2070.

Fetahi Wuhib, Rolf Stadler, and Mike Spreitzer. Gossip-based resource

management for cloud environments. In Conference on the 6th IEEE In-

ternat'ional Conference on Network and Seru'ice Management (CNSM),

pp. 1 8. IEEE Computer Society, 2010.

Dejan Kovachev, Tian Yu, and Ralf Klamma. Adaptive computation

offioading from mobile devices into the cloud. In Proceed'ings of the 10th

IEEE International Symposium on Parallel and Distrzbuted Processing

with Appli,cat'ions (ISPA), pp.784-791. IEEE Computer Society, 2012.

Sougata Sen, Archan Misra, Rajesh Balan, and Lipyeow Lim. The case

for cloud-enabled mobile sensing services. In Proceed'ings of the first
edzti.on of the MCC Workshop on Mobile Cloud Computing, pp. 53-58.

ACM,2OT2.

Eugene Marinelli. Hyrax: cloud computing on mobile devices using

mapreduce. In Master thesi,s. Carnegie Mellon University, 2009.

Emiliano Mihtzzo, Ramon Caceres, and Yih-Farn Chen. Vision:

mclouds - computing on clouds of mobile devices. In Proceed'ings of

the ?rd ACM workshop on Mobi.le cloud computi,ng and serui,ces(MCS),

pp. 9-14. ACM,2012.

[30] Fan Yang, Zhengping Qian, Xiuwei Chen, Ivan Beschastnikh,

Li Zhuang, Lidong Zhou, and Guobin She. Sonora: A platform for

p到

p司

pq

p可

p司

p劇

76

卜」

卜刻

p司

continuous mobile-cloud computing. ln Techni,cal Report. Microsof Re-

search Asia, 2012.

G. Korkmaz, E. Ekici, F. Ozgiiner, and U. Ozgiiner. Urban multi-hop

broadcast protocol for inter-vehicle communication systems. In Proc.

of ACM International Workshop on VehiculAr Inter-NETworlc'ing, Sys-

tems, and Appli,cations (VANET), pp. 76-85, 2004.

C. Lochert, B. Scheuermann, and M. Mauve. Probabilistic aggregation

for data dissemination in VANETs. In Proc. of ACM Internationo,l

Workshop on Vehi,culAr Inter-NETwork'ing, Systerns, and Appli,co,ttons

(UANET), pp. 1-8, 2007.

B. Yu, J. Gong, and C. Xu. Catch-up: a data aggregation scheme

for VANETs. In Proc. of ACM Internat'ional Workshop on Vehi,culAr

Inter-NETwork'ing, Systems, and Applications (VANET), pp. 49 57,

2008.

J. Zhaa and G. Cao. Vadd: Vehicle-assisted data delivery in vehicular

ad hoc networks. IEEE Tfansact'ions on Veh'icular Technology,YoL ST,

No. 3, pp. 1910-1922,2008.

I. Gupta, R.V. Renesse, and K.P. Birman. Scalable fault-tolerant aggre-

gation in Iarge process groups. In Proc. of IEEE Internat'ional Confer-

ence on Dependable Systems and Networks (DSN), pp. 433 442, 200I.

S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. Tag: a tiny

aggregation service for ad-hoc sensor retworks. SIGOPS Operati,ng

Systems Reu'iew, Vol. 36, No. SI, pp. 131-146,2002.

A. Boulis, S. Ganeriwal, and M.B. Srivastava. Aggregation in sensor

networks: an energy accuracy trade-off. Ad Hoc Networks, Vol. 1, No.

2-3, pp. 317 331, 2003.

M. Papadopouli and H. Schulzrinne. Effects of power conservation,

wireless coverage and cooperation on data dissemination among mobile

devices. In Proc. of ACM Internat'ional Symposi,urn on Mobi,le Ad Hoc

N etworkrng and C omputi,ng (M obi.H oc), pp. LI7 -I27, 2001..

p到

p司

Fq

″
‘

つ
０

卜司

77

旧劇 D.K. Goldenberg, P. Bihler, M. Cao, J. Fang, B.D.O. Anderson, A.S.

Morse, and Y.R. Yang. Localization in sparse networks using sweeps.

In Proc. of ACM Internat'ional Conference on Mob'ile Cornputi,ng and

Networking (MobiCom), pp. 110-121, 2006.

M. Li and Y. Liu. Rendered path: Range-free localizatiort in anisotropic

sensor networks with holes. In Proc. of ACM Internat'ional Conference

on Mobi,Ie Computi,ng and Networki,ng (MobiCom), pp. 5L-62,2007.

A. Uchiyama, S. Fujii, K. Maeda, T. Umedu, H. Yamaguchi, and T. Hi-

gashino. Ad-hoc localization in urban district. In Proc. of IEEE In-

ternati,onal Conference on Computer Commun'icat'ions (Infocom), pp.

2306-23t0, 2007.

T. He, C. Huang, B.M. Blum, J.A. Stankovic, and T. Abdelzaher.

Range-free localization schemes for large scale sensor networks. In Proc.

of ACM Internat'ional Conference on Mobi,le Comput'ing and, Network-

i,ng (Mobi.Com), Vp.81-95, 2003.

Y. Sekimoto, R. Shibasaki, H. Kanasugi, T. Usui, and Y. Shimazaki.

Pflow: Reconstructing people flow recycling large-scale social survey

data. IEEE Peruas'iue Comput'ing, Vol. 10, No. 4, pp.27 35, 2011.

T. Horanont and R. Shibasaki. Nowcast of urban population distri-

bution using mobile phone call detail records and person trip data. In

Proc. of Internat'ional Conference on Computers'in Urban Plann'ing and

Urbo,n Management (CU PU M), 2011.

NTT DOCOMO Technical Journal Editorial Offrce. Measures for re-

covery from the great east japan earthquake using ntt docomo r&d

technology. NTT DOCOMO Techn'ical Journal, Vol. 13, No. 4, pp.

96 106, 2012.

[46] L. A. Cherkasova, V. E. Kotov, and T. Rokicki. On net modeling

of industrial size concurrent systems. In Proc. of llth Int. Conf. on

Appli,cati,on and Theory of Petri Nets 1993 (LNCS 691), pp.552 561.

Springer-Verlag, 1993.

μq

卜」

つ
４

ス
仕

F司

Fq

F司

78

μ司

l47l P. Huber and V.O. Pinci. A formal executable specification of the

ISDN basic rate interface. In Proc. of 12th Int. Conf. on Applicati,on

and Theory of Petri Nefs, pp. I 21, 199I.

J.C.A. de Figueiredo and L.M. Kristensen. Using coloured Petri nets

to investigate behavioural and performance issues of TCP protocols. In

Proc. of 2nd Workshop on Pract'ical Use of Coloured Petri Nets and

Design/CPN, pp. 21-40, 1999.

J. L. Rasmussen and M. Singh. Designing a security system by means

of coloured Petri nets. In Proc. of 17th Int. Conf. on Applicat'ion and

Theory of Petri. Nets (LNCS 1091), pp. 400-419, 1996.

H. Yamaguchi, K. El-Fakih, G. v. Bochmann, and T. Higashino. De-

riving protocol specifications from service specifications written as

predicate/transition-nets. Computer Networks Journal, Vol. 51, No. 1,

pp. 2581 284, January 2007.

Planetlab: An open plat form for developong, deploying, and accessing

planetary-scale services. http : / /vw.planet-Iab. org.

MobiREAL. Mobireal simulator. trttp : / / utww. mobireal . net / .

J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva. A perfor-

mance comparison of multi-hop wireless ad hoc network routing proto-

cols. In Proc. of ACM Internat'ional Conference on Mob'ile Computi,ng

and Networki,ng (Mobi,Com), pp. 85-97, 1998.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Nz-

meri.cal rec'ipes i,n C: the art of sci.enti,fic comput'ing. Cambridge Univ.

Press, second edition, 1992.

Y. Xu, W.-C. Lee, and G. Mitchell. CME: a contour mapping engine

in wireless sensor networks. In Proc. of International Conference on

Di.stri,buted Computi,ng Systems (ICDCS), pp. 133-140, 2008.

S. Guha, R. Murty, and E. Sirer. Sextant: a unified node and event

localization framework using non-convex constraints. In Proc. of In-

Fq

卜q

２

　

　

　

３

５

　

　

　

５

卜11

b到

b司

卜q

79

ternat'ional syrnpos'ium on Mobile Ad Hoc Network,ing and computing
(Mobi,Hoc), pp. 205-216, 200b.

80

ｔ́

