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Abstract

Recently, wireless sensor networks (WSNs) are expected as important tech-

niques to monitor real world phenomena. On the other hand, mobile phone

sensing techniques which use mobile phones such as smartphones as sensing

devices are also prospective because mobile phones such as smartphones are

in widespread used recently. For collecting data from the real world, there

are several researches on WSN and mobile phone sensing applications such as

collecting activities of people and environmental information. However, it is

difficult to implement collaborative behavior of entire sensing systems by in-

tegration of low-level implementation for node programs. Therefore, in WSN

system development, if developers design and give an abstract behavior of en-

tire system, it is desired that programs of node behavior in low-level code for
each platform and codes for simulators can be obtained automatically. In addi-

tion, because both of WSNs and mobile phone sensing become popular recently,

both types of sensing should be supported. Thus, to support sensing system

development comprehensively, we propose development and management sup
port methods such as (i) a development support environment for network-level

programming and performance evaluation, (ii) a system for node specification

generation from application-level requirements for cooperative sensing of sensor

node groups, (iii) a middleware to support cloud-based mobile phone sensing

based on application-level queries.

At first, we design D-sense: a development support environment for network-

level programming and performance evaluation. In order to support as many

types of protocols as possible, D-sense offers algorithmlevel APIs for network-

layer level processes. The APIs are derived based on property analysis of existing

typical protocols. D-sense also provides two types of translators. A translator

for D-sense API expands the embedded APIs that are implemented as macros



into sensor node programming language (e.C, NesC) implementations automati-

cally. A translator for sensor node programming language which translates into

codes for simulator (e.g. QualNet). By these translators, a description with

APIs are translated into both codes for sensor node and those for simulator.

Therefore, developers can evaluate the performance of WSN protocols through

both simulation and real environment only by specifiting them as algorithm-

Ievel sensor node programming language descriptions with APIs provided by

D-sense.

Secondly, we propose a methodology to support design and development

of collaborative WSN applications by generation of node specifications from

application-level requirements. The approach provides a language to specify

the high-level behavior of applications which is given as a program specifying

time, location and network-based constraints (conditions) on event occurrences

and their processing which are carried out by collaborative nodes in WSN. This

approach enables to program WSN without referring to the real deployment of

sensor nodes. For example, if a developer gives a specification such as "obtain

sensing information every 10 minutes from any 10 nodes in a certain area", the

system derives a node program which contains modules such as a module to

examine whether the node is in the area and a protocol module for sensing data

uploading. This method automates design and implementation of complex co-

operation protocols from this developer-friendly form of behavior specifications.

Thirdly, we propose a middleware to support cloud-based mobile phone sens-

ing. Each mobile phone works as a sensor node and a cloud server manages sens-

ing data and real-time location of mobile phones because they have mobility and,

thus, the network topology always varies. Therefore, we design a middleware

to support easy operation of mobile phone sensing. The middleware consists

of applications on mobile phones and the server-side module. The middleware

enables to give queries specified by real-world conditions such as time, Iocation,

and sensor data on event occurrences and their processing. It commands mo-

bile phones to execute sensing according to given queries and manages real-time

Iocation of mobile phones to change assigning of sensing tasks when they leave

or join the sensing.

These development and management support methods for sensor networks

and mobile phone sensing help the sensing system development comprehensively.



Our methods abstract details of node program codes and supports performance

evaluation. Especially, we can execute sensing by giving requirements which

contain attributes of nodes such as time, location, topologr, and sensor data for

WSN and mobile phone sensing.
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Chapter 1

Introduction

Recently, wireless sensor networks (WSNs) are expected as important techniques

to monitor real world phenomena. For collecting data from the real world, there

are several researches on WSN applications for such as weather observation,

volcano monitoring [1], flooding-detection 12], intruder detection [3], and traffic

monitoring [4]. AIso, several systems are designed as sense and react applications

such as traffic control [5] and air conditioning control [6]. In these applications,

WSN is considered as a key platform for sensing and it will be more significant

for next generation affiuent and ubiquitous life and society.

For these several applications, there are various requirements due to hetero-

geneity of architecture, network scale and applications. New protocols for WSNs

are often developed or existing protocols are tuned accordingly. Thus many pro-

tocols have been designed with different design goals [7, 8, 9, 10, lI, 12, L3, l4].
In addition, wireless sensor nodes are expected to be more energy-efficient and

powerful in near future, and accordingly they can be more intelligent and co-

operative to reduce traffic volume and delay, which are caused by gathering all
the sensor readings onto cloud servers.

On the other hand, recently mobile phones such as smartphones are in
widespread used, which have high functionality and multiple sensors. There-

fore they can be used as sensing devices, using much richer storage space and

processing power than networked sensor nodes in WSNs, which are cheaper and

simpler for massive deployment. Since their features enable to sense many types

of data at various location wherever human can visit, useful information such as

crowd of walking people, air condition and pollution in human-living area and

10



real-time public transportation information can be obtained if a large number

of mobile phones can participate in sensing activities.

However, there are problems in the WSN development such as effort for

node program development such as low-level implementation and experiments

in both real and simulated environments, and that for designing node behav-

ior specification to achieve collaborative behavior. There are also problems in

sensing by mobile phones such as effort for management real-time location of

mobile phones.

In WSN protocol development as sensor node programs, protocol designers

and developers face with typical problems which have been experienced in de-

signing distributed systems. Even though the developers wish to concentrate

on abstract behavior of protocols, they at last need to write target-dependent

low-level codes. Then they carry out performance analysis and validation in

simulated networks or real environments. However, additional efforts may be

required to simulate the implementation of a target protocol using network sim-

ulators, since in most cases such simulation code is not compatible with the

corresponding real code. Also experiments in real environments require config-

uration of many sensor nodes, to log their behavior, and to manipulate them

to validate (debug) the implementation. Obviously all of these tasks are really

hard and complex.

On the other hand, each node should act to accomplish collaborative be-

havior in fully decentralized, homogeneous environment for more efficient and

powerful sensing. However, most of the current WSN systems and architecture

assume simple, Iimited capability of sensor nodes. Therefore, the main task

of those nodes is assumed to send the sensor readings to a gateway which is

connected to the back-end cloud servers. This does not scale as cyber-physical

computation becomes more essential and the amount of sensor readings ac-

cordingly becomes larger. Thus, each node should act to accomplish collabora-

tive behavior in fully decentralized, homogeneous environments. In particular,

WSNs should sometimes act as a part of computing modules as well as data

collection and delivery, where sensor readings are processed and routed among

sensor nodes to enable local and collaborative event processing. However, the

implementation of such collaboration requires the designers to make enormous

efforts since writing codes of collaborative sensor nodes in a node-centric way,



while keeping the global, data-centric behavior in mind, is extremely a hard

task.

In mobile phone sensing, it is not an easy task to manage, organize and

control a large number of mobile phones and a large volume of sensor readings

to accomplish a given task. Although a cloud-based solution is a reasonable

option to store data, we still need software-support to accomplish such cornplex

tasks that involve particular mobile phones at particular time and locations and

to have those mobile phones under control. An example sensing scenario is a
real-time public transportation location system. Bus passengers at a bus stop

may want to know real-time location of the bus, and it can be estimated by the

collective GPS traces of some passengers on the bus. To implement this, we need

to identify mobile phone users on the bus by finding a set of GPS traces moving

together along the bus route and stopping at bus stops. A naive approach is to
collect all the traces from all the users, which is too unrealistic due to privacy

concern. Therefore, we need a mechanism to send a request including time

and location conditions toward mobile users to ask the corresponding users (i.e.

bus passengers) to participate in this collaborative task and provide their GPS

traces. However, few approach has been considered to achieve this requirement.

In this thesis, we propose development and management support methods

for sensor networks to support sensing system development comprehensively ac-

cording to the following three themes: (i) a development support environment

for network-level programming and performance evaluation, (ii) a system for

node specification generation from application-level requirement for cooperative

sensing of sensor node groups, (iii) a middleware to achieve mobile phone sens-

ing with servers based on application-level queries. The development support

environment abstracts details of node program codes and enables developers

to implement network-level node programs such as routing protocols without
considering difference of platforms. It also supports performance evaluation of

node programs on real devices and simulators by the code sharing mechanism.

The system for node specification generation derives a behavior specification of

each node on WSNs from a given application-level requirement based on node

groups which are defined by the attributes of nodes such as location, topology,

and sensor data. The middleware for mobile phone sensing enables to achieve

sensing using mobile phones by giving requirements based on sensor node group



in the same concept with (ii). The cooperative approach in WSN cannot be ap
plied to mobile phone sensing because they are time- and location- dependent

such as nodes which can sense a certain area changes as time advances' Thus,

we design the middleware for mobile phone sensing by cooperation among the

server and each mobile phone. The middleware achieves mobile phone sensing

in hiding detail information of each mobile phone such as its location, mobility,

and ID.

First, we discuss the support of node program development and node man-

agement in WSNs. At first, we design the core of D-sense: a method to support

protocol development, such as node program implementation and evaluation in

WSNs. D-sense mainly assumes NesC on TinyOS as the target language and

experiments have been carried out on Mica Motes accordingly. For other lan-

guages such as C or Java, D-sense's design concept can be applied to support

algorithm design and performance evaluation. we assume QualNet [15] simu-

lator for simulation of wireless communication. The advantages of D-sense are

three-fold. First, D-sense offers algorithm-level APIs for network-layer level pro-

cesses which are derived by classifying and studying existing protocols. Since

those APIs are written in NesC, the developers can design similar protocols

directly using the Nesc language. secondly, it enables seamless integration of

simulated and real sensor networks. To accomplish this, we provide a translator

from NesC codes into QualNet application codes. Also the physically sensed

events and sensor node status observed in real environment are made available

in the simulator. These capabilities increase repeatability and fidelity of experi-

ments. Thirdly, monitoring and run-time manipulation of sensor node behavior

is possible. We will later show how this functionality can powerfully support

developers in test and maintenance of WSN protocols.

Secondly, we discuss the support design and development of sensing systems

with multiple node collaboration in WSNs. We propose a methodology to sup

port design and development of collaborative WSN applications. The approach

provides a language to specify the high-level behavior of applications without

referring to the real deployment of sensor nodes, and an algorithm to automat-

ically translate the given application specification into a platform-dependent

program code of each sensor node. We provide a set of event sensing and com-

munication primitives to achieve the given specification in WSN.

13



The application behavior may include time, location and network-based con-

straints (conditions) on event occurrences and their processing, and the descrip

tion is independent of the physical placement of sensor nodes. We provide a

concept that hides the details of wireless sensor network configuration, com-

munication and processing inside the network but all the event occurrences are

visible to the virtual node. In this architecture, the specification is given as a

program on this node specifying pre- and post-conditions of events which are

carried out by collaborative nodes in WSN. The translation algorithm auto.

mates design and implementation of complex cooperation protocols from this

developer-friendly form of behavior specifications.

Thirdly, we discuss about the support for cooperative sensing in mobile

phone networks. In this thesis, we propose a middleware to support mobile

phone cooperative sensing with a cloud server. Since we have designed in the

second theme to support design and development of collaborative WSN appli-

cations, we use the basic high-level specification language specification part to
describe the behavior of whole sensing system. However, it is very different from

the second theme in terms of the target architecture. Mobile phones have mobil-

ity and, thus, the network topology always varies and it is difficult to manage it.
Thus, we need to tackle (i) cloud-server architecture and (ii) time and mobility
into consideration, while the second theme assumes homogeneous, decentralized

architecture without centralized servers. The middleware to achieve the mobile

phone cooperative sensing consists of applications on mobile phones and the

server-side module. Each mobile phone and the server communicate through

WAN (e.9. 3G), and even two mobile phones through short-range communica-

tion such as Bluetooth or WiFi-direct.

Our middleware automatically translates the given sensing query into seruer-

s'ide queries which need to involve multiple mobile phones and phone-s'ide queries

which are executed by single mobile phones. Based on these queries, each mo-

bile phone monitors and reports some conditions such as sensing data, time,

and location, and the server manages mobile phones and assigns sensing task

to them based on their reports. We provide a concept that hides the details of
network configuration, communication and processing inside the network but
all the event occurrences are visible. The sensing query contains time, Iocation

and network-based constraints (conditions) and their processing. The process

14



to achieve the given sensing query is very complex since it requires cooperation

among mobile phones and servers. Thus, our method hides the physical place-

ment of mobile phones and enables to execute cooperative sensing specified by

abstract query descriptions. The proposed method reduces the effort to design

and implementation of complex cooperation protocols by this developer-friendly

form of behavior specifications format.

We provide a set of event sensing and communication primitives to achieve

the given sensing query in the networks. Especially, since the proposed method is

extended for mobile phone sensing, we have designed interface and mechanisms

to handle mobility and human-mediate processes. Mobility predicates enables

to handle mobility conditions about velocities, trajectories and so on. Opt-in

predicates enables to human-mediate sensing to ask owners to work for sensing.

For example, an owner of mobile phone is required to take a video from the

opt-in interface and he takes the video if he agrees with it.

The following simple crowd sensing example helps to understand the concept;

each mobile phone sends beacon to each other and thus can detect neighbors.

When a crowded situation is detected from the number of neighbors, the system

reacts and starts sampling the neighbor count of the surroundings. Based on

the sample readings, the system predicts the crowded area and informs to users.

This system requires mobile phones collaboration to obtain samples from ap

propriate location at required intervals.The proposed scheme allows us to write

the system in a simple form that consists of three steps, (i) start sampling on

detection with required density and intervals, (ii) crowd prediction on obtaining

enough samples and (iii) notification, without being aware of physical configura-

tion of mobile phones and the server. We have shown some examples of mobile

phone sensing system by our proposed method to show its usefulness. we have

also demonstrated the performance of our proposed method in terms of success-

ful data collection and generated packet to validate the quality of processing

the given sensing query.

This thesis is organized as follows. In section 2, we address the related

work and show the features of our methods. In Section 3, we describe the

functions of D-sense that support node-centric design of WSN and show example

implementation of the existing wsN protocols by using the D-sense design APIs.

In Section 4, we propose a methodology to support design and development

15



of collaborative WSN applications. In Section 5, we propose a middleware

to support mobile phone cooperative sensing with a cloud server. Section 6
concludes this thesis.
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Chapter 2

Related Work

2.L Sensor Network Development Support

WSN is an important technique to remote environment monitoring and tar-

get tracking and reduction of effort and difficulty of development is important.

Therefore, there are several researches to support development, management,

and operation of sensor networks [16].

Since it is not easy to develop, install and manage program codes over a

number of sensor nodes, several testbeds have been proposed to support those

activities 117, 18, 19]. Large-scale testbeds such as Motelab [20] and CitySense

[21] usually provide management functions like online distribution of execution

codes to mitigate maintenance costs. D-sense differs from them since it is aimed

at comprehensive support of design, development and performance analysis.

WSNs have been used for a variety of applications such as indoor/outdoor

environmental monitoring, health and wellness monitoring and object/human

tracking 122, 23, 24]. Thus, WSN development supports should consider that

network scales are very different, e.g. TWIST 125] focuses on indoor environ-

ment while Kansei testbed [26] has an unique feature supporting simulated nodes

to deal with city-scale networks.

There are several approaches using mobile agent to assign and execute sens-

ing tasks in WSNs. Agilla [27] is a mobile agent system for WSNs. An Agilla

agent is similar to a virtual machine and migrates across nodes for sensing tasks.

SensorWare [28] is also a mobile agent system. Unlike Agilla' the agents accom-

plish coordination by using direct communication instead of sharing memory

″
′



spaces.

In order to guarantee the success of the sensor network inthe real environ-

ment, several diagnostic and debugging systems are proposed. They enable

measure and monitor the sensor networks and supports the development and

operation. Sympathy [29] is a diagnosis tool for detecting and debugging failures

in sensor networks by monitoring metrics such as connectiity, data flow, node's

neighbor and next hops. In Sympathy, the sink/base station runs and identifies

the type of failure and reports it to the user by analyzing received metrics. The

work in [30] provides analyzing of data packet delivery in a sensor network. The

system monitors physical and MAC layers on real devices in several different

environment settings.

There are several methods to support WSN development by various ap
proaches. Spatial Programming [31] system is based on a logical addressing

scheme which enables to access nodes by spatial references. Its run-time sys-

tem provides the mapping from spatial references to the physical nodes. Generic

Role Assignment [32] is a feasible tool for the development of sensor network ap-

plications by providing a declarative role specification language and distributed

algorithm for dynamic role assignment. TeenyLIME 133] is a middleware whose

foundation is the notion of distributed tuple space [34] for data sharing in sense-

and-react WSN application. SINA [35] is a sensor network information architec-

ture which overcomes the limitation of easy integration of custom data operators

by using SQL-like language SQTL which enables to the injection of arbitrary

code in to the network. Market-based programming [36] is a framework to
achive globally efficient behavior under dynamic conditions. To meet system

wide goals of lifetime, accuracy, or latency based on the requirement. Sensor

nodes act as self-interested agents that operate in virtual market and consider

execution costs as prices.

In our approach, we propose support methods for sensor node programming

and performance evaluation. Our methods support sensing system develop.

ment comprehensively and it reduce complexity and effort for implementation.

This approach enables developers to concentrate on designing algorithms and

applicationJevel specifi cations.

18



2.2 .WSN Programming Support

There are several approaches to support sensor network programming as re-

ported in [37]. TinyDB 138] and COUGAR [39] support designing query pro-

cessing in sensor networks. They provide SQL-like APIs to implement event ac-

quisition and search processes. MATE [40] also provides APIs for more generic

purposes, but only low-level APIs like sensing events, pushing data to stack

or sending data are designed. Meanwhile, we attempt to help high-level de-

sign of more generic protocols including geographic/random-based routing and

data fusion/diffusion by extracting their typical behavior. This appropriately

hides both distributed and low-level behavior so that developers concentrate on

algorithm description. For example, geographic routing protocols like GPSR

which employ greedy forwarding strategy need a series of the following atomic

actions at each node; (i) obtaining positions of neighbors, (ii) computing dis-

tances between the node and the neighbors and between the neighbors and the

destination, (iii) finding the neighbor which is closer to the destination than

the node and is the closest to the destination among the other neighbors, and

(iv) sending a packet. D-sense defines an API for each atomic action, and also

provides a single API for a series of these actions by using those atomic APIs.

In summary, as far as we know, no environment has been provided that

comprehensively supports algorithm design, low-level implementation, seamless

use of simulator and real terminals, and online debugging/monitoring in real

environment.

There are some researches supporting node programming of WSNs. Ab-

stract Regions [41] provide abstract node group definition schemes based on

connectivity and locations. Developers can design applications by hiding low-

Ievel communications, data sharing, and aggregations. Data Space [42] proposes

a method of query multicast and data aggregation. By assigning an address to

each area with some nodes, it can operate query procedure of a large number of

nodes without accessing each individual node. Object-based distributed middle-

ware EnviroTlack[43] provides many useful interfaces. They contain methods

which enable operating a large number of nodes having similar sensing data

as logical groups. In Ref. 144], ideas of data-centric design of WSNs without

considering behaviors of each individual sensor node are presented. Especially,

a data-centric design support framework PIECES [45] is proposed. However,

19



they do not establish languages and distributed behaviors. Ref. [46] proposes

script functions of wireless networks. In the proposed script, an application can

be specified by sensing, communication and procedure of data instead of actual

node behavior. Therefore, by using the script, we can easily specify applica-

tions for such environment where positions and connectivity of many nodes are

changed dynamically. Kairos 147] provides functions, such as management of

node IDs, group construction of neighboring nodes, and getting data from a

designated node, and hides them from programs. This enables specifying be-

haviors of overall WSNs. Pleiades [48] extends Kairos' programming model by

allowing a program to be partitioned into independent execution unit which

may run on different node and move among nodes.

In addition, there are various WSN programming models. Abstract Task

Graph (ATaG) [49] is a programming framework providing a mixed declarative-

imperative approach for sens+and-react applications. Flask [50] provides a hy-

brid approach with a programming model for network-level programs with a

data-flow language and node-level program to compose dataflow graphs. FACTS

[51] is a middleware which provides a rule-based programming model which

works by exchange information called. facts for data specification, execution

trigger, and data exchanging.

RuleCaster [52] provides a programming model with rules. Each rule spec-

ifies state transitions in each region based on sensor data and consists of the

condition for the rule to fire and the action to perform in datalog-like languages.

SnBench [53] is a programming framework of multi-user sensor networks and

enables to specify application processing with loops and assignments to local

variables by a central entity managing their current status.

My approach is similar to them in a meaning that it is based on construction

of sensor node groups. However, I provide application requirement description

language which enables abstract description, such as conditions of node group

construction, and sequential data procedure of the groups. This language has

high description capability like a highJevel programming language and a service

description language. For example, we can define such a behavior; "if there is

a node set to which more than 10 nodes belong and their average measurement

of temperature is above a certain level, neighbor nodes within 2 hops from of
the first group compute their average measurement of temperature".
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Furthermore, there are some methods to assign operations to each sensor

node in decentralized environment. Ref. [54] proposes Wireless Sensor and

Actor Networks (WSANs), which are composed of a low-cost, low-power' multi-

functional nodes (called sensors) and nodes which have better processing ca-

pabilities, higher transmission powers, and longer battery life (called actors).

WSANs are based on event-driven clustering manner. When cluster formation

is triggered by an event, sensors send their data to the actors. Based on the

event features and the positions of the neighboring actors, the event informa-

tion is collected to the optimal actor nodqs. In this way' energy resources are

better utilized, since clusters are formed only when necessary. In paper [55],

a method to solve adaptive and decentralized operator placement problems for

query processing in WSNs is presented. The position of the operator in query

processing, such as aggregate, correlate or filter data streams, is decided based

on the rate at which data is produced by the operator and sources, as well as on

the path length between the sourcas, the operators and the sink. This method

realizes reducing the data traffic.

Parts of our method of automated generation of sensor node program based

on monitoring requirement description take similar approaches to these meth-

ods, such as event-driven node group formation and leader node election. How-

ever, it enables to describe repeating formation and a process where formation

of a group becomes a trigger and invokes another group formation and realizes

complex operation of monitoring.

2.3 Cooperative Sensing Development Support

Since it is not easy to develop, install and manage program codes over a number

of sensor nodes, several testbeds have been proposed to support those activities

156,57,25,26,58]. By those support environments, the developers can test their

protocols, algorithms and network applications by configuring the environment

settings, running the applications and monitoring the results in the testbeds.

Some of them have unique features, for example, Dunkels et. al [58] propose a

run-time dynamic Iinking in WSNs so that the developers can change a part of

programming codes dynamically.

Some toolsets can diagnose applications for detecting and debugging failures

in WSNs [59, 60]. Sympathy [59] is designed for data collection to a central-



ized server, and can monitor and diagnose network status such as connectivity,

neighbor nodes and forwarding node status as well as data traffic. Khan, et

al. [60] proposes a framework to log run-time status of the system for offiine

analysis. Quanto [61] can measure and analyze energ'y consumption on wireless

sensor nodes. Although these testbeds and toolsets are quite useful for devel-

opers, they still need the developers' effort to fill the gap between high-level

specifications and low level codes.

On the other hand, several approaches have been presented so far that sup
port entire process of design and development [62, 63,64]. Woehrle et al. [62]

have proposed a procedure for systematic and strategic testing oftarget applica-

tions to verify robustness and reliability of the applications. Liu et.al [63] have

proposed a method to break a given single program down into several pieces

that are executed by multiple nodes in ad-hoc networks. Macrolab [64] can

also derive distributed codes from a given single program, and the developers

can concentrate on designing policies to collect sensor readings and manipulate

them. As for different approaches, Ref. [65] has designed a framework in which

a task mapping problem can be abstracted to mathematical formulations and

tasks generated from the formulations are mapped to sensor nodes. However,

the above approaches do not provide the concept of design support for cooper-

ative event processing with time-, location- or network-dependent conditions.

There several approaches to support macroprogramming for sensor networks.

Regiment [66] provides declarative macroprogramming system which enables to
perform aggregation over a region. DNS 167] is also a declarative sensor network

platform for data management and network design. Semantic streams [68] also

provides a platform for declarative query over semantic interpretations of sensor

data.

In this context, the most relevant approaches with ours are Refs. 169,70,7I1.
Hood [69] privide a macroprogramming language to specify the behavior of the

entire network or a group of nodes in physical policy and Logical Neighborhoods

[70] provides that in logical policy. Virtual Node [72] is an extension of Log-

ical Neighborhoods which abstracts subsets of nodes as a single logical node.

In particular, [71] proposes a set based programming approach where require-

ment is given by a set of nodes, a set of sensor values and so on. However, the

most significant difference is that [71] basically adopts a node-centric view of
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programming, while we allow a node-independent approach where a specifica-

tion can be fully-independent of nodes and networks including neighbors and

sink nodes (our scheme allows higher abstraction in other words). Cooperation

among nodes to implement such a specification is more complex and challeng-

ing, e.g. cluster heads should appropriately be chosen to collect and process

sensor data if necessary, networks should dynamically be built and sensor data

should be routed efficiently in a fully decentralized environment. We believe

this is the first approach to consider such highly-abstracted specifications and

provide cooperative, cost-effective solutions to achieve the given requirement in

WSN.

The papers shown by the reviewer are categorized in domain-specific frame-

work that is development framework for particular needs. [73] and [74] provide

several APIs and components for applications in wireless body sensor networks

and our approach is different in terms of target networks and applications.

2.4 Mobile Phone Sensing Support

There are some approaches of mobile phone sensing for several purposes. For

example, Ear-phone [75] proposes design of a system for noise mapping and a

method to recover the noise map from incomplete and random samples obtaind

by smartphones. CSN [76] is a classification system for human activity recog-

nition by providing a unique classifier tuned for each user. The system exploits

crowd-sourcing to extract inter-person similarity. However, these researches are

designed to support mobile phone sensing for particular purposes.

Some approaches are intended to support development of mobile phone sens-

ing applications so that developers can develop such applications easier. In [77]'

the design, impementation, evaluation, and user experiences of the CenceMe

application, which is a personal sensing system that enables members of social

networks to share their sensing presense. SoundSense 178] is a scalable frame-

work for modeling sound events on mobile phones (e.g., music, voice), PEIR [79]

is a participatory sensing application that uses location data sam- pled from

everyday mobile phones to calculate personalized estimates of environmental

impact and exposure. These applications are works on each single node. Kobe

[80] is a tool that aids mobile classifier development and provides a SQLlike

interface for sensor data classification which can be used for mobile applications
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development.

EEMSS [81] is an ener$/ efficient mobile sensing system and provides a

hierarchical sensor management scheme that specifies a particular sensing cri-

teria and each user state in an XMl-format description. Ref [82] proposes a

cloud-based integrated framework for mobile phone sensing. This framework is

designed as a part of cloud infrastructure, which coordinates a large number

of mobile phone users and applications. Medusa [83] is a novel programming

framework for crowd-sensing that manages not only computer resources but
also human resources by auditing user acknowledgement and giving monetary

incentives. CoMon [8a] is a cooperative ambience monitoring platform which

reduces energ/ consumption for sensing by sharing Sensor data among nearby

mobile users. This platform

PhoneGap [85] is is an open source solution for building cross-platform mG-

bile apps with standards-based Web technologies like HTML, JavaScript, CSS.

PRISM [86] proposes a platform for collecting sensor data from a large num-

ber of mobile phones on specified location. Code i,n the a'ir [87] is a platform for
developing mobile crowdsourcing applications. It have explored tasking smart-

phones crowds and provide complex data processing primitives and profile-based

compile time partitioning. The system enables developers to program mobile

applications in a single source and works on multiple platforms. Our middle-

ware enablm to specify more complex sensing which considering relation amoung

multiple node groups.

Several researches propose systems providing conseptual description for col-

Iaborative sensing. Movi [88] is a system for video documentation which colla-

voratively senses the ambience through multiple mobile phones and captures

social moments worth recording and the sensing is triggered by specified events.

Darwin Phones [89] is also a system for collaborative sensing and provides auto-

mated approach to updating sensor data models over time for the variability in
sensing conditions. [90] video documentation systems which considers energ"y-

delay tradeoffs.

In addition, some researches also consider about contribution for partici-

pants such as incentives and worker mediation. Nericell [91] proposes a sys-

tem for road-bump monitoring and Micro-Blog [92] is a system which allows

smartphoneequipped users to generate and share geotagged multimedia called
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microblogs. Kitokito [93] is a participatory sensing system which allows partic-

ipants to easily create small sensing tasks. This system is based on server-client

architecture and assign tasks such that take a geo-tagged picture to appropriate

participants based on their location. AnonySense 194] is an infrastructure for

anonymous tasking and reporting and adopts a polling model for task distri-

bution. This approach does not reveal the node's location to the infrasructure.

Bubble-Sensing [95] allows to assign sensing task to specific physical locations

to sense interest regions and the tasks are broadcasted by local and backend

communications.

Compared with the above approaches, our contribution is to provide a mid-

dleware that supports higher level abstraction for mobile phone sensing. Query

developers can specify time-, Iocation- and topology-based conditions to choose

a group of mobile node that should participate in the mobile phone sensing

task. The developers are not necessary to be aware of physical locations of

mobile phones and the middleware can find such a group that accomplishes the

given query. In this context, we believe this has a novel concept of supporting

distributed query executions.
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Chapter 3

D-sense : A Design S,rpport
Environment for Wireless
Sensor Networks

3.1 Introduction

In this chapter, we design and develop D-sense, an integrated development en-

vironment to support protocol development in WSNs efficiently.

D-sense mainly assumes NesC on TinyOS as the target language and exper-

iments have been carried out on Mica Motes accordingly. For other languages

such as C or Java, D-sense's design concept can be applied to support algo-

rithm design and performance evaluation. We assume QualNet 115] simulator

for simulation of wireless communication. The advantages of D-sense are three-

fold. First, D-sense offers algorithm-level APIs which are derived by classifying

and studying existing protocols. Since those APIs are written in NesC, the

developers can design similar protocols directly using the NesC language. Sec-

ondly, it enables seamless integration of simulated and real sensor networks. To

accomplish this, We provide a translator from NesC codes into QualNet appli-

cation codes. Also the physically sensed events and sensor node status observed

in real environment are made available in the simulator. These capabilities

increase repeatability and fidelity of experiments. Thirdly, monitoring and run-

time manipulation of sensor node behavior is possible. We will later show how

this functionality can powerfully support developers in test and maintenance of
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Figure 3.1: Classification of WSN Protocols

WSN protocols.

Using the D-sense APIs, We have implemented GPSR [7], SPEED [8]' BIP

[9] and Rumor Routing 110]. In particular, We have evaluated the performance

of SPEED in both real and simulated networks and compared the results with

Ref. [S] to validate the D-sense implementation. It is also confirmed how D-

sense contributes to alleviate the development cost.

This chapter is organized as follows. In Section 3.2, We describe the func-

tions of D-sense that support node-centric design of WSN and show example

implementation of the existing WSN protocols by using the D-sense design APIs.

Section 3.5 shows the evaluation of reducing implementation effort. Section 3.6

concludes this chapter.

3.2 Functions of D-sense

Developers can evaluate the performance of WSN protocols through both sim-

ulation and real environment only by specifying them as algorithm-level NesC

descriptions with D-sense design APIs. In addition, automated generation func-

tion of sensor nodes' application (discussed in chapter 4) supports monitoring

and managing of WSNs. The functions D-sense provides are described in the

following.

Design Support

One of the most important features of D-sense is highJevel design support.

Using the D-sense design APIs, developers can give algorithm-level NesC de-
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scriptions. Then the D-sense d,esi,gn API translator takes them as inputs, and

expands the embedded APIs that are implemented as macros into pure NesC

implementation automatically. In order to support as many types of protocols

as possible, the D-sense design APIs are developed based on property analy-

sis of existing typical protocols. These protocols are classified by the criteria

which are inspired from Ref. [96]. A classification example by these criteria is

given in Figure 3.1. For example, GPSR ("g" i.r Figure 3.1) is a position-based

routing method and is used in GHT [97] or some other methods that employ

position-based event accumulation and search mechanisms. In implementing

this protocol, we may use the APIs for "position-based routing" and "store and

search application". Similarly, some other known protocols like Rumor Routing

[10], AODV 1111, BIP [9], MDTMR [12], LEACH [13], GROUP [14] and SPEED

[8] are classified in the figure.

For each type in the classification, we provide type dependent APIs, and also

provide generic APIs which are commonly used in all the types. F\rrthermore,

we design more functional APIs that are realized by using these APIs. For

example, since obtaining the IDs of one-hop neighbors is carried out in many

protocols, it is designed as a generic API. On the other hand, obtaining the

position of a designated node is obviously used by location-aware protocols and

applications only. Obtaining the ID of the node which has the maximum residual

battery in a node cluster is required in some cluster-based protocols, and the

corresponding API is designed as a functional API. The details of the APIs and

their implementation are shown in our web site [98].

In Section 3.3, we will exemplify how typical protocols are implemented using

these APIs.

Seamless Integration of Simulated and Real networks

D-sense provides functions of supporting seamless integration of simulated and

real networks and supports performance evaluation. Integrated functions are

(1) sharing the same code between both environments, (2) visualization of per-

formance in real environment, and (3) setting of simulation parameters based

on logs of real environment.

The NesC codes derived by the D-sense design API translator can be directly

executed on Mica Mote, or can further be translated into codes for QualNet sim-
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Figure 3.2: A Snapshot from QualNet Simulator (Sensor Node Status is Visu-
alized)

ulator [15] written in C*t by the D-sense NesC translulor. Also environmental

events and sensor node status logged automatically by the D-sense debugging

component in real environment and can be animated by the QualNet animator

(Figure 3.2) in which we provide special graphics to visualize residual amount

of battery and LED status (we assume Mica MOTE here) for more realistic

animation.

The function of simulation parameter setting helps making similar environ-

ments as real environments based on logged information such as node positions

and message receptions in real environment. This function enables simulation to

inherit parameter settings and radio connectivity from real environment. This

enables performance evaluation in both small-scale real WSNs and large-scale

simulated WSNs.

Especially, there are large gaps between simulation results based on isotropic

radio range model and anisotropic radio range. To solve this problem, 199] pro-

poses Radio Irregularity Model (RIM), which assigns different rate of atten-
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uation for different directions. The parameter degree of irregularity (DOI) is

introduced, which is defined as the maximum path loss variation per unit degree

of the direction of radio propagation, into RIM. By giving appropriate settings

of DOI, RIM can bridge the gap between real and simulated environment. D-

sense provides functions to derive DOI value from logs of some nodes in real

environment and simulate with RIM based on this value. Derivation of DOI is

executed as following: For a node i, the system makes neighbor node set lf(z/
by listing up the nodes whose distances to node i are similar. Node i broadcast

a message and each node in l{(z/ records values of radio strength when it re-

ceives message. Based on the values, we can derive DOI parameter considering

differences of radio strensth in different directions.

Figure 3.3: Visualization of LED and Battery for Mica MOTE

Monitoring F\rnctions for sensor nodest program

We explain our powerful support faciiity for monitoring of WSN programs.

At each sensor node, we run a "monitoring agent" to monitor node status in

distributed environment by cooperation among agents. Configuration of mon-

itoring agents is based on a method which is discussed in chapter 4. Based

on description of monitoring requirement for a target application, a monitor-

ing suhr-'program is generated and executed with the target applications. The

monitoring application can monitor states of sensor nodes and networks. For

example, we can define some kind ofinvalid processes and states, such as overage

traffic and deadlock by *y monitoring functions, and sensor nodes can detect

them as troubles, report about them, and operate to recover.

30



(a) itN(,1 (]errera,iion

01:
02:

03:
04:
05:

06:
07:
08:

09:

len = g el *n ei ghf ors(ne i gh bor,,l Ds, s izeof(ne i ghbor I Ds) ) ;

forwardlD : get_rny_lD0i
for (l : 0; i < len; i++){

nodelD : :reighbor lDsfil;
if(get*dist an ce(node lD,targetl D)

< get 
-di 

st an ce{forward ID,targetlD))
forwardlD : r:ode ID;

if{forwardlD l: mylD) // forward loward a nearer node
s e n d _u ni c a st 1t o c k et{forw ar dl D,packet) ;

else peGmeter_mode -: true; ll perimeter mode (omi:ted)

(b) Greedv Ironvarding

Figure 3.,1: Exarnpler lrnplcrnenlation of OPSll.

3.3 Protocol Implementation Sxamples

In this scct.ion. rve slou'exar:rple irrrpicrlirrlalion of foll existirrg WSN prolocolsl

CllisR., S|nED, BIP and Runtor Rorr|ing Lry using tho l)-scnsc dt:sign APIs.

(lPSRlT] is a position-bascd prot,o<;ol, where each sellsor ttollc fllrwarcls a

1:achel 1,o l,hc rreighbor rode ttea,rcsl 1,o lhil clestinal,ion l:v usitrg a ;rlalar grirph.
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ncighbor rrodes (lire 01) arrcl forwarrls a. packet to lhe Itotlc ttcarest t,o lhe

<lestirrirl.iou in lhe listed l'roclcs (lincs 0l-: 09).

S?nED:S] is also a positiorr-l;ast:d routing protocol. h S?EIlll protocol,
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Stateless Norr-dt-.terninislic Getographic liorwarcling (SNCIF) algorit,lrlr is used
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(lirres 02 t)7) and cla.ssilles ll'rcrl il1 o trvo grorJ,rs. Il lhe lransrnission efficieucv
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otlrer rrorlers:ue put irrto group FS-secon.d, (lints 08 13) Thcn a. noilc is selectecl

from thc group l.5'-frsl of lodcs having belier t,ransrlission eflicicnc.y accorclirrg

lo the length of t.he trarrsnrission 1;ath ald |he lc.r,els of colgestiotr (lirres 1i: 26).

\\rc can scc f h:'rt, (.iPSR and SPtrED, l:ot.h of rvhich are position-ba.secl r:ol1.ilg

protot'ols, carr be intplemenfcd bv L:sing sinrilar APIs.



llIP l9l is a cenlralizetl 1>rolocol trt:rna,ging sensor notles in Irerr: t,olrolog-v,

and rlcsignecl to mirrirnize t.hr:1titn.l orrcrgn corrsunpliou of tlrc trclwork. Il
collrillized proiocols. i:rforrrration of an-v ntlrles and auy rrotlc pitirs nlav bc ttsecl

for ruarragirrg netr'vork topologv ald louling packets. )esigrr APIs gatlrer ald

l]lil.fr:rgc sucl'r inlbrmation artcl proviclc lhettr for de'n'elopcrs. Tlrr: riglrt {igure

shorvs an exalrlple implemcl{,alion ollllP. At firsi, the sout't'l rlotle is sot.:rs lbe
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ll r:cltralizecl protocols. irtforrnitl,iott of arllt nocles a'tlcl atty troclc 1-r:tit's tltav lle

rised |rlr rlattagilg ltllwork iopolog"r' alld fouling packets. Design APls gather

anrl nrarra,gc slich infornra,l,ion and plovide t,hern for devclopers. Figurc 3.6 shows

ilil cxa.nple irnplemenlatiol of BIP. At fir$t, the soulcc norle is sc| as |he rool

nodeoll,helrr:e(line01). Tlcl 1l.rertrr,:eiscorrstructedbvadrlirrglhcnodethat

c11 };c roiiche(l [r'on a:rode irr t.llti ifri] u'i{.}r uli:limutrr radio tt'attstrtissioti porver
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R,rrnror Roui,ing 110] is a lortt,irtg prr;lor:ol based on ncslt lopolog.-v, and is

dcsigncil lirr accumulation ancl seiLrch of data. Figure 3.7 shorvs atr cxar:rple
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a.nollrcr nodc. Lr fhis process, a noilc wlrere a.genls have ncll visil,ccl lrttrg littte is

sdcc,tctl (lirros 03 06). When a rrodc lcceives a querl: par:kc|. tltc nridc $earches



0 I : num = gcl-trce*,todes(root_node,lD,
treeNodes,sizeo(lreeNodes) );

0l: while (num < N){
03: parentNode : NULL;
04: childNode : NULL;
05: energy: MAX_VALUE;
06: for (i :0; i < num; i++){
A7: node : treeNodeslil;
08: min_lD : get_minimun *energy_norle(node->lD);09: if(energy>get_energl_consuntption(

node->lD,min,lD)){
10: parentNode - node;
1 l: childNode : get_node(min_lD);
12: energy : get*enelgy_cotrsutrtptiort(

node->lD.min ID)'
13: )
i4: \'
l5: i{paren:Node) add_cltild(parentNode.childNode);
l6: )
I 7: nurn : get_tree_nodes(root_node_lD,

treeNodes,sizeof(treeNodes ));
18: lbr(i l:i<N:i--)
19: forfl : 1; j < N; j++)
l0: nodel - get_node(i): nodcJ get node(i):
ll : itlttus_children(nodel.nodeJ)l{
22: lezt : get_childrea(nodeJ,childrenlDs, sizeof(childrenlDs));
23: if{is*neighborrs(nodel,childrenlDs))
24: s e t lt a r e n | {chi l dren I Ds,nod e l) ;

liigure 3.6: lixarnple irrr;rlcnrr:rrtation of BfP

the pa.t,h t,o ihe evenl clueriecl bv the pa.ckct using its errenl table (lirre 10). .lf ihe

rocle has thc l,argel event inforrrat.ion it,sclf, it processes the c1:er.v, ollrcrwise

the nocle srarr:hes a direction to forrvt,rd it lo {lines 11 13). lfthe nodc has no

infcrrnrnlion rcg:rrcling |hc querv a: all, llrc cluery is lon,'arcled t.o a.:rorlc rvherc-.

tLe query packct has lol visiled recer:|lv {lines 1,1,15).

3.4 Case Study: A Demonstration of Routing
Protocol Evaluation

ln orcler io validale the D-sense irnplcncnlat.iol and show its usefulness, rve

show a clenrorslraliol tr: evalt:a|c ihe perforrnance of the SPHtrD prof.ocol in

simulalicrr i'rnrl rcal ertvironnent b.v usirrg l)-sense. ald cornpared thn perlbr-

lnanc{r irr tlte sirrlrla.tisn to lhc pcrfoluta:tce re;;orted in Ref. l8] .
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0 I : on_agent_receiver{source_lD,agent-packet ) {
02: event table = set event tlistunce(

agent3acket-:'nurn-hops.source lD):
03: agent_packel:set*event_info(

agent3acket. event_table);
04: if{agent_packet->ttl-- > 0)
05: send_unicustiacket(

g et _n ot _t i si I ed *n ei g h b o r(agent3acket),
agent3acket);

06:
07:
08:
09:
l0:
ll:
l2:

I ;1:

t 5:

i
o n _q u e ry _r e ceiuer( sou rce_l D,q uery3acket ) {

query3acket->ttl--;
if(get_n u m_hops( event table,query--packet->data)--0 )

doQuery(query-packet)
else if (get_hop.s(queryjacket->data) > 0)

s en d _u n i ca st jac*e/(q uery3acket,
g etJo rw a r d i n g *d i re tl i o tt(even :_tab :e,qu ery11lac ke1) )

else
send_unicastpacket(

g et_n ot *v i s it e d _n ei g h h o r(query3ackel ),
queryPacket)

)

Figrrre 3.7: 9xatrrple lrtrplerteutalion of Rutucir llouting

\\:e usccl lhe sar:'re scenario as licl. l8l. This sceuario is airncd at lesting

thc c:ongrsliorr avoidarcr: capabiliiv ol:he SPIE) pro|ocol. A Iilw nocles are

ranclornly sdec{ed lrorl tlre lcll sitlc ol llre tcrrain ancl soncl 1;criorlir: tlnla lo |he

Lrrse stal.ic;r: a1, the right side r,rf I'lte lerrail. Each sorr<ler gcttr:ral.tls onr: CBR

f'low wil.h l packet/secorrrl. To crcart,c corlgostion, tr'vo rartclotnly tthcisetr noclcs

il thc uriddle o1 the ter:rain clcate a llow between iherr at, ha.lf l,irrrc of t,lrc 150

secorr| experimell. In order 1.o cva.lua.le 1,he congestlon avoillattctt c:apalrilit.v

undcr dif{erent congestiol levols, f }re ralc of tlis llorv 1s ilcrca.st:cl b1' l0 frorn 0

up |o 100 pa.ckets/second or.c,r scr,eLal sirnulalions. \\:e har,c lvirlttllecl thi: dclay

arrd loss ralio ol the packets to |he ]rasc slatiott.

\\,it shorv t,irc experinellal euvironrlcn| in Table,l.2 ar:r1 ils lo1;ologics in

Figrrrc iJ.8 a,nc1 iJ.9. Recause of t,he lirlita,iion on llte tturttbct cl'\lOTEs, we

cva|tate<l t,her SPtrEll protocril wiih 25 nodes in real envirortnerll . To corrrpat:e

t.[c r.r:porfed pcrformance rvilh lhr: rca] cnvironmeltal perfttrr]ritrtco, sirnula.lion

itxpcrilnerrls rvcrc also concluclexl in |lc satne configriraf iorrs. \\b ad.jusler1 lhe

rvirule'ss fallgcs of llOTEs alri sintula|or accorcling lo 1.ltt-'uclrvork st-ale. Figure

つ
０



Figure 3 8: Topology ofthe Experilnent  Figure 3.9: Topology ofthe Experiment

u′ith 100 nodes                      with 25 nodes

3.10 shows a snapshot from the experiments in real environment where MOTE
terminals were uniformly arranged.

Figure 3.11(a) shows the end to end delay. In the experiments with 100

nodes, the performance observed in the simulation well follows the reported

performance although small difference is seen around 40 packet/sec congestion.

We observed the same level delays in the experiments with 25 nodes as observed

in those with 100 nodes. In each congestion level, delays in real environment

were smaller than those in simulation.

Figure 3.11(b) shows packet loss ratio (the ratio of packets that failed to
reach the base station). In the experiments with 100 nodes, the simulation

performance is nearly equal to the reported performance. In the experiments

with 25 nodes, the packet loss ratio is greatly higher than that in the experiments

with 100 nodes. This is mainly because each node had too few nodes in its
neighbor table to avoid the congestion area at the center of the network in the

experiments with 25 nodes. In particular the packet loss ratio is much higher

in real environment than that in the simulation. In each congestion level, we

observed the same level packet loss ratio in real environment as observed in
simulation although small difference is seen around 50 packet/sec congestion

As shown in Figure 3.11, compared to the simulation results, we can see small

delays and large packet loss ratio in real environmental results. We attribute
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Figure 3.10: Arrangement of MOTEs in Real Environment

these differences to large fluctuation of radio ranges in real environment. In real

environment, nodes can receive beacons from further nodes and store the node

IDs in its neighbor table. Then, nodes send packets to those further node6,

which have both lower delays and higher probability of packet loss.

From these performance evaluations, we could validate the D-sense imple-

mentation. In addition, we could find some real environmental problems and

their causes, discuss their solutions, and improve reality of the simulation by

considering them. This shows the importance of implementing and evaluating

WSN protocols in real environment, and also shows that D-sense well supports

these activities.

3.5 Perform€rnce Evaluation

3.5.1 Reduction of Implementation Effort

In order to evaluate the effectiveness of implement effort reduction by D-sense

Design APIs, we show analysis of reduction in lines of codes and complexity.

We counted the LOC (lines of code) of example codes of SPEED protocol

implemented (1) by using the design APIs, (2) in C** for QualNet simulator

and (3) in NesC for MOTE terminals. The lines of code are shown in table 3.3.
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l\rithoul using APIs. the implerlerrl;rlion required more than 1000 lines. Ol
the r:1,her lald, bv using the APIs, thc LOC is decrea,sed to aboLrt 200 lines.

Thelefbre. tltc APls seem to recluce l,lrc cffrrrt of protocol inplernerrtaLiorr.

In detail, ihe APIs are cla,ssified into Functional APls, rvhich at'c provicled

as funct,ious, and Procedural APIs, which :lre e,xpanded to codes of mul1,iple

proceri.ses bv tlre API translator.

Tlrr: Funcl,iona.l APIs prorride proccsses such as slorirg data to rrciglrbor

table, gel,t,il:g clala frort the tables^ aud calculaling clistance betrvecn tr.vo lodes.

These APIs :rre designed to provide proc0ssrls rvhich are usecl freclrrent.lv 1'r:r

inrpleruen|alion. Tlese APls redur:e ellorl..i fur fir'st implen-renl:rtiol of furr<,tiols.

Thus, lirres of code r'l-rich are rerluced a.r'er constant even if lhev are u,.ied ;1

multiple tirlcs.

The Plo<rcdural APIs provicle iurplenrerrlnl.iorr of procedurcs lirr sut:lr as send-

irrg and rcceiving ptr,ckets and hide codr:s lix their proceclurt s such a.s proccssr:s 1o

cotrt,rcll IiACI nnd lolver lavers olsclsol c.levices for each ivpes olr:ornnnrnica,lion

(e.g. cla.ta requcsl and data leplv). llot'ever, frorn the APIs wilh l)itrarrrelers

specilving delails of the processcs suc| :rs pilyload data aucl dclslinaliorr trode

ol t,he con:ullicaliol, codes of lhc conrrnunir:aliol procedurcs rro gcrreralecl

(l.hc irra.gc oi t,ranslalion is showl irr lrig.13.l2). The A?ls absorb cli$ur.errces

of codc lor cach ;:1a,1{brrr-r and rerlucc cornplexities w}ric}r are not r:ssr:n|ial for

itlgoril,hnrs. These APls reduce lincs of code which are in cliler:t propori iorr to

rrnrnbor of' ctxtrrnutrica,tion ivpes at consla.n| rate.

3.5.2 Availability and Correspondence for Various Proto-
CoIS

On thc ci|her hand. APls for cler.elc:prlent, supporl should sa.tisl_v rranv fac|ors

such as role tlxprcssiverress anrl clor:ain colrcspondel](e as corllll{lnlv dcscribccl

(e.B^. lt00]). 'lhcrr:fore. u'e have implenorrt,ccl cxarrple codes of posilion-basrd

rout,ing SPIED l8] and GPSR l7] Lrv usirrg t,hc APIs and eva,lualcd t,Ie nurnber

of eac*: API to ala,lyze lhe expressivr.:nerss ancl clonrain correspondence in sone

ca,ses. \\ie ha,vc also ir.r-rplemenled arrcl cvaluat,ed that of LAR 1101]. LAR is rr

routing prctocol rvhich uses locatiol irrlblnal.iou to lirnit:he searh for a rct'
roilte to a srrralicr "requesl zone''. 1\b shol thc resulf in Table 3.1.



Generic APls such as sentl*rr,tticrzs!.-ptLckt:1, and sen,d-hroudcrtst-1tuckcl, are

used frequcnliv ancl cornrrrorrlv in each proloc'ol and tho API redtces cllort for

irrrplclrenta.tion of cornmurrica,lion proccclurcs. Aboul r;ilrcr furrct,ional APIs,

qcL-rlistttttcr:. is ttsnd comttonly in SPtrtrD antl GPSR^ which sr:lect nr:igltbors lo

scnrl packerl, lla.stlrl on dist,al<rcs lo them, attcl is-within-o,reo is usercl cr:tnntottly

in Ci?SR and LAR. wllich have l)roce$ses of checkingr,vhclltor a cerlaitt ;tr.rsilion

is wit|itr a rcr|:rin a,r'ea. Tllc rcsult shorvs f hat APIs provirle role cxplr:ssivi:ress

{,o support, irnplenenta,t,ion of gctneriil proccsscs liucll as cotntlurticat iort alt<.| tr.lscr

have domairr corlesponclcrrcr: 1o iuplerlcn| dorlain-spt'ci1ic' procrcsscs sllfll :1s

1;osil.ion-l-rastrl processes. Our fu:rrre n'orks alr: evalual.ilg l he ttseljrlrtr:ss oi tl:e

proposed APIs for various prd,ocois altl ittrprorritrg llrerir tlcsigtts.

3.6 Conclusion

In this chaplu'. \\,'e har,e dcsigled arrrl rlr:verloped an irr|cgra|ecl envirotrnerl

la.lled D-scnse for supplrr|ing ilerveloput<:ttt of WSNs. I)-scttser supllort,s pro1,c.r-

col design bv high-level dcsign APls. Also il, provides sea,nlless collaboration

of sirnulalcd lrrd real lctrvt.rrks for perforrna.lrce eva[:a.tion, and a porvcrli.rl dis-

l,r:iltutecl clcbugging schcrrrc. We have t:ondr c:1.erd pcrforurartce eva.llratiolt of the

SPlltrD protocol in sirnulal,irlr and real urviror:nent 1o sltow t,he ef{eclivilnttss of

lJ-sense" Our ongoir-rg lr,ork irrr:ludes developing a coltplete sct of clesigrr/clebug

APIs a.ncl fe:a1ed too1s. arrri r:petring t].:ettr tu publit clon:ain.
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'l'able iJ.1: Ii.xa,rrrple of lJ-serse Design APIs

Gorrelic APIs
gel-reighbors(iDsll ,lenJDs) Gel the IDs of Lhe one hop ncighbor r:oc1es

serrd-unicast-p.rckei(lD.pkl) Serrrl a packel lo the designal,ed node
serrd-l;r'oadcasl-packel.(pkt) Sroadcasl a p:rcket
get-nurnJrops(ll)) Cet the nunbelr of hops lo u rrorle

Position based prolocol APIs
st,ore-position(lD, position) Store the positiol of the clesigrrtrled node t,o

neighbor lable
gct,*position(lD) Gei the position of the clesignal,ed node
gel-dislance(lD,ID) Cornpute t,her rlisla,lce betweel the designat,ed

l-u,o nodes
gc1 -rea.rest-reigltbor(ID) Get ID of lhe noarest l<;gle lr:1he designatclil

notle
gel-sr1a1lest*azilrLrlh-leighbor (lct. lD of thc srn:rllest azintul.h nocle to 1he
(ID) rlcsignateci norle
is-within-area(c, r) Ikrl,urn true i1'1,hc rrode is r,vitltirr t,he cir.clc ccn-

l,crccl al c rvil,fr radius r
Tree Prolocol APls
get,alrcestor (lDsll, terr -I)s)
gerl *clorvnst rean r -1.; ee

(IDs[],len-tDs)
eva,l uate-tree-cos t, ( Tree)

(,let, lDs of a.rteslor nodes
flc| downslrcarn 1,ree

{iornpute the cclst of the 1,rec

llierarchical protocol APIs
get-clustcr-rodes{lDsll ,1enJ)s)Cel i,}re lDs of the cl:strr rncrnbe;'s
gct,*neigLbor-clustcrhead0 Cct lhe cluster hea,cl of tho lcighbor clus|ef
Clollect to BS Application APIs
ge|*bs-rreighbors(lDsll,len-IDs) Oct rreighbolrrs ol RS nocle
g(,t lrs-(lueu('-sizc( ) (iet packet queue size of BS rrorle

Slolt' arrri Scalt lr .\pp)icariorr ,\l)l:
g{\t nunr ltolls(l)atrt) (lct tlrc nrrrrrbt'r'of lrops lr, tlrr':pr.r'ifit rl;rlrr
Mlllticast APIs

sc|-nulticasi-group(IDs) sert, multicast group
scrrd-rrrultica,st-packet(Group) senrl nult,icasl, pacl<et

Ilrrerg-v llonslrainL Protocol APls
gct -residual -e:ncrg_v {ID )
gct-Lransmission -encrgy ( )

(le| t,|rc residuai batierl' of l,hc elesignatecl rrode
C,lel, the energy consumption 1,o scnd a packe|

Ncl,rl'ork Corrslrainl Protocol APls
gct.-ciela;v(I).Il)) (let the dclav bctween tl:c lr,r'o lodes
ge1 -packet-loss*r:rt.c(I)] (let the pac:iret krss ralio at t lil dcsignated node

Furrclional (Clombincd) APf
ｔ́

ｔ́

ｔ́

ct |he lD of lher rrraxirnuur lr:siclira,l ballerv rrc;dc'ln a cluslef
c1, |he minirnLrrrr rlcla;y nocb rvl;iclr has thc spccific clata
c| lhc packet loss ra1.io irr lhc tlce



Table 3.2: Iixpcrirlrcttt.;rl Envirorrtnettl
lle1r,rrt, r i Sirnulation teal Ln\'.

Pll Y々 MAtl 80211 80211 t 1..1

Ilarrhvidtlt l0() Klr/s 200Kb/s.
250Xbls

2it)I(h/ s

Pavload Size 32 By|r.s 32 I)1.|s9 ll2 ljr t r's

l rrraill (200 n1.21111',, I (?0ilrn,200m)
(20m,20m)

(20r:r,20rn )

# ol Nocies 100, 25

Nor.lc l)lacernenl Llnililrnl l.lnifbnn llll()t I

llarlio liarrge 4tJlr: ,10m. 8rr

Tablc 3 3:Iコ illo、 oF Code cF SPEED

Ta,ble il.'1: Tllcr nrtnrbr:r ol'API used irr SPilEI)

(1) NesC with
Design APIs

(2)C+ + (wit,h D-
sensc lnoilules)

(3) C+ r- ( 1) Nes(l

LOC] 221 1058 860 114‐ 7

A PI Type SPEED (lPSR t,An
j:iend -uricast *packel
selrd -broaclcast -packcrt
get -disfance
gr1, i0a re st r reigl'rbr:r
gct -\ina I le$l -azimt1. h-:reighbo
is-rv 1ll irr -area
g'.cl *cil.:(]ue-size

gellr0iglbor
gd,-dclay
g0t -posil:olr

Procer
Procer
Iruncl,:
Irunrl
Funcl
Furrt:t
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Fulcl
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task void sndSpeedMsg(X
if(st€p@unt l:0 X /,/add for debue

uint16-t bufferlength = 0;

speedMsgr smsg = (speedMsg')

l(dbgted==0) ell Leds.greenTotgle(l;
sms3->position = wlSpeedMsg.position;
smsg->nodeld = valSpeedMsg.nodeld; //source
smst->distld = vatspeedMsg.dinld; //distination
sm{->prcvld = TOS-LOCAL-ADDRESS; //prevlous
smq->packetType = valSpeedMsg.packetType;

smsg->ttl = valspeedMst.ttl
smst->tims = nowTime;
smst->slqNo = Elsp€edMsgseqNq
smst->startTime = nlSpeedMsg.danTlme;
smg->ndius = wlSpeedMsg.ndius;
memcpy(smsg->payled,wlSpeedMse.payloa43);

ell Mhopsend.send(nodeNqt,
MoDE-ONE-HoP-BRoADcAsf, &s-msg, sizeofl SpeedMg));

)//add tur debug

Figure 3.12: The Image of API translation
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Chapter 4

Data― Cerltric PrograrrLming
Environment for
Cooperative Applications in
WSN

4.L fntroduction

ll tlris chaplr:r. \\re pr.rpose a nrellroclolr;gl'Lo suppoi't desigu arrrl dr:r'cloprnclt

of collaboralive WSN applications. The appro:rch pror.ides a larrgrragc t,o spcc:ifv

the high-lcvcl behavior of applica,tions wilhoul referrilg f,o t,he real deploynrent,

of sensor rodcs, and an algorilhrrr to aulornatic:rlly translate t,he given npplictr-

tion spcci{icalion into a p}a{forn-rlepcndeul program cocle of ca.ch sensor notle.

\\Ie prttvide :r set of evenl sensing a.nd courmulicatiorr prirni|ives |o a.rh1et,c lhe
gir.en specilicat,iorr ilr WSN.

The applicntion belravior rlaf include t,intc. ]ocatio:r and neln'ork-Lrased i:orr-

str:rint,s (r:c.rrrditiols) on event o{:curretc€rs i:ucl theil processilg, arrd t,he descrip

iion is inrlcpenduri of lhe phl.sir:al pla.cetlent, of sensor lodos. \\ic provicle a

con(:ept t,ha| hirlt:s the delails of wirr:less se-'rrsor network conliguratic,n, r.olr-

rrtunicat,iort ant.l prrocessing inside the rrelwork but all ihe event occurrerlces are

visiblc t'o 1hr.'virl.uitl nocle. Ir this archit,ectLrre, the specificalion is givr-rr ;rs ir

progrrll clrr lhis rctle specilving pre- and pr:sl-colclitious ol event.s whic:h are

calried out L.r.i.r:ollaboralive noclcs il \VS)i. Thc translation algorilhlr luto-
mates rlcsigtr and implellentalion of cornplex cooperaiiol protocols li'o:tr fhis
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Useful Functims
Localion Consuain6 Fbcuons
Goup Pr@ess Furclions
Topology Fwctions
Comsication Functions

B6ic Prcccss Fmctiods

Figure 4.1: Approach Overview

developer-friendly form of behavior specifi cations.

The following simple fire detector example helps to understand the concept;

Each wireless sensor node is equipped with CO (smoke) and thermal sensor,

and forms a wireless sensor network with neighboring nodes. When a smoke or

fire is detected, the application reacts and starts sampling the air temperature

and smoke of the surroundings. Based on the sample readings, the application

predicts the potential spread of the smoke and fire, and alerts nearby people

appropriately. This application requires sensor node collaboration to obtain

samples from appropriate location at required intervals, and needs to determine

nodes that take over processing Iike fire prediction and notification. The pro-

posed scheme allows us to write the application in a simple form that consists of

three steps, (i) start sampling on detection with required density and intervals,

(ii) smoke and fire prediction on obtaining enough samples and (iii) notification,

without being aware of physical configuration of WSN.

We have compared derived codes with given application specifications to

quantitatively understand the gap between the two different specification lev-

els. We have also demonstrated the performance of program codes generated

by our proposed method in terms of successful data collection ratio, data collec-

tion delay and traffic volume to validate the quality of automatically-generated

program codes.

力
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4.2 Approach Overview

4.2.t Outline

Our rnelhod c:a,n rlerive a, prograni code of eacl uode for a given s;;r,.cifirat.iorr

lhat, clescribes ar:tions to be takerr tN a group of nodes and conditiols |o be

exa,nrinecl beftire lhe a,ctions. Derverlopcrs can easily describe applicat,ions bv

speci{ying such corrditions that shoulcl bc chcckecl by coopcration of nod<,.s. We

shon'a sirnplc but essential exarnple in Fig. 4.2 where a group ol notles 1,ha1

sat,isfv ihe lblkrwing conditions is defir'recl as lhc fir'st gror.rp to clelccl a fire; (1) all

lhe nocles in t,hc gror:p liave clelecled terrperatures higher f han .10"C, (2) rhey

alrl located in a cirtle with l00rn diarrrclcl and {3) the average t.errnpcrature }.lv

30 or rnore norles in the group is higher t,har 50'C (we explair thesc predicales

in Scct,icln 4.3, brrt, r'eaders rnay lefi-.r tti Tlble .1.1). ln acldition. irr orrlcr 1o alc.rt

the a.pproach of fire, lhe seconcl, la,rger group of nocles that corrl,airrs l,lrc prcvious

glorrp lravirrg the sirnilar cerrler rvit.h i,lr,: prcvious group (1,/eler:tr:l,It'ur,Spol,) lsut

wilh la,rgcr radius, which is {lve tirnes of |hc rna,xirnum dislalcc (rliartreter)

}:trtu'eer rodcs ir: Dr:tectedFr,reS'pof gloup. is dclincd. The nocies itr thc seconcl

group (Islr,rnutedFireS'pot) *,arn people to e.s{taptl fronr tlre fire. hr l.his rviiv,

condiliotrs or geotrretr)', seusing dati,L values and lheir rratripulill.ioris r:al be

wrilt,en in our spccificatiorr.

I-lortover, such a, $pecifical.ior is rroi ea,sv lo irnplenelt, since chcckirrg con-

tiiticlns a,nd erxccut,ilg a,clions necd coopexalive opera,tions a,mong noclcs. For

exa,ruple, irr order to check a conclilion ol serrsing data, (i) a. rrocle gr.or,rp wiih
a leililer ttodc reccls to be olganizcd. (ii) |hr sensing da,ta neecls tr: l;r: colleclecl

olto the loatler rrode^ and (lii) il ucecls 1,o br-. cller:ked if the conelit,iotr is nrerl or

not. TJre aclion should be excculed il 1,lrc corrditicln is satislied. or llrr. grr)ul) ls

disnrissed.

TLls, olr lilelhod can a.utt;mal.icaily tlcrive l,lre progra.rl of coopetal,ivrl

noclcs. This hidcs l,he details of nodo behavior', r'hich are oftcn cornplcx, flonr

t,hc tlevr:lopr:rs. Thclcfore they can conceltt.r'a,l,e on applicatiolr logic.

4.2.2 Code Derivalion for \MSN nodes

For a given spoci{ica.tion clescril:cd bv a sc1 of nodes lr'ith pre.-cont1itir:rrs arrr.l

post-actitt:ts, r'r'c cla.ssill'the preclic'rtcs flral. corrsfitute 1he conclilion into l*'o



nodegroup DetectedFireSpot
condition:

TestEach (temperature, ")40")
&& lnFloatCircle(100)
&& AverageSelect (temperature , 30) >50

action:
centroid = GetCentroldo
dianeter = GetDianetero

nodegroup Est lnatedFireSpot
condi.ti-on:

lnGeoCircle (DetectedFireSpot. centroid,
5.Dete ctedFireSpot . diameter)

action:
Eaecut eEach ( "ActivateAlert O " ) ;

Figure 4.2: Specification of Fire Detection and Alert System

categories, single-node predicates and multi-node predicates. An example of

single-node predicate is TestEach that checks if variable on each node satisfies

a given condition (see TestEacft,(temperature, "> 40") in Fig. 4.2). Meanwhile,

both InFloatCircte(100) and. AuerageSelect(temperature, 30)>50 are multi-node

predicates since they cannot be examined by single nodes. For example, InFloat'

Ci,rcle(l0?) needs distance calculation for every pair of nodes, meaning that it
can be checked only when a group of nodes is given. Considering this fact, we

take the following strategy; Firstly, we let each node periodically check single-

node predicates, and let the node be a potential constitute of the group if it
satisfies the conditions. If a node becomes a potential constitute of the group,

it establishes a link with neighboring potential constitutes of the same group

if any. This is done by periodic neighbor discovery messages by each potential

constitute. These nodes finally form a tree with a leader node' The choice of a

Ieader node is simply done by determining link direction (parent-child relation),

and the root node can be the leader node. Then the data values to check the

multi-node predicates are collected to the leader node, and the node checks ifall
the multi-node predicates are satisfied or not. If true, those nodes take actions

as specified. Moreover, we allow to describe conditions of groups that depend

on some other groups. For example, the second grotp (Esti,mated'FireSpot) in

Fig. a.2) is such a group that refers to the "center" and "diameter" of Detect-
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edF'ireSpot as a part of its conditions. In this case, the centroid of coordinates

of nodes in DetectedF'ireSpot and the diameter between nodes in it has been

calculated by the leader node of DetectedF,ireSpot to prepare for creation of

Est'i,matedFireSpot, and the information is broadcast to potential constitutes of

Est'i,matedFireSpot (in this case, all the nodes).

In summary, each node needs periodically to check the single-node conditions

of each group, and then forms a tree with neighboring nodes which also satisfy

the same conditions. During the tree construction process, a leader node has

been selected and the leader node collects all the data necessary to check multi-
node conditions through the tree. Then it actually checks the conditions and

executes the post-actions in cooperation with the nodes on the tree if necessary.

During the process, it prepares and calculates the data for the other groups'

conditions if any.

4.3 Language and Algorithm Details

4.3.t Specification Language

A specification consists of two types of profiles, node profiles and nodegroup

profiles.

The node profiles define the attributes of sensor nodes. For example, if a
WSN consists of wireless sensor nodes and base stations, then we prepare two

profiles that correspond to them. In their profiles, local variables (storing sensor

data and so on) and methods they hold are defined. We omit example descrip

tions here because they just consist of definitions of variables and functions.

In nodegroup profi,le, each block of description starts with a keyword node-
group (words highlighted by bold fonts are reserved words hereafter). Concep.

tually, this corresponds to a group of nodes that cooperatively execute tasks.

Developers can define pre-conditions with condition keyword and post-actions

with action keyword. The condition part must be a logical formula using pre-

defined s'ingle-node andf or mult'i-node predicates, and the action part must be

a list of functions (or procedures).

The example specification of a fire detection and alert system shown in

Sec.4.2.l (Fig. 4.2) is an example of formal description. DetectedF'ireSpot and

E stim atedF'i,re S pot are nodegroup defi nitions blocks. In D etected,F,ire Spot, three
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predicates are speficied in the condition part. TestEach is a single-node pred-

icate, and InFloatC'ircle and AuerageSelect are multi-node predicates. As we

explained in the previous section, groups may refer to other groups by directly

specifying their group names. For example, Est'imatedFireSpot group refers to

the DetectedFi,reSpot group. Since the node groups defined by DetectedF'ireSpot

may not be unique (i.e. there may appear multiple groups), DetectedFireSpot

is assumed to be the reference to the first-generated group in our language def-

inition. The condition of. Estimated,F'ireSpot contains a single-node predicate

InGeoC'ircle with 2 parameters. In the specification, these values of paramters

have been determined in DetectedFireSpot group by GetCentro'i'd and GetDi'-

ameter functions.

Tables 4.1 and 4.2 show the list of predicates and functions, respectively. As

for the predicate table, we add how the predicates are examined in distributed

environment in the last column. S'ingle means it can be tested by each node in-

dependently (i.e. single-node predicates), while Multi means cooperation among

nodes is necessary (i.e. multi-node predicates). For example, InGeoC'ircle can

be examined by each node independently based on its own coordinates and the

given center and radius information. On the other hand, InFloatCircle needs

to know the coordinates of all the nodes in the group since it does not relate

to the specfic geographical area but to relative locations among nodes. These

attributes will be used in the derivation algorithm in the following section. Due

to space limitation, we omit some of predicates and functions, and the complete

list can be found in [98].

4.3.2 Distributed Program Generation

In this subsection, we explain how to generate code executable on each node

from a given specification. As shown in Section 4.2, each node repeats the fol-

lowing step sequence; (i) periodic sensing from sensors, (ii) periodic evaluation of

single-node predicates, (iii) tree construction (potential group generation) and

leader election, (iv) data collection on the tree, (v) evaluation of multi-node

predicates and (vi) execution of actions, to check if conditions are satisfied or

not, and to execute actions if satisfied. Therefore, we generate a programming

code that corresponds to each step of the sequence according to the given spec-

ification. The outline of a generated code for TinyOS is shown in Fig. 4.3 for
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Type Predinate Description Examined bl
General TestEach(u, ezp) true 'iff variable u

erp at every node
satisfies Single

Location lnGeoCircle(c,r) true 'iff all the nodes in the Single
group are within the circle
centered at c with radius r

Topology InFloatCircle(d) trre 'iff all the nodes in the Multi
group are within a circle with
diameter d

Location InGeoRectangle(cl, trte ,i,ff all the nodes in the
c2) group are within the rectan-

gle determined by two coor-
dinates cl and c2

Single

Topology InFloatRectangle(ur,true iff all the nodes in the Multi
h) group are within the rectan-

gle with width trr and height
h

Topology Size(mi,n, mar) true iff the number of nodes Multi
in the group is in lmin, mar]

Table 4.1: Predicates for Condition Part (Excerpt)

DetectedFireSpot group of the specification in Fig. 4.2.

(i) Periodic sensing from sensors This phase describes routine tasks like

periodic reading from sensors, which are used in the given specification. Corre-

spondingly, we prepare a code block that periodically measures data shown in
the given specification as variables so that the code can refer to these data at

steps (ii), (v) and (vi). The code also sends a beacon to know neighbor nodes.

This information is used for step (iii). Each node has a value -Root to select

a leader node among nodes in the potential constitute, and periodically sends

a beacon packet that includes following information: (1) evaluation results of
single-node predicates, (2) value of Root, and (3) value of Root of a root node

in a potential constitute if the node has already joined any potential constitute.

We explain how a node handles this packet in step (iii).

(ii) Periodic evaluation of single-node predicates We generate a code

that checks if singl+node predicates in each group are satisfied or not. Since
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Tab\e 4.2: F\rnctions for Values and Actions (Excerpt)

Average(o) Calculate the average of variables p among all the nodes

in the group
Tveragesalect@; Calculate the average of variables o among randomly-
n) chosen rt, or more nodes in the group

GetCentroid0 Calculate the centroid ofthe coordinates of nodes in the
group

GetDiameterO Calculate the maximum distance between nodes in the
group

Sleep(l) sleep ln ι

UploadData(d, c) Let exactly one node in the group upload d through
network interface c

ExecuteEach(/) Let each node execute lunction I

each predicate can be examined by single node or multiple nodes as indicated

in Table 4.1, the code checks if only single-node predicates are satisfied or not.

If necessary, the code manipulates local variables according to equations such

as addition, subtraction and multiplication. If the predicates are met' the code

continues executing the following steps since the node may be able to meet all the

conditions specified in the group (this is checked later in step (v)). Otherwise,

the code goes to step (i) again. In Fig. 4.3, we can see that a temperature is

checked in the function SinglePredicateCheck. If all the predicates in the group

condition are single-node predicates, our method skips code generation for steps

from (iii) to (v).

(iii) Tbee construction and leader election After the evaluation of single-

node predicates, we need to check multi-node predicates. However, it requires

some preparations. In step (iii), our method generates a code that constructs

a potential constitute to collect data required for evaluating the rest of the

predicates. We apply a tree-based protocol to organize a potential constitute

for managing nodes and collecting data from them. In constructing a potential

group in which nodes meet the single-node predicates, these nodes connect with

each other by direct wireless link (one-hop link). This is done by the code

generated for step (i). In step (iii), at first, a node assumes to be a leader

node of a potential constitute which contains only the node itself. If the node



receives a beacon packet from one ofthe neighbor nodes that have also satisfied

the single-node predicates of the same group, the node reacts as follows. (1) If
Root value of the leader node is smaller than Root of the node, the node lets the

Ieader node become a leaf node or an intermediate node by sending a special

packet, and sends the other nodes a packet to tell that the node becomes a new

leader node. (2) If Root value of the neighbor node is bigger than ftoof value

of the node, the node becomes a leaf node. (3) If Root value of the neighbor

node is equal or smaller than Root value of the node, the node becomes an

intermediate node. After a certain period of time, the leader node sends a

packet to stop constructing a tree and all the nodes in the tree move to step

(iv). The functions TreeConstructi,on), StartLeaderNode0, ErpireTi,mer.fired

and Rece'iueTheeConstruct'ion.receiae in Fig. 4.3 assume this part.

(iv) Collection of data After step (iii), the leader node collects the sensing

data from the other nodes so that the multinode predicates can be checked in

a certain place. This data collection step will be done through the constructed

tree by data replies sent from all nodes except the leader node. An intermediate

node waits for the replies from all the children of the node, and merges them into

a single packet before replying to it. Thus, our method generates the following

three kinds of codes; (1) a Ieaf node sends its data immediately at step (iv), (2)

an intermediate node waits for replies from children and sends its data reply,

and (3) a leader node waits for replies from children and moves to step (v).

(v) Evaluation of multi-node predicates Once the Ieader node collects

all data required for checking the rest of the predicates, the node can know all

the nodes which meet the condition and become true members of the group.

In this step, multiple groups may be created according to a definition of a
group because there are many combinations of nodes that can satisfy the given

multi-node predicates. For example, if one of the predicates is Size(8, L0),

at least three different groups with 8, 9 and 10 nodes can be considered. In

Fig. 4.3, the function MultiNodePred'i:,cates generates groups with the calculated

average of temperature variables by using a pre-defined function GenerateSets

which derives all possible sets of nodes satisfying a given condition. Thus, the

proposed method generates a code that eliminates nodes which do not satisfii

the condition. The code also generates several sets of nodes that can meet the



multi-node predicates from the rest of nodes. These derived sets become groups

specified in the given specification.

(vi) Execution of actions Afber organizing groups, each leader node of a

group executes actions in the given specification. Besides, ifthe group is accessed

by another group) the leader node has to notify the values of variables to those

nodes which need them, Therefore, our method generates a code that not only

executes the actions but also notifies those data. This notification is performed

in two ways. If the group of nodes which accesses those values are explicitly

identified at that moment and if the locations of those nodes are known, the

notification can be delivered to the location via geocasting to reduce redundant

messages. Otherwise, the notification is distributed by message broadcast. In

Fig. 4.3, the code sends a packet via geocasting to a circle since DetectedFi'reSpot

group has to notify its centroid and diameter, and Est'imatedF'i'reSpot gtoup

refers to the centroid and the diameter to make a circle.

4.4 Performance Evaluation

We first demonstrate the benefit from our method in terms of developers design

effort-saving. This is done by comparison of a given specification and the derived

code in terms of simplicity and readability. Then we measure the communication

performance in order to show that automatic derivation algorithm can derive a

reasonable code. For this purpose, the performance is compared with a naive

approach where all the data is collected to a single sink.

4.4.L Application Examples

We consider two applications. The first one is simple and similar with the fire

detection and alert system in Figs.4.2, but it can present applicability of our

method to various applications. It is a noise detection system (Fig.4.4) where

environmental noise is monitored by sensor nodes. If a sensor node detects

a certain noise, then the sensor nodes in the surroundings are organized to

calculate the average noise level and upload it. Each node has a facility to

upload data to base station, but we would like to limit the number of nodes to

upload data to only one node in the group since duplication of reports means

waste of computation and communication resources. There are two groups called
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Initiator and SensorGroup which represent the first-detector of noise over 80db ,

and the group ofsensor nodes in its surrounding area, respectively. AREA3ADIUS

is a system parameter (constant).

Another example is a crowd estimation system. In a theme park or huge

exhibition space, we assume each visitor is given a battery-operated dedicated

information terminal with positioning system (like GPS or WiFi-based location

system), 3G device, and ad-hoc communication facility (like Zigbee or Blue-

tooth). This is similar with audio guide ofiered at museums and historical
places, and we simply call it node. The objective of using such a device is to
exploit location-based guidance or navigation and to obtain crowd information

(e.g. how each attraction is crowded in a theme park in real-time). Each node

broadcasts its position to neighboring nodes, and some nodes collect neighbor

positions, generate people crowd information (i.e. perform crowd estimation)

and report them via 3G networks. However, we would like to prevent all nodes

from performing crowd estimation due to the limited number of 3G subscrip

tions for this purpose or battery efficiency. The specification is given in Fig.

4.D.

CellCrowdEsti,mator is a group of nodes that estimate the density of a
crowded cell. We assume a region is divided into square cells, and (i, j)-th cell

is specified by InGeoRectangle predicate with a pair of left-bottom coordinate

c(i,, j) and right-up coordinate c(i + L, j + l). In the condition of CellCrowd,Es-

t'imator, a group of nodes where (i) each node detected more than 5 neighbors,

(ii) all the nodes exist in a same cell, and (iii) the number of nodes in the group

is at least 10, is organized, and one node in the group is selected to calculate the

estimated density of the cell from the information sent by the group member,

and report it via 3G network.

4.4.2 Lines of Code Comparison

The node programs are generated from the two applications in the previous

section, and are assessed in comparison with the original specifications in terms

of the lines of codes (LoCs) and abstraction levels.

Fig.4.3 shows LoCs of the specifications and derived codes. As we men-

tioned earlier, the translation is done by extracting parameters and conditions

from specifications, choosing and composing primitives for collaboration, and
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Table 4.3: Lines of Codes

Iowd Estimation     17         443

embedding them into a skeleton code. since the derived codes need a lot of

implementation level descriptions, they essentially need much more Iines than

the specifications. Due to space limitations, we did not show the derived codes'

but as we exemplified in Fig. 4.2 and Fig. 4.3, we can see the difference of

abstract levels between the specification and the derived code.

4.4.3 Performance Analysis of Derived Systems

We have conducted simulation experiments to observe that the automated pro-

gram derivation performs well. We have used the Scenargie network simulator

[102] version 1.4 where IEEE802.11g was used in the MAC and PHY layers

of the ad-hoc communications. By assuming small Tx power in wireless sen-

sor networks, the ad-hoc communication range r was about 40 m. We have

targeted the noise detection application and the simulation was performed for

60 seconds. The size of the area was 250m x 250m and nodes are deployed

uniformly (grid-based deployment),

To present that the derived program can achieve reasonable performance

levels, we have evaluated the following metrics.

o Node coaero,ge rat'io, which is the ratio of the number of actually-found

nodes in the simulation to the number of nodes to be found according

to the specification and node deployment. In other words, it shows the

"completeness" of data collection.

o Data collect'ion delay, which is the time duration from the first detection

of over 80db noise occurrence to the completion of data collection process.

o Number of packets in networle, which is the total number of data and

control packets in the network layer.

For reference purpose, we have also measured those metrics by a sink-initiated

data collection and computation called sink-based collect'ioru where a sink node

broadcasts a data request packet to all the nodes in the field by a simple flooding

mechanism, and each receiving node replies to this packet by sending data back

κ
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to the sink. In order to verify the performance in various environments, we

have prepared the following four scenarios where the number of nodes and.f or

the number of events is different. 100 nodes (10 x 10 nodes) with single big

noise at 20 seconds) and two big noises at both 20 and 23 seconds, and 144

nodes (12 x 12 nodes) with single and two big noises at the same timing.
Fig.a.6(a) and Fig.4.6(b) respectively show the node coverage ratios with 100

nodes and 144 nodes. In these graphs, the number of nodes that are expected

to be in the group is also shown as bars.

We can see that the ratios are very close to 1.0 in all the cases. We note that
sink-based collection achieves very low ratio (0.2 in average). This is due to un-

reliable message delivery back to sink nodes where these messages concentrated

on a few nodes around sink nodes and some of them have been lost.

Fig.4.7 shows the data collection delay. They are not affected by the circle

radius that determines the group size. As seen, the sink-based protocol could

achieve the shortest delay, but this is mainly due to (very) low node coverage

ratios (most packets were not delivered to sink nodes). On the other hand, we

can observe that our algorithm could achieve reasonable trad+off between the

node coverage ratio and delay.

Finally, Fig. 4.8(a) shows the number of packets observed in the network
Iayer. The number of packets grorvs as the radius of circles becomes larger,

but the growing tread is linear in any case. From this fact, we can say that our
group-based local data collection and processing works preventing the growth of
traffics to data collection toward a single point, which is often Iocated far from
the event occurrence place. We have further analyzed the types of messages in
case of R : 150 in Fig. 4.8(b). The most of the packets are beacon messages that
are used for neighbor discovery purpose. Since the number of beacon packets

per nodes is constant, we can confirm that our method will scale to network size

and node density growth.

4.4.4 Crowd Sensing System Design and Evaluation

In order to show that our proposed method have practical usefulness in realistic

situations such as large-scale fields with non-uniform node distribution, we have

executed the experiments in realistic fields for the sensing application. We

have supposed a crowd-sensing application to survey crowded regions which
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enables to collect data from arbitrary regions. We have evaluated the number

ofdiscovered visitors (nodes) and that ofmissed nodes to assess the applicability

of our method. The field for the experiment is shown in Fig.4.9(a), which is a

1000rn x 1000rn region of a theme park in Osaka. We have arranged 1000 visitors

(nodes) with a realistic distribution and crowd-sensing events have occured at

the following 4 spots: spots A (830, 630) and 8(400' 340) as high node density

regions (popular attractions) and C(610, 510) and D(680, 380) as low node

density regions. Other settings are the same as those in Sec.4.4.3.

Fig. .9(b) shows the number of discovered (i.e. counted) and missing nodes,

which should be discovered but have not been done. In most cases more than

80 % of node were found in average. We note that at Spot D with l? : 100

(rR is the cell size in the specification) the ratio is low, but this is due to the

difficulty of node connectivity maintenance due to geography (mainly buildings

there) and larger number of nodes to be discovered (the sum of discover and

missing nodes), which is larger than that at Spot C with same region radius.

Thus, the cell size should be small in low-connectivity area.

In this experimentation, we have shown the practical usefulness of the pro-

posed system at most cases with appropriate determination of the target region

size corresponding to the environment.

We are beneficial from our approach since we can conduct this kind of as-

sessment of the system very easily. We may modify the specification (not the

implementation code) if expected performance is not achieved or more improve-

ment can be applied. Since real systems need a lot of system configurations, we

strongly believe we need this type of support systems.

4.5 Conclusion

In this chapter, we have proposed a support methodology for cooperative wire-

less sensor network application development. We have designed a language to

describe highJevel specification of such applications where we can specify the

whole system's behavior from developer-friendly viewpoint based on group of

node concept, and have provided an algorithm to translate a given high-level

specification into program codes for wireless sensor nodes. Our contribution

compared with the existing work is that we focus on cooperative applications

in WSNs and design a methodology to implement given applications in a fully-
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distributed way, assuming computing and communication capabilities of intel-

ligent sensor nodes. In this viewpoint, we believe this is the first approach to
tackle with such a problem. We have shown some example descriptions of prac-

tical applications and have evaluated the quality of generated programs in the

experiments.

Our future work is deriving optimal selection of communication and cooper-

ative protocol and algorithms for various situations. As shown in performance

evaluation, there is overhead of the delay and number of generated packet for

control and it may cause to shorten life time of each sensor. Therefore, we believe

the extension of our method for deriving programs with protocols and parame-

ters which are selected to satisfy application requirements and QoS restrictions,

such as delay, life time and reliability, which are given as specifications. For

example, in the performance evaluation in Sec.4.4.3, the number of beacon can

be configured by parameters for data collection protocols such as a value of

interval for beacon sending. Thus, node programs which satisfy the required

performances can be derived by giving requirement considering trade-off among

delay, completeness of data collection, and energy consumption.



// (i) Periodic aensiag fror sensors
void Periodicselsing {

, 
post SeadBeaconO;

// (ii) Periodic evaluatioa of aiDg1e-nod€ Predicates
void SingLePredicateCheckO {

) 
if ( tenperatue > 40 ) { TreeConEtructiouo; }

// Gi-i-) Tree constructio! ad Leader election
void TreeoonstructioaO {

StutLeaderNode ( ) ;
)
void StutleaderNodeO {

nyRole = RoLE-LEADER-NoDE;
call ExpireTiu€r.stut( TIMER-0NE-SH0T, 30S );

)
eveut ExpireTimer.firedO {

if ( nyRole == R0LE-LEADER-NODE ) {

) 
post StopTreecoastructiono ;

)
event ReceiveTreecorstruction.receive( void *payload ) {

Treecoustruction *nsg = (Treecorstruction *)payload'
if ( nsg,type = TYPE-BEACON ) {

if ( Dsg.rootroot < root ) { post StopleaderNodeO; }
else if ( Bsg.selfroot > root ) {

nyRole = R0LE-LEAF-N0DE;
) else if ( nsg.selfroot <= root ) {

nyRoLe = R0LE-BRANCH-N0DE;

)
) else if ( usg.type == ST0P-LEADER-N0DE ) {

nyRole = ROLE-LEAF-NODE or ROLE-BRANCH-N0DE;

) else if ( nsg.type == ST0P-TREE-C0NSTRUCTION ) {
DataColl.ectionO ;

)
]
// (!v) CoLlect'io! of data
void DataCollectionO {

if ( ByRol€ == ROLE-IEAF-NODE ) {
data = new Data(teDpelatue, nyPosition);
post SerdDataO;
)

)
evert ReceiveData.receive( void *payload ) {

Datapkt *usg = (DataPkt *)payload;
if ( nyRoJ.e == R0LE-BRANCH-NODE ) {

CoubineData(data, nsg );
if ( HasA!.readyReceivedFronAllohildlEnO) {

DataType nyData = les Data(tenperatre, EyPosj,tion);
CoBbiDeData(data, ByData ) ;
post SendDatao;

)
) el.se if (nyRo1e == R0LE-fEADER-N0DE) {

CoDbineData(data, nsg ) ;
if ( HasAlreadyReceivedFrorAllchild1enO) t

DataType nyData = new Data(tenperatue, [yPosition);
ConbineData(data, nyData ) ;
MultiNodePredicates O i

)
)

)
// (v) Evaluation of Eulti-node Predicates
void MultiNodePredicatesO {

neuSets
= ceneratesets( InFloatCircle( 100 ) &&

AverageSelect( tenperatre, 30 ) > 50 );
ExecuteEach( lewsets, ExecuteActionO ) ;

)
// (vi) Execution of actioas
void ExecuteActiolo{

NotificatiolPkt pkt;
pkt.ceater = centroid;
plrt,di@eter = dideter; 59

I 
post SendNotificationPktO ;

Figure 4.3: A Generated Code for DetectedFireSpot Group.



nodegroup Initiator
condition:

TestEach' (noi-selevel, ">8Odb" )
&&, Si,ze (I,t)

action:
centroid = GetCentroid,o

nodegroup SensorGroup
condition:

InGeoCircle (Initiator. centroid, AREAJADIUS)
action:

UpL o adDat a (Auerag e (noiselevel), BS) ;

Figure 4.4: An Example Specification of Noise Detection Application

nodegroup CellCrowdEstimator
condition:

TestEach (neighborCounter, ")5")
&& ( fnGeoilectangle (c(0,0), c(1,1))

ll InGeoRectangle (c(1,0) , c(!,2))

| | fnGeoRectangle (c (n-1,n-1), c (n,n) )
&,&, Si,ze (10, INFINITY);

action:
Up L o adD at a (Est imateDensity (neighborCounter),

3G-INTERFACE)

Figure 4.5: Crowd Estimation System

60



フ

l

■

: ■ ■

12

10

Node  08
Coverage 0 6

Ratio

04

02

00

12

10

Node  °8

coverage O.6

Ratio

04

02

00

50   75   100  125  150  175  200

Radius of Target Area

(a) 100 nodes

■ ■
■

|

75  100  125  150  175  200

Radius of Target Area

Figure 4.7: Data Collection Delay

140 rtdeal Group
720 Size

100 +Proposed
80 (single event)

-^ -tsProposedou (two events)
40 ;*-Sink-based
zo

0

140 rld""lGroup72O size
100 +Proposed
80 (single event)

60 +Proposed
A^ (two events)
-" -*-sink-based
20

0

50   75  100  125  150  175  200

Radius of Target Area

(b)144 nodes

Figure 4.6:Node Coverage Ratio(VS AREARADIUS)

Ｄｅ‐ａ
障

―/
ヽ /

+Proposed (sinSle

event, 100 nodes)
+Proposed (two

events, 100 nodes)
.+Proposed (sinSle

event, 144 nodes)
+ProPosed (two

events, 144 nodes)
+Sink-based (100

n odes)
.+eSink-based (144

nodes)



/
ヽ
`~

、.´´
″

`多"

/   1/
■/ 光ンう

物

1800

1600

1400

1200

1000
Packets
800

600

400

200

0

Proposed
(1event, 100nodes)

Proposed
(2event, 100nodes)

Proposed
(levent 144nodes)

Proposed
(2event 144nodes)

Sink-based
(100 nodes)

Sink-based

{144 nodes)

..+-Proposed
(1event, 100nodes)

+Proposed
(2event, l00nodes)

+Sink-based
(100 nodes)

JeProposed
(1event, 144nodes)

-liFProposed
(2event, l44nodes)

+Sink-based
(144 nodes)

50 7s 100 125 150 L75 200

Radius of target retion (ml

(a) the number of L2 packets

Packets

(b)PaCket Types Breakdown(R=150)

Figure 4.8:Packets for Data Collection

62



。Node Distribution

■Spot A

▲Spot B

●Spot C

◆Spot D

1000

900

800

700

600

y(m}500

400

300

200

100

0

Spot A(R二50m)

Spot A(R=100m)

Spot B(R=50m)

Spot B(R=100m)

Spot C(R=50m)

Spot C(R=100m)

Spot D(R=50m)

Spot D(R=100m)

０。
ｌｍ

(a) Visitor Distribution in Theme Park

Number of Nodes

100

(b) Number of Coveraged and Missing Nodes

Figure 4.9: Experimental Results

I Discovered Nodes

r Missing Nodes

63



Chapter 5

I)esign and Architecture of
Clo■ld―based Mobile Phone
Sensing Middleware

5.1 fntroduction

ln this chapter, wc propose a middleware to su;tport ntclbile phole crooperalive

sensilg with a cloucl server. Since rve have rlesigned in our previous work a
methoclologl' to support design and developne*t, of collabo'ative WSN appli-

cations 1103] (shown in Cha,pter 4), we use the ba,sic higfr-1eve1 specification

language specifica,tion part to describe the behavior of whole sensing system.

Hov,'ever, it is very different frorn the methodology lbr collaborative WSN appli-

caiion in terms of t,he target architecture where we neecl to tackle (i) cloud-server

architeclure and (ii) mobility into consideration, while the rnethocl for WSN a1;-

plication assllmes homogeneous, decentralized architecture without cent,ralized

servers. The middleware to achieve tl're rnobile phone cooperative serrsing cou-

sists of applications on mobile phones arrd the server-side module. Da,ch rnobile

phone and the server communicale thlough WAN (e.g. 3G), and even lwo rrrobile

phones through short-range communication such as Bluetooth or WiFi-direct.

Our metliod automa,tically lranslates the given scnsing query into se'r,uer-side

tlu,eries which need to involve rrrultiple mobile phones and yshone-side q'ueries

wliich are executed by singlc r-nobile phones. We provide a concept, tha,t hides

the details of rrelwork conliguralion, communicatiorr and processing inside the
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network but a1l the event occurrences are visible" The sensing querl' contains

time, location and netu,ork-brued constraints (conditions) and their ptocessiug.

The process lo achieve the giverr sensing query is very complex since il requiles

cooperation among mobile pholes and servers" Thus, our method hides the

physical placcment of mobile phones and enables to execule cclopelal,ivt' setrsitrg

spccified by abstract query descripl,ions. The proposed rnel,Locl r'rtduces |he

effort to design and impleurentation of complox coopcraliort prol,ocr:ls 1rr, lhis

developer-friendly form of behaviol specificat'ions fornal"

We provicle a set of cvenN sensing and comruunicalion prir:ritivtts t,o achicvc

t,he given sensing query in lhe networks. Especiallv, since f he proposed lllethod is

extended fbr mobile phone sensing) we have designed interface and rnechanisms

to handle mobility and human-mediate processes. \{obilit1, predicates enables

to handle mobility conditions about velocilies, trajectories ald so cln. Opt-in

preclicai,es enables to hurnan-mediate sensing to ash owners to work fol sensing.

For example, an ownef of mobile phone is required to take a vldeo from the

opt-in inierface ald he takes the video if he agrees witli it.

The following simple crorvcl sensing example helps lo understand the concept;

eac]r r-r-robile phone send$ beacon to each other and thus can deNect rleighbors.

Wl-ren a crorvded sil,ua,tion is dotected from the nunber of neighbors, the system

reacts and starts satlpling the neighbor count of lhe surroundings. Based on

the sarnple readings, ihe syslcm predictli lhe crorvdcd area, and inftrrms to users.

This syslerl requires mobile phones collaboration 1,o obtain salnples frorn ap

proprial,e loca.tion at requlred intervals.The proposed scherne allows us lo write

the system in a simple forrrr ll'rat consists of three sieps, (i) start sanpling on

detection with required densil,y and inlervals, (ii) crowd plcdictiol on obtaining

enough sanples and (iii) noli{ica,tion, wilhout being aware of ph1'sical configura-

tiol of mobile phones and the server. We ha.r'e sltown sonte exa,mples of urobile

phole sensing sy$tem by our proposed rnethod lo show ils usefullcss. \!'e havc

also demonslrated the performance of our proposed melhorl itr tertls of success-

hr1 data collection and general,ed packet t,o validate the quality of prt,tessitrg

the given sensing query.



5.2 Approach Overview

5.2.1 Middleware Architecture

In the proposed method, a mobile phone sensing syslern is defined to collecl

sensor data ma.lched with given queries from mobile phones. Thus, this system

should satisfy the following requirements.

r To reduce t,he complexity of sensor data a.nd node management, the sys-

tem enables to select nodes abstractly by conditions of time, location arrd

sensor data attributes.

To avoid large consumption of device energl and wireless bandwidth and

concentraNion of trafllc and process load, the sysNem should communicate

wit}r fewer nodes while oblaining enough dala. (Thus, processes n'hiclr

a,re executed by all rrodes shoulcl be avoided.)

r To detect conditions concerring rnultiple rodes, the system execules col-

laborative processing bv rrodes anil the $or\rel.

Fig"5.1 shows an image of the mobile phone sensing syslem by our pt'oposed

niddlern'are for these rcquiremenls. This systern is orgatrized by the sefver on

lhe cloud and multiple mobile phones and it enables cooperative sen$ing by

their colla,boralion. A requesior gives a query, wl'rich contains a altslracled

requiremenl for mobile phone sensing such as getting densitv ilforrnation of a

certain area, to the server and the server distribute the query to mobile phones.

Each rnobile phone cletermines whether it, participates the sensirig or not by il,self

lo reduce the probabillty to upload u'aste data. When it participales, it execules

sensing and uploa,ding dat,a to the server. The server analyzes the dala uploacled

by mobile phones to extra,cl infornraNion. In adr.lition, sornetimes it selects

mobile phclnes based on the analyzed daia to sa,tisfy lhe more comple.r quer.ies

concerning multiple nodes" These processes satisfv thc above requirement.

Fig.5.2 is the arr:hitecl,ure of our proposed rniddlewa,re to realize such sys-

leils. The n-riddlervare is cornposecl of the prograrn on the server and the ap-

plicalion ou each rnobile phole. The collaboration bet,ween tl.re mobile phones

and the server is a,chievccl by communicalion through WAN (e.g. 3G) and the

collaboraticln among rnobile phones is achieved by short-ra,nge con-rrnunication

siich a,s l3luetoof,h or WiFi-direct. The servef program provides functions for
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distributing queries, analyzing uploaded data, managing each mobile phone, and

selecting some mobile phone to participate the more complex sensing based on

analyzed data. The applications on each mobile phone has functions such as
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mation, uploading the sensing data to the server. The functions provided by

this middleware enable such mobile phone sensing.
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5.2.2 Query Description Outline

Our rrrelLod can execute sensing on each rnobile phone (hereinaftcr called node)

ancl tlre servtl for il given sensing querl, t.hal describes actions 1,o be t,akcn bv

a group r:f nodes and condit,ions to be cxanrilecl before the act.ions. Requcst,ols

can easill' dcscribe syslens by specihing such conditions that shoukl ]re checked

by cooperal,ion of nodes. We show a simple but esseniial exa,mplc irr Fig. 5.3

where a group of tocles lhat satisfy |he follon'ing conditions is defincd as 1,hc {irsl
group to dctoc| a cr'<lwd; (1) all tle noclcs irr the group have detect,ccl nutrrbers of

neighbors higl:cr lhan 10, (2) thel arc locatecl in a circle whose raclius is 100rn

ard rvltose r:ctttcr is one of gir,en positirins of interscctions, and (i)) t trc size of lhe

group is rnorc ll0:rories (n'e expla.in lhcsc predicales in Secllou 5.iJ. but. rcarlcrs

t.nay, refer to Tal;le 5. 1 ). In aclclitiol. in orclcr 1.o san.rple inlorrrrat ir;n of t lrr: crorvrl.

tlle secclnrl, largcr grotip of nodt:s tlral corrtains ll're pleviclun groul) ha.ving l,hc

sirnilar s,'rrler with thc-. previcxts group ((lro,utlDr:ter:Lo,r) bu1, wi1,lr largcr ra.tlius

200nr is rlelirred" The nodes irr lhe scrlxrd group (Sant:plbtgSpol) sanl;le and

upload uutttlters of neighbr:r as crorvd inforlration. In this lvav. conrliliotrs orr

gconctr.r', serriiing clata values a.nd llcir rtrarri1xrlalions c:a.u be lvrit.lcl in our

qrerv rlersct'ipt ion.

llov"ovcr. sttch a selsing- querv is rro1. cilsv to sa.tisfv since chccking cotrclit.iorrs

a.nd executing ar:fiols teed cool)crai.ive oporation$ among nodes. Iior cxa.rnple,

in orclcr |o chcck a coldition on scrrsing da,ta,, (i) a rode group needs to bt:

orgi:,rriz<xl, (ii) ihc sensing da,ta ncorls 1o l:e collercted onto the scrver, ancl (iii)
it necds t'o be chccked if the conclilir:n is rncl, or n<tt. Thc act,ii;u should l-re

executcd if the coldiLiol is satisfied, or 1he group is clisr.r:issed.

Thus. our rrrertlrorl can autotnalicall,v derive the sir:gl+rrr:dr arrcl nulti-node
clueries rvhich are proi:essed bv cool:eralive nodes arrd the serr,er frorl gir-r,ri slrrs-

irrg clrteri<ts. This |ides |he details of norle behavior, r'hich are r';ftcn corr:plex,

ft'orn 1,he dn'clopers. Therefore they can colceulrate on systenr |c:gir:.

5.2.3 Distributed Execution on rnobile phones and the
Server

For a givctl settsittg quer1, described l:r' a scl of nodes with prerrrondilions arrcl

post.-a,c:tir;t:s. ri'c classifl, the predicalcs lh;rt colstilute lhe cr:nrli1ion inio hi'o

cat.cgories. sirrgle'node preclicates itlr<l rnulti-lode pledicates. Ar oxa:uple ol



nodegroup CrowdDetector
condi.tion:

TestEach (neighborCount, ")10")
&&, InFL oatCi,rel e (LOO)

&,k Size (30, INFINITY)
action:

centroid = GetCentroi'd' o

nodegroup SanplingSpot
condition:

InGeoCi,rcl e (CrowdDetector. centroid, 200)
acti.on:

1utputData (

GetSarnpl ingDat aSeL ect (
neighborCount , 1min, 10nin, 3) )

Figure 5.3: A Query Description of Crowded Sensing

single-node predicate is TestEach that checks if variable on each node satisfies

a given condition (see TestEacft.(neighborCount, 
((> 10") in Fig. 5.3). Mean-

while, both InFloatCircle(l00) and Size(3},INFINITY) are multi-node predi-

cates since they cannot be examined by single nodes. For example, InFloatCir-

cle(100) needs distance calculation for every pair of nodes' meaning that it can

be checked only when a group of nodes is given. Considering this fact, we take

the following strategy; Firstly, from the given sensing query, the server gener-

ate single-node queries which contain information of single-node predicates in

it and multi-node queries which contain information of multi-node predicates

in it. Each node contacts to the server and get singlenode queries periodically.

We let each node periodically check single-node predicates, and let the node

be a potential constitute of the group if it satisfies the conditions. If a node

becomes a potential constitute of the group, it report to the server. The server

constructs a node group based on these reports. Then the data values to check

the multi-node predicates are collected to the server, and it checks if all the

multi-node predicates are satisfied or not. If true, those nodes take actions as

specified. Moreover, we allow describing conditions of groups that depend on

some other groups. For example, the second group (Samplingspot in Fig. 5.3)

is such a group that refers to the "center" of CrowdDetector as a part of its

conditions. In this case, the centroid of coordinates of nodes in CrowdDetector
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has been calculated by the server to prepare for creation of Sampli.ngSpot, and

the information is distributed to potential constitutes of SamplingSpol (in this

case, all the nodes). by the server in two ways. (1) polling by each node or (2)

broadcasting by some nodes which are nearby the target location.

In summary, each node needs periodically to check the singlenode conditions

of each group, and then report the result and some data to the server. The

server forms the nodes whose report is received into a potential group with
nodes which also satisfy the same conditions. During the server collects all

the data necessary to check multi-node conditions. Then it actually checks the

conditions and executes the post-actions in cooperation with the nodes. During

the process, it prepares and calculates the data for the other groups' conditions

if any.

5.3 Language and Algorithm Details

5.3.1 Query Description Language

A sensing query consists of two types of profiles, node profiles and noilegroup

profiles.

The node profi,les define the attributes of sensor nodes. For example, if a
WSN consists of wireless sensor nodes and base stations, then we prepare two

profiles that correspond to them. In their profiles, local variables (storing sensor

data and so on) and methods they hold are defined. We omit example descrip

tions here because they just consist of definitions of variables and functions.

ln nodegroup profi,le, each block of description starts with a keyword node-
group (words highlighted by bold fonts are reserved words hereafter). Concep.

tually, this corresponds to a group of nodes that cooperatively execute tasks.

Developers can define pre-conditions with condition keyword and post-actions

with action keyword. The condition part must be a logical formula using pre-

defined s'ingle-node and/or rnulti-node predicates, and the action part must be

a list of functions (or procedures).

The example query description of a crowd sensing system shown in Sec.5.2.2

(Fig. 5.3) is an example of formal description. CrowdDetector and, SamplingSpot

are nodegroup definitions blocks. In CrowdDetector, three predicates are spefi-

cied in the condition part. TestEachis a single-node predicate, and, InFloatCi,r-
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cle and Si,ze are multi-node predicates. As we explained in the previous section,

groups may refer to other groups by directly specifying their group names. For

example, SamplingSpol group refers to the CrowdDetector group. Since the

node groups defined by Crowd,Detector may not be unique (i.e. there may ap-

pear multiple groups), Crowd,Detector is assumed to be the reference to the

first-generated group in our language definition. The condition of SamplingSpot

contains a single-node predicate InGeoCircle with 2 parameters. In the sensing

description, the value of Lst paramter has been determined in CrowdDetector

group by GetCentroi,d functions.

Tables 5.1 and 5.2 show the list of predicates and functions, respectively. As

for the predicate table, we add how the predicates are examined in distributed

environment in the last column. S'ingle means it can be tested by each node in-

dependently (i.e. single-node predicates), while Multi means cooperation among

nodes is necessary (2.e. multi-node predicates). For example, InGeoC'ircle can

be examined by each node independently based on its own coordinates and the

given center and radius information. On the other hand, InFloatCircle needs

to know the coordinates of all the nodes in the group since it does not relate

to the specific geographical area but to relative locations among nodes. These

attributes will be used in the execution algorithm in the following section. Due

to space limitation, we omit some of predicates and functions, and the complete

list can be found in [98].

Additionally, the proposed method is designed for mobile phone sensing.

Thus, we have designed some mobile-device-specific predicates. For example,

KeepUpWithC'i.rcle is a mobility predicates which is evaluated based on the

device's trajectory, and AllowsToProu'ideVideo is a opt-in predicates which re-

quires the owner of the device to determine to take video for sensing through the

GUI of the device. These type predicates are suitable for mobile phone sensing

systems.

5.3.2 Mobile Phone Sensing Execution

In this subsection, we explain how to execute a given sensing query on each node

and server. As shown in Section 5.2, each node and server repeats the following

step sequence; (i) query generation from given sensing queries, (ii) periodic

polling to get single node query and notification, (iii) periodic sensing from
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sensors, (iv) periodic evaluation of singlenode predicates, (v) data collection

and potential group generation (vi) evaluation of multi-node predicates and

(vii) execution of actions, to check if conditions are satisfied or not, and to

execute actions if satisfied.

(i) Query generation from given sensing queries In this step, the de-

veloper give a sensing query of sensing to the server and the server generates a

phone-side query and a server-side query. Each sensing query contains single-

node predicates and multi-node predicates, respectively. Single-node predicates

should be processed by each node and multi-node predicates should be pro-

cessed by the server since it can collect and manage data of multi nodes. Thus,

each sensing query is divided into a part of single-node predicates and that of

multi-node predicates. The former becomes a phone-side query and the latter
becomes a server-side query.

(ii) Periodic polling to get phone-side query and notiffcation Queries

and notifications (discussed later) should be distributed to all nodes in the

field. But broadcasting to all nodes causes concentrations of a large amount

of data traffics on the server and frequency distribution causes a large amount

of energy consumption on each node. Thus, the server distributes them by a
polling strategy. Each node asks the server if there are phone-side queries and

notifications for every interval ?. The server sends them to the node if they are

updated.

(iii) Periodic sensing from sensors In this step, each node executes routine

tasks like periodic reading from its sensors, which are used in the given single-

node and server-side queries. Each node periodically measures data shown in

the given sensing query as variables so that the code can refer to these data at

steps (iv), (vi) and (vii). Especially, each node stores the history of its position

since its trajectory may be required for single-node predicates.

(iv) Periodic evaluation of single-node predicates In this step, each

node checks if single-node predicates in each group are satisfied or not. Since

each predicate can be examined by single node or multiple nodes as indicated in

Table 5.1, the code checks if only single-node predicates are satisfied or not. If
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necessary, the code manipulates local variables according to equations such as

addition, subtraction and multiplication. If all other single-node predicates are

satisfied but opt-in predicates are not) each node asks its owner to determine

to work for sensing and they becomes true if the owner agree. If the predicates

are met, the node continues executing the following steps since the node may

be able to meet all the conditions specified in the group (this is checked later

in step (vi)). Otherwise, the code goes to step (i) again. If all the predicates in

the group condition are singlenode predicates, our method skips the steps from

(v) and (vi).

(v) Data collection and potential group generation In this step, each

node reports the result of checking the single-node predicates and its data for

checking multi-node predicates. The server receives reports from nodes and

organized the sender nodes as a potential node group after a certain interval

from receiving the first report.

In addition, our proposed method also provides tree-based data collection

protocol by using ad-hoc communication facility (like Zigbee or Bluetooth)

for reduction of the communication cost of data uploading. Nodes which sat-

isfy single-node predicates construct a tree and they collect data to root node

through the tree. The root node uploads the collected data to the server. We

can select direct uploading or tree-based uploading.

(vi) Evaluation of multi-node predicates once the server collects all data

required for checking the rest of the predicates, it can know all the nodes which

meet the condition and become true members of the group. In this step, multi-

ple groups may be created according to a definition of a group because there are

many combinations of nodes that can satisfy the given multi-node predicates.

For example, ifone ofthe predicates is Size(8, 10), at least three different groups

with 8, 9 and 10 nodes can be considered. The server generates groups with

the calculated average of temperature variables by using a pre-defined function

GenerateSets which derives all possible sets of nodes satisfying a given condi-

tion. Thus, the server sends a special packet to nodes, which do not satisfy the

condition, to eliminates and also generates several sets of nodes that can meet

the multi-node predicates from the rest of nodes. These derived sets become

groups specified in the given sensing query.
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(vii) Execution of actions After organizing groups, the server executes ac-

tions in the given specification. Besides, if the group is accessed by another

group, the server has to notify the lalues ofvariables to those nodes which need

them. Therefore, it not only executes the actions but also notifies those data.

This notification is performed in two ways. If the group of nodes which accesses

those values are explicitly identified at that moment and if the locations of those

nodes are known, the notification can be delivered to the location via geocasting

from a certain node in the group to reduce redundant messages. Otherwise, the

notification is distributed by polling of each node in step (ii).

5.4 Performance Evaluation

We first demonstrates the benefit from our method in terms of developers design

effort-saving. This is done by introducing example systems of our proposed

method. Then we measure the communication performance in order to show

proposed middleware works well by simulations. In addition, to demonstrate

our method is available in real environment and provides useful interface for
developers, we performed experimentations in real environment.

5.4.L System Examples

To show that our proposed method have a system as a development environment

for mobile phone sensing, we introduce two systems.

The first one is simple and similar with the crowd detection and alert system

in Figs.5.3, but it can present applicability of our method to various systems.

It is a traffic jam monitoring system (Fig.s. ). If a traffic jam is occurred,

some mobile phone user takes videos of surrounding situation of the jam. This
system is useful to understand details of the traffic jam and to support driver's

determination. If mobile phones are car-mounted mode and detect a traffic jam

by detecting that their velocity are continuously low, then the mobile phones in

the surroundings are organized to assign tasks to taking videos and upload them.

Each node has a facility to do it, but we would like to limit the number of mobile

phones to upload data to only 10 node in the group since duplication of video

uploading means waste of computation and communication resources. There

are two groups called TtafficJamSpot and MonitoringStreet which represent the
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nodegroup Traf f icJamSpot
condition:

fnFLoatStreet (500n)

&&, TestEach,(mode, "==CAR-M0UNTED")
&& Durat'ionTestEach(velocity, "(2Okmph", 3nin)

action:
centroid = GetCentroi'd,o

nodegroup MonitoringStreet
condition:

InGeoCirele (Initiator. centroid, 2kn)
8t&, AL L owsToProui d'eV'i d,eo

action:
1utputData (

GetSanrplingDataseLect (rnovie , 1nin, 1nj.n, 10) )

Figure 5.5: An Query Description of Public Transportation Monitoring

first-detectors of traffic jam, and the group of mobile phones in its surrounding

area.

Another example is a public transportation monitoring system. For a public

transportation (e.g. bus), each of passengers who ride on it has its mobile

phone. If the information of the transportation is required, the system on the

server finds passengers on it and collects real-time position data from them.

The sensing query is given in Fig. 5.5.

Tbansportat'i,onPassengers is a group of nodes which are corresponding to

passengers of transportation. The group provides real-time position data. We

assume nodes, which follow the same path as the transportation and keep within

a certain distance between each node, as passengers ofthe transportation. Thus'

each node monitors its trajectory and, if it follows the path, report it to the

Figure 5.4: An Query Description of Tlaffic Jam Monitoring

nodegroup TransportationPassengers
condition:

f s F o L I owi n g Path, (TRANSPOTATI ON-PATH,

&& KeepUpVithCi'rcle (10n, 10nin) ;

action:
1utputData (

G etS anp L i,ngD at aS eL e ct (posit ion,

10min)

1min, 1Onin, 2))
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server. After the server receives reports from some nodes, node groups whose

nodes keep their distance are organized and 10 nodes in the group is selected to
upload the real-time position to the server for 10 minutes.

These systems supported by our middleware are useful example of mobile

phones sensing. These demonstration show broad utilitv of the middleware.

5.4.2 Performance Analysis of the Middleware
Performance Evaluation in Simulated Environments

We have conducted simulation experiments to observe that our middleware per-

forms well. We have used the Scenargie network simulator 1102] version 1.4

where IEEE802.11g have been used in the MAC and PHY layers as wireless

wide area network communication and all nodes can connect with the server by

this network. We have targeted the crowd detection system and the simulation

was performed for 50 seconds. The size ofthe area was 200rn x200m and there

are 4 cross point (as shown in Fig.5.6). Nodes are moving at a constant speed 1

mf sec and a crowd detection event occurs in the intersection at (150m, 150m)

after 20 seconds. Nodes nearby the event report it to the server and it sends

request packet to nodes in the target area.

To present that the middleware can achieve reasonable performance levels,

we have evaluated the following metrics.

c Node couerage rat'io, which is the ratio of the number of actually-found

nodes in the simulation to the number of nodes to be found according to
the query and node deployment. In other words, it shows the "complete-

ness') of data collection.

c Number of packets, which is the total number of data and control packets

in the network layer.

In order to verify the performance in various environments, we have prepared

the scenario with 160 nodes which move along the streets on the field.

Fig.5.7 show the node coverage ratios. In these graphs, the number of nodes

that are expected to be in the group is also shown as bars. We can see that
the ratios are very close to 1.0 in all the cases. This shows a certain level of
scalability to sense fields.
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Figure 5.6: Experiment Field

Finally, Fig. 5.8 shows the number of packets observed in the network layer

and ideal nodes to send data packets. The number of packets grows as the

radius of circles becomes larger and shows slightly larger than the number of

ideal nodes in cases (less than "150 m") However, the growing tread is similar

to the number of ideal target nodes. From this fact, we can say that our mobile

phone sensing middleware can prevent excessive traffic growth during the data

collection phase.

The simulated evaluation shows the middleware works well in the ideal en-

vironment. Our ongoing works includes more realistic evaluation in various

environments to show the utility.

Performance Evaluation in Real Environments

To show practical utility of our middleware for mobile phone sensing' we have

implemented a prototype of mobile phone sensing system and have evaluated

its data collection performance in real environment.

The prototype system is the crowd sensing system as shown in Fig.5.3 to

detect human Iocations in a certain region. This system asks mobile phones

in the region to report their locations by sending queries to them. we have
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conducted the experiments at a intersection in a campus of Osaka University
(Fig.5.10). 12 mobiles phones are placed in the intersection and report their
data by multi-hop forwarding if they are in a target circle. We have evaluated

the performance of the system with several target circles, whose radii are 20m,

30m, 40m, and 50m. In our framework, it is easy to change such conditions

since mobiles phones are controlled by queries and the queries are distributed

to the mobile phones for each sensing.

The simulation results are shown in a GUI, which enables to monitor mo-

bile phones and their locations easily and helps to manage and operate them (

Fig.5.9). We have evaluated node coverage ratios and delays of location collec-

tion in the same way as Sec.5.4.2. Table 5.3 shows the results. We can see that
node coverage ratios are higher than 70% in all scenarios. We can see that the

delay becomes large as R becomes large. This is because it takes more hops to
deliver locations to the cloud seryer. Table 5.4 shows the number of packets in
the system. We can see that the number of control packets increase linearly. As

shown in above experiments, our middleware supports not only mobile sensing

itself but also analyzing the system performance. We believe that our approach

can contribute to reduce whole cost of mobile sensins.

L
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5.5 Conclusion

In this chapter, we propose a middleware to support mobile phone cooperative

sensing with a cloud server. We have designed a language to describe high-level

specification of such systems where we can specify the whole system's behav-

ior from developer-friendly viewpoint based on group of node concept, and the

middleware to achieve the mobile phone cooperative sensing consists of apps on

mobile phones and the server-side module. Our method automatically trans-

Iates the given sensing query into a sequence of queries which are executed by

the server and mobile phones. We provide a set of event sensing and commu-

nication primitives to achieve the given specification in the networks since we

have designed in our previous work, a methodology to support design and de-

velopment of collaborative WSN applications proposed in Chapter 4. However,

it is very different from the mothod for WSN in terms of the target architecture

where we need to take (i) cloud-server architecture and (ii) mobility into con-

sideration, while the method in Chapter 4 assumes homogeneous, decentralized

architecture without management by cloud-server. In this viewpoint, we believe

this is the first approach to tackle such problems. We have shown some example

descriptions of practical systems and have evaluated the quality of our proposed
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Figure 5.10: Field of Experimentation

80



method in the experiments.

Our ongoing work includes applying the proposed method to various situ-

ations such as pedestrian crowds, car traffic, train passengers, and mixture of

them. In those platforms, we need to consider mobility, neighbor discovery and

security issues keeping the architecture limitation in mind. Thus, we have to

provide various methods corresponding to various situations.
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Table 5.1: Predicates for Condition Part (Excerpt)

Type Predinate Description Examinec
by

General 'IbstEach (u, erp) true'iff variable u satisfies erp at Single
every nooe

General DurationTestEach tuue i,ff variable u satisfies erp at Single
(u, erp, t) every node for the duration f

Location InGeoCircle (c,r) true i,ff all the nodm in the group Sin
are within the circle centered at c
with radius r

gle

IbpologylnF'loatOircle (d) ftue iff all the nodes in the group Multi
are within a circle with diameter
d

ion InGeoRectangle
(cl, c2)

trwiff all the nodes in the group
are within the rectangle deter-
mined by two coordinates cl and
c2

Locat Single

TopologylnFloatRectangle true iff all the nodes in the Multi
(w, h) group are within the rectangle

with width ro and height h
Location lnGeoStreet (c,r) true ,iff all the nodes in the group Single

are in a street at c and within dis-
tance r from c

TopologylnFloatStreet (d) true ,iff all the nodes in the group Multi
are in a street and within distance
d

TopologySize (min, mar) ftue ,iff the number of nodes in Multi
the group is in fmin, mar]

Mobility KeepUpWithCircle
(d, t)

ttw i,ff all the nodes in the group Multi
keep up within a circle with diam-
eterdfortseconds

Mobility IsFollowingPath (p, ftue i,ff all the nodes in the group Single
t) follow the path p in this t seconds

opt-
In

AllowsToProvideVideotrue i7f owners of all the nodes in Single
(鶴 ,C) the group show the caption c and

allow to take and upload a movie
n'L
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Table 5.2: F\rnctions for Values and Actions (Excerpt
F\nction Description

Average(u) Calculate the average of variables p among all the
nodes in the group

Rveragesetect(u, n) Calculate the average of variables o among randomly-
chosen ?? or more nodes in the group

@uIatethecentroidofthecoordinatesofnodesin
the group

GetDiameterQ Calculate the maximum distance between nodes in
the grouP

GdVelocityfl Calculate the average velocity of all nodes in the
group

@e the the past t trajectory of the centroid of
the coordinates of nodes in the group

Sleep(ι ) sleep in t
OutputData(d) Let the server output d
ExecuteEach(./) Let each node execute function /

GetVelocity0 Calculate the velocity of the centroid of the coordi-
nates of nodes in the group /

OutputSamplingData Let the server output d for I every i
(d, i, t)

@et n nodes in the group upload d' for t every i and

(d, i, t, n) Iet the server to output the uploaded data

.3: Perlormanceじ valuatlon ln lteal Lnvlronmen

R 50403020

Node Coverage Ratios
Delay (Sec)

1.00    0.88    0.73    0.84

13.963  17812  21.443  20.598

Table 5.3: Performa Evaluati Real En t Ex imentation

The Number of Generated Packets in Real Environment Experimen-Table 5.4:

tation
R 20  30   40   50

Control Packets

Data Packets

33  52  139  164
2   2    9    13
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Chapter 6

Conclusion

In this thesis, we propose D-sense, a development support environment for sen-

sor networks to support sensing system development comprehensively. The

environment is designed according to three themes: (i) support for network-

level programming and performance evaluation, (ii) node specification genera-

tion from application-level requirement for cooperative sensing of sensor node

groups, and (iii) middleware to achieve cooperative mobile phone sensing with
servers based on application-level queries.

The theme (i) abstracts details ofnode program codes and enables developers

to implement network-level node programs such as routing protocols concentrat-

ing on their algorithm. It also supports performance evaluation of node pro-

grams on real devices and simulators by the code sharing mechanism. The theme

(ii) derives a behavior specification of each node on WSNs from application-level

requirement based on node groups which are defined by terms of real world such

as location, topology, and sensor data. Developers can customize processes of
the specifications. These support development of multiple layer of sensing sys-

tems comprehensively. The theme (iii) enables to achieve mobile phone sensing

by giving requirements based on sensor node group in the same concept with the

theme (ii). The cooperative approach in WSN cannot apply to mobile phone

network because its topology is constantly changing because of its nodes' mobil-
ity. Thus, we add a term of time to the format of sensing requirement and design

the middleware for mobile phone sensing by cooperation among the server and

each mobile phone. The middleware achieves mobile phone sensing in hiding
detail information of each mobile phone such as its location, mobility, and ID.
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In chapter 2, we have surveyed several researches of sensor network devel-

opment support to show the features of our approaches. We have also surveyed

researches about sensor node programming support, cooperative sensing devel-

opment support, and moble phone sensing support to address the related work

and show the features of our each methods.

In Chapter 3, we have designed and developed an integrated environment

called D-sense for supporting development of WSNs. D-sense supports proto-

col design by high-level design APIs. Also it provides seamless collaboration

of simulated and real networks for performance evaluation, and a powerful dis-

tributed debugging scheme. We have conducted performance evaluation of the

SPEED protocol in simulation and real environment to show the effectiveness of

D-sense. Our ongoing work includes developing a complete set of design/debug

APIs and related tools, and opening them to public domain.

In Chapter 4, we have proposed a support methodology for cooperative wire-

less sensor network application development. We have designed a language to

describe high-level specification of such applications where we can specify the

whole system's behavior from developer-friendly viewpoint based on group of

node concept, and have provided an algorithm to translate a given high-level

specification into program codes for wireless sensor nodes. Our contribution

compared with the existing work is that we focus on cooperative applications

in WSNs and design a methodology to implement given applications in a fully-

distributed way, assuming computing and communication capabilities of intel-

ligent sensor nodes. In this viewpoint, we believe this is the first approach to

tackle with such a problem. We have shown some example descriptions of prac-

tical applications and have evaluated the quality of generated programs in the

experiments.

In Chapter 5, we propose a middleware to support mobile phone cooperative

sensing with a cloud server. We have designed a language to describe high-level

specification of such systems where we can specify the whole system's behav-

ior from developer-friendly viewpoint based on group of node concept, and the

middleware to achieve the mobile phone cooperative sensing consists of apps on

mobile phones and the server-side module. Our method automatically trans-

Iates the given sensing query into a sequence of queries which are executed by

the server and mobile phones. We provide a set of event sensing and commu-



nication primitives to achieve the given specification in the networks since we

have designed in our previous work, a methodology to support design and de-

velopment of collaborative WSN applications proposed in Chapter 4. However,

it is very different from the mothod for WSN in terms of the target architecture

where we need to take (i) cloud-server architecture and (ii) mobility into con-

sideration, while the method in Chapter 4 assumes homogeneous, decentralized

architecture without management by cloud-server. In this viewpoint, we believe

this is the first approach to tackle such problems. We have shown some example

descriptions of practical systems and have evaluated the quality of our proposed

method in the experiments.

Our ongoing work includes applying the proposed method to various situ-
ations such as pedestrian crowds, car traffic, train passengers, and mixture of
them. In those platforms, we need to consider mobility, neighbor discovery and

security issues keeping the architecture limitation in mind. We have also work-

ing for supporting system optimization techniques such as prediction of running

cost of the sensing system by application specification and environmental infor-

mation. Therefore, developers may be able to design the system while verif ing
its performance. Although this is a big challenge, we believe it is beneficial for

many service developers who wish to use smartphones for sensing purpose.
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