|

) <

The University of Osaka
Institutional Knowledge Archive

. A Study on Design and Development Support for
Title ; X X
Cooperative Wireless Sensing Systems

Author(s) |[Mori, Shunsuke

Citation |KFRKZ, 2013, HIHX

Version Type|VoR

URL https://hdl. handle.net/11094/27486

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



SLUGESNN DUISUD S 5oTjodijy| O, iUV ) AU JJUULLDS sUCUWILVIC/AD pPHYE VUVIoTd YUY NAPTRO V

o LO¢ AdETIUE]

NSUNMYS

Sl

R 1 607¢

A Study on Design and D'!evelopment Support for

Cooperative Wireless Sensing Systems

January 2013

Shunsuke MORI




A Study on Design and Development Support for

Cooperative Wireless Sensing Systems

| Submitted to
Graduate School of Information Science and Technology
Osaka University

January 2013

Shunsuke MORI



List of Publications

Journal Papers Corresponding to Thesis

1. Shunsuke Mori, Takaaki Umedu, Akihito Hiromori, Hirozumi Yamaguchi,
and Teruo Higashino: “A design support environment for wireless sensor
networks” IPSJ Journal, vol. 50, no. 10, pp. 2556-2567, (October 2009),

(in Japanese).

Conference Papers Corresponding to Thesis

1. Kazushi Ikeda, Shunsuke Mori, Yuya Ota, Takaaki Umedu, Akihito Hiro-
mori, Hirozumi Yamaguchi, and Teruo Higashino, “D-sense: An integrated
environment for algorithm design and protocol implementation in wireless
sensor networks”, Proceedings of the 11th IFIP/IEEE international con-
ference on Management of Multimedia and Mobile Networks and Services
(MMNS 2008), pp. 20-32. Samos Island, Greece, (September 2008).

2. Shunsuke Mori, Yu-Chih Wang, Takaaki Umedu, Akihito Hiromori, Hi-
rozumi Yamaguchi, and Teruo Higashino, “Design and Architecture of
Cloud-based Mobile Phone Sensing Middleware”, Proceedings of the Sec-
ond Symposium on Network Cloud Computing and Applications (NCCA
2012), 102-109, London, UK (December 2012).

3. Shunsuke Mori, Takaaki Umedu, Akihito Hiromori, Hirozumi Yamaguchi,
and Teruo Higashino, “Data-Centric Programming Environment for Co-
operative Applications in WSN”, Proceedings of the IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM 2013), Ghent,

Belgium, (in press)



Abstract

Recently, wireless sensor networks (WSNs) are expected as important tech-
niques to monitor real world phenomena. On the other hand, mobile phone
sensing techniques which use mobile phones such as smartphones as sensing
devices are also prospective because mobile phones such as smartphones are
in widespread used recently. For collecting data from the real world, there
are several researches on WSN and mobile phone sensing applications such as
collecting activities of people and environmental information. However, it is
difficult to implement collaborative behavior of entire sensing systems by in-
tegration of low-level implementation for node programs. Therefore, in WSN
system development, if developers design and give an abstract behavior of en-
tire system, it is desired that programs of node behavior in low-level code for
each platform and codes for simulators can be obtained automatically. In addi-
tion, because both of WSNs and mobile phone sensing become popular recently,
both types of sensing should be supported. Thus, to support sensing system
development comprehensively, we propose development and management sup-
port methods such as (i) a development sﬁpport environment for network-level
programming and performance evaluation, (ii) a system for node specification
generation from application-level requirements for cooperative sensing of sensor
node groups, (iii) a& middleware to support cloud-based mobile phone sensing
based on application-level queries.

At first, we design D-sense: a development support environment for network-
level programming and performance evaluation. In order to support as many
types of protocols as possible, D-sense offers algorithm-level APIs for network-
layer level processes. The APIs are derived based on property analysis of existing
typical protocols. D-sense also provides two types of translators. A translator

for D-sense API expands the embedded APIs that are implemented as macros



into sensor node programming language (e.g. NesC) implementations automati-
cally. A translator for sensor node programming language which translates into
codes for simulator (e.g. QualNet). By these trapslators, a description with
APIs are translated into both codes for sensor node and those for simulator.
Therefore, developers can evaluate the performance of WSN protocols through
both simulation and real environment only by specifying them as algorithm-
level sensor node programming language descriptions with APIs provided by
D-sense.

Secondly, we propose a methodology to support design and development
of collaborative WSN applications by generation of node specifications from
application-level requirements. The approach provides a language to specify
the high-level behavior of applications which is given as a program specifying
time, location and network-based constraints (conditions) on event occurrences
and their processing which are carried out by collaborative nodes in WSN. This
approach enables to program WSN without referring to the real deployment of
sensor nodes. For example, if a developer gives a specification such as “obtain
sensing information every 10 minutes from any 10 nodes in a certain area”, the
system derives a node program which contains modules such as a module to
examine whether the node is in the area and a protocol module for sensing data
uploading. This method automates design and implementation of complex co-
operation protocols from this developer-friendly form of behavior specifications.

Thirdly, we propose a middleware to support cloud-based mobile phone sens-
ing. Each mobile phone works as a sensor node and a cloud server manages sens-
ing data and real-time location of mobile phones because they have mobility and,
thus, the network topology always varies. Therefore, we design a middleware
to support easy operation of mobile phone sensing. The middleware consists
of applications on mobile phones and the server-side module. The middleware
enables to give queries specified by real-world conditions such as time, location,
and sensor data on event occurrences and their processing. It commands mo-
bile phones to execute sensing according to given queries and manages real-time
location of mobile phones to change assigning of sensing tasks when they leave
or join the sensing.

These development and management support methods for sensor networks

and mobile phone sensing help the sensing system development comprehensively.



Our methods abstract details of node program codes and supports performance
evaluation. Especially, we can execute sensing by giving requirements which

contain attributes of nodes such as time, location, topology, and sensor data for

WSN and mobile phone sensing.
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Chapter 1

Introduction

Recently, wireless sensor networks (WSNs) are expected as important techniques
to monitor real world phenomena. For collecting data from the real world, there
are several researches on WSN applications for such as weather observation,
volcano monitoring [1], flooding-detection [2], intruder detection [3], and traffic
monitoring [4]. Also, several systems are designed as sense and react applications
such as traffic control [5] and air conditioning control [6]. In these applications,
"WSN is considered as a key platform for sensing and it will be more significant
for next generation affluent and ubiquitous life and society.

For these several applications, there are various requirements due to hetero-
geneity of architecture, network scale and applications. New protocols for WSNs
are often developed or existing protocols are tuned accordingly. Thus many pro-
tocols have been designed with different design goals [7, 8, 9, 10, 11, 12, 13, 14].
In addition, wireless sensor nodes are expected to be more energy-efficient and
powerful in near future, and accordingly they can be more intelligent and co-
operative to reduce traffic volume and delay, which are caused by gathering all
the sensor readings onto cloud servers.

On the other hand, recently mobile phones such as smartphones are in
widespread used, which have high functionality and multiple sensors. There-
fore they can be used as sensing devices, using much richer storage space and
processing power than networked sensor nodes in WSNs, which are cheaper and
simpler for massive deployment. Since their features enable to sense many types
of data at various location wherever human can visit, useful information such as

crowd of walking people, air condition and pollution in human-living area and
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real-time public transportation information can be obtained if a large number
of mobile phones can participate in sensing activities.

However, there are problems in the WSN development such as effort for
node program development such as low-level implementation and experiments
in both real and simulated environments, and that for designing node behav-
jor specification to achieve collaborative behavior. There are also problems in
sensing by mobile phones such as effort for management real-time location of
mobile phones.

In WSN protocol development as sensor node programs, protocol designers
and developers face with typical problems which have been experienced in de-
signing distributed systems. Even though the developers wish to concentrate
on abstract behavior of protocols, they at last need to write target-dependent
low-level codes. Then they carry out performance analysis and validation in
simulated networks or real environments. However, additional efforts may be
required to simulate the implementation of a target protocol using network sim-
ulators, since in most cases such simulation code is not compatible with the
corresponding real code. Also experiments in real environments require config-
uration of many sensor nodes, to log their behavior, and to manipulate them
to validate (debug) the implementation. Obviously all of these tasks are really
hard and complex.

On the other hand, each node should act to accomplish collaborative be-
havior in fully decentralized, homogeneous environment for more efficient and
powerful sensing. However, most of the current WSN systems and architecture
assume simple, limited capability of sensor nodes. Therefore, the main task
of those nodes is assumed to send the sensor readings to a gateway which is
connected to the back-end cloud servers. This does not scale as cyber-physical
computation becomes more essential and the amount of sensor readings ac-
cordingly becomes larger. Thus, each node should act to accomplish collabora-
tive behavior in fully decentralized, homogeneous environments. In particular,
WSNs should sometimes act as a part of computing modules as well as data
collection and delivery, where sensor readings are processed and routed among
sensor nodes to enable local and collaborative event processing. However, the
implementation of such collaboration requires the designers to make enormous

efforts since writing codes of collaborative sensor nodes in a node-centric way,
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while keeping the global, data-centric behavior in mind, is extremely a hard
task.

In mobile phone sensing, it is not an easy task to manage, organize and
control a large number of mobile phones and a large volume of sensor readings
to accomplish a given task. Although a cloud-based solution is a reasonable
option to store data, we still need software-support to accomplish such complex
tasks that involve particular mobile phones at particular time and locations and
to have those mobile phones under control. An example sensing scenario is a
real-time public transportation location system. Bus passengers at a bus stop
may want to know real-time location of the bus, and it can be estimated by the
collective GPS traces of some passengers on the bus. To implement this, we need
to identify mobile phone users on the bus by finding a set of GPS traces moving
together along the bus route and stopping at bus stops. A naive approach is to
collect all the traces from all the users, which is too unrealistic due to privacy
concern. Therefore, we need a mechanism to send a request including time
and location conditions toward mobile users to ask the corresponding users (i.e.
bus passengers) to participate in this collaborative task and provide their GPS
traces. However, few approach has been considered to achieve this requirement.

In this thesis, we propose development and management support methods
for sensor networks to support sensing system development comprehensively ac-
cording to the following three themes: (i) a development support environment
for network-level programming and performance evaluation, (ii) a system for
node specification generation from application-level requirement for cooperative
sensing of sensor node groups, (iii) a middleware to achieve mobile phone sens-
ing with servers based on application-level queries. The development support
environment abstracts details of node program codes and enables developers
to implement network-level node programs such as routing protocols without
considering difference of platforms. It also supports performance evaluation of
node programs on real devices and simulators by the code sharing mechanism.
The system for node specification generation derives a behavior specification of
each node on WSNs from a given application-level requirement based on node
groups which are defined by the attributes of nodes such as location, topology,
and sensor data. The middleware for mobile phone sensing enables to achieve

sensing using mobile phones by giving requirements based on sensor node group
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in the same concept with (ii). The cooperative approach in WSN cannot be ap-
plied to mobile phone sensing because they are time- and location- dependent
such as nodes which can sense a certain area changes as time advances. Thus,
we design the middleware for mobile phone sensing by cooperation among the
server and each mobile phone. The middleware achieves mobile phone sensing
in hiding detail information of each mobile phone such as its location, mobility,
and ID.

First, we discuss the support of node program development and node man-
agement in WSNs. At first, we design the core of D-sense: a method to support
protocol development, such as node program implementation and evaluation in
WSNs. D-sense mainly assumes NesC on TinyOS as the target language and
experiments have been carried out on Mica Motes accordingly. For other lan-
guages such as C or Java, D-sense’s design concept can be applied to support
algorithm design and performance evaluation. we assume QualNet [15] simu-
lator for simulation of wireless communication. The advantages of D-sense are
three-fold. First, D-sense offers algorithm-level APIs for network-layer level pro-
cesses which are derived by classifying and studying existing protocols. Since
those APIs are written in NesC, the developers can design similar protocols
directly using the NesC language. Secondly, it enables seamless integration of
simulated and real sensor networks. To accomplish this, we provide a translator
from NesC codes into QualNet application codes. Also the physically sensed
events and sensor node status observed in real environment are made available
in the simulator. These capabilities increase repeatability and fidelity of experi-
ments. Thirdly, monitoring and run-time manipulation of sensor node behavior
is possible. We will later show how this functionality can powerfully support
developers in test and maintenance of WSN protocols.

Secondly, we discuss the support design and development of sensing systems
with multiple node collaboration in WSNs. We propose a methodology to sup-
port design and development of collaborative WSN applications. The approach
provides a language to specify the high-level behavior of applications without
referring to the real deployment of sensor nodes, and an algorithm to automat-
ically translate the given application specification into a platform-dependent
program code of each sensor node. We provide a set of event sensing and com-

munication primitives to achieve the given specification in WSN.
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The application behavior may include time, location and network-based con-
straints (conditions) on event occurrences and their processing, and the descrip-
tion is independent of the physical placement of sensor nodes. We provide a
concept that hides the details of wireless sensor network configuration, com-
munication and processing inside the network but all the event occurrences are
visible to the virtual node. In this architecture, the specification is given as a
program on this node specifying pre- and post-conditions of events which are
carried out by collaborative nodes in WSN. The translation algorithm auto-
mates design and implementation of complex cooperation protocols from this
developer-friendly form of behavior specifications.

Thirdly, we discuss about the support for cooperative sensing in mobile
phone networks. In this thesis, we propose a middleware to support mobile
phone cooperative sensing with a cloud server. Since we have designed in the
second theme to support design and development of collaborative WSN appli-
cations, we use the basic high-level specification language specification part to
describe the behavior of whole sensing system. However, it is very different from
the second theme in terms of the target architecture. Mobile phones have mobil-
ity and, thus, the network topology always varies and it is difficult to manage it.
Thus, we need to tackle (i) cloud-server architecture and (ii) time and mobility
into consideration, while the second theme assumes homogeneous, decentralized
architecture without centralized servers. The middleware to achieve the mobile
phone cooperative sensing consists of applications on mobile phones and the
server-side module. Each mobile phone and the server communicate through
WAN (e.g. 3G), and even two mobile phones through short-range communica-
tion such as Bluetooth or WiFi-direct.

Our middleware automatically translates the given sensing query into server-
side queries which need to involve multiple mobile phones and phone-side queries
which are executed by single mobile phones. Based on these queries, each mo-
bile phone monitors and reports some conditions such as sensing data, time,
and location, and the server manages mobile phones and assigns sensing task
to them based on their reports. We provide a concept that hides the details of
network configuration, communication and processing inside the network but
all the event occurrences are visible. The sensing query contains time, location

and network-based constraints (conditions) and their processing. The process
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to achieve the given sensing query is very complex since it requires cooperation
among mobile phones and servers. Thus, our method hides the physical place-
ment of mobile phones and enables to execute cooperative sensing specified by
abstract query descriptions. The proposed method reduces the effort to design
and implementation of complex cooperation protocols by this developer-friendly
form of behavior specifications format.

We provide a set of event sensing and communication primitives to achieve
the given sensing query in the networks. Especially, since the proposed method is
extended for mobile phone sensing, we have designed interface and mechanisms
to handle mobility and human-mediate processes. Mobility predicates enables
to handle mobility conditions about velocities, trajectories and so on. Opt-in
predicates enables to human-mediate sensing to ask owners to work for sensing.
For example, an owner of mobile phone is required to take a video from the
opt-in interface and he takes the video if he agrees with it.

The following simple crowd sensing example helps to understand the concept;
each mobile phone sends beacon to each other and thus can detect neighbors.
When a crowded situation is detected from the number of neighbors, the system
reacts and starts sampling the neighbor count of the surroundings. Based on
the sample readings, the system predicts the crowded area and informs to users.
This system requires mobile phones collaboration to obtain samples from ap-
propriate location at required intervals.The proposed scheme allows us to write
the system in a simple form that consists of three steps, (i) start sampling on
detection with required density and intervals, (ii) crowd prediction on obtaining
enough samples and (iii) notification, without being aware of physical configura-
tion of mobile phones and the server. We have shown some examples of mobile
phone sensing system by our proposed method to show its usefulness. We have
also demonstrated the performance of our proposed method in terms of success-
ful data collection and generated packet to validate the quality of processing
the given sensing query.

This thesis is organized as follows. In Section 2, we address the related
work and show the features of our methods. In Section 3, we describe the
functions of D-sense that support node-centric design of WSN and show example
implementation of the existing WSN protocols by using the D-sense design APIs.

In Section 4, we propose a methodology to support design and development

15



of collaborative WSN applications. In Section 5, we propose a middleware
to support mobile phone cooperative sensing with a cloud server. Section 6

concludes this thesis.
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Chapter 2

Related Work

2.1 Sensor Network Development Support

WSN is an important technique to remote environment monitoring and tar-
get tracking and reduction of effort and difficulty of development is important.
Therefore, there are several researches to support development, management,
and operation of sensor networks [16].

Since it is not easy to develop, install and manage program codes over a
number of sensor nodes, several testbeds have been proposed to support those
activities [17, 18, 19]. Large-scale testbeds such as MoteLab [20] and CitySense
[21] usually provide management functions like online distribution of execution
codes to mitigate maintenance costs. D-sense differs from them since it is aimed
at comprehensive support of design, development and performance analysis.

‘WSNs have been used for a variety of applications such as indoor/outdoor
environmental monitoring, health and wellness monitoring and object/human
tracking (22, 23, 24]. Thus, WSN development supports should consider that
network scales are very different, e.g. TWIST [25] focuses on indoor environ-
ment while Kansei testbed [26} has an unique feature supporting simulated nodes
to deal with city-scale networks.

There are several approaches using mobile agent to assign and execute sens-
ing tasks in WSNs. Agilla [27] is a mobile agent system for WSNs. An Agilla
agent is similar to a virtual machine and migrates across nodes for sensing tasks.
SensorWare [28] is also a mobile agent system. Unlike Agilla, the agents accom-

plish coordination by using direct communication instead of sharing memory
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spaces.

In order to guarantee the success of the sensor network inthe real environ-
ment, several diagnostic and debugging systems are proposed. They enable
measure and monitor the sensor networks and supports the development and
operation. Sympathy [29] is a diagnosis tool for detecting and debugging failures
in sensor networks by monitoring metrics such as connectiity, data flow, node’s
neighbor and next hops. In Sympathy, the sink/base station runs and identifies
the type of failure and reports it to the user by analyzing received metrics. The
work in [30] provides analyzing of data packet delivery in a sensor network. The
system monitors physical and MAC layers on real devices in several different
environment settings.

There are several methods to support WSN development by various ap-
proaches. Spatial Programming [31] system is based on a logical addressing
scheme which enables to access nodes by spatial references. Its run-time sys-
tem provides the mapping from spatial references to the physical nodes. Generic

.Role Assignment [32] is a feasible tool for the development of sensor network ap-
plications by providing a declarative role specification language and distributed
algorithm for dynamic role assignment. TeenyLIME [33] is a middleware whose
foundation is the notion of distributed tuple space [34] for data sharing in sense-
and-react WSN application. SINA [35] is a sensor network information architec-
ture which overcomes the limitation of easy integration of custom data operators
by using SQL-like language SQTL which enables to the injection of arbitrary
code in to the network. Market-based programming [36] is a framework to
achive globally efficient behavior under dynamic conditions. To meet system
wide goals of lifetime, accuracy, or latency based on the requirement. Sensor
nodes act as self-interested agents that operate in virtual market and consider
execution costs as prices.

In our approach, we propose support methods for sensor node programming
and performance evaluation. Our methods support sensing system develop-
ment comprehensively and it reduce complexity and effort for implementation.
This approach enables developers to concentrate on designing algorithms and

application-level specifications.
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2.2 WSN Programming Support

There are several approaches to support sensor network programming as re-
ported in [37]. TinyDB [38] and COUGAR [39] support designing query pro-
cessing in sensor networks. They provide SQL-like APIs to implement event ac-
quisition and search processes. MATE [40] also provides APIs for more generic
purposes, but only low-level APIs like sensing events, pushing data to stack
or sending data are designed. Meanwhile, we attempt to help high-level de-
sign of more generic protocols including geographic/random-based routing and
data fusion/diffusion by extracting their typical behavior. This appropriately
hides both distributed and low-level behavior so that developers concentrate on
algorithm description. For example, geographic routing protocols like GPSR
which employ greedy forwarding strategy need a series of the following atomic
actions at each node; (i) obtaining positions of neighbors, (ii) computing dis-
tances between the node and the neighbors and between the neighbors and the
destination, (iii) finding the neighbor which is closer to the destination than
the node and is the closest to the destination among the other neighbors, and
(iv) sending a packet. D-sense defines an API for each atomic action, and also
provides a single API for a series of these actions by using those atomic APIs.

In summary, as far as we know, no environment has been provided that
comprehensively supports algorithm design, low-level implementation, seamless
use of simulator and real terminals, and online debugging/monitoring in real
environment.

There are some researches supporting node programming of WSNs. Ab-
stract Regions [41] provide abstract node group definition schemes based on
connectivity and locations. Developers can design applications by hiding low-
level communications, data sharing, and aggregations. Data Space [42] proposes
a method of query multicast and data aggregation. By assigning an address to
each area with some nodes, it can operate query procedure of a large number of
nodes without accessing each individual node. Object-based distributed middle-
ware EnviroTrack[43] provides many useful interfaces. They contain methods
which enable operating a large number of nodes having similar sensing data
as logical groups. In Ref. [44], ideas of data-centric design of WSNs without
considering behaviors of each individual sensor node are presented. Especially,

a data-centric design support framework PIECES [45] is proposed. However,
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they do not establish languages and distributed behaviors. Ref. [46] proposes
script functions of wireless networks. In the proposed script, an application can
be specified by sensing, communication and procedure of data instead of actual
node behavior. Therefore, by using the script, we can easily specify applica-
tions for such environment where positions and connectivity of many nodes are
changed dynamically. Kairos [47] provides functions, such as management of
node IDs, group construction of neighboring nodes, and getting data from a
designated node, and hides them from programs. This enables specifying be-
haviors of overall WSNs. Pleiades [48] extends Kairos’ programming model by
allowing a program to be partitioned into independent execution unit which
may run on different node and move among nodes.

In addition, there are various WSN programming models. Abstract Task
Graph (ATaG) [49] is a programming framework providing a mixed declarative-
imperative approach for sense-and-react applications. Flask [50] provides a hy-
brid approach with a programming model for network-level programs with a
data-flow language and node-level program to compose dataflow graphs. FACTS
[61] is a middleware which provides a rule-based programming model which
works by exchange information called facts for data specification, execution
trigger, and data exchanging.

RuleCaster [52] provides a programming model with rules. Each rule spec-
ifies state transitions in each region based on sensor data and consists of the
condition for the rule to fire and the action to perform in datalog-like languages.
SnBench [53] is a programming framework of multi-user sensor networks and
enables to specify application processing with loops and assignments to local
variables by a central entity managing their current status.

My approach is similar to them in a meaning that it is based on construction
of sensor node groups. However, I provide application requirement description
language which enables abstract description, such as conditions of node group
construetion, and sequential data procedure of the groups. This language has
high description capability like a high-level programming language and a service
description language. For example, we can define such a behavior; ”if there is
a node set to which more than 10 nodes belong and their average measurement
of temperature is above a certain level, neighbor nodes within 2 hops from of

the first group compute their average measurement of temperature”.
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Furthermore, there are some methods to assign operations to each sensor
node in decentralized environment. Ref. [54] proposes Wireless Sensor and
Actor Networks (WSANs), which are composed of a low-cost, low-power, multi-
functional nodes (called sensors) and nodes which have better processing ca-
pabilities, higher transmission powers, and longer battery life (called actors).
WSANS are based on event-driven clustering manner. When cluster formation
is triggered by an event, sensors send their data to the actors. Based on the
event features and the positions of the neighboring actors, the event informa-
tion is collected to the optimal actor nodes. In this way, energy resources are
better utilized, since clusters are formed only when necessary. In paper {55],
a method to solve adaptive and decentralized operator placement problems for
query processing in WSNs is presented. The position of the operator in query
processing, such as aggregate, correlate or filter data streams, is decided based
on the rate at which data is produced by the operator and sources, as well as on
the path length between the sources, the operators and the sink. This method
realizes reducing the data traffic.

Parts of our method of automated generation of sensor node program based
on monitoring requirement description take similar approaches to these meth-
ods, such as event-driven node group formation and leader node election. How-
ever, it enables to describe repeating formation and a process where formation
of a group becomes a trigger and invokes another group formation and realizes

complex operation of monitoring.

2.3 Cooperative Sensing Development Support

Since it is not easy to develop, install and manage program codes over a number
of sensor nodes, several testbeds have been proposed to support those activities
[56, 57, 25, 26, 58]. By those support environments, the developers can test their
protocols, algorithms and network applications by configuring the environment
settings, running the applications and monitoring the results in the testbeds.
Some of them have unique features, for example, Dunkels et. al [58] propose a
run-time dynamic linking in WSNs so that the developers can change a part of
programming codes dynamically.

Some toolsets can diagnose applications for detecting and debugging failures
in WSNs [59, 60]. Sympathy [59] is designed for data collection to a central-
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ized server, and can monitor and diagnose network status such as connectivity,
neighbor nodes and forwarding node status as well as data traffic. Khan, et
al. [60] proposes a framework to log run-time status of the system for offline
analysis. Quanto [61] can measure and analyze energy consumption on wireless
sensor nodes. Although these testbeds and toolsets are quite useful for devel-
opers, they still need the developers’ effort to fill the gap between high-level
specifications and low level codes.

On the other hand, several approaches have been presented so far that sup-
port entire process of design and development [62, 63, 64]. Woehrle et al. [62]
have proposed a procedure for systematic and strategic testing of target applica-
tions to verify robustness and reliability of the applications. Liu et.al [63] have
proposed a method to break a given single program down into several pieces
that are executed by multiple nodes in ad-hoc networks. MacroLab [64] can
also derive distributed codes from a given single program, and the developers
can concentrate on designing policies to collect sensor readings and manipulate
them. As for different approaches, Ref. [65] has designed a framework in which
a task mapping problem can be abstracted to mathematical formulations and
tasks generated from the formulations are mapped to sensor nodes. However,
the above approaches do not provide the concept of design support for cooper-
ative event processing with time-, location- or network-dependent conditions.

There several approaches to support macroprogramming for sensor networks.
Regiment [66] provides declarative macroprogramming system which enables to
perform aggregation over a region. DNS [67] is also a declarative sensor network
platform for data management and network design. Semantic streams [68] also
provides a platform for declarative query over semantic interpretations of sensor
data.

In this context, the most relevant approaches with ours are Refs. [69, 70, 71].
Hood [69] privide a macroprogramming language to specify the behavior of the
entire network or a group of nodes in physical policy and Logical Neighborhoods
[70] provides that in logical policy. Virtual Node [72] is an extension of Log-
ical Neighborhoods which abstracts subsets of nodes as a single logical node.
In particular, [71] proposes a set based programming approach where require-
ment is given by a set of nodes, a set of sensor values and so on. However, the

most significant difference is that [71] basically adopts a node-centric view of
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programming, while we allow a node-independent approach where a specifica-
tion can be fully-independent of nodes and networks including neighbors and
sink nodes (our scheme allows higher abstraction in other words). Cooperation
among nodes to implement such a specification is more complex and challeng-
ing, e.g. cluster heads should appropriately be chosen to collect and process
sensor data if necessary, networks should dynamically be built and sensor data
should be routed efficiently in a fully decentralized environment. We believe
this is the first approach to consider such highly-abstracted specifications and
provide cooperative, cost-effective solutions to achieve the given requirement in
WSN.

The papers shown by the reviewer are categorized in domain-specific frame-
work that is development framework for particular needs. [73] and [74] provide
several APIs and components for applications in wireless body sensor networks

and our approach is different in terms of target networks and applications.

2.4 Mobile Phone Sensing Support

There are some approaches of mobile phone sensing for several purposes. For
example, Ear-phone [75] proposes design of a system for noise mapping and a
method to recover the noise map from incomplete and random samples obtaind
by smartphones. CSN [76] is a classification system for human activity recog-
nition by providing a unique classifier tuned for each user. The system exploits
crowd-sourcing to extract inter-person similarity. However, these researches are
designed to support mobile phone sensing for particular purposes.

Some approaches are intended to support development of mobile phone sens-
ing applications so that developers can develop such applications easier. In [77],
the design, impementation, evaluation, and user experiences of the CenceMe
application, which is a personal sensing system that enables members of social
networks to share their sensing presense. SoundSense [78] is a scalable frame-
work for modeling sound events on mobile phones (e.g., music, voice), PEIR [79]
is a participatory sensing application that uses location data sam- pled from
everyday mobile phones to calculate personalized estimates of environmental
impact and exposure. These applications are works on each single node. Kobe
[80] is a tool that aids mobile classifier development and provides a SQL-like

interface for sensor data classification which can be used for mobile applications
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development.

EEMSS [81] is an energy efficient mobile sensing system and provides a
hierarchical sensor management scheme that specifies a particular sensing cri-
teria and each user state in an XML-format description. Ref [82] proposes a
cloud-based integrated framework for mobile phone sensing. This framework is
designed as a part of cloud infrastructure, which coordinates a large number
of mobile phone users and applications. Medusa [83] is a novel programming
framework for crowd-sensing that manages not only computer resources but
also human resources by auditing user acknowledgement and giving monetary
incentives. CoMon [84] is a cooperative ambience monitoring platform which
reduces energy consumption for sensing by sharing sensor data among nearby
mobile users. This platform

PhoneGap [85] is is an open source solution for building cross-platform mo-
bile apps with standards-based Web technologies like HTML, JavaScript, CSS.

PRISM [86] proposes a platform for collecting sensor data from a large num-
ber of mobile phones on specified location. Code in the air [87] is a platform for
developing mobile crowdsourcing applications. It have explored tasking smart-
phones crowds and provide complex data processing primitives and profile-based
compile time partitioning. The system enables developers to program mobile
applications in a single source and works on multiple platforms. Our middle-
ware enables to specify more complex sensing which considering relation amoung
multiple node groups.

Several researches propose systems providing conseptual description for col-
laborative sensing. Movi [88] is a system for video documentation which colla-
voratively senses the ambience through multiple mobile phones and captures
social moments worth recording and the sensing is triggered by specified events.
Darwin Phones [89) is also a system for collaborative sensing and provides auto-
mated approach to updating sensor data models over time for the variability in
sensing conditions. [90] video documentation systems which considers energy-
delay tradeoffs.

In addition, some researches also consider about contribution for partici-
pants such as incentives and worker mediation. Nericell [91] proposes a sys-
tem for road-bump monitoring and Micro-Blog [92] is a system which allows

smartphone-equipped users to generate and share geotagged multimedia called
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microblogs. Kitokito [93] is a participatory sensing system which allows partic-
ipants to easily create small sensing tasks. This system is based on server-client
architecture and assign tasks such that take a geo-tagged picture to appropriate
participants based on their location. AnonySense [94] is an infrastructure for
anonymous tasking and reporting and adopts a polling model for task distri-
bution. This approach does not reveal the node’s location to the infrasructure.
Bubble-Sensing [95] allows to assign sensing task to specific physical locations
to sense interest regions and the tasks are broadcasted by local and backend
communications.

Compared with the above approaches, our contribution is to provide a mid-
dleware that supports higher level abstraction for mobile phone sensing. Query
developers can specify time-, location- and topology-based conditions to choose
a group of mobile node that should participate in the mobile phone sensing
task. The developers are not necessary to be aware of physical locations of
mobile phones and the middleware can find such a group that accomplishes the
given query. In this context, we believe this has a novel concept of supporting

distributed query executions.
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Chapter 3

D-sense : A Design Support
Environment for Wireless
Sensor Networks

3.1 Introduction

In this chapter, we design and develop D-sense, an integrated development en-
vironment to support protocol development in WSNs efficiently.

D-sense mainly assumes NesC on TinyOS as the target language and exper-
iments have been carried out on Mica Motes accordingly. For other languages
such as C or Java, D-sense’s design concept can be applied to support algo-
rithm design and performance evaluation. We assume QualNet [15] simulator
for simulation of wireless communication. The advantages of D-sense are three-
fold. First, D-sense offers algorithm-level APIs which are derived by classifying
and studying existing protocols. Since those APIs are written in NesC, the
developers can design similar protocols directly using the NesC language. Sec-
ondly, it enables seamless integration of simulated and real sensor networks. To
accomplish this, We provide a translator from NesC codes into QualNet appli-
cation codes. Also the physically sensed events and sensor node status observed
in real environment are made available in the simulator. These capabilities
increase repeatability and fidelity of experiments. Thirdly, monitoring and run-
time manipulation of sensor node behavior is possible. We will later show how

this functionality can powerfully support developers in test and maintenance of
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Figure 3.1: Classification of WSN Protocols

WSN protocols.

Using the D-sense APIs, We have implemented GPSR {7], SPEED [8], BIP
[9] and Rumor Routing [10]. In particular, We have evaluated the performance
of SPEED in both real and simulated networks and compared the results with
Ref. [8] to validate the D-sense implementation. It is also confirmed how D-
sense contributes to alleviate the development cost.

This chapter is organized as follows. In Section 3.2, We describe the func-
tions of D-sense that support node-centric design of WSN and show example
implementation of the existing WSN protocols by using the D-sense design APIs.
Section 3.5 shows the evaluation of reducing implementation effort. Section 3.6

concludes this chapter.

3.2 Functions of D-sense

Developers can evaluate the performance of WSN protocols through both sim-
ulation and real environment only by specifying them as algorithm-level NesC
descriptions with D-sense design APIs. In addition, automated generation func-
tion of sensor nodes’ application (discussed in chapter 4) supports monitoring
and managing of WSNs. The functions D-sense provides are described in the

following.

Design Support

One of the most important features of D-sense is high-level design support.

Using the D-sense design APIs, developers can give algorithm-level NesC de-
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scriptions. Then the D-sense design API translator takes them as inputs, and
expands the embedded APIs that are implemented as macros into pure NesC
implementation automatically. In order to support as many types of protocols
as possible, the D-sense design APIs are developed based on property analy-
sis of existing typical protocols. These protocols are classified by the criteria
which are inspired from Ref. [96]. A classification example by these criteria is
given in Figure 3.1. For example, GPSR (“g” in Figure 3.1) is a position-based
routing method and is used in GHT [97] or some other methods that employ
position-based event accumulation and search mechanisms. In implementing
this protocol, we may use the APIs for “position-based routing” and “store and
search application”. Similarly, some other known protocols like Rumor Routing
[10], AODV [11], BIP [9], MDTMR [12], LEACH [13], GROUP [14] and SPEED
[8] are classified in the figure.

For each type in the classification, we provide type dependent APIs, and also
provide generic APIs which are commonly used in all the types. Furthermore,
we design more functional APIs that are realized by using these APIs. For
example, since obtaining the IDs of one-hop neighbors is carried out in many
protocols, it is designed as a generic API. On the other hand, obtaining the
position of a designated node is obviously used by location-aware protocols and
applications only. Obtaining the ID of the node which has the maximum residual
battery in a node cluster is required in some cluster-based protocols, and the
corresponding API is designed as a functional API. The details of the APIs and
their implementation are shown in our web site [98].

In Section 3.3, we will exemplify how typical protocols are implemented using
these APIs.

Seamless Integration of Simulated and Real networks

D-sense provides functions of supporting seamless integration of simulated and
real networks and supports performance evaluation. Integrated functions are
(1) sharing the same code between both environments, (2) visualization of per-
formance in real environment, and (3) setting of simulation parameters based
on logs of real environment.

The NesC codes derived by the D-sense design API translator can be directly

executed on Mica Mote, or can further be translated into codes for QualNet sim-
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Figure 3.2: A Snapshot from QualNet Simulator (Sensor Node Status is Visu-
alized)

ulator [15] written in C++ by the D-sense NesC' translator. Also environmental
events and sensor node status logged automatically by the D-sense debugging
component in real environment and can be animated by the QualNet animator
(Figure 3.2) in which we provide special graphics to visualize residual amount
of battery and LED status (we assume Mica MOTE here) for more realistic
animation.

The function of simulation parameter setting helps making similar environ-
ments as real environments based on logged information such as node positions
and message receptions in real environment. This function enables simulation to
inherit parameter settings and radio connectivity from real environment. This
enables performance evaluation in both small-scale real WSNs and large-scale
simulated WSNs.

Especially, there are large gaps between simulation results based on isotropic
radio range model and anisotropic radio range. To solve this problem, [99] pro-

poses Radio Irregularity Model (RIM), which assigns different rate of atten-
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uation for different directions. The parameter degree of irregularity (DOI) is
introduced, which is defined as the maximum path loss variation per unit degree
of the direction of radio propagation, into RIM. By giving appropriate settings
of DOI, RIM can bridge the gap between real and simulated environment. D-
sense provides functions to derive DOI value from logs of some nodes in real
environment and simulate with RIM based on this value. Derivation of DOI is
executed as following: For a node i, the system makes neighbor node set N(7)
by listing up the nodes whose distances to node 7 are similar. Node 7 broadcast
a message and each node in N(%) records values of radio strength when it re-
ceives message. Based on the values, we can derive DOI parameter considering

differences of radio strength in different directions.

Figure 3.3: Visualization of LED and Battery for Mica MOTE

Monitoring Functions for sensor nodes’ program

We explain our powerful support facility for monitoring of WSN programs.
At each sensor node, we run a ”monitoring agent” to monitor node status in
distributed environment by cooperation among agents. Configuration of mon-
itoring agents is based on a method which is discussed in chapter 4. Based
on description of monitoring requirement for a target application, a monitor-
ing sub-program is generated and executed with the target applications. The
monitoring application can monitor states of sensor nodes and networks. For
example, we can define some kind of invalid processes and states, such as overage
traffic and deadlock by my monitoring functions, and sensor nodes can detect

them as troubles, report about them, and operate to recover.
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()13 get _planar_graph(iraph )

02:  len= get neighbors(necighbor IDs, sizeof(neighbor_IDs)),
03:  for (i=0;1<len; 1++){

04: nodelD = neighbor [Ds]i];

05: for =0, ) <len; j++){

06: nodelD' = neighbor 1Ds|j];

07: if (get_distance(mylD,nodelDD)

> max(get_distance(mylDD nodeID",
get_distance(nodelD,nodelD")))
08: g.remove_edge(mylD nodeID),
09: }

(a) RNG Generation

01: len= get_neighbors(neighbor IDs, sizeof(neighbor_1Ds));
02: forwardID = get my ID();
03: for (i=0;1<len;it+H){
04:  nodelD = neighbor 1Ds[i};
05:  if(get_distance(nodelD targetiD)
< get_distance(forwardID,targetID))
06: forwardID = nodelD;
07: if(forwardID != mylD) // forward toward a nearer node
08:  send_unicast_packet(forwardlD,packet);
09: else peremeter mode == true; / perimeter mode (omitted)

(b) Greedy Forwarding

Figure 3.4: Example Implementation of GPSR

3.3 Protocol Implementation Examples

In this section, we show example implementation of four existing WSN protocols;
GPSR, SPEED, BIP and Rumor Routing by using the D-sense design APIs.

GPSR[7] is a position-based protocol, where each sensor node forwards a
packet to the neighbor node nearest to the destination by using a planar graph.
Figure 3.4(a) denotes an example implementation of the algorithm to make
a Relative Neighborhood Graph (RNG), which is a kind of well-known planar
graph. We can see that the algorithm is implemented simply by using APIs, such
as listing neighbor nodes ("get.neighbor” in line 02) and getting the distance
between nodes ("get_distance”™ in line 07). Figure 3.4(b) shows an example
implementation of routing process of GPSR. In this code, each node lists its
neighbor nodes (line 01) and forwards a packet to the node nearest to the
destination in the listed nodes (lines 05-09).

SPEEDI[8] is also a position-based routing protocol. In SPEED protocol,
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01: SNGF(message){

02:  my_length = get_distance(message->target_ID, myID);
03:  len = get_neighbors(neighborlDs, sizeof(neighborIDs));
04:  num_FS_first = 0; num_FS_Second = 0;

05:  for(i=0;1<len; i++){

06: nodelD = neighbor_IDs[i];
07: diff = my_length
- get_distance(message->target_ID, nodelD);
08: if(diff > 0){
09: if(diff / get_delay(mylD,nodelD) > set_point)
10: FS_firstinum_FS_first++] = nodelD;
11: else
12: \ FS_second[num_FS_Second++] = nodelD:;
13:
14: 1}
15:  if(num_FS_first > 0){
16: forwarding_probability = 0;
17 forwarding_nodelD = FS_first[0];
18: for(i = 0;1 < num_FS_first; i ++){
19: nodelID = FS_first[i];
20 fp = get_probability

(get_distance(myNodelD,nodelD)
.get_queue_size(nodelD));

21: if(fp > forwarding_probability){

22: forwarding_probability = fp;

23: forwarding_nodelD = nodelD;

24.

25: send_unicast_packet(nodelD, message);
26:

27 else // forward toward the nodes in FS_second
28: }

Figure 3.5: Example Implementation of SPEED

Stateless Non-deterministic Geographic Forwarding (SNGF) algorithm is used
to select a node which is nearer to the destination and handles lighter traffic
to forward packets. Figure 3.5 shows an example implementation of SNGF. A
node receiving a packet finds nodes that are nearer to the destination than itself
(lines 02-07) and classifies them into two groups. If the transmission efficiency
of a node is larger than a threshold sei_point, it is put into group FS.first. The
other nodes are put into group FS_second (lines 08-13) Then a node is selected
from the group FS_first of nodes having better transmission efficiency according
to the length of the transmission path and the levels of congestion (lines 15-26).
We can see that GPSR and SPEED, both of which are position-based routing

protocols, can be implemented by using similar APIs.



BIP [9] is a centralized protocol managing sensor nodes in tree topology,
and designed to minimize the total energy consumption of the network. In
centralized protocols, information of any nodes and any node pairs may be used
for managing network topology and routing packets. Design APIs gather and
manage such information and provide them for developers. The right figure
shows an example implementation of BIP. At first, the source node is set as the
root node of the tree (line 01). Then the tree is constructed by adding the node
that can be reached from a node in the tree with minimum radio transmission
power one after another (lines 06-14). In this process, if a descendant node is
in the radio transmission range of one of its ancestor nodes, relaying packets by
the nodes between them is needless. If there is such a pair, the tree is modified
such that the ancestor node sends packets to the descendant node directly and
intermediate path is removed (lines 17-24).

In centralized protocols, information of any nodes and any node pairs may be
used for managing network topology and routing packets. Design APIs gather
and manage such information and provide them for developers. Figure 3.6 shows
an example implementation of BIP. At first, the source node is set as the root
node of the tree (line 01). Then the tree is constructed by adding the node that
can be reached from a node in the tree with minimum radio transmission power
one after another (lines 06-14). In this process, if a descendant node is in the
radio transmission range of one of its ancestor nodes, relaying packets by the
nodes between them is needless. If there are such a pair, the tree is modified
such that the ancestor node sends packets to the descendant node directly and
intermediate path is removed (lines 17-24).

Rumor Routing [10] is a routing protocol based on mesh topology, and is
designed for accumulation and search of data. Figure 3.7 shows an example
implementation. In Rumor Routing, an agent manages event lables kept in
sensor nodes as follows. A node receiving an agent adds information written in
the agent to its event table. The information consists of the number of hops to
the event num_hops, and the direction and the hop count from the node that
sends the agent source_ID to each event (lines 01-02). At the same time, the
node puts information recorded in its event table to the agent and sends it to
another node. In this process, a node where agents have not visited long time is

selected (lines 03-06). When a node receives a query packet, the node searches
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01: num = get_tree_nodes(root_node 1D,
treeNodes,sizeof{treeNodes));

02: while (num < N){

03: parentNode = NULL;

04: childNode = NULL;

05:  energy = MAX VALUE;

06:  for (1 =0;1 <num; i++){

07: node = treeNodes[i];

08: min_ID = get_ minimum_energy node(node->1D);

09: if(energy > get_energy consumption(
node->1D,min_ID)){

10: parentNode = node;

11: childNode = get_node(min_1D),

12: energy = get_energy _consumption(
node->ID,min_ID);

13:

14:

15:  if(parentNode) add _child(parentNode,childNode);

16:}

17: num = get_tree_nodes(root_node 1D,
treeNodes,sizeof(treeNodes));

18: for(i = 1; i < Nii++)

19: for(j=1;j < N; j++)

20:  nodel = get_node(i); nodel = get node(j);

21 if(has_children(nodel,nodel)){

22: len = get_children(nodel,childreniDs, sizeof{childrenIDs));

23: iflis_neighbours(nodel,childrenlDs))

24: set_parent(childrenlDs,nodel);

Figure 3.6: Example implementation of BIP

the path to the event queried by the packet using its event table (line 10). If the
node has the target event information itself, it processes the query, otherwise
the node searches a direction to forward it to (lines 11-13). If the node has no
information regarding the query at all, the query is forwarded to a node where

the query packet has not visited recently (lines 14-15).

3.4 Case Study: A Demonstration of Routing
Protocol Evaluation

In order to validate the D-sense implementation and show its usefulness, we
show a demonstration to evaluate the performance of the SPEED protocol in
simulation and real environment by using D-sense, and compared the perfor-

mance in the simulation to the performance reported in Ref. [8].
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01: on_agent _received(source ID,agent_packet){

02: event_table = set_event_distance(
agent packet->num_hops,source_ID);
03: agent_packet = set_event_info(

agent packet, event_table);
04: if(agent_packet->ttl-- > 0)

05: send_unicast_packef(
get_not visited_neighbor(agent_packet),
agent_packet);

06: }

07:

08: on_query_received(source 1D.,query_packet){
09: query_packet->tt]--;
10: if(get_num_hops(event_table query packet->data)==0)

11 doQuery(query_packet)

12: else if (get_hops(query packet->data) > 0)

13: send_unicast_packet(query_packet,

get_forwarding _direction(event_table query_packet))

14: else

15: send_unicast_packet(
get not _visited_neighbor(query_packet),
queryPacket)

16:

Figure 3.7: Example Implementation of Rumor Routing

We used the same scenario as Rel. [8]. This scenario is aimed at testing
the congestion avoidance capability of the SPEED protocol. A few nodes are
randomly selected from the left side of the terrain and send periodic data to the
base station at the right side of the terrain. Each sender generates one CBR
flow with 1 packet/second. To create congestion, two randomly chosen nodes
in the middle of the terrain create a flow between them at half time of the 150
second experiment. In order to evaluate the congestion avoidance capability
under different congestion levels, the rate of this flow is increased by 10 from 0
up to 100 packets/second over several simulations. We have evaluated the delay
and loss ratio of the packets to the base station.

We show the experimental environment in Table 3.2 and its topologies in
Figure 3.8 and 3.9. Because of the limitation on the number of MOTEs, we
evaluated the SPEED protocol with 25 nodes in real environment. To compare
the reported performance with the real environmental performance, simulation
experiments were also conducted in the same configurations. We adjusted the

wireless ranges of MOTEs and simulator according to the network scale. Figure
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Figure 3.8: Topology of the Experiment  Figure 3.9: Topology of the Experiment
with 100 nodes with 25 nodes

3.10 shows a snapshot from the experiments in real environment where MOTE
terminals were uniformly arranged.

Figure 3.11(a) shows the end to end delay. In the experiments with 100
nodes, the performance observed in the simulation well follows the reported
performance although small difference is seen around 40 packet/sec congestion.
We observed the same level delays in the experiments with 25 nodes as observed
in those with 100 nodes. In each congestion level, delays in real environment
were smaller than those in simulation.

Figure 3.11(b) shows packet loss ratio (the ratio of packets that failed to
reach the base station). In the experiments with 100 nodes, the simulation
performance is nearly equal to the reported performance. In the experiments
with 25 nodes, the packet loss ratio is greatly higher than that in the experiments
with 100 nodes. This is mainly because each node had too few nodes in its
neighbor table to avoid the congestion area at the center of the network in the
experiments with 25 nodes. In particular the packet loss ratio is much higher
in real environment than that in the simulation. In each congestion level, we
observed the same level packet loss ratio in real environment as observed in
simulation although small difference is seen around 50 packet/sec congestion

As shown in Figure 3.11, compared to the simulation results, we can see small

delays and large packet loss ratio in real environmental results. We attribute
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Figure 3.10: Arrangement of MOTEs in Real Environment

these differences to large fluctuation of radio ranges in real environment. In real
environment, nodes can receive beacons from further nodes and store the node
IDs in its neighbor table. Then, nodes send packets to those further nodes,
which have both lower delays and higher probability of packet loss.

From these performance evaluations, we could validate the D-sense imple-
mentation. In addition, we could find some real environmental problems and
their causes, discuss their solutions, and improve reality of the simulation by
considering them. This shows the importance of implementing and evaluating
WSN protocols in real environment, and also shows that D-sense well supports

these activities.

3.5 Performance Evaluation
3.5.1 Reduction of Implementation Effort

In order to evaluate the effectiveness of implement effort reduction by D-sense
Design APIs, we show analysis of reduction in lines of codes and complexity.
We counted the LOC (lines of code) of example codes of SPEED protocol
implemented (1) by using the design APIs, (2) in C4++ for QualNet simulator
and (3) in NesC for MOTE terminals. The lines of code are shown in table 3.3.
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Without using APIs, the implementation required more than 1000 lines. On
the other hand, by using the APIs, the LOC is decreased to about 200 lines.
Therefore, the APIs seem to reduce the effort of protocol implementation.

In detail, the APIs are classified into Functional APIs, which are provided
as functions, and Procedural APIs, which are expanded to codes of multiple
processes by the API translator.

The Functional APIs provide processes such as storing data to neighbor
table, getting data from the tables, and caleulating distance between two nodes.
These APIs are designed to provide processes which are used frequently for
implementation. These APIs reduce efforts for first implementation of functions.
Thus, lines of code which are reduced are constant even if they are used in
multiple times.

The Procedural APIs provide implementation of procedures for such as send-
ing and receiving packets and hide codes for their procedures such as processes to
control MAC and lower layers of sensor devices for each types of communication
{e.g. data request and data reply). However, from the APIs with parameters
specifying details of the processes such as payload data and destination node
of the communication, codes of the communication procedures are generated
(the image of translation is shown in Fig.3.12). The APIs absorb differences
of code for each platform and reduce complexities which are not essential for
algorithms. These APIs reduce lines of code which are in direct proportion to

number of communication types at constant rate.

3.5.2 Availability and Correspondence for Various Proto-
cols

On the other hand, APIs for development support should satisfy many factors
such as role expressiveness and domain correspondence as commonly described
(e.g. [100]). Therefore, we have implemented example codes of position-based
routing SPEED [8] and GPSR [7] by using the APIs and evaluated the number
of each API to analyze the expressiveness and domain correspondence in some
cases. We have also implemented and evaluated that of LAR [101]. LAR is a
routing protocol which uses location information to limit the search for a new

route to a smaller "request zone*. We show the result in Table 3.4.



Generic APIs such as send_unicasi_packet and send_broadcast_pucket are
used frequently and commonly in each protocol and the API reduces effort for
implementation of communication procedures. About other functional APIs,
get_distance is used commonly in SPEED and GPSR, which select neighbors to
send packet based on distances to them, and is.within_orea is used commonly
in GPSR and LAR, which have processes of checking whether a certain position
is within a certain area. The result shows that APIs provide role expressiveness
to support implementation of general processes such as communication and also
have domain correspondence to implement domain-specific processes such as
position-based processes. Our future works are evaluating the usefulness of the

proposed APIs for various protocols and improving their designs.

3.6 Conclusion

In this chapter, We have designed and developed an integrated environment
called D-sense for supporting development of WSNs. D-sense supports proto-
col design by high-level design APIs. Also it provides seamless collaboration
of simulated and real networks for performance evaluation, and a powerful dis-
tributed debugging scheme. We have conducted performance evaluation of the
SPEED protocol in simulation and real environment to show the effectiveness of
D-sense. Qur ongoing work includes developing a complete set of design/debug

APIs and related tools, and opening them to public domain.
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Table 3.1: Example of D-sense Design APIs

Generic APIs

get_neighbors(IDs[],len IDs)  Get the IDs of the one hop neighbor nodes
send_unicast_packet (ID,pkt)  Send a packet to the designated node
send_broadcast _packet(pkt) Broadcast a packet

get_num _hops(ID) Get the number of hops to a node

Position based protocol APIs

store_position(ID, position) Store the position of the designated node to
neighbor table

get_position (ID) Get the position of the designated node

get_distance(1D,ID) Compute the distance between the designated
two nodes

get_nearest_neighbor(ID) Get ID of the nearest node to the designated
node

get_smallest_azimuth_neighbor Get ID of the smallest azimuth node to the

(ID) designated node

Is_within area{c, r) Return true if the node is within the circle cen-

tered at ¢ with radius r

Tree Protocol APIs

get_ancestor (IDs]],len_IDs) Get IDs of ancestor nodes
get_downstream tree Get downstream tree
(IDs]],len_IDs)

evaluate_tree_cost(Tree) Compute the cost of the tree

Hierarchical protocol APIs

get_cluster_nodes(IDs[],len IDs)Get the IDs of the cluster members
get_neighbor_clusterhead() Get the cluster head of the neighbor cluster

Collect to BS Application APIs

get.bs_neighbors(IDs[],len IDs) Get neighbours of BS node

get bs_queue_size() et packet queue size of BS node

Store and Search Application APIs

get.num.hops(Data) ~et the number of hops to the specific data
Multicast APIs

set_multicast_group(IDs) set multicast group

send_multicast_packet (Group) send multicast packet

Energy Constraint Protocol APIs

get _residual_energy(ID) et the residual battery of the designated node
get _transmission_energy() Get the energy consumption to send a packet
Network Constraint Protocol APIs

get_delay(ID,ID) Get the delay between the two nodes
get_packet_loss_rate(ID) Get the packet loss ratio at the designated node

Functional (Combined) API

Get the ID of the maximum residual battery node in a cluster
Get the minimum delay node which has the specific data
Get the packet loss ratio in the tree
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Table 3.2: Experimental Environment

Reported Simulation Real Env.
PHY & MAC 802.11 802.11 802.15.4
Bandwidth 200 Kb/s 200Kb/s, 250Kb/s
250Kb/s
Payload Size 32 Bytes 32 Bytes 32 Bytes
Terrain (200m,200m) | (200m,200m), (20m,20m)
(20m,20m)
# of Nodes 100 100, 25 25
Node Placement Uniform Uniform Uniform
Radio Range 40m 40m, 8m 8m

Table 3.3: Lines of Code of SPEED

(1) NesC with | (2) C++ (withD- | (3) C++ (4) NesC
Design APIs sense modules)

[LOC [ 221 | 1058 | 860 | 1147

Table 3.4: The number of APT used in SPEED

1 API || Type | SPEED l GPSR 1 LAR {
send _unicast_packet Procedural 5 3 2
send _broadcast _packet Procedural 1 1 1
get_distance Functional 5 2 0
get_nearest neighbor Functional 1 2 0
get_smallest_azimuth_neighboy Functional 0 1 0
is_within_area Functional 0 ] 1
get_queue_size Functional 1 0 0
get_neighbor Functional 1 0 0
get_delay Functional 1 0 0
get_position Functional 1 1 2
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Asg, &receive_speed_msg)

task void sendSpeedMsg(){

b if(stepcount !=0){ //add for debug
uint16_t bufferLength = 0;

SpeedMsg* smsg = (SpeedMsg* )
call MhopSend.getBuffer(&s_msg,&bufferLength);
if(dbgled==0) call Leds.greenToggle();
smsg->position = valSpeed Msg.position;
smsg->nodeld = valSpeedMsg.nodeld; //source
smsg->distld = valSpeedMsg.distld; //distination
smsg->prevld = TOS_LOCAL_ADDRESS; //previous
smsg->packetType = valSpeedMsg.packetType;
smsg->ttl = valSpeed Msg.ttl;
smsg->time = nowTime;
smsg->seqNo = valSpeedMsg.seqNo;
smsg->startTime = valSpeedMsg.startTime;
smsg->radius = valSpeedMsg.radius;
memcpy(smsg->payload,valSpeedMsg.payload,3);

call MhopSend.send(nodeNext,
MODE_ONE_HOP_BROADCAST, &s_msg, sizeof(SpeedMsg));
}//add for debug
}

Figure 3.12: The Image of API translation
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Chapter 4

Data-Centric Programming
Environment for

Cooperative Applications in
WSN

4.1 Introduction

In this chapter, we propose a methodology to support design and development
of collaborative WSN applications. The approach provides a language to specify
the high-level behavior of applications without referring to the real deployment
of sensor nodes, and an algorithm to automatically translate the given applica-
tion specification into a platform-dependent program code of each sensor node.
We provide a set of event sensing and communication primitives to achieve the
given specification in WSN.

The application behavior may include time, location and network-based con-
straints (conditions) on event occurrences and their processing, and the descrip-
tion is independent of the physical placement of sensor nodes. We provide a
concept that hides the details of wireless sensor network configuration, com-
munication and processing inside the network but all the event occurrences are
visible to the virtual node. In this architecture, the specification is given as a
program on this node specifying pre- and post-conditions of events which are
carried out by collaborative nodes in WSN. The translation algorithm auto-

mates design and implementation of complex cooperation protocols from this
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Figure 4.1: Approach Overview

developer-friendly form of behavior specifications.

The following simple fire detector example helps to understand the concept;
Each wireless sensor node is equipped with CO (smoke) and thermal sensor,
and forms a wireless sensor network with neighboring nodes. When a smoke or
fire is detected, the application reacts and starts sampling the air temperature
and smoke of the surroundings. Based on the sample readings, the application
predicts the potential spread of the smoke and fire, and alerts nearby people
appropriately. This application requires sensor node collaboration to obtain
samples from appropriate location at required intervals, and needs to determine
nodes that take over processing like fire prediction and notification. The pro-
posed scheme allows us to write the application in a simple form that consists of
three steps, (i) start sampling on detection with required density and intervals,
(ii) smoke and fire prediction on obtaining enough samples and (iii) notification,
without being aware of physical configuration of WSN.

We have compared derived codes with given application specifications to
quantitatively understand the gap between the two different specification lev-
els. We have also demonstrated the performance of program codes generated
by our proposed method in terms of successful data collection ratio, data collec-
tion delay and traffic volume to validate the quality of automatically-generated

program codes.
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4.2 Approach Overview

4.2.1 Outline

Our method can derive a program code of each node for a given specification
that describes actions to be taken by a group of nodes and conditions to be
examined before the actions. Developers can easily describe applications by
specifying such conditions that should be checked by cooperation of nodes. We
show a simple but essential example in Fig. 4.2 where a group of nodes that
satisfy the following conditions is defined as the first group to detect a fire; (1) all
the nodes in the group have detected temperatures higher than 40°C, (2) they
are located in a circle with 100m diameter and (3) the average temperature by
30 or more nodes in the group is higher than 50 °C (we explain these predicates
in Section 4.3, but readers may refer to Table 4.1). In addition, in order to alert
the approach of fire, the second, larger group of nodes that contains the previous
group having the similar center with the previous group (DeteciedFireSpot) but
with larger radius, which is five times of the maximum distance (diameter)
between nodes in DetectedFireSpot group, is defined. The nodes in the second
group (EstimatedFireSpot) warn people to escape from the fire. In this way,
conditions on geometry, sensing data values and their manipulations can be
written in our specification.

However, such a specification is not easy to implement since checking con-
ditions and executing actions need cooperative operations among nodes. For
example, in order to check a condition on sensing data, (i) a node group with
a leader node needs to be organized, (ii) the sensing data needs to be collected
onto the leader node, and (iii) it needs to be checked if the condition is met or
not. The action should be executed if the condition is satisfied, or the group is
dismissed.

Thus, our method can automatically derive the program of cooperative
nodes. This hides the details of node behavior, which are often complex, from

the developers. Therefore they can concentrate on application logic.

4.2.2 Code Derivation for WSN nodes

For a given specification described by a set of nodes with pre-conditions and

post-actions, we classify the predicates that constitute the condition into two
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4 )
nodegroup DetectedFireSpot

condition:
TestEach (temperature, ">40")
&& InFloatCircle(100)
&& AverageSelect(temperature, 30)>50

action:
centroid = GetCentroid()
diameter = GetDiameter()

nodegroup EstimatedFireSpot
condition:
InGeoCircle (DetectedFireSpot.centroid,
5-DetectedFireSpot.diameter)
action:
EzecuteFach ("ActivateAlert(O");

Figure 4.2: Specification of Fire Detection and Alert System

categories, single-node predicates and multi-node predicates. An example of
single-node predicate is TestEach that checks if variable on each node satisfies
a given condition (see TestEach(temperature, “> 40”) in Fig. 4.2). Meanwhile,
both InFloatCircle(100) and AverageSelect (temperature, 30)>50 are multi-node
predicates since they cannot be examined by single nodes. For example, InFloat-
Circle(100) needs distance calculation for every pair of nodes, meaning that it
can be checked only when a group of nodes is given. Considering this fact, we
take the following strategy; Firstly, we let each node periodically check single-
node predicates, and let the node be a potential constitute of the group if it
satisfies the conditions. If a node becomes a potential constitute of the group,
it establishes a link with neighboring potential constitutes of the same group
if any. This is done by periodic neighbor discovery messages by each potential
constitute. These nodes finally form a tree with a leader node. The choice of a
leader node is simply done by determining link direction (parent-child relation),
and the root node can be the leader node. Then the data values to check the
multi-node predicates are collected to the leader node, and the node checks if all
the multi-node predicates are satisfied or not. If true, those nodes take actions
as specified. Moreover, we allow to describe conditions of groups that depend
on some other groups. For example, the second group (EstimatedFireSpot) in

Fig. 4.2) is such a group that refers to the “center” and “diameter” of Detect-
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edFireSpot as a part of its conditions. In this case, the centroid of coordinates
of nodes in DetectedFireSpot and the diameter between nodes in it has been
calculated by the leader node of DetectedFireSpot to prepare for creation of
EstimatedFireSpot, and the information is broadcast to potential constitutes of
EstimatedFireSpot (in this case, all the nodes).

In summary, each node needs periodically to check the single-node conditions
of each group, and then forms a tree with neighboring nodes which also satisfy
the same conditions. During the tree construction process, a leader node has
been selected and the leader node collects all the data necessary to check multi-
node conditions through the tree. Then it actually checks the conditions and
executes the post-actions in cooperation with the nodes on the tree if necessary.
During the process, it prepares and calculates the data for the other groups’

conditions if any.

4.3 Language and Algorithm Details
4.3.1 Specification Language

A specification consists of two types of profiles, node profiles and nodegroup
profiles.

The node profiles define the attributes of sensor nodes. For example, if a
WSN consists of wireless sensor nodes and base stations, then we prepare two
profiles that correspond to them. In their profiles, local variables (storing sensor
data and so on) and methods they hold are defined. We omit example descrip-
tions here because they just consist of definitions of variables and functions.

In nodegroup profile, each block of description starts with a keyword node-
group (words highlighted by bold fonts are reserved words hereafter). Concep-
tually, this corresponds to a group of nodes that cooperatively execute tasks.
Developers can define pre-conditions with condition keyword and post-actions
with action keyword. The condition part must be a logical formula using pre-
defined single-node and/or multi-node predicates, and the action part must be
a list of functions (or procedures).

The example specification of a fire detection and alert system shown in
Sec.4.2.1 (Fig. 4.2) is an example of formal description. DetectedFireSpot and
EstimatedFireSpot are nodegroup definitions blocks. In DetectedFireSpot, three
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predicates are speficied in the condition part. TestEach is a single-node pred-
icate, and InFloatCircle and AverageSelect are multi-node predicates. As we
explained in the previous section, groups may refer to other groups by directly
specifying their group names. For example, EstimatedFireSpot group refers to
the DetectedFireSpot group. Since the node groups defined by DetectedFireSpot
may not be unique (i.e. there may appear multiple groups), DetectedFireSpot
is assumed to be the reference to the first-generated group in our language def-
inition. The condition of EstimatedFireSpot contains a single-node predicate
InGeoCircle with 2 parameters. In the specification, these values of paramters
have been determined in DetectedFireSpot group by GetCentroid and GetDi-
ameter functions.

Tables 4.1 and 4.2 show the list of predicates and functions, respectively. As
for the predicate table, we add how the predicates are examined in distributed
environment in the last column. Single means it can be tested by each node in-
dependently (i.e. single-node predicates), while Multi means cooperation among
nodes is necessary (i.e. multi-node predicates). For example, InGeo(lircle can
be examined by each node independently based on its own coordinates and the
given center and radius information. On the other hand, InFloatCircle needs
to know the coordinates of all the nodes in the group since it does not relate
to the specfic geographical area but to relative locations among nodes. These
attributes will be used in the derivation algorithm in the following section. Due
to space limitation, we omit some of predicates and functions, and the complete

list can be found in [98].

4.3.2 Distributed Program Generation

In this subsection, we explain how to generate code executable on each node
from a given specification. As shown in Section 4.2, each node repeats the fol-
lowing step sequence; (i) periodic sensing from sensors, (ii) periodic evaluation of
single-node predicates, (iii) tree construction (potential group generation) and
leader election, (iv) data collection on the tree, (v) evaluation of multi-node
predicates and (vi) execution of actions, to check if conditions are satisfied or
not, and to execute actions if satisfied. Therefore, we generate a programming
code that corresponds to each step of the sequence according to the given spec-

ification. The outline of a generated code for TinyOS is shown in Fig. 4.3 for
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Table 4.1: Predicates for Condition Part (Excerpt)

| Type Predinate Description Examined by |

General  TestEach(v, exp) true 4ff variable v satisfies Single
exp at every node

Location InGeoCircle(c,r)  true iff all the nodes in the Single
group are within the circle
centered at ¢ with radius r

Topology InFloatCircle(d)  true iff all the nodes in the Multi
group are within a circle with

diameter d
Location InGeoRectangle(cl, true iff all the nodes in the Single
c2) group are within the rectan-

gle determined by two coor-
dinates c1 and ¢2
Topology InFloatRectangle(w,true iff all the nodes in the Multi
h) group are within the rectan-
gle with width w and height
h
Topology Size(min, maz) true iff the number of nodes Multi
in the group is in [min, max]

DetectedFireSpot group of the specification in Fig. 4.2.

(i) Periodic sensing from sensors This phase describes routine tasks like
periodic reading from sensors, which are used in the given specification. Corre-
spondingly, we prepare a code block that periodically measures data shown in
the given speciﬁcatibn as variables so that the code can refer to these data at
steps (ii), (v) and (vi). The code also sends a beacon to know neighbor nodes.
This information is used for step (iii). Each node has a value Root to select
a leader node among nodes in the potential constitute, and periodically sends
a beacon packet that includes following information: (1) evaluation results of
single-node predicates, (2) value of Root, and (3) value of Root of a root node
in a potential constitute if the node has already joined any potential constitute.

We explain how a node handles this packet in step (iii).

(ii) Periodic evaluation of single-node predicates We generate a code

that checks if single-node predicates in each group are satisfied or not. Since
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Table 4.2: Functions for Values and Actions (Excerpt)

| Function Description B

Average(v) Calculate the average of variables p among all the nodes
in the group

AverageSelect(v, Calculate the average of variables v among randomly-

n) chosen n or more nodes in the group

GetCentroid() Calculate the centroid of the coordinates of nodes in the
group

GetDiameter() Calculate the maximum distance between nodes in the
group

Sleep(t) sleep in ¢

UploadData(d, c) Let exactly one node in the group upload d through
network interface c

ExecuteEach(f)  Let each node execute function f

each predicate can be examined by single node or multiple nodes as indicated
in Table 4.1, the code checks if only single-node predicates are satisfied or not.
If necessary, the code manipulates local variables according to equations such
as addition, subtraction and multiplication. If the predicates are met, the code
continues executing the following steps since the node may be able to meet all the
conditions specified in the group (this is checked later in step (v)). Otherwise,
the code goes to step (i) again. In Fig. 4.3, we can see that a temperature is
checked in the function SinglePredicateCheck. If all the predicates in the group
condition are single-node predicates, our method skips code generation for steps

from (iii) to (v).

(iii) Tree construction and leader election After the evaluation of single-
node predicates, we need to check multi-node predicates. However, it requires
some preparations. In step (iii), our method generates a code that constructs
a potential constitute to collect data required for evaluating the rest of the
predicates. We apply a tree-based protocol to organize a potential constitute
for managing nodes and collecting data from them. In constructing a potential
group in which nodes meet the single-node predicates, these nodes connect with
each other by direct wireless link (one-hop link). This is done by the code
generated for step (i). In step (i), at first, a node assumes to be a leader

node of a potential constitute which contains only the node itself. If the node
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receives a beacon packet from one of the neighbor nodes that have also satisfied
the single-node predicates of the same group, the node reacts as follows. (1) If
Root value of the leader node is smaller than Root of the node, the node lets the
leader node become a leaf node or an intermediate node by sending a special
packet, and sends the other nodes a packet to tell that the node becomes a new
leader node. (2) If Root value of the neighbor node is bigger than Root value
of the node, the node becomes a leaf node. (3) If Root value of the neighbor
node is equal or smaller than Root value of the node, the node becomes an
intermediate node. After a certain period of time, the leader node sends a
packet to stop constructing a tree and all the nodes in the tree move to step
(iv). The functions TreeConstruction(), StartLeaderNode(), ExpireTimer.fired

and Receive Tree Construction.receive in Fig. 4.3 assume this part.

(iv) Collection of data After step (iii), the leader node collects the sensing
data from the other nodes so that the multi-node predicates can be checked in
a certain place. This data collection step will be done through the constructed
tree by data replies sent from all nodes except the leader node. An intermediate
node waits for the replies from all the children of the node, and merges them into
a single packet before replying to it. Thus, our method generates the following
three kinds of codes; (1) a leaf node sends its data immediately at step (iv), (2)
an intermediate node waits for replies from children and sends its data reply,

and (3) a leader node waits for replies from children and moves to step (v).

(v) Evaluation of multi-node predicates Once the leader node collects
all data required for checking the rest of the predicates, the node can know all
the nodes which meet the condition and become true members of the group.
In this step, multiple groups may be created according to a definition of a
group because there are many combinations of nodes that can satisfy the given
multi-node predicates. For example, if one of the predicates is Size(8, 10),
at least three different groups with 8, 9 and 10 nodes can be considered. In
Fig. 4.3, the function MultiNodePredicates generates groups with the calculated
average of temperature variables by using a pre-defined function GenerateSets
which derives all possible sets of nodes satisfying a given condition. Thus, the
proposed method generates a code that eliminates nodes which do not satisfy

the condition. The code also generates several sets of nodes that can meet the
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multi-node predicates from the rest of nodes. These derived sets become groups

specified in the given specification.

(vi) Execution of actions After organizing groups, each leader node of a
group executes actions in the given specification. Besides, if the group is accessed
by another group, the leader node has to notify the values of variables to those
nodes which need them, Therefore, our method generates a code that not only
executes the actions but also notifies those data. This notification is performed
in two ways. If the group of nodes which accesses those values are explicitly
identified at that moment and if the locations of those nodes are known, the
notification can be delivered to the location via geocasting to reduce redundant
messages. Otherwise, the notification is distributed by message broadcast. In
Fig. 4.3, the code sends a packet via geocasting to a circle since DetectedFireSpot
group has to notify its centroid and diameter, and FEstimatedFireSpot group

refers to the centroid and the diameter to make a circle.

4.4 Performance Evaluation

We first demonstrate the benefit from our method in terms of developers design
effort-saving. This is done by comparison of a given specification and the derived
code in terms of simplicity and readability. Then we measure the communication
performance in order to show that automatic derivation algorithm can derive a
reasonable code. For this purpose, the performance is compared with a naive

approach where all the data is collected to a single sink.

4.4.1 Application Examples

We consider two applications. The first one is simple and similar with the fire
detection and alert system in Figs.4.2, but it can present applicability of our
method to various applications. It is a noise detection system (Fig.4.4) where
environmental noise is monitored by sensor nodes. If a sensor node detects -
a certain noise, then the sensor nodes in the surroundings are organized to
calculate the average noise level and upload it. Each node has a facility to
upload data to base station, but we would like to limit the number of nodes to
upload data to only one node in the group since duplication of reports means

waste of computation and communication resources. There are two groups called
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Initiator and SensorGroup which represent the first-detector of noise over 80db ,
and the group of sensor nodes in its surrounding area, respectively. AREA_RADIUS
is a system parameter (constant).

Another example is a crowd estimation system. In a theme park or huge
exhibition space, we assume each visitor is given a battery-operated dedicated
information terminal with positioning system (like GPS or WiFi-based location
system), 3G device, and ad-hoc communication facility (like Zigbee or Blue-
tooth). This is similar with audio guide offered at museums and historical
places, and we simply call it node. The objective of using such a device is to
exploit location-based guidance or navigation and to obtain crowd information
(e.g. how each attraction is crowded in a theme park in real-time). Each node
broadcasts its position to neighboring nodes, and some nodes collect neighbor
positions, generate people crowd information (i.e. perform crowd estimation)
and report them via 3G networks. However, we would like to prevent all nodes
from performing crowd estimation due to the limited number of 3G subscrip-
tions for this purpose or battery efficiency. The specification is given in Fig.
4.5.

CellCrowdEstimator is a group of nodes that estimate the density of a
crowded cell. We assume a region is divided into square cells, and (3, §)-th cell
is specified by InGeoRectangle predicate with a pair of left-bottom coordinate
c(4,5) and right-up coordinate c(¢ +1, 5 +1). In the condition of CellCrowdEs-
timator, a group of nodes where (i) each node detected more than 5 neighbors,
(ii) all the nodes exist in a same cell, and (iii) the number of nodes in the group
is at least 10, is organized, and one node in the group is selected to calculate the
estimated density of the cell from the information sent by the group member,

and report it via 3G network.

4.4.2 Lines of Code Comparison

The node programs are generated from the two applications in the previous
section, and are assessed in comparison with the original specifications in terms
of the lines of codes (LoCs) and abstraction levels,

Fig.4.3 shows LoCs of the specifications and derived codes. As we men-
tioned earlier, the translation is done by extracting parameters and conditions

from specifications, choosing and composing primitives for collaboration, and
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Table 4.3: Lines of Codes (LoCs) Comparison

rApplications Specifications Derived Codes |
Noise Detection 18 547
Crowd Estimation 17 443

embedding them into a skeleton code. Since the derived codes need a lot of
implementation level descriptions, they essentially need much more lines than
the specifications. Due to space limitations, we did not show the derived codes,
but as we exemplified in Fig. 4.2 and Fig. 4.3, we can see the difference of

abstract levels between the specification and the derived code.

4.4.3 Performance Analysis of Derived Systems

We have conducted simulation experiments to observe that the automated pro-
gram derivation performs well. We have used the Scenargie network simulator
[102] version 1.4 where IEEE802.11g was used in the MAC and PHY layers
of the ad-hoc communications. By assuming small Tx power in wireless sen-
sor networks, the ad-hoc communication range r was about 40 m. We have
targeted the noise detection application and the simulation was performed for
60 seconds. The size of the area was 250m x 250m and nodes are deployed
uniformly (grid-based deployment),

To present that the derived program can achieve reasonable performance

levels, we have evaluated the following metrics.

o Node coverage ratio, which is the ratio of the number of actually-found
nodes in the simulation to the number of nodes to be found according
to the specification and node deployment. In other words, it shows the

“completeness” of data collection.

e Data collection delay, which is the time duration from the first detection

of over 80db noise occurrence to the completion of data collection process.

e Number of packets in network, which is the total number of data and

control packets in the network layer.

For reference purpose, we have also measured those metrics by a sink-initiated
data collection and computation called sink-based collection where a sink node
broadcasts a data request packet to all the nodes in the field by a simple flooding

mechanism, and each receiving node replies to this packet by sending data back
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to the sink. In order to verify the performance in various environments, we
have prepared the following four scenarios where the number of nodes and/or
the number of events is different. 100 nodes (10 x 10 nodes) with single big
noise at 20 seconds) and two big noises at both 20 and 23 seconds, and 144
nodes (12 x 12 nodes) with single and two big noises at the same timing.

Fig.4.6(a) and Fig.4.6(b) respectively show the node coverage ratios with 100
nodes and 144 nodes. In these graphs, the number of nodes that are expected
to be in the group is also shown as bars.

We can see that the ratios are very close to 1.0 in all the cases. We note that
sink-based collection achieves very low ratio (0.2 in average). This is due to un-
reliable message delivery back to sink nodes where these messages concentrated
on a few nodes around sink nodes and some of them have been lost.

Fig.4.7 shows the data collection delay. They are not affected by the circle
radius that determines the group size. As seen, the sink-based protocol could
achieve the shortest delay, but this is mainly due to (very) low node coverage
ratios (most packets were not delivered to sink nodes). On the other hand, we
can observe that our algorithm could achieve reasonable trade-off between the
node coverage ratio and delay.

Finally, Fig. 4.8(a) shows the number of packets observed in the network
layer. The number of packets grows as the radius of circles becomes larger,
but the growing tread is linear in any case. From this fact, we can say that our
group-based local data collection and processing works preventing the growth of
traffics to data collection toward a single point, which is often located far from
the event occurrence place. We have further analyzed the types of messages in
case of R = 150 in Fig. 4.8(b). The most of the packets are beacon messages that
are used for neighbor discovery purpose. Since the number of beacon packets
per nodes is constant, we can confirm that our method will scale to network size

and node density growth.

4.4.4 Crowd Sensing System Design and Evaluation

In order to show that our proposed method have practical usefulness in realistic
situations such as large-scale fields with non-uniform node distribution, we have
executed the experiments in realistic fields for the sensing application. We

have supposed a crowd-sensing application to survey crowded regions which
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enables to collect data from arbitrary regions. We have evaluated the number
of discovered visitors (nodes) and that of missed nodes to assess the applicability
of our method. The field for the experiment is shown in Fig.4.9(a), which is a
1000m x 1000m region of a theme park in Osaka. We have arranged 1000 visitors
(nodes) with a realistic distribution and crowd-sensing events have occured at
the following 4 spots: spots A (830, 680) and B(400, 340) as high node density
regions (popular attractions) and C(610, 510) and D(680, 380) as low node
density regions. Other settings are the same as those in Sec.4.4.3.

Fig.4.9(b) shows the number of discovered (i.e. counted) and missing nodes,
which should be discovered but have not been done. In most cases more than
80 % of node were found in average. We note that at Spot D with R = 100
(R is the cell size in the specification) the ratio is low, but this is due to the
difficulty of node connectivity maintenance due to geography (mainly buildings
there) and larger number of nodes to be discovered (the sum of discover and
missing nodes), which is larger than that at Spot C with same region radius.
Thus, the cell size should be small in low-connectivity area.

In this experimentation, we have shown the practical usefulness of the pro-
posed system at most cases with appropriate determination of the target region
size corresponding to the environment.

We are beneficial from our approach since we can conduct this kind of as-
sessment of the system very easily. We may modify the specification (not the
implementation code) if expected performance is not achieved or more improve-
ment can be applied. Since real systems need a lot of system configurations, we

strongly believe we need this type of support systems.

4.5 Conclusion

In this chapter, we have proposed a support methodology for cooperative wire-
less sensor network application development. We have designed a language to
describe high-level specification of such applications where we can specify the
whole system’s behavior from developer-friendly viewpoint based on group of
node concept, and have provided an algorithm to translate a given high-level
specification into program codes for wireless sensor nodes. Our contribution
compared with the existing work is that we focus on cooperative applications

in WSNs and design a methodology to implement given applications in a fully-
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distributed way, assuming computing and communication capabilities of intel-
ligent sensor nodes. In this viewpoint, we believe this is the first approach to
tackle with such a problem. We have shown some example descriptions of prac-
tical applications and have evaluated the quality of generated programs in the
experiments.

Our future work is deriving optimal selection of communication and cooper-
ative protocol and algorithms for various situations. As shown in performance
evaluation, there is overhead of the delay and number of generated packet for
control and it may cause to shorten life time of each sensor. Therefore, we believe
the extension of our method for deriving programs with protocols and parame-
ters which are selected to satisfy application requirements and QoS restrictions,
such as delay, life time and reliability, which are given as specifications. For
example, in the performance evaluation in Sec.4.4.3, the number of beacon can
be configured by parameters for data collection protocols such as a value of
interval for beacon sending. Thus, node programs which satisfy the required
performances can be derived by giving requirement considering trade-off among

delay, completeness of data collection, and energy consumption.
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// (i) Periodic sensing from sensors
void PeriodicSensing {

post SendBeacon() ;
}
// (ii) Periodic evaluation of single-node predicates
void SinglePredicateCheck() {

if ( temperature > 40 ) { TreeConstruction(); }
}
// (iii) Tree construction and leader election
void TreeConstruction() {

StartLeaderNode() ;
}
void StartLeaderNode() {

myRole = ROLE_LEADER_NODE;

call ExpireTimer.start( TIMER_ONE_SHOT, 30S );
}
event ExpireTimer.fired() {

if ( myRole == ROLE_LEADER_NODE ) {

post StopTreeConstruction();

}
event ReceiveTreeConstruction.receive( void *payload ) {
TreeConstruction *msg = (TreeConstruction x)payload;
if ( msg.type = TYPE_BEACON ) {
if ( msg.rootroot < root ) { post StopLeaderNode(); }
else if ( msg.selfroot > root ) {
myRole = ROLE_LEAF_NODE;
} else if ( msg.selfroot <= root ) {
myRole = ROLE_BRANCH_NODE;
}
} else if ( msg.type == STOP_LEADER_NODE ) {
myRole = ROLE_LEAF_NODE or ROLE_BRANCH_NODE;
} else if ( msg.type == STOP_TREE_CONSTRUCTION ) {
DataCollection();
}
}
// (iv) Collection of data
void DataCollection() {
if ( myRole == ROLE_LEAF_NODE ) {
data = new Data(temperature, myPosition);
post SendData();

}
event ReceiveData.receive( void *payload ) {
DataPkt *msg = (DataPkt #*)payload;
if ( myRole == ROLE_BRANCH_NODE ) {
CombineData(data, msg );
if ( HasAlreadyReceivedFromAllChildlen()) {
DataType myData = new Data(temperature, myPosition);
CombineData(data, myData );
post SendData();
}
} else if (myRole == ROLE_LEADER_NODE) {
CombineData(data, msg );
if ( HasAlreadyReceivedFromAllChildlen()) {
DataType myData = new Data(temperature, myPosition);
CombineData(data, myData );
MultiNodePredicates();
}
}
}
// (v) Evaluation of multi-node predicates
void MultiNodePredicates() {
newSets
= GenerateSets( InFloatCircle( 100 ) &%
AverageSelect( temperature, 30 ) > 50 );
ExecuteEach( newSets, ExecuteAction() );
}
// (vi) Execution of actions
void ExecuteAction(){
NotificationPkt pkt;
pkt.center = centroid;
pkt.diameter = diameter; 59
post SendNotificatiomPkt();

Figure 4.3: A Generated Code for DetectedFireSpot Group.



" N

nodegroup Initiator
condition:
TestEach (noiselevel, ">80db")
&& Size (1,1)
action:
centroid = GetCentroid ()

nodegroup SensorGroup

condition:
InGeoCircle(Initiator.centroid, AREA_RADIUS)
action:
UploadData (Average (noiseLevel) ,BS) ;
- /

Figure 4.4: An Example Specification of Noise Detection Application

e N

nodegroup CellCrowdEstimator
condition:
TestEach (neighborCounter, ">5")
&% ( InGeoRectangle (¢(0,0), c(1,1))
|| InGeoRectangle (c(1,0), c(1,2))

Il InGeoRectangle (c(m-1,n-1),c(m,n)) )
&& Size (10, INFINITY);
action:
UploadData (EstimateDensity (neighborCounter),
3G_INTERFACE)

Figure 4.5: Crowd Estimation System

60



1.2

10 =430 | deal Group
- = | e
Node 08 100 ==#==Proposed
Coverage (g /4( . 80 (single event)
Ratio I ¢ | &0 et Proposed
0.4 (two events)
- 40 —=Sink-based
0.2 L 20
0.0 Lo
25 50 75 100 4125 150 ‘175 200
Radius of Target Area
(a) 100 nodes
1.2
+ 140
1.0 s [deal Group
L [ 120 Size
Node O-8 + 100 =g Proposed
Coverage g - 80 (single event)
Ratio L 60 w=fe=Proposed
0.4 | 40 (two events)
0.2 == Sink-based
5 F 20
0.0 L o

25 50 75 100 125 150 175 200
Radius of Target Area

(b) 144 nodes

Figure 4.6: Node Coverage Ratio (vs. AREA_RADIUS)

i7
—4=—Proposed (single
6 event, 100 nodes)
==fe=Proposed (two
5 events, 100 nodes)
=i=Proposed (single
Delay 4 event, 144 nodes)
(Sec) g =@=Proposed (two

% events, 144 nodes)
= Sink-based (100

Z nodes)
1 === Sink-based (144

nodes)

25 50, 75 100 125 150 175 200
Radius of Target Area

Figure 4.7: Data Collection Delay

61



1800
1600

e=g==Proposed

X (1levent, 100nodes)

1400

=== Proposed

1200

(2event, 100nodes)

1000

=@ Sink-based

Packets
800

(100 nodes)
=3¢=Proposed

(1event, 144nodes)
=é=Proposed

(2event, 144nodes)
=@-Sink-based

(144 nodes)

Proposed
(1event, 100nodes)
Proposed
(2event, 100nodes)
Proposed
(1event, 144nodes)
Proposed
(2event, 144nodes)
Sink-based
(100 nodes)
Sink-based
(144 nodes)

Radius of target region (m)

(a) the number of L2 packets

1000 1500

1
m Control

W Beacon

m Data

(b) Packet Types Breakdown (R=150)

Figure 4.8: Packets for Data Collection

62



1000 i -
P2+ Node Distribution |
900 7 Spot A

A A Spot B

800 ® Spot C

& Spot D

700
600
y(m) 500
400
300

200

(a) Visitor Distribution in Theme Park

Number of Nodes
0 50 100 150 200

Spot A (R=50m)
Spot A (R=100m)
Spot B (R=50m)
Spot B (R=100m)

Spot C (R=50
P ( . m Discovered Nodes
Spot C (R=100m)

Spot D (R=50m) ® Missing Nodes

Spot D (R=100m) ‘

(b) Number of Coveraged and Missing Nodes

Figure 4.9: Experimental Results

63



Chapter 5

Design and Architecture of
Cloud-based Mobile Phone
Sensing Middleware

5.1 Introduction

In this chapter, we propose a middleware to support mobile phone cooperative
sensing with a cloud server. Since we have designed in our previous work a
methodology to support design and development of collaborative WSN appli-
cations [103] (shown in Chapter 4), we use the basic high-level specification
language specification part to describe the behavior of whole sensing system.
However, it is very different from the methodology for collaborative WSN appli-
cation in terms of the target architecture where we need to tackle (i) cloud-server
architecture and (ii) mobility into consideration, while the method for WSN ap-
plication assumes homogeneous, decentralized architecture without centralized
servers. The middleware to achieve the mobile phone cooperative sensing con-
sists of applications on mobile phones and the server-side module. Each mobile
phone and the server communicate through WAN (e.g. 3G), and even two mobile
phones through short-range communication such as Bluetooth or WiFi-direct.
Our method automatically translates the given sensing query into server-side
queries which need to involve multiple mobile phones and phone-side queries
which are executed by single mobile phones. We provide a concept that hides

the details of network configuration, communication and processing inside the
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network but all the event occurrences are visible. The sensing query contains
time, location and network-based constraints (conditions) and their processing.
The process to achieve the given sensing query is very complex since it requires
cooperation among mobile phones and servers. Thus, our method hides the
physical placement of mobile phones and enables to execute cooperative sensing
specified by abstract query descriptions. The proposed method reduces the
effort to design and implementation of complex cooperation protocols by this
developer-friendly form of behavior specifications format.

We provide a set of event sensing and communication primitives to achieve
the given sensing query in the networks. Especially, since the proposed method is
extended for mobile phone sensing, we have designed interface and mechanisms
to handle mobility and human-mediate processes. Mobility predicates enables
to handle mobility conditions about velocities, trajectories and so on. Opt-in
predicates enables to human-mediate sensing to ask owners to work for sensing.
For example, an owner of mobile phone is required to take a video from the
opt-in interface and he takes the video if he agrees with it.

The following simple crowd sensing example helps to understand the concept;
each mobile phone sends beacon to each other and thus can detect neighbors.
When a crowded situation is detected from the number of neighbors, the system
reacts and starts sampling the neighbor count of the surroundings. Based on
the sample readings, the system predicts the crowded area and informs to users.
This system requires mobile phones collaboration to obtain samples from ap-
propriate location at required intervals. The proposed scheme allows us to write
the system in a simple form that consists of three steps, (i) start sampling on
detection with required density and intervals, (ii) crowd prediction on obtaining
enough samples and (iii) notification, without being aware of physical configura~
tion of mobile phones and the server. We have shown some examples of mobile
phone sensing system by our proposed method to show its usefulness. We have
also demonstrated the performance of our proposed method in terms of success-
ful data collection and generated packet to validate the quality of processing

the given sensing query.



5.2 Approach Overview

5.2.1 Middleware Architecture

In the proposed method, a mobile phone sensing system is defined to collect
sensor data matched with given queries from mobile phones. Thus, this system

should satisfy the following requirements.

e To reduce the complexity of sensor data and node management, the sys-
tem enables to select nodes abstractly by conditions of time, location and

sensor data attributes.

¢ To avoid large consumption of device energy and wireless bandwidth and
concentration of traffic and process load, the system should communicate
with fewer nodes while obtaining enough data. (Thus, processes which

are executed by all nodes should be avoided.)

o To detect conditions concerning multiple nodes, the system executes col-

laborative processing by nodes and the server.

Fig.5.1 shows an image of the mobile phone sensing system by our proposed
middleware for these requirements. This system is organized by the server on
the cloud and multiple mobile phones and it enables cooperative sensing by
their collaboration. A requestor gives a query, which contains a abstracted
requirement for mobile phone sensing such as getting density information of a
certain area, to the server and the server distribute the query to mobile phones.
Each mobile phone determines whether it participates the sensing or not by itself
to reduce the probability to upload waste data. When it participates, it executes
sensing and uploading data to the server. The server analyzes the data uploaded
by mobile phones to extract information. In addition, sometimes it selects
mobile phones based on the analyzed data to satisfy the more complex queries
concerning multiple nodes. These processes satisfy the above requirement.

Fig.5.2 is the architecture of our proposed middleware to realize such sys-
tems. The middleware is composed of the program on the server and the ap-
plication on each mobile phone. The collaboration between the mobile phones
and the server is achieved by communication through WAN (e.g. 3G) and the
collaboration among mobile phones is achieved by short-range communication

such as Bluetooth or WiFi-direct. The server program provides functions for
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Figure 5.1: Mobile Sensing System Architecture

distributing queries, analyzing uploaded data, managing each mobile phone, and
selecting some mobile phone to participate the more complex sensing based on
analyzed data. The applications on each mobile phone has functions such as
determinating to participate the sensing, sensing according to the query infor-
mation, uploading the sensing data to the server. The functions provided by

this middleware enable such mobile phone sensing.
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Figure 5.2: Proposal Middleware architecture
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5.2.2  Query Description Outline

Our method can execute sensing on each mobile phone (hereinafter called node)
and the server for a given sensing query that describes actions to be taken by
a group of nodes and conditions to be examined before the actions. Requestors
can easily describe systems by specifying such conditions that should be checked
by cooperation of nodes. We show a simple but essential example in Fig. 5.3
where a group of nodes that satisfy the following conditions is defined as the first
group to detect a crowd; (1) all the nodes in the group have detected numbers of
neighbors higher than 10, (2) they are located in a circle whose radius is 100m
and whose center is one of given positions of intersections, and (3) the size of the
group is more 30 nodes (we explain these predicates in Section 5.3, but readers
may refer to Table 5.1). In addition, in order to sample information of the crowd,
the second, larger group of nodes that contains the previous group having the
similar center with the previous group (CrowdDetector) but with larger radius
200m is defined. The nodes in the second group (SamplingSpot) sample and
upload numbers of neighbor as crowd information. In this way, conditions on
geometry, sensing data values and their manipulations can be written in our
query description.

However, such a sensing query is not easy to satisfy since checking conditions
and executing actions need cooperative operations among nodes. For example,
in order to check a condition on sensing data, (i) a node group needs to be
organized, (ii) the sensing data needs to be collected onto the server, and (iii)
it needs to be checked if the condition is met or not. The action should be
executed if the condition is satisfied, or the group is dismissed.

Thus, our method can automatically derive the single-node and multi-node
queries which are processed by cooperative nodes and the server from given sens-
ing queries. This hides the details of node behavior, which are often complex,

from the developers. Therefore they can concentrate on system logic.

5.2.3 Distributed Execution on mobile phones and the
Server

For a given sensing query described by a set of nodes with pre-conditions and
post-actions, we classify the predicates that constitute the condition into two

categories, single-node predicates and multi-node predicates. An example of
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4 I
nodegroup CrowdDetector

condition:
TestEach (neighborCount, ">10")
&& InFloatCircle (100)
&& Size (30, INFINITY)
action:
centroid = GetCentroid ()

nodegroup SamplingSpot
condition:
InGeoCircle (CrowdDetector.centroid, 200)
action:
OutputData (
GetSamplingDataSelect (
neighborCount, 1imin, 10min, 3))

- /
Figure 5.3: A Query Description of Crowded Sensing

single-node predicate is TestEach that checks if variable on each node satisfies
a given condition (see TestEach(neighborCount, “> 10”) in Fig. 5.3). Mean-
while, both InFloatCirele(100) and Size(30, INFINITY) are multi-node predi-
cates since they cannot be examined by single nodes. For example, InFloatCir-
cle(100) needs distance calculation for every pair of nodes, meaning that it can
be checked only when a group of nodes is given. Considering this fact, we take
the following strategy; Firstly, from the given sensing query, the server gener-
ate single-node queries which contain information of single-node predicates in
it and multi-node queries which contain information of multi-node predicates
in it. Each node contacts to the server and get single-node queries periodically.
We let each node periodically check single-node predicates, and let the node
be a potential constitute of the group if it satisfies the conditions. If a node
becomes a potential constitute of the group, it report to the server. The server
constructs a node group based on these reports. Then the data values to check
the multi-node predicates are collected to the server, and it checks if all the
multi-node predicates are satisfied or not. If true, those nodes take actions as
specified. Moreover, we allow describing conditions of groups that depend on
some other groups. For example, the second group (SamplingSpot in Fig. 5.3)
is such a group that refers to the “center” of CrowdDetector as a part of its

conditions. In this case, the centroid of coordinates of nodes in CrowdDetector
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has been calculated by the server to prepare for creation of SamplingSpot, and
the information is distributed to potential constitutes of SamplingSpot (in this
case, all the nodes). by the server in two ways. (1) polling by each node or (2)
broadcasting by some nodes which are nearby the target location.

In summary, each node needs periodically to check the single-node conditions
of each group, and then report the result and some data to the server. The
server forms the nodes whose report is received into a potential group with
nodes which also satisfy the same conditions. During the server collects all
the data necessary to check multi-node conditions. Then it actually checks the
conditions and executes the post-actions in cooperation with the nodes. During
the process, it prepares and calculates the data for the other groups’ conditions

if any.

5.3 Language and Algorithm Details
5.3.1 Query Description Language

A sensing query consists of two types of profiles, node profiles and nodegroup
profiles.

The node profiles define the attributes of sensor nodes. For example, if a
WSN consists of wireless sensor nodes and base stations, then we prepare two
profiles that correspond to them. In their profiles, local variables (storing sensor
data and so on) and methods they hold are defined. We omit example descrip-
tions here because they just consist of definitions of variables and functions.

In nodegroup profile, each block of description starts with a keyword node-
group (words highlighted by bold fonts are reserved words hereafter). Concep-
tually, this corresponds to a group of nodes that cooperatively execute tasks.
Developers can define pre-conditions with condition keyword and post-actions
with action keyword. The condition part must be a logical formula using pre-
defined single-node and/or multi-node predicates, and the action part must be
a list of functions (or procedures).

The example query description of a crowd sensing system shown in Sec.5.2.2
(Fig. 5.3) is an example of formal description. CrowdDetector and SamplingSpot
are nodegroup definitions blocks. In CrowdDetector, three predicates are spefi-

cied in the condition part. TestEach is a single-node predicate, and InFloatCir-
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cle and Size are multi-node predicates. As we explained in the previous section,
groups may refer to other groups by directly specifying their group names. For
example, SamplingSpot group refers to the CrowdDetector group. Since the
node groups defined by CrowdDetector may not be unique (i.e. there may ap-
pear multiple groups), CrowdDetector is assumed to be the reference to the
first-generated group in our language definition. The condition of SamplingSpot
contains a single-node predicate InGeoCircle with 2 parameters. In the sensing
description, the value of 1st paramter has been determined in CrowdDetector
group by GetCentroid functions.

Tables 5.1 and 5.2 show the list of predicates and functions, respectively. As
for the predicate table, we add how the predicates are examined in distributed
environment in the last column. Single means it can be tested by each node in-
dependently (i.e. single-node predicates), while Multi means cooperation among
nodes is necessary (i.e. multi-node predicates). For example, InGeoCircle can
be examined by each node independently based on its own coordinates and the
given center and radius information. On the other hand, InFloatCircle needs
to know the coordinates of all the nodes in the group since it does not relate
to the specific geographical area but to relative locations among nodes. These
attributes will be used in the execution algorithm in the following section. Due
to space limitation, we omit some of predicates and functions, and the complete
list can be found in [98].

Additionally, the proposed method is designed for mobile phone sensing.
Thus, we have designed some mobile-device-specific predicates. For example,
Keep UpWithCircle is a mobility predicates which is evaluated based on the
device’s trajectory, and AllowsToProvideVideo is a opt-in predicates which re-
quires the owner of the device to determine to take video for sensing through the
GUI of the device. These type predicates are suitable for mobile phone sensing

systems.

5.3.2 Mobile Phone Sensing Execution

In this subsection, we explain how to execute a given sensing query on each node
and server. As shown in Section 5.2, each node and server repeats the following
step sequence; (i) query generation from given sensing queries, (ii) periodic

polling to get single node query and notification, (iii) periodic sensing from
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sensors, (iv) periodic evaluation of single-node predicates, (v) data collection
and potential group generation (vi) evaluation of multi-node predicates and
(vii) execution of actions, to check if conditions are satisfied or not, and to

execute actions if satisfied.

(i) Query generation from given sensing queries In this step, the de-
veloper give a sensing query of sensing to the server and the server generates a
phone-side query and a server-side query. Each sensing query contains single-
node predicates and multi-node predicates, respectively. Single-node predicates
should be processed by each node and multi-node predicates should be pro-
cessed by the server since it can collect and manage data of multi nodes. Thus,
each sensing query is divided into a part of single-node predicates and that of
multi-node predicates. The former becomes a phone-side query and the latter

becomes a server-side query.

(ii) Periodic polling to get phone-side query and notification Queries
and notifications (discussed later) should be distributed to all nodes in the
field. But broadcasting to all nodes causes concentrations of a large amount
of data traffics on the server and frequency distribution causes a large amount
of energy consumption on each node. Thus, the server distributes them by a
polling strategy. Each node asks the server if there are phone-side queries and
notifications for every interval T. The server sends them to the node if they are

updated.

(iii) Periodic sensing from sensors In this step, each node executes routine
tasks like periodic reading from its sensors, which are used in the given single-
node and server-side queries. Each node periodically measures data shown in
the given sensing query as variables so that the code can refer to these data, at
steps (iv), (vi) and (vii). Especially, each node stores the history of its position

since its trajectory may be required for single-node predicates.

(iv) Periodic evaluation of single-node predicates In this step, each
node checks if single-node predicates in each group are satisfied or not. Since
each predicate can be examined by single node or multiple nodes as indicated in

Table 5.1, the code checks if only single-node predicates are satisfied or not. If
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necessary, the code manipulates local variables according to equations such as
addition, subtraction and multiplication. If all other single-node predicates are
satisfied but opt-in predicates are not, each node asks its owner to determine
to work for sensing and they becomes true if the owner agree. If the predicates
are met, the node continues executing the following steps since the node may
be able to meet all the conditions specified in the group (this is checked later
in step (vi)). Otherwise, the code goes to step (i) again. If all the predicates in
the group condition are single-node predicates, our method skips the steps from
(v) and (vi).

(v) Data collection and potential group generation In this step, each
node reports the result of checking the single-node predicates and its data for
checking multi-node predicates. The server receives reports from nodes and
organized the sender nodes as a potential node group after a certain interval
from receiving the first report.

In addition, our proposed method also provides tree-based data collection
protocol by using ad-hoc communication facility (like Zigbee or Bluetooth)
for reduction of the communication cost of data uploading. Nodes which sat-
isfy single-node predicates construct a tree and they collect data to root node
through the tree. The root node uploads the collected data to the server. We

can select direct uploading or tree-based uploading.

(vi) Evaluation of multi-node predicates Once the server collects all data
required for checking the rest of the predicates, it can know all the nodes which
meet the condition and become true members of the group. In this step, multi-
ple groups may be created according to a definition of a group because there are
many combinations of nodes that can satisfy the given multi-node predicates.
For example, if one of the predicates is Size(8, 10), at least three different groups
with 8, 9 and 10 nodes can be considered. The server generates groups with
the calculated average of temperature variables by using a pre-defined function
GenerateSets which derives all possible sets of nodes satisfying a given condi-
tion. Thus, the server sends a special packet to nodes, which do not satisfy the
condition, to eliminates and also generates several sets of nodes that can meet
“the multi-node predicates from the rest of nodes. These derived sets become

groups specified in the given sensing query.
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(vii) Execution of actions After organizing groups, the server executes ac-
tions in the given specification. Besides, if the group is accessed by another
group, the server has to notify the values of variables to those nodes which need
them. Therefore, it not only executes the actions but also notifies those data.
This notification is performed in two ways. If the group of nodes which accesses
those values are explicitly identified at that moment and if the locations of those
nodes are known, the notification can be delivered to the location via geocasting
from a. certain node in the group to reduce redundant messages. Otherwise, the

notification is distributed by polling of each node in step (ii).

5.4 Performance Evaluation

We first demonstrates the benefit from our method in terms of developers design
effort-saving. This is done by introducing example systems of our proposed
method. Then we measure the communication performance in order to show
proposed middleware works well by simulations. In addition, to demonstrate
our method is available in real environment and provides useful interface for

developers, we performed experimentations in real environment.

5.4.1 System Examples

To show that our proposed method have a system as a development environment
for mobile phone sensing, we introduce two systems.

The first one is simple and similar with the crowd detection and alert system
in Figs.5.3, but it can present applicability of our method to various systems.
It is a traffic jam monitoring system (Fig.5.4). If a traffic jam is occurred,
some mobile phone user takes videos of surrounding situation of the jam. This
system is useful to understand details of the traffic jam and to support driver’s
determination. If mobile phones are car-mounted mode and detect a traffic jam
by detecting that their velocity are continuously low, then the mobile phones in
the surroundings are organized to assign tasks to taking videos and upload them.
Each node has a facility to do it, but we would like to limit the number of mobile
phones to upload data to only 10 node in the group since duplication of video
uploading means waste of computation and communication resources. There

are two groups called TrafficJamSpot and MonitoringStreet which represent the
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4 ™
nodegroup TrafficJamSpot

condition:

InFloatStreet (500m)

&& TestEach (mode, "==CAR_MOUNTED")

&& DurationTestEach (velocity, "<20kmph", 3min)
action:

centroid = GetCentroid ()

nodegroup MonitoringStreet
condition:
InGeoCircle (Initiator.centroid, 2km)
&& AllowsToProvideVideo

action:
OutputData (
GetSamplingDataSelect (movie, imin, 1min, 10))
. /
Figure 5.4: An Query Description of Traffic Jam Monitoring
4 ™
nodegroup TransportationPassengers
condition:

IsFollowingPath (TRANSPOTATION PATH, 10min)
&& KeepUpWithCircle (10m, 10min);

action:
OutputData (

GetSamplingDataSelect (position, 1min, 10min, 2))
- _/

Figure 5.5: An Query Description of Public Transportation Monitoring

first-detectors of traffic jam, and the group of mobile phones in its surrounding
area.

Another example is a public transportation monitoring system. For a public
transportation (e.g. bus), each of passengers who ride on it has its mobile
phone. If the information of the transportation is required, the system on the
server finds passengers on it and collects real-time position data from them.
The sensing query is given in Fig. 5.5.

TransportationPassengers is a group of nodes which are corresponding to
passengers of transportation. The group provides real-time position data. We
assume nodes, which follow the same path as the transportation and keep within
a certain distance between each node, as passengers of the transportation. Thus,

each node monitors its trajectory and, if it follows the path, report it to the
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server. After the server receives reports from some nodes, node groups whose
nodes keep their distance are organized and 10 nodes in the group is selected to
upload the real-time position to the server for 10 minutes.

These systems supported by our middleware are useful example of mobile

phones sensing. These demonstration show broad utility of the middleware.

5.4.2 Performance Analysis of the Middleware

Performance Evaluation in Simulated Environments

We have conducted simulation experiments to observe that our middleware per-
forms well. We have used the Scenargie network simulator [102] version 1.4
where IEEE802.11g have been used in the MAC and PHY layers as wireless
wide area network communication and all nodes can connect with the server by
this network. We have targeted the crowd detection system and the simulation
was performed for 50 seconds. The size of the area was 200m x 200m and there
are 4 cross point (as shown in Fig.5.6). Nodes are moving at a constant speed 1
m/sec and a crowd detection event occurs in the intersection at (150m, 150m)
after 20 seconds. Nodes nearby the event report it to the server and it sends
request packet to nodes in the target area.

To present that the middleware can achieve reasonable performance levels,

we have evaluated the following metrics.

o Node coverage ratio, which is the ratio of the number of actually-found
nodes in the simulation to the number of nodes to be found according to
the query and node deployment. In other words, it shows the “complete-

ness” of data collection.

o Number of packets, which is the total number of data and control packets

in the network layer.

In order to verify the performance in various environments, we have prepared
the scenario with 160 nodes which move along the streets on the field.

Fig.5.7 show the node coverage ratios. In these graphs, the number of nodes
that are expected to be in the group is also shown as bars. We can see that
the ratios are very close to 1.0 in all the cases. This shows a certain level of

scalability to sense fields.
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Figure 5.6: Experiment Field

Finally, Fig. 5.8 shows the number of packets observed in the network layer
and ideal nodes to send data packets. The number of packets grows as the
radius of circles becomes larger and shows slightly larger than the number of
ideal nodes in cases (less than “150 m”) . However, the growing tread is similar
to the number of ideal target nodes. From this fact, we can say that our mobile
phone sensing middleware can prevent excessive traffic growth during the data
collection phase.

The simulated evaluation shows the middleware works well in the ideal en-
vironment. Our ongoing works includes more realistic evaluation in various

environments to show the utility.

Performance Evaluation in Real Environments

To show practical utility of our middleware for mobile phone sensing, we have
implemented a prototype of mobile phone sensing system and have evaluated
its data collection performance in real environment.

The prototype system is the crowd sensing system as shown in Fig.5.3 to
detect human locations in a certain region. This system asks mobile phones

in the region to report their locations by sending queries to them. We have
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Figure 5.7: Node Coverage Ratio

conducted the experiments at a intersection in a campus of Osaka University
(Fig.5.10). 12 mobiles phones are placed in the intersection and report their
data by multi-hop forwarding if they are in a target circle. We have evaluated
the performance of the system with several target circles, whose radii are 20m,
30m, 40m, and 50m. In our framework, it is easy to change such conditions
since mobiles phones are controlled by queries and the queries are distributed
to the mobile phones for each sensing.

The simulation results are shown in a GUI, which enables to monitor mo-
bile phones and their locations easily and helps to manage and operate them (
Fig.5.9). We have evaluated node coverage ratios and delays of location collec-
tion in the same way as Sec.5.4.2. Table 5.3 shows the results. We can see that
node coverage ratios are higher than 70% in all scenarios. We can see that the
delay becomes large as R becomes large. This is because it takes more hops to
deliver locations to the cloud server. Table 5.4 shows the number of packets in
the system. We can see that the number of control packets increase linearly. As
shown in above experiments, our middleware supports not only mobile sensing
itself but also analyzing the system performance. We believe that our approach

can contribute to reduce whole cost of mobile sensing.
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5.5 Conclusion

In this chapter, we propose a middleware to support mobile phone cooperative
sensing with a cloud server. We have designed a language to describe high-level
specification of such systems where we can specify the whole system’s behav-
ior from developer-friendly viewpoint based on group of node concept, and the
middleware to achieve the mobile phone cooperative sensing consists of apps on
mobile phones and the server-side module. Our method automatically trans-
lates the given sensing query into a sequence of queries which are executed by
the server and mobile phones. We provide a set of event sensing and commu-
nication primitives to achieve the given specification in the networks since we
have designed in our previous work, a methodology to support design and de-
velopment of collaborative WSN applications proposed in Chapter 4. However,
it is very different from the mothod for WSN in terms of the target architecture
where we need to take (i) cloud-server architecture and (ii) mobility into con-
sideration, while the method in Chapter 4 assumes homogeneous, decentralized
architecture without management by cloud-server. In this viewpoint, we believe
this is the first approach to tackle such problems. We have shown some example

descriptions of practical systems and have evaluated the quality of our proposed
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Figure 5.9: Screen Shot of An Example Application on Android

Figure 5.10: Field of Experimentation
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method in the experiments.

Our ongoing work includes applying the proposed method to various situ-
ations such as pedestrian crowds, car traffic, train passengers, and mixture of
them. In those platforms, we need to consider mobility, neighbor discovery and
security issues keeping the architecture limitation in mind. Thus, we have to

provide various methods corresponding to various situations.
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Table 5.1: Predicates for Condition Part (Excerpt)

Type Predinate Description Examined
by
General TestEach (v, exp) true 4ff variable v satisfies exp at  Single
every node
General DurationTestEach true iff variable v satisfies exp at  Single
(v, exp, t) every node for the duration ¢
Location InGeoCircle (c,r) true ¢ff all the nodes in the group  Single
are within the circle centered at ¢
with radius r
TopologyInFloatCircle (d) true ¢ff all the nodes in the group Multi
are within a circle with diameter
d
Location InGeoRectangle true 4ff all the nodes in the group Single
(cl, c2) are within the rectangle deter-
mined by two coordinates ¢1 and
c2
TopologyInFloatRectangle true ¢f all the nodes in the Multi
(w, h) group are within the rectangle
with width w and height h
Location InGeoStreet (c,r) true iff all the nodes in the group Single
are in a street at ¢ and within dis-
tance r from ¢
TopologyInFloatStreet (d) true 4ff all the nodes in the group Multi
are in a street and within distance
d
Topology Size (min, maz) true iff the number of nodes in Multi
the group is in [min, maz]
Mobility KeepUpWithCircle  true iff all the nodes in the group Multi
(d, t) keep up within a circle with diam-
eter d for ¢ seconds
Mobility IsFollowingPath (p, true ¢ff all the nodes in the group Single
t) follow the path p in this ¢ seconds
Opt- AllowsToProvideVideotrue iff owners of all the nodes in ~ Single
In (m, c) the group show the caption ¢ and
allow to take and upload a movie
m

82



Table 5.2: Functions for Values and Actions (Excerpt)

_ Function

Description ]

Average(v)

Calculate the average of variables p among all the
nodes in the group

AverageSelect(v, n)

Calculate the average of variables v among randomly-
chosen n or more nodes in the group

GetCentroid() Calculate the centroid of the coordinates of nodes in
the group

GetDiameter() Calculate the maximum distance between nodes in
the group

GetVelocity() Calculate the average velocity of all nodes in the
group

GetTrajectory(t) Calculate the the past t trajectory of the centroid of
the coordinates of nodes in the group

Sleep(¢) sleep in ¢

OutputData(d) Let the server output d

ExecuteEach(f) Let each node execute function f

GetVelocity() Calculate the velocity of the centroid of the coordi-

nates of nodes in the group f

(d, i, t)

OutputSamplingData Let the server output d for ¢ every ¢

(d, i, t, n)

GetSamplingDataSelecket n nodes in the group upload d for t every ¢ and

let the server to output the uploaded data

Table 5.3: Performance Evaluation in Real Environment Experimentation

| R [ 20 30 40 50 |
Node Coverage Ratios | 1.00 0.88 0.73 0.84
Delay (Sec) 13.963 17.812 21.443 20.598

Table 5.4: The Number of Generated Packets in Real Environment Experimen-

tation

—

R 20 30 40 50 |

Control Packets | 33 52 139 164
Data Packets 2 2 9 13
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Chapter 6

Conclusion

In this thesis, we propose D-sense, a development support environment for sen-
sor networks to support sensing system development comprehensively. The
environment is designed according to three themes: (i) support for network-
level programming and performance evaluation, (i) node specification genera-
tion from application-level requirement for cooperative sensing of sensor node
groups, and (iii) middleware to achieve cooperative mobile phone sensing with
servers based on application-level queries.

The theme (i) abstracts details of node program codes and enables developers
to implement network-level node programs such as routing protocols concentrat-
ing on their algorithm. It also supports performance evaluation of node pro-
grams on rea) devices and simulators by the code sharing mechanism. The theme
(i1) derives a behavior specification of each node on WSNs from application-level
requirement based on node groups which are defined by terms of real world such
as location, topology, and sensor data. Developers can customize processes of
the specifications. These support development of multiple layer of sensing sys-
tems comprehensively. The theme (iii) enables to achieve mobile phone sensing
by giving requirements based on sensor node group in the same concept with the
theme (ii). The cooperative approach in WSN cannot apply to mobile phone
network because its topology is constantly changing because of its nodes’ mobil-
ity. Thus, we add a term of time to the format of sensing requirement and design
the middleware for mobile phone sensing by cooperation among the server and
each mobile phone. The middleware achieves mobile phone sensing in hiding

detail information of each mobile phone such as its location, mobility, and ID.
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In Chapter 2, we have surveyed several researches of sensor network devel-
opment support to show the features of our approaches. We have also surveyed
researches about sensor node programming support, cooperative sensing devel-
opment support, and moble phone sensing support to address the related work
and show the features of our each methods.

In Chapter 3, we have designed and developed an integrated environment
called D-sense for supporting development of WSNs. D-sense supports proto-
col design by high-level design APIs. Also it provides seamless collaboration
of simulated and real networks for performance evaluation, and a powerful dis-
tributed debugging scheme. We have conducted performance evaluation of the
SPEED protocol in simulation and real environment to show the effectiveness of
D-sense. Our ongoing work includes developing a complete set of design/debug
APIs and related tools, and opening them to public domain.

In Chapter 4, we have proposed a support methodology for cooperative wire-
less sensor network application development. We have designed a language to
describe high-level specification of such applications where we can specify the
whole system’s behavior from developer-friendly viewpoint based on group of
node concept, and have provided an algorithm to translate a given high-level
specification into program codes for wireless sensor nodes. Our contribution
compared with the existing work is that we focus on cooperative applications
in WSNs and design a methodology to implement given applications in a fully-
distributed way, assuming computing and communication capabilities of intel-
ligent sensor nodes. In this viewpoint, we believe this is the first approach to
tackle with such a problem. We have shown some example descriptions of prac-
tical applications and have evaluated the quality of generated programs in the
experiments.

In Chapter 5, we propose a middleware to support mobile phone cooperative
sensing with a cloud server. We have designed a language to describe high-level
specification of such systems where we can specify the whole system’s behav-
ior from developer-friendly viewpoint based on group of node concept, and the
middleware to achieve the mobile phone cooperative sensing consists of apps on
mobile phones and the server-side module. Our method automatically trans-
lates the given sensing query into a sequence of queries which are executed by

the server and mobile phones. We provide a set of event sensing and commu-
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nication primitives to achieve the given specification in the networks since we
have designed in our previous work, a methodology to support design and de-
velopment of collaborative WSN applications proposed in Chapter 4. However,
it is very different from the mothod for WSN in terms of the target architecture
where we need to take (i) cloud-server architecture and (ii) mobility into con-
sideration, while the method in Chapter 4 assumes homogeneous, decentralized
architecture without management by cloud-server. In this viewpoint, we believe
this is the first approach to tackle such problems. We have shown some example
descriptions of practical systems and have evaluated the quality of our proposed
method in the experiments.

Our ongoing work includes applying the proposed method to various situ-
ations such as pedestrian crowds, car traffic, train passengers, and mixture of
them. In those platforms, we need to consider mobility, neighbor discovery and
security issues keeping the architecture limitation in mind. We have also work-
ing for supporting system optimization techniques such as prediction of running
cost of the sensing system by application specification and environmental infor-
mation. Therefore, developers may be able to design the system while verifying
its performance. Although this is a big challenge, we believe it is beneficial for

many service developers who wish to use smartphones for sensing purpose.
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