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Abstract

This thesis deals with applications of order statistics to ranked set sampling
and interval estimation. The ranked set sampling for estimating a finite population
mean is studied when sampling is carried out without replacement. Some confi-
dence intervals for the mean of a normal distribution are studied when samples are
censored.

In Chapter 2, we first prove the positive likelihood ratio dependence between
order statistics of one sample and the negative regression dependence between order
statistics of two samples without replacement drawn from a finite population. By
using these results, we show that, when samples are drawn without replacement
from a finite population, the relative precision of the ranked set sampling estimator
of the population mean relative to a simple random sample estimator with the same
number of units quantified is never smaller than 1, and is greater than 1 unless N —1
elements of the population of size V have the same value.

In Chapter 3, we consider the finite population of maximum relative precision
under given population size and sample size. Unlike the case of sampling from
an infinite population, here the discrete uniform distribution does not lead to the
maximum relative precision.

In Chapter 4, we discuss the problem of interval estimation for the mean of a
normal distribution based on censored samples. Five kinds of confidence intervals of
the mean from Type I and Type II censored samples are compared by simulation.
Two of the confidence intervals are based on the maximum likelihood estimators of
parameters, two others are based on the best linear unbaised estimators of param-
eters, and the last one is the confidence interval proposed by Halperin (1961). The
main conclusion is that the ML-T intervals seem to be practicable in the case of the

Type I and the LU-T intervals in the case of Type IIL.
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Chapter 1

Introduction

Order statistics and functions of these statistics play an important role in numer-
ous practical applications. The smallest and the largest order statitistics (extremes)
arise in floods and droughts, as well as in breaking strength and fatigue failure stud-
ies. The sample range is widely employed in the field of quality control as a quick
esitimator of standard deviation. The studentized range is useful in the detection
of outliers. Order statistics appear in a natural way in inference procedures when
the sample is censored. We take up in Chapter 4 the problem of censored sample.
Further, an ingenious application of order statistics can be found in the ranked set
sampling procedure. Ranked set sampling will be studied in Chapter 2 and 3. Other
applications of order statistics arise in the study of system reliability and in the area
of data compression, furthermore, order statistics play an important supporting role
in multiple comparisons and multiple decision procedures such as the ranking of
treatment means.

In this thesis, ranked set sampling (RSS) for estimating a population mean is
studied when sampling is without replacement from a finite population. In sampling
field work, research workers encounter a situation where the exact measurement (or
quantification) of a selected unit is either difficult or expensive in terms of time,
money or labor, but where the ranking of selected units can be done with reasonable
success on the basis of visual inspection or other rough methods not requiring actual

measurement. For example, suppose that it is required to estimate the mean volume
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of trees in an area. Then, the measurement of a selected tree will be difficult, but the
ranking of a small set of selected trees will be relatively easy. In such a situation, RSS
is used to obtain an improved estimate of the mean volume. The concept of RSS was
first introduced by McIntyre (1952) for estimating mean pasture yields. Takahasi
and Wakimoto (1968) considered the much needed mathematical foundation for RSS
and proposed independently the same estimator as McIntyre. The RSS procedure
consists of drawing n (called the set-size) random samples from the population, each
of size n, and ranking each of them. Then the smallest unit from the first sample
is chosen for measurement, as is the second smallest unit from the second sample.
The process continues in this way until the largest unit from the nth sample is
measured, for a total of n measured units, one from each order class. The entire
cycle is repeated r times (called the number of cycles) until a total of rn2? units have
been drawn from the population but only rn have been measured. The arithmetical
mean of these rn mesurements is called the RSS estimator. The RSS estimator is an
unbiased estimator of the population mean. McIntyre (1952) examined the precision
of the RSS estimator relative to the estimator from a simple random sample (SRS)

of the same size rn, and defined the relative precision as

_ variance of SRS estimator

"~ variance of RSS estimator’

Takahasi and Wakimoto (1968) have shown that, for any continuous distribution
with finite variance, RP is bounded below by 1 and above by (n + 1)/2, and that
the upper bound is achieved only by the uniform distribution. Because of this
potential for observational economy, the RSS method has received growing attention
both from statisticians and research workers. Patil et al. (1994) have reviewed the
theory, methods, and applications of RSS. However, these researches have been
mostly concerned with sampling from infinite (continuous) populations. In this
thesis, we consider RSS estimators of population means when sampling is without
replacement from a finite population. Here, the corresponding SRS estimator in the
denominator of the equation RP consists of drawing a simple random sample of size

nr without replacement from the finite population.
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In Chapter 2, we show that RP is never smaller than 1, and is greater than 1
unless N — 1 units of a population of size N have the same value [ see Takahasi
and Futatsuya (1997) |. We begin by deciding some mathematical interests between
order statistics from a finite population. In Section 2.2, we prove the positive like-
lihood ratio dependence between order statistics of a sample. The corresponding
result in the conventional case of an infinite population was proved by Lehmann
(1966). As a first step of the proof, we assume that the population values are la-
beled 1 through N; that is, when the population values are all distinct. Using a
multivariate hypergeometric type argument, we prove this dependence. For the case
of a general finite population whose values are not neccessarily distinct, the positive
likelihood ratio dependence can be obtained by considering the track of the number
of ties among the population values and by the preceding result. In Section 2.3, it
follows that, in contrast to the continuous case, joint distributions between order
statistics of two samples are negatively regression dependent. As in Section 2.2, we
first assume that the population values are labeled 1 through N. Then the negative
regression dependence be given by delicate combinatrial calculation and by apply-
ing an inequality related to hypergeometric cumulative distribution functions. For
the case of a general finite population, the negative regression dependence can be
obtain by considering the more complicated track of the number of ties among the
population values. In Section 2.4, we show that, from Section 2.2 and Lehmann
(1966), covariances of two order statistics from one sample are nonnegative and
that, from Section 2.3 and Lehmann (1966), covariances of two order statistics from
two samples are nonpositive. Further, we give the conditions under which covari-
ances are zero. In Section 2.5, we show from Section 2.4 that the relative precision
RP is bounded below by 1 and that the lower bound 1 is achieved by some finite

populations.

One of important problems in RSS from a finite population is this: Given the
population size N, the set-size n and the number of cycles r, what is the maximum

RP, and what is the population that has the maximum RP? In Chapter 3, we
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describe how to calculate the possible extremal finite populations maximizing RP
for any N, n and r [ see Futatsuya and Takahasi (1990) ]. Section 3.2 shows that the
difference between the variance of the RSS estimator and the variance of the SRS
estimator is given by a quadratic form —@'Té/n?r in the variables of population
values § = (z1,29,-',zy), Where z; < z3 < ---,zy. Here, I'isan N x N
matrix whose elements are functions of the population size N and the set-size n,
but I does not depend on the number of cycles 7. If the eigenvector (v, va,- -+, vn)
corresponding to the maximum eigenvalue of T satisfy the order condition v; < vy <
... < vy, then we can say that the elements of the eigenvector construct the extremal
population maximizing RP and that the largest eigenvalue becomes the maximum
RP. We computed the eigenvectors corresponding to the largest eigenvalues of T for
4 < N <100 and 2 < n < 5. Consequently, everything we computed satisfied the
order condition. In Figure 3.3.1 of Section 3.3, we show numerically some extremal
finite populations. Table 3.3.2 gives the maximum RP and, for comparison, the
values of RP for the discrete uniform distributions for some N and n. As the result,
we see that, unlike the case of sampling from an infinite population, the extremal

populations do not have the discrete uniform distributions.

Let us leave the subject of ranked set sampling and turn to that of censored
samples. Censored samples occur quite frequently in many practical problems in
engineering and in biological and behavioral sciences. In engineering, a typical
experiment in life testing of equipment consists of installing a sample of » similar
units on appropriate devices and subjecting the units to operation under specified
conditions until failure of the equipment is observed. Suppose that the life lengths
of these n units are independent and identically distributed random variables with a
normal distribution ( possibly after transformation of the data ). Note, however, that
these values are recorded in increasing order of magnitude; that is, the data appear
as vector of order statistics in a natural way. For some reasons or other, suppose that
we have to terminate the experiment before all units have failed. We would then

have a censored sample in which order statistics play an important role. Let us now
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look at two prominent types of censored samples discussed in the literature. A Type
I censored sample is one in which the terminus or point of censoring is fixed, while a
Type II censored sample is one in which the number of censored observations is fixed.
Type I censoring is more common in practice; Type II censoring is more common
in the literature, as it is mathematically more tractable. Previous work on censored
samples has dealt mainly with point estimation. We study some kinds of confidence
intervals for the mean of a normal distribution based on censored samples.

In Chapter 4, five kinds of confidence intervals for the mean of a normal distribu-
tion from Type I and Type II censored samples are compared through a simulation
study [ see Futatsuya and Takahasi (1978) ]. Section 4.2 presents five kinds of con-
fidence intervals for the mean. We call the usual large-sample confidence interval
based on the maximum likelihood estimates ML interval and, by replacing the quan-
tile of the standard normal distribution which determines the confidence coefficient
of the ML interval by that of Student’s ¢ distribution, we obtain ML-T interval.
Furthermore, by replacing the maximum likelihood estimates in the ML interval by
the best linear unbiased estimates, we obtain LU interval. We can also get LU-T
interval in the same manner as the ML-T interval. The last one is H interval pro-
posed by Halperin (1961). This H interval is based on a joint confidence region for
the mean and standard deviation. In Section 4.3, five kinds of these approximate
confidence intervals for the mean are compared by simulation. The main conclusion
is that the ML-T intervals seem to be practicable in the case of Type I, and the
LU-T intervals in the case of Type II.



Chapter 2

Ranked Set Sampling from Finite

Population

2.1 Introduction

Let Xy, Xs,...,X,, be independently distributed according to a univariate dis-
tribution and let X3y < X3 < -+ < X(n) be their order statistics. In this
case, Lehmann (1966) has shown that the joint distribution of two order statis-
tics X(;) and X(;) is positively likelihood ratio dependent. We consider the case
where X;, X,,...,X,, is a simple random sample without replacement from a finite
population and, therefore, X;, X,, ..., X,, are not independent. It is shown that the
joint distribution of X(;) and X is positively likelihood ratio dependent also in our

case. We prove this result in Section 2.2.

Next, let X;, Xs,...,Xn, Y1,Ys,...,Y, be a simple random sample of size m +n
without replacement from a finite population and let X(;) < X(5) < -+ < Xy
and Y(3) < Yjg) < -+ < Y{y be two sets of the order statistics of X, X,,..., X,
and Y1,Y,...,Y,, respectively. We consider possible dependence between X ;) and
Y(j)- It is shown that Yj;) is negatively regression dependent on X;). We prove
this result in Section 2.3. In Section 2.4, we show that Cov(X(;, X(;)) > 0 and

Cov(X(;, Y{;)) < 0 and we give the conditions for the equality to hold.
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Finally, using these results, we shall prove a theorem on ranked set sampling
(RSS) in finite populations. As it was pointed out by Patil et al. (1995), most
of researches in RSS have been concerned with sampling from infinite (continuous)
populations. Takahasi and Futatsuya (1988), Futatsuya and Takahasi (1990) and
Patil et al. (1995) studied RSS for estimating a population mean when sampling
is without replacement from a finite population. Takahasi and Futatsuya (1988)
gave an expression for the variance of the RSS estimator (jipgs) and Patil et al.
(1995) obtained explicit expressions for the variance of izgg and the corresponding
relative savings. Performance of the RSS estimator is generally benchmarked against
that of the simple random sampling (SRS) estimator (jigpg) With the same number
of quantifications. For this purpose, we use the relative precision (RP), RP =
Var(fisrs)/Var(flrss)- Futatsuyaand Takahasi (1990) considered the extremal finite
populations maximizing relative precision. In Section 2.5, we show that RP is never
smaller than 1, and is greater than 1 unless V — 1 elements of the population of size

N have the same value.

2.2 Positive likelihood ratio dependence between

order statistics of a sample

Let Q be the finite population {zq,---,z1,2g, -, 9, +, 21, -, 31} (21 < 22 <
- < z;) of size N. Let y, be the number of z, in @ (a = 1,2,...,0), f, =
v+t (a=12...0), fp=0and f, = f1+1 (a=12---,1).
We assume that v, >0 (a =1,2,...,1). Let X1, X,,..., X, be a simple random
sample of size n without replacement from . Let Xa) £ X@) < -++ £ X(n) be the
order statistics of this sample. In this section, we prove that the joint distribution
X(;) and X(;) (i # j) is positively likelihood ratio dependent.
Let us first consider the case Q = Qy = {1,2,---,N}. Let Z,,2,,---,Z, be a
simple random sample of size n without replacement from Q. Let Zay < Zg <

«++ < Z(n) be the order statistics of this sample. The set of all points (s, t) satisfying
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Pr {Z(,-) =8, Z(j =t} > 0 is denoted by S. For 1 < i < j < n, we have
S={(s,t)|i<s<N-n+ij<t<N-n+jj—i<t—s}. (2.2.1)

We prove the following.

LEMMA 2.2.1 Let1 <i< j < n. Then the joint distribution of Zy and Zy is

positively likelihood ratio dependent; that is, if s < s’ and t < t', then

PI{Z(i) = 8, Z(J) = t} PI‘{Z(,') = 8’, Z(j) = t,}

> Pr{Z =5, 2 =t} Pr{Zu = ¢, Z = t}, (2.2.2)
with equality holding if and only if (s,t) ¢ S or (s',¢') ¢ S.

PROOF. From (2.2.1), if (s,t) ¢ S or (s',#') ¢ S, then (s,t') ¢ S or (s',t) ¢ S and,
therefore, equality holds in (2.2.2). If (s,¢) € S and (s',#) € S, and (s,#') ¢ S or
(s',t) ¢ S, then
Pr {Z(,-) =3, Z(j) = t} Pr {Z(,-) =4, Z(j) = t'}
>0="Pr {Z(i) =8,4( = t’} Pr {Z(,-) =4, Zijy = t}-
Finally, if (s, t), (s, '), (5,1, (¢',t) € S, then, since
1 s—1 —1-s\ (N—
Pr {Z(i) =$,2() = t} = —(—ﬁ)—(i—l) (_ti—l~i) (n—jt)’
we have
Pr {Z(,-) =38,2() = t} Pr {Z(,-) =g, Ziy = t'}
Pr {Z(,-) =8, Z(j) = t'} Pr {Z(,-) =¢',Z;G = t}
_ (t=s=1)(t—5—-2) - (t—s—j+i+1)
W —-s—-1)¥—-5=2)-(t' —s—j+i+1)
) ..

H--1){t -6-2)---(t'—d—j+i+1)
(t—s—-1)(t—8—-2)---(t—8 —j+i+1)

(2.2.3)

Because (t —s —k)(t' ~s'—k) - (' —s—k)t —s —k) = (' —t)(s' —s) > 0, we

get (2.2.3)> 1. This completes the proof of the lemma.



Now we consider the general case Q = {z1,- -+, 1, %2, *, L2, +, Ty, -+, L1} Let
Gay = {(5,) | fa< 8 < far o <t < fo5,t € O}

We have the following lemma.

LEMMA 2.2.2 For1<i,j<n,i#jand1<a,b<l,
Pr {X(i) < 2o, X(j) < xb} =Pr {Z(i) < far Z() < fb}

and

Pr {X(i) = Zo, X(j) = .’L'b} = Z PI‘{Z(,') =8,Z(j = t} .

(8:t)€Gas
PROOF. Define t(k) (k = 1,2,---,N) by
t(k) = za if f <k< fa
Since the joint distribution of X, X, ..., X, is the same as that of ¢(Z,),¢(Z5),- - -, ¢(Z,),
we can assume that X; = ¢(Z;), i =1,2,---,n. Then, we have

Xiy<z, & HilXj<z}2>i

& HilHZ) <z} 21
& Hilzi<f}zi
& Zy<fa
and
Xoy=2a & HjlXj<w}ziandj{j|X;>2}>n-i+1
& HilHZ) Swa}2iand {j[4(Z;) 2z} 2 n—i+1
& HilZ<f}ziandi{j|Z;>f}>2n-i+1

Aig fa < Z(z) < fm
where X denotes the number of elements in the set X’. The proof of this lemma is

immediate from these relations.

The following theorem shows positively likelihood ratio dependence between two

order statistics in general finite population.



THEOREM 2.2.1 Let 1 < i< j < n. The joint distribution of X;y and X ;) is
positively likelihood ratio dependent; that is, if 1 <a<ad <land1 <b< ¥ <,

then

Pr {X(i) = Zq, X(j) = .'I:b} Pr {X(,-) = ZTo, X(j) = wy}

> Pr {X(,-) = :L'a,X(j) = xb’} Pr {X(,-) = :ca:,X(]-) = .’I}b} (2.2.4)
with equality holding if and only if G4z, NS =0 or Gy NS = 0.

PROOF. Let (s,t) € G, and (s',1') € Ggy. Then, s < ¢’ and ¢ < t'. Therefore,

from Lemma 2.2.1, we have

Pr {Z(i) =&, Z(j) = t} Pr {Z(,') = s', Z(j) = t'}

> Pr {Z(i) =8,24(j) = t'} Pr {Z(,-) =4, Z; = t} .

Summing both sides over (s,t) € G, and (s',t') € Gup, and, applying Lemma
2.2.2, we get (2.2.4). The condition for equality in (2.2.4) also comes from Lemma

2.2.1. This completes the proof of the theorem.

2.3 Negative regression dependence between or-
der statistics of two samples

Let M = {X;,X,,...,X,,} be a simple random sample of size m without re-
placement from Q = {zy,---, 21,22, -, %2, -, 21, -, Z;} given in Section 2.2. Put
®=Q-M. Let N = {1},Y5,...,Y,} be a simple random sample of size n without
replacement from & and let X(;) < X(g) < -+ < X(m) and Y(3) < Yjg) < -+ < Yy
be the order statistics of these samples, respectively. In this section, we prove that
Y(;) is negatively regression dependent on X;).

Let us first consider the case @ = Qy = {1,2,.--,N}. In this case, let us

denote M= {XlaX27'°'1X7n} and/\/’: {}/—1)}/2,“')Yn} byM = {UI’U2"")Um}
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and N = {Vi, V5, --,V,}, respectively. Let Uy) < Upg) < -++ < Upmy and Vy) <
Vig) < +++ < V(n) be the order statistics of {U,Us,---,Un} and {V1,V3,---, Vo },
respectively. Let us assume that 1 < i < m, 1 < j < n and, of course, N > m + n.

Put N = N —m —n+i+j— 1. We define several subsets of Qy x Qy as follows:
0= {(u,'v) | Pr{U(,-) = u} >0 and Pr {V(,-) = v} > 0},

A={(u,’u)|Pr{U(,-):u,V(j):'v}>0 and 'u,>v},
Cz{(u,v)]Pr{U(,-)zu,V(j)zv}>0 and u<v},
B={(u,v)|i+j§_u_<_]\7,u=v},
D={(y,v)|i<u<i+j-Lj<v<i+j—1}

and
E={(42) | N+1<u<N-m+i, N+1<v<N-n+j}.

Then we have the following lemma.

LEMMA 2.3.1 For the sets defined above, we have

O={(u,v)|i<u<N-m+4,j<v<N-n+j},

A={(wv)|i+j<u<N-m+ij<v<Nu>of, (2.3.1)
C={(u,v)|i<u<N,i+j<v<N-n+ju<o}, (2.3.2)
{(w,0) | Pr{Us = v,V =v} >0} =AuC (2.3.3)

and

O=AUBUCUDUE,
where A,B,C,D,E are mutually disjoint.
PROOF. It is sufficient to prove (2.3.2), because the proof of (2.3.1) is similar to
the proof of (2.3.2) and others are obvious. Let us consider Table 2.3.1. Under the
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assumption u < v, Pr {U(,-) =u, V) = v} > 0 if and only if there are non-negative
integers ¢ and y such that all the entries of the table are non-negative. Using this
fact, it is easy to obtain (2.3.2). Fig. 2.3.1 gives an example of the partition of O
into A, B, C,D,E, where the points of A are the lattice points in area A in Fig.
2.3.1 and so on.

The following lemma is used in proving Theorem 2.3.2.

Table 2.3.1; Conditions for C

1,-vvyu—-1juwf| u+1,---;,o—-1 | v v+1,---,N Total
M i—1 1 Y 0 m—i—y m
N z 0 ji—1—=x 1 n—j n
-N| u—i—-z |0|v—u—j+z—-y|0|N-m—-n+i+j—v+y|N—m—n
Total u—1 1 v—1-—u 1 N —-v N

LEMMA 2.3.2 Let (u,v) € O. Then,
Pr{Us = u, Vi = v} = Pr{Upm sy = N =2+ 1, Viujyy = N —v + 1},
Pr{Uy = v, V) < v} = Pr{Upm-ssny = N —u + 1}
—Pr{Um-i31) = N = 4+ 1, Vin_jp1) < N — 0}

and
Pr{Vij) <v|Up =1} =1~ Pr{Vinojiz) S N = v | Upm_is1) =N-u+1}.

PROOF. Put U, =N+1-U; (i=1,2---,m)and V/; = N+1-V; (j =
1,2,---,m). Let Uy < U'(g) < +++ < Uy and Vg < Vlg) < -++ < V'(n) be the
order statistics of U'y,U’y, .-+, U',, and V';,V'y, ... V', respectively. It is obvious
that the joint distribution of U/}, Uy, ..., U’,, is the same as that of U, Us, -+, Up,
the joint distribution of V';, v’y ... V', is the same as that of Vi,Va, -+, V, and
Uw=N+1-Umsi1—i), Vj=N+1- Vint1-j)- Thus, we have

12



Figure 2.3.1: Example of A)B,C,D,E (N =20,m =8,n=3,i=4,j = 3)
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N
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Pr {U(i) =u, V) = v} = Pr {U’(,-) =,V = v}
=Pr{N +1~Um-is1y =% N+ 1= Viu_j1) = v}
= Pr{Upm-isy = N +1 =4, Viu_jy1y = N+ 1 -0},
Pr{Us = u,Vj) < v} =Pr{U' =u, V') < v}
= Pr{Uim-is1y = N +1-4,Via_jiy) 2 N+1 -0}
= Pr{Upm-is1y = N + 1= u}=Pr {Upm-is) = N = v+ 1, Viu_j1) < N — v}
and
t{U = u. Wy < v}
Pr {U(i) = u}

P
Pr{Vi <v|Up=uf =

Pr{Uim-i+1y =N +1 -1, Vin_jsr) <N —v}

=1- Pr{U(m_i+1)=N+1_u}

=1-Pr{Vinoju) <N =0 | Upmeisy = N+ 1 —u}.

Let T, = f{a € ® | a < v} and R(;y = §{h € ® | h < V};)}. The following lemma

is important for deriving the joint distribution of Uiy and Vi .

LEMMA 2.3.3 Let (u,v) € O. Then,
Pr{Us =,V < v} = Z Pr{Uw =T, = a} Pr{R(;) < a}
a=j

min{a,N—-m—n+j}

=Y [Pr{Us =uT, =a} > Pr{R; =h}
a=j h=j
PROOF. It is easily checked that
Viiy Sv<=>T,>j and R(; <T,
— \/ [T,, =a,R(]-) < a] )
=j
where X, V X, means X; or X,. Because (Ug), T,) and Ry;) are independent, we have

Pr{Uqy =u, V) < v} = ijr {Up =T, =a,R;) < a}
a=j
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- i Pr{Uy = u,T, = a} Pr{Ry;) < o

a=j

min{a,N—-m—n+j}

= 2”: Pr{U(i) =u,T, = a} Z Pr {R(j) = h} :

a=j h=j

Now we can give an expression of the joint distribution of Uj;) and V{;). Let
A; = {(u,v) | (u,v) € A,v = N},

A2=A—A1={(u,'v)|z+]SUSN—m-{-Z,]S,U<N’u>v}’ (2.3.4)
C: = {(u,v) | (v,v) e C,v =N —n+j}

and

Cz=C—C1.

THEOREM 2.3.1 Let1<i<m,1<j<n and (u,v) € O.
Then, Pr{Uy) = u,V;;) < v} is given as follows:

u—1\({N—-u
PI‘{U(Z-)=U,VE_.,~)S’U}=(I'_—1)(—7—”:—Q-, (u,v) € A,UC, UE

()

N-u min{u—i,w,N—m—n-+j
ity o )

e > (o (m)

min{u—i,v}

X 2 (Z) (11:«1'::)’ (u,v) € A,

a=max{h,v+1—:}
(2.3.5)

Pr{Us =u,Vj < v} = (n5) () uf: (D (o, (u,v) € B



N-u) fu—1
PI‘{U(,) = u, VE]) < ’U} = g’_"%g_’:lz

T (N\(N-m Z (:—:) (N;TI_h)
@ (") e
min{N—v,N—u—m+i}

% Z (N;”) (N-'ui::ﬁ'—a)’ (ua 'U) € C,

a=max{h,N—v—m+i}
(2.3.6)

Pr{U(,-) =u,V; < 'v} =0, (u,v) € D.

PROOF. By elementary combinatorial calculations, we have the following (i),(ii)
and (iii).

h—1\ (N—m—k
(J‘—l)lg_:—f ) j<h<N-m-n+j
(i) PI‘{R(J-) = h} = ( n )
0, otherwise.
u—1\ (N—-u
—————(i_l)(m—i) t<u<N-m+1

@ Pr{Uy=u}= @
0, otherwise.
(i) If y = w or v = u — 1, then
0) ;é -1
Pr{U(i)zu,Tvza}z A
PI‘{U(Z')ZU}, a=1u-—a1.

Ifl1<v<wu-1,then

PI‘{U(,') = 'u,T,,, = a} =

0, otherwise.

Case 1; (u,v) € A; UC; UE. In this case, we have Pr{U(,-) =u, V) < v} =
Pr {U(i) = u} The desired result comes from (ii).

16

( )()(Z 1‘2)(1\, 'f)’ max{0,v+1 -3} < a < min{u — i,v}



Case 2; (u,v) € D. From Fig. 2.3.1, this is obvious.

Case 3; (u,v) € B. In this case, we have

Pr{U = u, V) < v}

= Pr{Uy=uV;<u-1}
= uf Pr {U(i) =T, = a} Pr {R(,-) < a} (by Lemma 2.3.3)
a=;

= PriUs =u;PriRy <u—1 (Ui)_—_uimpliesT,,zu—i)
(
B (1::11) (ivn::) min{u~i,N—m-n+j} (;L:le) (N;Tj_h)

@ = ("27)

(by (ii) and (i))

Nouw) (v minfu—iNomends}
By

Case 4; (u,v) € A;. From Lemma 2.3.3, (ii) and (i), we have

Pr {U(z) =u, ‘/(j) < ’U}

min{a,N—-m—-n+j}

= iPr{U(,-) =u,T, = a} Z Pr {R(J-) = h}
a=j

h=j

min{u—1,v} 1 1 i min{a,N—m—n+j} h:l N;T-_h
B a=max§)+1—i}m(2) (:_:_a) (ivn_i) hz=.1 (J 1215—’"1)] )
— (]:l——?) minfuTiod v\ {u—1-v min{e N ) h—1\ (N—m—h
S TN - == = T
N:’:L min{u—i,9,N—m—n+j} _ o min{uz—i,v}
- TR T e T8 oe)
m n =] a=max{h,v+1—i}

Case 5; (u,v) € C,. This case can be obtained by using Case 4. By Lemma 2.3.2,

we have
Pr {U(,-) = u, V(j) < v} =Pr {U(m—i+1) =N-—-u+ 1}

~Pr{Um-isy =N —u+1,Vujuy <N -v}.  (237)
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Put?/ =m-i+1,j/=n—j+1, u';—N—:L+1, v = N —vand N' =
N—-m—n+i+j —1. Then,(2.3.7) = Ln;i(—z—vgi——l)—Pr {U(,-:) =, V;n < v’}.
Since (u,v) € Ca, we have 7/ + j' < o/ gmN —m+4,j <v < N and
u' > v'. From these inequalities, it can be said that (u’,v') belongs to A, in
the case of (3, j, N) = (i’,j’,f\/”) in (2.3.4). Therefore, we can apply Case 4
to Pr {U(i:) =,V < v’} and obtain an expression corresponding to (2.3.5).
Substituting ' =m —i+ 1,5’ =n—j+1l,v' = N—-u+land v = N — v for

this expression, we obtain (2.3.6).

This completes the proof.

From this theorem, we obtain the following corollary.

COROLLARY 2.3.1 Suppose (u,v) € O. Then,

Pr{Vi; <v | Uy =u}

= ]_, (U,U)EA]_UCIUE

min{u—i,0,N—m—n+j} (ff—l) (N——m'—h) min{u—i,v} ('v) (u—l—v)

j—1 n—j z a/ \u—i—a

N—m u—1 ’
h=j n a=max{h,v+1—1} u—i

u—i (h=1) (N—-m—h
= Z(j_lzlg_,:)_j ), (u,v) € B

min{N—u—m+i,N—v,N—m—j+1} (h—%

N—

(")

— _ n—j -
=1 N-—m

h=n—j+1 ( n )

min{N—-u—m+i,N—v} (N—v) — )

X a N—-y-m+ti—a
N—u !

a=max{h,N—v—m+i} Ne—u—m+i

= 0 (u,v) € D.

The following lemma shows a stochastic ordering between hyper geometric dis-

tributions and is essential for the proof of Theorem 2.3.2.
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LEMMA 2.3.4 Suppose that r, M and L are positive integers and r < M + L.
For any k satisfying max{0,7 — L} < k < min{r, M},
min{r,M} (M)( L ) min{r+1,M} (M)( L+1 )

r—a a r+1l—a

azz;e (M;|-L) < (12::15: (M:-f:—l) :

PROOF. Let ¢ = max{0,n — L},d; = min{r, M} and dy = min{r + 1, M }. Define

( M L
Sriret, c¢<a<d
pifa) =< i
\ 0, otherwise,
4 M L+1
T s c<a<d
r+1
paa) = ¢ "
{ 0, otherwise,
and
p(a) = pa(a) — pi(a).
For ¢ < a < dy,
(@) = (%) (2) {M + L+ a— M(r + 1)}
= (ol M+ L+D)(r+1-a)
M(r+1) : .
Put g = ————7_. Tt is easily checked that < dy. Therefore, we have that
I=M+r+1 y €s9<a

p(a) <0, fc<axy,

p(a) =0, ifa=g,
pla) >0, ifg<a<d, (2.3.8)

and particularly,

p(dz) >0 if dy = d;.

If dy > dy, then py(ds) > 0 and p,(dy) = 0 and, therefore, p(d;) > 0. We can, now,
replace d; in (2.3.8) by dy. Then, it is obvious that

dy
Y pla) >0, ifk>g
a=k
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d;
and, noting that ) p(a) =0,

a=c

da k-1
Y opla)=-Y_ pla) >0, ifc<k<y.
a=k a=c

This completes the proof.

Before proceeding further, we define several subsets of O as follows:

0 = {(,v)€0|u#N-—m+i},
A = ANO,

E = EnO,

A, = {(w,v)€eA|v=N},

A, = A-A4,,

C, = {(u,v)EC—C1|u76N},

C; = C-C;-G,,

D; = {(x,v)eDju=i+j—1},
D, = D-D,

and

F = EUC,UA,.
Then,
O = A,UBUCUDUE,

where A, B, C,D and E are mutually disjoint.

THEOREM 2.3.2 Vij) s negatively regression dependent on Uy, that is, for
(u,v) € O,

PI‘{‘/(J') S v | U(z) = ’IL} S PI‘{‘/(J) S v I U(.,) =u+1}
Furthermore, we obtain the following results on when equality will hold.
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(i) Fori = 1, equality holds if and only if (u,v) e D,UF U A,.

(ii) For i = m, equality holds if and only if (u,v) € Do UF U C,.

(i) For 1 < i < m, equality holds if and only if (u,v) € Do UF.

PROOF. From Lemma 2.3.1, it follows that

Pr{Vi <ol Upy=u}=Pr{Vy<v|Uy=u+l}=0
Pr{Vij <v|Upy=u}=Pr{V;<v|Uy=u+1}=1
Pr{Vj <v|Upy=u}=0<Pr{V; <v|Uy=u+1}
and

Pr{Vi <v|Upy=u}<1=Pr{Vj; <v|Uy=u+1}

for (u,v) € Dy,
for (u,v) € F,
for (u,v) € Dy

for (u,v) € Cs.

(a) The case of (u,v) € B. Note that u = v in this case. If u = N, then, by

Lemma 2.3.1, we have

Pr{Vij) <N|Uy=N}<1=Pr{Vy <N+1|Uy=N+1}.

Suppose that v < N. From Lemma 2.3.1, we have

Pr{Viy <u|Usp=u+1}=Pr{Vy <ut+1|Uy=u+1}.

From Corollary 2.3.1,

u—i (R=1) (N-m—k
=7

")

u+1—i
<Pr{Vy<o|Uy=u+l}= 3
h

h—l) (N—m—h)
i-1 n—j

("2")

(b) The case of (u,v) € A;. First, note that (u + 1,v) € A,. By Corollary 2.3.1,

we have

Pr{Vip <v|Uy=u}=

min{v,u—{,N—m—-n+j} (h—l
j—1

N—m~h)

n—j

h=j
min{v,u—é} (”

X > =

a=max{h,v+1—1i}
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(2.3.9)



and

min{v,u+1—i,N-m—n+j} (h—l) (N—m—h)
j—1 n—j

50
min{vut+1-i} (v){vtl-1-v
X Z | (a) (u-:“]-—_“;a )
a=max{h,v+1—i} (u+1—z’)
If { = 1, then it is easily seen that
min{v,N—-m—n+j} (k-1 N—m'—h
(2.3.9) = (2.3.10) = NZ () )

(*:")

Now, suppose that ; > 2. For v = j, we have

Pr{Viy <v|Upy=u+1}=

(2.3.10)

(23.10)  (uw—j)(u+1—1)
(23.9)  w(u+1-1i-j)

> 1.

Let v > j + 1. First, we consider the case of v < 7+ j — 1. In this case, we

have

pa=" "5 EL (4 O]
h=j ( nm) . (:2 _i)

a

il

(2.3.11)
and

min{v,u+1—i,N—m—n+j} (’}—1) (N—m'—h)

2.3.10) = i1 n=J
> )

min{v,ut+1—i} {v) (ut+l-1-v
x{ {il }—-_——(“)(u‘i:"‘“)}. (2.3.12)
a=h (u+1—i)

If w=v+1, then we have y = 1 + 7 and v = i + j — 1, and, therefore, we

can show (2.3.10) < (2.3.11) by direct calculations. If 4 > v + 1, then, putting

M=v,L=u—-1-—vandr =u—1in Lemma 2.3.4, we have
min{v,u—i} (Z) (:,:1::) min{v,u+1—1} (Z) (Z:};ri—;)
R I S

And, therefore, (2.3.12) > (2.3.11). Now, we consider the case of v > i + j.

for j < h < min{v,u — i}.

Then, (2.3.9) can be decomposed into two terms;

vil—i (h=1) (N-m—h) (min{v,u—i} (v} (u—1-v
(2.3.9): Z (‘7_1)( nJ ){ Z (a)(u—z—a)}

A N-—m u—1
h=j n a=v+1—14 w—i
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+min{v,u——i§:—m—n+j} (J 1) (N 1_n] h) [mm{u,u —i} _(_)(:LL_L:)_:I , (2.3.13)

h=vtl—i+1 2™ gx )
where the second term of the right hand side of (2.3.13) disappears for v = u+1.
Similarly, (2.3.10) can be written as
v+1—i (A~1\ (N—m—h min{v,ut+1-i} (v 'u.+1—1'—1;
(2310)="Y ¢ _1)15_,:_" ) { E+ . Bl (;:11__11_‘1) }
h=j ( n ) a=v+1—i (u+1—i)
e ) [ Q)
h=v+1-i+1 ( n ) a=h (u+1_,-)

Because the quantities in { } of (2.3.13) and (2.3.14) are 1, the first terms of

+

(2.3.13) and (2.3.14) are equal. If v = u — 1, then the second term of (2.3.13)
= 0 and the second term of (2.3.14) > 0. Therefore, we get (2.3.14) > (2.3.13)
for v = u — 1. Now, assume that vy < u—2. Put M = v, L=u—1— v,
r = u — 1 and k = h for the expression in [ ] of ( 2.3.13 ). By Lemma 2.3.4,

we have

the second term of (2.3.13)

min{v,u+1—i,N—m—n+j} ( ) ) min{u+1—i,v} (1’) (u+1-1——v)
a) \ut+l—i—a

—m—
N— Z u+1-1
h=v4+1—i+1 a=h u+1—1i

< the second term of (2.3.14),

<

Thus,we have (2.3.13) < (2.3.14).

The case of (u,v) € C,. Leti! = m—i+1,j = n—j+l, v = N—-u,v = N—-v
and N'=N-m—-n+i+5—1 Sincei<u<N,i+j<v<N-n+j—1
and y < v, wehave i + ' < W < N—-m+¢ —1,j<v <N —1land o' <«
Therefore, we can use the result of the case (b) for (i, ;/,u',+'). Hence, we

have

Pr{Viy) < o' | Ugy =o'} < Pr{Viyy < o' | Uy =o' +1}
with equality holding if and only if i/ = 1; that is,

Pr {Vin—jsn) < N =0 | Upm—iyry = N — u}

23



< Pr{Viwjs) SN =0 | Upmoisny = N —u+1}

with equality holding if and only if m — i+ 1 = 1. By Lemma 2.3.2 , we have
Pr{V(]-) <wv| Uy =u} = Pr{V(j) <v|Uy= u+1} for i =m

and
Pr{V(j) <v| Uy =u} < Pr{V(]-) <v| Uy =u+1} for ¢ # m.

This completes the proof of the theorem.

REMARK 2.3.1 If (u,9) € D; UB U Cj, then
Pr{V(j) <v| Uy =u} <Pr{V(j) <v| Uy =u+1} forany 1 <i < m.

Now let us consider the general case Q = {z1,--+,z1,Za9,*+,Z2, ", T1,***, Tt}

We easily obtain the following lemma.

LEMMA 2.3.5 For1<a,b<|,

Pr {X(,-) <, Y < xb} = Pr {U(i) < faVij < fb}

and

fo
Pr{Xw =2, Yy <2} = X Pr{lUy =V < fo}-
o=f

Let Ia,b = {(U, fb) | fa S U< fa+1}'

THEOREM 2.3.3 Let 1 <i<mandl < j < n Then, Y; is negatively

regression dependent on X;; that s,
Pr{Yy) < o | X = 2} < Pr{¥j) < 2 | Xg) = Tara} (2.3.15)

wherei < f, < foy1 <K N—m+iand j < f, < N—j+1. Furthermore, the following

results with equality hold.
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(i) Fori=1, equality holds if and only if 1,, C D, UF U A,.
(ii) For i = m, equality holds if and only if I,, C D, UF U C,.
(iii) For 1 < i < m, equality holds if and only ifI,, C D, UF.

PROOF. First, note that i < f, < fay1 < N —m +i & Pr{X() =4} > 0 and
Pr {X(,-) = il?a+1} >0,and j < < N—-j+1& Pr {Y(J-) = :cb} > 0. Using Lemma
2.3.5 , it is seen that (2.3.15) is equivalent to

fa fa»
Z ZEI PI{U(i) = s,V(J-) S fb} PI‘{U(i) = t}
s=fa t=fat1
fo  fat1
<> X Pr {U(i) =tV < fb} Pr {U(i) = s}. (2.3.16)
5=fa t=fa+l

From Theorem 2.3.2 , we have

PI‘{U(,-) = ul,V(j) S fb} PI’{U(i) = u2}

< Pr{Up =u, Vij) < o} Pr{Us = w}, (2.3.17)

fori <uy <uy < N—-m+1i Forl <u <i—1o0ru > N-—m+1, the
both sides of (2.3.17) are 0. Summing the inequalities (2.3.17) over fo <ui < fo
Far1 < ug < fay1, We obtain (2.3.16). It remains only to check the conditions for
equality. From (2.3.16) and Theorem 2.3.2 , it follows that
the equality holds in (2.3.15)
& the equality holds in (2.3.16) for all (s, t) such that f, < s < f,
and fu1 <t < fapr
& (5, £ (s 1,fy)y- o+, (6, fy) € x for all (s,) such that f, < s < f, and
far1 <t < farq, where y denotes D, UFU A, fori =1, D, UFUC,
fori=mand D,UFforl<i<m
& (s,fr) €xfor fo<s< farr1—1
< L Cx

This completes the proof of the theorem.
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2.4 Covariances of two order statistics from ome
sample and from two samples

Let {Y;,Ys,---,Y,} be a simple random sample of size n without replacement
from Q = {z(, -+, 21,29, ", Ta, -, T, -+, T} of size N. Let ¥(q) < V(g < -+ <
Y(s) be the order statistics of {¥;,Y5,---,Y,}. We define A,; and Bby {s |i < s <
N —n+1i} and {f | 1 < k <}, respectively.

THEOREM 2.4.1 Let 1 <1< j <n. Then we have
Cov(¥s), ¥()) 2 0
with equality holding if and only if A,;,NB=0 or A,; NB=0.

ProOF. If A,,NB =0, then Y(;) is constant and, therefore, Cov(Y;), Y(;)) = 0.
Similarly, if A,; N B = 0, then Cov(Y(;),Y{;)) = 0. Suppose that 4,, N B #
and A,; N B # 0. Let f, = min{A,; N B} and let f, = max{A,; N B}. Then,
(4, fo) € GasNS and (f,+1,N —n+j) € Gay1)p+1)NS. By Theorem 2.2.1, we get

Pr {Y(i) = Zq, Y(j) = mb} Pr {Y(i) = Tqy1, Y(j) = -'L'b+1}
> Pr {Y(i) = &g, Y(5) = $b+1} Pr {Y(i) = Toy1, Y(5) = wb} :
Hence, Y{;) and YJ;, are not independent. Since, by Theorem 2.2.1, (¥{;),Y;)) is
positive likelihood ratio dependent, (Y;),Y{;) is positive quadrant dependent (See

Lehmann (1959), p.74 and Lehmann (1966), p.1144). By Lemma 3 of Lehmann
(1966), we have

Cov(Y), ¥ijy) > 0.

This completes the proof of the theorem.

Let {X3,X5,:-+,Xm,Y1,Ya,---,Y,} be a simple random sample of size m + n

without replacement from €. Let X(;) < X(5) < --+ < X{,,,) be the order statistics
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of X3, X5, -+, Xm and Y3y < Yy < -+ < ¥y the order statistics of ¥3,Y5,---,Y,.

THEOREM 2.4.2 Let1 <i<mandl<j<n. Then we have
Cov(X(), Yi)) <0,
with equality holding if and only if A,,.; n B=0orA,;nB=0.

ProoF. If A4,.NB =0 or A..; N B = 0, then X;) or Y;) is constant and,
therefore, Cov(X(y,Y(;)) = 0. Assume that A,,NB # @ and A,; N B # @. Since,
by Theorem 2.3.3, Y{;, is negatively regression dependent on X;, (X;),Y{;) is
negatively quadrant dependent (See Lehmann (1966), p.1144). By Lemma 3 of
Lehmann (1966), we have '

Cov(X), ¥j)) < 0

and if X(; and Y{; are not independent, then we have
COV(X(,'), Y'(])) < 0.

Now,we shall prove that X(;) and Y};) are not independent.Suppose that I,, N (B U
Cs UD;) # 0. Since (BUCs;UD;)N (A, UCz UD, UF) = @, we have I; &
A, UC,UD,; UF. By Theorem 2.3.3, we have

Pr {Y(,-) < x| X = :va} <Pr {Y(j) <z | X = a:a+1} .

This implies that X|;) and Y{; are not independent. Therefore, it suffices to show
the existence of (a,b) such that I, N(BUC3 UD,) # 0. Let 7 = A, N A,; N B,
Ci = {k|max{i,j} <k <i+j},Co={k|i+j<k<N}andC3={k|N<k<
min{N —m +i,N —n+j}}.

Case(i): J #0.

(a): CcNB #0. Let f, € C;NB. Then, i +j < f, < N. It follows that
(fa, f2) € B. Thus, I, N B # 0.
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(b): CoNB=0and C; N B # 0. Let f, = max{C; N B}. Then, max{i,j} <
fo<i+jand f, <i+j—1 < fopq. It follows that (i+j5—1, f,) € L,,ND;.
Thus, I,, N Dy # 0.

(c) G;NB=0,CoNnB=0and C3 # 0. Let f, = min{C3 N B}. We have
N+1< f,<min{N-m+i,N—-n+j}—1land f <N < fopq. It
follows that (N, fo) € I, N Cs. Thus, I,, N Cs # 0.

Case(ii): J = 0. Note that, under the assumption A4,,; N B # @ and A4,.,; N B # 0,

i = j implies 7 # §.

(a): i < j. There exists f, € Bsuchthat i < f, <jand N—-m+:i< f,11 <
N —n+j. It is seen that (N, f,) € Lyg41) N Cs. Thus, I,,.1) N Cy # 0.

(b): i > j. There exists f, € Bsuchthat j < f, <iand N —n+j < for1 <
N —m +i. It is seen that (i +j — 1, f,) € I,, N D;. Thus, I,,NnD; # 0.

This completes the proof of the theorem.

2.5 Lower bound of relative precision of RSS from

a finite population

Let n and r have the same meaning as the set-size and the number of cycles in
Chapter 1. We draw a simple random sample {X,;;, | 1,7 =1,2,...,n;k =1,2,...,7}
of size n?r without replacement from a finite population € of size N with mean p
and variance o2. For each 7 and k, the n units {Xi4, Xiox,. .., Xinx} are ranked
by a visual inspection and the unit with the j-th smallest rank is quantified. This
procedure involves the quantification of nr units out of the n?r units originally
drawn.

Let X, be the i-th smallest order statistics of { X, Xiok, ..., Xink}- Then, the

ranked set sample obtained by the above procedure can be written as
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{X[i]k li=1,2,...,mk=1,2,... ,'r} and the ranked set estimator fipgg of p is the
average of X, (1 =1,2,...,mk=1,2,...,7)
Brss = Xujr = % ZT: zn:X[,-]k.
k=1i=1
This is an unbiased estimator of y (Takahasi and Futatsuya (1988), Patil et al.
(1995)). Let X, be the sample mean of a simple random sample of size nr drawn
without replacement from . The definition of relative precision (RP) of X, (Patil

et al. (1994)) is
_ Var(X,,)
Var(X )
In this section, we show that RP > 1 for almost all populations and RP = 1 for

RP

very exceptional populations. The corresponding result in infinite population can
be found in Takahasi and Wakimoto (1968).

Let {X1, Xs,..., X, Y1,Ys,...,Y,} be asimple random sample of size 2n without
replacement from Q. Let X3y < X < -+ < X(,) be the order statistics of
X1,Xa,..., X, and Y3y < ¥g) < -+ < Y[,) be the order statistics of ¥;7,75,...,Y,.

We shall use the following notations:
Hn:i = E(X(l)) - E(Y(z)),
nsij = Cov(Xp), X(3)) = Cov(Yp), ¥yp),

and

Yn:ij = Cov(Xg), Yiz))-

LEMMA 2.5.1 Let n? < N. Then,

n n N n20.2
;j:Zl'yn:ij - _"N 1 (251)
and
LAy N-n , _
Xgamﬁ = =70 = 2 X s (2.5.2)
i= i



PROOF. It is well known that

Cov(X,Y) = T (2.5.3)
and
—~ N -—no?
- il 2.5.4
VarX N1’ ( )
where X = 1 Xn:Xi and Y = 1 in On the other hand, we have
=1 i=1
COV(X, Y) = Cov (;’,— EX,, ; E }/J)
i=1 =1
1 n n
= Cov (;ZX@’ ZY(J'))
i=1 =1
1 n n
= 222 Cov (X, Yin)
i=1j=
1 n n _
= - Z Z Tnzij (255)
N i=1j=1
and
VarX = Var <% ZXi) = Var (— ZX(,))
=1 i=1
1 n 2
= 3B [(Z(X(i) /Lm))
=1
| i= i£j
-
1 | S ~
= — z; Qi + 2962 Qniij| - (2.5.6)
| = i#j

From (2.5.3) and (2.5.5), we have (2.5.1) and, from (2.5.4) and (2.5.6), we have

(2.5.2).

THEOREM 2.5.1 Let n2r < N. Then,

i#j

Va,r(f[n],) = Var(fm) - n—i; (Z Z&,m-j — Z E’Afn:.;j) . (257)
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PROOF. We see that

Var(Xp,) = (( szhlk_ )2)

= E ((i Z_: En:(XMk #m)>2)

_ 7'2 E E Z E Cov( Xk, Xjn)

k=1h=1:i=1j=1

= (EZZCOV(X{,]k,X[J]k +ZZZZCOV X[z]kaX[J]h))

k=11i=1j k#£h  i=1j=

= (EZCOV(Xh]k,X[z]k + ZZZCOV z]k,X[j]k)

k=1i=1 k=1 i#j

T T3 con X[qum)

k#h i=1j=
= —(Tzanzt+rzz7nz]+rr_l 22'71]) (258)

Substituting (2.5.1) and (2.5.2) for the most right hand of (2.5.8), we obtain (2.5.7).

The proof is complete.

Now,we can prove the following theorem.

THEOREM 2.5.2 Let n?r < N. Then,
RP > 1,

with equality holding if and only if one of the following conditions for populations is

fulfilled:

(1) {ml<$2:x3_—_..._—_:pN};
(i) {z; =2y =+  =zy_1 < zN};
(iii) {z; =29 =--- = zx}-

ProOOF. By Theorem 2.4.1 and Theorem 2.4.2, we have

Z Z&mi.‘i - Z Z:fn:ij >0 (259)

i i#j
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From this and Theorem 2.5.1, we have
Var(Xnp,) < Var(X,,).

Therefore, RP > 1. The equality in (2.5.9) holds if and only if &,,;; = 0 and
Ynij = 0 for all 1 < 4,7 < n (i # j). Now, we assume that &,,; = 0 and 7,;; = 0
for all 1 < 4,57 < n (¢ # j). Then, from Theorem 2.4.1 or Theorem 2.5.1, we
must have A4,; N B = 0 or 4,,; N B = ( for any (i,j) such that 1 < 7,j < n
and ; # j. Suppose that, for 1 < k < n, A,.; N B # 0. From the assumption,
App-1NB =0and A, 1NB=0. Recall that 4, = {s|k<s<N-n+k}
Because A,.x, C A,.x—1UAppy1, it follows that A,., "B = 0. This is a contradiction.
Therefore, under the assumption, one of the following cases must hold:

(a) ApanNB#Qand A4, NB=10for 2 <k < mn;

(b) ApuNB#Pand A, ,NB=0for1<k<n-1;

() ApxNB=0for1 <k<m
It is obvious that (a) implies (i), (b) implies (ii) and (c) implies (iii). Conversely, it

is clear that (i), (ii) or (iii) implies RP = 1. This completes the proof.

From Theorem 2.5.2, we can say that RP > 1, unless N — 1 elements of the

finite population of size IV have the same value.

32



Chapter 3

Extremal Finite Populations
Maximizing Relative Precisions in

Ranked Set Sampling

3.1 Introduction

Let Q = {z1,z5,---,zn} be a finite population of size N. Let n, r, Xz, f[n]r,
RP and Var(X,,) have the same meaning as in Section 2.5. In this chapter, we
discuss the following problems: Given the population size N, the set-size n and the
number of cycles r, what is the maximum RP, and what is the population that
has the maximum RP ? In the case of the replacement ranked set sampling from
an infinite population, Takahasi and Wakimoto (1968) have shown that for any
distribution with finite variance the RP is bounded above by (n+1)/2 and that the
upper bound is attained only by the uniform distribution. In section 3.3, we shall
show by numerical examples that the maximum RP in the case of sampling without
replacement from finite populations is larger than (n + 1)/2 and that the discrete

uniform distribution does not lead to the maximum RP.
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3.2 Variance of RSS estimator

Let us denote by u and ¢? the mean and the variance of the finite population Q.
Rearranging the elements of ( in the order of their magnitude, we write ;) < z(9) <
.-+ < z(n)- Now, consider a simple random sample of size 2n, Z = {Z1, Za, -, Zan},
without replacement from ). Let us denote by Z(;) < Z(9) < -+ < Z9, order statis-
tics of this sample. Let {X;, X, ---,X,} be the first n elements {Z;, Z,---, Z,} of
Z and let {Y7,Ys,---,Y,} be the last n elements {Z,,1, Z, 2, -, Z2a} of Z . Sup-
pose that X(;) < X(9) < +++ < X(n), Y1) < ¥{g) < :++ < Yyare order statistics of

these samples. Put
pni = BE(X()) = E(Yy),
ani; = (X5 X)) = E(Y9Y))s
2nab = E(Z(a) Z(r))

and

Tnii = E(X)Y(5)-

LEMMA 3.2.1 Ifn2 < N, then

N oni = n(o?+ p?), (3.2.1)
i=1
n n 0 0_2 0
Z Yusij = 0| g T M (3.2.2)
j=1i=1

and

Y% omas = —n(2n — 1) <N”_2 - - ;ﬁ) . (3.2.3)

1<a<b<2n
PROOF. Since T | o = E(XL, X()) = E(Zk, X?) = n(0? + ), (3.2.1) holds.
(3.2.2) follows from the equations
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Using

N-1
= B X (1) - 4
= (3 Xi)- (X ¥o)) -
= % ﬁ:i’)ﬂnu #’2

2n 2n

33 o = E«z_n:l Zw)?) = E(@”l 2.)?)

a=1b=1

- (G )

and 127 agngq = 2n(0? + p?), we have (3.2.3).

LEMMA 3.2.2

Var(X )

For rn2 < N,
— Var(®a)- = (L i iy
B nr \N -1 # nz.:lr)l""
— 1 0'2 1 n 2
= Vo) - o (g 5 Sl
1 n
+—2_ Cov(Xe), Y(i))) (3.2.4)
i=1

— 1
_ L 133 z (325
Va»r(X'n.r) ner ( om— 1 S5 O2n:ab + Y u) ( )

PROOF. We see that

Var(X,) = E ((i > g ka> 2) -y



= nz,,.z Z Z Z EE Xiie Xpj)n

k=14i=1h=1j=1

= (ZZZE RCDEDY gg X[z]kX[J) — p?

k=1i=1j k#h

2.2
NeT" \k=1i=1

- = (iiE Xigw) + E_:ZEE(X[z]kX[J]k)
+ZZ§:§:E (Xiae X1 ) — 2

k#h i=1j=1

1 n n n
= ;12—1‘2(7“2 M,+TEZ7M,+T (r—1 EZ%”)

=1 itj i=1j=1

T i (Z Otmii + T Z Z Yusii = D ’Yn:z'i) —
=1 i=1j= i=1
- = (n(02+u2)—m2< ” —#2) ~3 ) - p
n2r N -1 = n:it
_ (N-nr)e? 1 ( o? 2, 1
 (N-Dnr nar\N-1 wot n D Yo

i=1

- 1
= X,,) — —— :
Var(Ku) n*r ( 1 Slbom )

The equality (3.2.4) follows from this statement and y = (37 pni)/n-

Hereafter, we use the convention that ( l ) =0form<0<landfor0 <! <m,

m
0
and that <0> =1.

LEMMA 3.2.3 The cross product moment ,.;; is given in terms of the product

moments Qgn.qp, 1 < a < b < 2n, by

wi= 22 A (021) G2i25) ()
()G ) o) femmn/ ()

PROOF. It is seen from combinatorial consideration that the conditional joint

probability distribution of X|;) and Y(;) given 7 is
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Pr (X = Za), Yi) = Z) | 2)

Thus,

2n 2n
(E > Za) 2 Pr (X () = Zia), Yig) = Zgry | 2 ))

a=1b=1

w25 () ()G ()
ST o[ [ oy o4
S X s [y
(o)) Gz e /()
- o {62 G)
g P [y | EERE YA

where the symbol E’ denotes the average over all possible samples.

THEOREM 3.2.1 For1<a<b<2nand1<s<t< N, put

men = (£ (722 (/) -
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and

O e s

Further, put

D(N,n,s,t) EZ A(2n,a,b) - C(N,2n,s,t,a,b)/2 for 1<s<t<N,

1<a<b<2n

D(N,n,s,t) =0 for 1<s=t<N

and

D(N,n,s,t) = D(N,n,t,s) for 1<t<s<N.

Let T' denote the N x N matriz whose element in i-th row and j-th column is

D(N,n,i,3) and let § denote the column vector (:1;(1), z(2),

s an)
Then, from these notations, Var(X|,),) can be written as
— - 1
Va,r(X[n]r) = V&I‘(Xn ) - ;2—7:(0 FO) (326)

PROOF. Two equations
b—1—a\({2n—0 2n
il = 2 . . nia 3.2.7
s 22 20000 (0 )en/ () 02
and

Q2p:ab =

10=

N
Z (s)2() Pr(Z(a) = 2(s), Zt) = T(r))

s—1\(t—1—-s\[N -t N
— , 3.2.8
;é: ()x(t)(a—l)(b——l—a)<2n—-b)/(2n) ( )
follow from lemma 3.2.3 and Wilks (1962), respectively. Therefore, inserting (3.2.7)

and (3.2.8) into (3.2.5) and changing the order of the summations, we obtain (3.2.6)
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3.3 Extremal finite populations maximizing rel-
ative precisions

THEOREM 3.3.1 For any fited N and n, suppose that §' = (y;,y2, -+, yn) 18
the eigenvector corresponding to the largest eigenvalue of the matriz T' in Theorem
3.2.1. If the order condition y; < y, < -+ < yy are satisfied, then {y;,y2,---,yn}

ts the population that leads to the mazimum RP for every r.

PROOF. By theorem 3.2.1, the relative precision is

1
RP = w1 <9T9). (3.3.1)
n(N —nr) \ o2

There is no loss of generality in assuming that 4 = 0 and ¢ = 1, because §'T9/s>

does not depend on g and o2. Suppose

RTV - {(t1,t2,' ")tN) c RN I E?—r_—lti = O,Z:iltzz/N = 1}

and

TV = {(ts,t2,+,tn) € RN [t1 <ty <o St
If we can find & = (f},43,--,ty) € TV such that §Té = sup{6'T6 | §' € Er"}, then,
from (3.3.1), the population {f;,3,--,tx} has the maximum RP. By the method
of Lagrange multipliers, the vector § that maximizes §'T'§ subject to the constraint
§' € RN is given by the eigenvector corresponding to the largest eigenvalue of T.
Further, since the elements of T' are not functions of r, the vector at which this
constrained maximum occurs does not depend on r. This completes the proof of the

theorem.

We computed the eigenvector (y;, ys, - - -, yn) corresponding to the largest eigen-
value of the matrix I" for 4 < N < 100 and 2 < n < 5. As a result, all these

computed (y;,ys,---,yn) satisfied the order condition y; < g < -++ < yy. We
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have, however, not proved theoretically that, for every n and N, the eigenvector
corresponding to the largest eigenvalue of the matrix I" satisfies the order condition
y1 < yp < -+ < yn. Table 3.3.1 shows the elements of the extremal finite popula-
tions for N = 25 and Figure 3.3.1 illustrates the extremal populations for some n,
N. Table 3.3.2 shows the maximum values of efi]) and, for comparison, the values of
3%11;]) of the discrete uniform distributions. Table 3.3.3 gives the algebraic represen-

tations of RP for the discrete uniform distributions. These algebraic calculations

were done on a Micro-VAX using the MACSYMA.
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Table 3.3.1 Extremal Finite Populations Maximizing Relative Precisions for N = 25

n | Ts) T(e) T(23) T2y F21) T(0) ZTge) Zas) Tan)  Tae)  Tas) Z(4)
2 |1.617 1501 1380 1.256 1.127 0.995 0.859 0.721 0.580 0.437 0.292 0.146
3 1.623 1.509 1.388 1.260 1.126 0.989 0.850 0.709 0.567 0.425 0.284 0.142
4 |1.625 1516 1.393 1.261 1.124 0.984 0.844 0.703 0.563 0.422 0.281 0.141
5 [1.627 1521 1.395 1.260 1.121 0981 0.841 0.701 0.561 0.421 0.281 0.140
DU [ 1.664 1525 1.387 1.248 1.109 0.971 0.832 0.693 0.555 0.416 0.277 0.139

DU : Discrete uniform distribution of size N = 25
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Figure 3.3.1: Extremal Finite Populations Maximizing Relative Precisions
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Table 3.3.2: Maximum Relative Precisions and Relative Precisions for Discrete Uni-

form Distributions

N n
2 3 4 5
A DU | 5.00000
max 00
6 DU | 2.30769
max | 2.39019
DU | 1.87500 | 5.31646
’ max | 1.88695 | 5.42134
13 DU | 1.71875 | 3.19635
max | 1.72210 | 3.20728
16 DU | 1.66667 | 2.80864 | 6.05769
max | 1.66847 | 2.81335 | 6.07896
01 DU | 1.61932 | 2.52505 | 4.27034
max | 1.62017 | 2.52693 | 4.27525
o5 DU | 1.59722 | 2.41002 | 3.76280 | 6.91617
max | 1.59777 | 2.41113 | 3.76523 | 6.92366
DU | 1.56646 | 2.26491 | 3.23559 | 4.81919
35 max | 1.56670 | 2.26536 | 3.23638 | 4.82073
50 DU | 1.54506 | 2.17305 | 2.95232 | 4.00887
max | 1.54517 | 2.17324 | 2.95261 | 4.00933
100 DU | 1.52174 | 2.08027 | 2.69807 | 3.40602
max | 1.52176 | 2.08031 | 2.69813 | 3.40609
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Table 3.3.3: Relative Precisions for Discrete Uniform Distributions

2

3

4

)

RP

15N — 30r

0N = 2107

100V — 420r

231N — 11557

10N — 4 — 30r

35N — 26 — 2107

42N — 44 — 4207

77N — 102 — 11557
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Chapter 4

Comparative Monte-Carlo Studies
on Confidence Intervals for the
Mean of a Normal Distribution

from Censored Samples

4.1 Introduction

Consider a life testing experiment in which a sample of identical units is put on
test. We assume that the lifetimes of these units are independent random variables,
having a common normal distribution ( possibly after transformation of the data )
with mean y and standard deviation ¢. Suppose the sample is censored on the right
at a fixed point or at a pre-specified sample percentage point. These two kinds of
censored sample are called Type I censored sample and Type II censored sample,
respectively. Methods and tables for calculating the maximum likelihood estimates
(MLE) of p and ¢ from Type I and Type II censored samples have been given by
Hald (1949), Cohen (1959), (1961) and David (1981). These papers have also given
large-sample confidence intervals with confidence level o for y and ¢. Since these

confidence intervals have been based on asymptotic properties of related statistics,
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we can not necessarily guarantee the correct confidence levels for censored samples
of small or moderate size.

In this chapter, we consider five kinds of confidence intervals for y from Type I
and Type II censored samples, where sample sizes are small or moderate. In Section
4.2, we explain how to calculate these confidence intervals. We perform a Monte-
Carlo simulation study of the confidence intervals for ;4 in Section 4.3. In Section

4.4, we discuss the results of the Monte-Carlo simulation study.

4.2 Constructions of Confidence Intervals

In the first subsection we construct confidence intervals based on the MLEs. In
the second subsection we construct confidence intervals based on the best linear un-
biased estimates (BLUE). In the third subsection we present the confidence intervals

proposed by Halperin (1961).

4.2.1 Confidence intervals based on the MLEs

First we consider the case of Type I censoring. Suppose a sample of size n
from N(u,?) is censored at a fixed point zy. Let k be the number of non-censored
observations. If k¥ = 0, then we define, for convenience, the confidence interval
of u by (—o0,00). Now, we assume that £ > 1. Let z,z,,---,z; denote the
non-censored observations and z(;y < 23 < -+ < z() the corresponding ordered
observations. The likelihood function in the Type I censored sample can be written

as

b= (12 (27)) ™ et e - )

where ®(z) is the unit-normal cumulative distribution function. Let i and & be the
MLEs for i and o, respectively. Hald(1949), Cohen(1959),(1961) and David(1981)
have also given the asymptotic variance-covariance matrix of (ji,5). We invert the

matrix whose elements are negatives of expected values of second order derivatives
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of logarithms of the likelihood function. That is, by putting ¢ = o~ K and o(z) =
o
d®(z)
x

, we calculate

( #11(5) N12(5) ) _ ( <P11(f) 9012(5) )—1
pa2(€)  pa2() ©012(€)  p2(€)
where

Z(¢) = ¢(£)/(1 — 2(¢));
p11(§) = 2(€) + B(£)(2(¢) - €)
p12(§) = —8(€) + E8(6)(Z(€) - €),
and
p22(€) = 28(£) + &p12(§)-
The asymptotic variance of i is given by p;,(¢)a?/n. Put ¢(a) = (14 a)/2)
for 0 <a < 1and £ = (zg — 1)/6 ( € = 0o for k = n ). Then, a large-sample 100a

percent confidence interval for y is
(,1 — ¢(a) “”T(f) &, ji+cla) “”T(f) &) . (4.2.1)

Now, we consider the case of Type II censoring. Suppose a sample of size n is
censored at the occurrence of the k-th ordered observation. We assume that & > 2.
Denote the ordered non-censored observations by x4y < zpz) < -+ < z). The

likelihood function in the Type II censored sample can be written as

n! T(k) = Py\ynk(o 2y—k/2 1 ¢ 2
L= 1 — (=B _Cy)n—k(g - iy — )2}
(= k)!( (=) (2n0") " " exp{~ 5 z_21(33() 1)}

Methods and tables for calculating the MLEs of the parameters of a normal distri-
bution and for calculating the asymptotic variances of those MLEs have also been
given by Gupta(1952), Cohen(1959),(1961) and David(1981). These papers sug-
gest that if k/n — p as n — oo, then the asymptotic variance for j is given by
02p11(®1(p))/n. Thus, replacing p1;(€) by py1(®-1(k/n)) throughout (4.2.1), we

get the large-sample 100a percent confidence interval for y4. That is,

(ﬂ_c(a)\/ull(q)_l(k/n)) &’ ﬂ_'_c(a)\/ﬂll(q)_;(k/n)) 6’) . (422)

n
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For convenience, we call the intervals (4.2.1) and (4.2.2) ML intervals.

Let ¢;_;1(a) be the (1 + a)/2-th quantile of Student’s ¢ distribution with £ — 1
degrees of freedom. Replacing c(a) by cz_1(@) ( ci(a) for £ = 1 ), and & by
\/7c/(_kj & ( /26 for k = 1) throughout (4.2.1), we obtain, in Type I censoring,

a confidence interval for

(/1 - Ck—l(a) ni(lli—(f)Tk) o, p+ ck_l(a) &—1’;(-5)% &) . (423)

Similarly, by replacing c(a) by c;_1(a), and & by /k/(k — 1) throughout (4.2.2),

we obtain, in the Type II censoring, a confidence interval for 4

(ﬂ— ck——l(a)\] = “(:)(:(_k{;%))k g, ﬂ+Ck—1(a)\] a ”(:’(:(_k{ ;z))k a) . (424)

We call these modified ML intervals (4.2.3) and (4.2.4) ML-T intervals.

4.2.2 Confidence intervals based on the BLUEs

Methods and tables for calculating the BLUEs of the parameters of a normal dis-
tribution from Type II censored samples have been given by Sarhan and Greenberg
(1962). Let y* and ¢* be the BLUEs of y and ¢, and let ¢(n, k)o? be the variances

of y*. Now, we can obtain a confidence interval for y

(u* —c(a)y/c(n, k) o*, p*+c(a)y/c(n, k) a*) : (4.2.5)

We may regard a Type I censored sample as a Type II censored sample. Then,
for Type I censored sample, we can obtain a confidence interval for ;4 from (4.2.5).
Unlike the case of the ML interval in Type I censoring, the truncation point z, does
not appear in the calculation of this confidence interval.

For convenience, we call the confidence interval (4.2.5) and the corresponding
interval in Type I censoring LU intervals.

Replacing /i by pu*, & by o*, and u;(€)/n by c(n, k) throughout (4.2.3), we obtain

a confidence interval for y from a Type I censored sample.
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Similarly, replacing ji by u*, & by o*, and u;;(®~*(k/n))/n by c(n, k) throughout
(4.2.4), we obtain a confidence interval for i from a Type II censored sample. For

convenience, we call these modified LU intervals LU-T intervals.

4.2.3 Confidence intervals by Halperin

In Type I censoring, suppose that X, X,,---, X and X3y < X(g) < -+ < Xp)
are the random variables corresponding to the non-censored observations z;, zo, - - -, 3
and z(;) < z() < -+ < @(x), respectively. Set &, = &((zo—p)/0). First, for k(> 1)
and given o (0 < a < 1), we determine &, &y, r, s and §, in order. Since the
random variable K corresponding to the number of the non-censored observations

k has the binomial distribution with two parameters » and &, , we can get a usual

100a!/2 percent confidence interval for &, . We denote this interval by (&, ®y).
Further, X;, X, -+, X} given K = k can be considered as a random sample of size
k from the truncated cumulative distribution function F(z) = ®{(z — p)/0]/®z,-
Therefore, U1y = F(X(1)),U@) = F(X(2)), *,Uw) = F(X(x)) are the order statis-
tics from the uniform distribution over the interval [0,1]. For 0 <§ <1,k > 1 and

0 < s' <7 < k+1, we consider the following inequality:
Pr(Uyy <8 < Upy | K = k) > a'/? (4.2.6)

where Ug) = 0 and U4y = 1. The left hand side (Lhs.) of (4.2.6) is equal to

-1
> <k> 6(1 — 6)*9. To determine s and r, we substitute § = 1/2 and s' = k—7'+1
j=s'

into (4.2.6) and we get the following ineqaulity:
T'f (k) L > al/?, (4.2.7)
jehmt1 \J/ 2
Let « denote the smallest number of all integers v’ which satisfy the inequalty (4.2.7).
For u, we determine s and r as follows:
(a) fu#k+1,thens=k—u+1andr=u;

k k
(b)Ifu=k+1andZ(kf)% > a'/?, then s=1andr =k +1;
i=1 \J

" k
(c) Ifu=k+1andz<;:>% <a1/2, then s =0 and » = k.
i=1
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Now, using such s and r, we can find a § (0 < § < 1/2) such that, for ¢ = s and

r' = 7, the inequality (4.2.6) holds equality. We define §, by such a §é.

Put T(0) = —OO, T(k+1) = Zo»
<IJ‘1(<PU)
Ry = = 1
- 1(dy) — 2160 %v)
and
1P
Ry = (1)

‘I’_l((I)L) - (I)_l((so@]_;)’
where Ry = 1 for &; = 1. Using &;, &y, 7, s, 8y, Rr, and Ry determined above,
we make a confidence interval for y as follows:

If &, > 1/2, then,

(a:o — (xo — z(5))Ru, o — (zo — x(r))RL) .
If &y < 1/2, then,

(xo — (o — z(r)) Ry, o — (To — :c(,,))RL) .
If ; > 1/2 and if &; < 1/2, then,

(:1:0 — (x9 — z(s)) Ry, o — (mo — m(,))RL) .

For convenience, we call this interval H or H(a) interval in Type I censoring.

In Type II censoring, replacing k by k — 1 and zy by z() in the H interval in
Type I censoring, we obtain a confidence interval for y. For convenience, we call

this confidence interval H or H(q) interval in Type II censoring.

4.3 Monte-Carlo study

The ML, ML-T, LU and LU-T intervals described in the previous section are
based on asymptotic properties of related statistics. Therefore, they might not work

satisfactorily for a sample of small or moderate size. On the other hand, the H
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interval by Halparin (1961) is based on a joint confidence region for x4 and o. Such
a interval might be too long for single parameter.
In this section, the confidence coefficients and expected lengths of these intervals

are studied by Monte-Carlo simulation.

4.3.1 Type I censoring

Let X = (Xy,Xo,--,X) be a random vector corresponding to non-censored
observations in Type I censoring. Let (I(X), u(X)) a confidence interval for y from

X with confidence coefficient > 8. It means that
Prs, {I(X) < 1 < u(X)} > A (4.3.1)

for all y and ¢ (—o0 < p < 00, 0 < ¢ < o0), where the potential sample of
size n from N(p,0?) is censored at z, on the right. Put ¥; = (X; — u)/o and

Yo = (zo — p)/o. It can be easily seen that (4.3.1) is equivalent to
P {I(Y) <0 < u(Y)} > 6. (432)

For the ML, ML-T, LU, LU-T and H intervals, the evaluations of the L.h.s. of (4.3.2)
are too hard to derive mathematically. Instead, we estimate them by Monte-Carlo
simulation.

Let us define the coverage of the interval (I(Y'), u(Y")) by p = Pri; {—o00 < I(Y) <
0 < u(Y) < oo} x 100. We estimate the coverage of the confidence intervals for
a = 0.95 and 0.99, and n = 10, 20, 30, 50, 100 (10, 20 for the LU and LU-T intervals)
and yo = () with y = 0.10, 0.25, 0.50, 0.75,0.90. For this purpose, we generated
2000 samples for each size n = 10, 20, 30, 50, 100, independently. For each of these
samples, we calculated the ML, LT, ML-T, LU-T and H intervals for each pair of
a and y,. For each combination of n, o and ~, we then counted the number N, of
times that the calculated intervals contained 0 and both the ends were finite. The
estimate of coverage p was p = (N,/2000) x 100. Tables 4.3.1, 4.3.2, 4.3.3, 4.3.4
and 4.3.5 present p for the ML, LU, H, ML-T and LU-T intervals, respectively. In

these tables, the entries in the first row correspond to p with the nominal confidence
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coefficient o = 0.95, while those in the second row correspond to p with o = 0.99.
The combinations (a,~,n) such that the probability of infinite intervals is greater
than 1 — o are shown by the parenthesis ().

Since the Monte-Carlo simulation results are based on 2000 samples, the 95%
confidence limits for the coverage p% are 95 + 1.8(%) for p = 95 and 99 + 0.4(%)
for p = 99.

Secondly, by Monte-Carlo simulation, we examined the expected lengths of the
intervals. Tables 4.3.6, 4.3.7 and 4.3.8 give the average lengths of calculated finite
intervals. The number in the bracket [ | of these tables denotes m such that the
expected length of the usual confidence interval, based on a complete normal sample
of size m, is numerically closest to that average length. Further, the blank in these

tables means the pair of (¢, n) in which p < 94 for a = 0.95 or p < 98 for a = 0.99.

4.3.2 Type II censoring

In Type II censoring, in order to show that our confidence intervals have con-
fidence coeflicients > g, it is sufficient to show the fact for the standard normal
parent. Thus, we consider the confidence intervals for the standard normal parent.
For given n ( potential sample size) and v (non-censored proportion), we choose
k = [ny + 0.5] (number of non-censored observations), where [ny + 0.5] denotes the
integer part of ny + 0.5. For each (n,~, ), 2000 samples were used also in Type
IT censoring. Tables 4.3.9, 4.3.10, 4.3.11, 4.3.12 and 4.3.13 present the empirical
coverages p for the ML, LU , H, ML-T and LU-T intervals, respectively. Here, the
blank in these tables indicates the combination of (a,~,n) that either end of the
intervals is infinite.

Tables 4.3.14, 4.3.15 and 4.3.16 give the average lengths of the ML-T, LU-T and

H intervals, respectively.
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Table 4.3.1: Empirical coverages for the ML interval in Type I censoring

n
v
10 | 20 | 30 | 50 | 100
o, a=-95|(423) [ (666) | 765 | 849 001
T a=.99|(46.5) | (71.8) | (81.9) | 89.7 | 94.8
1gs @95 ((747) | 88 | 006 | 918|040
T a=.99|(812) | 915 | 947 |96.2|97.6
a=95| 934 | 941 | 942 |942] 053
0.50
a=099| 977 | 982 | 97.0 |98.4 988
o= 05| 93.0 | 938 | 94.0 |94.3 049
0.75
a=099| 976 | 982 | 983 |98.7 988
a=.95| 91.9 | 93.0 | 935 |94.2 | 046
0.90
a=.99| 970 | 97.8 | 97.0 |98.6 |98.9

Table 4.3.2: Empirical coverages for the LU interval in Type I censoring

n
v
10 20
o 0= (13.5) | (41.3)
a=.99 | (15.5) | (45.2)
a=.95]|(52.7) | 78.5
0.25
a=.99|(58.7) | (84.9)
a=.95| 86.8 | 90.7
0.50
a=.99|(92.7) | 952
a=.95| 91.9 | 93.1
0.75
a=.99| 972 | 97.7
a=.95| 929 | 932
0.90
a=.99| 97.6 | 98.0
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Table 4.3.3: Empirical coverages for the H interval in Type I censoring

n
! 10 | 20 | 30 | 50 | 100
oy @=% (0.0) | (0.9) | (7.3) | (36.1) | (93.5)
a=.99| (00) | (0.0) | (0.8) | (11.7) | (79.1)
095 @9 (2.1) | (38.9) | (80.5) | 99.1 | 99.9
a=.99| (0.0) |(11.3) | (48.6) | (95.3) | 100.0
s &= (37.5) | 97.8 | 98.7 | 98.1 | 98.1
a=.99| (48) | (87.7)| 99.8 | 99.5 | 99.8
o @=9 (92.2) | 99.9 | 99.8 | 99.8 | 99.8
o =.99 | (54.0) | 100.0 | 100.0 | 100.0 | 99.9
oop *=95| 995 | 997 | 995 | 993 | 996
a=.99|(93.2) | 100.0 | 99.9 | 99.9 | 100.0

Table 4.3.4: Empirical coverages for the ML-T interval in Type I censoring

n
y
10 | 20 | 30 | 50 | 100
o, a=95(629) | (814) | 904 |022] 030
T a=.09(65.7) | (85.7) | (94.7) | 96.8 | 97.9
1gs @95 (899)| 923 | 636 | 940 950
T a=99|(935) | 96.8 | 97.4 |982 0981
a=95| 973 | 964 | 957 |96.0 | 96.1
0.50
o=99| 994 | 09.0 | 99.2 |99.2 | 99.2
a=95| 97.3 | 964 | 96.0 |95.7|95.7
0.75
a=99| 99.3 | 99.4 | 99.1 |99.4 094
a=95| 96.3 | 956 | 955 |95.6 | 955
0.90
o=099] 991 | 99.2 | 988 |99.2 903
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Table 4.3.5: Empirical coverages for the LU-T interval in Type I censoring

n
g
10 | 20
oy @=95|(229) | (551)
a=.99 | (25.8) | (60.0)
a=.95|(69.5) | 86.4
0.25
a=.99 | (74.1) | (93.0)
a=.95| 940 | 93.0
0.50
a=.99|(97.9) | 98.0
a=.95| 966 | 95.9
0.75
a=.99| 99.6 | 99.1
a=.95| 968 | 955
0.90
a=.99| 99.5 | 99.4
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Table 4.3.6: Average lengths for the ML-T interval in Type I censoring

n

g

10 | 20 | 30 | 50 | 100

a=.95 1.40 | 0.86
0.25

a=.99 2.02 | 1.17

[10] | [23]

a=.95| 424 | 1.38|1.030.74 | 0.50
0.50

a=.99 |13.27 | 2.02 | 1.43 | 1.01 | 0.67

3] | [10] | [16] | [30] | [63]

a=.95| 1.76 | 1.03 | 0.81 | 0.61 | 0.42
0.75

a=.99 | 2.81 |1.44|1.10 | 0.81 | 0.56

[7] | [16] | [25] | [44] | [90]

a=.95| 1.50 | 0.96 | 0.76 | 0.58 | 0.40
0.90

a=.99| 220 |1.32]1.030.77 | 0.53

[7] | [16] | [25] | [44] | [90]

Table 4.3.7: Average lengths for the LU-T interval in Type I censoring

n
v
10 | 20
a=.95|1.78 | 1.02
0.75
a=.99 |2.78 | 141
7] | [16]
a=.95|1540.96
0.90
a=.99 226|132
9] | [19]
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Table 4.3.8: Average lengths for the H interval in Type I censoring

n
e

10 20 30 50 100
a=.95 4.29

0.10
[3]

a=.99

a=.95 2.82 | 1.76

0.25
[4] | [7]
a=.99 2.39
8]
a=.95 2.78 12.00|1.33 | 0.81

0.50
[4] | [6] | [11] | [25]
a=.99 2.95|1.88 | 1.10
[6] | [11] | [25]
a=.95 1.77 [ 1.34 | 1.01 | 0.72

0.75
(7 | [11] | [a7] | [31]
a=.99 2.49 | 1.77 | 1.27 | 0.89
(8] | [12] | [20] | [37]
a=.95|264]1711137|1.06|0.74

0.90
[4] | [7] | [10] | [16] | [30]
a=.99 2.12 | 1.71 [ 1.31 { 0.92
O] | [12] | [19] | [34]
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Table 4.3.9: Empirical coverages for the ML interval in Type II censoring

n
.y
10 | 20 | 30 | 50 | 100
i, o= 43.7 | 60.8 | 75.0 | 83.7
T a= .99 50.5 | 68.6 | 81.0 | 90.7
a=9567.0| 7621836 |87.5]90.7
0.25
o—.99|73.3 825902931961
o= 05807887 89.4| 010936
0.50
o=.99|880|93.7 951|972 986
o= 95|89.9 908|926 937|048
0.75
o=99|954968 975|985 | 98.7
o= 05900923 931|935 944
0.90
a=99962|97.4 978|984 988

Table 4.3.10: Empirical coverages for the LU interval in Type II censoring

n
g

10 | 20
a=.95 73.8

0.1
a=.99 78.2
a=.95|83.4|875

0.25
a=.99 (880|916
a=.95|889|91.5

0.50
a=.99|93.8|96.0
a=.95[925 926

0.75
a=.99|972|977
a=.95]93.0]934

0.90
a=.99 974981
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Table 4.3.11: Empirical coverages for the H interval in Type II censoring

n
v
10 20 30 50 100
a=.95 99.6
0.1
a=.99 100.0
a=.95 99.5 | 99.6 | 99.9
0.25
a=.99 99.9 | 100.0
o= .95 99.6 | 99.7 | 99.7 | 99.6
0.50
a=.99 100.0 | 100.0 | 100.0 | 99.9
a=.95(995| 989 | 99.1 [ 99.5 | 99.8
0.75
o= .99 100.0 | 99.7 | 99.9 | 100.0
a=.951986| 99.5 | 99.4 | 99.4 | 99.8
0.90
a=.99[99.8| 999 | 99.9 | 99.9 | 99.9

Table 4.3.12: Empirical coverages for the ML-T interval in Type II censoring

n
v
10 | 20 | 30 | 50 | 100
0.1 a=.95 87.0 | 84.2 | 86.3 | 88.5
. a=.99 96.9 | 96.0 | 94.5 | 95.6
a=.95|878|871|89.0|906|927
0.25
a=.99|968|94.1]96.0 | 956|974
a=.95922(92.2|93.0 942|951
0.50
a=.991968|97.1|97.6 981 |98.8
o=.95|946 942|949 | 95.0| 954
0.75
a=.9999.2 985 98.6 |99.199.2
a=.95|94.7194.8 952|950 | 96.0
0.90
a=.9998.8199.1|98799.1|99.2
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Table 4.3.13: Empirical coverage for the LU-T interval in Type II censoring

n
v

10 | 20
a=.93 95.2

0.1
a=.99 99.0
a=.95]951|93.0

0.25
a=.99 (989|979
a=.95958]|948

0.50
a=.99{99.0 | 98.2
a=.95|96.8 953

0.75
a=.99|99.6|99.1
a=.95196.5|956

0.90
a=.99]994 |99.3

Table 4.3.14: Average lengths for the ML-T interval in Type II censoring

n

Y

10 | 20 | 30 | 50 | 100

a=.95 0.95 | 0.71 | 0.49
0.50

a=.99 1.31 | 0.96 | 0.66

9] | [32) | [65]

a=.95|148|0.98 | 0.78 | 0.59 | 0.42
0.75

a=.99|219 136 |1.06]0.79 | 0.55

[9] | [18] | [27] | [46] | [90]

a=.95{142(0.94|0.75 | 0.57 | 0.40
0.90

a=.992.07]12911.02|0.76 | 0.53

[10] | [19] | [29] | [49] | [100]
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Table 4.3.15: Average lengths for the LU-T interval

n
y
10 | 20
a=.95 48.23
0.10
a=.99 241.63
[*]
a=.95| 6.71 | 3.05
0.25
a=.99|1548 | 506
Bl | 4
a=.95| 250 | 1.34
0.50
a=.99| 415 | 1.92
5] | [11]
a=.95|1.66 | 1.04
0.75
a=.99| 246 | 1.45
8] | [16]
a=.95| 1.57 | 0.98
0.90
a=..99]228 | 135
8] | [18]
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Table 4.3.16: Average lengths for the H interval in Type II censoring

n

v

10 | 20 | 30 | 50 | 100

a=.95 4.28
0.10

[3]

a=.99 6.47

[4]

a=.95 3.67 | 2.47 | 1.73
0.25

B8] 8| [

a=.99 3.61 | 2.24

[5] | [9]

a=.95 2.54 | 1.85 | 1.27 | 0.78
0.50

5] | [} [12] | 27]

a=.99 4.25 | 2.74 | 1.75 | 1.07

5] | [7] | [12) | [27]

a=.95|266 152123097 |0.71
0.75

[4] | [91 | [12] | [18] | [32]

a=.99 2.28 | 1.54 | 1.21 | 0.87

(8] | 18] | [21] | [36]

a=.95|217|1.60 | 1.36 | 1.01 | 0.73
0.90

[5] | [8] | [10] | [17] | [31]

a=.99|332|198|164|1.27 |0.92

[6] | [10] | [13] | [20] | [43]
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4.4 Discussion

4.4.1 Type I censoring

Tables 4.3.1 and 4.3.2 indicate that the empirical coverages for the ML and LU
intervals are always less than the nominal confidence coefficient o and that these
two confidence intervals will not satisfy the confidence levels. Thus, the ML and
LU intervals will not be available for a sample of small or moderate size. On the
other hand, Table 4.3.3 indicates that the H intervals become infinite too often for
small sample size and the empirical coverages are fairly more than the nominal confi-
dence coeflicient. Halperin (1966) has suggested that, by numerical conclusion, H(a)
interval really had the ,/a confidence coefficient. In view of such points, H(0.95)
interval will have the confidence coefficient 1/0.95 = 0.975. Since the empirical cov-
erages at o = 0.95 in Table 4.3.3 satisfy p > 97.5 except for the effect of infinite
intervals, the result of our simulation supports the suggestion by Halperin (1966).
Nevertheless, the empirical coverages are fairly more than the confidence coeflicient
modified above. Additionally, Table 4.3.8 shows that the average lengths of the H
intervals are too long as compared with those of the ML-T intervals. Thus, the H

intervals will not be available for a sample of small or moderate size.

Table 4.3.4 shows that the empirical coverages p for the ML-T intervals are
greater than (100a — 1)% except for v = 0.1 or v = 0.25 and n < 30. Table 4.3.5
shows that the empirical coverages p for the LU-T intervals are greater than (100a —
1)% except for 4 > 0.5. Thus, the ML-T and LU-T intervals may be available, in
some cases, for a sample of small or moderate size. From the comparisons between
Table 4.3.4 and Table 4.3.5 and between Table 4.3.6 and Table 4.3.7, we can say
that the ML-T interval will be superior to the LU-T interval. Furthermore, it can be
shown, by Table 4.3.6, that the average length of the ML-T interval from a censored
sample of size k is smaller than the expected length of the confidence interval based

on a complete sample of size k.

For Type I censoring, our conclusion is that the ML-T interval will be useful
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as the confidence interval for y for a sample of small or moderate size except for

v < 0.25.

4.4.2 Type II censoring

Table 4.3.12 shows that the confidence coeflicients of the ML-T interval for
v < 0.25 or y = 0.5 and n < 30 will be less than the nominal confidence coefficient
o. Table 4.3.13 shows that the empirical coverages p for the LU-T interval are
greater than (100a — 1)% except for vy = 0.1 and n = 10. Tables 4.3.14 and 4.3.15
show that the expected lengths of the ML-T interval and LU-T interval are not so
different.

Thus, our conclusion in Type II censoring is that the LU-T interval will be useful
as the confidence interval for 4 for a sample of small or moderate size. The table for
calculating the BLUE given by Sarhan and Greenberg (1962) does not cover figures
for n > 20. It will be helpful to make the table for n > 20.

In our Monte-Carlo studies, we also counted the number of times [ that the
calculated interval could not contain u(= 0) and the number of times m that u(= 0)
exceeded the upper end point of that interval. We set @ = m/I x 100(%). For the
ML , ML-T, LU and LU-T intervals, we obtained the following fact for o = 0.95 :
Q = 100% for v < 0.25; 85 < Q < 100% for v = 0.5; Q was about 70% for v = 0.75;
Q@ was about 60% for v = 0.9. Such tendency may be explained easily from the fact
that the asymptotic correlation coefficient between f and & given by Cohen(1961) or
the correlation coefficient between y* and ¢* given by Sarhan and Greenberg (1962)
are monotonically close to 1 as v — 0. That is, if v is small, then, as j becomes
smaller, & becomes smaller. Since & is closely related to the width of the interval,
we have many intervals such that the upper end point is less than y. From this fact
it will be suggested that, for further improvement of confidence intervals for 4, some

asymmetric intervals should be considered.
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