
Title
Studies on Selective Organic Transformations by
Semiconductor Photocatalysts Loaded with
Platinum and Palladium Nanoparticles

Author(s) Sugano, Yoshitsune

Citation 大阪大学, 2013, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/27496

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



ル争 /み
3♪ 7

Studies on Selective Organic Transformations by

Semiconductor Photocatalysts Loaded with

Platinum and Palladium Nanoparticles

Yoshitsune Sugano

コ
刊
ゴ

MIttich  2013



Studies on Selective Organic Transformations by

Semiconductor Photocatalysts Loaded with

Platinum and Palladium Nanoparticles

A dissertation submitted to
The Graduate School of Engineering Science

Osaka University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Engineering

Yoshitsune Sugano

N任〔Ich 2013





Abstract

There has been much interest in the development of environmentally- and economically-friendly

chemical processes for organic synthesis from the viewpoint of green and sustainable chemistry. The main

objective of this thesis is to develop the photocatalytic processes for selective organic transformations.

Semiconductor metal oxides loaded with platinum (Pt) and palladium (Pd) nanoparticles were used for

photocatalytic transformations under UV and visible light inadiations. This thesis consists of following six

chapters.

In Chapter I, photocatalytic synthesis of benzimidazoles from alcohols and o-arylenediamines was

studied using titanium dioxide loaded with Pt nanoparticles (PtlTiO2) under UV irradiation. The catalytic

system efficiently produces benzimidazoles with high selectivity. Experimental results reveal that the

reaction is achieved by Pt-assisted photocatalytic oxidation ofalcohols to aldehydes on the TiO2 surface,

followed by dehydrogenation of benzimidazoline intermediate on the Pt surface. Amount and size of Pt

particles play crucial roles on reaction. The catalyst loaded with 0.2 wf/o Pt, which contains 2.0 nm Pt

particles, exhibits the highest activity and selectivity.

In Chapter II, TiOz loaded with Pd nanoparticles (Pd/TiOr) were used for photocatalytic

hydrodenitrogenation of aromatic cyanides with ethanol as a hydrogen source under UV irradiation. The

catalyst promotes selective hydrodenitrogenation of aromatic cyanides, and produces coffesponding

toluene derivatives and triethylamine with almost quantitative yields. Experimental evidences and model

calculation revealed that the catalytic activity strongly depends on the amount of Pd loaded. The catalyst

containing 2 wto/o Pd, with a relatively low Schottky barrier height at the Pd-TiO2 heterojunction and a

large number of surface Pd atoms, exhibits the highest denitrogenation activity.

In Chapter III, the Pd/TiO2 catalysts were used for N-monoalkylation of primary amine with alcohol

under UV inadiation. The catalyst efficiently promotes the corresponding secondary amine with almost

quantitative yields. The reaction occurs via tandem photocatalytic and catalytic reactions, consisting of

Pd-assisted photocatalytic alcohol oxidation to produce aldehyde, catalytic condensation of aldehydes with

amines, and catalytic hydrogenation of formed imines with the hydrogen atom formed on the Pd particles

(H-Pd species). Experimental evidences and model calculation reveal that the rate-determining step is the

imine hydrogenation, and the reaction depends strongly on the size of Pd particles. The catalyst with 0.3

wtYoPd, containing 2-2.5 nmPd particles, shows the highest activity for imine hydrogenation, and smaller

or larger Pd particles are inefficient.

In Chapter ry TiO2 loaded with bimetallic Pd-Pt alloy nanoparticles were used for photocatalytic

dehalogenation of aromatic halides with alcohol as a hydrogen source under UV inadiation. The alloy

catalytic system efficiently promotes dehalogenation, and the activity is three times higher than that of the

catalyst loaded with Pd alone and is also higher than that obtained with molecular hydrogen as a hydrogen

source. The high catalytic activity of the alloy catalyst is due to the enhanced consumption of photoformed



electrons on the Pt site and the effrcient transfer of the formed hydrogen atom to the adjacent Pd site

within the alloy particles, leading to effrcient formation of the hydride species, which act as the active

species for dehalogenation.

In Chapter V, tungsten trioxide (WO:) loaded with Pt nanoparticles (Pd/WO3) were used for partial

oxidation of cyclohexane (CHA) with molecular oxygen (O2) under visible light irradiation (1, >420 nm).

The PIAVO3 catalysts produce cyclohexanol (CHA-o1) and cyclohexanone (CHA-one) with high

selectivity (ca. 93%). The high selectivity for partial oxidation on Pt/WO3 is because subsequent

decomposition of CHA-ol and CHA-one is suppressed. In the PVWO3 system, the photoformed electrons

on the conduction band of WO3 are efficiently consumed by a multi-electron reduction of 02 (formation of

water and hydrogen peroxide), where a single-electron reduction of 02 is unfavored. This suppresses the

formation of a superoxide anion that promotes decomposition of CHA-ol and CHA-one and, hence, results

in selective formation of partial oxidation products.

In chapter VI, Pt particles loaded on anatase TiO2 (Pt/anatase) were used for aerobic oxidation of

alcohols under visible light irradiation (1. >450 nm). The reaction is initiated by the absorption of visible

region light by Pt nanoparticles. This promotes interband excitation of d electrons on Pt nanoparticles.

This then leads to smooth electron transfer to anatase and promotes the reduction of Oz on anatase. Model

calculation with Pt nanoparticles also reveals that this activity depends on the height of Schottky barrier

and the number of perimeter Pt atoms created at the Ptlanatase heterojunction. The catalyst loaded with 2

wto Pt, containing 3-4 nm Pt particles, facilitates smooth Pt--+anatase electron transfer, resulting in the

highest photocatalytic activity. The catalyst also promotes efficient and selective aerobic oxidation of

alcohols by sunlight exposure.

This thesis described the selective organic transformations by semiconductor photocatalysts loaded

with Pt and/or Pd nanoparticles. These results presented in this thesis may contribute to the development

of selective photocatalytic organic transformations and the design of more environmentally- and

economically-friendly synthesis processes by sunlight.
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General Introduction

ENERGY and ENVIRONMENT are two of the humanity's top ten problems for next 50 years.'

Since the industrial revolution in l8th century human beings used large amount of resources and

energies, and built up enough material civilization, leading to obtaining an easy and comfortable life.

The human beings who are one of the species on the earth, however, have caused a crisis of

biogeocenosis of the earth. The origin of this disaster is not only the development and expansion of

industry based on technologies but our lifestyle which have grown dramatically since the industrial

revolution. Increase of energy consumption, world population, and food consumption, gave rise to the

global disasters such as warming temperature, acid rains, and ozone depletion. Therefore, businesses,

governments, and consumers shall cooperate for taking measures against the protection of earth

resources and environment. Chemical industry which is one of the various industries, produces various

chemical precursors of automobiles, constructs, clothes, and drugs to other industries and has an

important part in our lifestyle. Chemical industry therefore, has the potential to contribute to

environmental protection of the earth by reviewing lifecycle (from production to disposal) of chemical

products.

One of the solutions by approaching from the chemical industry is the introduction of the concept

of "Green chemistry". This concept means "the design of chemical products and processes that reduce or

eliminate the use and generation of hazardous substances,"2 which is a comprehensive approach

applicable to all aspects of chemistry. From feed stocks to solvents, synthesis, and process, green

chemistry actively seeks ways to produce materials which are more benign to human health and the

environment. The current attention on green chemistry reflects a shift away from the historic "command

and control" approach to environmental problems that restrictive waste fieatment and control and clean

up through regulation, and toward preventing pollution at its source. Therefore, rather than accepting

waste production and disposal as unavoidable, green chemistry seeks new technologies that are cleaner

and economically competitive.

The economic benefits of green chemistry are central locomotives in its advancement. Industry is

also able to adopt green chemistry methodologies because they improve the corporate bottom line; a

wide variety of operating costs is decreased through the use of green chemistry. When less waste is

generated, environmental compliance costs go down, leading to the decrease of needs of treatment and

disposal. Decreased solvent usage and fewer processing steps lessen the material and energy costs of

manufacturins and increase material efficiencv. The environment. human health. and the economic



advantages realized through green chemistry are, therefore, serving as a strong incentive to industry to

adopt greener technologies.

Developing the green chemistry methodologies is a challenge that may be viewed through the

framework of "Twelve Principles of Green Chemistry".' These principles identify CATALY$S as one of

the most important tools for implementing green chemistry. In addition, even from the chemical industry,

an improvement of catalysis process, which is one of the main and fundamental parts of manufacturing

process, hold the promise of reduction of produce costs. The design and application of new catalysts and

catalytic systems, therefore, offer numerous green chemistry benefits including lower energy

requirements, catalytic versus stoichiometric amounts of materials, increased selectivity, and decreased

use of processing and separation agents. These also allow the use of less toxic materials, which leads to

achieving the dual goals of environmental protection and economic benefit simultaneously. Especially,

heterogeneous catalysis has received a tremendous amount of interest, both from a scientific and an

industrial perspective. This is demonstrated by the 2007 Nobel Prize in Chemistry awarded to Prof. Ertl,

a pioneer in introducing surface science techniques to the field ofheterogeneous catalysis leading to a

deeper nnderstanding of how chemical reactions take place at surfaces.o Since more than 90o/o of

chemical manufacturing processes utilize catalysts,s heterogeneous catalysis has an enonnous impact on

the world economy. The current manufacturing processes, however, have taken large energy to purifli

the chemical products and precursors due to the low yields of catalytic reaction products. These

processes also need severe reaction conditions (high temperature and high pressure) to increase the

yields per unit time, although sub-reactions proceed and specific reactors are required. For the

improvement of these processes, catalytic productions of an only main product under more economically

and environmentally benign conditions are desirable.

Metal nanoparticle catalysis is one of the most attracted fields in heterogeneous catalysis. Several

remarkable novel catalytic properties including enhanced reactivity and selectivity have been reported

for nanoparticle catalysts as compared to their bulk counterparts. To utilize the power of these

nanoparticle catalysts, detailed understanding of the origin of their enhanced performance is necessary.

Many experimental studies on nanoparticles have focused on correlating catalytic activity with particles

size. While particle size is an important consideration, many other factors such as geometry composition,

oxidation state, and chemical/physical environment can also play an important role in determining

nanoparticle reactivity. The exact relationship between these parameters and the catalytic performance

may, however, be system dependent. A systematic understanding of the factors that control catalyst

reactivity and selectivity is therefore very important task.
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Figure L. Photocatalytic reaction occurring on semiconductor photocatalyst.

Metal nanoparticles are often used in the field of photocatalysis. Photocatalytic reaction is a recent

discipline particularly well adapted to environmental problems since it operates at room temperature by

catalytic photoactivation instead of thermal activation. Among them, titanium dioxide (TiOr) has been

widely used as a pigment in sunscreens, paints, ointments, or toothpaste, because it is chemically stable,

harmless, and inexpensive. In 1972, Fujishima and Honda discovered the photocatalytic splitting of

water on TiO2 electrodes.6 As a result of this, the application of TiO2 photocatalysis was extended to

environmental frontiers. Frank and BardT reported the application of TiOz in photocatalytic oxidation of

CN- and SOr2 in aqueous medium under sunlight irradiation. Photocatalytic reduction of COz on TiOz

reported by Inoue et al.8 have attracted much attention in this field. Moreover, Izuml et al.e have reported

that photo-kolbe decarboxylation route to butane, which includes the generation of hydroxyl radical.

This opened a new chapter for application of TiO2 photocatalysis in organic transformations. Kraeutler

and Bard.r0 have applied the decomposition of organic compounds by TiO2 photocatalysis.

The mechanism for heterogeneous photocatalysis has been studied extensively so far, and a number

of excellent reviews and books have been published by many researchers." Despite many applications,

the basic mechanisms are almost similar. Figure I shows schematic representation of the photocatalytic

reaction on TiOz. When TiOz absorb light with energy larger than its bandgap energy (>Er), photoexcited

electron (e ) and holes (h*) pairs are generated in the conduction band and valence band, respectively'

The e and h* produced inside the particles migrates to the particle surface and promotes oxidation and

reduction reactions, while some of these pairs are deactivated by recombination of them at bulk or

surface. In the presence of molecular oxygen (Oz), the reduction of Oz by conduction band e proceeds.

3



In contrast, the h* oxidizes substrates or I{2O.

In 2000s, the growing aw.reness of green chemistry has given a boost to develop the process for

organic synthesis with photocatalysts under mild conditions,r2 which avoid stoichiometric consumption

of expensive and harmful oxidants.l3 Wide application of TiOz photocatalysis for organic

transformations has been reported.ra Some of the transformations were accomplished, which can be

categorized as oxidations and oxidative cleavages,r5 reductions,l6 geometric and valence

isomerizations,lT substitutions,ls condensations,le and polymerizations.2O Howeveq except for above

some successful examples, photocatalytic organic transformations on TiO2 basically do not proceed

effrciently.

One of the reasons for unsuccessful organic transformations on bare TiO2 is the low activity for

photocatalytic reactions. As shown in tr'igure 1, photoexcited semiconductor materials produce e- and h*.

They migrate thorough the material and appear on the surface, promoting oxidation and reduction

reactions of substrates. The parts of e- and h* are, however, recombined during migration and are

deactivated. To improve the activity for photocatalysis, therefore, it is necessary to suppress the charge

recombination between photogenerated e- and h* (Figure 2a). One of the most famous methods to solve

this problem is the surface modification of photocatalysts with noble metal nanoparticles such as Pt, Ag,

Au, and Pd. Among them, modification of TiO2 surface with Pt nanoparticles (Pt/TiO2) is a popular

method, which was firstly reported by Kraeutler and Bard.2l The Pt/TiO2 catalyst exhibits enhanced

activity for various photocatalytic reactions." This is basically due to their different Fermi levels (Ep),

chancteized by the work function of the metals and the band structure of the semiconductors.23 When

metal nanoparticles are loaded on the semiconductor surface, the electrons migrate from semiconductor

to metal occurs until the two Fermi levels are aligned similar, and energy barrier is created at the

interface of heterojunction, which is called the Schottky barrier (Figure 2b). Photoexcitation of

semiconductor generates electrons in the conduction band of the semiconductor and raises its Fermi

level to more negative values.2a Then, the generated energetic difference at the semiconductor and metal

interface drives the electrons from the conduction band of the semiconductor into the metal nanoparticle.

The Schottky barrier produced at the metal-semiconductor interface can serve as an efficient electron

trap preventing electron-hole recornbination in photocatalysis, which leads to the enhancement of

photocatalytic reactivity. The activity of these photocatalyst is usually tested by degradation of organic

pollutants in water or photocatalytic H2 evolution from aqueous alcohols solutions under UV light

inadiation. Application of these modified TiO2 photocatalysts for photochemical organic transformation

is scarce.

4
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Figure 2. Schematic representation for (a) the photocatalyst with/without metal nanoparticles and (b) the

Schottky barrier created at the metal and semiconductor photocatalyst heterojunction.

As mentioned before, in the last century, catalysis developed into one of the most powerful

technologies in the petroleum, bulk chemical, fine chemical and pharmaceutical industries.2s In parallel

to developing technologies, the fundamental understanding of catalytic processes has been advancing

rapidly by developing model catalytic system using experimental and theoretical techniques at the

molecular leve1.26 In particular, noble metal nanoparticle catalysts possess marvelous and specific

activities about various reactions. The pioneering catalytic applications of noble metal nanoparticles

were reported in 1940 by Nord and co-workers for nitrobenzene reduction.2T ln the late 1950s, Boreskov

stated a chemical approach to the kinetics of heterogeneous catalysis by metals based on the influence of

the reaction mixture and reaction conditions on the properties and chemical composition of the

catalyst.28 Since the 1970s, metal nanoparticles have been more frequently used in catalysis,2e and are

even suspected to be involved in organometallic catalysis. Since the tum of the millennium, interest in
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metal nanoparticle catalysis has considerably increased because this class of catalysts appears as one of

the most promising solutions toward efficient reaction under mild, environmentally benign conditions in

the context of Green Chemistry.30 As present, these preparation, structure determination, and

applications are topics of current interest.3r Especially, attention is focused on that a change in the

catalytic properties of metals, caused by the hansformation from bulk metal to nanoparticles (l-100 nm),

is one of the fundamental problems of heterogeneous catalysis.3z Supported metal particle size can also

essentially affect the specific catalytic activity (reaction rate per one surface atom), the number of

reaction cycles, as well as the rate of the catalytic reaction. As suggested,33 these changes may be

associated both with the electronic properties of nanoparticles and with features of their crystal structure

(compared with bulk metal or coarse particles, the most part of surface atoms with low coordination

numbers and with residing at the angles and edges of fine particles).

Among metal nanoparticles, platinum (Pt) and palladium (Pd), which are well known as platinum

group metals, possess dominantly specific and various catalytic activities. Extensive studies for Pt and

Pd nanoparticles have been performed for various catalytic applications. Pt nanoparticles show

outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, and

have been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive

industries.3a They possesses distinctive ability in catalyzing partial oxidation, hydrogenation and

dehydrogenation of avariety of important molecules that are essential in many industrial processes.3t In

contrast, Pd nanoparticles are well known as noble metal catalysts which possess the high activity for

various reactions.36 The main parts of these reactions by Pd nanoparticles are hydrogenations and C-C

couplings (Suzuki, Heck, Stille),31 and a few reports are related to other processes like dehalogenation,

hydrodechlorination, carbonylation or oxidation.

In addition, bimetallic nanoparticles, composed of two different metal elements, are of greater

interest than monometallic ones, from both the scientific and technological views, for the improvement

of the catalytic properties of metal nanoparticles." In fact, bimetallic catalysts have long been valuable

for in-depth investigations of the relationship between catalytic activity and catalyst particle structure.3e

This is because bimetallization can improve catalytic properties of the original monometallic catalysts

and create a new property, which may not be achieved by monometallic catalysts. These efGcts of the

added metal component can often be explained in terms of an ensernble and/or a ligand effect in

catalyses. Sinfelt et al. have made a series of studies on bimetallic nanoparticle catalysts supported on

inorganic supports, for example Ru-Cua0 and Pt-Irar on silica. They analyzed the detailed structures of

their samples by an extended X-ray absorption fine structure (EXAFS) technique, and showed that these

6



nanoparticles with a diameter of 1-3 nm had an alloy structure,

Photocatalysis

<- e-

lntermediote

associated with their properties.a2

Catalysis

VB

ヽ
動 ,^F;aa

Figure 3. Schematic representation for the concept of selective photocatalytic and catalytic organic

transformations by photocatalyst loaded with noble metal nanoparlicles.

On the basis of these findings, if photocatalyst and noble metal nanoparticles are combined, some

new photocatalytic reactions for selective organic transformation under mild reaction conditions are

prospective (Figure 3). TiO2 is an efficient photocatalyst under UV inadiation. It has wide band-gap

(3.0-3.2 eV), which almost corresponds to an absorption threshold of ca. 400 nm. This limits the use in

the visible wavelength region (400-800 nm). It is well known that <400 nm UV light is contained in

solar radiation with only 3-5o/o. This means that only a small portion of light can be used for chemical

reactions. Development of photocatalysts that work under visible light irradiation is an important issue

for practical application of "sunlight" as the light source. One approach is the use of semiconductor

photocatalysts with narrow band gap (<3.0 eV). Warrier et al. reported that CdS and CdSe quantum dots

in the presence of sacrificial electron donors promote chemoselective photocatalytic reduction of

aromatic azides to aromatic amines.a3 Ohmori et al. reported that a-Fe2O3 is capable of oxidizing water

and evolving oxygen gas, in the presence of Fel* as the electron scavengers.oa Tungsten trioxide (WOl)

is also a visible-light-responsive photocatalyst, which possesses nalrow band gap (2'8 eV), deep

oxidation potential of valence band, nontoxicity, and stabilify (Figure 4;.45 Abe et al. have proposed that

pt loading is an attractive solution to enhance the photocatalyic properties because loaded Pt enable to

trap photogenerated electron from WO3 to reduce 02 to H2O2 and H2O.a6 Arai et al. reported that WOr

loaded with Pd catalyst proceed complete oxidation of acetaldehyde and toluene under visible light

irradiation.aT



H+/H2(0・ 00)

°2/H2° (+1・ 23)
3.13 eV

V/NHE 丁i02 W° 3

(-0.18)

Figure 4. Redox potential of TiO2 and WOr (pH 0).

The other approach is the use of localized surface plasmon resonance (SPR) of a portion of noble

metal nanoparticles. [n2004, Tian et al. found that Au or Ag particles loaded on a semiconductor TiOz

film that is coated on an indium tin oxide electrode generates an anodic photocurrent in the presence of

Fe2* under visible light inadiation (1" >420 nm) (Figure 5). This photoelectrochemical response is

explained by an electron transfer mechanism similar to that for dye-sensitized TiO2:48 collective

oscillations of electrons on the Au particles irradiated by the incident light transfers the electrons from

the Au particles to the TiOz conduction band, while the positively charged Au particles receive electrons

from the electron donor (Fet*). On the basis of these findings, they proposed that semiconductor

materials loaded with a portion of noble metal nanoparticles behaves as a new class of visible

lighrdriven catalysts.ae Since then, effects of preparation procedure, metal particle sizes, loading amount,

and on photocatalytic activity has been investigated for photodegradation oforganic substrates,5O and H2

and 02 evolution from water.5r Application to organic transformations has scarcely been carried out.

The purpose of this thesis is to develop selective organic transformations by semiconductor

photocatalysts loaded with Pt and Pd nanoparticles. The author tried to apply the TiO2-based

photocatalysts loaded with Pd and Pd nanoparticles for benzimidazole synthesis, hydrodenitrogenation

of aromatic cyanide, and N-alkylation of primary amines under UV irradiation. Moreover, the author

used the synergetic effect promoted by bimetallic Pt-Pd alloy nanoparticles for selective

hydrodehalogenation of organic halides. To create the photocataly'tic system driven by visible light

irradiation, the author used WO3 catalysts loaded with Pt nanoparticles for partial oxidation of CHA. In

addition, the author tried to clarifo the visible light activity of Pt nanoparticles loaded on TiOz surface

8



and clarified the potential for sunlight-driven organic transformations. The framework of the present

study is shown in Figure 6.

ITO electrode (acceptor)

5. TiOz-loaded withAu metal nanoparticles showing surface plasmon resonance.
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Photocatalytic Adivation by UV Light

Chapter ll.
Hydrodenitrogenation of Aromatic Cyanides
TiO, Loaded with Pd Nanoparticles

Chapter lll.
N-Monoalkylation of Amines with Alcohols on TiO,
Loaded with Pd Nanoparticles

Chapter lV.
Dehalogenation of Organic Halides on TiO, Loaded
with Bimetallic Pd-Pt Alloy Nanoparticles

Chapter l.
Synthesis of Benzimidazoles on TiO, Loaded with Pt

Nanoparticles

*'f1-**' *.%*",
hv (i. >300 nm)

Ri^oH Ｒ

Ｈ
Ｎ
ヽ
クＮＯＲPr@Tio2

nitrogen, 303 K
82-99% yields

Photocatalytic Activation by Visible Light

Chapter V.
Partial Oxidation of Cyclohexane on WO, Loaded

with Pt Nanoparticles under Visible Light lrradiation

o
+ CO?

Chapter V!.
Aerobic Oxidation by Platinum Nanoparticle
Supported on Anatase Titanium Dioxide under
Visile Light lrradiation

Figure 6. Framework of the present study.
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This thesis consists of six chapters. The first four chapters (Chapters I-IV) describe photocatalytic

organic transformations under UV inadiation, where TiO2 loaded with Pt or Pd nanoparticles and TiO2

loaded with Pd-Pt bimetallic alloy nanoparticles were employed. The chapters V and VI describe visible

light-driven photocatalysts, where WO3 loaded Pt nanoparticles and TiOz loaded with Pt nanoparticles

are used for selective organic transformations.

In Chapter I, TiO2 particles loaded with Pt nanoparticle (Pt/TiO2), prepared by photodeposition

method, was used for one-pot catallrtic synthesis of benzimidazole from o-phenylenediamines and

alcohols. We found that the process successfully produces corresponding benzimidazoles rapidly and

selectively. This process is promotes by Pt-assisted photocatalytic oxidation of alcohols to aldehydes and

catalytic dehydrogenation of formed intermediate. In this reaction, the amount and size of Pt

nanoparticles on catalysts are important factors. The catalyst containing 0.2 wt% Pd, with a relatively

large amount of Pt atoms and a small Pt particle size (<4 nm), exhibits the highest activity and

selectivity of benzimidazole synthesis.

ln Chapter II, TiO2 loaded with Pd nanoparticles (Pd/TiO2) was used for photocatalytic reaction of

aromatic cyanide with ethanol under UV irradiation (1" >300 nm). This catalytic system successfully

promoted hydrodenitrogenation of aromatic cyanides and produced toluene derivatives with high

selectivity at room temperature. This reaction proceeds by photocatalytic oxidation of ethanol to produce

acetaldehyde and hydrogen atom on the Pd surface (H-Pd species). The H-Pd species promotes

hydrodenitrogenation of aromatic cyanides and subsequent condensation with aldehydes, leading to

successful hydrodenitrogenation. The catalytic activity strongly depends on the amount of Pd loaded.

The catalyst containing 2 wt% Pd, with a relatively low Schottky barrier height at the Pd/TiO2

heterojunction and a large number of surface Pd atoms, exhibits the highest denitrogenation activity.

In Chapter III, the author studied ,A/-alkylation of primary amines with alcohols in the presence of

metal-loaded TiOz under photoinadiation (1, >300 nm). The author found that TiOz loaded with Pd

nanoparticles successfully promotes N-monoalkylation of primary amines at room temperature, This

reaction proceeds via three consecutive steps involving (i) Pd-assisted photocatalytic oxidation of

alcohols; (ii) catalytic condensation of the formed aldehyde and amine on the TiOz surface; and, (iii)

catalytic hydrogenation of the formed imine on Pd nanoparticles. The catalyst with 0.3 wto6 Pd,

containing 2-2.5 nm Pd particles, shows the highest activity for imine hydrogenation, and smaller or

larger Pd particles are inefficient.

In Chapter IV, the author found that TiOz loaded with bimetallic Pd-Pt alloy nanoparticles

(PdPt/TiOr) promotes highly effrcient photocatalytic dehalogenation of organic halides with alcohol as a



hydrogen source. The activity is more than three times that of TiOz loaded with Pd particles and higher

than the conventional method with molecular hydrogen. The high activity is due to the enhancement

consumption of photoformed e- on the Pt site by H* reduction and effrcient transfer of the formed

hydrogen atom to the adjacent Pd site within the alloy particles.

In Chapter V WO: loaded with Pt nanoparticles (PI/WO3) were employed for photocatalytic

oxidation of cyclohexane with molecular oxygen under visible light irradiation (1, >420 nm) to produce

cyclohexanol and cyclohexanone. The catalysts successfully promote partial oxidation with ca. 93%o

selectivity, without the formation of subsequent decomposition of these products. The ESR measurement

with a spin trapping reagent and the photocatalytic reaction with a superoxide radical scavenger indicate

that selective oxidation of cyclohexane on the catalysts is indeed achieved due to the decreased

formation of superoxide radicals that promotes decomposition of the products.

In chapter VI, the author found that Pt nanoparticles loaded on anatase TiO2, when used for aerobic

oxidation under visible light (1" >450 nm), facilitate direct e- transfer to anatase and promote the reaction

highly efficiently. This occurs via the electronic excitation of Pt particles by visible light followed by the

transfer of their e- to anatase conduction band. The positively charged Pt particles oxidize substrates.

Whereas the conduction band e are consumed by the reduction of molecular oxygen. The catalyst

loaded with 2 wto/o Pt, containing 3-4 nm Pt particles, creates a relatively low Schottky barrier and a

relatively large number of perimeter Pt atoms and, hence, facilitates smooth Pt-+anatase e- transfer,

resulting in very high photocatalfiic activity.

The results obtained in this work are summarized in general conclusions. Suggestions for future

work are described as an extension of the present work.
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Chapter I

Synthesis of benzimidazoles on TiO2 Loaded with Pt Nanoparticles

l. Introduction

Benzimidazole and its derivatives occupy pivotal positions in the synthesis of natural products and

pharmaceutical materials. These compounds have been studied extensively because of their biological

activities as bactericides,r anticarcinogens,2 and peptic ulcer agents.' There is particular interest in their

activity against several viruses such as HIV,a herpes (HSV-1),5 and influenza.6 Classical method for

benzimidazole synthesis is the coupling of o-arylenediamines with carboxylic acids or their derivatives,T

which requires strong acidic conditions and high temperature (ca. >200 "C). The other method is the

oxidation of benzimidazoline intermediates generated from the condensation of o-arylenediamines and

aldehydes.8 This method produces benzimidazoles at relatively low temperature (-100 oC), but requires

unstable aldehydes as reactants and stoichiometric or excess amounts of strong oxidants such as DDQ.

Recent advances in this method allow the use of molecular oxygen as an oxidant,e but these processes

require homogeneous catalysts such as metal triflates and a free radical. Alternative methods that

proceed under mild reaction conditions with stable reactants such as alcohols and carboxylic acids and

easy-handling heterogeneous catalysts are therefore necessary for economically and environmentally

b eni gn b enzimidazol e pro ducti on.

Here we present a new sffategy for benzimidazole synthesis without acids and oxidants at room

temperature (Scheme 1-1). This promotes efficient and selective benzimidazole production with

o-arylenediamines and alcohols as reactants under photoirradiation (1. >300 nm). The process employs a

semiconductor TiO2 loaded with Pt nanoparticles (PtlTiO2) as a heterogeneous catalyst. The catalyst

promotes two different transformations in one pot by simultaneous photocatalytic and catalytic actions;

one is the conversion of alcohols to aldehydes via a Pt-assisted photocatalytic oxidation on the TiO2

surface,rO and the other is the catalytic dehydrogenation of benzimidazoline intermediates, generated

from the condensation of o-arylenediamines and aldehydes, on the surface of Pt particles. Various

catalytic systems enabling one-pot organic transformations have been proposed.ll There are, however,

only two reports of one-pot system that combines photocatalysis and catalysis,r2 where both systems use

a set of homogeneous photocatalyst (photoredox catalyst) and catalyst for one-pot transformations.
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hv (1. >300 nm)

Pt/Ti02
nitrogen,303 K

82-99% yields

Scheme 1-1. One-pot benzimidazole synthesis with PtlTiozcatalyst under photoirradiation.

2. Experimental

2-1. Materials and procedure

All of the reagents used were supplied from Wako, Tokyo Kasei, and Sigma-Aldrich and used

without further purification. Water was purified by the Milli-Q system. JRC-TIO-4 TiO2 (equivalent to

Deggusa P25; particle diameter, 24 nm BET surface area,54 fif g r; anatase/rutile : ca.83ll7) were

kindly supplied from the Catalyst Society of Japan.

The Pt /TiO2 catalyst tx (vrt%): Py(Pt + TiOz) x 100;x:0.05, 0.1,0.2,0.5, 1.01were synthesized

as hollows: TiO2 (0.1 g) and H2PtCl6 (0.11, 0.21, 0.42,1.06, and,2.l2 mg) were added to a water/MeOH

(2411vlv) mixture (10 mL) within a Pyrex glass tube (20 cm3) and purged with nitrogen gas. The tube

was photoirradiated with magnetic stirring by a high-pressure Hg lamp (300 W; Eikohsha Co. Ltd.; light

intensity at 300-400 nm, 19.1 W -') at 303 K for 30 min. The resultant was recovered by filtration,

washed thoroughly with water, and dried in vacuo at353 K for 12 h. The Pt amount on the catalvsts was

determined by X-ray fluorescence spectrometer.

Photoreaction were caried out as follows; a-arylenediamine, alcohol, and catalyst were added to a

Pyrex glass tube (20 cm3). The tube was purged with nitrogen gas and photoirradiated with magnetic

stirring by aXelamp (2 kW; Ushio Inc.; light intensity, 18.2 W m2 at300-400 nm) at303 K. The

reactant and product concentrations were determined by GC systems equipped with FID or TCD.

Intermediate 3 (1-(1-ethoxyethyl)-2-methyl-1H-benzimidazole) were synthesized as hollows: An

EtOH solution containing 1 was photoinadiated in the presence of pure TiO2 for 12 h at303 K. The

resulting solution was concentrated by evaporation and subjected to flash chromatography using silica

gel with ethyl acetate as an eluent. The obtained solution was concentrated by evaporation and dried in

vacuo, affording a yellow crystal of 3. IH NMR (400 MHz, CDCI3, TMS): S (ppm) :7.69-7.66 (q, 1H),

7.60-7.58 (q, 1H),7.23-7.17 (m,2H), 5.67-5.62 (q, 1H),3.43-3.25 (m,2H),2.63 (s,3H),t.73-1.72(d,

3H),l.I7-1.t4 (t,3H). t3C NMR (400 MHz, CDCI3, TMS): S (ppm) : 150.38, t42.69, t33.29, t22.0g,

121.85, 118.94, 111.18, 82.82, 63.82, 21.32, 14.82, 14.74. EI-MS: Calcd for C12H16NzO 204.3, found

m/2204.2 (M.).

NHz

+ RzAoH
NHz

H

喝<×>励
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3. Results and discussion

3-1. Synthesis and characterization of catalysts

Figure l-4. a) TEM micrograph and b) size distribution of Pt particles on Pts2/TiO2.

a) P\ulTiO,

10 nm 048121620
Mean core size / nm

Figure 1-5. TEM micrograph and size distribution of Pt nanoparticles on a) Pte.5/TiO2 and b) Ptr0/TiO2

catalysts.

01234
Mean core size / nm 

-

「  5 nm 123456
Mean core size / nm
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PLniOz with different Pt amount lx (wt%): Ptl(TiOz + Pt) x 100;x:0.05, 0.I,0.2,0.5, 1.01 were

prepared by a conventional photodeposition method,r3 where photoinadiation of an aqueous solution

containing JRC-TIO-4 TiO2 particles (equivalent to Degussa P25) and H2PtCl6 affords gray powders of

catalysts. Figure L-4 shows the transmission electron microscopy (TEM) image of Pto.z/TiOz. A

spherical Pt particle is observed with an average diameter 2.0 r:rlrr. The Pt particle size increases with an

increase in the Pt amount on TiO2, where x : 0.5 and 1.0 catalysts contain 4.0 nm and 9.3 nm particles,

respectively (Figure 1-5). In addition, the catalysts with larger Pt amount show increased absorbance at

l" >300 nm due to light scattering by the Pt particlesto lFigure 1-6), although the band gap energies of

the catalysts are similar (3.2-3.3 eY).

3-2. Photocatalytic activity of PtlTiOz catalyst.

↑

―

―

卜

ｃ

ｍＭ

‐

Ｈ
２

ｍｍ。

t
I

I

H2

/ mmol

0

f′ h

Figure l-7. Time-dependent change in the concentrations of substrate and products during

photoinadiation of I in EtOH with a) TiO2 and b) Ptg2lTiO2 catalysts. Reaction conditions: catalyst (10

mg), 1 (20 pmol), EtOH (10 mL), nihogen (1 atm), l, >300 nm, 303 K, where 10 mg Pt;.2lTiO2 contains

0.10 pmol Pt.

The efficacy of PtlTiO2 catalyst on benzimidazole production is evident from the reaction of

o-phenylenediamine (1) with EtOH. Figure 1-7 shows the time-dependent change in the concentrations

of 1 and the product, 2-methylbetuimidazole (2), during photoinadiation (1" >300 nm) of an EtOH

solution containing 1 under nitrogen atmosphere. With pure TiO2 (Figure l-7a),24 h photoirradiation is

required to achieve >90yo conversion of 1, where the 2 yield is only ca. 600/o. The major byproduct is

オ/h―
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determined by 'H, "C NMR and EI-MS analysis to be 1-(1-ethoxyethyl)-2-methyl-1H-benzimidazole

(3) (Figures 1-1-3), where the 3 yield after 36 h inadiation is 5.2o/o.In contrast, as shown in Figure

l-7b, Pt'zlTiO2 promotes rapid and selective production of 2; only 2 h irradiation achieves >99o I

conversion and produces 2 with >93oh yield. This indicates that the present process with PtlTiOz indeed

promotes rapid and selective benzimidazole production.

3-3. Reaction mechanism

＾
一一

》
ヘ

Ｎ

　

　

ＮＯ

丁i02~型堕色レTI。2(e~,h+)

ハ 。H_型ニ ハ 。

2H+一二聖三→レ H2
Pt

ＨＮ」″Ｎ
０
２

α道■卜 lαlγ

-2H+I FH2

CI汁
|

~H20 //ヽ
。

Scheme 1-2. Proposed mechanism for one-pot benzimidazole production promoted by PVTiO2 catalyst

under photoirradiation.

The rapid and selective 2 formation is achieved by simultaneous photocatalytic and catalytic

reactions on Pt/TiOz, as depicted in Scheme 1-2. The reaction is initiated by photoexcitation of TiOz

particles. The excited TiO2 produces electron (e-) and positive hole (h*) pairs. The h* oxidizes EIOH to

acetaldehyde on the TiO2 surface.15 Spontaneous condensation of the formed aldehyde and 1 produces a

monoimine intermediate (+).'6 the rapid consumption of 1 during the reaction with PVTiO2 (Figure

1-7b) is because the Pt particles efficiently trap e on the excited TiOz and enhance the charge separation

between e and h*.17 This accelerates the alcohol oxidation (production of large amount of aldehyde) and

thus allows rapid condensation of 1 and the aldehyde. As shown in Figure l-7, the amount of H2

produced during 12 h irradiation with PVTiO2 is 486 pmol, whereas pure TiO2 produces only 3 pmol H2.
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This indicates that the e- formed on TiOz is indeed trapped by the Pt particles and consumed eff,rciently

by the reduction of H* formed during alcohol oxidation.r5 These suggest that the enhanced

photocatalytic transformation of alcohol to aldehyde on PtlTiO2 allows efficient production of the

intermediate 4.

|

Amount
/μmol

ilh---------------> ilh --------------> ilh-------------->

Figure 1-8. Time-dependent change in the amount of 1, 2, and H2 during the reaction of 1 with I equiv

of acetaldehyde in the dark condition, a) without catalyst, b) with TiO2, and c) with Ph.zlTio1 Reaction

conditions: catalyst (10 mg), I (20 pmol), acetaldehyde (20 pmol), EIOH (10 mL), nitrogen (1 atm), 303

K, where 10 mg Pt1.2niozcontains 0.10 pmol Pt.

The product 2 is formed by cyclizalion of 4 followed by autooxidation of a benzimidazoline

intermediate (5) with a release of H*,r8 where 4 and 5 are in equilibrium.te The 4 reacts easily with the

other aldehyde and produces a diimine intermediate (6), leading to a byproduct (3) formation.2O

Therefore, in the classical method with o-arylenediamines and aldehydes,8'e oxidants that promote rapid

transformation of 5 to 2 are necessary for selective formation of 2 while suppressing byproduct

formation. In the present process with PyTiO2, Pt particles promote rapid and selective transformation of

5 to 2 via a catalytic dehydrogenation (Scheme 1-2). This is confirmed by the reaction of 1 with

equimolar acetaldehyde in the dark condition. Figure 1-8 shows the time-dependent change in the

amounts of 1 and the products at 303 K. The rate of decrease of I with Pt/TiO2 (Figure 1-8c) is similar

to that obtained without catalyst and with pure TiO2 (Figure 1-8a and b), indicating that the rate of

condensation of 1 and aldehyde is similar. The 2'yields obtained without catalyst and with TiO2 are low

(<40%), but PVTiOz produces 2 qtantitatively, indicating that Pt particles successfully promote

transformation of 5 to 2. In this case, H2 gas with an equivalent quantity of 2 was produced, whereas

f/h―一一一→
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other systems do not produce H2. This suggests that the Pt particles indeed catalyze dehydrogenation of

5. The rapid transformation of 5 to 2 in the PyTiO2 system, therefore, leads to a shift of the equilibrium

between 4 and 5 to the 5 formation (Scheme 1-2). This thus allows selective 2 formation while

suppressing byproduct formation. The high dehydrogenation activity of Pt particles at room temperature

is probably due to the strong affrnity of the amine nitrogens of 5 to the Pt surface, as observed for

ethylenediamine dehydrogenation on the Pt surface.2r

3-4. Effect of Pt amount and size on the catalytic activity

The amount and size of Pt particles are important factors for rapid and selective benzimidazole

production. Figure 1-9 shows the conversion of 1 and the selectivity of 2 during 4 h photoirradiation of

an EtOH solution containing 1 with respective catalysts. Conversion of I increases with an increase in

the Pt amount on TiO2 because larger amount of Pt allows effrcient charge separation on the

photoexcited TiO2. The highest conversion is obtained with Pt0.2/TiO2, and the catalysts with larger Pt

amount show lower conversion. This is because excess amount of Pt suppresses the incident light

absorption byTiO2.22

1 conversion / %

50

丁i02

x=0.05

χ=0.1

χ=0.2

x=0.5

x=1.0

2selectivity/% ----------------

Figure 1-9. Conversion of 1 and selectivity of 2 obtained by photoinadiation of an EtOH solution

containing 1 with TiO2 and Pt*lTiOz catalysts for 4 h. Reaction conditions: EtOH (10 mL), 1 (0.1 mmol),

catalyst (10 mg), nitrogen (l atm), l" >300 nm, 303 K.

The 2 selectivity is also affected by the Pt amount. As shown in Figure 1-9, the selectivity increases

with an increase in the Pt amount, but the catalysts with >0.2 wf/o Pt show lower selectivity. This is

because larger size Pt particles have lower dehydrogenation activity. As reported,t3 dehydrogenation
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activity of Pt particles increases with a decrease in their size; in particular, <4 nm particles show very

high activity. The size of Pt particles on Pte.2/TiOz is 2.0 nm, whereas that on "r : 0.5 and 1.0 catalysts are

4.0 and 9.3 nm, respectively. As shown in Table 1-1, the reaction of 1 and equimolar acetaldehyde in the

dark with Pt1.2lTiOz (4 h,303 K) produces 2 with9lo/o yield, along with 82ohH2 formation. In contrast, x

:0.5 and 1.0 catalysts show lower yields of 2 (<80Yo) and Hz G48%). This indicates that smaller Pt

particles with a <4 nm diameter indeed have higher dehydrogenation activity and are responsible for

efficient benzimidazole formation. TEM analysis of Pts.2/TiO2 r€coverod after 12 h photoreaction for 2

synthesis (Figure 1-7b) reveals that the Pt particle size scarcely changes during the reaction (Figure

1-10). In addition, the catalyst is reusable at least three times without loss of activity (Table 1-2).

Table 1-1. Conversion and product yields obtained by the reaction of I with acetaldehyde in the

presence of various catalysts in the dark condition."

Conversion / o/o Yield/%

Enけ Catalyst
Pt particle
size / nm α道

1

ＨＮ」（Ｎ
０
２

H2

l     Ti02

2     Pt0 05/T102

3°    Pt。 05/Ti02

4     Pt。 1/Ti02

5グ    Pt。 1/T102

6     Pt。 2/T102

7     Pt。 5/Ti02

8     Pt1 0/Ti02

9   TiOJ+Pt black

96

>99

>99

98

>99

2.0′       >99

4.0′ >99

9.3" 97

340C/ s3

９

　

　

６

６

　

　

８

89

91

92

91

80

79

77

59

81

65

84

82

48

40

39

α
 Reaction condition:Catalyst(10 mgy,1(0.l lllmol),aCetaldellyde(0.l llllmol),EtOH(10 mL),nitrOgen

(l atm),reaCtiOn time(4h),303K.b The amount ofH2 f0111led is less than detection limit(<0.12 μmol).
ι
 catalyst(40 mgn・

グ
catalyst(20 mD.ι  dete.11lined by TEM analysis./detα八1lined by dynamic light

scattering ineasurement.
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Figure 1-10. Size distribution of Pt nanoparticles on (black bar) fresh Ptqzni0z and (white bar)

Ph.zniOzrecovered after 12 h photoreaction with I (Figure 2b).

Table 1-2. Reuse of Pto.z/TiOz catalyst for 2 synthesis.o

Yield/0/0Conversion / o/o

ＨＮ」″Ｎ
０
２

６
・

Entry Catalyst

1 Fresh

2 lst reuse

3 2ndreuse

4 3rd reuse

" Reaction conditions: catalyst (10 mg),

K, photoirradiation time (12 h).

>99

>99

>99

>99

５

５

５

４

９

９

９

９

1 (20 pmol), EtOH (10 mL), nitrogen (1 atm), l. >300 nm, 303

3.5. Synthesis of various benzimidazole

The present process is tolerant for synthesis of various kinds of benzimidazoles. As shown in Table

1-3, photoirradiation of alcohol solutions containing various o-arylenediamines with Ph.z/TiOz

successfully produces the corresponding benzimidazoles. In that, 2-alkyl- and 2-aryl-substituted

benzimidazoles are produced with very high yields. In addition, 5- and/or 6-substituted derivatives are

also produced successfully.
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Table 1-3. Synthesis of benzimidazoles from o-arylenediamines and alcohols.'

Entry Diamines i;;i" Alcohol tn 器践 PrOdu∝
GC yield

/%
１

　

　

２

　

　

３

　

　

４

　

　

５

　

　

６

　

　

７

　

　

８

　

　

９

０

　
　
０

　
　
０

　

０

　

０

　

０

　
　
０

　
　
０

（２

　
　
（２

　
　
つ
´
　
　

，
一
　
　
２
一
　
　
２
一　
　

，
一
　
　
２
一

OX

α Ж

4  Ti02 27 11

93

34

>99

37

>99

43

95

1.8

89

57
Cl

82

23

94

11

>99

20

83

/´｀OH

α准
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10

10
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0道
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I In道 舅
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∝

°H

α」

釧

4  Pt0 2/Ti02  >99

4  Ti02     56

4  Pt0 2/T102  >99

4  Ti02     54

4  PtO_2/Ti02  >99

4  Ti02     62

4  Pt0 2/Ti02  >99

24  Ti02     93

24  Pt0 2/T102  >99

12  Ti02     >99

12  PtO,/TI02  >99

4  Ti02     43

4  Pt0 2/Ti02  >99

10b

ll°

12ι

13

14

15

16
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０

０
４
　
　
２
一
　
　

，
一

H
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:X)ト

ＨＮ」〃Ｎ
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4  Ti02 63
4oH

20 4 Ph.zlTiO2 >99 cl

4  T102     64

4  Pt。 2/Ti02  >99

o Reaction conditions: catalyst (10 mg), alcohol (10 mL), nitrogen (l atm), l" >300 nm. b catalyst (80

mg), alcohol (5 mL). " catalyst (5 mg), alcohol (750 pmol), MeCN (5 mL).

4. Conclusion

In conclusion, we found that the Ptnio2 system enables efficient benzimidazole production under

photoinadiation. This is promoted by one-pot multiple catalytic transformations on PtlTiOz, which

involve Pt-assisted photocatalytic oxidation on TiO2 and catalytic dehydrogenation on the surface of Pt

particles. The process has significant advantages as compared to the other methods:24 1i; cheap and

stable reactant (alcohol); (ii) no requirement of acids and oxidants; (iii) no harmful byproduct formation

(only water and Hz form during reaction); (iv) mild reaction condition (room temperature). The process

therefore has a potential to enable green benzimidazole synthesis. Recently, organic transformation with

semiconductor photocatalysts has attracted much attention,25 but successful examples are still scarce.

The basic idea presented here based on the combination of photocatalytic and catalytic reactions may

help open a new strategy towards the development of photocatalysis-based organic synthesis.

ＨＮ碁Ｎ　　ＨＮ」〔̈
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Figure 1-11. Time-dependent change in the concentrations of o-dinitrobenzene and the product 2 during

photoirradiation of an EtOH solution containing o-dinitrobenzene. Reaction conditions: Degussa P25

TiO2 (10 mg), o-dinitrobenzene (20 pmol), EtOH (10 mL), nitrogen (1 atm), 1" >300 nm (Xe lamp;2

kW; Ushio Inc.; light intensity, 18.2 W ma at300-400 nm),303 K.
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Chapter II

Hydrodenitrogenation of Aromatic Cyanides on TiO2 Loaded with Pd
Nanoparticles

l.Introduction
Aromatic cyanides are one of the most important chemicals used as solvents, extractants, and

intermediates for the synthesis of pharmaceuticals, plastics, rubbers, herbicides, and pesticides.' These

compounds are therefore often contained in industrial effluents. Since they are highly toxic to living

organisms,2 their decomposition and detoxification are very important tasks. Bioremediation processes

have been studied for the treatment of aromatic cyanides.s These processes decompose the compounds

into harmless ones such as COz and H2O; however, they require restricted operation conditions in pH

and temperature. Photocatalytic decomposition of aromatic cyanides has also been studied with titanium

dioxide (TiOr.4 Photoirradiation of TiO2 in water under 02 produces active oxygen species.such as

hydroxyl radical (OH.) or superoxide anion (Oz.-), and decomposes aromatic cyanides into CO2, NO:-,

and HzO.5 These oxidative processes, however, completely decompose the aromatic nuclei of the

compounds. Selective decomposition of the -CN moiety and the reuse of resulting aromatic nuclei for

upstream processes are desirable for development ofgreen and sustainable processes.

Supported Pd nanoparticles are often employed for catalytic hydrogenation of various compounds

such as olefinsGe and nitro compounds,trtt with molecular hydrogen (H2) as a hydrogen source.

Hydrogenation of aromatic cyanides on Pd catalysts has also been studied at elevated temperatures.r3

These compounds are successfully converted to toluene derivatives and NH: via hydrogenation and

subsequent cleavage of C-N moiety. This hydrodenitrogenation is promoted by the reaction of aromatic

cyanides with activated hydrogen species (H-Pd), formed via a dissociative adsorption of H2 on the

surface of Pd particles. The reaction proceeds selectively without decomposition of aromatic nuclei and

enables the reuse ofproducts for upstream processes.

Photoexcitation of semiconductor materials loaded with noble metal particles creates a positive hole

(h*) and conduction band electrons (e-), and allows subsequent e- transfer to the metal particles.ra

Photoexcitation of semiconductor loaded with Pd particles, when performed in protic solvents such as

alcohols, produces aldehyde via oxidation ofalcohol by h- and H-Pd species via reduction ofprotons

Gt.) bV e- on the Pd particles." This photocatalytic reaction, if performed out with aromatic cyanides,

may successfully promote hydrodenitrogenation by the photoformed H-Pd species at room temperature.

In the present work, TiOz loaded with Pd particles (Pd/TiO2) was used for photocatalytic reaction of
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aromatic cyanide with ethanol under UV inadiation (1, >300 nm). This catalytic system successfully

promotes hydrodenitrogenation of aromatic cyanides and produces toluene derivatives with high

selectivity at room temperature. The denitrogenation mechanism was clarified, and the effect of Pd

amount on the catal5ttic activity was studied.

2. Experimental

2-1. Materials

All of the reagents used were purchased from Wako, Tokyo Kasei, and Sigma-Aldrich, and used

without further purification. Water was purified by the Milli Q system. JRC-TIO-4 TiO2 (equivalent to

Deggusa P25; particle diameter, 24 nm; BET surface area, 54 nf g r; anatase/rutile : ca. 83/17) were

kindly supplied from the Catalyst Society of Japan.

The Pd,/TiO2 catalysts lx (wt%): Pd/(Pd + TiO2) x 100; x : 0.5, 1,2, 4f were prepared according

to literature procedure,r6 as follows: TiO2 (1.0 g) and Pd(NO3)2 (I0.9, 21.9, 44.2, or 90.2 mg) were

added to water (40 mL) and solvent were evaporated with vigorous stirring at 353 K for 12 h. The

obtained powders were calcined at 673 K under air flow (0.5 L min-t) and then reduced at 673 K under

H2 flow (0.2 L min '). The heating rate and holding time at 673 K for these treatments were 2 K min-r

and 2 h, respectively. AgzlTiOz and PblTiOz wore prepared in a similar manner to those for Pd,/TiO2,

usingAgNO3 (16 mg) or HzPtClo.6H2O (54 mg) as precursors.

AuzlTiOzwas prepared by a deposition-precipitation method, as follows:r7 HAuCla.{112O (45.8 mg)

was added to water (50 mL). The pH of the solution was adjusted to 7 by an addition of I M NaOH.

TiO2 (1.0 g) was added to the solution and stirred vigorously at 353 K for 3 h. The particles were

recovered by centrifugation and washed with water. They were calcined at 673 K under air flow (0.5 L
. -lrmln -1.

2-2. Photoreaction procedure

Each of the respective catalysts (10 mg) was added to ethanol (5 mL) containing aromatic cyanides

within a Pyrex glass tube (20 cm3; <p16.5 mm). The tube was sealed using a rubber septum cap and

purged with argon gas. Each tube was photoinadiated with magnetic stirring by a Xe lamp (2 kW; Ushio

Lrc.). The temperature of solution during photoirradiation was 298K, and the light intensity was 18.2 W

m-' 1at 300-400 nm; through a water filter). After photoirradiation, the gas phase product was analyzed

by GC-TCD (Shimadzu; GC-8A). The resulting solution was recovered by centrifugation and, analyzed,

by GC-FID (Shimadzu; GC-2010), where the products were identified by GC-MS (EI) (Shimadnt; 40
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GCMS-QP50s0A).

2-3. Analysis

Total amounts of metals on the catalysts were determined by an inductively-coupled argon plasma

atomic emission spectrometer (ICAP-AES; SII Nanotechnology, SPS 7800), after dissolution of

catalysts in an aqua regia.t6 Difrrse reflectance UV-vis spectra were measured on an IJV-vis

spectrophotometer (Jasco Cotp.; V-550 with Integrated Sphere Apparatus ISV-469) using BaSOa &s &

reference. Transmission electron microscopy (TEM) observations were carried out using an FEI Tecnai

G2 20ST analyical electron microscope operated at 200 kV.

3. Results and discussion

3-1. Synthesis and characterization of catalysts

The Pd,/TiO2 catalysts with different Pd loadings [.r (wt%) : Pd/(Pd + TiO2) x 100; x : 0.5, 1,2,4]

were prepared by impregnation of Pd(NO:)z onto TiO2 followed by reduction with Hz. Figure 2-1 shows

the typical TEM images of respective Pd,/TiOz catalysts. All catalysts contain spherical Pd particles. The

size of Pd particles increases with the Pd loadings: the average diameters for x : 0.5, 1, 2, and 4 catalysts

were 2.6,4.1, 5.0, and 6.5 nm, respectively. As shown in Figure 2-2,the high-resolution TEM images of

catalysts revealed that Pd particles can be indexed asy'c structures, as same as bulk metallic Pd (JCPDS

46-1043). Figure 2-3 shows the diffirse reflectance UV-vis specfta of catalysts. The higher Pd loading

catalysts exhibit increased absorbance at l" >300 nm, due to the light scattering by the Pd particles.r5 As

shown in inset, TiOz loaded with 2 wtYo Pt (Pt2lTiOz) exhibits spectra similar to that of Pd,/TiO2,r8 and

TiO2 loaded with 2 wtolo Au (Au2/TiO2) and Ag (AglTiO) exhibit distinctive absorption bands at

400-500 nm assigned to localized surface plasmon resonance.tT'tn

31
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dPd=41± 09nm
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Figure 2-1.TEM images and size distribution of Pd particles for(→ Pd05/Ti02,(b)Pd1/Ti02,(C)

Pd2/Ti02,and(O Pd4/T102 Catalysts.The black bars show the data for fresh catalysts,and the white bars

show the data for catalysts recovered after the 3rd reuse for reactions(Table 2,run 4).

dPd=65± 1.3nm
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Figure 2-2. High-resolution TEM images of PdzlTiO2 catalyst. (a) The incident beam direction is [0, -1,

ll. (b) This particle is twinned particle. The incident beam directions are [0, -1, 1] and [0, 1, -1].

Pd4lTio2
Pd2lrio2
Pd1/Tio2

Pdo.y'Tio2

Tio2

500 600

l"/nm

Figure 2-3. Diftrse-reflectance UV-vis spectra of Pd,/TiOz, PtzlTiOz,Auz/TiOz, andAg2/TiO2 catalysts.

Catalytic activity of Pd/TiO2 for hydrodenitrogenation was studied with benzonitrile (l) as a model

compound.rt Table 2-l (runs l-3) summarizes the results for hydrodenitrogenation of benzonitrile with

H2 (l atm) as a hydrogen source in the dark. Benzonitrile (2 mM) and Pdz/TiO2 (10 mg) were added to

an n-hexane solution (5 mL) containing 5Yo ethanol, and the solution was stirred under H2 (l atm) for 6

h at different temperature. As shown in run l, the benzonitrile conversion at 298 K is 84% but the yield

of toluene (2) is only l5 70, where large amounts of benzylamine (3,30%) andN-ethylbenzylamine (4,

38%) remain. This suggests that the C-N cleavage is difficult to achieve at this temperature. As shown

in runs 2 and 3 , the rise in temperature increases the toluene yields, and the reaction at 333 K facilitates

almost quantitative conversion to toluene (run 3). Photocatalytic reaction of benzonitrile with alcohol as

a hydrogen donor was carried out. The reaction was performed by photoirradiation (1, >300 nm) of the
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solution under argon (1 atrn) for 6 h. As shown in run 4, the reaction facilitates complete conversion of

benzonitrile to toluene at 298 K. This suggests that photocatalytic reaction with alcohol as a hydrogen

source successfully promotes hydrodenitrogenation even at room temperature.

Table 2-1. Hydrodenitrogenation of benzonitrile with PdzlTiO2 catalyst.

‰:1:貿10m。,ルhexanddhand ey5 v″ ,5叫 σ ∝
N喝

CN HJ(l atm),dark,6h                           2          3

ビン
ヘ
Щ( p h oto cata I ytic syste m )

Pd2lTiO2 (10 mg), n-hexane/ethanol (95/5 v/v, 5 ml)

Ar (1 atm), I >300 nm, 298 K, 6 h

1

10 μmol

Yield/%
Run System Temperature / K Conversion of I lo/o

lα H2       298

2     H2

3     H2

4b      Photo    298

313

333

84

98

>99

99

15

61

99

99

14

0

0

23

0

0

30        38

o Dlbenzylamine (l%) was also detected as a product. This is produced by nucleophilic attack of a lone

pair of nitrogen atom of benzylamine to an electrophilic carbon of semi-hydrogenated intermediate (ref

13). After photoreaction, acetaldehyde (197 pmol) and trace amount of N,N-diethylbenzylamine (5) were

formed.

3-2. Photocatalytic activity of Pd/TiOz catalysts

Photocatalytic activity of Pd,/TiO2 with different Pd loadings ("r) was studied in ethanol. Table 2-2

summarizes the results forphotocatalytic reaction of benzonitrile by 6 h reaction. As shown in run 1,

pure TiO2 promotes almost no reaction of benzonitrile. In contrast, increased Pd loadings (runs 2-5)

enhances reaction and produces toluene with high selectivity (>95%). Among the catalysts, Pd2/TiO2

exhibits the highest denitrogenation activity, and fi.rther Pd loading (Pd4/TiO2) decreases the activity.

Loading of other metal particles is inefficient for denitrogenation. As shown in runs 6 and7, AuzlTiOz o

Ag2lTiO2promotes almost no reaction of benzonitrile.PtzlTiOz (run 8) shows relatively high conversion

of benzonitile (45%); however, the toluene yield is only 8o/o, where Nfl-diethylbenzylamine (5) is

produced mainly (36%). These data indicate that Pd/TiO2 catalyst, especially loaded with 2 wto/o Pd,

promotes efficient deniffogenation. It must be noted that the catalyst is reusable for further reaction. As

shown in run 4,thePd2lTiO2 catalyst, when reused for further reaction, shows activity and selectivity
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similar to those of virgin catalyst. In addition, as shown in Figure 2-1c (white bars), TEM analysis of

the catalyst recovered after the reaction revealed that the size ofPd particles scarcely changes during the

reactions. This indicates that the catalyst is reusable without loss of activity and selectivity.

As shown in runs 2-5 (Table 2-2), photoreactions with Pd/TiO2 catalysts produced triethylamine

(6) with the amount similar to that of toluene formed. Figure 2-4 shows the time-dependent change in

the amounts of benzonitrile and products during photoreaction with PdzlTioz catalyst. Photoirradiation

leads to a decrease in the amount of benzonitrile, along with a formation of toluene and triethylamine.

The profile for the toluene formation is very similar to that for the triethylamine formation. These data

clearly suggest that the nitrogen atom of benzonitrile is removed as triethylamine.

Table 2-2. Photocatalytic hydrodenitrogenation of benzonitrile (1) in ethanol with various catalysts.'

Run Catalyst d lnmb
conversion of I Yield I % Acetaldehyde H2 formed
/0/0 formed/pmol /pmol

l   Ti02

2  Pd05/T102 2.6

3   Pd1/Ti02   4.1

4  Pd2/Ti02  5.0

lst rcusc°

2nd reuseC

3rd reuser   5.1

5   Pd4/Ti02   6.5

6  Au2/Ti02  3.7

7   Ag2/Ti02  4.6

8  Pt2/Ti02  3.1

9   Pd2/Ti02〆   5.0

0

42

58

>99

>99

>99

>99

86

0

0

45

0

40

57

98

99

97

98

85

0

0

8

0

trace

trace

trace

trace

trace

trace

race

0

0

36

0

38

54

96

96

95

97

83

0

0

5

6          <0.1

293          289

256          242

206          176

143          119

207          202

55 51

153          144

263         248

'Reaction conditions: catalyst (10 mg), benzonitrile (10 pmol), ethanol (5 mL), Xe lamp (1, >300 nm),

Ar (1 atm), temperature (298 K), photoirradiation time (6 h). ' Average diameter for metal nanoparticles

determined by TEM observations. " Catalysts were reused after simple washing with ethanol. d

Photoreaction was performed without benzonitrile.
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Figure 2-4. Time-dependent change in the amounts of benzonitrile (1) and the products obtained during

photoreaction of benzonitrile with PdzlTioz catalyst. Reaction conditions are identical to those in Table

)-,

3-3. Mechanism for photocatalytic hydrodenitrogenation

Photocatalytic hydrodenitrogenation of benzonitrile is initiated by photoexcitation of TiOz. This

produces the positive hole (h*) and electron (e-) pairs, as follows.

TiO, + hv ---> h* + e- (l)

The h* oxidizes ethanol and produces acetaldehyde and protons (H*) on the TiOz surface.r8'2O

cH3cH2oH + 2f ---> CH3CHO + 2H* (2)

The photoformed conduction band e- is transferred to the Pd particles. This reduces H- and produces a

hydrogen atom on the particles (H-Pd species).

H- t e- + Pd --+ H-Pd (3)

The parts of the hydrogen atoms on the Pd particles are removed by the coalescence as a H2 gas.

H-Pd +H-Pd -- Hzt + zPd (4)

The stoichiometrical conversion of benzonitrile to toluene and triethylamine (Figure 2-4) indicates

that three aldehyde molecules formed by photocatalytic oxidation of ethanol (eq. 2) are involved in the

hydrodenitrogenation of one benzonitrile molecule. The reaction mechanism can therefore be

summarized in Scheme 2-1, which involves twelve H-Pd species. The substrate benzonitrile (1)

undergoes hydrogenation by the H-Pd species and produces benzylamine (3) intermediately. This is

transformed to an imine intermediate (7) by condensation with acetaldehyde, and then converted to
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N-ethylbenzylamine (4) via hydrogenation by H-Pd species. Condensation of 4 with acetaldehyde and

subsequent hydrogenation by H-Pd species afford Nfl-diethylbenzylamine (5).t' Hydrogenolysis of 5

by the H-Pd species produces toluene (2) and diethylamine (8). Condensation of 8 with acetaldehyde

and subsequent hydrogenation produces triethylamine (6). During the photoreaction (Figure 2-4), trace

amounts of 4 and 5 (<0.1 pmol) were detected by GC analysis. In addition, as summarized in Table 2-3,

photocatalytic reactions of compounds 3, 4, or 5 as the starting materials with PdzlTiO2 catalyst also

produces toluene and triethylamine with almost quantitative yields. These findings clearly support the

proposed denitrogenation mechanism involving the condensation with aldehyde and the hydrogenation

by the H-Pd species (Scheme 2-1). As shown in Figure 2-4, the mass balance of benzonitrile (1) and

toluene (2) is almost I00% during the reaction. This suggests that the hydrogenation of 1 to 3 is the

rate-determining step for this reaction sequence. Table 2-2 (run 9) shows the result of photocatalytic

reaction performed in the absence of benzonitrile. The photoreaction produces 248 pmol H2, which is

larger than that obtained with benzonitrile (176 pmol, run 4). This indicates that hydrodenitrogenation

and Hz evolution (eq.a) take place competitively.
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Scheme 2-1. Proposed mechanism for photocatalytic hydrodenitrogenation of benzonitrile with Pd/TiO2

catalyst in the presence ofacetaldehyde.

Table 2-3. Results of photocatalytic reaction of various substrates with PdzlTiO2 catalyst.o

Yield/0/0

Substrate Conversion / o/o

Toluene (2) Triethylamine (6)

９

９９

　

９９

　

刃

９

　

　

９

　

　

９

９

　

　

９

　

　

９

＞

　

　

＞

　

　

＞

７

　

　

８

　

　

７

９

　

　

９

　

　

９

３

　

　

４

　

　

５

´
Reaction conditions:Pd2/Ti02(10 mgD,SubStrate(10 μm01),Cthanol(5 mL),Xe lamp(λ >300 nl→ ,Ar

(l at10,temperature(298K),photOirradiation time(6h).
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3-4. Hydrodenitrogenation of substituted benzonitrile

The Pd/TiO2 catalyst was employed for hydrodenitrogenation of aromatic cyanides with several

substituents. The results are summarized, in Table 2-4. As shown in run 2, terephthalonitrile is

successfully transformed to p-xylene with 98% yield via the hydrodenitrogenation of two -CN groups.

Reaction of l-naphthonitrile (run 3) produces l-methylnaphthalene with 93o/o yield. Reactions of

benzonitrile with methyl, methoxy, or hydroxyl substituents (runs 4-6) produce the corresponding

toluene derivatives while maintaining these substituents. In contrast, halogen or carbonyl substituent

also undergoes reaction. As shown in run 7, the reaction of p-chlorobenzonitrile produces toluene

because the halogen groups are removed via the reaction with H-Pd species.rs In addition, carbonyl

substituent is converted to the hydroxyl group (run 8) due to the reduction by the H-Pd species. These

results suggest that the Pd/TiO2 catalyst promotes hydrodenitrogenation of {N group even in the

presence of substituents, although some substituents are also transformed during the reaction.

Table 2-4. Results of photocatalytic hydrodenitrogenation of various aromatic cyanides with Pd2lTiO2

catalyst.'

Run Substrate Ve ,非
S廿誠e conv∝ 豆on PЮ

ttd
Yield

/%

98

98

93

93

99

93

99

σ
一
め
一
ぜ

>9912

48 >99

趾
イ

”

が

24 >99

>99 >99

>99

α
 Reaction conditions:Pd2/Ti02(10 mgy,Substrate(10 μm01),Cthanol(5 mL),Xe lamp(λ >300 nl⇒,Ar

(1江0,temperature(298o.

>9912

12

48

12

12

>99

>99
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The Hammett plot analysis was carried out to clarifii the effect of substituents on the reaction

kinetics. Photocatalytic reactions of the abovep-substituted benzonitriles were carried out with PdzlTiO2

for I h, and the first-order rate constants for the decrease in substrate concentration, k (mM h-r), were

determined. tr'igure 2-5 shows the relationship betweenlog/c and the substituent constant, o.22 Alinear

correlation is observed, and the slope of the plot (p) is determined to be +0.795. The positive p value

indicates that stabilization of negative charge in the transition state effrciently promotes the reaction; in

other words, the reaction proceeds via a nucleophilic attack by a nucleophile.23-25 As proposed in

Scheme 2-1, the reaction of benzonitrile (1) would occur via the hydrogenation of -CN group

(formation of benzylamine 3), via the nucleophilic attack by the H-Pd species. The Hammett plot results

clearly support this mechanism.

-0.5
o

Figure 2-5. Hammett plot for the photocatalytic reaction of p-substituted benzonitriles with PATiOz-

The k denotes the first-order rate constant for the decrease in substrate concentration (mM tr-t)

determined by I h photoreaction. The reaction conditions are identical to those in Table 2-4.

3-5. Effect of Pd amount on the catalytic activity

As shown in Table 2-2, the denitrogenation activity depends on the amount of Pd loaded, and

Pdznio2 shows the highest activity. The H-Pd species are formed on the surface Pd atoms and, hence,

the number of surface Pd atoms would strongly affect the denitrogenation activity. As shown in Figure

2-2, the high-resolution TEM images of catalysts revealed that the shape of Pd particles is a part of

cuboctahedron surrounded by the (1ll) and (100) facets. The Pd particles on TiO2 can therefore simply

be modeled as a fcc cuboctahedron.'6 This structure is generally used as a model for cubic fcc metal

（〓「ミ
ミヽ
）
０
〇
一

0.5

y=0.795x-0.0034

R2 = 0.9919
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nanoparticles. The numbers of surface metal atoms calculated based on this model are often employed

for determination of active site in several catalytic systems such as hydrogenation of allyl alcohols with

H2 on Pd particles ,27 steam reforming of methane on Pt particles,28 and oxidation of cinnamyl alcohols

on Au particles.2e Thefcc cuboctahedron model therefore allows rough determination of the number of

surface Pd atoms on the nanoparticles. Considering the full shell close packing cuboctahedron for Pd

particle where one Pd atom is surrounded by twelve others, the number of total Pd atoms per Pd particle

(N,o,ur*) is expressed by eq. 5 using the number of shells (m). Ntorut* is rewritten with the average

diameter of Pd particles (dp6 / nm) and the atomic diameter of Pd (0.274 nm).'o The number of surface

Pd atoms per Pd particle (N,u,ru""*) is expressed by eq. 6.

ⅣtotJ*(― )=
10″

3_15″2+H“ _3

Nsu.face * F) :10m2 - 20m + 12

The number of Pd particles per gram catalyst (npu,ti"r) is expressed by eq. 7, using the percent amount of

Pd loaded on the catalyst lx (wt%): Pd/(Pd + TiOt x 1001, molecular weight of Pd [M1ry e rc6.42 g

mol-t)1, and N1o61*. The number of surface Pd atoms per gram catalyst (Nr-a".) is therefore expressed by

eq. 8.

nparticte(mol g-l; =

(鵬 )3
(5)

(6)

(7)

(8)

l00xMry xly'totul *

Nsurfu"" (molg-l): ffsurface *x zparticle

The N.*.1u"" values for respective Pd,/TiO2 catalysts can therefore be calculated using their dpa values

determined by the TEM observations (Figure 2-1). As shown by the open symbols in Figure 2-6, the

N.*ru"" values increase with an increase in the amount of Pd loaded; the values are 19.8 pmol g-r

(Pdo5/TiO2),27.8 (Pdr/TiO2), 45.5 (Pd2/TiO), and 73.t (Pd4/TiO2), respectively. To clarify the

hydrodenitrogenation activity per surface Pd atoms, the turnover number for the reaction per surface Pd

atoms on respective catalyst (TON"u.1u"") was determined based on eq. 9, using the amount of toluene

formed (mol) during the photocatalytic reaction of benzonitrile for 6 h in the presence of 10 mg catalyst

(Tabre2-2).

TONsurface(~)= [toluene formed]

Nsurface xl0xl0-3

As shown by the black symbols in Figure 2-6, the TON.*1.." values for Pdo.s/TiOz, Pdr/TiO2, znd

Pd2lTiOz are almost the same. This suggests that these catalysts produce the surface H-Pd species with

(9)
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similar efficiency. The higher activity of Pd2lTiO2 than Pdo.s/TiOz and Pdr/TiO2 (Tabte 2-2) is therefore

because larger number of surface H-Pd species is produced due to the larger number of surface Pd

atoms (N.,,.a"").

0.5 1 2
(2.6) (4.1) (5.0)

Pd amount, x lv,tlo/o

(dp6 / nm)

Figure 2-6. (Open symbol) The number of surface Pd atoms per gram Pd,./TiO2 catalyst (N.*s"""), and

(closed symbol) the turnover number for toluene formation per surface Pd atoms on respective catalysts

during photocatalytic reaction of benzonitrile (TON,u,su""). Reaction conditions for benzonitrile were

identical to those inTable2-2.
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Figure 2-7. Schematic representation of the Schottky barrier created at the Pd/TiO2 heterojunction.
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In contrast, the TON.u.luce value of Pda/TiOz is much lower than that of lower Pd loading catalysts

(Figure 2-6), suggesting that the effrciency for H-Pd formation on the catalyst is lower. This is because

the photocatalytic oxidation and reduction effrciency is decreased by the amount of Pd loaded. As shown

in runs 2-5 (Table 2-2),the amounts of acetaldehyde and H2 produced on Pdy'TiO2 are much lower than

those on lower Pd loading catalysts. It is well known that, as shown in Figure 2-7, the

metal/semiconductor heterojunction creates a Schottky barrier (Qs), and the $s height increases with an

increase in the amount of metal loaded.3r The increased $s height by the increased Pd loadings therefore

suppresses smooth transfer of the conduction band e- to the Pd particles. This may result in inefficient

charge separation between h* and e- and exhibit decreased photocatalytic activity. As a consequence, the

H-Pd formation is suppressed, thus resulting in decreased denitrogenation activity. These findings

indicate that the PdzlTiO2 catalyst, with relatively low fu height and large number of surface Pd atoms,

exhibits the highest activity for photocatalytic hydrodenitrogenation of aromatic cyanides.

4. Conclusion

TiO2 loaded with Pd particles (Pd/TiOr) were used as catalysts for photocatalytic

hydrodenitrogenation of aromatic cyanide in ethanol as a hydrogen source. These catalysts, when

irradiated by UV light at room temperature, promote denitrogenation and produce the corresponding

toluene derivatives and triethylamine with very high selectivity. Photoexcited Pd/TiO2 produces

acetaldehyde and the active H-Pd species. Consecutive reactions involving hydrogenation by H-Pd

species and condensation with aldehyde facilitate efficient hydrodenitrogenation. The amount of Pd

loaded and the size of Pd particles strongly affect the denitrogenation activity. The Pd/TiO2 catalyst with

a relatively low Schottky barrier height at the Pd/TiO2 heterojunction and a large number of surface Pd

atoms is necessary for efficient denitrogenation.
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Chapter III

.l/-Monoalkvlation of Amines with Alcohols on TiO' Loaded with Pd
Nanoparticles

L.Introduction
Tandem catalysis that enables multistep reactions in one pot has attracted a great deal of attention

because it avoids the isolation of unstable intermediates and reduces the production of wastes.r-3 A

variety of one-pot synthetic procedures have been proposed, but many of these employ homogeneous

catalysts, which generally suffer from product contamination and limited recyclability.+6 Development

of heterogeneous catalytic systems that promote efficient one-pot synthetic reactions is currently the

focus of attention.T-l I

Secondary amines are one of the most important classes of chemicals that are widely used for

synthesis of pharmaceuticals and agricultural chemicals.l2 Traditionally, these compounds are

synthesized by ly'-monoalkylation of primary amines with alkyl halides.r2-ra This method, however,

requires stoichiometric or excess amount of inorganic bases, with a concomitant formation of large

amounts of inorganic salts as waste.

An alternative environmentally-friendly way for secondary amine synthesis is the N-alkylation of

primary amines with alcohols as the alkylating reagents in the presence of transition metal catalysts,

so-called "borrowing hydrogen (H) strategy::.r5-r8 16" reaction proceeds via three consecutive catalytic

steps in one pot: (i) dehydrogenation of an alcohol initially proceeds, producing aldehyde and H atoms

on the metal; (ii) catallic condensation of the formed aldehyde with primary amine produces imine; and,

(iii) the imine is hydrogenated by the H atoms, giving the secondary amine. Although many

homogeneous catalysts such as Pt-, Ru-, and h-complexes, have been proposed so far,le-24 these methods

have shortcomings in the recovery and reuse of expensive catalysts and/or the indispensable use of

co-catalysts such as bases and stabilizing ligands. The design of easily recyclable heterogeneous

catalytic systems is therefore desirable.

Several heterogeneous systems have also been proposed for one-pot secondary amine synthesis

such as Pd oxides supported on Fe2O3,25 Pd particles supported on boehmite nanofibers,tu Ag clusters

supported on Al2O3 (in the presence of FeCls.6H2O as a homogeneous Lewis acid),z1 Ru or Cu

hydroxide supported on A12O3,28-3r Au particles supported on TiO2,32 and Pd particles supported on

MgO." All of these systems produce secondary amines selectively, but require relatively high reaction

temperatures (>363 K).
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The purpose of the present work is to design heterogeneous catalytic systems that promote

N-monoalkylation of primary amines with alcohols at room temperature. It is well known that

photoexcitation of semiconductor TiOz loaded with noble metal particles such as Pt,3a Ag,3s Au,36 and

Pd37 under inert gas atmosphere successfully promotes dehydrogenation of alcohols and produces

aldehydes at room temperature. The removed H* are reduced by the photoformed electrons on the metal

particles and are transformed to H atoms (H-metal species), which are finally removed from the metal

surface by the formation of H2.38 This indicates that TiO2 loaded with metal particles, when

photoactivated in alcohol, produces aldehyde and H atoms at room temperature. The formed aldehyde

may react with primary amine on the Lewis acid site on the TiOz surface and produce imine.3a'3e The

imine may then be hydrogenated by the H atoms formed on the metal surfacea0 and converted to

secondary amine.

Based on the above scenario, we studied the N-alkylation of primary amines with alcohols in the

presence of metalloaded TiOz under photoirradiation (1, >300 nm). Here we report that TiO2 loaded

with Pd particles (Pd/TiO2) successfully promotes N-monoalkylation of primary amines at room

temperature, via three consecutive steps involving (i) dehydrogenation of alcohols on the photoactivated

TiOz surface; (ii) catalytic condensation of the formed aldehyde and amine; and, (iii) hydrogenation of

the formed imine on the Pd surface. We found that the reaction effrciency strongly depends on the size

of Pd particles. The catalyst loaded with 0.3 wt o/o Pd, containing 2-2.5 nm Pd particles, shows the

highest activity.

2. Experimental

2-1. Materials

All reagents were purchased from Wako, Tokyo Kasei, and Sigma-Aldrich and used without further

purification. Japan Reference Catalyst JRC-TIO-4 TiO2 particles were kindly supplied from Catalysis

Society of Japan.

Pd,/TiOz [x (wt%): 0.1, 0.3, 0.5, and 1.0] were prepared as follows: TiO2 (1.0 g) and Pd(NO3)2

(2.2, 6.5, 10.9, or 21.9 mg) were added to water (a0 mL) and evaporated under vigorous stirring at 353

K for 12 h. The obtained powders were calcined at 673 K under air flow (0.5 L min-r) and then reduced

at 673 K under H2 flow (0.2 L min-'). The heating rate and holding time at 673 K for these treatments

were 2 K min I and 2 h, respectively. Ago.:/TiOz and Pte.3/TiO2 wore prepared in a similar manner to

those for Pd,/TiO2, usingAgNO3(4.7 mg) or H2PtCI6'6H2O (8.0 mg) as precursor.

Auo.r/TiOz was prepared by a deposition-precipitation method as follows: HAuCla'4H2O (6.3 mg)
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was added to water (50 mL). The pH of the solution was adjusted to 7 by an addition of 1 M NaOH.

TiO2 (1.0 g) was added to the solution and stined vigorously at 353K for 3 h. The solids were recovered

by centrifugation and washed with water. The obtained solids were dried at353 K and calcined at 673 K

for 2 h under air flow (0.5 L min-r).

2-2.Photoreaction

Each of the respective catalysts (10 mg) was suspended in alcohol (5 mL) containing required

amount of amine within a Pyrex glass tube ($10 mm; capacity,20 mL). The tube was sealed with a

rubber septum cap. The catalyst was dispersed by ultrasonication for 5 min, and Nz was bubbled through

the solution for 5 min. The tube was photoirradiated with magnetic stirring at298 K by a 2 kW Xe lamp

(1" >300 nm; Ushio Inc.). The light intensity at 300400 nm is 18.2 W m'. After photoirradiation, the

gas-phase product was analyzed by GC-TCD (Shimadzu; GC-8A). The resulting solution was recovered

by centrifugation and analyzed by GC-FID (Shimadzu; GC-1700), where the substrate and product

concentrations were determined with authentic samples. Identification of the products was performed by

Shimadzu GC-MS system (GCMS-QP5050A).

2-3. Hydrogenation by H,

Each of the respective catalysts was suspended in solution (5 mL) containing substrate within a

Schlenk tube. The catalyst was dispersed by ultrasonication for 5 min, and Hz was bubbled through the

solution for 5 min, where the Hz pressure was maintained at 1 atm using a balloon. The tube was placed

on the digitally-controlled water bath with magnetic stirring at298K.

2-4. Analysis

Total Pd amounts of the catalysts were determined by an X-ray fluorescence spectrometer (Seiko

Instruments, Inc.; SEA2I10). Diffirse reflectance UV-vis spectra were measured on an I-IV-vis

spectrophotometer (Jasco Corp.; V-550 with Integrated Sphere Apparatus ISV-469) with BaSOa as a

reference.se'uo TEM observations were carried out using an FEI Tecnai G2 20ST analytical electron

microscope operated at200 kv.6r The cuboctahedron Pd particles were created on the Crystal Studio Ver.

9.0 software (CrystalSolf. Inc) and used for calculation of the number of Pd atoms.s0 Ab initio

calculations were carried out with the Gaussian 03 program, and the geometry optimization was

performed with the density functional theory (DFT) using the B3LYP function with the 6-31G* basis

set.62'63
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3. Results and discussion

3-1. Catalytic activity of metal-loaded TiOz

Table 3-1. Catalyst properties and the results for N-alkylation of aniline with benzyl alcohol on various

catalysts under photoirradiation.

∝
釧+OⅢ2_瑠

淵Ψ い 0+(>NO
S mL S0 umot N2 (1 atm), 298 K 1

Entry Catalyst らd/nmα  Aniline conv/%う
Yields/0/Oac  AFnOunt ofproduct fblllled/μ m011

Benzaldehvde Toluene H"

l   Ti02

2   Au。 3ノTi02

3   Ag03/Ti02

4   Pt0 3/T102

5   Pd。 1/Ti02   1・ 6

6   PdO_3/Ti02   2.3

7   Pd05/Ti02   2.6

8   Pd10/Ti02    4.1

9グ   Pd03ノTi02

11

4

9

56

65

>99

91

89

>99

10   0 <1

4    0     16

6    2     4

53    3      84

8    49    96

6    92    90

9     81     62

0      <1

0        15

0         3

0       98

0.9       93

14       79

25        18

19   64    56            42       6

7    92

"Average diameter of Pd particles determined by TEM observations (Figure 1). bDetermined by GC. "

d: [product formed] /linitiat amount of anilinel x 100. dThe result obtained by the reuse of catalyst

(entry 6) after simple washing with ethanol.

The catalytic activity of metal-loaded TiO2, M,/TiO2 [x (wt %) : M(M + TiOt x 100], was studied

forl/-alkylation of primary amine with alcohol. The catalysts loaded with 0.3 wtYometalparticles such

as Au, Pt, Ag, and Pd were prepared with JRC-TIO-4 TiO2 supplied from the Catalyst Society of Japan

(equivalent to Degussa P25; anataselrutile: ca. 80/20; average particle size,24 nm; BET surface area,

59 fif g '). Metal loadings were carried out by the deposition-precipitation methodar for Au and by the

impregnation-reduction method3a for Pt, Ag, and Pd, respectively. These catalysts were used for

N-alkylation of aniline with benzyl alcohol. The reactions were carried out by photoirradiation (1" >300

nm, 6 h) of a benzyl alcohol solution (5 mL) containing aniline (50 pmol) with respective catalyst (10

mg) at room temperature under N2 atmosphere (1 atm). The conversion of aniline and the yield of

N-benzylidenaniline (1) and N-benzylphenylamine (2) (: [product formed] / [initial amount of aniline] x
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100) are summarized in Table 3-1. With bare TiO2 (entry 1), the aniline conversion is only lIo/o andthe

imine (N-benzylidenaniline: 1) is formed as the main product, where the secondary amine

(1/-benzylphenylamine: 2) is scarcely produced. Aus.3/TiO2 and Ag6.3/TiO2 catalysts are also ineffective

(entries 2 and3); their aniline conversions are <l|oh.In these cases, the amount of benzaldehyde formed

is significantly low (<20 pmol). This implies that photocatalytic oxidation of alcohol does not occur

effixiently on these catalysts and does not provide enough amount of aldehyde for condensation with

aniline. As shown in entry 4, Pt63lTiO2 shows relatively high aniline conversion (56%). The 2 yield is

however only 3o/o, and imine (1) is produced mainly. This indicates that hydrogenation of imine does

noe occur efficiently on the Ptgi/TiO2 catalyst. In contrast, Pdo.3/TiO2 (entry 6) produces 2 with almost

quantitative yield (92%). The results clearly indicate that Pd/TiO2 catalyst is highly active for

N-monoalkylation.

3-2. Catalytic activity of Pd/TiOz

Pd,/TiO2 catalysts with different Pd loadings (x:0.1, 0.3, 0.5, and 1.0 wto/o) were prepared to

clariff their activity. Figure 3-1 shows the typical transmission electron microscopy (TEM) images of

Pd0.3/TiO2. Highly dispersed Pd nanoparticles were observed for all of the Pd,/TiO2 catalysts. As shown

in Figure 3-1, the size of Pd particles (dp6) determined by the TEM observations increases with an

increase in the Pd loadings; the average diameters for x : 0. 1 , 0.3, 0.5, and I .0 catalysts are | .6, 2.3, 2.6,

and4.l nm, respectively. In addition, high-resolution TEM image of catalyst (Figure 3-2) revealed that

the Pd particles can be indexed asfcc structttre, as well as bulk Pd metal (JCPDS 46-1043). Figure 3-3

shows the diffi.rse reflectance UV-vis spectra of respective catalysts. The catalysts with higher Pd

loadings show increased absorbance at l" >300 nm due to the light scattering by the Pd particles.
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dp6 = 1.6 t 0.3 nm

dp6= 2.3 + 0.4 nm

0246
Core size / nm

a246
Core size / nm

Figure 3-1. Typical TEM image of Pd0.3/TiO2 catalyst, and the size distributions of Pd particles on the

respective Pd,/TiO2 catalysts.

0246
Core sizeノ nm

dm= 2.6 t 0.5 nm

Pd1.orrio2

dpa = 4.1 + 0.9 nm
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Pd0 3rTi02

Pd05/Ti° 2

Figure 3‐2.High‐resolutton TEDIlimages ofPd03/Ti02・ (a)The incidcnt beam direction is[0,-1,1]。 (b)

This particle isいwillIIcd particle.The incidcnt bealn directions are[0,-1,1]and[0,1,-1].
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Figure 3-3. Diffirse reflectance UV-vis spectra of Pd,/TiOz catalysts.

Table 3-1 (entries 5-8) summarizes the results for N-alkylation of aniline with benzyl alcohol in the

presence of Pd,/TiOz catalysts. Among the catalysts, Pde.3/TiOz (entry 6) shows the highest aniline

conversion (>99%) and the highest 2 yield (92%). The catalysts with lower or higher Pd loadings show

decreased activity. These data suggest that Pdo:/TiOz shows the best catalytic activity, and the activity

strongly depends on the amount of Pd loaded. It is noted that the Pdo./TiO2 catalyst is reusable for

further reaction. As shown in Table 3-1 (entry 9), Pd0.3/TiO2, when reused for reaction after simple

washing with ethanol, shows the aniline conversions and 2 yield similar to that obtained with the virgin

catalyst (entry 6). This indicates that the catalyst is reusable without the loss of activity and selectivity.

In addition, Pd0.3/TiO2 is applicable for synthesis of several kinds of secondary amines. As shown in

Table 3-2, photoirradiation of Pds 3/TiO2 in alkyl or benzyl alcohols containing several kinds of primary

amines produces the corresponding secondary amines with very high yields (>82%).

500 700
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Table 3-2. N-alkylation of various amines with alcohols on the Pdo.3/TiO2 catalyst under

photoirradiation."

Entry Alcohol Amine
Amine conv.

Product
/Yob

tlh Yield / Yob

１

　

　

　

２

$NH,

)rY""'

>99

>99

98

>99

94

>99

>99

>99

>99

,i\a^ru,u
\)H

o^*&'
h*Q-
O^ilv*r,
O--^gQ,*

12\

O^u'"{"
bu0'

a\
'^N'\-'l

"(\
.,.\.^1r'^V

98

97

82

96

82

95

82

95

9l

２

　

　

　

４3

4

5

6

7

8

9

li^f^ot

4on

,Mott

２

　

　

　

６

　

　

　

２

　

　

　

２

o Reaction conditions: alcohol, 5 mL; amine, 50 pmol; catalyst, 10 mg; temperature,2g8K; N2, 1 atm; l,

>300 nm;'Determined by GCs.

3-3. Mechanism for N-alkylation

The Pd/TiO2 catalysts promote N-alkylation of amine with alcohol via tandem photocatalytic and

catalytic reactions. The reactions are initiated by photoexcitation of TiO2, producing the electron (eJ and

positive hole (h*) pairs.

TiOr+hv-+lf+e-

The h* oxidizes alcohol and produces aldehyde and H".

Rr-CH2OH + 2h* -+ R1{HO + 2H*

H' is reduced on the surface of Pd particles by the e transferred from the

transformed to the surface H atom (H-Pd species).

(l)

(2)

TiO2 conduction band, and

(4)

tf+e-+Pd+H-pd (3)

Parts of the H atoms are removed from the surface of Pd particles as H2 gas by coalescence.

H-Pd + H-Pd -+ Hrt + ZPd

Condensation of the formed aldehyde with primary amine by the Lewis acid site on the TiO2 surface

produces the imine. The reaction occurs reversibly as follows:34'3e
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Rl―CHO+R2二NH2
↓↑

R「CH N R2+H20 (5)

The inline is hydrogenated by the Hd species and is transfo..1led to secondary amine.40

Rl―CH N R2+211 Pd―)RI CH2二NH R2+2Pd (6)

Figure 3-4 shows the time-dependent change in the amounts of substrate and products during

photocatalytic reaction of aniline with benzyl alcohol in the presence of Pdo.r/TiO2, Pdo.3/TiO2, &nd

Pdr.g/TiO2 catalysts, respectively. As shown in Figure 3-4b, photoirradiation of Pdo.:/TiO2 produces

benzaldehyde and Hz at the initial stage. Then, the amount of aniline decreases, and the imine 1 and

secondary amine 2 appear. The amount of 1 stays very low and the amount of 2 increases with time; 6 h

photoinadiation leads to almost quantitative transformation of aniline to 2. These substrate and product

profiles suggest that the above reaction sequence (eqs 1-6) proceeds effrciently on the Pd0.3/TiO2 catalyst.

In contrast, with Pdo.r/TiOz and Pdr.g/TiO2 (Figure 3-4a and c), the formation of 2 is much slower than

that obtained with Pdo.:/TiOz; quantitative formation of 2 requires more than 10 h. These data suggest

that Pdo.:/TiO2 shows the highest activity for N-alkylation, and the amount of Pd loaded strongly affects

the catalytic activity.

6
lrradiation tirne/h

Figure 3‐ 4.Time¨dependent change in the amounts of substrate and products during photoreaction of

benzyl alcohol and aniline with(a)Pdo1/Ti02,(b)Pdo3/Ti02,and(C)Pdlo/Ti02 Catalysts.Reaction

conditions are identical to those in Table l.

3-4. Effect of Pd amount on the reaction steps

The effects of Pd amount on the respective reaction steps (eqs. 2-6) for N-alkylation were studied

to clarifr the reason for high activity of Pdo:/TiOz. The oxidation of alcohol by the photoformed h* (eq.

2) as the first step for reaction was studied by photoinadiation of respective catalysts (10 mg) in benzyl
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alcohol (5 mL) without aniline. Figure 3-5 (white) shows the amount of benzaldehyde formed by 6 h

photoirradiation. Pdo.r/TiO2 produces the highest amount of aldehyde and the amount decreases with the

Pd loadings. This suggests that lower Pd loading catalysts are more active for photocatalytic oxidation of

alcohol. It is well known that a metal/semiconductor heterojunction creates a Schottky barrier.a2

Photoformed conduction band e- of semiconductor overcomes this barrier and is trapped by metal

particles, resulting in enhanced charge separation between h* and e-. The charge separation effrciency

therefore strongly depends on the height of Schottky barrier. The increased metal loadings onto

semiconductor load to an increase in the height of Schottky barrier due to the electron transfer from

semiconductor to metal.43 The increased banier height by large Pd loadeings probably suppresses the

migration of condection band e- to Pd particles. This may decrease the charge separation effrciency and

result in decreased photocatalytic aldehyde formation (Figure 3-5). However, as shown in Table 3-1

(entries 5-8), all of the Pd,/TiO2 catalysts produce benzaldehyde with amounts larger than that of aniline

(50 pmol). This suggests that enough amount of aldehyde for condensation with aniline is produced on

all of the catalysts, and the photocatalytic alcohol oxidation is not the rate-determining step for

N-alkvlation.

Oo'
5mL

λ>300 nm,6h mt+H,+rycatalyst (10 mg)
N2 (1 atm),298 K

Pdo.1/Tio2

Pdo.3/Tio2

Pdo.y'Tio2

Pdl o/Tio2

0 50 100 1s0 200 250 300 350

Amounts / pmol

Figure 3-5. Amount of products formed during photoreaction of benzyl alcohol with respective catalysts

in the absence of amine.

Condensation of amine with aldehyde (eq. 5) is the next step for N-alkylation. The reaction is

catalyzed by Lewis acid site on the TiOz surface3o'3n and is not affected by the amount of Pd loaded.

Table 3-3 summarizes the results for condensation between aniline and 2 equiv of benzaldehyde in the

54



presence ofrespective catalysts for 3 h at298 K in the dark. The absence ofcatalyst (entry 1) produces I

with only 29oh yield.In contrast, addition of bare TiO2 (entry 2) produces 1 with >90yo yield. The yield

of 1 scarcely changes by the cata$sts with different Pd loadings (entries 3-6). These data clearly suggest

that the imine formation (eq. 5) is also not the rate-determining step for N-alkylation.

Table 3-3. Condensation of benzaldehyde with aniline on the respective catalysts in the dark."

い 0け  + 〔〔〕〕
/NH2

1 00 11mo!       50 μmol

dark,3h

benzy!alcoho!(5 mL)

catalyst(10m9)

N2(l atm),298K

Entry Catalyst 1yieldlohl"

1

2

3

4

5

6

none

Ti02

Pd01ノTi02

Pd03/Ti02

Pd05/T102

Pd10/Ti02

29

90

92

94

92

95

" Determined by GC.

As a result of the above, the rate-determining step for N-alkylation is the hydrogenation of imine by

the H atom formed on the surface of Pd particles (eq. 6) as the final step for reaction sequence. The

imine hydrogenation is strongly affected by the size of Pd particles loaded. This is confirmed by

hydrogenation of imine 1 with molecular hydrogen (H2) as a hydrogen source. The reaction was

performed in MeCN containing 1 with H2 (1 atm) in the presence of respective Pd,/TiO2 catalysts at the

constant Pd amount (0.28 pmol) for 2h in the dark. Figure 3-6 (black) shows the relationship between

the diameter of Pd particles (dp6) and the yield of secondary amine (2) formed. Smaller Pd particles have

larger surface area and possess larger number of surface Pd atoms. The 2 yields, however, increase with

an increase in the size of Pd particles. This indicates that all of the surface Pd atoms are not the active

site, and the Pd atoms on the specific surface site behave as the active site for imine hydrogenation.
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い 0 CNOdark,2h

solvent(5 mL)

catalyst(Pd:0.28 μmoり
H2(l atm),298K

1

(0.4 mmoり
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ヽ
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一①
一ゝ

Ｎ

dp6 / nm

Figure 3-6. The yields of secondary amine 2 obtained during hydrogenation of imine I in MeCN or

benryl alcohol with respective Pd,/TiO2 catalysts (Pd: 0.28 pmol) under H2 in the dark condition. The

amounts of catalysts used are: 30 mg (Pdo.,), 10 mg (Pdo.r), 5 mg (Pds5), and 3 mg (Pd1), respectively.

3-5. Active site for imine hydrogenation

Specific active site for imine hydrogenation on the Pd particles must be identified. Morphology and

size of metal particles strongly affect the catalytic activity due to the electronic and geometric

effects.asT Metal particles contain different types of surface atoms located at the vertex, edge, square,

and triangle sites. The number of these atoms changes substantially with the size of particles. As shown

in Figure 3-2, high-resolution TEM images of catalysts revealed that the shape of Pd particle is part of

cuboctahedron, which is surrounded by [1ll] and [00] surfaces. The Pd particles on TiOz surface can

therefore simply be modeled as afcc cuboctahedron, as shown in Figure 3-7a, which is often used for

related nanoparticle systems.a8-sO This allows rough determination of the number of Pd atoms on the

respective surface sites. Considering the full shell close packing cuboctahedron for Pd particle where

one Pd atom is surrounded by twelve others, the number of total Pd atoms per particle (i/,o,ur*) and the

number of surface Pd atoms per particle (N,*ru""*) can be expressed by the following equations using the

shell number (z).
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vertex

edge

square

triangle

Figure 7. (a) The fcc cuboctahedron model for Pd particles. (b) The largest cross-sectional (1ll)

hexagonal facet of the Pd particle. (c) The unit lattice of Pd particle.

1

N,o,u,* :l{z*-l)(5m2 -5m+3) Q)

Nru.ru""+ =lom2 -2om+12 (g)

= Nvertex * *N"ag" * +Nror,u.. * *fft iungl" 
*

The numbers of Pd atoms on the specific surface sites (N.0"";6.*) such as vertex, edge, square, and

triangle sites per Pd particles are therefore expressed by the following equations,5r

０

●

●

●

Arvertex*=12

N"ag"* =2a(m-2)

Nrquur"* =6(m-2Y

Nti-sr"* =4(*4\m-Z)

As shown in Figure 3-7b, the number of Pd atoms on the diagonal line of the largest cross-sectional

(111) facet of Pd particle is expressed as 2m-1. The lattice constant of Pd is 0.389 nm (Figure 3'7c),52

and the atomic diameter of Pd is 0.274 r:rnrr.53 The diameter of Pd particle (dpa) is therefore expressed as

follows.

標崎=Ψpa ll刊 +Qη4 (13)

The number of Pd particles per unit weight of Pd (np",ti"n), and the number of Pd atoms on the specific

surface site (vertex, edge, square, triangle) per unit weight of Pd (N,o""in") can therefore be expressed

(9)

(10)

(11)

(12)

0。 389 rlln
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using the molecular weight of Pd [M* (:106.42 g mol r;], as follows.

uparticle (mol g-l; =
Mw * Ntotul *

へpedic(m01g l)=へpcdic*× ′pa“cL

As shown in Figure 3-1, the average diameters of Pd particles (dp6) for catalysts were determined by

TEM observations to be 1.6 nm (Pd0r/TiO2),2.3 nrn (Pd0.3/TiO2),2.6 nm (Pd05/TiO2), and 4.1 nm

(Pdr g/Tioz), respectively. The shell numbers (m) for Pd particles on the respective catalysts can

therefore be calculated using eq 13. The numbers of Pd atoms on the specific surface site per unit weight

of Pd (N,0".i6") can then be determined using eqs 9-12, 14, and 15. Figure 3-8 shows the relationship

between the diameter of Pd particles and their respective ffp""ir. values. The Nu.n.* and N"6*" values

decrease with an increase in the size of Pd particle, and the Nrouu," values scarcely change with the Pd

particle size. These profiles are completely different from the catalyic activity of Pd particles for imine

hydrogenation (Figure 6, black). In contrast, the Ntiuner" value increases with an increase in the Pd particle

size, and the profile is very similar to the imine hydrogenation profile. This calculation result implies

that Pd atoms on the triangle site are active for imine hydrogenation.

● triangle  e vertex
● square   ● edge

l  Pd03 Pd05

: :

亜茎

dro / nm

Figure 3-8. Relationship between the diameter of Pd particles on the respective Pd./TiO2 catalyst and

the number of Pd atoms on the specific surface site of Pd particle per unit weight of Pd.

This is further confirmed by the turnover number for imine hydrogenation per number of Pd atoms

on the specific surface site (TON.p""i6.). The amount of secondary amine 2 (mol) formed during

hydrogenation of imine I by H2 with respective Pd,/TiO2 catalysts in the dark (Figure 3-6) was divided

(14)

(15)
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by the Pd amount (0.28 pmol) and the respective N,p."inc values, using the following equation.

[amount of product formed]
(16)TONro".;6. =

4pecinc x (0'28x l0-")

Figure 3-9 shows the relationship between the size of Pd particle on the catalysts and respective

TONrp..;6" values, The TONu.n"*, TON.6g", and TONrorare values change with the Pd particle size. In

contrast, the TON6ungre v&lues for the respective catalysts are similar and are independent of the Pd

particle size. This result clearly indicates that the Pd atoms on the triangle site are the active site for

imine hydrogenation.

O triangle
C square

edge

vertex
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一
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dr6 i nm

Figure 3-9. Relationship between the Pd particle size and the turnover number for hydrogenation of

imine 1 per number of Pd atoms on the specific surface site (TON,o."i6"), The TON.'.";6. value was

calculated with the results for imine hydrogenation (Figure 6, black) using eq. 16.

The H atoms formed on the Pd particles diffirse around the particle surface,5a meaning that the H

atoms exist randomly on all parts of the Pd particle surface. The strong dependence of the imine

hydrogenation activity on the number of Pd atoms on the triangle site is probably due to the adsorption

of imine onto the triangle site. The Pd atoms on the triangle site have higher coordination number (9)

than those on the other surface sites such as vertex (5), edge (7), and square (8), and are charged more

positively. The imine is therefore preferentially adsorbed onto the positively charged triangle site via n

electronic interaction with the aromatic ring and C:N bond. This adsorption may promote efiicient

hydrogenation by the H-Pd species, and result in clear relationship between the imine hydrogenation

1.5r" 
I Pdo.r Pdo 3 Pdo.s Pdr.o 

I

I i i: --+l-10
l. l^lts--l-9 j* + | 3
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activity and the number of Pd atoms on the triangle site. ln the hydrogenation of alkyne and diene such

as 2-methyl-3-butyn-2-ola and l,3-butadienett on Pd particle catalysts with H2, the catalytic activity

also depends on the number of Pd atoms on the triangle site, and the dependence is also considered to be

due to the adsorption of these olefins onto the positively charged triangle site. These reports support the

above mechanism for imine hydrogenation.

3-6. Effect of alcohol on the imine hydrogenation

The above results suggest that the hiangle site of Pd particles is the active site for imine

hydrogenation. The number of these Pd atoms increases with an increase in the Pd particle size, and the

PdJTiOz catalyst with higher Pd loadings, which contain larger Pd particles, effrciently promotes imine

hydrogenation. However, as shown in Figure 3-4b and c, photocatalytic reaction of benzyl alcohol and

aniline with Pd1.6/TiOz shows much lower activity for imine hydrogenation than Pdo.:/TiOz. This is

inconsistent with the results for imine hydrogenation with H2 (Figure 3-6, black).

The lower imine hydrogenation activity of larger Pd particles is because alcohols are adsorbed onto

the larger triangle site more strongly than imines and undergo hydrogenation. tr'igure 3-6 (white) shows

the results for imine hydrogenation with I{2, when canied out in benzyl alcohol. The hydrogenation

activity of smaller Pd particles is similar to that obtained in MeCN (black), but the activity of larger Pd

particles is decreased significantly. This data clearly indicates that the imine hydrogenation on larger Pd

particles is suppressed by alcohol, In these cases, GC analysis detected the formation of toluene. This

indicates that, as reported,s6 Pd particles promote hydrogenation of alcohol by the H-Pd species leading

to hydrogenolysis.

Figure 3-10a shows the amount of toluene formed during hydrogenation of benzyl alcohol with I{,

in the dark with respective Pd,/TiO2 catalysts at the identical Pd amount (0.28 pmol). The hydrogenation

activity increases with the Pd particle size, and the profile is very similar to the imine hydrogenation

profile (Figure 3-6, black). Figure 3-10b shows the turnover number for toluene formation per number

of specific surface site (TON,0".6.) calculated using eq. 16. The TONni,ngre Volu€s for all of the catalysts

are similar as is the case for imine hydrogenation (Figure 3-9). These findings indicate that the

hydrogenation of alcohol is also promoted on the hiangle site of Pd particles, and this suppresses the

imine hydrogenation.
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Figure 3-10. (a) Amount of toluene formed during reaction of benzyl alcohol with respective Pd,/TiOz

catalysts (Pd: 0.28 pmol) under H2 in the dark. The amounts of catalysts used are: 30 mB (P6.r), 10 mg

(Pdo.r), 5 mg (Pde.5), and 3 mg (Pdr), respectively. (b) Relationship between the Pd particle size and the

turnover number for toluene formation per number of Pd atoms on the specific surface site (TON,'..;6").

The TON,0".16. values were calculated using eq. 16.

The strongly suppressed imine hydrogenation on larger Pd particles is probably due to the stronger

adsorption of alcohol than imine onto larger triangle site by their different adsorption modes. As shown

in Figure 3-11, benzyl alcohol has a planer structure and is adsorbed very strongly onto the Pd surface

via n interaction of aromatic ring and the lone pair electron of oxygen atom.57 In contrast, the imine has

a twisted structure58 and may be adsorbed more weakly onto the Pd surface. The interaction between
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alcohol and the Pd surface is probably strengthened by an increase in the area of triangle site. This

probably leads to enhanced alcohol adsorption onto the larger Pd particles and suppresses imine

hydrogenation more strongly. As shown in Figures 3-4 and 5, larger amount of toluene is produced

during photocatalytic reaction of alcohol in the presence of catalysts with larger Pd particle. This

indicates that the decreased imine hydrogenation activity of larger Pd particle is due to the strong

adsorption of alcohols. These results suggest that the Pdo.3/TiOz catalyst with 21.5 nm Pd particles,

which contains relatively larger number of triangle site Pd atoms but does not allow strong adsorption of

alcohols, shows the highest activity for imine hydrogenation and promotes efficient N-monoalkylation of

primary amine with alcohol under photoirradiation.

Figure 3-11. Schematic representation of different adsorption modes of benzyl alcohol and imine 1 onto

the surface of Pd particle. Geometry optimizations of the molecules were performed with

B3LYP/6-3 1G* basis set.

4. Conclusion

We found that Pd/TiO2 catalyst promotes N-monoalkylation of primary amine with alcohol under

photoirradiation at room temperature. Several kinds of secondary amines are successfully produced with

high yields. Tandem photocatalytic and catalytic reactions promote three consecutive reactions,

consisting of Pd-assisted alcohol oxidation on the photoactivated TiO2, catalytic condensation of the

formed aldehydes with amines on the TiO2 surface, and hydrogenation of formed imine with H atoms on

the Pd particles. The rate-determining reaction is the imine hydrogenation as the final step. The reaction

is promoted on the Pd atoms on the triangle site of the Pd particle via an adsorption of imine. The imine

adsorption onto the larger hiangle site is strongly suppressed by competitive adsorption of alcohol. As a

result of this, the catalyst with 2-2.5 nm Pd particles, which contain relatively larger number of

triangular Pd atoms and do not promote strong alcohol adsorption, shows the highest activity for imine

●
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hydrogenation and promotes efficient N-alkylation of amine with alcohol under photoirradiation. This

tandem catalytic system offers significant advantages: (i) no harmful byproduct forms; (ii) the reaction

proceeds at room temperature; and, (iii) several secondary amines are successfully produced. The

tandem reactions promoted by photocatalytic and catalytic actions, therefore, have a potential to be a

powerful method for one-pot synthesis of organic compounds in an environmentally-friendly way.
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Chapter IV

Dehalogenation of Organic Halides on TiO2 Loaded with Bimetallic Pd-Pt
Alloy Nanoparticles

l. Introduction

The dehalogenation of organic halides is a significant process for the removal of halogenated

organic pollutants and the synthesis of fine chemicals.r The reaction is currently carried out via the

hydrodehalogenation processes with catalysts containing Pd particles using molecular hydrogen (H2) as

the hydrogen source,t which inevitably holds explosion risks. Alternative methods with safe hydrogen

sources such as alcohols are therefore desirable.

Recently, a H2-free dehalogenation method with alcohol as the hydrogen source was proposed by

Fuku et al.3 They employed a photocatalytic reaction using TiO2 loaded with I wt% Pd, particles

(Pd/TiOr). Photoirradiation (1" >300 nm) of a 2-PrOH solution containing chlorobenzene with Pd/TiO2

and a base (NaOH) produces the corresponding benzene quantitatively. The reactions are initiated by

photoexcitation of TiO2, producing the electron (e-) and positive hole (h*) pairs (eqn (l)). The h.

oxidizes 2-PrOH and produces acetone and protons (eqn (2)).4 The H* is activated by the reduction with

e- on the Pd particles (eqn (3)), and the formed hydrides species (H--Pd) promote dehalogenation (eqn

(a)). The removed Cl- is solidified as NaCl by the reaction with NaOH (eqn (5)). The overall reaction is

expressed as eqn (6).

TiO, + hv -+h* + e-

(CH3)TCHOH+ 2h* -+ (CH)2CO + 2H*

H*+2e-+Pd+H--Pd

Ar-C + H--Pd -+Ar-H + Cl- + Pd

H* + Cl- + NaOH -+ HzO + NaCIJ

Ar-Cl + (CH3)2CHOH + NaOH

hv'rioz - Ar-H + (cH3)2co + H2o +NacU (6)

These reactions proceed at room temperature with alcohol as the hydrogen source, and have a potential

to be a safe and sustainable dehalogenation process. The reactions, however, proceed very slowly when

compared to the conventional method with H2. The activity improvement is therefore necessary.

Herein, we report that TiO2 loaded with bimetallic Pd-Pt alloy particles (PdPt/TiO2) promotes

highly efficient photocatalytic dehalogenation. The activity is more than three times that of Pd/TiO2 and

(1)

(2)

(3)

(4)

(s)
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higher than the conventional method with H2. The high activity is due to the enhanced consumption of

photoformed e- on the Pt site by H* reduction and effrcient transfer of the formed hydrogen atom to the

adjacent Pd site within the alloy particles.

2. Experimental

2-1. Materials

All reagents were purchased from Wako, Tokyo Kasei, and Sigma-Aldrich and used without further

purification. Japan Reference Catalyst JRC-TIO-4 TiO2 particles were kindly supplied from Catalysis

Society ofJapan.

PdrPVTiO2 catalysts ly (wt%): PV(Pt + TiO2) x 100; y : 1,3, 5,7, 101 were prepared as follows:

TiO2 (0.5 g), Pd(NO3)2 (11 mg), and HzPtClu (13,27,70,94,747 mg) were added to water and

evaporated with vigorous stirring at353 K for 12 h. The obtained powders were calcined at 673 K for 3

h under air flow and then reduced under H2 at 473 K for 2 h.

Pdr+Pt5/TiO2 catalyst was prepared as follows: TiO2 (0.5 g) and Pd(NO3), (11 mg) were added to

water and evaporated with vigorous stirring at 353 K for 12 h. The obtained powders were calcined at

673 K for 3 h under air flow and then reduced under H2 at 473 K for 2 h. The obtained powders and

H2PtCl6 (70 mg) were added to water and evaporated at 353 K for 12 h under vigorous stirring. The

resultant was calcined at 673 K for 3 h under air flow and reduced under H' at 473 K for 2 h.

2-2. Photoreaction procedure

Photoreactions were performed within a Pyrex glass tube (capacity, 20 mL) using a 2 kW Xe lamp

(1" >300 nm; Ushio Inc.) with magnetic stining at 298 K. The light intensity was determined by a

spectroradiometer to be 192.7 W m-2 at 300-800 nm. The light intensity at 300-400 nm, which mainly

contributes to the photocatalytic reaction, is therefore calculated from the spectral irradiance to be 18.2

W m-2. The reactant and product concentrations were determined by GC-FID or -TCD, using authentic

samples as standards.

2-3. Analysis

The total Pd and Pt amounts of the catalysts were analyzed by an inductively-coupled argon plasma

atomic emission spectrophotometer (Seiko lnstruments, Inc.; SPS7800) after dissolution of the catalysts

to an aqua regalia. Diffi.rse reflectance IJV-vis spectra were measured on W-vis spectrophotometer

(Jasco Cotp.; V-550 with Integrated Sphere Apparatus ISV-469) with BaSOa os & reference. TEM
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observations were carried out using an FEI Tecnai G2 20ST analytical electron microscope operated at

200 kV which is equipped with an Energy Dispersive X-ray Spectroscopy (EDX) detector. EDX spectra

from a metallic particle were taken under Scanning Transmission Electron Microscopy (STEM) mode.

XPS measurements were performed using a JEOL JPS-9000MX spectrometer using Mg Kcr radiation as

the energy source.

3. Results and discussion

3-1. Synthesis and characterization of catalysts

PdlPt//TiO2 with Pd-Pt alloy consisting of 1 wtYo Pd [: Pd/(Pd + TiO2) x 100] and different

amounts of Pt Ly (wt%): Ptl(Pt + TiOz) x 1001 were prepared with Japan Reference Catalyst JRC-TIO-4

TiO2 (equivalent to Degussa P25) by simultaneous impregnation of Pd(NO3)2 and H2PtCl6 followed by

reduction with H2).s A transmission electron microscopy (TEM) image of PdlPt5/TiOz showed spherical

metal particles with an average diameter of 2.9 nm (Figure 4-1). The lower or higher Pt loadings create

smaller or larger particles; PdrPtrand PdrPtrg contain 2.5 and3.4 nm particles, respectively. An X-ray

photoelectron spectroscopy (XPS) of catalysts confirmed the presence of both Pd and Pt (Figure 4-2).

An energy dispersive X-ray spectroscopy (EDX) of metal particles on Pd1Pt5/TiO2 (Figure 4-3)

determined the average Pt/Pd ratio as 4.95 (wt/wt), which is close to the ratio of the total amount of Pt

and Pd (4.96) determined by ICP analysis. An X-ray diffraction (XRD) pattern of Pd1Pt5/TiO2 (Figure

4-4) shows a (111) diffraction of the Pd-Pt alloy at39.9", which is located between the Pt(111) and

Pd(l l1) diffractions (39.81 and 40.21). The lattice parameter of the alloy calculated from the XRD data

(a:0.391nm) agrees with that calculated with the Vegard's law6 10.391 nm). In addition, the d-value

calculated from the lattice spacing of the alloy in the TEM image (dttt : 0.225 nrn, Figure 4-5) is in

between the standard Pt (dn: 0.2265 nm, JCPDS 04-0802) and Pd (dn: 0.2246 nm, JCPDS 46-1043).

These indicate that Pd-Pt alloy particles are indeed loaded on TiO2. Diffi.rse reflectance UV-vis spectra

(Figure 4-6) revealed that PdlPt /TiO2 with higher Pt loadings show increased absorbance at >300 nm

due to light scattering by the Pt particles.
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Figure a-1. (a) TEM image of PdrPts/TiOz and (b) size distribution of metal particles on (white) the

fresh catalyst and (black) the catalyst recovered after 2nd reuse in reaction (Thble 1, run 16).
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Figure 4-3.TEM and STEM― HAADF imagcs of PdIPt5/Ti02 and EDX spcctra for rcspcctivc mctal

particlcs
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Figure 4-4. XRD pattems of respective catalysts.

Figure 4-5. High-resolution TEM image of PdrPts/TiOz.
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3-2. Photocatalytic activity of PdPt/TiO2 catalysts

Table 4-1. Results of dechlorination ofp-chlorotoluene in the photocatalytic and H2 system.o

rp力οfocara“た sysfe口 ,cata:yst(5 mg),2‐ PrOH(5 ml),NaOH(0 5 mmol)

Ar(l atm),λ >300 nm,298K,lh

rH2 Systeり cata!yst(5 mg),2‐ PrOH(5 ml),NaOH(0 5 mmol)
H2(l atm),dark,298K,lh

/〔C)「

Cl

0.2 mmol

OH
Run Catalvst ⅣIetal Photocatalytic system H2 system

Xメ;/〔
yα

nm     cON、 /%

o

A H- balance"

formed /

pmol

Ｏ

ｙｉｅ‐ｄ／％

OCl  σ

conv. I o/o yield,I %o

l     Pd1/T102     5.3     20            19       42       0.92        56         54

2    Pd3/Ti02             21            20       43       0.96        56         54

3    Pd5/Ti02            19           18       41      0.88       52        51

4   Pd7/Ti02          14         13      29     0.90      35       34

5    PdlPt1/T102   2.5     28           27       55       0.97        32         31

6    PdiPt3/Ti02          45          43       88      0.97       26        23

7    PdIPt5/Ti02   2.9     76           76        155      0.98        21         20

8    PdIPt7/Ti02          39          38      80      0.95       15        13

9    PdlPt10/Ti02  3.4     36           35       79      0.90        12         11

10   Pt1/Ti02    2.2    0          0      43              0        0

1l   Pt3/Ti02           0          0      `65               0        0

12   Pt5/Ti02    3.9    0          0       102             0        0

13   Pt7ノTi02           0          0      79              0        0

14   PdlttPt5/Ti02         27           26       118     0.44       26        25

15グ  PtlPd5/Ti02         75         75

16°  PtlPd5/Ti02 3./  75      75
α
 The results obtained with PdIPt5/Ti02 in Other solvents are sullllmarized in Table 4… 2. b Average

diameter ofmetal nanopanicles detelШ ined by TEM observation(Figire 5‐ 1).ι Detel■■lined by eqn(8).

グ
lst reused a■ er washing with 2-PrOH.´ 2nd reuse./Mcasllred after 2nd reuse.

Table 4‐l sulllmarizes the results of photocatalytic reacuon(λ >300 nlo Of′ C̈hlorotoluene(0.2

mm01)in 2-PrOH(5 mL)with Catalysts(5 mD and NaOH(0.5 mmol)fOr l h at 298 K underメェ The

results obtained using H2(l atmp in the dark at 298 K are also shown for comparison.Both
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photocatalytic and H2 systems (runs 1-9) selectively produce toluene. The toluene yields in the

photocatalytic system with the catalysts containing Pd alone, Pd,/TiO2lx (vrt%): Pd/TiO2 x 1001, are

less than 2l%o (runs l-4). In contrast, the yields in the H2 system with Pd,/TiO2 dte a6.50%, indicating

that the photocatalytic system is indeed inefficient.

The loading of Pd-Pt alloy particles significantly enhances the photocatalytic dechlorination (runs

5-9): PdlPt/TiOz show increased toluene yields with an increase in the Pt amount of the particles, where

PdrPt5/TiO2 shows the highest yield (760/o), which is more than three times that of Pd,/TiOz. In contrast,

such alloying effect is not observed in the H2 system (runs 5-9); the toluene yields decrease

monotonically with the Pt loadings (<56%).

It is noted that the catalysts containing Pt alone, Pt/TiOz ly @t%) : PtlTiO2 x 1 001, do not promote

dechlorination (runs 10-13). This indicates that, on the alloy catalysts, the Pd site is active for

dehalogenation. It is also noted that the Pd-Pt alloy site is necessary for efficient dehalogenation: a

Pdr+Pts/TiO2 catalyst (run 14), prepared by a step-by-step deposition of respective Pd and Pt particles,

scarcely enhances dehalogenation.

Table 4-2. Results of photocatalytic dechlorination ofp-chlorotoluene in various solvent."

/1C〕r'l

O.2 mmol

/J〔〕〕「

H
Pdl Pt5fri02(5 mg),sOIVent(5mり ,NaOH(0 5 mmol)
Ar(l atm),λ >300 nm,298K,lh

Run Solvent ′℃Ыor∝duene conⅥ /%Ъlueneメdd/%訛:I;Ъ∬
k∝°ne

1

2

3

4

5

6

NIleCN

Water/MeCN

(1/1V/Vy

EtOH

2¨PrOH

κ̈butanol

4-hexanol

６

２

２

８

７

５

２

0

0

7

76

4

<1

18

155

12

<1

" the reaction conditions are identical to those of Table 4-1.
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3-3. Reaction mechanism

a

Hr H'
\

dehalogenation

Scheme 4-1. The reaction sequence for protons on the metal particles of (a) PdrPt5/TiO2 and (b)

Pdr+Pt5/TiO2 catalysts.

The high activity of the alloy catalyst is due to the efficient consumption of photoformed e- by H*

reduction on the Pt site and efficient transfer of the formed H atom to the adjacent Pd site (Scheme 4-la).

The effrcient e- consumption on Pt is confirmed by the amount of formed acetone (Tabte 4-1). Pd/TiO2

produce <45 pmol acetone (runs 1-4), whereas PtylTioz produce larger amounts (runs 10-13). This is

because e is efficiently trapped by Pt due to the larger work functionT and consumed by H* reduction,

facilitating efficient alcohol oxidation by h*. As shown in run lz,Ptsnioz produces the largest amount

of acetone among Pt/TiOz and higher Pt loadings decrease the production. A similar tendency is

observed for PdlPy'TiOz :PdrPts produces the largest amount of acetone. The higher activity of

PdrPts/TiO2 than Pd/TiO2 is thus because the photoformed e- is efficiently consumed by H* reduction on

the Pt site, producing a H atom.8

H* + e- + pt -+ H-pt

The H atom on Pt within the alloy particles is efficiently used for dehalogenation. This is confirmed by

the H* balance, defined as the ratio of the formed dehalogenation product to that of the formed H*. As

shown by eqn (6), two tf formed by photooxidation of 2-PrOH are consumed by dehalogenation (eqn

(3) and (a)) and reaction with NaOH (eqn (5)), respectively. The H* balance is therefore expressed by

the ratio of the amount of formed toluene to that of formed acetone,

H* balance : ftoluene formed]/[acetone formed] (8)

Table 4-1 summarizes the H* balance for the respective systems obtained by photoreaction for I h. The

values for Pd,/TiO2 are almost I (runs 1-4), indicating that H* formed by alcohol oxidation are

(7)

H-1
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consumed quantitatively by dehalogenation on Pd (eqn (6)).3 The values for PdPVTiO2 &ro also almost 1

(runs 5-9), suggesting that H+ are also consumed quantitatively although H* are reduced on Pt (eqn (7)).

The results suggest that, as shown in Scheme 4-la, the H atom formed on Pt is transferred to the

adjacent Pd site (H-Pd formation), which is probably due to the stronger H-Pd interaction.e

H―Pt―→ H―Pd (e)

The H atom is reduced to the hydride species (H--Pd) by e-, which promotes dechlorination (eqn (4))

H-Pd * e- -+ H--Pd

As shown in run 14, the H* balance for the Pdr+Pts/TiO2 system

absence of Pd around the Pt site suppresses the H transfer from Pt

atoms by H2 formation (Scheme 4-lb).10

・
‐Ｓ
　

　

ｔＯ

(10)

only 0.44. This is because the

Pd and results in removal of H

H- Pt + H- Pt -+HzI + 2Pt (11)

Change in H2 amount during reaction confirms this (Figure 4-7). Pdr+PtslTioz promotes Hz formation

and dechlorination simultaneously; howevet PdrPts/TiO2 scarcely produces H2 until p-chlorotoluene

disappears. The alloy sites are therefore necessary for efficient H transfer from the Pt to Pd sites.

The above results reveal that, on the alloy site (Scheme 4-la), efficient reduction of H* by e- on Pt,

smooth H transfer to Pd, and reduction of H by e- occur sequentially. This sequence produces a large

amount of H--Pd species and promotes efficient dehalogenation. It must be noted that, as shown in runs

15 and 16 (Table 4-1), the alloy catalyst is reusable for dehalogenation at least two times without loss of

activity and selectivity. In addition, as shown in Figure 4-1b, the size of Pd-Pt alloy particles scarcely

changes even after the reaction.
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Pdl+Pt51T102

丁ime/h

PdlPt5/Ti02

1

Time/h

Figure 4-7. Time-dependent change in the amounts of substrate and products during photoinadiation of

a 2-PrOH solution containing p-chlorotoluene with Pdr+Pts/Tioz or PdrPts/TiO2 catalyst. The reaction

conditions are identical to those in Table 4-1.
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3-4. Dehalogenation of various aromatic halides

Table 4-3. Dehalogenation of various aromatic halides.

励0モ

rpわorocara″菅c sySre″,Pdl Pt5/丁 i02(5 mg)

2-PrOH(5 ml),NaOH(05 mmol)
Ar(l atm),λ >300 nm,298K

fH2 Sysrer77j PdlPt♂ Ti02(5 mg)
2-PrOH(5mり ,NaOH(05 mmo!)
H2(l atm),dark,298K

0 1 mmol

Run Substrate System Time/h Conv. lo/o Yield/0/0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

０

な

σ
‐
σ

．０

・」の
プ
ｃ‐

The alloy catalyst is tolerant for photocatalytic dehalogenation of various aromatic halides (Tabte

4-3). PdlPt5/TiO2 produces the corresponding dehalogenation compounds with very high yield, and the

catalytic activities are much higher than those obtained with Pdr/TiO2 using H2.

4. Conclusion

In summary we found that UV irradiation of TiOz loaded with Pd-Pt alloy promotes efficient

dehalogenation. This offers crucial advantages: (i) safe alcohols can be used as a hydrogen source; and,

(ii) the reaction proceeds much faster. The alloy catalyst that facilitates efficient production of active

species (H--Pd) may also promote other hydrogenation reactions, and the work along these lines is

currently in progress.
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Chapter V

Partial Oxidation of Cyclohexane on WO3 Loaded with Pt Nanoparticles
under Visible Light Irradiation

1. Introduction

The partial oxidation of cyclohexane (CHA) to cyclohexanol (CtIA-ol) and cyclohexanone

(CHA-one) has attracted much attention because these products are the intermediates in e-caprolactam

slmthesis.l Of particular interest is the catallic CHA oxidation in heterogeneous systems with molecular

oxygen (O2).2 Photocatal5rtic CHA oxidation with Oz has also been studied extensively with various

catalysts such as TiO2,3 Fe porphyrin-modified TiO2,a polyoxotungstate-modified SiO2,s and

V2O5-impregnated ,4'1203.6 Some of these systems promote partial oxidation of CHA with high

selectivity (r8goh).tor'e'ra's 411of these systems, however, require UV light for catalyst activation. Earlier,

we reported that Cr-containing silica with highly dispersed chromate species catalyzes partial oxidation

of CHA under visible light with high selectivity (>99%).7 Cr species are, however, very toxic to living

organisms;8 therefore, an alternative Cr-free photo-catalytic system is desirable for clean production of

CHA-ol and CHA-one.

Photocatalytic oxidation of CHA on TiO2 proceeds via the following mechanism.3"'1s

Photoexcitation of TiO2 produces the electron (e-) and positive hole (h*) pairs. The h* oxidizes CHA

(CeHrz) and produces a cyclohexyl radical (CoHrr.). This radical reacts with Oz and produces a peroxy

radical (C6HnOO.).

TiOr + hv -+h- + e-

C6H12+ h* -+ C6H11' * H*

CeHtt'+ Oz -) C6H11OO'

Combination of the peroxy radicals produces CHA-o1 (C6H1OH) and CHA-one (C6H1eO).

C6HI1OO. * CeHrrOO. -+ CoHrrOH * CoHroO 4 Oz

The e- on TiOz is consumed by a single-electron reduction of 02, producing a superoxide anion (Or.-).

This reacts with C6H11. and produces CHA-one.

Oz-r e- -) O2.- (-0.13 V vs. NHE)

CoHrr. * O2.- -+ CoHroO + OH-

(4)

１

　
　
　
２

　
　
　
３

５

　

　

６
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Selective production of CHA-ol and CHA-one on TiO2 is, however, difficult. One of the reasons is that

CHA is decomposed simultaneously during the reactions: the formed peroxy radical (C6H1OO.) reacts

with h* and is decomposed to CO2 via the C-C bond cleavage.e

C6HHOO° +h+→ decomposition(C02 fOrmatio→

Another reason is that the formed CHA-ol and CHA-one are decomposed subsequently by

photocatalytic reactions, producing COr.to Although he detailed mechanism for decomposition has not

been clarified, it is considered that the oxidation of these compounds by h* (radical formation) and the

reaction with Oz.- are involved in the mechanism.

C6HHOH(Or c6H100)+h十 +02°
~→

decomposi五 on(C02 fO■ 11latio⇒ (8)

This suggests that O2.-, produced via the reduction of 02 by the conduction band e- on TiO2 (eqn (5)),

promotes decomposition of CHA-ol and CHA-one. Therefore, if the formation of Or.- is suppressed, the

decomposition of these partial oxidation products would be inhibited.

WO3 is a semiconductor material that is excited by visible light irradiation (1" < 443 nm). There are,

however, only a few rgports of photocatalyic reactions on WO3 because of its low a ctivity.lr As shown

in Scheme 5-1, the conduction band potential of WO3 (+0.5 V vs.NHE) is more positive than the

potential for single-electron reduction of 02 (eqn (5), -0.13 V). The photoformed e- on WO: is therefore

not consumed efficiently by 02, resulting in low catalytic activity. A recent report,r2 however, revealed

that the WO3 loaded with Pt particles (PtAMO3) exhibits enhanced catalytic activity for degradation of

acetic acid and acetaldehyde under visible light. This is because the conduction band e- of WO3 is

consumed efliciently on the Pt particles by the promotion of a multi-electron reduction of O2,as follows.

(7)

C,2+ 2H- -r 2e- -+ H2O2 (+0.68 V vs. NHE)

02 + 4Hn r 4e- -+ 2HzO (+1.23 V vs. NHE)

(e)

(10)

On the PtllVO3 system, the formation of Or.- that promotes subsequent decomposition of CHA-ol and

CHA-one (eqn (8)) is unfavorable. This system, if employed for CHA oxidation, would promote partial

oxidation under visible lieht.
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W03
Vノ NHE

02/02°
~(~0.13)

02/H202(+O・ 68)

02/H20(+1・23)

(-0.18)

CB
(+0.40)

2.80 eV

+2.95)

(+3.20)

VB

Scheme 5-1. Redox potentials of TiOz and WO: (pH 0).

ln the present work, the Pt/!VO3 catalysts were employed for photocatalytic oxidation of CHA with

02 under visible light. The catalysts successfully promote partial oxidation with ca. 93% selectivity. The

ESR measurements with a spin trapping reagent and the photocatalytic reactions with an 02. scavenger

indicate that selective oxidation of CHA on Pt/WO., is indeed achieved due to the decreased formation of

Oz'-.

2. Experimental

2-1. Materials

WO3 particles were supplied from Kojundo Chem. Lab. Co. (diameter, 128.0 nm; BET surface area,

3.1 m2 t'). JRC-TIO-4 TiOz particles (equivalent to Degussa P25, diameter,25.8 nm, BET surface area;

54.0 nf g t) were kindly supplied from the Catalysis Society of Japan. Other reagents were purchased

from Wako, Tokyo Kasei, and Sigma-Aldrich and used without further purification. Water was purified

by the Milli Q system.

2-2. C atalyst prep aration

PT AVO: catalysts with different Pt loadings [x (wt%) : Pt/(Pt + WOr) x 100; x : 0.1, 0.2,0.3,0.6,

l.3l were prepared as follows: WO3 particles (0.1 g) and H2PtCl6 (0.34,0.42,0.61, 1.31, 2.77 mg) were

added to a water/\{ eOH (2411 v/v) mixture (10 mL) in a Pyrex glass tube (20 cm3; p l0 mm). The tubes

were purged with N2 gas and photoinadiated using a high-pressure Hg lamp (300 W; Eikohsha Co. Ltd.;

light intensity at 300-500 nm, 32.9 W m-2; with magnetic stirring at 303 K for 30 min. The catalysts
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were recovered by filtration, washed with water, and dried in vacuo at353 K for 12 h.

2-3. Photoreaction

The catalysts (10 mg) were added to a CHA/MeCN (1/9 v/v, l0 mL) mixture in a Pyrex glass tube

(20 cm3; p 10 mm). The tubes were purged with Oz gas and photoinadiated with magnetic stirring by a

Xe lamp (2 kW; Ushio Inc.), filtered through an aqueous NaNOz Q0 wt%) solution to give light

wavelengths of 1" >420 nm. The temperature of solution during irradiation was 303 K. After the reaction,

the gas phase product was analyzed by GC-TCD (Shimadzu; GC-I4B). The resulting solution was

recovered by centrifugation and analyzedby GC-FID (Shimadzu; GC-1700).

2-4. ESR measurement

ESR spectra were recorded at the X-band using a Bruker EMX-10/12 spectrometer with a 100 kHz

magnetic field modulation at a miqowave power level of 1.0 mW, where the microwave power

saturation of the signals does not occur. The magnetic field was calibrated using

1,1'-diphenyl-2-picrylhydrazyl (DPPH) as a standard. CHAiMeCN (1/9 v/v, 10 mL) mixture, catalyst

(10 mg), and 5,5'-dimethyl-l-pynoline-l/-oxide (DMPO, 25 mM) were added to a Pyrex glass tube (20

cm';.The tube was purged with Oz and photoirradiated using a Xe lamp for 3 min under magnetic

stirring at 303 K. The solution was recovered by filtration, and ESR measurement was carried out at298

K.

2-5. Analysis

The Pt amount on the catalysts was determined by an X-ray fluorescence spectrometer (Seiko

Instruments Inc.; SEA2I10). Diffi.rse reflectance lfV-vis absorption spectra were measured on a JASCO

V-550 spectrophotometer. The light intensity was measured with a spectroradiometer (USR-40, Ushio

Inc.). The H2O2 amount in solution was determined by an iodometric titration;r3 the reaction mixfure

recovered by filtration was treated with an excess amount of NaI and the amount of 13- formed was

determined with UV-vis analysis at36l nm (e :2.0 x 103 M-r cm I in CHA/MeCN (ll9 v/v) mixture)

using an W-visible spectrophotometer (Shimadzu; Multispec-l 500).

3. Results and discussion

3-1. Catalyst properties

The PtflVO3 catalysts with different Pt loadings [-r (wt%): PV(Pt + WOg) x 100] were prepared by
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a photodeposition method (Table 5-l).'' UV inadiation of a water/MeOH mixture containing WO3

particles and different amounts of HzPtClo produces dark yellow powders of catalysts. As shown in

Figure 5-1a, the high resolution transmission electron microscopy (HRTEM) image of the PI0.2/WO3

catalyst reveals that isolated hemispherical Pt nanoparticles are supported on WO:. The mean diameter

of the Pt particles was determined to be 4.7 nm. The size of Pt particles is scarcely affected by the Pt

loadings; Ptr.3/WO3 contains 4.8 nm Pt particles (Figure 5-1b). Figure 5-2 shows the diffuse reflectance

UV-vis absorption spectra of catalysts. The PVWO3 catalysts with larger Pt loadings show increased

absorbance at l, >400 nm due to the light scattering by the Pt particles,ra although the band gap energies

of catalysts are similar (2.62.8 eY).

02468
Mean core size / nm

Figure 5-1. Typical cross-sectional HRTEM image and size distribution of Pt particles on (a) PtozAVO:

and (b) Ptr.3nVO3. The black bars are the data for fresh catalysts and the white bars are the data for

catalysts after the reuse reactions (Table 5-1, run 11).
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Pto2/Tio2

PtlゴW03
P｀

6′
W03

Pt0 3A/V03

Pt02/VV03

P%1/W03

W03

300 400 500 600 700 800

l"/nm

Figure 5-2. Diffirse reflectance W-vis absorption spectra of catalysts.

3-2. Photocatalytic activity

Table 5-1. Results of photooxidation of cyclohexane (CHA) with various catalysts.o

run catalyst Pt particle yields / pmol selecti宙ty  for H202

partial oxidatiOn°  fO・ 11led

/%     /μ mol

sizeb I nm CHA‐ol CHA― one C02

l     WC)3                     0。 7     0.7       0.7      92              1.8

2     Pt0 1/WC)3                  4.3      3.8       3.9      93              3.0

3     Pt0 2/W03    4.7           4.3      4.4       4.2      93               3.3

4     Pt0 3/WC)3                  3.7      3.3       2.9      94              2.6

5    Pt0 6/W03               3.4     3.1      2.9     93             2.4

6     Pt1 3/WC)3    4.8            3.2      2.7       2.5       93                2.3

7    Ti02                   1・ 4     2.6      11.6    67             0.5

8     Pt0 2/Ti02′     2.0            1.8      3.4        12.9      71

9     1st reuse°                   4.3      4.6       4.3      93

10    2nd reusea                 4.0     4.4       4.0      93

11  3rd reuseι   4.8/     4.3   3.8    3.9   93

α Reaction conditions:CHA/NIleCN(1/9ヾ |ヽぅ10 mL),catalySt(10 mg),λ >420 nm,02(l atm),

photoirradiation time,12h.ら detell.lined by TENIl analysis.° =[(CHA¨ol+CHA― onc)/(CHA-01+

CHA―one+(1/6)C02)]× 100(refS.3d and 6b)。
ど
prepared by a photodeposition method similar to

Pt/W03・ `Pt0 2/W03 reuSed after simple washing with MeCN./Dete■ 1■lined after the reaction.
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Table 5-1 summarizes the results of photocatalytic oxidation of CHA. The reactions were

performed by visible light irradiation (1. >420 nm) of a CHA/MeCN (1/9 v/v) mixture with catalyst and

Oz for 12 h. As shown in run 1, pure WOr is inactive for oxidation, where only a small amount of

CHA-ol and CHA-one is produced (both 0.7 pmol). The Pt loadings onto WO3 enhance oxidation. As

shown in runs 2-6, the PtnVO3 catalysts produce larger amounts of CHA-ol and CHA-one (>2.7 prmol).

The selectivity for these products is ca.93o%. Run 7 shows the results obtained with a common TiOz

catalyst (anatase/rutile:812); the CHA-ol and CHA-one yields are much lower than those obtained with

PtMO:, although the amount of COz formed is much higher. The partial oxidation selectivity is 67Yo,

which is lower than that obtained with PVWO3. In addition, as shown in run 8, the Pt loading onto TiO2

does not enhance the selectivity and yields. These findings indicate that the Pt/IVO3 system promotes

selective and efficient photooxidation of CHA.

a Pt(0.2)AIV03

□ CHA― o!

△ CHA― one

● C02

０

一〇
Ｅ
■
ヽ
∽
０
一０
一＞

12

■me/h
12

■me/h
24

and C02 fOrlned du五 ng

and(b)Ti02・ Rcaction

Figure 5‐3. Tilne¨dependent change in the yields of CHA― ol, CIIIA¨ one,

photooxidation of CHA(l mL,9.3 mmol)in MecN with(→ Pt0 2/W03

conditions are identical to those in Table 5‐ 1.

Figure 5-3 shows the time-dependent change in the amounts of CHA-ol, CHA-one, and COz

produced during the photocatalytic oxidation of CHA with Pt0.2/IVO3 or TiO2 catalyst. With TiO2

(Figure 5-3b), the amount of COz formed is much larger than those of CtIA-ol and CHA-one. In

contrast, with Ptn.2AVO3 (Figure 5-3a), the COz amount is comparable to those of CHA-ol and CHA-one.

This again suggests that Pt/WO: indeed produces CHA-ol and CHA-one selectively, while suppressing
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COz formation.

Among the Pt/WO3 catalysts (runs 2-6), Pt0.2/WO3 (run 3) shows the highest yields of CHA-ol (4.3

pmol) and CHA-one (4.4 pmol). The catalysts with larger Pt loadings show decreased yields. This is

probably because excess amount of Pt increases the absorbance at l, >400 nm, as shown in Figure 5-2,

and suppresses the incident light absorption by WOr.'o It is noted that the catalyst is reusable for

reactions. As shown in runs 9-11, the PI0.2^!VO3 catalyst, when reused for further reactions, shows the

selectivity and yields similar to those of the virgin catalyst (run 3). In addition, HRTEM analysis of the

catalyst recovered after the reuse revealed that the Pt particle size scarcely changes during reactions

(Figure 5-1a). These indicate that the catalyst is reusable without loss of activity and selectivitv.

3-3. Multi-electron reduction on WO3

0

Figure 5-4. Time-dependent change

mL, 9.3 mmol) in MeCN with TiO2,

those in Table 5-1.

612
Time / h

in the amount of I{zOz formed during photooxidation of CHA (l

WO3, or Pto.zAVOs catalyst. Reaction conditions are identical to

On the photoexcited TiO2, the conduction band e- is mainly consumed by single-electron reduction

of 02 (O2'- formation, eqn (5)).to In contrast, on PI/WO3, this reduction is diffrcult because the

conduction band potential of WO: is more negative than the potential of single-electron reduction of 02

(Scheme 5-1).t' The enhanced oxidation of CFIA by the Pt loadings on WO3 flable 5-l) is due to the

efficient consumption of e- on WO3 by a multi-electron reduction of Oz, producing H2O2 or H2O (eqn

(9) and (10)).tt This is confirmed by the amount of HzOz formed during photooxidation of CHA. As

shown in Figure 5-4, the amount of HzOz formed after 12 h photoirradiation with Pt0.2/WO3 is 3.3 pmol,
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whereas pure WO3 and TiO2 produce smaller amounts. As summarized in Table 5-1 (final column), the

H2O2 amount increases with the Pt loadings on WO3, but the catalysts with >0.2 wtyo Pt produce

decreased amount of HzOz. This tendency is consistent with the oxidation activity of CHA (Table 5-1).

These data clearly indicate that the multi-electron reduction of Oz promoted on the Pt particles

efficiently consumes the conduction band e- of WO3 and enhances CHA oxidation.

g = 2.0062

,A,n fficrHe=10.3*o.

Pt(0.2ywo"

Tio2

TiO, + p-BQ

3460

Magnetic field / G

Figure 5-5. ESR spectra for DMPO-Oz.- spin adduct signals obtained by photoirradiation of

O2-saturated CH{MeCN (ll9 vlv) mixture containing DMPO with WO:, Pto.z/WO:, or TiO2 in the

absence and presence ofp-BQ (0.05 mmol). Reaction conditions: catalyst (10 mg), DMPO (0.25 mmol),

CHA/MeCN (ll9 vlv,10 mL), 02 (1 atm), irradiation time (3 min).

On the Pt/'9VO3 catalyst, the single-electron reduction of Oz is indeed difficult. This is confirmed by

ESR analysis. Figure 5-5 shows the spectra obtained after photoirradiation of an O2-saturated

CHA/MeCN (ll9 vlv) mixture with catalysts in the presence of DMPO, a spin-trapping reagent.'5 All of

the catalysts show distinctive signals assigned to the DMPO-O2.- spin adduct (aN: 13.0 G; oH/: 10.3

G, g: 2.0062).ts The spin adduct signal is observed on WO3, although its conduction band potential is

more positive than the potential of single-electron reduction of 02 (Scheme 5-1). As also observed for

the related WO3 system,r6 this is probably attributable to the negative shift of particle charge due to the

effect of electrical potential floating in non-aqueous media or the energy level spreading due to the

distribution of reduction potential of Oz. The intensity of the spin adduct signal observed on Pto.2/IVO3 is
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much weaker than that on TiOz. This clearly indicates that the single-electron reduction of Oz is indeed

unfavorable on PtlWO3 and a lower amount of Or.- is produced.

3-4. Suppression of subsequent decomposition of products

The selective formation of partial oxidation products on PtAVOT is because the catalyst suppresses

subsequent photocatalytic decomposition of the CHA-ol and CHA-one produced. In contrast, TiO2

decomposes these products and produces COz, as denoted by eqn (8). Figure 5-6 shows the

time-dependent change in the amount of COz fo'rmed during photoreaction of 0.1 mmol of CHA,

CHA-ol, or CHA-one as the starting material. With TiO2 (white circle), COz is scarcely formed from

CHA (Figure 5-6a), but is produced significantly from CHA-ol and CHA-one (Figure 5-6b and c). This

indicates that, in the CHAphotooxidation on TiO2 (Figure 5-3b), the formed CHA-ol and CHA-one are

subsequently decomposed, resulting in small amounts of CHA-ol and CHA-one and a large amount of

COz. In contrast, on Pto.zAVO3 (Figure 5-6b and c; black circle), the COz production from CHA-ol and

CHA-one is much suppressed. This indicates that, in the CHA photooxidation on Pto.z/WO3 (Figure

5-3a), further decomposition of the products is suppressed, resulting in large amounts of CHA-ol and

CHA-one and a relativelv small amount of COr.
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Figure 5‐ 6.The amount of C02 f0111led during photooxidation of O.l mmol of(→ CHA,(b)CHA―ol,

and(C)CHA‐one with Ti02 0r Pt02/W03 in the absence/presence of′ ―BQ(0.05 mmol)Or KI(0.05

mmol)。 Reaction conditions:catalyst(10 mO,SubStrate(0.l mm01),MecN(10 mL),λ >420 nm,02(1
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The decreased decomposition of CHA-ol and CHA-one on PtlIVO3 is due to the suppression of Or.-

formation. To clarifr this, the effect ofp-benzoquinone (p-BQ), 8r O2.- quencher,rT on the photocatalytic

decomposition of CHA-ol and CHA-one with TiO2 was studied. As shown in Figure 5-5, the ESR signal

for the DMPO-O2.- adduct obtained with TiO2 in the presence of p-BQ is much weaker than that

obtained with TiO2 alone, indicating that p-BQ indeed quenches O2.-. Figure 5-6b and c show the

amount of CO2 formed during photoreaction of CHA-ol and CHA-one with TiO2 in the presence of

p-BQ. The addition of p-BQ decreases the COz formation. This indicates that the decomposition of

partial oxidation products is indeed promoted by Or.-.

27  54  81              27  54  81

Light intensityノ VV m 2

Figure 5‐ 7.The yields of products fol.1led by photooxidation of CIIA(1 lnL,9.3 11nmol)for 12 h with

(a)Pt0 2/W03 and(b)Ti02 Catalysts at different light intensities(420-500 nnl).Reaction conditions are

identical to those in Table 5-1.

The involvement of Or.- in the decomposition of partial oxidation products is confirmed by

photooxidation of CHA at different light intensities. Figure 5-7 shows the product yields after 12 h

photoinadiation. With Pt0.2/!VO3 (Figure 5-7a), the yields of all products increase with the intensity

increase, and the product selectivity is unchanged. This indicates that, under the suppressed Or.-

formation condition, the decomposition of CHA-ol and CHA-one is not accelerated even by an increase

in the amount of hn formed on the catalyst; in other words, CO2 formation is not promoted by the

decomposition of CHA-ol and CHA-one but by the decomposition of a peroxy radical (C6H11OO.) with

ｂ
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ュ
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a Pto.2MO3 b Ti02
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h* (eqn (7). In contrast, with TiO2 (Figure 5-7b), the intensity increase enhances COz formation while

decreasing the formation of CHA-ol and CHA-one. The increase in light intensity enhances Or.-

formation (eqn ( 5)). This accelerates the decomposition of CHA-ol and CHA-one by Or.- , as proposed

in eqn (8).'0 These data clearly indicate that Or.- is involved in the decomposition of partial oxidation

products.

Effect of h* on the decomposition of partial oxidation products was studied. Potassium iodide (KI),

a h* scavenger,tt was added to a MeCN solution containing CHA-ol or CHA-one together with TiO2 and

used for the photocatalytic reaction. As shown in tr'igure 5-6b and c, the addition of KI decreases CO2

formation as compared to that obtained with TiOz alone. This suggests that the photoformed h* is also

involved in the mechanism for decomposition of CHA-ol and CHA-one. These findings indicate that, as

proposed in eqn (8),10 the decomposition of partial oxidation products is promoted by the combination of

Oz'- and h*. The decreased Oz.- formation on the PIMO3 catalyst, therefore, suppresses the

decomposition and promotes selective formation of CHA-ol and CHA-one. As denoted by eqn (7), CHA

is inevitably decomposed via the reaction of a peroxy radical with h*. Further improvement is therefore

necessary for more selective CHA oxidation. Nevertheless, the results presented here suggest that the

suppression of Or.- formation is one of the effrcient ways for selective production of CHA-ol and

CHA-one by photocatalysis.

4. Conclusion

WO3 loaded with Pt particles (Pt/WO3) were used as catalysts for oxidation of CHA with Oz under

visible light. These catalysts successfully promote partial oxidation (formation of CHA-ol and

CHA-one) with ca. 93% selectivity. The high selectivity for CHA oxidation on PtnVO3 is due to the

decreased Oz'- formation. This suppresses the photocatalytic decomposition of partial oxidation

products occurring via the combination of h* and Or.-.
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Chapter VI

Aerobic Oxidation by Platinum Nanoparticle Supported on Anatase
Titanium Dioxide under Visible Light Irradiation

l.Introduction
Aerobic oxidation by heterogeneous catalysts with molecular oxygen (Oz) as an oxidant is an

essential process for the synthesis of various chemicals.r Photocatalytic oxidation with 02 has also been

studied extensively with semiconductor materials such as titanium dioxide (TiO2);2{ several types of

substrates such as alcohols, amines, hydrocarbons, and sulfides are successfully oxidized at atmospheric

pressnre and room temperature. One of the critical issues for practical application of photocatalytic

processes is the low catalytic activity under irradiation of visible light (1" >400 nm), the main component

of solar irradiance. Several TiOz materials doped with nitrogen,T'8 sulfur,e't0 carbon,lt'r2 or boron atomsl3

have been proposed to extend the absorption edge of catalysts into the visible region. These doped

catalysts, however, suffer from low quantum yields for reaction (<0.5yo), because they inherently

contain alarge number of crystalline lattice that acts as a charge recombination center.ra Development of

visibleJight-driven catalysts that promote highly efficient aerobic oxidation is still a challenge.

Nanosized noble metals such as gold (Au) and silver (Ag) absorb light in the visible region due to a

resonant oscillation of free electrons coupled by light, known as localized surface plasmon resonance

(SPR).'5 Application potentiality of SPR to photocatalysis was first discovered by Tian et al.t6 Visible

light inadiation of Au particles loaded on a TiO2 film that is coated on an indium tin oxide electrode

generates an anodic photocurrent in the presence of Fe2*. This occurs via a collective oscillation of

electrons (e) on the Au particles induced by visible light and a subsequent transfer of e- to the TiO2

conduction band. Simultaneously, the positively charged Au particles receive e- from the electron donor

(F.'*). This suggests that visible light inadiation successfully creates the charge-transferred state at the

metal/semiconductor heterojunction and would promote catalytic oxidation and reduction reactions, i.e.

plasmonic photocatalysis. t 7' t 8

Very recently, we found that visible-light-induced plasmonic photocatalysis successfully promotes

aerobic oxidation of alcohols at the Au/semiconductor interface.re This is achieved by Au particles

loaded on a mixture of anatase/rutile TiOz (Degussa, P25). The activity of Au/P25 catalyst critically

depends on its architecture; Au particles with ca. 4 nm diameter located at the interface of anatase/rutile

TiOz are necessary. The plasmonic reaction on Au/P25 proceeds via the multistep e transfer, as

summarized in Scheme 1. The photoactivated Au particles transfer e to rutile (a). The e- is then
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transferred to the adjacent anatase (b). Oz is reduced on the anatase surface by e and produces a

peroxo-type oxygen anion (O-O ) (c). Alcohol is adsorbed onto the positively charged Au particles via

the interaction of its H atom with the O-O species, producing an Au-alcoholate species (d).20

Subsequent removal of H atom from the species produces the corresponding aldehydes or ketones (e).

The apparent quantum yield for this reaction is 3.8% by the irradiation of 550 nm monochromatic light,

which is much higher than that obtained with the doped photocatalysts (<0.5o ).1 
r3 The

metal/semiconductor system is chemically stable under aerated condition as compared to the doped

photocatalysts.ri The plasmonic photocatalysis therefore has a potential for visible-light-induced aerobic

oxidation.
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Scheme 6-1. Aerobic oxidation of alcohol on the AulP25 catalyst activated by visible light.

The next challenge is further activity improvement of the plasmonic photocatalysts. In the

plasmonic reaction, the charge separation is facilitated by the reduction of 02 on the semiconductor

surface with the e- transferred from the photoactivated metal particles. The anatase surface is active for

02 reduction, whereas rutile surface is inactive.'t In contrast, photoactivated Au particles scarcely

transfer e- to anatase, probably due to the weak Au/anatase interaction, but the e transfer to rutile does

occur.tn Therefore, as shown in Scheme 6-1, the AulP25 system requires the Au---+rutile-+anatase

multistep e transfers for reaction. This circuitous process may suppress smooth e transfer and decrease

the reaction efficiency. In particular, the rutile-+anatase e- transfer (Scheme 6-lb) is probably the
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rate-determining step. This is because the conduction band potential (E6s) of rutile is more positive than

Ecs of anatase, and the rutile---+anatase e- transfer requires a negative shift of rutile E6s by the

accumulation of e- on its conduction band.22'23 Development of more effrcient plasmonic photocatalysts

therefore requires the creation of metaVanatase heterojunction that enables direct e- transfer to anatase.

Pt particles also exhibit absorption band in the visible region, which is assigned to the intraband

transition of electrons from sp band to the sp-conduction band (SPR absorption) and the interband

transition of electrons from d band to sp-conduction band.2a The intensity of this absorption is much

weaker thanthat of Au particles.rs There is only one report of photocatalysis driven by visible light

activation of Pt particles; Zhai et al.zs reported that Pt particles loaded on a TiOz thin film promote

dehydrogenation of alcohols by visible light (1, >420 nm) under N2 atmosphere. Herein, we report that pt

particles with 3-4 nm diameter loaded on anatase TiO2, when used for aerobic oxidation under visible

light, facilitate direct e transfer to anatase and promote the reaction highly efficiently. The pt/anatase

catalysts promote aerobic oxidation of alcohols with an apparent quantum yield7.lo/o(550 nm), which is

much higher than that obtained with the Au/P25 catalyst (3.8%).te In addition, the catalyst successfully

promotes the reaction even under irradiation of sunlight.3

2. Experimental

2-1. Preparation of catalysts

Pt*a/Tiozcatalysts k(wto ):0.5,1,2,3,a;y(K):473,573,673,773,823,8731 wereprepared

as follows. TiO2 (1.0 g) was added to water (20 mL) containing H2PtCI6.6H2O (13.3, 26.8,54.2,82.1, or

110.6 mg). The solvents were removed by evaporation at 353 K with vigorous stirring. The obtained

powders were calcined under air flow and then reduced under H2 flow at the identical temperature (y):

The heating rate was 2 K min I and the holding time at the designated temperature was 2 h, respectively.

Ptzq79lsiozwas prepared in a similar manner.

Au2/P25 was prepared by the deposition-precipitation method as described previously.re p25 TiO,

(1.0 g) was added to water (50 mL) containing HAuCI+'4H2O (45.8 mg). The pH of solution was

adjusted to ca.7 with 1 mM NaOH, and the solution was stirred at 353 K for 3 h. The particles were

recovered by centrifugation, washed with water, and dried at353 K for 12 h. The powders were calcined

under air flow, where the heating rate was 2 K min 1 
and the holding time at 673 Kwas 2 h.

2-2. Reaction procedure

Catalyst (5 mg) was added to toluene (5 mL) containing an alcohol within a Pyrex glass tube (<p 10
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mm; capaci$, 20 mI-), and the tube was sealed with a rubber septum cap. The catalyst was dispersed

well by ultrasonication for 5 min, and Oz was bubbled through the solution for 5 min. The tube was

immersed in a temperature-controlled water bath (298 + 0.5 K)6t and photoirradiated at l, >450 nm with

magnetic stining using a 2 kW Xe lamp (USHIO Inc.),62 filtered through a CS3-72 glass (Kopp Glass

Inc.). The light intensity at 450-800 nm was 16.8 mW cm-2. Sunlight reactions were performed on 30th

January 2012 at 10:00-14:00 at the top of the laboratory building (north latitude 34.7", east longitude

135.5"). The light intensity at 300-800 nm was 8.1 mW cm-' lFigure 56). The highest temperature of

solution during the sunlight exposure was 293 K, and the dark experiments were carried out at 293 K.

After the reactions, the catalyst was recovered by centrifugation, and the solution was subjected to

GC-FID analysis, where the concentrations of substrates and products were calibrated with authentic

samples.

2-3. Action spectra analysis

The photoreactions were carried out in a toluene solution (2 mL) containing I (0.4 mmol) with

Pt267y'anatase or Au2lP25 catalyst (8 mg) using a Pyrex glass tube. After ultrasonication and 02

bubbling, the tube was photoirradiated using a 2 kW Xe lamp, where the incident light was

monochromated by band pass glass filters (Asahi Techno Glass Co.). The fuIl-width at half-maximum

(FWHM) of the light was 11-16 nm. The photon nurnber entered into the reaction vessel was

determined with a spectroradiometer USR-40 (USHIO Inc.).

2-4. ESR measurement

The measurements were carried out at the X-band using a Bruker EMX-10/12 spectrometer with a

100 kHz magnetic field modulation at a microwave power level of 10.0 mW.63 The magnetic field was

calibrated using 1,1'-diphenyl-2-picrylhydrazyl (DPPH) as standard. Catalyst (20 mg) was placed in a

qtarlz ESR tube, and the tube was evacuated at 423 K for 3 h and cooled to room temperature. 02 (20

Ton) was introduced to the tube and kept for 10 min. The tube was photoinadiated at298 K using a Xe

lamp at l" >450 nm. The tube was then evacuated for l0 min to remove the excess amount of O, and

analyzed,atTT K.

2-5. Analysis

Total amount of Pt in the catalysts was analyzed by an inductively-coupled argon plasma atomic

emission spectrometer (ICAP-AES; SII Nanotechnology, SPS 7800), after dissolution of catalysts in an
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aqua regia. TEM observations were carried out using an FEI Tecnai G2 20ST analytical electron

microscope operated at 200 kV. XPS analysis was performed using a JEOL JPS-9000MX spectrometer

with Mg Ka radiation as the energy source. Diffi.rse reflectance UV-vis spectra were measured on an

W-vis spectrophotometer (Jasco Corp.; V-550 with lntegrated Sphere Apparatus ISV469) with BaSO+

as a reference. fl

3. Results and discussion

3-1. Preparation and properties of catalysts

Figure Gl. (a) TEM image of Pt267y'anatase catalyst and size distribution of the Pt particles. (b)

High-resolution TEM images.

The PVTiOz catalysts were prepared by impregnation of Pt precursors followed by reduction with

H2,26'27 using anatase (Japan Reference Catalyst, JRC-TIO-I; average particle size,2l nm; BET surface

area, 8l m' t'), P25 (JRC-TIO4;24 nm; 57 -t g '; anatase/rutile : ca. 83117), and rutile TiO2 particles

(JRC-TIO-6; 15 nm; 104 nf g t), supplied from the Catalyst Society of Japan. TiOz was added to water

containing H2PtCl6, and the water was removed by evaporation with vigorous stirring. The resultant was

calcined in air for 2 h and reduced with H2 for 2 h at the identical temperature, affording Pt oy'Tio2 as

brown powder. The x is the amount of Pt loaded [x (wt %) : Pt/(Pt + TiO, x 100], and y is the
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temperature (K) for calcination and reduction treatments.

As shown in Figure 6-1a, the transmission electron microscopy (TEM) images of Pt21673/anatase

catalysts exhibit monodispersed Pt particles; the average diameter of particles (dp) is 3.4 nm. In addition,

the high-resolution TEM images of catalysts (Figure 6-1b) reveal that the Pt particles can be indexed as

fcc stractttres, as is the case for bulk Pt (JCPDS 04-0802). Ptz6o/P25 and Pt2167y'rutile also contain Pt

particles with similar dH (3.I and 2.9 nm). X-ray photoelectron spectroscopy (XPS) of the catalysts

shows distinctive Pt 4f peaks at71 and74 eY (Figure 6-2), indicating that Pt atoms exist as metallic

state.28 As shown in Figure 6-3a, diffuse reflectance UV-vis spectra of the catalysts containing 2 wt o/o

Pt exhibit broad absorption band at l, >400 nm, assigned to the intraband and interband transitions of Pt

particles.2e Their absorption intensities are much lower than those of Au particles on the Au2lP25 catalyst

containins 2wtYoA.u.te

い∞劉・
Pt 4f 5t2
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Pt2(673/P21

Pt216t.y'rutile

74     72     70     68
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Figure 6-2. XPS chart
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Figure 6-3. (a) Diffrrse reflectance UV-vis spectra of catalysts. (b) Action spectra for photocatalytic

oxidation of 1 on (black) Pt21671lanatase and (white) Au2lP25 catalysts. The apparent quantum yield for

the 2 formation was calculated with the following equation: Ooqr (%): [{(I"i.-)'0".1) x 2}/(photon

number entered into the reaction vessel)] x 100, where )zui5 and Y6,*&re the amounts of 2 formed (pmol)

under light irradiation and dark conditions, respectively.

3 -2. C atalytic activity

The activity of PVTiOz catalysts was studied by oxidation of benzyl alcohol (1) to benzaldehyde (2),

a typical aerobic oxidation.3o The reactions were performed by stirring a toluene solution (5 mL)

containing 1 (0.1 mmol) and catalyst (5 mg) under 02 atmosphere (l atm). The temperature of solution

was kept rigorously at298 + 0.5 K. Figure 6-4 summarizes the amount of 2 produced by 12 h reaction

in the dark (black bars) or visible light inadiation by a Xe lamp (1" >450 nm, white bars). It is noted that

both reactions selectively produced 2 (mass balance: >99%). With bare anatase TiO2, almost no reaction

occurred in the dark, and visible light irradiation produced only 2 pmol 2. In contrast, the dark reaction

with Pt21673y/anatase produced 12 pmol 2 due to the high catalytic activity of Pt particles for aerobic

oxidation.sr " Light inadiation further enhanced the reaction; twice amount of 2 (25 pmol) was

produced. This suggests that visible light inadiation of Pt/anatase catalyst indeed enhances aerobic

oxidation.3a It is noted that the activity of Pt/anatase catalyst is much higher than that of AuzlP2i

catalyst;re AluzlP25 produced only 7.8 pmol 2 even under photoinadiation. Zhai et a1.25 reported that
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Pt/TiO2 catalyst promotes oxidation of alcohols by visible light (1, >420 rur) under Nz atmosphere;

however, as shown in Figure 6-4, photoirradiation of Pt2167y'anatase under N2 produced very small

amount of aldehyde. This indicates that aerobic oxidation is much more efficient for alcohol oxidation.

cata!yst(5 mg),tO:uene(5 mL),

02(l atm),298K,12h

∝

°H
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Figure 6-4. The amount of 2 formed during aerobic oxidation of 1 with respective catalysts, (black) in

the dark or (white) visible light irradiation (1" >450 nm; light intensity at 450-800 nm, 16.8 mW cm-2).

The data obtained under Nz (1 atm) condition were also shown in the figure. Average diameter of metal

particles on the catalysts is denoted in the parenthesis. The detection limit of 2 is 0.02 pmol (4 pM) and

the range of calibration is 0.004--20 mM.

Semiconductor support is necessary for the reaction enhancement by visible light inadiation. As

shown in Figure 6-4,Pt2671lSiO2 catalyst with SiO2 support (Aldrich; average particle size,16 nm; BET

surface area, 625 -t tt) shows almost no reaction enhancement even by photoirradiation. Visible light

irradiation of Pt rurt{P25 also enhances the reaction, but the enhancement is lower than that of

Pt2671lanatase. In addition,Pt267.,lrutile is almost inactive for reaction. As shown in Figure 6-5, other

anatase TiO2 loaded with Pt particles also enhance aerobic oxidation under visible light irradiation.

These data clearly suggest that Pt particles loaded on anatase TiO2 promote efficient aerobic oxidation

０

０

く

く
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under visible light. As shown in Figure 6-6, the Pt/anatase catalyst maintains its activity even after

prolonged photoirradiation (-36 h), indicating that the catalyst is stable under photoirradiation.

catalyst(5 mg),tOluene(5 mL),

02(l atm),298K,12h

∝

6H

1(0.1 mmol)

」RC―T10-1

Pt2(673)/」 RC―T10-1

」RC―■0-2

Pt2(673)/」 RC―■0-2

ST-21

Pt2(673)/ST~21

ST-41

Pt2(673)/S丁-41

anatase (Wako

Pt21673y/anatase (W ako

dark
Or

light irradialon(λ >450 nm)

10

2 forrned/μ mol

■■■l dark
:   :λ >450 nm

∞
2

20

Catalyst Supplier
),1Jssl/m-g' Particle size lnm pzc /pH

JRC―TIO-1

JRC¨TIO…2

ST…21

ST-41

anatase (Wako) Wako

Catalysis Society of Japan

Catalysis Society of Japan

Ishihara Sangyo Co., Ltd.

Ishihara Sangyo Co., Ltd.

81 21

18           400

69           25

11           200

59           29

2.4

6.7

7.1

6.9

4.6

Figure 6-5. The amount of 2 formed during aerobic oxidation of 1 with various anatase TiO2 catalysts

loaded with Pt particles, (black) in the dark or (white) under visible light inadiation (fu >450 nm). The

reaction conditions are identical to those in Figure 3 in the manuscript.
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Figure 6-6. Time-dependent change in the amount of 2 formed during aerobic oxidation of 1 with

respective catalysts in the dark or under visible light irradiation (1, >450 nm). The reaction conditions are

identical to those in Figure 3 in the manuscript.

3-3. Electron transfer at the Pt/anatase heterojunction

The enhanced aerobic oxidation on the Ptlanatase catalyst under visible light is initiated by the

intraband or interband transition of Pt particles. Some literatures35'36 reported that PrlTiO2 promotes

photocatalytic reaction under visible light (1, >400 nm), although TiO2 itself scarcely absorbs light at this

wavelength range. This was explained by the narrowed bandgap of TiO2 by the Pt loadings. In the

present case, as shown in Figure 6-3b, the action spectrum analysis revealed that the absorption band of

Pt2167'llanatase correlates well with the apparent quantum yield (<Daqy) for photocatalytic oxidation of I
(black circle). This data clearly suggests that the enhanced aerobic oxidation on the Ptlanatase catalyst is

triggered by the activation of Pt particles. It is also noted that Oaqy for Pt26Tllanatase is higher than that

for A:uzlP?S (white circle)re at the broad wavelength range of incident light, especially at l, <600 nm. The

Oaqy values for Pt21673/anatase at 450 nm and 550 nm are I3.7Yo andT.lo/o, respectively, which are

much higher than those forAuzlP2l (2.9% and 3.8%).

In the Pt/anatase system, photoactivated Pt particles transfer e- to anatase, and the e- reduces Oz on

its surface. This is confirmed by ESR analysis of the catalysts at77 K, after treatment of the sample with

02 at room temperature in the dark or visible light inadiation (1, >450 nm). As shown in Figure 6-7

(blue), bare anatase TiO2 treated with 02 in the dark shows weak signals (g:: 2.029,2.001), which are

assigned to O- formed via a dissociative adsorption of 02 onto the oxygen vacancy sites of TiO2

surface.3T'38 Photoirradiation of this sample does not create any new signal (Figure 6-7a, black). As
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shown in Figure 6-7b, Pt467y'anatase heated with Oz in the dark also shows O- signal, but

photoinadiation creates strong signals assigned to a superoxide-type oxygen anion (O2-; g**: 2.002, gyy

:2.009, g*:2.028\, which is stabilized on TiOz surface.3e This suggests that photoactivated Pt particles

indeed transfers e- to anatase and promotes the reduction of 02 on its surface. As shown in Figure 6-7c

and d, photoirradiation of Pt21671/P25 and Pt21673y'rutile samples creates much weaker 02- signals. This

means that the 02 reduction does not occur efficiently on these catalysts, and the data agree with their

photocatalytic activities (Figure 6-4). It is noted that, as shown in Figure 6-7b (green), the Pt/anatase

catalyst, when treated with 02 at high temperature (353 K) in the dark, does not create 02 signal. This

indicates that photo-thermal conversionaO on the Pt particles, even if occurs in the present system,ara

does not promote 02 reduction. This again suggests that electronic excitation of Pt particles by visible

light enables e- transfer to anatase and promotes 02 reduction.

a) anatase g=2.001

９２０２

１

十

〓ｇ

b) Pt21673y/anatase

c) P12167.1/P25

gxx=2.002

2首
二:::::

gxx:〓 2.002

0-0~gyノ =2.004

02

gzz,

f) Aur(DPur.)/P25 gzz〓 2.008

2.04    2.02    2.00     1.98     1.96     1.94

g factor

Figure 6-7. ESR spectra of respective catalysts. The catalysts were treated with 20 Torr 02, @lue) in the

dark at 298 K, (black) under visible light inadiation at 298 K, or (green) in the dark at 353 K. After

evacuation, the samples were measured at77 K.
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In the Au/P25 system,le photoactivated Au particles scarcely transfer e to anatase. However, in the

Ptlanatase system, the Pt*+anatase e transfer occurs successfully. This is probably due to the strong

affrnity between Pt particles and anatase surface. Gong et al.a5 studied the adsorption properties of Pt and

Au clusters onto the anatase (101) surface by means of scanning tunneling microscopy and ab initio

calculations. They clarified that Pt clusters are strongly adsorbed onto the anatase surface via the

association with the steps, terraces, and oxygen vacancy sites, and the adsorption energy for PVanatase is

ten-fold higher than that for Au/anatase. The strong Pt/anatase interaction, therefore, probably enables

the Pt--+anatase e transfer.

As shown in Figure 6-7b, photoirradiation of Pt267y'anatase with 02 produces superoxide-type

oxygen anion (O2-). In contrast, AuzlP25te (Figure 6-7f) generates peroxide-type oxygen anion (O-O-;

E**' : 2.002, go' :2.004, g,"' :2.008), associated with the residual positive charge on Au particles.a6

The formation of 02- species on Pt/anatase is explained by the high e- diffrrsivity in the anatase

conduction band. Sun et al.a1 reported that the e- diffirsivity in anatase is two-fold higher than that in

rutile. This may allow smooth e- diffirsion in anatase and promote 02 reduction at the surface spatially

separated from the Pt particles (Figure 6-7b). In contrast, on At/P25, the Au-+rutile---+anatase multistep

e transfers (Scheme 6-1) suppress smooth e- diffirsion and promote 02 reduction at the surface near to

the Au particles. This thus produces O-O* species associated with the residual positive charge on Au

particles (Figure 6-7f).

Mechanism for photocatalytic reaction on PVanatase can be depicted as Scheme 28, similar to the

mechanism in the dark (Scheme 6-2A).It is considered that the dark reaction is initiated by activation of

02 on the anionic site of metal particles.20 The activated species removes H atom of alcohol and

produces hydroperoxide and alcoholate species on the Pt surface.as Subsequent removal of H atom from

the species affords the product. ln the photocatalytic reaction (Scheme 6-28), photoactivated Pt particles

transfer e- to anatase (a). The e- reduces Oz and produces 02- species (b). The 02- species attracts H

atom of alcohol and produces the hydroperoxide and alcoholate species (c). These species give rise to

the product (d). These mechanisms suggest that both dark and photocatalytic reactions are initiated by

the activation of 02, leading to the formation of hydroperoxide and alcoholate species. Although it is

unclear whether the dark and photocatalytic reactions affect each other, the 02 reduction on anatase

surface promoted by e- transfer from photoactivated Pt particles is the crucial step facilitating efFrcient

aerobic oxidation.
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Scheme 6-2. Proposed Mechanism for Aerobic Oxidation of Alcohol on the Pt/anatase Catalyst under

(A) Dark and (B) Visible Light Inadiation Conditions.

3-4. Effect of Pt amount

Photocatalytic activity of Ptlanatase catalysts depends on the amount of Pt loaded. This is

confirmed by the reaction using Pt 1673y'anatase catalysts with different Pt loadings [x (wt %) : Pt/(Pt +

TiO2) x 1001. As shown in Figure 6-8a (orange), dp, of the catalysts are similar (33-3.4 nm). In contrast,

as shown in Figure 6-9a, absorbance of the catalysts in the visible region increases with the Pt loadings

due to the increase in the number of Pt particles. The bar graphs in Figure 6-8a show the results for

aerobic oxidation of I obtained with respective catalysts. The dark activity (black bar) increases with the

Pt loadings due to the increase in the number of surface Pt atoms that are active for aerobic oxidation.r0

Visible light inadiation (white bar) further enhances the reaction, but the enhancement depends on the Pt

loadings; 2 wt % Pt shows the largest enhancement, and higher loading catalysts are ineffective despite

their stronger absorbance. As schematically shown in Scheme 6-3, the metaVsemiconductor

heterojunction creates a Schottky barrier ($").ot Visible light irradiation leads to a collective oscillation

*_?*,
t,a
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of sp band or d band electrons on the metal particles and promotes the intraband or interband excitation

to the sp-conduction band. This provides energy to the electrons to overcome $s and facilitates e

transfer to semiconductor conduction band.s0'5r The height of 0u, therefore, strongly affects the e

transfer efficiency. As reported,52 the increase in the amount of metal loaded onto the semiconductor

leads to an increase in du, due to the decrease in Fermi level of semiconductor. The decreased

photocatalytic activity for larger Pt loading catalysts (Figure 6-8a) is therefore probably because the

increased $s suppresses e- hansfer from photoactivated Pt particles to anatase.

a)P域673/anataSe

0.5 1.0 2.O 3.0
Pt amount. x lwlo/o

Figure 6-8. The amount of 2 formed during aerobic oxidation of I with (a) Pt 1673y'anatase and (b)

Pt2py'anatase catalysts in the dark or under visible light inadiation. Orange keys denote dp1 of catalysts.

The reaction conditions are identical to those in Figure 6-3.
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Figure 6-9. Diffirse reflectance W-vis spectra of (a) Pt4673y'anatase and (b) Pt2lry'anatase catalysts.

anatase

.visible light

EF

Scheme 6-3. Proposed Mechanism for Electron Transfer from the Photoactivated Pt Particles to Anatase.

8,o", EF, Wpt, 0s, and, X denote the vacuum level, Fermi level, work function of Pt, Schottky barrier

height (= WprZ), and electron affrnity of anatase conduction band, respectively.

EvB

-'Y = 473 K
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3-5. Effect of Pt particle size

The size of Pt particles also affects the photocatalytic activity. To clarifu this, the Pt2lnylanatase

catalysts with 2 wt % Pt were prepaxed at different calcination and reduction temperature, y (K). As

shown in Figure 6-8b (orange), dp, of the catalysts increase with the temperature increase due to the

sinteringofPtparticles;dp1forPt2q3,,,Ptz(stz),Ptz6tt),Ptzett),Ptz$zt),andPt4sT3ycatalysts are2.I,2.5,3.4,

5.0, 39,7, and 52.8 nm, respectively. X-ray diffraction pattems of the cata$sts indicate that the

anatase-to-rutile phase transition scarcely occurs (Figure 6-10). As shown by the black bars in Figure

6-8b, in the dark condition, thePt26T3l catalyst shows the highest activity, and the catalysts with smaller

or larger Pt particles show decreased activity. The low activity of smaller Pt particles is due to the

decreased density of low-coordination Pt sites that are active for oxidation.s3 In contrast, larger Pt

particles contain decreased number of surface Pt atoms and, hence, show decreased activity.3o

anatase TiO 2

Pt ror"/anatase

Pt2(673/anataSe

Pt prtfanatase

Ft21s73y'anatase

2 theta / degree

Figure 6-10. XRD pattems of Pt26,y'anatase catalysts. The measurements were performed on a Philips

XXX diftactometerwith Cu Ku radiation.

As shown by the white bars in Figure 6-8b, the photocatalytic activity of Ptvo/anatase shows dp,

dependence similar to the dark activity. The Pt21673; catalyst shows the highest activity, and the catalysts

with smaller or larger Pt particles show decreased activity. As shown in Figure 6-9b, absorbance of the

catalysts in the visible region is similar, although their dp, are different (Figure 6-8b). This indicates that

80706050403020

anatase(101 )

rutile(110)

P(1 1 1)
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the light absorption efficiencies for these catalysts are similar. The low photocatalytic activity of the

catalysts with smaller Pt particles is due to the higher $e created at the PVanatase heterojunction. As

reported,sa the work function of metal particles (Wy) inueases with a decrease in their particle size and

is expressed by the following equation:

we1@Y)=wM**ry
d; 

(1)

Wu* and dy are the work function of planar metal and the diameter of metal particles, respectively. ffi6
is 5.65 eV,55 and Wprfor Pt particles on the Ptzgtt),Ptz6ttt,Pb(ezr,Ptzett),Ptz(szz), and Pt21s73; catalysts are

determined using their dp1 values to be 6.16, 6.08, 5.97,5.87, 5.68, and 5.67 eV, respectively. As

summarized in Figure 6-11 (black), Wprfor Pt particles indeed becomes more positive with a decrease in

the particle size. As shown in Scheme 6-3, de is defined as the difference between the work function of

Pt particles and the elechon affinity of anatase Ece (0e : Wpt- 1;.56 This suggests that the catalysts with

smaller Pt particles create higher $s. This may suppress smooth e- transfer from the photoactivated Pt

particles to anatase, resulting in lower photocatalytic activity (Figure 6-Sb).

Wpt*"""--'-'iJ"'-"'O

l-
I

I

?f <0.02

473      573
(2.1) (2.5)

673
6.3

773 823 873
(3.4)     (5.0)(39.lx52.8)

Calcination and reduction temp.,y/ K
(do / nm)

Figure 6-11. The work function of Pt particles (Wpt) andthe number of perimeter Pt atoms (ffp**","J for

Pt2gy'anatase catalysts, determined with the eqs. 1-5 using dpl values. The detailed calculation results are

shown in Table 6-1.

5.6

5.7

5.8

5.9

6.0

6.1

6.2

む

ヽ
ゴ

110



Table 6-1. Calculation details for the number of perimeter Pt atoms on Pt2gy'anatase catalysts.

ッ/K あ√

/11m

襲。tal*ι

/―

〆

　

／
］

馬e‖ macr*グ  馬凛たLa

/― /μmol」 1

銚eHmet√

/μmol」 1

473  2.1± 0.4  319■ 10   5.1± 0.1   12.2■ 0.1  (3.21上 0.H)   3.9■ 0.1

×10~1

573    2.5=LO.4    539■ 14 5.9■ 0.1 14.8■ 0.1  (1.90± 0.05)   2.8± 0.1

×10~1

673 3.4t0.6 (136+7) 7.9+0.2 20.7 +0.4

x 10r

(7.6+2.1) x 16-z 1.6+0.1

773 s.0+3.2 (431t270) 11.4t0.4 31.2+1.3 (2.4+0.9) x 19-z

x 10r

823 3g.l+14.3 (206+26) 85.7 +25 254+8 (5.0+2.3) x 16-s

(7.4 + 0.9)

x 10-l

(1.3 + 0.2)

x 10a x l0-2

873 52.8+ 15.5 (508+50) 116+3 344+r0 (2.0+ 1.1)x 19-s (6.9+ 1.0)

×104 ×10-3

" Average diameter of Pt particles determined by TEM observations. u The number of total Pt atoms per

particle. " The number of shells. d The number of perimeter Pt atoms per particle. " The number of Pt

particles per gram catalyst./The number of perimeter Pt atoms per gram catalyst.

dPt=2.5
m= 6

ミゃerlmeter = 2.8

3.4

8

1.6

5.0 nm
11

O.7 pmolg-1

Scheme 6-4. Relationship between the Pt Particle Size and the Number of Perimeter Pt Atoms for

Pt21r;/anatase. The calculation details for No";."s". are sunmarized in Table 6-1.
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In contrast, larger Pt particles create lower $s due to their lower Wpt; therefore, the e transfer to

anatase would occur more easily. However, as shown in Figure 6-8b, photocatalytic activity of the

catalysts with larger Pt particles is much lower than that of Ptzwzt.As shown in Scheme 6-4, the {

transfer from photoactivated Pt particles to anatase occurs through the perimeter Pt atoms indicated by

the blue spheres and, hence, the number of perimeter Pt atoms may affect the e- transfer effrciency. As

shown in Figure 6-1b, the high-resolution TEM images of catalysts revealed that the shape of Pt

particles is a part of cuboctahedron, which is surrounded by ( 1 1 1) and ( 1 00) surfaces. The Pt particles on

anatase surface therefore can simply be modeled as a fcc cuboctahedron,tt as often used for related

systems.5s'se This thus allows rough determination of the number of perimeter Pt atoms. Considering the

full shell close packing cuboctahedron for Pt particle where one Pt atom is surrounded by twelve others,

the number of total Pt atoms per particle (N,o,ur*) can be expressed by eq. 2 using the number of shells

(m). N^*r* is rewritten with the average diameter of Pt particle (dp) and the atomic diameter of Pt

lduro ,rr(:0.278 nm)].u0 The number of perimeter Pt atoms per particle (Np",i."t".*) is expressed by eq. 3.57

10″
3_15″2+11″ _3

ⅣゎtJ*(―)=

力「pe五meter*(~)=3″ -3

The number of Pt particles per gram catalyst (Npu,ti"rJ is expressed by eq. 4, using the percent

amount of Pt loaded onto the catalyst [x (:2 wtoh)], molecular weight of Pt [M1's (: 195.1 g mol-')], and

Ntotur*. The number of perimeter Pt atoms per gram catalyst (Npe,i."t"J is therefore expressed by eq. 5.

怖a五dc(m。 lg・ )=
l00x Myu t Ntotul *

嶋e」mctr(m。 lg・)=銑cHmeter*× 銚前de

The Np*-ete. values for respective Ptyr4lanatase catalysts can therefore be calculated using their dpt

determined by the TEM observations (Table 6-1). As shown in Figure 6-11 (white), the iy'p".i-",.. values

decrease with an increase in the Pt particle size; the value for Ptze1tt\ is 3.9 pmol gr, but that for Ptz(sz:)

is only 6.9 x l0-3 pmol g t. This suggests that the particle size increase leads to significant decrease in

Np..i-"t",. As shown in Figure 6-7e, ESR analysis of the Ptz(szr) catalyst after treatment with 02 under

visible light irradiation shows 02- signal much weaker than that of Pt267; (Figure 6-7b). This indicates

that the catalysts with larger Pt particles are indeed inefficient for e transfer to anatase, although their $s

values are lower. These findings clearly suggest that the decreased number of perimeter Pt atoms

〔鵡 )3

(2)

Ｏ
Ｊ

(4)

ξ
υ
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Table 6-2,Effectof Sunlight Exposure onAerobic Oxidation ofAlcohols with Pt andAu Catalysts."

Entrv Substrate Catalyst
Conversion

Sunlight'
lo "

Product Yield I o/od

９

８４

９

６０

”

１

２

３

４

５

６

７

８

９

(ofo"

tor^ot

t- on

ueo&

tf(-o"
ctN

nr^'
ueo&

ＯＨひ

Pt21673y'anatase

Pt2167;/anatase

A'urzlP25

Pt267y'anatase

Pt26Tllanatase

Aur/P25

Pt21673y'anatase

Pt267y'anatase

AwlP25

Pt26Tllanatase

Pt26Tylanatase

Au,zP25

Pt267y'anatase

Pt4673y'anatase

Alu2lP25

Pt2673llanatase

Pt267y'anatase

AuzlP25

75

13

a4)l

r(\-oo

rffo

(=fo
MeOry

(Y"o
c(x'z

72

t2

35

80

9

59

99

l4

77

73

7

40

72

t0

34

84

5

49

10

11

l2

l3

l4

15

T6

T7

18

l4

77

na
IJ

7

43

72

11 Ｏひ

" Reaction conditions: toluene (5 mL), alcohol (25 pmol), catalyst (5 mg), 02 (1 atm), exposure time (4

h). The average light intensity at 300-800 nm was 8.1 mW cm-2, which involves l, <400 nm light with

only ca. 2o/o. The solution temperature during exposure was 288-293 K. b The dark reaction (-) was

performed at293 K. ": (alcohol converted) / (initial amount of alcohol) x 100. 
d: (product formed) /

(initial amount of alcohol) x 100.

suppresses e- transfer from photoactivated Pt particles to anatase and results in lower photocatalytic

activity. As shown in Figure 6-8b, the Pb.@r, Ptz6tz), and Pt2gT3l catalysts contain Pt particles with

similar sizes (2-5 nm), but the Pt21673; catalyst shows the highest photocatalytic activity. This means that,

as shown in Figure 6-11, the Pt particle size strongly affects Wpt and Nperimete' and this trade-off

relationship is critical for the activity of photocatalysis. As summarized in Scheme 6-4, the 3-4 nm Pt

３４

８５

５

４９

OH 0

Me〆〔 〕
〆

k
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particles with shell number 7-10, create relatively low {s and relatively large number of perimeter Pt

atoms atthePtlanatase heterojunction and, hence, act as highly active photocatalysts.

The Pt26Tslanatase catalyst successfully promotes aerobic oxidation of alcohols under sunlight

irradiation at ambient temperature. Table 6-2 summarizes the results for oxidation of various alcohols

obtained withPt26Tllanatase catalyst under sunlight exposure, where the temperature of solution during

reaction was 288-293 K. Sunlight exposure selectively oxidizes alcohols to the corresponding carbonyl

compounds with very high yields (72-99%). These yields are much higher than those obtained with

Pt26Tllanatase in the dark at 293 K or with the Au2lP25 catalystre under sunlight exposure. These data

suggest that the PVanatase catalyst is successfully activated by sunlight and acts as effrcient

photocatalyst.

4. Conclusion

We found that Pt nanoparticles loaded on anatase TiOz behave as highly efficient photocatalysts

driven by visible light irradiation. The high photocatalytic activity of this system is due to the smooth e

transfer from photoactivated Pt particles to anatase. This promotes efficient 02 reduction on the anatase

surface and facilitates charge separation at the Pt/anatase interface. The activity of this photocatalysis

depends on the height of Schottky barrier and the number of perimeter Pt atoms. The catalyst with 2

wt o Pt, containing 3-4 nm Pt nanoparticles, facilitates effrcient e transfer from the photoactivated Pt

particles to anatase and shows the highest photocatalytic activity. Sunlight activation of the catalyst

successfully promotes selective and efficient oxidation of alcohols. The efficient charge separation at the

Ptlanatase heterojunction clarified here may contribute to the development of more active catalysts and

the design of photocatalytic systems for selective organic transformations by sunlight.

5. References

[1] Sheldon, R.A.; Arends, I. W. C. E.; Dijksman, A. Catal. Todoy 2000, 57, 157.

[2lFox, M.A.; Dulay, M.T. Chem. Rev. 1993,93,341.

[3] Maldotti, A.; Molinari, A.; Amadelli, R. Chem. Rev. 2002, 102,3811.

[4] Palmisano, G.;Augugliaro, V.; Pagliaro, M.; Palmisano, L. Chem. Commun.2007,3425.

[5] Fagnoni, M.; Dondi, D.; Ravelli, D.;Albini, A. Chem. Rev.2007, 107,2725.

[6] Shiraishi, Y.; Hirai, T. J. Photochem. Photobiol. C 2008,9, 157.

[7] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.;Taga, Y.9cience2001,293,269.

[8] Miyauchi, M.; Ikezawa, A.; Tobimatsu, H.; Irie, H.; Hashimoto, K. Phys. Chem. Chem. Phys.2004,6,

865.

114



[9] Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Appl. Catal. A 2004,

265, ll5.

[10] Yan, X.; Ohno, T.; Nishijima, K.; Abe, R.; Ohtani, B. Chem. Phys. Lett.2006,429,60ffi10.

[ 1] Sakthivel, S.; Kisch,H. Angew. Chem. Int. Ed.2003, 42,4908.

[12] Irie, H.; Watanabe, Y.; Hashimoto, K. Chem. Lett.2003, 32,772.

ll3lZhao, W.; Ma, W.; Chen, C.; Zhao, J.; Shuai, Z. J. Am. Chem. 9oc.2004, 126,4782.

[14] Chen, X.; Mao. S. S. Chem. Rev. 2007, 107,2891.

[15] Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Acc. Chem. Res. 2008, 41,1578.

[16] Tian, Y; Tatsuma,T. J. Am. Chem. Soc. 2005, 127,7632.

[17] Primo, A.; Corma, A.; Garcia, H. Phys. Chem. Chem. Phys.20ll,13, 886.

[18] Linic, S.; Christopher, P.; Ingram, D.B. Nat. Mater 2011, I0,9Il.

[19] Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc.2012,

I 34, 6309.

[20] Ishida, T.; Nagaoka, M.; Akita, T.; Haruta, M. Chem.-Eur J.2008, 14,8456.

[21] Ohno, T.; Sarukawa, K.; Matsumura, M. J. Phys. Chem. B 2001, 105,2417.

[22] Dunn, W. W.; Aikawa, Y.; Bard, A. J. J. Am. Chem. Soc. 1981, I 03,3456.

[23] Fujii, M.; Kawai, T.; Kawai, S. Chem. Phys. Lett. 1984, 106, 517.

l24lHao, Q.; Juluri, B.K.; Zheng, Y. B.; Wang, B.; Chiang, I.-K.;Jensen, L.; Crespi, V.; Eklund, P. C.;

Huang, T. J. J. Phys. Chem. C 2010, ll4,18059.

l25lZhai,W.; Xue, S.; Zhu, A.; Luo, Y. Tian, Y. ChemCatChem20ll, 3,127.

[26] Shiraishi, Y.; Ikeda, M.; Tsukamoto, D.; Tanaka, S.; Hirai, T. Chem. Commun.20ll,47,48Il.

[27] Shiraishi, Y.; Takeda, Y.; Sugano, Y; Ichikawa, S.; Tanaka, S.; Hirai, T. Chem. Commun.20ll,47,

7863.

[28] Silvestre-Albero, J.; Seprilveda-Escribano, A.; Rodriguez-Reinoso, F.; Anderson, J. A. J. Catal.

2004, 223,179.

[29] Bigall, N. C.; Hartling, T.; Klose, M.; Simon, P.; Eng, L. M.; Eychmtiller, A. Nano Lett.2008,8,

4588.

[30]Abad, A.; Corma, A.; Garcia, H. Chem.-Eur J.2008, 14,212.

[31] Proch, S.; Herrmannsdcirfeq J.; Kempe, R.; Kern, C.; Jess, A.; Seyfarth, L.; Senker, J. Chem.-Eur J.

2008,14,8204.

[32] Ng, Y H.; Ikeda, S.; Harada, T.; Morita, Y.; Matsumura,M. Chem. Commun.2008, 3181.

[33] Hong, H.; Hu, L.;LL,M.;Zheng, J.; Sun, X.; Lu, X.; Cao, X.; Lu, J.; Gu, H. Chem.-Eur J.20ll, 17,

115



8726.

[34] The amount of 2 formed is proportional to the intensity of incident light. Photoreaction of I was

performed with different light intensity by changing the distance from the light source to the samples.

The amount of 2 formed by 12 h photoirradiation was 25 pmol (16.8 mW .*-'), 35 pmol (38.0 mW

"*-'), 
and 45 pmol (54.9 mW cm-2), respectively.

[35] Sun, B.; Smirniotis, P. G.; Boolchand, P. Langmuir 2005, 2I , 11397 .

[36] Chen, H.-W.; Ku, Y.; Kuo, Y.-L. Water Res.2007,41,2069.

[37] Fenoglio, I.; Greco, G.; Livraghi, S.; Fubini ,8. Chem.-Eur J. 2009, 15, 4614.

[38] Coronado, J. M.; Soria, J. Catal. Today 2007, 123,37 .

[39] Anpo, M.; Che, M.; Fubini, B.; Garrone, E.; Giamello, E.; Paganini, M. C. Top. Cata|.1999,8, 189.

[40] Chen, X.; Zhn,H.-Y.; Zhao, J.-C.; Zheng, Z.-F.; Gao,X.-P. Angew. Chem., Int. Ed. 2008, 47, 5353.

[41] Photo{hermal conversion on the photoinadiated Pt particles scarcely occurs in the present system.

The temperature increase on the surface of an individual Pt particle in solution under photoirradiation

can roughly be estimated by the equation, LT: o",""ll(4nR"oBr), where ou6. : absorption cross section, 1

: intensity of the incident light, R"o : radius of a sphere with the same volume as the particle, B :
thermal capacitance coefficient dependent on nanoparticle aspect ratio, r : thermal conductivity of

solvent (ref 42). The ou6. value for <100 nm Pt particles is reported to be <1 x 10-ra m2 (ref 43). Other

parameters for our catalysts are: R.o <30 nm,1: 168'W m-2, F: l, r:0.13 W m-r K-r (ref 44).The

theoretical temperature increase, AZ, is determined with these parameters to be 3.4 x l0-5 K. This very

small temperature increase suggests that photo-thermal conversion scarcely occur in the present

Pt/anatase system.

[42] Baffou, G.; Quidant, R.;Abajo, F- J. G. ACS Nano2010,4,709.

l43l Langhammer, C. ; Kasemo, B.; ZoiQ I. J. Chem. Phys. 2007, I 26, 1947 02.

l44lZhang,Z.;Gu, H.; Fujii, M. Experiment. Therm. Fluid 9ci.2007,31,593.

[45] Gong, X.-Q.; Selloni, A.; Dulub, O.; Jacobson, P.; Diebold, U. I Am. Chem.,Soc. 2008, 130,370.

[46] Chowdhury B.; Bravo-Suhrez, J. J.; Mimura, N.; Lu, J.; Bando, K.K.; Tsubota, S.; Haruta, M.l
Phys. Chem. 8 2006, 1 1 0, 22995.

[47] Sun, B.; Vorontsov, A. V.; Smirniotis, P. G. Langmuir 2003, Ig,3I5l.

[48] Fukuto, J.M.; Di Stefano, E.W.; Burstlm, J. N.; Valentine, J. S.; Cho, A.K. Biochemistry 1985,24,

4t6r.

[49] Schottky, W. Z. Phys.1939,113,367.

[50] Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M. J. Am. Chem. \oc.2007, 129,14852.

116



[51]Nishttima,Y;Ueno,K.;Yokota,Y;Murakoshi,K.;MiSawa,H.JPり s.C力θ
“

.Zθ″.2010,f,2031.

[52]Uchihara,T.;Matsumura,M.;Yamamoto,A.;Tsubomura,H.JPり s.動θ
“
.1989,93,5870.

[53]Liu,Y;Tsllnoyama,H.;Akita,■ ;Xie,S.;Tsukuda,T.И CS Cα″ム2011,f,2:

[54]Wood,D.NII.Pりs.RθソZθ″.1981,イσ,749.

[55]Eastman,D.E.Phys.Rθ ソ31970,2,1.

[56]NakatO,Y;Ueda,K.;Yano,H.;Tsubomura,H.JPりs.C力θ
“
.1988,92,2316.

[57]Benfleld,R.E.J Cttθ ″.Sθc.Eαr翻り Da“s.1992,∂ ∂,1107.

[58]Arruda,T,M.;Shyam,B.;Ziegelbaucち J.M.;Mukettee,S.;Ramaket D.E.IPりs.C力θ
“
.C2008,

ff2,18087.

[59]WilSOn,o.M.;Knecht,M.R.;Garcia― Marthinez,J.C.;Crooks,R.M.JИ
“
.C力θ

“
.&,6.2006,f2∂

,

4510.

[60]Murthi,VS.;U五 an,R.C.;Mukettee,s.IPり s.0をθ
“
.B2004,fθ∂,H011.

[61]TsukamOto,D.;Shiro,A.;Shiraishi,Y;Sugano,Y;Ichikawa,S.;Tanaka,S.;Hirai,■ /CS Cα″ム

2012,2,599.

[62]ShiraiShi,Y;Sugano,Y;Tanaka,S.;Hirai,T.И ″gθμ C力θ
“
.ルムE滅 2010,イ9,1656.

[63]ShiraiShi,Y;Saito,N.;Hirai,■ J/“ .Cttθ

“
.Sοθ.2005,f27,8304.

[64]ShiraiShi,Y;Saito,N.;Hirai,■ JИ
“
。C乃

`“
.Sοθ.2005,127,12820.

117



General Conclusions

This dissertation work described selective organic transformations by semiconductor photocatalysts

loaded with Pt and Pd nanoparticles to achieve "photocatalytic organic synthesis". In the first four

chapters (I-ry), photocatalytic activation of substrates by UV light inadiation was described. ln the two

other chapters (V and VI), the author described the photocatalytic activation of substrates by visible light

irradiation.

In Chapter I, the author found that a new strategy for the acid- and oxidant-free synthesis of

benzimidazoles using o-arylenediamines and alcohols as the reactants at room temperature under UV

light irradiation condition (1, >300 nm). This process employs nanoparticles that comprise of a titanium

dioxide (TiO2) semiconductor loaded with Pt nanoparticles. This is promoted by one-pot multiple

catalytic transformations on PtlTiO2, which involve a platinum-assisted photocatalytic oxidation of

alcohols on TiO2 and a catalytic dehydrogenation on the surface of the platinum particles. The amount

and size of platinum particles are important factors. The catalyst containing 0.2 wto/o Pt, with a relatively

large amount of Pt atoms and a small Pt particle size (<4 nm), exhibits the highest activity and selectivity.

This process has significant advantages when compared with other methods: (i) a cheap and stable

reactant (alcohol), (ii) it does not require the use of acids or oxidants, (iii) the by-products formed are

harmless (only water and molecular hydrogen form during the reaction), and (iv) the reaction proceeds

under milder ambient conditions. Therefore, this process has the potential to enable a more sustainable

b enzimidazo I e synthe s i s.

In Chapter II, TiO2 loaded with Pd nanoparticles were used as catalysts for photocatalytic

hydrodenitrogenation of aromatic cyanide in ethanol as a hydrogen source. These catalysts promote

denitrogenation and produce toluene derivatives and triethylamine with very high selectivity under IfV

light (X >300 nm) irradiation at room temperature. Photoexcited Pd/TiO2 catalysts produce acetaldehyde

and the active H-Pd species. Consecutive reactions involving the hydrogenation by H-Pd species and the

condensation with aldehyde facilitate effrcient hydrodenitrogenation of aromatic cyanides. The amount

of Pd loaded and the size of Pd particles strongly affect the denitrogenation activity. The Pd/TiOz

catalyst with a relatively low Schottky barrier height at the Pd/TiO2 heterojunction and alarge number of

surface Pd atoms is necessary for efficient denitrogenation.

In Chapter III, the author found that Pd/TiO2 catalyst promotes N-monoalkylation of primary amine

with alcohol under UV light inadiation (1, >300 nm) at room temperature. Several kinds of secondary

amines are successfully produced with high yields. Tandem photocatalytic and catalytic reactions
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promote three consecutive reactions, consisting of Pd-assisted alcohol oxidation on the photoactivated

TiO2, catalytic condensation of the formed aldehydes with amines on the TiO2 surface, and

hydrogenation of formed imine with H atoms on the Pd particles. The rate-determining step is the imine

hydrogenation via an adsorption of imine on Pd surface. The imine adsorption onto the larger triangle

site is strongly suppressed by competitive adsorption of alcohol. As a result of this, the catalyst with

2-2.5 nm Pd particles, which contain relatively larger number of triangular Pd atoms and do not promote

strong alcohol adsorption, shows the highest activity for imine hydrogenation and promotes efficient

N-alkylation. This tandem catalytic system offers significant advantages: (i) no harmful byproduct

forms; (ii) the reaction proceeds at room temperature; and (iii) several secondary amines are successfully

produced. The tandem reaction promoted by photocatalytic and catalytic action, therefore, have a

potential to be a powerful method for one-pot synthesis of organic compounds in an

environmentally-friendly way.

In Chapter tV, the author found that UV irradiation (1. >300 nm) of TiO2 loaded with Pd-Pt alloy

promotes efficient dehalogenation of organic halides with alcohol. The activity is more than three times

that of TiOz loaded with Pd nanoparticles and higher than the conventional method with molecular

hydrogen. Photoexcited catalysts produce carbonyl compounds and H*, whereas the photoformed e

reduces H- on the Pt site. Sequentially, the formed H atom transfers to the adjacent Pd site and promotes

dehalogenation. This high activity is due to the enhanced consumption of photoformed e- on the Pt site

by H. reduction and sequential effrcient transfer of the formed hydrogen atom to the adjacent Pd site

within the alloy particles. This offers crucial advantages: (i) safe alcohols can be used as a hydrogen

source; and, (ii) the reaction proceeds much faster. Therefore, this Pd-Pt bimetallic alloy system has a

potential to proceed a Pd-based hydrogenation process.

In Chapter V, tungsten trioxide (WO:) loaded Pt nanoparticles (PtlWO3) were used as catalysts for

oxidation of cyclohexane (CHA) with molecular oxygen (O2) under visible light irradiation (1. >420 nm).

These catalysts successfully promote partial oxidation of CHA to produce cyclohexanol (CHA-ol) and

cyclohexanone (CHA-one) with ca.93Yo selectivity. The ESR measurement with a spin trapping reagent

and the photocatalytic reaction with a superoxide radical (Or.-) scavenger indicate that the high

selectivity for CHA oxidation on PVWO: is because subsequent photocatalytic decomposition of

CHA-ol and CHA-one is suppressed. In the Pt/WO3 system, the photoformed electrons on the

conduction band of WO3 oro collSuilled by a multi-electron reduction of Oz on the Pt particles (formation

of HzO and H2O2), where a single-electron reduction of 02 is unfavored. This suppresses the formation

of Or.- that promotes decomposition of CFIA-ol and CHA-one and, hence, results in selective formation
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ofthese products,

In Chapter VI, the author found that Pt nanoparticles loaded on anatase TiO2 behave as highly

effrcient photocatalysts driven by visible light inadiation (1, >450 nm). The high photocatalytic activity

of this system is due to the smooth e transfer from photoactivated Pt particles to anatase. This promotes

efficient 02 reduction on the anatase surface and facilitates charge separation atthePt/anatase interface.

The activity of this photocatalysis depends on the height of Schottky barrier and the number of perimeter

Pt atoms. The catalyst with 2 wtyoPt, containing 3-4 twr Pt nanoparticles, facilitates effrcient e- transfer

from the photoactivated Pt particles to anatase and shows the highest photocatalytic activity. Sunlight

activation of the catalyst successfully promotes selective and efficient oxidation of alcohols. The

efficient charge separation at the PVanatase heterojunction clarified here may contribute to the

development of more active catalysts and the design of photocatalytic systems for selective organic

transformation by sunlight.
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Suggestions for Future Work

This dissertation work described the selective organic transformations by semiconductor

photocatalysts loaded with Pt and Pd nanoparticles. The author points out here the extension of this work

for the design of visible light-driven photocatalysis towards the application of sunlight as a light source

for organic synthesis.

Previously, our research group found that Au nanoparticles with small particle size (<5 nm) located

at the interface of anatase/rutile TiO2 particles behave as highly active sites for plasmonic catalysts under

visible light.r ln Chapter VI, by applying the Ar/TiO2 system, the author also found that Pt nanoparticles

with appropriate particle size (3-4 nm) located at anatase TiO2 particles behave as highly active sites for

photocatalysts under visible light. ESR analysis clearly revealed that the heterojunction of Pt/anatase

facilitates direct transfer of e- from the photoactivated Pt particles to anatase TiOz and effrcient 02

reduction. The catalyst successfully promotes aerobic oxidation of alcohols under sunlight. ln addition,

On the basis of the catalyst architecture clarified from these results, the author proposes more effrcient

visible light-induced photocatalysts. Figure 7 shows the proposal of new catalysts: they are (l) TiO,

loaded with Au-Cu bimetallic alloy nanoparticles, and (2) TiOz loaded with Pt-Cu bimetallic alloy

nanoparticles.

Figure 7. Suggestion for new visible light-induced photocatalyst loaded with metal nanoparticles

Suggestion for new visible light-induced Photocatalyst loaded with metal nonoparticles
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(1) TiO2loaded with Au-Cu bimetallic alloy nanoparticles

As reported,z alloying of Au with other noble metals affects strongly on the catalytic activity. This

alloy effect is probably due to the e- transfer phenomena from the metal with small electronegativityr to

the metal with large electronegativity (Figure 8a). In addition, as reported,o Au-Cu alloy particles with

ca. 3 nm diameter loaded on silica promotes aerobic oxidation of alcohols with 1.S-fold higher than the

monometallic Au particles. The enhanced activity of Au-Cu alloy is considered to be due to the ef|rcient

activation of 02 on the alloy site. These alloy particles, however, rapidly lose their activity during the

reaction, because 02 oxidizes the surface Cu atoms and eliminates the alloying effect.s Therefore,

creation of Au-Cu alloy catalysts which enable to avoid the oxidation of surface Cu atoms by 02 is

necessary for highly efficient aerobic oxidation under ambient conditions. The Au-Cu bimetallic alloy

nanoparticles with visible light irradiation are probably one of the new approaches to avoid the oxidation

of surface Cu atoms (Figure 7a). Au-Cu alloy particles activate molecular oxygen and promote aerobic

oxidation of alcohols (Figure 9a). Simultaneously, the oxidized Cu species on the surface of catalyst

with visible light is reduced to CuO by a transfer of the plasmon electrons of photoactivated Au particle

to oxidized Cu species, leading to suppression of oxidation of Cu on the surface (Figure 9b). This may

promote efficient aerobic oxidation of alcohols without decreasing the activity. We have already made

Au-Cu bimetallic alloy particles loaded on TiO2 particles, with ca. 2.5 nm diameter and shows enhanced

photocatalytic activity for aerobic oxidation than Au/TiO2 catalyst under visible light irradiation.

Although the detailed reaction mechanisms remain to be clarified, this alloy system with visible light

inadiation would be one of the candidates for the improvement of catalytic activity.
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Figure 9. Proposed mechanism for aerobic oxidation on AuCu/TiO2 catalyst. (purple) gold atom, (blue)

copper atom, (gray) oxidized copper atom, and (red) oxygen atom.

(2) TiO, loaded with Pt-Cu bimetallic alloy nanoparticles

As noted above, alloying of Au and Cu affects strongly in the catalytic activity. This is probably

because visible lighfinduced plasmon activation of e on Au reduces the oxidized surface Cu atoms. As

shown in Chapter VI, visible light-induced photocatalysis on Pt/TiO2 is initiated by direct e- injection

from photoactivated Pt particles to anatase TiO2 conduction. Therefore, Pt-Cu alloying system may also

enhance the catalytic activity (Figure 7b). When the photoactivated Pt particles inject e- to TiO2

conduction band, the e have to overcome the Schottky barrier. The height of the barrier decreases with

decrease of work function of metal. The work function of Pt-Cu alloying metal, therefore, becomes

smaller than Pt (Figure 8b), leading to more efficient e- transfer to TiOz conduction band. The authors

have already made PdCu/TiO2 catalysts and the catalyst shows very high activity for aerobic oxidation

of alcohols. It must be noted that the catalytic activity is much higher than PtlTiO2 catalyst. Although the

detailed reaction mechanisms remain to be clarified, this alloy system would also possess one of the

possibilities for the improvement of catalytic activity under visible light.
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